

Differential D₁ and D₂ receptor internalization and recycling induced by amphetamine *in vivo*

4 Authors:

5 Hanne D. Hansen^{1,2,3}, Martin Schain¹, Helen P. Deng², Joseph B. Mandeville^{2,3}, Bruce R. Rosen^{2,3} and
6 Christin Y. Sander^{2,3*}

8 Affiliations:

9 ¹Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen
10 University Hospital, Rigshospitalet; Copenhagen, Denmark.

11 ²Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts
12 General Hospital; Charlestown, MA, USA

13 ³Harvard Medical School; Boston, MA, USA

15 *Corresponding author:

16 Christin Y. Sander

17 Email: csander@mgh.harvard.edu

19 Athinoula A. Martinos Center for Biomedical Imaging

20 Massachusetts General Hospital

21 149 13th Street, Suite 2301

22 Charlestown, MA 02129

24 **Abstract:**

25 The dopamine system plays a significant role in drug reward and the pathogenesis of addiction.
26 Psychostimulant drugs acutely increase dopamine levels, triggering receptor internalization. *In vitro* data
27 suggest that dopamine D₁ receptors (D₁R) recycle, whereas D₂ receptors (D₂R) degrade in response
28 to activation. Yet, receptor fates *in vivo* remain unclear. This study bridges *in vitro* mechanisms and *in*
29 *vivo* measurements of stimulant-induced modulation of receptor states using longitudinal multi-modal
30 imaging combined with neuropharmacology. We demonstrate how repeated amphetamine
31 administration differentially modulates D₁R vs. D₂R signaling in nonhuman primates over 24 hours
32 using simultaneous positron emission tomography and functional magnetic resonance imaging. In
33 contrast to predominantly inhibitory D₂R signaling due to an initial amphetamine challenge, excitatory
34 D₁R functional signaling prevails three hours later, while D₂R signaling stays internalized. These results
35 demonstrate differential externalization mechanisms of the D₁R and D₂R *in vivo* and a shift in receptor
36 subtype activation after a dopamine surge.

37 **INTRODUCTION**

38 Substance use disorders are characterized as the progressive loss of control from initial and voluntary
39 drug intake with reinforcing and hedonic effects to loss of control. This behavior becomes habitual and
40 eventually compulsive. According to the World Drug Report 2021, an estimated 0.5% of the global
41 population, or 27 million people, use amphetamine-type stimulants, with the highest prevalence in North
42 America at 2.3% (1). The non-medical use of stimulants has substantial medical, social, and economic
43 consequences.

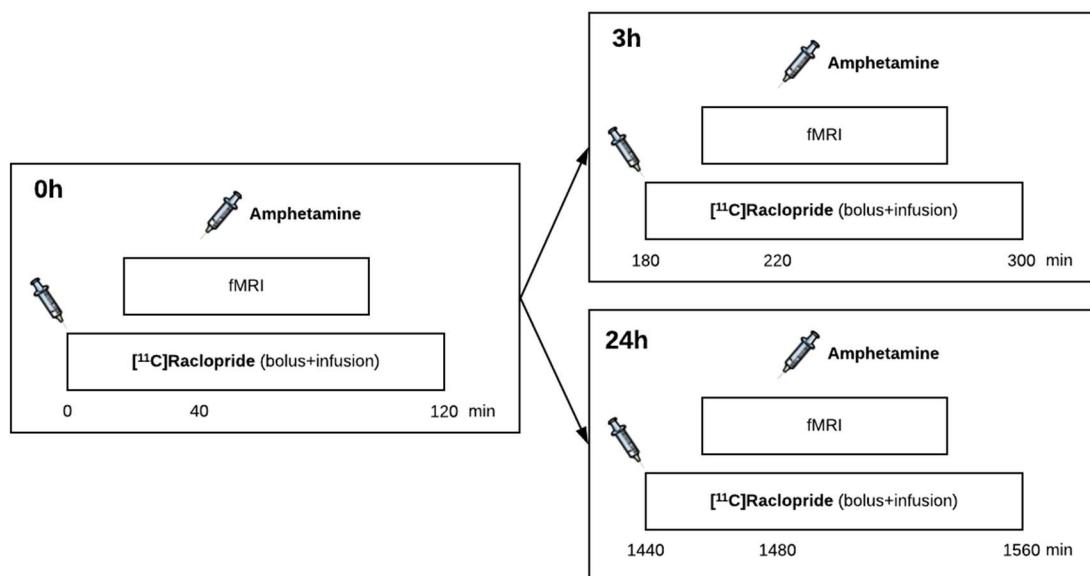
44 It is well-recognized that dopamine (DA) dysregulation accompanies addictive behavior. Data from *in*
45 *vivo* animal and human studies reveal that, although stimulant drugs acutely increase DA levels in the
46 striatum and reinforce their rewarding effects, reduced DA signaling is associated with behavioral
47 features that facilitate the development and severity of addiction long-term [reviewed by Trifilieff et al.
48 (2)]. Specifically, significant reductions in DA release, DA transporter availability, and dopamine D₂
49 receptor (D₂R) availability have been found in chronic stimulant users (3). Despite much progress from
50 *in vivo* receptor measurements, relatively little is known about the interplay of other DA receptor
51 subtypes with D₂Rs and their signaling mechanisms during repeated stimulant exposure in the living
52 brain. Such mechanisms may play an important role in drug reward and the formation of addiction (4,
53 5).

54 Amphetamine-type stimulants act on DA transporters and presynaptic vesicles to increase extracellular
55 DA (6, 7). This drug-induced increase in synaptic DA can trigger receptor internalization as one of the
56 immediate responses to adapting to overwhelmingly high concentrations of DA (8). Receptor
57 internalization is considered an essential mechanism for discharging the bound agonist and making
58 receptor sites available again on the surface of the cell membrane (9) – a homeostatic adaptive process
59 at the receptor level to downregulate functionality during DA surges. More than half of the D₂Rs can
60 undergo internalization upon exposure to high concentrations of agonist (10, 11). Furthermore, receptor
61 internalization is mediated by β-arrestin2 (12), and the genetic elimination of this protein in knock-out
62 animals causes changes in the behavioral responses to most classes of drugs of abuse (13). *In vitro*, it
63 has been found that both dopamine D₁ receptors (D₁R) and D₂R rapidly internalize in response to DA
64 release (14, 15). However, the intracellular fate of dopaminergic receptor subtypes may be quite
65 different: A study by Bartlett et al. found that the D₁R quickly recycles back to the cell membrane,
66 whereas the D₂R is degraded (16). The latter is in agreement with the observation that D₂Rs, once
67 internalized, can stay internalized for several hours or days after a single stimulant exposure (17). The
68 possibility that D₁Rs may be available for binding by DA much sooner compared to D₂Rs after an initial
69 stimulant exposure may shift the balance in functional signaling and affect how reward circuits are

70 activated with subsequent drug exposures (18, 19). Furthermore, there is evidence that the enhancing
71 and reinforcing effects of stimulant drugs may not only be mediated via D₂Rs but also via D₁Rs (20).
72 This difference in the neurochemical nature and timescale of D₁ vs. D₂R recycling has been unexplored
73 in an *in vivo* setting as there have been no ready methods to measure these quantities in the living brain
74 easily.

75 In the living brain, DA release can be measured non-invasively as a decrease in the *in vivo* binding of
76 single-photon emission computed tomography (SPECT) and positron emission tomography (PET)
77 imaging ligands such as [¹²³I]IZBM, [¹¹C]raclopride and [¹¹C]PHNO (8). PET studies of cocaine,
78 amphetamine, and other stimulants have helped identify potential biomarkers that relate the
79 concentration of D₂R to compulsive patterns of drug use (21, 22), and have shown that DA and striatal
80 D₂R are reduced in chronic drug abusers (23, 24). Paradoxically, changes in receptor availability
81 measured with PET following amphetamine stimulation persist well beyond acute fluctuations in
82 extracellular DA concentrations, suggesting that mechanisms other than simple binding competition
83 between DA and the PET ligand come into play (25–28). Beyond PET imaging, discrepancies between
84 microdialysis measurements of DA and hemodynamic responses have been attributed to receptor
85 internalization (29).

86 In this study, we investigate the internalization and recycling of D₁R vs. D₂R in nonhuman primates due
87 to repeated amphetamine injections to depict discrepancies in intracellular mechanisms across DA
88 receptor subtypes *in vivo*. We hypothesize that the D₁R will be functionally active shortly after an
89 amphetamine challenge, whereas the D₂R will remain functionally inactive for up to 24h, as reported in
90 previous *in vivo* PET studies. Combining amphetamine challenges with pharmacological blocking of
91 D₁Rs, functional responses of activated and subsequently internalized DA receptors were measured
92 using simultaneous PET and functional magnetic resonance imaging (fMRI) in nonhuman primates.


93

94 MATERIALS AND METHODS

95 Study design

96 For the purpose of establishing the timeline of D₂R internalization and brain-wide functional modulation
97 due to repeated amphetamine, the experimental design consisted of two acute amphetamine
98 administrations during two consecutive PET/MRI scans with the D₂/D₃ receptor PET radiotracer
99 [¹¹C]raclopride. In all studies, amphetamine (0.6 mg/kg bolus) was injected intravenously (i.v.) as a
100 within-scan challenge approximately 40 min after starting a bolus-plus-infusion of the PET radiotracer,
101 which enabled measuring dynamic signals across four states over time: The first scan provided a

102 readout of the baseline state together with the effects of the first acute amphetamine injection (referred
103 to as 0h), whereas the second scan evaluated the amphetamine-exposed state, as well as the effect of
104 a second amphetamine injection either 3h or 24h later (Figure 1). We hypothesized that the excitatory
105 D₁R recycles faster and would therefore be available functionally at an earlier timepoint compared to
106 the inhibitory D₂R. We further hypothesized that amphetamine-induced excitatory D₁-like and inhibitory
107 D₂-like receptor signaling manifest as positive and negative hemodynamic imaging signals, respectively.
108 Therefore, to differentiate between D₁ and D₂R functional signaling, the D₁R antagonist SCH 23390 (0.1
109 mg/kg + 0.09 mg/kg/h, bolus + infusion) was administered prior to the start of the PET/MR imaging
110 session to block D₁R in a subset of experiments.

111
112 **Figure 1.** Schematic overview of the PET/MRI experiments. For each imaging session, the D₂/D₃ receptor PET
113 radiotracer ¹¹C]raclopride was administered using a bolus-plus-infusion paradigm, with fMRI acquired
114 simultaneously throughout the scan. At 0h, an acute dose of amphetamine (0.6 mg/kg i.v. bolus) was administered
115 40 min after the injection of the radiotracer. This PET/MRI session was repeated in the same animal either 3h or
116 24h later, with a second amphetamine injection. In a subset of experiments, the D₁ receptor antagonist SCH 23390
117 was administered as a bolus+infusion (0.1 mg/kg + 0.09 mg/kg/h) prior to the first ¹¹C]raclopride injection.
118

119

120 Animals

121 Three male rhesus macaques (8 (Animal 2), 14.5 (Animal 3), and 15 (Animal 1) years old) underwent
122 PET/MRI. For each study, the animal was initially anesthetized with 10 mg/kg ketamine and 0.5 mg/kg
123 xylazine, and then maintained with isoflurane (~1%, mixed with oxygen) after intubation. Physiological
124 parameters (blood pressure, pulse, end-tidal CO₂, breathing rate, and oxygen saturation) were
125 continuously monitored throughout the study. Animals were drug-free, i.e., had not undergone other

126 pharmacological experiments at least one month prior to the experiments. All studies and procedures
127 were approved by and complied with the regulations of the Institutional Animal Care and Use Committee
128 at Massachusetts General Hospital.

129

130 **PET tracer injections**

131 [¹¹C]Raclopride was injected using a bolus+infusion protocol. Infusions employed k_{bol} values of $97.7 \pm$
132 26.6 min (n=9) for the [¹¹C]raclopride injections at 0h, 83.1 ± 12.7 min (n=5) for the [¹¹C]raclopride
133 injections at 3h, and 95.7 ± 4.7 min (n=6) for the [¹¹C]raclopride injections at 24 h. Boluses were
134 administered by hand over a duration of 30 s, after which infusion at a rate of 0.01 ml/s was started with
135 an automatic pump (Medrad Spectra Solaris). Specific activities at the time of injection were 1.49 ± 0.60
136 mCi/nmol (mean \pm standard deviation), resulting in injected masses of 3.76 ± 1.66 μ g on average.

137 *Drugs:* Amphetamine (Sigma Aldrich, St Louis, MO, USA) was dissolved in saline immediately before
138 the experiment and was administered as a slow bolus over 2 min. Amphetamine (0.6 mg/kg) was
139 injected 39.3 ± 2.6 min (n = 15) after the injection of [¹¹C]raclopride. SCH 23390 (Sigma Aldrich, St
140 Louis, MO, USA) was administered using a bolus+infusion protocol to obtain a continuous blocking of
141 D₁R throughout the imaging session. SCH 23390 was administered 13.3 ± 3.6 min (n = 4) before the
142 injection of [¹¹C]raclopride using an MRidium infusion pump (IRadimed, Winter Springs, FL, USA). The
143 bolus dose (0.1 mg/kg) was chosen based on previous NHP experiments(61, 62) and the infusion dose
144 (0.09 mg/kg/h) was calculated based on a human subject [¹¹C]SCH 23390 time-activity curve (TAC) and
145 with the assumptions that metabolism is not changed from tracer dose to pharmacological dose and
146 that SCH 23390 has similar kinetics in humans and nonhuman primates. For further information on the
147 calculation of the K_{bol} for the SCH 23390 infusion, see Supplementary Materials.

148

149 **PET/MR Image Acquisition and Reconstruction**

150 Simultaneous PET and MR data were acquired on a prototype scanner that consists of a BrainPET
151 insert and a Tim Trio 3T MR scanner (Siemens AG, Healthcare Sector, Erlangen, Germany). A custom-
152 built PET-compatible eight-channel NHP receive array (63) together with a vendor-supplied local
153 circularly polarized transmit coil was used for MRI (64). The phased array enabled two-fold acceleration
154 with GRAPPA (65) in the anterior-posterior direction. Whole-brain fMRI data were acquired for the
155 duration of the PET imaging using multi-slice echo-planar imaging (EPI) with an isotropic resolution of
156 1.3 mm and a temporal resolution of 3 s. Other parameters included $FOV_{MR} = 110 \times 72.8$ mm², $BW =$
157 1350 Hz per pixel, flip angle = 60° and an echo time of 23 ms. To improve fMRI detection power,

158 ferumoxytol (Feraheme, AMAG Pharmaceuticals, Cambridge, MA) was injected at 10 mg/kg at the
159 beginning of the fMRI acquisition (66). No additional ferumoxytol was given for the imaging sessions at
160 the 3h timepoint. In imaging sessions 24h later, the ferumoxytol dose was reduced to 8 mg/kg. PET
161 emission data were acquired in list-mode format for 120 min (except for two scans where acquisition
162 time was 100 min), starting with radiotracer injection. Images were reconstructed with a standard 3D
163 Poisson ordered-subset expectation-maximization algorithm using prompt and variance-reduced
164 random coincidence events. Normalization, scatter, and attenuation sinograms (including attenuation of
165 the radiofrequency coil) were included in the reconstruction (67). The reconstructed volumes consisted
166 of $1.25 \times 1.25 \times 1.25$ mm voxels in a $256 \times 256 \times 153$ matrix, which were downsampled by a factor of
167 two post-reconstruction. List-mode PET data were reconstructed into dynamic frames of increasing
168 length (8 \times 15 s, 8 \times 30, 39 \times 60, 10 \times 120, 5 \times 180, and 8 \times 300 s).

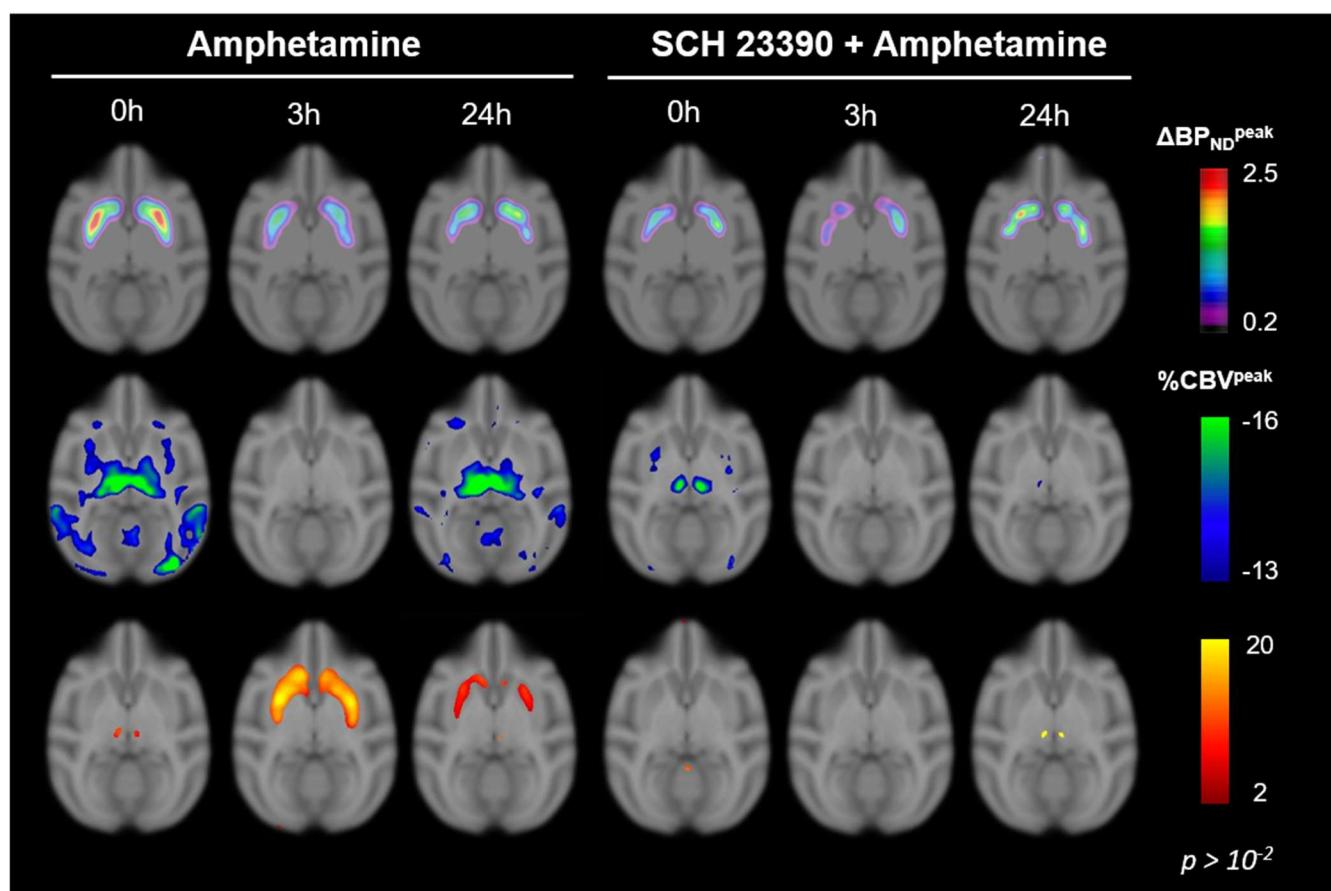
169

170 **fMRI and PET data analysis**

171 PET and MR data were registered to the Saleem-Logothetis stereotaxic space (68) with an affine
172 transformation (12 degrees of freedom, DOF) using a multi-subject MRI template (69) in which standard
173 regions of interest (ROI) were defined based on anatomy. To differentiate a more nuanced signal within
174 the thalamus, we restricted the thalamus ROI to the thalamic region that encompassed the positive CBV
175 signal at 0h. Furthermore, the paired 0h and 24h PET data were co-registered to obtain the best possible
176 alignment of the ROIs.

177 Alignment of the EPI data used an affine transformation plus local distortion fields. After motion-
178 correcting (AFNI software) and spatially smoothing fMRI data with a 2.5-mm Gaussian kernel, statistical
179 analysis was carried out using the general linear model (GLM). Nuisance regressors corresponding to
180 translations derived from the motion correction were included in the GLM analysis. The temporal
181 response to the drug injection was modeled with a gamma variate function, in which the time to peak
182 was adjusted to minimize the χ^2/DOF of the GLM fit to the data. A long-lasting signal change that was
183 distributed in several brain regions was modeled with a second gamma variate function. The resulting
184 signal changes were converted to percent changes in CBV by standard methods (70).

185 PET kinetic modeling employed a GLM formulation of the simplified reference tissue model (SRTM2)
186 (71) with the cerebellum, excluding the vermis, as the reference region. For the quantification of binding
187 changes over time due to the amphetamine interventions, the kinetic analysis included the time-
188 dependent parameter $k_{2a}(t)$ (72, 73), which was converted to a dynamic binding potential (74). The
189 reported pre-amphetamine BP_{NDS} were calculated for the time-periods 0-40 min, 180-220 min, and

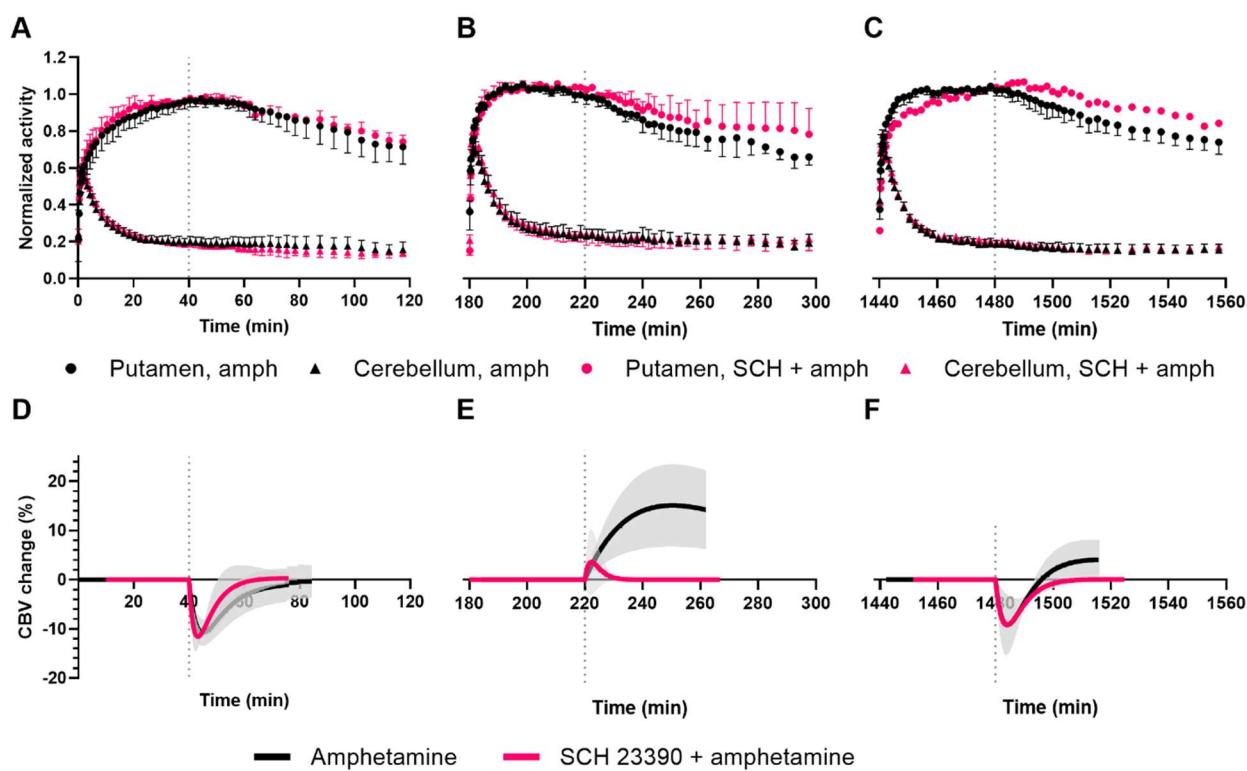

190 1440-1480 min. The reported post-amphetamine BP_{NDs} were the dynamic BP_{ND} for the last time frame
191 of the scan: 120 min, 300 min, and 1560 min.
192 All PET and fMRI data analysis and the generation of parametric images from voxelwise kinetic modeling
193 were generated with open-access software (www.nitrc.org/projects/jip). Statistical values used for maps
194 were computed by regularizing the random effects variance using an effective DOF of about 100 in the
195 mixed-effects analysis (75).

196

197 RESULTS

198 Amphetamine-induced receptor and functional maps across time

199 After each amphetamine injection, a reduction in $[^{11}C]$ raclopride-PET binding in the putamen and
200 caudate was observed, driven by amphetamine-induced DA release. As seen in the upper row of Figure
201 2, the first amphetamine injection (at 0h) induced the largest decrease in D_2R availability, while the
202 second injections (at 3h and 24h) yielded smaller decreases compared to the 0h baseline. The reduction
203 in D_2R availability was quantified by changes in binding potential (ΔBP_{ND}), from which D_2R occupancy
204 was determined (see paragraphs below). The upper row in the left panel of Figure 2 shows maps for
205 changes in $[^{11}C]$ raclopride ΔBP_{ND} induced by each amphetamine injection alone. The right panel shows
206 the equivalent maps for ΔBP_{ND} from experiments with a pre-block by the D_1R antagonist SCH 23390.
207 Corresponding whole-brain functional signaling was determined by simultaneous fMRI, and the
208 parametric maps of negative (middle row) or positive (lower row) changes in cerebral blood volume
209 (%CBV maps) from fMRI statistical analysis are shown in Figure 2. The use of an iron oxide contrast
210 agent in this study enabled the conversion of fMRI signal changes to %CBV to quantify hemodynamic
211 measures across sessions and represent drug-induced functional signaling. Amphetamine
212 demonstrated both a positive and negative CBV component that was modulated and interestingly shifted
213 in sign with repeated injections: The amphetamine challenge at 0h showed a predominantly negative
214 CBV response localized to the putamen, caudate, thalamus, and cerebellum vermis (Figure 2). A small
215 positive CBV signal was also observed bilaterally in the thalamus. The repeated amphetamine challenge
216 3h later resulted in a large positive CBV response localized to the putamen and caudate. The repeated
217 amphetamine challenge 24h later elicited a response composed of both negative and positive responses
218 localized in similar anatomical areas as described for the amphetamine challenge at 0h. However, the
219 positive CBV response at 24h was much more pronounced in the striatum, similar to what was seen
220 with the repeated amphetamine challenge after 3h.

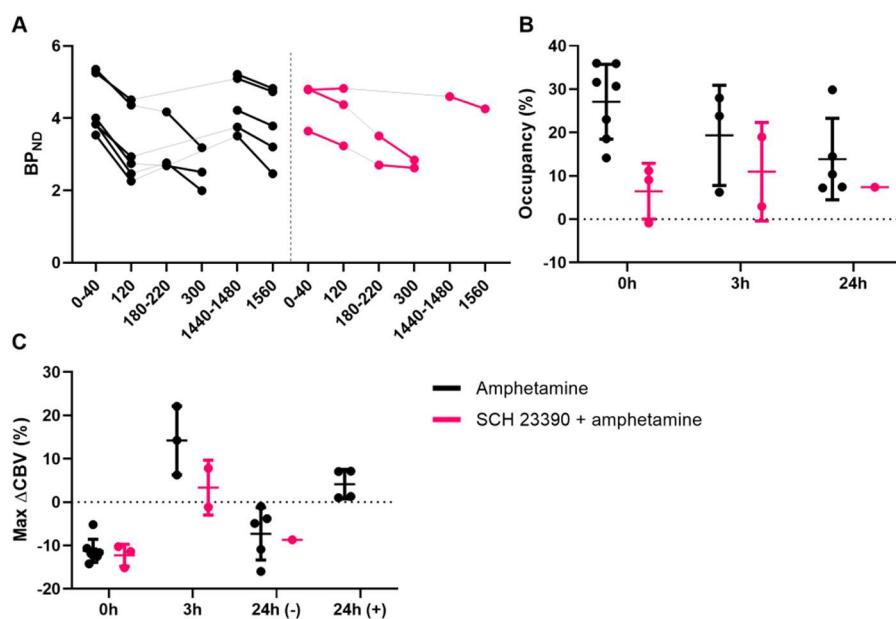


221

222 **Figure 2.** Parametric maps showing the change in $[^{11}\text{C}]$ raclopride binding potential ($\Delta\text{BP}_{\text{ND}}$) (upper row), together
223 with simultaneously acquired percent changes in cerebral blood volume (%CBV) maps for the negative (middle
224 row) and positive (lower row) peak response for the different experimental conditions: The first injection at 0h,
225 followed by a second amphetamine injection either 3h or 24h, and the equivalent experiments with a pre-block by
226 SCH 23390. Maps represent averages across repeated sessions in a total of three animals (see Methods for
227 details). CBV maps were thresholded with a significance level of $p < 10^{-2}$.
228

229 **Functional consequences of repeated amphetamine administration and D₂R availability**

230 Availability of long-lasting changes in baseline D₂R availability was assessed with repeated scanning
231 after 3h and 24h, and acute changes due to DA release were measured with each within-scan
232 amphetamine administration. Figure 3 (upper row) shows average dynamic PET time-activity curves
233 (TAC) for the putamen (a high-binding region) and cerebellum (the reference region) for the
234 $[^{11}\text{C}]$ raclopride bolus+infusions at 0h, 3h, and 24h across all animals and sessions with amphetamine
235 challenges (0.6 mg/kg, i.v.). TACs demonstrate an almost constant $[^{11}\text{C}]$ raclopride uptake around 30-40
236 min after radiotracer injection in both the high-binding and reference regions. Administration of
237 amphetamine at 40 minutes resulted in the displacement of $[^{11}\text{C}]$ raclopride in the high binding regions
238 putamen and caudate (Figure S1A-C in Supplementary Materials) at all three timepoints.


239

240 **Figure 3.** Mean time-activity curves for the putamen and cerebellum (normalized to peak Bq/mL value in the
241 putamen) for the [¹¹C]raclopride scans at 0h (A), 3h (B), and 24h (C). Mean timecourses for change in cerebral
242 blood volume (CBV) in the putamen in response to the first amphetamine challenge (D), the second amphetamine
243 challenge 3h later (E), and the amphetamine challenge 24h later (F). Black symbols represent experiments with
244 amphetamine challenges (amph, 0.6 mg/kg), and pink symbols represent experiments in which the animals were
245 pretreated with D₁ receptor antagonist SCH 23390 (SCH, 0.1 mg/kg + 0.09 mg/kg/h) before the amphetamine (0.6
246 mg/kg) challenge. Vertical dotted lines represent the time of the amphetamine challenge at 40 minutes. Grey
247 shaded areas represent standard deviation. Error bars represent standard deviation.
248

249 Despite only slightly reduced DA release observed from D₂R occupancies at 3h, the CBV response was
250 markedly different between the first (0h) and the repeated amphetamine challenge 3h later: The
251 amphetamine-induced DA release at 0h caused a short-lasting decrease in CBV in the putamen (Figure
252 3D). The repeated amphetamine challenge 3h later caused a long-lasting increase in CBV in the
253 putamen (Figure 3E). At 24h, the repeated amphetamine challenge caused a biphasic response with a
254 negative CBV response similar to the 0h response and a positive longer-lasting component as seen with
255 the amphetamine injection at 3h (Figure 3F).

256 Quantification of [¹¹C]raclopride uptake in the high-binding regions before and after the drug challenges
257 confirmed the amphetamine-induced decrease in binding (Figure 4A). The binding potentials (BP_{ND},
258 mean \pm SD) in the putamen decreased from 4.3 ± 0.8 to 3.2 ± 1.0 ($n = 6$) at 0h, from 3.2 ± 0.8 to $2.6 \pm$
259 0.6 ($n = 3$) at 3h and from 4.4 ± 0.8 to 3.8 ± 1.0 ($n = 5$) at 24h. As observed from the initial BP_{ND} before

260 the amphetamine challenge in each session, D₂R availability remained decreased for more than 3h,
261 whereas it returned to baseline levels by 24h later. The corresponding peak D₂R occupancies from the
262 first amphetamine challenge (0h) was 27.3% [19.1; 35.1] (n = 6) (mean, [95% confidence interval]) in
263 the putamen. The repeated amphetamine challenges 3h and 24h later resulted in slightly smaller
264 occupancies of 19.3% [-9.4; 48.0] (n = 3) and 13.9% [2.2; 25.6] (n = 5) relative to the pre-amphetamine
265 injection BP_{ND} in each session, respectively (Figure 4B and Figure S2). The lower occupancies at 3h
266 and 24h suggest a reduced DA release capacity at these timepoints.
267 The peak CBV responses from the general linear model fit to the measured data are shown in Figure
268 4C. The peak %CBV changes [95% confidence interval] of the amphetamine challenge at 0h was -11.2
269 [-13.4; -9.0] (n = 8), whereas the peak %CBV changes of the repeated amphetamine challenge 3h later
270 was 14.2 [-5.4; 33.9] (n = 3). The peak %CBV changes of the repeated amphetamine challenge 24h
271 later was biphasic with a short-lasting negative component (-7.3 [-14.8; 0.2], n = 5) and a longer-lasting
272 positive component (4.1 [-1.3; 9.6], n = 5).
273 Combined, these PET and fMRI timecourses show that DA release occurred with each amphetamine
274 challenge in the striatum, however, with slightly reduced DA release capacity at 3h and 24h. D₂R
275 availability remained reduced at 3h but returned to baseline levels after 24h. Most strikingly, the CBV
276 response in the striatum inverted from a short-lasting, predominantly inhibitory response at 0h to a long-
277 lasting excitatory response at 3h. After 24h, the CBV response returned to a short-lasting negative
278 response.
279

280
281
282
283
284
285
286
287
288
289

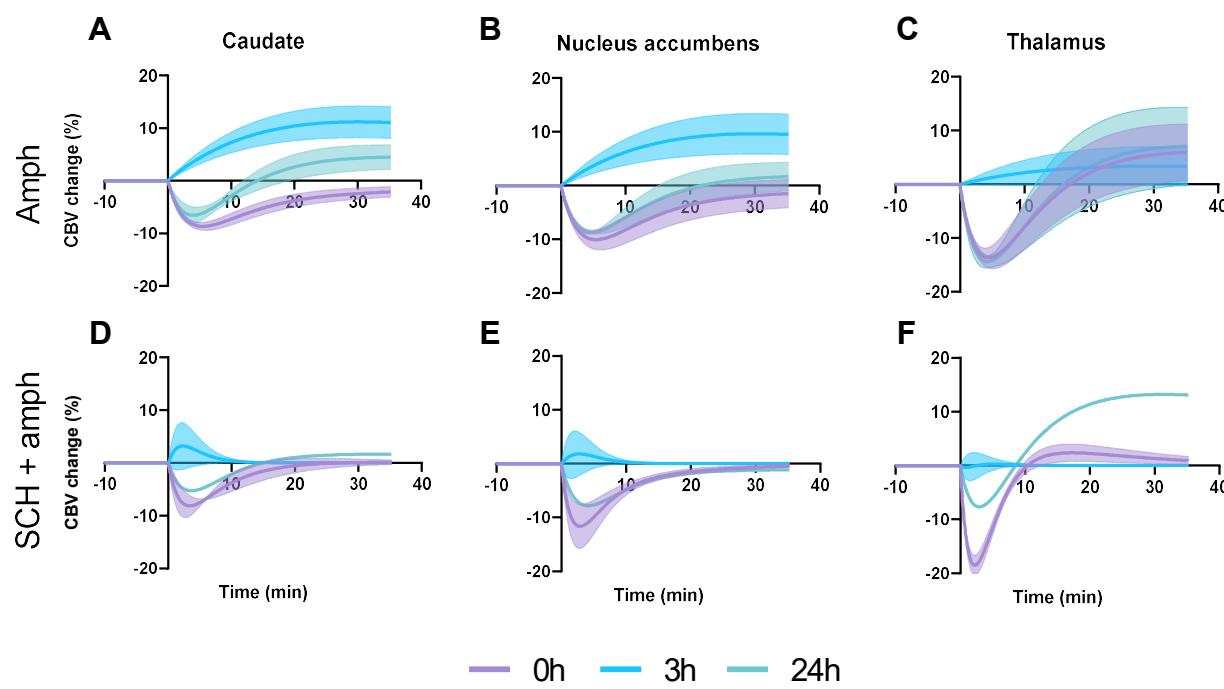
Figure 4. (A) Binding potentials (BP_{ND}) in the putamen for all experiments before and after the amphetamine challenges. The x-axis denotes the time interval (in min) for each BP_{ND} calculation. (B) Peak occupancies due to each amphetamine challenge are calculated relative to their baseline within each session at the given timepoints. (C) Peak changes in CBV (Δ CBV) due to each amphetamine challenge. 24h (-) represents the peak changes in CBV of the negative response, whereas 24h (+) represents the peak changes in CBV of the positive response. Black symbols represent sessions with the administration of amphetamine only. Pink symbols represent sessions in which D₁Rs were blocked by SCH 23390 before the start of the PET/MR acquisition. Error bars represent standard deviation.

290 Amphetamine responses during D₁R blockade

291 We hypothesized that the positive CBV response induced by the repeated amphetamine challenge 3h
292 later was a consequence of activating excitatory D₁Rs. To test this hypothesis, we blocked D₁Rs with
293 the antagonist SCH 23390.

294 Although TACs appeared strikingly similar with or without SCH 23390 pretreatment (Figure 3A-C, pink
295 series), quantification of radiotracer pharmacokinetics before and after the challenges showed smaller
296 amphetamine-induced decreases in binding (Figure 4A). The binding potentials (BP_{ND}, mean \pm SD) in
297 the putamen decreased from 4.4 ± 0.7 to 4.1 ± 0.8 ($n = 3$) at 0h, from 3.1 ± 0.6 to 2.7 ± 0.2 ($n = 2$) at 3h
298 and from 4.6 to 4.0 ($n = 1$) at 24h. Thus, the kinetic modelling revealed a lower peak occupancy in the
299 putamen of -0.9%, 9.1%, and 11.2% at 0h ($n = 3$), 19.0% and 2.9% at 3h ($n = 2$) and 7.4% at 24h ($n =$
300 1) with SCH 23390 as a D₁R blocker (Figure S2A-C in Supplementary Materials).

301 Under D₁R blocking, the timecourse of the CBV response induced by the 0h amphetamine challenge
302 was a predominantly negative response, similar to the non-blocked condition (Figure 3D) and in line
303 with inhibitory signaling. However, the repeated amphetamine challenge 3h later induced only a small


304 and short-lasting increase in CBV (Figure 3E), which was very different from the large positive CBV
305 response seen in the non-blocked condition. The CBV signal at 24h resembled the 0h amphetamine
306 response with a negative CBV and no positive component (Figure 3F). The CBV responses were
307 quantified (Figure 4C), with peak %CBV changes [95% confidence intervals] after pretreatment with
308 SCH 23390 being -12.3 [-18.6; -5.9] at 0h (n = 3), 7.8 and -1.1 at 3h (n = 2) and -8.7 at 24h (n = 1) in
309 the putamen.

310 The $\Delta\text{BP}_{\text{ND}}$ and CBV maps confirm that voxelwise CBV responses were reduced in magnitude after
311 SCH 23390 pretreatment. The positive CBV response at the repeated amphetamine challenges 3h and
312 24h later was abolished entirely (Figure 2).

313

314 **Regional differences in amphetamine-induced signaling**

315 The CBV timecourses in the caudate and nucleus accumbens in response to the amphetamine
316 challenges at 0h, 3h, and 24h with and without SCH 23390 pretreatment (Figure 5) were similar to the
317 responses observed in the putamen (Figure 3D-F), both in shape and magnitude. The first amphetamine
318 injection at 0h yielded a predominantly negative signal in all regions, except in the thalamus, where a
319 prominent biphasic CBV response was observed at both 0h and 24h. While the CBV response inverted
320 to a dominant positive response in the striatal regions at 3h, the thalamus exhibited a more moderate
321 positive CBV signal than the striatal regions. Interestingly, the positive thalamic CBV response was
322 eliminated at 0h and 3h by SCH 23390 pretreatment, but not at 24h – contrary to the positive striatal
323 component, which was fully blocked by SCH 23390 at all timepoints.

324

325 **Figure 5.** Cerebral blood volume (CBV) timecourses in percent change from baseline, shown as the mean of the
326 GLM fit, in response to amphetamine (upper row) and after pretreatment with SCH 233390 (lower row) in the
327 caudate (A, D), nucleus accumbens (B, E) and thalamus (C, F). The first amphetamine injection at 0h is overlaid
328 with the start of the second amphetamine injections at 3h or 24h for comparison purposes. Shaded areas represent
329 standard errors of the mean.
330

331 DISCUSSION

332 This study shows a temporal discrepancy in D_1 vs. D_2/D_3 receptor recycling in the living brain in
333 nonhuman primates. Although both receptor subtype classes may internalize in response to an
334 amphetamine challenge, our results indicate that the D_1 R subtype quickly recycles and is available for
335 reactivation 3h and 24h after an acute amphetamine challenge. In contrast, D_2/D_3 receptors stay
336 internalized and non-functional for more than 3h with a return to functionality by 24h.

337 A single amphetamine challenge induced endogenous DA release, which decreased $[^{11}\text{C}]$ raclopride
338 binding together with CBV, as measured with simultaneous PET/fMRI. After 3h, D_2/D_3 receptor
339 availability remained reduced beyond the expected timeline of DA release (30), consistent with D_2/D_3
340 receptors being internalized. Supporting this further, we found that the initial negative CBV response,
341 driven by activation of inhibitory D_2/D_3 receptors after a single amphetamine injection, was not
342 predominant at 3h after a second amphetamine injection. The lack of a negative CBV component
343 suggests that the D_2/D_3 receptors reported by $[^{11}\text{C}]$ raclopride-PET are non-functional at this early time
344 point after prior exposure. Despite the lower availability of D_2/D_3 receptors 3h later, we found that DA

345 release capacity was unchanged. With a proportion of the D₂/D₃ receptors internalized and non-
346 functional, the repeated amphetamine-induced DA surge instead resulted in activating excitatory D₁Rs
347 and thereby increasing CBV. This activation was confirmed to be D₁R-mediated by blocking the D₁Rs
348 with the antagonist SCH 23390, abolishing the positive CBV response altogether. This modulation of
349 fMRI signal over time is coherent with a shift from D₂R-driven inhibitory signaling at 0h to D₁R-driven
350 excitatory signaling at 3h.

351 When the amphetamine challenge was repeated 24h later, DA release capacity was comparable to the
352 amphetamine challenge at 0h. The negative CBV response that was present at the 0h amphetamine
353 injection had been reestablished, suggesting that the D₂/D₃ receptors had recycled to the cell membrane
354 surface and were yet again functional. The positive CBV component that dominated the response at 3h
355 persisted at 24h and could be blocked by SCH 23390 in the DA-rich striatum. Contrary to that, the
356 (positive part of the) biphasic signal in the thalamus could not be blocked by SCH 23390 at 24h,
357 suggesting that the excitatory thalamic component was not DA-mediated. It points to striatal-thalamic
358 signaling, which was modulated differentially at 24h. Specifically, this type of neuroanatomical
359 interaction exists between local D₁R-mediated transmission in the striatum and excitatory glutamatergic
360 projections from the thalamus (31). It appears to be critical in relapse to methamphetamine seeking after
361 prolonged withdrawal.

362 Several studies report that D₂R internalization is dependent on β-arrestin2 (also referred to as arrestin3)
363 (12, 32, 33). Furthermore, D₂Rs are targeted by lysosomes for degradation via interaction with G protein-
364 coupled receptor (GPCR) associated sorting protein (16). Skinbjerg et al. showed that an amphetamine
365 challenge reduced binding potentials 4h after an amphetamine challenge in wild-type mice but not in β-
366 arrestin knock-out mice, indicating that internalization and recycling are β-arrestin-dependent(27). The
367 study also demonstrates that internalization is the driving mechanism for the temporal discrepancy
368 between the DA microdialysis measures and the long-lasting decrease in radiotracer binding (as
369 described in the introduction). Other studies have also shown that [¹²³I]IBZM and [¹¹C]raclopride binding
370 potentials remain reduced 3h and 24h after a single amphetamine challenge (25, 26). While the PET-
371 based results in the latter studies concur with our findings, the discrepancy between receptor availability
372 and functionality we report indicates that PET imaging alone may not always fully capture the state of
373 receptors after agonist exposure.

374 The D₁Rs undergo classical GPCR regulation, rapidly desensitizing and internalizing via GPCR kinase
375 phosphorylation (34), β-arrestin 2 binding, and clathrin-mediated endocytosis (35). Following
376 endocytosis, the D₁Rs are resensitized and recycled back to the plasma membrane where they can bind
377 ligand once again(36–38). An *in vivo* study showed that D₁Rs internalized rapidly but remained in

378 intracellular compartments for more than 90 min following an amphetamine challenge (14). In cell
379 cultures, D₁R mediated cAMP production, i.e., resensitization, returned to baseline 5-6h after agonist
380 exposure (37). In NHPs, a 5-7% decrease in BP_{NDS} was found 2h after a high dose amphetamine (2.0
381 mg/kg) challenge measured by two different D₁R selective PET radiotracers(39), suggesting that
382 recycling of the receptors could occur relatively quickly. While not all PET radiotracers are sensitive to
383 changes in neurotransmitter levels, the latter study benefits from having investigated the amphetamine-
384 induced D₁R recycling with both an antagonist and agonist radiotracer. Given these results, it seems
385 likely that the D₁Rs are available for functional activation 3h after the amphetamine challenge, as seen
386 in the present study. Bartlett et al. found a discrepancy in the cellular recycling of D₁R and D₂Rs, where
387 D₁Rs were found to recycle to the plasma membrane. In contrast, D₂Rs were targeted for degradation
388 (16), supporting a temporal discrepancy in D₁R and D₂/D₃ receptor recycling. These data aligned well
389 with the fMRI data measured in our study: the functional response changed from being driven by D₂Rs
390 to being dominated by D₁Rs after 3h because the D₂Rs were internalized after the initial amphetamine
391 challenge.

392 Our study confirms that [¹¹C]raclopride binding potentials returned to baseline by 24h after amphetamine
393 exposure (26). We found a slight decrease in amphetamine-induced D₂/D₃ receptor occupancy at 24h,
394 i.e., reduced DA release, which could result from decreased DA synthesis. Reduced DA synthesis
395 capacity in cocaine users as measured with [¹⁸F]DOPA support this hypothesis (40). The CBV response
396 at the repeated amphetamine challenge 24h later was biphasic and resembled a mix of CBV responses
397 of the 0h and the repeated amphetamine challenge 3h later. This can be interpreted as the resumption
398 of D₂/D₃ receptor functionality, either by de novo receptor synthesis or recycling of receptors from
399 intracellular compartments.

400 Because DA has a higher affinity for the D₂R than for the D₁R, the amount of DA release can drive the
401 balance between excitatory D₁R and inhibitory D₂R signaling, with the combination of both making up
402 the fMRI signal. A model for DA-induced fMRI signal has previously described how the *in vivo* functional
403 response to DA results in a biphasic response with an initial D₂R-driven negative followed by a D₁R-
404 driven positive component (41). Our CBV signals from the initial amphetamine challenge match this
405 model, and we further demonstrate experimental *in vivo* evidence of how the balance between D₁ and
406 D₂R signaling can affect responses to repeated amphetamine. The initial short-lasting decrease in CBV
407 also mimics the response induced by the D₂R selective agonist quinpirole, which we have previously
408 shown to be a signature of rapid D₂R desensitization and internalization (42). In concordance with such
409 a model, the fMRI temporal profile at 3h with the repeated amphetamine challenge in this study is
410 remarkably similar to a predominantly D₁R activation, i.e., with D₂/D₃ receptors internalized. A

411 complementary interpretation to the varying recovery times is that D₁Rs may not be internalized to the
412 same extent due to the lower affinity of DA for D₁R relative to D₂R.

413 Microdialysis and fast-scan cyclic voltammetry studies have shown that synaptic DA levels return to
414 baseline 2-3 hours after an amphetamine challenge (43–45). This is in line with our findings, where the
415 0h and repeated amphetamine challenge 3h later resulted in comparable D₂/D₃ receptor occupancies,
416 suggesting that vesicle DA concentration had been restored and that the DA release capacity was
417 unchanged. Only in the sessions with SCH 23390 pretreatment, we observed lower amphetamine-
418 induced D₂R occupancies. Serotonin 5-HT_{2A} receptor antagonism has been shown to attenuate
419 amphetamine-elicited DA release without affecting basal DA levels (46, 47). This is relevant because
420 SCH 23390 also binds, albeit with lesser affinity, to 5-HT_{2A} receptors and thus may explain the reduced
421 DA release during SCH 23390 blockage. Another reason may be the ability of SCH 23390 to increase
422 extracellular DA levels (48, 49) and consequently decrease DA release capacity. A small DA release
423 induced by SCH 23390 may also explain why baseline binding potentials were lower at the 0h
424 amphetamine challenge with SCH 23390 pretreatment compared to the non-pretreated session.

425 Imaging genetically modified animals that cannot internalize D₂/D₃ receptors and comparing their CBV-
426 occupancy timecourses to wild-type animals would provide more direct evidence of receptor
427 internalization. Alternatively, treatment with β-arrestin inhibitors such as barbadin (50) can offer a
428 pharmacological approach to deciphering internalization. Investigating receptor internalization
429 mechanisms in animal models of substance abuse would be highly relevant and could help identify
430 biomarkers to guide treatment.

431 D₁R and D₂Rs have been shown to mediate opposing effects on drug-seeking behavior. While
432 stimulation of D₂R induces stimulant-seeking behavior, stimulation of D₁Rs attenuates it, possibly by
433 satiating reward pathways (51). Importantly, since blocking either D₁R or D₂Rs has been shown to
434 attenuate reinstatement of cocaine-seeking, both receptors seem to play a crucial role in drug-seeking
435 responses [reviewed by Self et al. (18)]. Our results delineate this intricate interplay between D₁R and
436 D₂R and point to differential receptor externalization times as a mechanism affecting the functional
437 signaling to repeated doses of amphetamine. Systemic administration of the D₁R antagonist SCH 23390
438 reduces multiple addiction-related behaviors, including reward, self-administration, and priming-induced
439 drug seeking (52–54). A recent study showed that methamphetamine self-administration enhances the
440 expression of D₁R internalization-promoting proteins in the dorsal striatum, whereas SCH 23390
441 reduces this effect (55, 56). In this way, stimulants may alter D₁R responsiveness to DA surges and
442 regulate the reinforcing effects of the drugs. Reduced long-term potentiation after methamphetamine
443 administration has also been measured (55), which may manifest as reduced CBV in the dorsal striatum

444 as observed here. Together, these findings suggest that pharmacological blocking of D₁Rs in the dorsal
445 striatum reduces stimulant intake and rescues stimulant-induced depression of synaptic plasticity.
446 Clinically, amphetamine and other drugs that act on DA transporters are used in the treatment of
447 attention deficit hyperactivity disorder and narcolepsy. Both D₁Rs and D₂Rs likely mediate the pro-
448 attentional effects of DA-elevating drugs. However, recent evidence points towards a crucial role of the
449 D₁Rs. Administration of a D₁R partial agonist improved attention/vigilance in rats during a demanding
450 task (57). Similarly, amphetamine also enhanced performance in a 5-choice continuous performance
451 test in humans, rats, and mice (58, 59). Importantly, this effect was observed irrespective of acute
452 treatment with the D₂R antagonist haloperidol in rats, suggesting that the pro-attentional effects of
453 amphetamine are predominantly a D₁R-mediated mechanism. This appears compatible with patients'
454 concurrent use of antipsychotics since these drugs have a lower affinity for the D₁R than the D₂R (60).
455 Preclinical and clinical data show that low striatal D₂R availability is associated with increased drug self-
456 administration and impulsive behavioral patterns (2). Although existing data support the view that
457 impulsivity is a predictive phenotype for addiction, it is still unknown whether the reduced DA
458 transmission is a consequence of drug abuse or an underlying vulnerability factor for substance abuse.
459 Given the present study results, we speculate that patients with substance use disorder have
460 augmented D₂R internalization time and consequently would be at higher risk of impulsive behaviors
461 leading to a preference for small immediate rewards and increased drug self-administration.
462 Nevertheless, it would be highly relevant to investigate a patient population with a high risk for
463 developing substance use disorder using a similar experimental design.
464 In conclusion, amphetamine-induced DA release activates all DA receptors upon which they internalize.
465 Our data provide *in vivo* evidence for a temporal discrepancy between D₁ and D₂/D₃ receptor recycling.
466 This finding had previously only been indicated *in vitro* in the rodent brain. The present study extends
467 these findings into the primate brain *in vivo* in the context of repeated amphetamine challenges.
468 Inhibitory D₂/D₃ receptors drive the functional response to an initial amphetamine challenge, whereas
469 the functional response to a repeated amphetamine challenge 3h later is dominated by excitatory D₁Rs.
470 D₁Rs are likely not internalized to the same degree or recycle to the cell membrane surface faster than
471 the D₂/D₃ receptors. Pharmacological blocking of the D₁Rs or preventing the internalization and
472 degradation of D₂Rs could restore the balance between D₁R vs. D₂R signaling. This may be a potential
473 therapeutic avenue in treating substance use disorders. Overall, these results contribute to the
474 mechanistic understanding of how stimulants modulate the dopaminergic system and how this may
475 ultimately lead to substance use disorder.
476

477 **Supplementary information is available:**

478 Table S1

479 Figure S1-S2

480 Supplementary Methods: Calculating the bolus + infusion ratio of SCH 23390

481

482 **References**

483 1. United Nations Office on Drug and Crime, World Drug Report 2021 *United Nations Publ.* , Booklet 4 (2021).

484 2. P. Trifilieff, F. Ducrocq, S. van der Veldt, D. Martinez, Blunted Dopamine Transmission in Addiction: Potential
485 Mechanisms and Implications for Behavior. *Semin. Nucl. Med.* **47**, 64–74 (2017).

486 3. A. H. Ashok, Y. Mizuno, N. D. Volkow, O. D. Howes, Association of stimulant use with dopaminergic
487 alterations in users of cocaine, amphetamine, or methamphetamine a systematic review and meta-analysis.
488 *JAMA Psychiatry* **74**, 511–519 (2017).

489 4. N. D. Volkow, G. F. Koob, A. T. McLellan, Neurobiologic Advances from the Brain Disease Model of Addiction.
490 *N. Engl. J. Med.* **374**, 363–71 (2016).

491 5. N. D. Volkow, M. Morales, The Brain on Drugs: From Reward to Addiction. *Cell* **162**, 712–725 (2015).

492 6. A. E. Fleckenstein, T. J. Volz, E. L. Riddle, J. W. Gibb, G. R. Hanson, New Insights into the Mechanism of
493 Action of Amphetamines. *Annu. Rev. Pharmacol. Toxicol.* **47**, 681–698 (2007).

494 7. E. S. Calipari, M. J. Ferris, Amphetamine Mechanisms and Actions at the Dopamine Terminal Revisited. *J.*
495 *Neurosci.* **33**, 8923–8925 (2013).

496 8. M. Laruelle, Imaging Synaptic Neurotransmission With in Vivo Binding Competition Techniques: A Critical
497 Review. *J. Cereb. Blood Flow Metab.* **20**, 423–451 (2000).

498 9. S. S. G. Ferguson, Evolving Concepts in G Protein-Coupled Receptor Endocytosis: The Role in Receptor
499 Desensitization and Signaling. *Pharmacol. Rev.* **53**, 1–24 (2001).

500 10. N. Guo, W. Guo, M. Kralikova, M. Jiang, I. Schieren, R. Narendran, M. Slifstein, A. Abi-Dargham, M.
501 Laruelle, J. A. Javitch, S. Rayport, Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging
502 Radiotracers. *Neuropsychopharmacology* **35**, 806–817 (2010).

503 11. J. L. Goggi, A. Sardini, A. Egerton, P. G. Strange, P. M. Grasby, Agonist-dependent internalization of D2
504 receptors: Imaging quantification by confocal microscopy. *Synapse* **61**, 231–241 (2007).

505 12. M. Skinbjerg, M. A. Ariano, A. Thorsell, M. Heilig, C. Halldin, R. B. Innis, D. R. Sibley, Arrestin3 mediates D2
506 dopamine receptor internalization. *Synapse* **63**, 621–624 (2009).

507 13. K. A. Porter-Stransky, D. Weinshenker, Arresting the Development of Addiction: The Role of β -Arrestin 2 in
508 Drug Abuse. *J. Pharmacol. Exp. Ther.* **361**, 341–348 (2017).

509 14. B. Dumartin, I. Caillé, F. Gonon, B. Bloch, Internalization of D1 Dopamine Receptor in Striatal Neurons In
510 Vivo as Evidence of Activation by Dopamine Agonists. *J. Neurosci.* **18**, 1650–1661 (1998).

511 15. B. Dumartin, M. Jaber, F. Gonon, M. G. Caron, B. Giros, B. Bloch, Dopamine tone regulates D1 receptor
512 trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. *Proc. Natl. Acad. Sci. U. S. A.*
513 **97**, 1879–1884 (2000).

514 16. S. E. Bartlett, J. Enquist, F. W. Hopf, J. H. Lee, F. Gladher, V. Kharazia, M. Waldhoer, W. S. Mailliard, R.
515 Armstrong, A. Bonci, J. L. Whistler, Dopamine responsiveness is regulated by targeted sorting of D2 receptors.
516 *Proc. Natl. Acad. Sci. U. S. A.* **102**, 11521–11526 (2005).

517 17. P. Seeman, T. Tallerico, F. Ko, C. Tenn, S. Kapur, Amphetamine-sensitized animals show a marked
518 increase in dopamine D2 high receptors occupied by endogenous dopamine, even in the absence of acute
519 challenges. *Synapse* **46**, 235–239 (2002).

520 18. D. W. Self, Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic
521 dopamine system. *Neuropharmacology* **47**, 242–255 (2004).

522 19. C. Carvalho, D. Contreras, G. Ugarte, R. Delgado, F. Pancetti, C. Rozas, R. Piña, L. Constandil, M. L. Zeise,
523 B. Morales, Single and repeated administration of methylphenidate modulates synaptic plasticity in opposite
524 directions via insertion of AMPA receptors in rat hippocampal neurons. *Front. Pharmacol.* **9**, 1–17 (2018).

525 20. S. B. Caine, M. Thomsen, K. I. Gabriel, J. S. Berkowitz, L. H. Gold, G. F. Koob, S. Tonegawa, J. Zhang, M.
526 Xu, Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. *J. Neurosci.* **27**, 13140–
527 13150 (2007).

528 21. N. D. Volkow, J. S. Fowler, G. J. Wang, R. Baler, F. Telang, Imaging dopamine's role in drug abuse and
529 addiction *Neuropharmacology* **56**, 3–8 (2009).

530 22. F. J. Volkow ND, Dopamine in drug abuse and addiction: Results of imaging studies and treatment
531 implications. *Arch. Neurol.* **64**, 1575–1579 (2007).

532 23. N. D. Volkow, G. Koob, R. Baler, Biomarkers in Substance Use Disorders. *ACS Chem. Neurosci.* **6**, 522–525
533 (2015).

534 24. D. Martinez, K. Greene, A. Broft, D. Kumar, F. Liu, R. Narendran, M. Slifstein, R. Van Heertum, H. D. Kleber,
535 Lower level of endogenous dopamine in patients with cocaine dependence: findings from PET imaging of D 2/D
536 3 receptors following acute dopamine depletion. *Am. J. Psychiatry* **166**, 1170–1177 (2009).

537 25. M. Laruelle, R. N. Iyer, M. S. Al-Tikriti, Y. Zea-Ponce, R. Malison, S. S. Zoghbi, R. M. Baldwin, H. F. Kung, D.
538 S. Charney, P. B. Hoffer, R. B. Innis, C. W. Bradberry, Microdialysis and SPECT measurements of
539 amphetamine-induced dopamine release in nonhuman primates. *Synapse* **25**, 1–14 (1997).

540 26. R. Narendran, M. Slifstein, D.-R. Hwang, Y. Hwang, E. Scher, S. Reeder, D. Martinez, M. Laruelle,
541 Amphetamine-induced dopamine release: Duration of action as assessed with the D2/3 receptor agonist
542 radiotracer (—)-N-[11C]propyl-norapomorphine ([11C]NPA) in an anesthetized nonhuman primate. *Synapse* **61**,
543 106–109 (2007).

544 27. M. Skinbjerg, J.-S. Liow, N. Seneca, J. Hong, S. Lu, A. Thorsell, M. Heilig, V. W. Pike, C. Halldin, D. R.
545 Sibley, R. B. Innis, D2 dopamine receptor internalization prolongs the decrease of radioligand binding after
546 amphetamine: A PET study in a receptor internalization-deficient mouse model. *Neuroimage* **50**, 1402–1407
547 (2010).

548 28. D. C. Chugani, R. F. Ackermann, M. E. Phelps, In Vivo [3H]Spiperone Binding: Evidence for Accumulation in
549 Corpus Striatum by Agonist-Mediated Receptor Internalization. *J. Cereb. Blood Flow Metab.* **8**, 291–303 (1988).

550 29. C. H. Liu, D. N. Greve, G. Dai, J. J. A. Marota, J. B. Mandeville, Remifentanil administration reveals biphasic
551 phMRI temporal responses in rat consistent with dynamic receptor regulation. *Neuroimage* **34**, 1042–1053
552 (2007).

553 30. H. P. Jedema, R. Narendran, C. W. Bradberry, Amphetamine-induced release of dopamine in primate
554 prefrontal cortex and striatum: Striking differences in magnitude and timecourse. *J. Neurochem.* **130**, 490–497
555 (2014).

556 31. X. Li, K. R. Witonsky, O. M. Lofaro, F. Surjono, J. Zhang, J. M. Bossert, Y. Shaham, Role of Anterior
557 Intralaminar Nuclei of Thalamus Projections to Dorsomedial Striatum in Incubation of Methamphetamine
558 Craving. *J. Neurosci.* **38**, 2270–2282 (2018).

559 32. K.-M. Kim, K. J. Valenzano, S. R. Robinson, W. D. Yao, L. S. Barak, M. G. Caron, Differential Regulation of
560 the Dopamine D2 and D3 Receptors by G Protein-coupled Receptor Kinases and β -Arrestins. *J. Biol. Chem.*
561 **276**, 37409–37414 (2001).

562 33. J.-M. Beaulieu, T. D. Sotnikova, S. Marion, R. J. Lefkowitz, R. R. Gainetdinov, M. G. Caron, An Akt/ β -
563 Arrestin 2/PP2A Signaling Complex Mediates Dopaminergic Neurotransmission and Behavior. *Cell* **122**, 261–
564 273 (2005).

565 34. M. Tiberi, S. R. Nash, L. Bertrand, R. J. Lefkowitz, M. G. Caron, Differential Regulation of Dopamine D1A
566 Receptor Responsiveness by Various G Protein-coupled Receptor Kinases. *J. Biol. Chem.* **271**, 3771–3778
567 (1996).

568 35. O.-J. Kim, B. R. Gardner, D. B. Williams, P. S. Marinec, D. M. Cabrera, J. D. Peters, C. C. Mak, K.-M. Kim,
569 D. R. Sibley, The Role of Phosphorylation in D1 Dopamine Receptor Desensitization. *J. Biol. Chem.* **279**, 7999–
570 8010 (2004).

571 36. G. A. Vargas, M. von Zastrow, Identification of a Novel Endocytic Recycling Signal in the D1 Dopamine
572 Receptor. *J. Biol. Chem.* **279**, 37461–37469 (2004).

573 37. B. Gardner, Z. F. Liu, D. Jiang, D. R. Sibley, The Role of Phosphorylation/Dephosphorylation in Agonist-
574 Induced Desensitization of D 1 Dopamine Receptor Function: Evidence for a Novel Pathway for Receptor
575 Dephosphorylation. *Mol. Pharmacol.* **59**, 310–321 (2001).

576 38. M.-L. Martin-Negrier, G. Charron, B. Bloch, Receptor recycling mediates plasma membrane recovery of
577 dopamine D1 receptors in dendrites and axons after agonist-induced endocytosis in primary cultures of striatal
578 neurons. *Synapse* **60**, 194–204 (2006).

579 39. Y.-H. Chou, P. Karlsson, C. Halldin, H. Olsson, L. Farde, A PET study of D1-like dopamine receptor ligand
580 binding. *Psychopharmacology (Berl)*. **146**, 220–227 (1999).

581 40. J. C. Wu, K. Bell, A. Najafi, C. Widmark, D. Keator, C. Tang, E. Klein, B. G. Bunney, J. Fallon, W. E. Bunney,
582 Decreasing Striatal 6-FDOPA Uptake with Increasing Duration of Cocaine Withdrawal.
583 *Neuropsychopharmacology* **17**, 402–409 (1997).

584 41. J. B. Mandeville, C. Y. M. Sander, B. G. Jenkins, J. M. Hooker, C. Catana, W. Vanduffel, N. M. Alpert, B. R.
585 Rosen, M. D. Normandin, A receptor-based model for dopamine-induced fMRI signal. *Neuroimage* **75**, 46–57
586 (2013).

587 42. C. Y. Sander, J. M. Hooker, C. Catana, B. R. Rosen, J. B. Mandeville, Imaging Agonist-Induced D2 / D3
588 Receptor Desensitization and Internalization In Vivo with PET / fMRI. , 1427–1436 (2016).

589 43. C. J. Endres, B. S. Kolachana, R. C. Saunders, T. Su, D. Weinberger, A. Breier, W. C. Eckelman, R. E.
590 Carson, Kinetic Modeling of [11 C]Raclopride: Combined PET-Microdialysis Studies. *J. Cereb. Blood Flow
591 Metab.* **17**, 932–942 (1997).

592 44. H. P. Jedema, R. Narendran, C. W. Bradberry, Amphetamine-induced release of dopamine in primate
593 prefrontal cortex and striatum: Striking differences in magnitude and timecourse. *J. Neurochem.* **130**, 490–497
594 (2014).

595 45. D. P. Daberkow, H. D. Brown, K. D. Bunner, S. A. Kraniotis, M. A. Doellman, M. E. Ragozzino, P. A. Garris,
596 M. F. Roitman, Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine
597 Signals. *J. Neurosci.* **33**, 452–463 (2013).

598 46. K. S. Murnane, M. L. Andersen, K. C. Rice, L. L. Howell, Selective serotonin 2A receptor antagonism
599 attenuates the effects of amphetamine on arousal and dopamine overflow in non-human primates. *J. Sleep Res.*
600 **22**, 581–588 (2013).

601 47. G. Porras, V. Di Matteo, C. Fracasso, G. Lucas, P. De Deurwaerdère, S. Caccia, E. Esposito, U.
602 Spampinato, 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by
603 amphetamine and morphine in both the rat nucleus accumbens and striatum. *Neuropsychopharmacology* **26**,
604 311–324 (2002).

605 48. R. I. Melendez, Z. A. Rodd, W. J. McBride, J. M. Murphy, Dopamine receptor regulation of ethanol intake and
606 extracellular dopamine levels in the ventral pallidum of alcohol preferring (P) rats. *Drug Alcohol Depend.* **77**,
607 293–301 (2005).

608 49. T. Sugita, M. Kanamaru, M. Iizuka, K. Sato, S. Tsukada, M. Kawamura, I. Homma, M. Izumizaki, Breathing is
609 affected by dopamine D2-like receptors in the basolateral amygdala. *Respir. Physiol. Neurobiol.* **209**, 23–27
610 (2015).

611 50. A. Beautrait, J. S. Paradis, B. Zimmerman, J. Giubilaro, L. Nikolajev, S. Armando, H. Kobayashi, L. Yamani,
612 Y. Namkung, F. M. Heydenreich, E. Khouri, M. Audet, P. P. Roux, D. B. Veprintsev, S. A. Laporte, M. Bouvier, A
613 new inhibitor of the β -arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and
614 signalling. *Nat. Commun.* **8** (2017), doi:10.1038/ncomms15054.

615 51. D. W. Self, W. J. Barnhart, D. A. Lehman, E. J. Nestler, Opposite modulation of cocaine-seeking behavior by
616 D1- and D2-like dopamine receptor agonists. *Science* **271**, 1586–9 (1996).

617 52. K. A. Brennan, C. Carati, R. A. Lea, P. S. Fitzmaurice, S. Schenk, Effect of D1-like and D2-like receptor
618 antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine self-administration in rats. *Behav.*
619 *Pharmacol.* **20**, 688–694 (2009).

620 53. S. M. Gu, H. J. Cha, S. W. Seo, J. T. Hong, J. Yun, Dopamine D1 receptor antagonist reduces stimulant-
621 induced conditioned place preferences and dopamine receptor supersensitivity. *Naunyn. Schmiedebergs. Arch.*
622 *Pharmacol.* **393**, 131–138 (2020).

623 54. C. Carati, S. Schenk, Role of dopamine D1- and D2-like receptor mechanisms in drug-seeking following
624 methamphetamine self-administration in rats. *Pharmacol. Biochem. Behav.* **98**, 449–454 (2011).

625 55. Y. Avchalumov, W. Trenet, J. Piña-Crespo, C. Mandyam, Sch23390 reduces methamphetamine self-
626 administration and prevents methamphetamine-induced striatal ltd. *Int. J. Mol. Sci.* **21**, 1–16 (2020).

627 56. J. Zhang, A. Vinuela, M. H. Neely, P. J. Hallett, S. G. N. Grant, G. M. Miller, O. Isacson, M. G. Caron, W.-D.
628 Yao, Inhibition of the Dopamine D1 Receptor Signaling by PSD-95. *J. Biol. Chem.* **282**, 15778–15789 (2007).

629 57. S. A. Barnes, J. W. Young, J. C. Neill, D1 receptor activation improves vigilance in rats as measured by the
630 5-choice continuous performance test. *Psychopharmacology (Berl.)* **220**, 129–141 (2012).

631 58. D. A. MacQueen, A. Minassian, J. A. Kenton, M. A. Geyer, W. Perry, J. L. Brigman, J. W. Young,
632 Amphetamine improves mouse and human attention in the 5-choice continuous performance test.
633 *Neuropharmacology* **138**, 87–96 (2018).

634 59. J. W. Young, B. Z. Roberts, M. Breier, N. R. Swerdlow, Amphetamine improves rat 5-choice continuous
635 performance test (5C-CPT) irrespective of concurrent low-dose haloperidol treatment. *Psychopharmacology*
636 (*Berl.*) (2020), doi:10.1007/s00213-020-05511-1.

637 60. I. Kusumi, S. Boku, Y. Takahashi, Psychopharmacology of atypical antipsychotic drugs: From the receptor
638 binding profile to neuroprotection and neurogenesis. *Psychiatry Clin. Neurosci.* **69**, 243–258 (2015).

639 61. D. W. Wooten, J. B. Mandeville, C. Y. Sander, J. M. Hooker, G. El Fakhri, N. M. Alpert, M. D. Normandin, in
640 *10th International Symposium on Functional NeuroReceptor Mapping of the Living Brain*, (2014).

641 62. C. Y. M. Sander, J. T. Arsenault, B. R. Rosen, J. B. Mandeville, W. Vanduffel, in *Proc. Intl. Soc. Mag. Reson.*
642 *Med.* **27**, (2019), p. 4360.

643 63. C. Sander, A. Cramer, B. Keil, A. Mareyam, B. Rosen, L. Wald, in *Proc Intl Soc Mag Reson Med* **21**, (2013).

644 64. C. Y. Sander, B. Keil, D. B. Chonde, B. R. Rosen, C. Catana, L. L. Wald, A 31-channel MR brain array coil
645 compatible with positron emission tomography. *Magn. Reson. Med.* **73** (2015), doi:10.1002/mrm.25335.

646 65. M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase,
647 Generalized autocalibrating partially parallel acquisitions (GRAPPA). *Magn. Reson. Med.* **47**, 1202–1210 (2002).

648 66. J. B. Mandeville, IRON fMRI measurements of CBV and implications for BOLD signal. *Neuroimage* **62**,
649 1000–1008 (2012).

650 67. C. Catana, A. van der Kouwe, T. Benner, C. J. Michel, M. Hamm, M. Fenchel, B. Fischl, B. Rosen, M.
651 Schmand, A. G. Sorensen, Toward Implementing an MRI-Based PET Attenuation-Correction Method for
652 Neurologic Studies on the MR-PET Brain Prototype. *J. Nucl. Med.* **51**, 1431–1438 (2010).

653 68. K. S. Saleem, N. K. Logothetis, *A combined MRI and histology atlas of the rhesus monkey brain in*
654 *stereotaxic coordinates* (Academic Press, London, 2007).

655 69. D. G. McLaren, K. J. Kosmatka, T. R. Oakes, C. D. Kroenke, S. G. Kohama, J. A. Matochik, D. K. Ingram, S.
656 C. Johnson, A population-average MRI-based atlas collection of the rhesus macaque. *Neuroimage* **45**, 52–59
657 (2008).

658 70. J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, R. M. Weisskoff,
659 Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. *Magn. Reson. Med.*
660 **39**, 615–624 (1998).

661 71. M. Ichise, J.-S. Liow, J.-Q. Lu, A. Takano, K. Model, H. Toyama, T. Suhara, K. Suzuki, R. B. Innis, R. E.
662 Carson, Linearized Reference Tissue Parametric Imaging Methods: Application to [11C]DASB Positron Emission
663 Tomography Studies of the Serotonin Transporter in Human Brain. *J. Cereb. Blood Flow Metab.* **23**, 1096–1112
664 (2003).

665 72. N. M. Alpert, R. D. Badgaiyan, E. Livni, A. J. Fischman, A novel method for noninvasive detection of
666 neuromodulatory changes in specific neurotransmitter systems. *Neuroimage* **19**, 1049–1060 (2003).

667 73. M. D. Normandin, W. K. Schiffer, E. D. Morris, A linear model for estimation of neurotransmitter response
668 profiles from dynamic PET data. *Neuroimage* **59**, 2689–2699 (2012).

669 74. C. Y. Sander, J. M. Hooker, C. Catana, M. D. Normandin, N. M. Alpert, G. M. Knudsen, W. Vanduffel, B. R.
670 Rosen, J. B. Mandeville, Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous
671 PET/functional MRI. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 11169–74 (2013).

672 75. K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. H. Duncan, F. Morales, A. C. Evans, A General Statistical
673 Analysis for fMRI Data. *Neuroimage* **15**, 1–15 (2002).

674

675 **Acknowledgments:** The authors would like to thank the Radiochemistry and integrated PET/MR team
676 at the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts
677 General Hospital. The authors would also like to thank Dr. Joseph Coyle for helpful comments on the
678 manuscript and Dr. Brice Ozenne (Department of Public Health, Section of Biostatistics, University of
679 Copenhagen and Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen,
680 Denmark) for reading the manuscript and providing statistical consulting.

681

682 **Funding:**

683 National Institutes of Health grant R00DA043629 (CYS)
684 National Institutes of Health grant P41EB015896
685 National Institutes of Health grant P01AT009965
686 National Institutes of Health grant S10RR026666,
687 National Institutes of Health grant S10RR022976
688 National Institutes of Health grant S10RR019933
689 National Institutes of Health grant S10RR017208
690 National Institutes of Health grant S10OD023517
691 Lundbeck Foundation grant R293-2018-738 (HDH)

692

693 **Author contributions:**

694 Conceptualization: HDH, CYS
695 Methodology: HDH, MS, CYS
696 Software: JBM, CYS
697 Formal analysis: HDH, CYS
698 Investigation: HDH, HPD, CYS
699 Writing – original draft: HDH, CYS
700 Writing – review & editing: HDH, MS, HPD, JBM, BRR, CYS
701 Funding acquisition: CYS

702

703 **Competing interests:**

704 Authors declare that they have no competing interests.

705

706 **Data materials availability:**

707 Imaging data and code used in the analysis are available upon request.