

1 SARS-CoV-2 type I Interferon modulation 2 by nonstructural proteins 1 and 2.

3 **^{1,2}Émile Lacasse, ¹Isabelle Dubuc, ¹Leslie Gudimard, ¹Annie Gravel, ¹Isabelle Allaeyns, ^{1,2}Éric
4 Boillard, ^{1,2}Louis Flamand**

5 1. Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier
6 Universitaire de Québec- Université Laval, Canada
7 2. Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC,
8 Canada

9 **Abstract**

10 Since the beginning of the COVID-19 pandemic, enormous efforts were devoted to understanding
11 how SARS-CoV-2 escapes the antiviral response. Yet, modulation of type I interferons (IFNs) by
12 this virus is not completely understood. Using *in vitro* and *in vivo* approaches, we have
13 characterized the type I IFN response during SARS-CoV-2 infection as well as immune evasion
14 mechanisms. The transcriptional and translational expression of IFNs, cytokines and chemokines
15 were measured in lung homogenates of Wuhan-like, Beta, and Delta SARS-CoV-2 K18-ACE2
16 transgenic mice. Using *in vitro* experiments, we measured SARS-CoV-2 and its non-structural
17 proteins 1 and 2 (Nsp1-2) to modulate expression of IFN β and interferon-stimulated genes (ISG).
18 Our data show that infection of mice with Wuhan-like virus induces robust expression of *Ifna* and
19 *Ifnb1* mRNA and limited type I production. In contrast, Beta and Delta variant infected mice failed
20 to activate and produce IFN α . Using *in vitro* systems, *Ifn β* gene translation inhibition was observed

21 using an Nsp1 expression vector. Conversely, SARS-CoV-2 and its variants induce robust
22 expression of NF-κB-driven genes such as those encoding CCL2 and CXCL10 chemokines. We
23 also identified Nsp2 as an activator of NF-κB that partially counteracts the inhibitory actions of
24 Nsp1. In summary, our work indicates that SARS-CoV-2 skews the antiviral response in favor of
25 an NF-κB-driven inflammatory response, a hallmark of acute COVID-19, and that Nsp2 is partly
26 responsible for this effect.

27 **Importance**

28 Several studies suggest that SARS-CoV-2 possess multiple mechanisms aimed shunting the type I
29 interferon response. However, few studies have studied type I IFN modulation in the context of
30 infection. Our work indicates that mice and human cells infected with SARS-CoV-2 produce
31 sufficient type I IFN to activate an antiviral response, despite Nsp1 translational blockade of *IFNB1*
32 mRNA. In contrast to Wuhan-like virus, Beta and Delta variants failed to induce *Ifna* gene
33 expression. Our work also showcases the importance of studying protein functions in the context
34 of infection, as demonstrated by the partial antagonizing properties of the Nsp2 protein on the
35 activities of Nsp1. Our studies also highlight that the innate immune response triggered by SARS-
36 CoV-2 is chiefly driven by NF-κB responsive genes for which Nsp2 is partially responsible.

37 **Introduction**

38 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, in
39 December 2019 leading to the coronavirus infectious disease 2019 (COVID-19) global outbreak
40 (1). SARS-CoV-2 is a member of the *Coronaviridae* family, *Orthocoronavirinae* subfamily,
41 *Betacoronaviruses* genus, *Sarbecovirus* subgenus (2). SARS-CoV-2 genome consists of a single-
42 stranded (ssRNA) positive RNA genome of an approximate length of 29,7 kb (2, 3). The SARS-

43 CoV-2 genome encodes 4 structural proteins (spike (S), envelope (E), membrane (M), and
44 nucleocapsid (N)), 7 accessory proteins (ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10) and
45 ORF1ab, a large open reading frame (ORF) which encodes a large polyprotein which gets cleaved
46 in 16 non-structural proteins (Nsp1-16) (2). SARS-CoV-2 infection implicates the binding of the
47 S protein to the human Angiotensin-Converting Enzyme 2 (ACE2) followed by the cleavage of the
48 S2 subunit by transmembrane protease serine protease-2 (TMPRSS-2) and ADAM
49 metallopeptidase domain 17 (ADAM17) (4, 5). Finally, SARS-CoV-2 enters its host cell by
50 endocytosis (6).

51 One of the first host defense mechanisms against pathogens like viruses is the innate immune
52 system that is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) by
53 cellular sensors (7). One of the main systems triggered in response to viral infections is interferon
54 (IFN) production (8). In the case of infection by viruses like SARS-CoV-2, the type I IFN pathways
55 can be activated by two different processes. One of them involves the recognition of double-
56 stranded RNA (dsRNA), produced during SARS-CoV-2 replication, by RIG-I like receptors
57 (RLRs) such as retinoic acid-inducible gene I (RIG-I) and/or melanoma differentiation gene 5
58 (MDA5) sensors located in the cytoplasm (9, 10). Viral RNA recognition by these sensors leads to
59 the phosphorylation, dimerization, and nuclear translocation of IFN regulatory factor 3 (IRF3) and
60 IRF7. In parallel, NF- κ B activation is initiated and together with IRF3/7, *IFNB1* gene transcription
61 is initiated (11-13). Type I IFN transcription can also be activated by the recognition of dsRNA by
62 the Toll-like receptor 3 (TLR3) or by the recognition of ssRNA by TLR7/8 (14). TLR activation
63 results in *IFN β* gene transcription through similar signaling pathways (15).

64 The products of type I IFN genes, IFN α / β 1, are secreted in the extracellular space. IFN receptor
65 (IFNAR1-2) engagement activates the Janus kinases signal transducer and activator of transcription

66 proteins (JAK-STAT) pathway that leads to the expression of many dozen interferon-stimulated
67 genes (ISGs) whose products are responsible for establishing the antiviral defense (16-18).

68 In addition to activating IFN signaling, recognition of viral PAMPs, as well as damage-associated
69 molecular patterns (DAMPs) generated by viral replication, by TLRs, NOD-like Receptors (NLRs)
70 or AIM2 like receptors (ALR), lead to the activation of NF- κ B targeted gene and the formation of
71 the inflammasome. These pathways can initiate the production and activation of several pro-
72 inflammatory mediators such as cytokines and chemokines (19, 20).

73 Without surprise, various components of the type I IFN response are targeted by many viruses and
74 other pathogens. As was observed with SARS-CoV, some viral proteins, such as Nsp1, can target
75 signaling proteins and modulate the immune response of the host (21, 22). Furthermore, recent
76 studies indicate that SARS-CoV-2 Nsp1 can evade the type I IFN response by inducing
77 translational shutdown (23, 24). Conversely, SARS-CoV-2 Nsp2 seems to amplify the type I IFN
78 response (23, 25, 26). Most studies conducted on type I IFN response evasion by SARS-CoV-2
79 were carried out using single protein expression systems that cannot fully recapitulate infection or
80 conditions where several viral and cellular proteins are expressed simultaneously. On the opposite,
81 some studies suggest that SARS-CoV-2 induces type I IFN expression (27). In the current study,
82 we have used K18-hACE2 mice infected with different strains of SARS-CoV-2 and a human
83 pulmonary epithelial cell line to characterize the IFN response during infection. We also examined
84 the effects of Nsp2 on the ability of Nsp1 to shut down IFN synthesis. Our results suggest that all
85 three SARS-CoV-2 isolates modulate IFN β 1 similarly while the Beta and Delta variants are much
86 more effective in preventing IFN α production than the original Wuhan-like strain. Moreover, our
87 work suggests that the translational shutdown mediated by Nsp1 is the main mechanism capable
88 of inhibiting IFN β 1 production and that Nsp2 dampens this inhibitory activity, in part through the

89 activation of the NF-κB pathway. Our results argue that SARS-CoV-2 skews the antiviral response
90 in favor of an NF-κB driven inflammatory response and highlights the caveat of studying viral
91 proteins outside the context of infection.

92 Materials and Methods

93 **Cell culture and virus.** HEK293T and Vero cells were purchased from American Type Culture
94 Collection (Manassas, VA, USA), A549-hACE2 and HEK293T-hACE2 cells were obtained from
95 Biodefense and Emerging Infections Research Resources Repository (BEI Resources, Manassas,
96 VA, USA). These cell lines were passaged twice a week. HEK293T and A549 cells were cultured
97 in Dulbecco's Modified Eagle Medium (DMEM) (Corning Cellgro, Manassas, VA, USA) with
98 10 % fetal bovine serum (FBS) (Corning Cellgro), 10mM HEPES pH 7.2, 1% (v/v) nonessential
99 amino acid (Multicell Wisent Inc., St-Bruno, QC, Canada) and 5 μ g/mL of *Plasmocin*® (Invivogen,
100 San Diego, CA, USA), to prevent mycoplasma contamination. Vero cells were cultured in Medium
101 199 (Multicell Wisent Inc.) supplemented with 10 % FBS and 5 μ g/mL of *Plasmocin*®. Cell lines
102 were grown at 37°C with 5% CO₂. Sendai virus (SeV) was obtained from Charles River Laboratory
103 (Saint-Constant, QC, Canada) and SARS-CoV-2 Wuhan-like strain (LSPQ, B1 lineage) from the
104 Laboratoire de Santé Publique du Québec ([LSPQ] Sainte-Anne-de-Bellevue, QC, Canada), this
105 strain will be considered as a wild-type strain. SARS-CoV-2 Beta strain was obtained from BEI
106 resources and SARS-CoV-2 Delta strain from the BC CDC. SARS-CoV-2 strains were propagated
107 on Vero cells and the supernatant of infected cells was used for infection experiments. The
108 infectious titer of the Wuhan-like strain viral preparations was 1.8 x10⁶ Tissue Culture Infectious
109 Dose 50/mL (TCID_{50/mL}) for mice experiments and 5.24 x10⁶ TCID_{50/mL} for *in vitro* experiment,
110 1.80x10⁶ TCID_{50/mL} for Beta strain and 2.08x10⁶ TCID_{50/mL} for Delta strain. A549-hACE2 were

111 infected with Wuhan-like strain at a multiplicity of infection (MOI) of 1 for one hour, cells were
112 then washed 2 times with Phosphate-buffered saline 1X (PBS) and new culture media was added.
113 Experiments involving infectious SARS-CoV-2 viruses were performed in a BSL-3 facility.

114 **Determination of the viral titer.** Vero cells were plated in a 96-well plate (2x10⁴/well) and
115 infected with 200µl of serial dilution of the viral preparation or lung homogenate in the M199
116 media supplemented with 10mM HEPES pH 7.2, 1mM of sodium pyruvate, 2.5g/L of glucose,
117 5µg/mL *Plasmocin*® and 2% FBS. Three days post-infection plates were analyzed using a EVOS
118 M5000 microscope (ThermoFisher Scientific, Waltham, MA, USA) and the viral titer was
119 determined using the Kerber method.

120 **Mice.** B6.Cg-Tg(K18-hACE2)2Prlmn/J (stock#3034860) mice were purchased from the Jackson
121 Laboratories (Bar Harbor, ME). Nine-week-old male and female mice were infected with 25µL of
122 saline containing 9x10³ (TCID_{50/mL}) of the corresponding SARS-CoV-2 strain or 25µL of saline
123 for mock-infected mice. Mouse weight was recorded every day until euthanasia. Mice were
124 sacrificed on day 3 post-infection and lungs were collected for RNA extraction and tissue
125 homogenization for cytokines and infectious titer (TCID_{50/mL}) analysis.

126 **Plasmids and reagents.** SARS-CoV-2 non-structural protein (Nsp) 1 and 2 expression vectors
127 were generated by amplifying the genes from SARS-CoV-2 RNA. Nsp1 and 2 genes were cloned
128 into pENTR (L1-L2) using Hifi DNA Assembly (New England Biolabs, Ipswich, MA, USA). LR
129 recombination Gateway (ThermoFisher Scientific) was used to recombine Nsp1 and Nsp2 genes
130 into pCDNA5-TO (obtained from Dr. Anne Claude Gingras, Lunenfeld-Tanenbaum Research
131 Institute, Toronto, On, Canada). To generate an Nsp1-Nsp2 polyprotein coding vector, Nsp1-P2A
132 (28) was cloned into the pcDNA5-TO-Nsp2 vector using PCR overlap cloning with Hifi DNA
133 Assembly. Expression vector IFN-β-LUC was obtained from Dr. Nathalie Grandvaux (CHUM,

134 Montreal, QC, Canada), ISRE-LUC (*Interferon-sensitive response element*) expression vector was
135 obtained from BD Biosciences (Mississauga, ON, Canada), the NF-κB-LUC expression vector was
136 obtained from Michel J. Tremblay (CHUL, Quebec, Qc, Canada), PRD1-III-LUC vector was
137 obtained from Dr. Tom Maniatis (Zuckerman Institute, Colombia, USA). Polyinosinic-
138 polycytidyllic acid (poly(I:C)) was purchased from Cytiva (Mississauga, ON, Canada). BCA
139 Protein Assay kit was purchased from (ThermoFisher Scientific). Primers used for plasmid
140 construction are listed in the supplementary table 1.

141 **Transfection.** HEK293T cells were transfected using TransIT®-LT1 (Mirus, Madison, WI)
142 reagent with indicated expression vectors. Poly(I:C) transfections were done using lipofectamine
143 3000 reagent (ThermoFisher Scientific) at a ratio of 1:5.

144 **Protein expression.** HEK293T cells were plated in a 6-well plate (6.5×10^5 /well) 24h before
145 transfection. A549-hACE2 cells cultured in a 6-well plate (2×10^5 cells) were infected with SARS-
146 CoV-2. Forty-eight hours post-transfection, cells were lysed in radio-immunoprecipitation assay
147 buffer (RIPA) buffer with HALT protease Inhibitor Cocktail (ThermoFisher Scientific) or directly
148 in Laemmli 2X buffer. The proteins were separated by SDS/PAGE gel and transferred to a PVDF
149 low fluorescence membrane (Bio-Rad Laboratories Ltd, Mississauga, ON, Canada). Membranes
150 were incubated with 1 μ g/mL of mouse anti-Flag (Applied Biological Materials Inc., Richmond,
151 BC, Canada), 0.25 μ g/mL of rabbit anti-SARS-CoV-2-Nsp1 (Genetex, Irvine, CA, USA), or 0.25
152 μ g/mL of rabbit anti-SARS-CoV-2-Nsp2 (Genetex) for 1 hour at room temperature or 16 hours at
153 4°C. Peroxidase-labeled goat anti-mouse IgG (Jackson Immunoresearch Laboratories Inc., West
154 Grove, PA, USA) (40 ng/mL) or peroxidase-labeled goat anti-rabbit (Jackson Immunoresearch
155 Laboratories Inc.) (80 ng/mL) were used as secondary antibodies for 1 hour at the room temperature
156 and revealed with the addition of Clarity Western ECL reagent (Bio-Rad Laboratories Ltd).

157 ChemiDoc MP Imaging System (Bio-Rad Laboratories Ltd) or radiological films (Mandel, Guelph,
158 ON, Canada) were used to capture images. Rabbit anti-tubulin 2A and 2B (Abcam Inc., Toronto,
159 ON, Canada) (0.66 μ g/mL) or mouse anti-tubulin (ThermoFisher Scientific) (0.33 μ g/mL) or Stain-
160 Free Imaging Technology® (Bio-Rad Laboratories Ltd) were used as loading controls.

161 **Reporter assays.** HEK293T cells were plated in 24-well plates (1.6 x10⁵/well) and transfected
162 with 50ng to 100ng of reporter vectors and 30ng to 300ng of Nsp1, Nsp2 or Nsp1-Nsp2 vectors
163 brought to 0.5 μ g/well with the empty expression vector. Twenty-four-hour post-transfection,
164 transfected cells were infected with 20 hemagglutinin units of SeV or stimulated with 500 units of
165 IFN α (PBL Assay Science, Piscataway, NJ, USA). Sixteen hours later, cells were lysed and the
166 luciferase activity was determined as previously described (29)

167 **IFN β induction and ISG induction.** HEK293T-hACE2 cells were plated (3x10⁴/well) in 12-well
168 plates and transfected with 0.2 μ g of Nsp1 vector, 0.6 μ g of Nsp2 vector, or 0.8 μ g of Nsp1-Nsp2
169 vector complete to 1 μ g/well with empty pCDNA5. Twenty-four-hour post-transfection, cells were
170 infected with 40 hemagglutinin units of SeV for sixteen hours. Supernatants and cells were
171 collected separately, and cells were lysed in 0.5mL of QIAzol reagent (Qiagen, Toronto, ON,
172 Canada). Samples were stored at -80°C until future analysis.

173 **Infection and poly(I:C) stimulation.** A549-hACE2 cells were plated (7.5 x10⁴/well) in 12-well
174 plates and infected with Wuhan-like SARS-CoV-2 strain following the same procedure described
175 above. Twenty-four hours post-infection, cells were transfected with 2 μ g/mL of poly(I:C) for 16
176 hours. Supernatants and cells were collected separately, and cells were lysed in 0.5mL of QIAzol
177 reagent (Qiagen). Supernatants were incubated with 1% triton for one hour at room temperature to
178 inactivate SARS-CoV-2. Samples were stored at -80°C until analyzed.

179 **IFN β quantification:** IFN β in the supernatant was quantified with the Human IFN-beta DuoSet
180 enzyme-linked immunosorbent assay (ELISA) kit, according to the supplier recommendations
181 (R&D Systems Inc., Toronto, ON, Canada).

182 **Multiplex cytokines quantification.** Cytokines in mouse lung homogenates were measured using
183 a custom ProcartaPlexTM Mouse Mix & Match Panels kit (Invitrogen Waltham, MA, USA) on the
184 Bio-Plex 200 (Bio-Rad Laboratories Ltd).

185 **Quantitative real-time PCR analysis.** Total RNA from cell cultures was extracted following
186 QIAzol protocol and RNA from mouse lungs was extracted using the Bead Mill Tissue RNA
187 Purification Kit and the Omni Bead Ruptor Bead Mill homogenizer (Kennesaw, GA). Following
188 extraction, residual DNA was removed by treating the samples with DNase I (Roche, Mississauga,
189 ON, Canada). For the quantification of human gene expression and mouse *Cxcl1*, *Ccl2*, *Isg56*(*Ifit1*),
190 *Ifny*, and *Ifna*, RNA was reverse transcribed to cDNA using SuperScriptTM IV VILOTM mastermix
191 (ThermoFisher Scientific). Quantitative real-time PCR (qPCR) w performed using the
192 SsoAdvanced Universal Probes Supermix (Bio-Rad Laboratories Ltd) for *IFNB1* gene and *GAPDH*
193 as the housekeeping gene. SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories
194 Ltd) was used for human *ISG15* and *ISG56* and mouse genes including *Gapdh* as the housekeeping
195 gene on the Rotor-Gene Q 5plex (Qiagen). RT-qPCR primers and probes are listed in the
196 supplementary table 2.

197 **Digital PCR analysis.** SARS-CoV-2 viral RNA loads were determined using Droplet Digital PCR
198 (ddPCR) supermix for probes without dUTP (Bio-Rad Laboratories Ltd) and the QX200 Droplet
199 Digital PCR System Workflow (Bio-Rad Laboratories Ltd). ddPCR primers and probes are listed
200 in the supplementary table 2.

201 **RT² profiler PCR Arrays.** RNA extracted from mouse lungs as described above was cleaned up
202 using On-Column DNase using RNase-Free DNase Set (Qiagen) and RNeasy Mini Kit (Qiagen).
203 RNA was reverse transcribed using RT² First Strand Kit (Qiagen). qPCR and quality control were
204 done using RT² SYBR[®] Green ROC FAST Mastermix (Qiagen) and RT² profiler PCR Arrays:
205 Mouse Antiviral response (Qiagen). Data analyses were performed using the GeneGlobe (Qiagen)
206 analyzing tool. Genes of the RT2 profiler PCR Arrays are listed in the supplementary table 3.

207 **Immunofluorescence.** A549-hACE2 cells were plated (1.6x10⁴/well) in 8-well chamber slides.
208 Twenty-four hours later, cells were infected with SARS-CoV-2 as described above. Forty-eight
209 hours post-infection, cells were fixed in 2% paraformaldehyde in PBS for one hour at room
210 temperature. Cells were then incubated for thirty minutes in blocking solution (PBS with 0.1%
211 bovine serum albumin [BSA], 3% FBS, 0.1% Triton X-100 and 1mM EDTA) then with 17 μ g/mL
212 of rabbit anti-SARS-CoV-2-N (Rockland Immunochemicals Inc., Limerick, PA, USA) in the
213 blocking solution for one hour at room temperature. After, cells were washed three times for 5
214 minutes with PBS and incubated with 4 μ g/mL of goat anti-rabbit-Alexa-488 (ThermoFisher
215 Scientific) in the blocking solution for 30 minutes at room temperature. Finally, cells were washed
216 for 5 minutes in PBS and incubated into PBS 1X with 1.67 μ g/mL of DAPI (Invivogen). Cells were
217 washed for 5 minutes in PBS, mounted with ProLong Diamond Antifade reagent (ThermoFisher
218 Scientific) and images were acquired using a Z2 confocal microscope with LSM 800 scanning
219 system (Zeiss, Germany). Images were captured with a 20x objective (Zeiss, Apochromat). ZEN
220 2.3 software (Zeiss, Germany) was used to acquire and process images. Z-stack projections of 3
221 μ m in total thickness are represented.

222

223 **Results**

224 **Viral loads and host gene modulation following infection by Wuhan, Beta, and Delta viruses**

225 **in K18-hACE2 mice.** To model the innate immune response against the Wuhan, Beta, and Delta
226 SARS-CoV-2 strain, we infected K18-hACE2 mice with a lethal dose of virus. Three days post-
227 infection, cytokine load and antiviral related genes were measured in mouse lungs. No change in
228 body weight or temperature was observed at this time (30). As shown in Fig. 1A, the copy number
229 of the SARS-CoV-2 E gene/genomic RNA was almost threefold higher in Beta-infected mice
230 relative to Wuhan-infected mice. Viral RNA loads for Delta-infected mice were higher than
231 Wuhan-infected mice, but this difference was not statistically significant. When the infectious viral
232 loads from the same lung homogenates were analyzed, all three groups of mice showed similar
233 infectious viral loads (Fig. 1B). The difference between these two viral quantification methods is
234 since viral RNA quantification measure gRNA and mRNA while infectious viral loads measure
235 only infectious viral particles.

236 **SARS-CoV-2 and its variants induce a robust chemokine production but a limited type I IFN
237 production in mice.** Chemokine C-X-C Ligand 10 (*Cxcl10* [*Ip-10*]), Chemokine C-C Ligand 2
238 (*Ccl2* [*Mcp-1*]), *Cxcl11* (*Ip-9*), *Cxcl9* (*Mig*), *Ifnb1* and Interleukin 6 (*Il-6*) were the main cytokine
239 genes upregulated by all variants (Fig. 1C). *Ifny*, Tumor necrosis factor (*Tnf*), *Cxcl1*(*Groa*), *Ifna*,
240 *Ccl3* (*Mip-1a*), *Ccl4* (*Mip-1b*) genes were also upregulated, but to a lesser extent. On the opposite,
241 *Il11a* and *Il18* genes were downregulated. When analyzed at the protein level, CC and CXC
242 chemokines were efficiently produced in response to infection. In contrast, despite robust *Ifnb1*,
243 *Ifny*, *Il6*, and *Tnf* gene expression, little gene products were measured (Fig. 1D). Of potential
244 interest, the Wuhan strain induced the gene expression and the release of IFN α while Beta and
245 Delta variants did not. Despite, the IFN α and IFN β 1 protein production, chemokine production

246 was one thousand to twenty thousand time higher (Fig. 1E) than pro-inflammatory cytokines
247 and type I IFN production. These results show that SARS-CoV-2 innate immune response in
248 mice was dominated by chemokines.

249 **SARS-CoV-2 infection in mice does not induce an inflammatory reaction mediated by the**
250 **inflammasome.** As well as the cytokines mentioned above, the expression of several genes
251 involved in the Toll-Like receptors (TLRs), NOD-Like receptors (NLRs) and RIG-Like receptors
252 (RLR) signaling pathways were measured. Despite upregulation of the Mediterranean fever gene
253 (*Mefv*) implicated in the inflammasome formation and proinflammatory cytokine release (31),
254 inflammasome components such as Apoptosis-associated speck-like protein containing a CARD
255 (*Pycard*), Proline-serine-threonine phosphatase-interacting protein 1(*Pspip1*), Absent in melanoma
256 2 (*Aim2*), Caspase 1 (*Casp1*) and NLR family pyrin domain containing 3 (*Nlrp3*) were not
257 modulated early in infection (Fig. 2A). Moreover, Caspase recruitment domain-containing protein
258 9 (*Card9*) and Mitogen-activated protein kinase 14 (*Mapk14*), implicated in the inflammatory
259 process, were downregulated. This finding is consistent with the lack of proinflammatory cytokines
260 such as *Il1b* and *Il18* (Fig. 1C).

261 **Modulation of the IFN activation pathways during SARS-CoV-2 infection.** As shown in the
262 Fig. 2B, many downstream effector genes such as Inhibitor of nuclear factor kappa-B kinase
263 subunit beta (*Ikbkb*[*Ikkb*]), Interleukin-1 receptor-associated kinase 1 (*Irak1*), Transcription factor
264 (*Jun*), *Mavs* [*Ips-1*], Mitogen-activated protein kinase kinase kinase 7 (*Map3k7*[*Tak1*]) were
265 downregulated during infection. Moreover, Canopy FGF signaling regulator 3 (*Cnpy3*), a TLRs
266 chaperon (32), was also downregulated which could impair the recognition of viral PAMPs. On
267 the other hand, cytoplasmic and endosomal ssRNA and dsRNA sensors, such as *Tlr3*, *Tlr7*, *Tlr8*,
268 DExD/H-box helicase 58 (*Ddx58*[*Rig-i*]), 2'-5'-oligoadénylate synthetase 2 (*Oas2*) and Interferon-

269 induced helicase C domain-containing protein 1 (*Ifih1* [*Mda-5*]), were upregulated during SARS-
270 CoV-2 infection (Fig. 2B). Moreover, *Irf7* gene transcription was also robustly induced following
271 the infection by each viral strain (Fig. 2B).

272 **Robust ISGs expression despite low-level type I IFN production during SARS-CoV-2**
273 **infection.** The expression of genes associated with type I IFN signaling was monitored during
274 infection (Fig. 2B). ISGs such as *Isg15*, *Isg56* (IFIT1), and Interferon-induced GTP-binding protein
275 *Mx1* (*Mx1*) were strongly induced following infection with all three SARS-CoV-2 strains. In
276 agreement with those results, *Stat1* gene transcription was also upregulated by the different
277 infections. On the opposite, *Ifnar1* expression was downregulated.

278

279 **SARS-CoV-2 infection induces *IFN β* gene transcription, inhibits *IFN β* protein synthesis, and**
280 **does not affect type I IFN signaling.** A549-hACE2 were infected with the SARS-CoV-2 Wuhan
281 strain and the efficiency of infection was visualized by immunofluorescence using anti-
282 nucleocapsid (N) antibodies (Fig. 3A). IFN β mRNA was quantified by RT-qPCR in mock-infected
283 or SARS-CoV-2-infected cells with or without poly(I:C) stimulation, a type I IFN inducer. IFN β
284 mRNA quantification indicated that SARS-CoV-2 efficiently activated *IFNB1* gene transcription.
285 Stimulation with poly(I:C) amplified *IFNB1* mRNA expression (Fig. 3B). Similar results were
286 obtained for *ISG15* and *ISG56* gene expression +/- poly(I:C) (Fig. 3C and D). Conversely, no
287 IFN β 1 protein production was detected in the supernatant of infected cells with SARS-CoV-2 and
288 the infection partially inhibiting the poly(I:C) mediated activation (Fig. 3E).

289 **Effects of SARS-CoV-2 Nsp1 and Nsp2 on IFN β 1 and type I IFN responsive promoters.**
290 Despite expressing elevated levels of IFN β 1 mRNA, SARS-CoV-2-infected cells synthesize a

291 limited amount of IFN β 1 protein, suggesting that viral factors affect mRNA translation. Work by
292 others (23, 24) has indicated that the Nsp1 protein is a potent mRNA translation inhibitor. During
293 infection, Nsp1 is generated by the proteolytic cleavage of a large precursor protein yielding several
294 additional proteins, including Nsp2. Thus, we studied Nsp1's behavior in the absence of Nsp2.
295 Nsp1 and Nsp2 expression vectors were co-transfected into HEK293T cells with IFN β promoter
296 or the ISRE promoter luciferase reporters. As shown in Fig. 4A and C, Nsp1 strongly inhibited the
297 SeV-induced IFN β 1 promoter activation and the IFN α -induced ISRE activation in a dose-
298 dependent manner. On the opposite, Nsp2 expression activated IFN β 1 and ISRE promoters and
299 amplified the responses to SeV and IFN α (Fig. 4 B and D). To determine whether the expression
300 levels of Nsp1 and Nsp2 derived from expression vectors were physiologically relevant, these were
301 compared to Nsp1 and Nsp2 levels measured during infection. As shown in Fig. 4E and F, Nsp1
302 and Nsp2 relative protein expression in SARS-CoV-2 infected cells was in the expression range of
303 transfection doses used for reporter assays.

304 **Nsp2 activates IFN β 1 production by activating NF- κ B.** As shown in the Fig. 5A the expression
305 of Nsp2 without any stimulation activates the IFN β 1 promoter. To determine which regions of the
306 IFN β enhanceosome (Fig. 5B) were targeted by Nsp2, luciferase reporters containing either the
307 positive regulatory domains I and III (PRD-I-III) (IRF3/7 responsive element) or the PRD-II (NF-
308 κ B-responsive element) were used (33). The luciferase reporters were co-transfected with the Nsp2
309 expression vector into HEK293T. We observed that Nsp2 activated the NF- κ B binding domain of
310 the IFN β enhanceosome in a dose-dependent manner (Fig. 5C) while not affecting the PRD-I-III
311 (Fig. 5D). These results indicated that Nsp2 activates the NF- κ B pathway.

312 **Nsp2 co-transfection fails to reduce the inhibitory effect of Nsp1.** During infection, both Nsp1
313 and Nsp2 are produced simultaneously at an equimolar ratio. To determine whether both proteins

314 might antagonize each other, IFN β or ISRE luciferase reporter activation in response to SeV
315 infection or IFN α was examined in co-transfection experiments. No significant difference between
316 cells co-transfected with Nsp1 and Nsp2 vectors and cells singly transfected with Nsp1 vector alone
317 was detected (Fig. 6A and B). In fact, cotransfection of Nsp2 failed to alter Nsp1's ability to inhibit
318 luciferase expression driven by the IFN β and ISRE promoters. When transfected cells were
319 analyzed for Nsp1 and Nsp2 expression, Nsp2 could be efficiently detected only in the absence of
320 Nsp1, arguing that Nsp1 inhibited Nsp2 translation (Fig. 6C).

321 **Nsp1-Nsp2 polyprotein coding vector succeeds to reduce Nsp1 inhibition on IFN β pathways.**
322 To circumvent the fact that Nsp1 prevented the expression of Nsp2, we designed a vector
323 expressing an Nsp1-P2A-Nsp2 polyprotein (schematized in Fig. 7A). Upon transfection of this
324 polyprotein coding vector into HEK293T, the polyprotein along with Nsp1 and Nsp2 individual
325 proteins were detected (Fig. 7B). The polyprotein vector was co-transfected with IFN β 1 or ISRE
326 luciferase reporters into HEK293T cells. The results show that Nsp2 expression, enabled by the
327 polyprotein vector, mitigated, at least partially, Nsp1 inhibition on the IFN β 1 reporters (Fig. 7C
328 and D). Under the basal condition, a significant increase in IFN β 1 promoter activity was observed
329 in the presence of Nsp1 and Nsp2 (Fig. 7C). In the presence of SeV, co-expression of Nsp1 and
330 Nsp2 reduced the inhibitory effects of Nsp1 (Fig. 7D). However, co-expression of the two viral
331 proteins did not modulate the Nsp1 inhibition on the ISRE reporter activity with mock and IFN α
332 stimulated cells (Fig. 7E and F). These results indicate that Nsp2 partially antagonizes the
333 inhibitory activity of Nsp1.

334 **Nsp1 inhibits the IFN β synthesis but does not affect the *IFN β* gene transcription.** To validate
335 the result obtained using luciferase reporters, the effect of Nsp1, Nsp2, and Nsp1/Nsp2 co-
336 expression on the *IFNB1*, *ISG15*, and *ISG56* mRNA and IFN β 1 protein production were measured.

337 Our findings indicate that Nsp1 and Nsp2 do not affect *IFNB1*, *ISG15*, and *ISG56* genes
338 transcription (Fig. 8A to D). In contrast, Nsp1 strongly inhibited the IFN β 1 production while the
339 presence of co-expressed Nsp2 partially mitigated this effect (Fig. 8A). Overall, the data argue that
340 Nsp1 shunts the IFN response by preventing the translation of mRNA, an effect partially
341 antagonized by the Nsp2 protein.

342 **Discussion**

343 In this study, we demonstrated that all SARS-CoV-2 strains tested induce robust *Ifnb1* gene
344 transcription during *in vivo* infection of K18-hACE2 mice. Moreover, this *Ifnb1* gene expression
345 was translated into detectable release of IFN β 1 in lung homogenates. *Ifnb1* gene expression is
346 regulated by the coordinated actions of IRF3 and NK- κ B, which are constitutively expressed in
347 most cells (34, 35). Infected cells can therefore respond very rapidly to incoming viruses by
348 inducing *Ifnb1* gene expression and IFN β 1 production even before viruses can deploy their anti-
349 viral defense mechanisms. In the case of SARS-CoV-2, several viral proteins are reported to
350 possess activities that antagonize the innate immune response such as type I IFN production. The
351 most potent SARS-CoV-2 protein antagonizing the IFN response is the Nsp1 protein that induces
352 a global shutdown of cellular mRNA translation (23, 24). The fact that several ISG, such as *Isg15*,
353 *Igs56*, and *Mx1* are highly upregulated (Fig. 2B) during infection suggest that infected cells release
354 sufficient IFN β 1 to induce the expression of genes associated with antiviral defense mechanisms.
355 However, the establishment of an antiviral state is contingent on efficient ISG mRNA translation.
356 To find out, we have examined *Irf7* gene expression and IFN α production. IRF7, constitutively
357 expressed in plasmacytoid dendritic cells and B cells and induced in many other cell types by viral
358 infections, is the main transcription factor responsible for the activation of IFN α promoters (12,

359 36). Plasmacytoid dendritic cells and B cells cell types do not appear to express ACE2 nor
360 transmembrane serine protease 2 (TMPRSS2) (6), suggesting that they cannot be directly infected
361 by SARS-CoV-2. In response to infection by all SARS-CoV-2 strains tested, *Irf7* is among the
362 genes most highly expressed by all infected mice (Fig. 2B), suggesting that the recognition of
363 infection by cellular sensors and downstream signaling molecules is functional. Differences at the
364 level of pan *Ifna* gene expression and IFN α 2/4 production were however observed between viral
365 strains (Fig. 1C and D). Wuhan-infected mice had both significant pan *Ifna* gene induction and
366 IFN α 2/4 production relative to mock-infected and concordant with *Irf7* gene expression levels. In
367 contrast, Beta- and Delta-infected mice had pan *Ifna* gene and IFN α 2/4 levels that were equivalent
368 to mock-infected mice, suggesting that the translation of IRF7 mRNAs is likely impaired. This
369 would be consistent with the proposed role of Nsp1 (23, 24). However, the fact that the Nsp1
370 protein sequence is identical between Wuhan, Beta and Delta would argue that an alternative, yet
371 to be identified mechanisms, can also affect IRF7 and/or *Ifna* genes expression. In that regard, the
372 increased viral load RNA in Beta- and Delta -infected mice relative to Wuhan infected mice (Fig.
373 1A) might suggest that certain viral proteins are made at higher levels favoring greater immune
374 evasion. IFN α inhibition in Beta-infected K18-hACE2 mice compared to the Wuhan strain was not
375 observed in the work of Radvak & al. (37). In fact, a robust IFN α production was detected in lungs
376 of Beta virus infected mice. This apparent discrepancy could possibly be explained by the lower
377 virus inoculum (10^2 TCID $_{50}$) used in their study relative to ours (9×10^3 TCID $_{50}$). Additional
378 differences with the study by Radvak and co-workers were also noted. For instance, the production
379 of several cytokines in response to Beta infection, such as MIP1 α and β , were produced at high
380 levels in this study.

381 Relative to type I IFNs and interleukins, CC and CXC chemokines were produced at high levels
382 during infection by all SARS-CoV-2 strains in agreement with observations made in lungs of
383 humans infected with SARS-CoV-2 and suffering from severe COVID-19 (38). In lungs of patients
384 with severe COVID-19, CXCL8 (IL-8) and CXCL1 (GRO α) were the predominant CXC
385 chemokines. Mice do not encode *Cxcl8* gene, but do have CXCL1, which was produced at high
386 levels (Fig. 1C and D). As in humans, CCL2 was the most prominent CC chemokines produced
387 during infection (Fig. 1C and D). While CXCL1 and CXCL8 (human) are mainly involved in the
388 neutrophil recruitment and activation, CCL2 is the main cytokine implicated in the monocyte
389 recruitment as well as TH1 polarisation (39-41). Put together, concerted actions of these
390 chemokines likely lead to a massive recruitment of leukocytes responsible of the acute respiratory
391 distress syndrome (ARDS) observed in severe COVID-19 case (42).

392

393 Banerjee A & al. (27) recently reported that SARS-CoV-2 efficiently induced a type I IFN
394 transcriptional response upon infection of pulmonary epithelial cells. Our work supports similar
395 findings. In contrast, work by others (23, 24) clearly shows that this virus can also strongly inhibit
396 the IFN β 1 protein expression. This apparent contradiction can be explained by the fact that certain
397 studies measure RNA expression, while others evaluate protein synthesis. In fact, knowing that
398 SARS-CoV-2 Nsp1 suppresses mRNA translation, the study of both mRNA and protein synthesis
399 is necessary (23, 24). In that regard, our work confirms that infection of pulmonary epithelial cells
400 by SARS-CoV-2 induced *IFN β 1* gene expression and even potentiated the response to IFN-
401 inducing agents such as poly(I:C) (Fig. 3B to D). When IFN β 1 production in the supernatant was
402 assessed however, partial inhibition in IFN β 1 production was measured only when infection was
403 combine with poly(I:C) stimulation (Fig. 3E). Considering that several other non-structural viral

404 proteins are simultaneously generated with Nsp1 upon cleavage of the ORF1ab polyprotein, we
405 surmised that at least one of them may partially antagonize the effects of Nsp1. Original to this
406 work, we provided evidence that Nsp2, through activation of the NF-κB dampens the inhibitory
407 effect of Nsp1 on IFNβ1 production. This effect of Nsp2 could be demonstrated when Nsp1-Nsp2
408 were generated from a common polyprotein alike the situation during viral infection (Fig. 7).
409 However, when expressed individually, Nsp1 prevented the efficient expression of Nsp2 (Fig. 6C).
410 Since SARS-CoV-2 infected cells do produce some IFNβ1 in response to infection suggest an
411 incomplete blockage of mRNA translation by Nsp1 arguing that in addition of Nsp2, other viral
412 factors may affect the activities of Nsp1. Our findings further highlight the potential caveats of
413 studying viral proteins individually outside the context of infection as reported in several studies
414 (25, 26, 43, 44). Nsp1 inhibition of IFNβ1-luc reporters has been shown by many, including this
415 study. However, to our knowledge, this is the first report demonstrating that Nsp2 activates NF-κB
416 (Fig. 5C). Nsp2-mediated activation of IFNβ1 and NF-κB reporters did not translate into increased
417 IFNβ1 production. Nsp2 activation might be too small to affect IFNβ1 production in a measurable
418 way but could play a role in the global immune response triggered by SARS-CoV-2 during
419 infection.

420 While minimally inducing Type I IFN production in mice and *in vitro* model, early infection
421 induces robust NF-κB activation driving the expression of chemokines like CXCL1,9,10,11 or
422 CCL2,3,4,5 suggesting that virus skews the immune response toward an exaggerated inflammatory
423 response rather than an antiviral response, as previously hypothesized (45). This overwhelming
424 inflammatory response represents a major determinant of pathogenesis and morbidity observed
425 during COVID-19. In support, the use of dexamethasone, a non-specific anti-inflammatory drug

426 has proven effective in reducing mortality and length of hospital stay for patients with COVID-19
427 requiring oxygen supply (46).

428 In summary, the current study reveals that SARS-CoV-2 infection triggers vigorous expression of
429 antiviral and inflammatory genes. However, in both mice and cell lines, IFN synthesis is sub-
430 optimal, a consequence of the translational shutdown mediated by Nsp1. IFN shutdown in infected
431 cells is however incomplete, in part due to the action of other viral proteins such as Nsp2 that
432 partially antagonize the actions of Nsp1. As such, our work highlights the importance of studying
433 viral protein functions in the context of infection. The use of recombinant mutant viruses will be
434 helpful in delineating the synergistic/antagonizing functions of non-structural and accessory
435 proteins during infection. In contrast to IFN, elevated inflammatory gene expression did translate
436 into the production of high levels of several inflammatory chemokines, many of which are
437 regulated by NF- κ B. Considering our results demonstrating that Nsp2 activates the NF- κ B
438 pathway, Nsp2 should be considered as a potential contributor to the pathogenesis observed during
439 SARS-CoV-2 infection.

440 **Acknowledgments**

441 We thank the Laboratoire de Santé Publique du Québec for providing the Wuhan-like SARS-CoV-
442 2 isolate used in this study. This study was supported by the Canadian Institutes for Health Research
443 (CIHR) operating grant to the Coronavirus Variants Rapid Response Network (CoVaRR-Net) to
444 LF, New Frontier research Funds (LF and EB), CIHR grants (VR3-172632, VS1-175516, VS1-
445 175567) (LF and EB) and the CFI project “Seeking for innovative approaches in prevention and
446 cure to COVID-19”. We thank the Centre de Recherche du CHU de Quebec sequencing platform
447 for their excellent service. Émile Lacasse is the recipient of a fellowship from the Fondation du

448 CHU de Québec. EB is recipient of an award from the Fonds de Recherche en Santé du Québec.
449 Schematic representations of IFN β 1 and Nsp1-Nsp2 polyprotein vector (Fig. 5B and 7A) were
450 created with BioRender.com.

451 **References**

- 452 1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL,
453 Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng
454 XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL.
455 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
456 Nature 579:270-273.
- 457 2. Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW,
458 Li H, Fan GH, Gu XY, Xiao Y, Gao H, Xu JY, Yang F, Wang XM, Wu C, Chen L, Liu
459 YW, Liu B, Yang J, Wang XR, Dong J, Li L, Huang CL, Zhao JP, Hu Y, Cheng ZS, Liu
460 LL, Qian ZH, Qin C, Jin Q, Cao B, Wang JW. 2020. Identification of a novel coronavirus
461 causing severe pneumonia in human: a descriptive study. Chin Med J (Engl) 133:1015-
462 1024.
- 463 3. Anonymous. 2020. The species Severe acute respiratory syndrome-related coronavirus:
464 classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536-544.
- 465 4. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G. 2020. SARS-CoV-2 induces
466 transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir
467 Res 21:182.
- 468 5. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens
469 TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020. SARS-
470 CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically
471 Proven Protease Inhibitor. Cell 181:271-280.e8.
- 472 6. Beyerstedt S, Casaro EB, Rangel É B. 2021. COVID-19: angiotensin-converting enzyme
473 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin
474 Microbiol Infect Dis 40:905-919.
- 475 7. Meylan E, Tschopp J, Karin M. 2006. Intracellular pattern recognition receptors in the
476 host response. Nature 442:39-44.
- 477 8. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. 2015. Type I interferons in
478 infectious disease. Nat Rev Immunol 15:87-103.
- 479 9. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C.
480 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.
481 Science 314:997-1001.
- 482 10. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A,
483 Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C,
484 Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in
485 the recognition of RNA viruses. Nature 441:101-5.
- 486 11. Rehwinkel J, Gack MU. 2020. RIG-I-like receptors: their regulation and roles in RNA
487 sensing. Nat Rev Immunol 20:537-551.

- 488 12. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y,
489 Takaoka A, Yoshida N, Taniguchi T. 2005. IRF-7 is the master regulator of type-I
490 interferon-dependent immune responses. *Nature* 434:772-7.
- 491 13. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ,
492 Liao SM, Maniatis T. 2003. IKKepsilon and TBK1 are essential components of the IRF3
493 signaling pathway. *Nat Immunol* 4:491-6.
- 494 14. Akira S. 2006. TLR signaling. *Curr Top Microbiol Immunol* 311:1-16.
- 495 15. Matsumoto M, Seya T. 2008. TLR3: interferon induction by double-stranded RNA
496 including poly(I:C). *Adv Drug Deliv Rev* 60:805-12.
- 497 16. MacMicking JD. 2012. Interferon-inducible effector mechanisms in cell-autonomous
498 immunity. *Nat Rev Immunol* 12:367-82.
- 499 17. Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling.
500 *Nature Reviews Immunology* 5:375-386.
- 501 18. Aaronson DS, Horvath CM. 2002. A road map for those who don't know JAK-STAT.
502 *Science* 296:1653-5.
- 503 19. Rathinam VA, Fitzgerald KA. 2016. Inflammasome Complexes: Emerging Mechanisms
504 and Effector Functions. *Cell* 165:792-800.
- 505 20. Lawrence T. 2009. The nuclear factor NF-kappaB pathway in inflammation. *Cold Spring
506 Harb Perspect Biol* 1:a001651.
- 507 21. Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. 2007. Severe
508 acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by
509 sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.
510 *Journal of virology* 81:9812-24.
- 511 22. Wathelet MG, Orr M, Frieman MB, Baric RS. 2007. Severe acute respiratory syndrome
512 coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated
513 strain. *Journal of virology* 81:11620-33.
- 514 23. Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat
515 H, Hayn M, Mackens-Kiani T, Cheng J, Straub JH, Stürzel CM, Fröhlich T,
516 Berninghausen O, Becker T, Kirchhoff F, Sparrer KMJ, Beckmann R. 2020. Structural
517 basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-
518 2. *Science* doi:10.1126/science.abc8665.
- 519 24. Kumar A, Ishida R, Strilets T, Cole J, Lopez-Orozco J, Fayad N, Felix-Lopez A, Elaish
520 M, Evseev D, Magor KE, Mahal LK, Nagata LP, Evans DH, Hobman TC. 2021. SARS-
521 CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of
522 Key Host Signaling Factors. *J Virol* 95:e0026621.
- 523 25. Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L, Guo F,
524 Zhao Z, Zhou Z, Xiang Z, Wang J. 2020. Activation and evasion of type I interferon
525 responses by SARS-CoV-2. *Nat Commun* 11:3810.
- 526 26. Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, Menachery VD, Rajsbaum R, Shi PY.
527 2020. Evasion of Type I Interferon by SARS-CoV-2. *Cell Rep* 33:108234.
- 528 27. Banerjee A, El-Sayes N, Budylowski P, Jacob RA, Richard D, Maan H, Aguiar JA,
529 Demian WL, Baid K, D'Agostino MR, Ang JC, Murdza T, Tremblay BJ, Afkhami S,
530 Karimzadeh M, Irving AT, Yip L, Ostrowski M, Hirota JA, Kozak R, Capellini TD,
531 Miller MS, Wang B, Mubareka S, McGeer AJ, McArthur AG, Doxey AC, Mossman K.
532 2021. Experimental and natural evidence of SARS-CoV-2-infection-induced activation of
533 type I interferon responses. *iScience* 24:102477.

- 534 28. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY. 2011.
535 High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human
536 cell lines, zebrafish and mice. *PLoS One* 6:e18556.
- 537 29. Gravel A, Tomoiu A, Cloutier N, Gosselin J, Flamand L. 2003. Characterization of the
538 immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional
539 activator. *Virology* 308:340-53.
- 540 30. Isabelle Dubuc JP, Émile Lacasse, Annie Gravel, Florian Puhm, Isabelel Allaey, Anne-
541 Sophie Archambault, Leslie Gudimard, Arnaud Droit, Nicolas Flamand, Eric Boillard and
542 Louis Flamand. 2022. Cytokines and lipid mediators of inflammation in lungs of SARS-
543 CoV-2 infected mice. *Frontiers in Immunology* doi:10.3389/fimmu.2022.893792.
- 544 31. Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. 2019. The Pyrin Inflammasome in
545 Health and Disease. *Front Immunol* 10:1745.
- 546 32. Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y, Wu S, Li Y, Hao B, Bona R, Han D, Li
547 Z. 2010. Folding of Toll-like receptors by the HSP90 parologue gp96 requires a substrate-
548 specific cochaperone. *Nat Commun* 1:79.
- 549 33. Panne D. 2008. The enhanceosome. *Curr Opin Struct Biol* 18:236-42.
- 550 34. Hayden MS, Ghosh S. 2011. NF-κB in immunobiology. *Cell Res* 21:223-44.
- 551 35. Barnes B, Lubyova B, Pitha PM. 2002. On the role of IRF in host defense. *J Interferon
552 Cytokine Res* 22:59-71.
- 553 36. Izaguirre A, Barnes BJ, Amrute S, Yeow WS, Megjugorac N, Dai J, Feng D, Chung E,
554 Pitha PM, Fitzgerald-Bocarsly P. 2003. Comparative analysis of IRF and IFN-alpha
555 expression in human plasmacytoid and monocyte-derived dendritic cells. *J Leukoc Biol*
556 74:1125-38.
- 557 37. Radvak P, Kwon HJ, Kosikova M, Ortega-Rodriguez U, Xiang R, Phue JN, Shen RF,
558 Rozzelle J, Kapoor N, Rabara T, Fairman J, Xie H. 2021. SARS-CoV-2 B.1.1.7 (alpha)
559 and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice
560 distinct from early strains. *Nat Commun* 12:6559.
- 561 38. Zaid Y, Doré É, Dubuc I, Archambault AS, Flamand O, Laviolette M, Flamand N,
562 Boillard É, Flamand L. 2021. Chemokines and eicosanoids fuel the hyperinflammation
563 within the lungs of patients with severe COVID-19. *J Allergy Clin Immunol* 148:368-
564 380.e3.
- 565 39. Fontoura MA, Rocha RF, Marques RE. 2021. Neutrophil Recruitment and Participation in
566 Severe Diseases Caused by Flavivirus Infection. *Life (Basel)* 11.
- 567 40. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M,
568 Roers A, Hogg N. 2013. Mast cell and macrophage chemokines CXCL1/CXCL2 control
569 the early stage of neutrophil recruitment during tissue inflammation. *Blood* 121:4930-7.
- 570 41. Deshmane SL, Kremlev S, Amini S, Sawaya BE. 2009. Monocyte chemoattractant
571 protein-1 (MCP-1): an overview. *J Interferon Cytokine Res* 29:313-26.
- 572 42. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. 2020. The cytokine storm in
573 COVID-19: An overview of the involvement of the chemokine/chemokine-receptor
574 system. *Cytokine Growth Factor Rev* 53:25-32.
- 575 43. Shemesh M, Aktepe TE, Deerain JM, McAuley JL, Audsley MD, David CT, Purcell DFJ,
576 Urin V, Hartmann R, Moseley GW, Mackenzie JM, Schreiber G, Harari D. 2021. SARS-
577 CoV-2 suppresses IFN β production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but
578 does not suppress the effects of added interferon. *PLoS Pathog* 17:e1009800.

- 579 44. Wu J, Shi Y, Pan X, Wu S, Hou R, Zhang Y, Zhong T, Tang H, Du W, Wang L, Wo J,
580 Mu J, Qiu Y, Yang K, Zhang LK, Ye BC, Qi N. 2021. SARS-CoV-2 ORF9b inhibits
581 RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO.
582 *Cell Rep* 34:108761.
- 583 45. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX,
584 Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR.
585 2020. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19.
586 *Cell* 181:1036-1045.e9.
- 587 46. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C,
588 Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C,
589 Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie
590 JK, Haynes R, Landray MJ. 2021. Dexamethasone in Hospitalized Patients with Covid-
591 19. *N Engl J Med* 384:693-704.

592

593 **Figure Legends**

594 **Figure 1.** Cytokine mRNA and protein expression profile following infection of K18-ACE2 mice
595 with Wuhan, Beta and Delta strains. Infected or mock mouse lung tissues were collected three days
596 post-infection (n=4/group). A) The number of SARS-CoV-2 *E* gene copy number was evaluated
597 by ddPCR using lung RNA and expressed as copie number per 100 copies of *Rpp30* mRNA. (B)
598 Infectious viral titers were determined in lung homogenates and expressed in TCID_{50/mL}. (C-D)
599 Gene expression was evaluated by RT-qPCR and cytokine concentration in lung homogenates
600 determined using a 13-plex Luminex panel. Cytokine gene expression and concentration levels are
601 presented as heatmaps with results expressed as fold (log₂) relative to mock-infected mice.
602 Statistical analyses were done by comparing 2^(-ΔCt) values for each gene in the control group and
603 infected groups with a nonparametric T-test and only data with a p value less than 0,05 are show.
604 (E) Absolute cytokine concentrations in lung homogenates. Results are expressed as mean +/-SD
605 (n=4 mice/group). For protein quantification, statistical analyses were done by comparing the
606 normalized concentration for each cytokine in the control group and infected groups with a
607 nonparametric T-test. *P<0,05, **P<0,01, ***P<0,001, ****P<0,0001.

608 **Figure 2.** Antiviral response gene expression following infection with Wuhan, Beta and Delta
609 strains. Heat map representation of cytokines and inflammatory related genes (A) and Type I IFN
610 production and signalisation related genes (B). Results are expressed as fold (\log_2) relative to
611 mock-infected mice. For gene expression, statistical analyses were done by comparing $2^{(-\Delta Ct)}$
612 values for each gene in the control group and infected groups with a nonparametric T-test and only
613 data with a p values less than 0,05 were show. For protein expression, statistical analyses were
614 done by comparing normalised concentration of each cytokine in the mock infected groups with
615 infected groups with a nonparametric T-test. *P<0,05, **P<0,01, ***P<0,001, ****P<0,0001.

616 **Figure 3.** SARS-CoV-2 Nucleocapsid staining on A549-hACE2 infected cells. Forty-eight hours
617 post-infection cells were fixed and stained as described in the materials and methods section (A).
618 Effect of SARS-CoV-2 infection on poly(I:C) *IFNB1* mRNA expression (B), *ISG15* mRNA (C) or
619 *ISG56* mRNA expression (D), induced IFN β 1 production (E). 24h post-seeding, A549-hACE2
620 cells were infected with SARS-CoV-2 as described in the materials and methods section. 32h post-
621 infection, SARS-CoV-2 and mock infected cells were stimulated with poly(I:C) and RNA extracted
622 and analyzed with RT-qPCR while IFN β 1 was measured in the supernatant by ELISA. All
623 experiments were performed twice in triplicate and the compilation of the data is shown. Error bars
624 indicate SD of biological triplicate repetitions. Statistical analyses were done by comparing mock
625 control with corresponding condition with a nonparametric T-test. *P<0,05, **P<0,01,
626 ***P<0,001, ****P<0,0001.

627 **Figure 4.** Effect of SARS-CoV-2-Nsp1 or Nsp2 on IFN β 1-luc and ISRE-luc promoter activation.
628 24h post-seeding, cells were transfected with IFN β 1 luciferase reporter vector (A-B) or ISRE (C-
629 D) luciferase reporter vector along with an empty vector or a plasmid expressing the indicated
630 protein. Doses of 300 ng, 100 ng, 30 ng and 3 ng per well of Nsp1 vectors and 300 ng, 200 ng and

631 100 ng per well of Nsp2 vectors were used. Thirty-two-hour post-transfection, cells were infected
632 with SeV for 16h and then luciferase reporter activity was measured then standardized with a BCA
633 protein dosage of the cell lysate. All experiments were done twice in triplicate and the compilation
634 of the data is shown. Error bars indicate SD of experiments triplicates repetition. Statistical analyses
635 were done by comparing corresponding condition with mock transfected control with a
636 nonparametric one-way ANOVA with Dunn's correction. *P<0,05, **P<0,01, ***P<0,001,
637 ****P<0,0001. Relative protein expression levels of Nsp1 (E) and Nsp2 (F) with different
638 transfection doses compared with SARS-CoV-2 infected A549-hACE2 cells. 24h post-seeding,
639 A549-hACE2 cells were infected with SARS-CoV-2 and HEK293T were transfected as describe
640 above. Cells were harvested 48h post-infection or transfection. Nsp1 and Nsp2 proteins were
641 normalized with the correspondent Stain-Free blot lane (supplementary figure 1) and expressed as
642 normalized levels (Norm. vol. x10⁷) below the blot.

643 **Figure 5.** Characterization of IFN β 1 promoter activation by Nsp2. Effects of Nsp2 without
644 stimulation on IFN β 1 promoter (A). Overview of the IFN β 1 promoter (B). Impact of Nsp2
645 expression on the NF- κ B responsive elements, positive regulatory domain II (PRDII) (C) and IRF3
646 responsive elements, the positive regulatory domain I and III (PRDI-III) (D) of the IFN β 1
647 promoter. 300 ng, 200 ng and 100 ng per well of Nsp2 vectors were transfected along with the
648 correspondent reporter and 48h post-transfection, the luciferase activity was measured then
649 standardized as described for other reporter assays. All experiments were performed twice in
650 triplicate, and one representative experimentation is shown. Error bars indicate SD of experiments
651 triplicates. Statistical analyses were done by comparing mock transfected control with
652 corresponding condition with a nonparametric one-way ANOVA with Dunn's correction. *P<0,05,
653 **P<0,01, ***P<0,001, ****P<0,0001.

654 **Figure 6.** Effects of Nsp1 and Nsp2 cotransfection on SeV induced IFN β 1 promoter activation (A)
655 and IFN α induced ISRE activation (B). HEK293T cells were seeded, transfected, and simulated
656 according to the procedure described above and the luciferase activity was measured then
657 standardized as described for other reporter assays. The Nsp1-Nsp2 cotransfection and Nsp1
658 transfection conditions were compared to the mock-transfected control using nonparametric one-
659 way ANOVA with Dunn's correction and Nsp2 conditions were compared using nonparametric
660 one-way ANOVA. The Nsp1-Nsp2 cotransfection and Nsp1 transfection conditions were
661 compared using nonparametric T-test. *P<0,05, **P<0,01, ***P<0,001, ****P<0,0001, ns: not
662 significant. Protein expression of Nsp1 and Nsp2 in individual transfection and cotransfection (C).
663 HEK293 were seeded in 6-well plate. 24h after, cells were transfected with control vector or Nsp1
664 expression vector or Nsp2 expression. 48h post-transfection, cells were lysed in SDS PAGE 2X
665 buffer and detected by Western blot with an anti-FLAG (viral protein) and rabbit anti-tubulin β
666 (loading control).

667 **Figure 7.** Effects of Nsp1-Nsp2 polyprotein on IFN β and ISRE-luc promoter activation. Schematic
668 representation of the Nsp1-P2A-Nsp2 encoding vector cleaved products (A). Nsp1 and Nsp2
669 expression upon transfection of the polyprotein coding vector. Vectors encoding Nsp1 and Nsp2
670 were used as controls (B). Effects of Nsp1-Nsp2 on IFN β 1-luc (C-D) and ISRE-luc (E-F) promoter
671 activation. The Nsp1-Nsp2 and Nsp1 conditions were compared to the mock control using
672 nonparametric one-way ANOVA with Dunn's correction. The Nsp1-Nsp2 and Nsp1 conditions
673 were compared together using nonparametric T-test. The Nsp2 transfection conditions were
674 compared to the control using nonparametric one-way ANOVA with Dunn's correction. *P<0,05,
675 **P<0,01, ***P<0,001, ****P<0,0001, ns: not significant.

676 **Figure 8.** Effect of Nsp1, Nsp2 or Nsp1-Nsp2 polyprotein on *IFNB1* and *ISG* gene expression.

677 Cells were transfected with expression vectors and infected or not with SeV as IFN β 1 inducer.

678 Supernatants were collected and assayed for IFN β 1 production (A), RNA isolated and analyzed

679 for *IFNB1* mRNA (B), *ISG15* mRNA (C) or *ISG56* mRNA (D) by RT-qPCR. All experiments were

680 performed twice in triplicate. Results are expressed as activation percentage relative to the SeV

681 infected control and error bars indicate SD of experiments triplicates repetition. Statistical analyses

682 were done by comparing mock control with corresponding condition using nonparametric T-test.

683 *P<0,05, **P<0,01, ***P<0,001, ****P<0,0001

684 **Supplementary Figure 1.** Uncropped blots (A-B) and Stain-Free blot (C-D) corresponding to the

685 relative protein expression level of Nsp1 (A, C) and Nsp2 (B,D) within different transfection

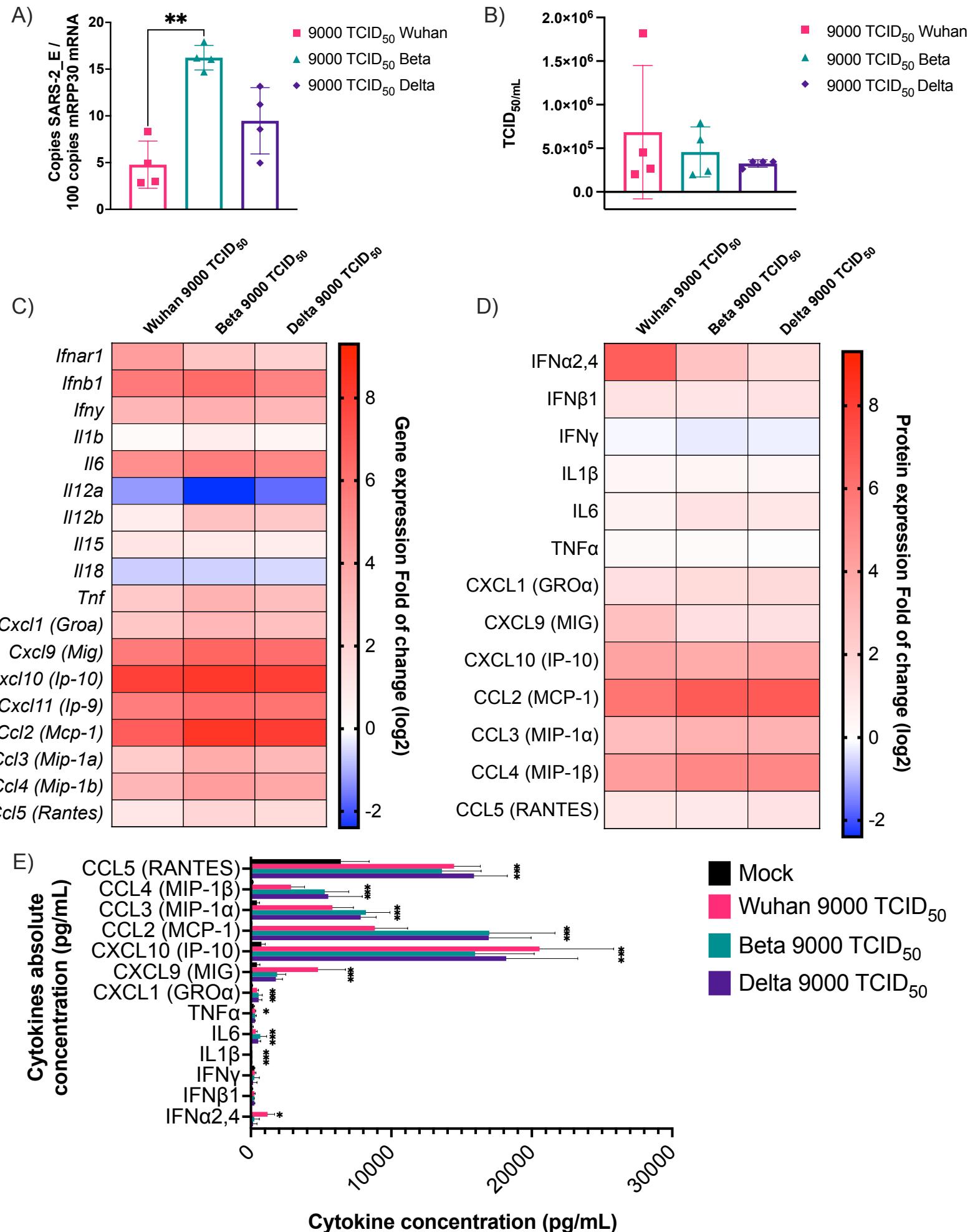
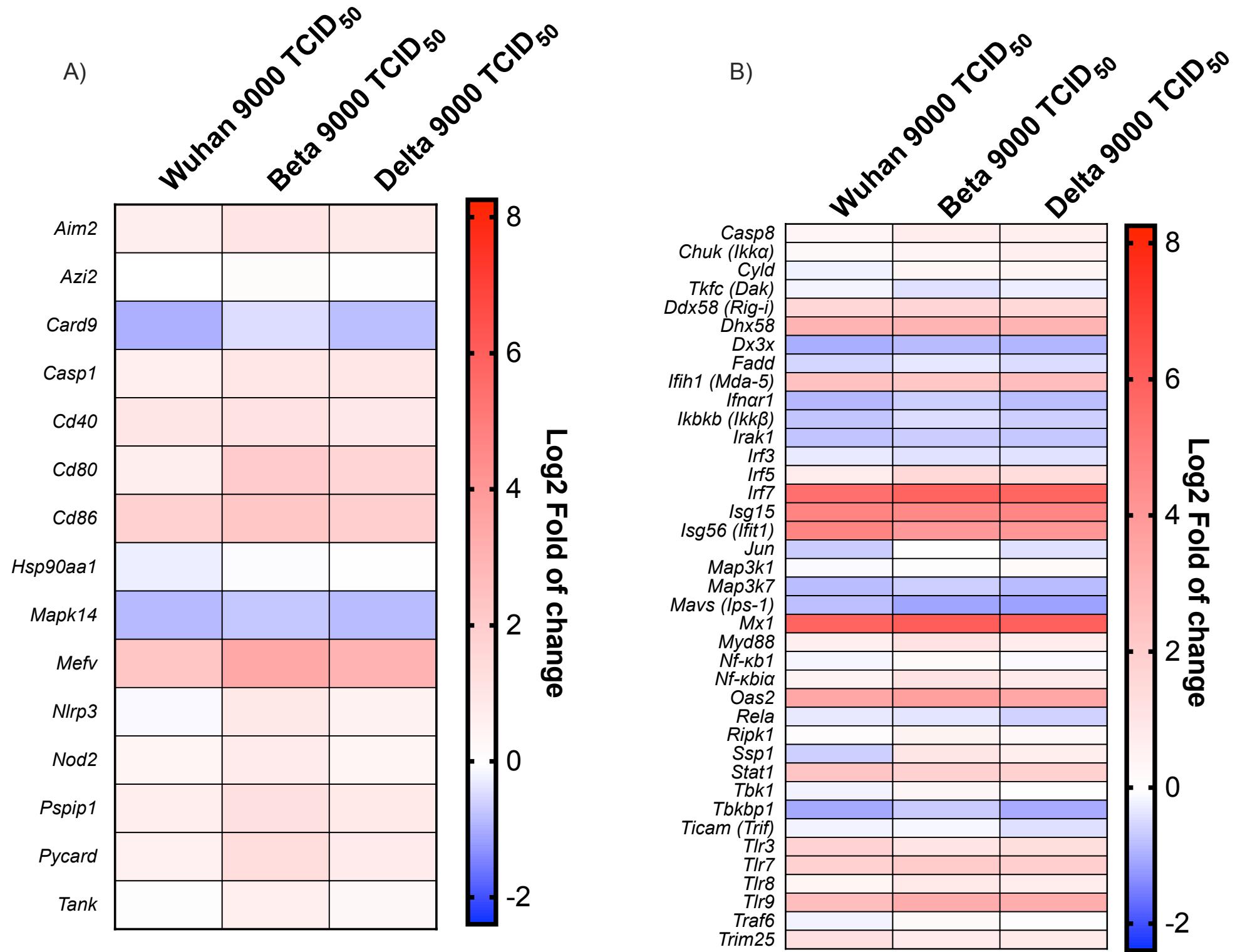
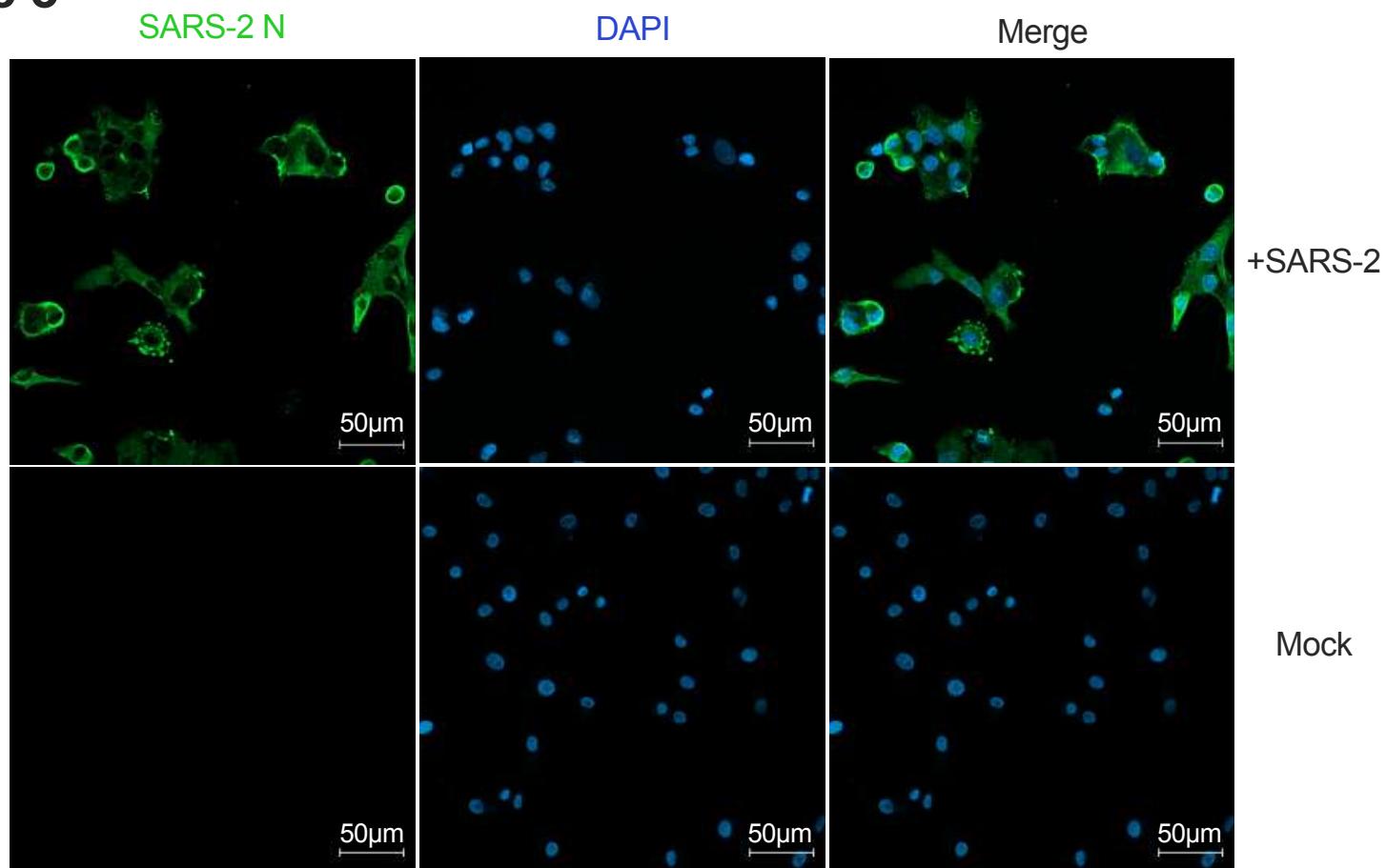
686 conditions compared with SARS-CoV-2 infected A549-hACE2 cells.

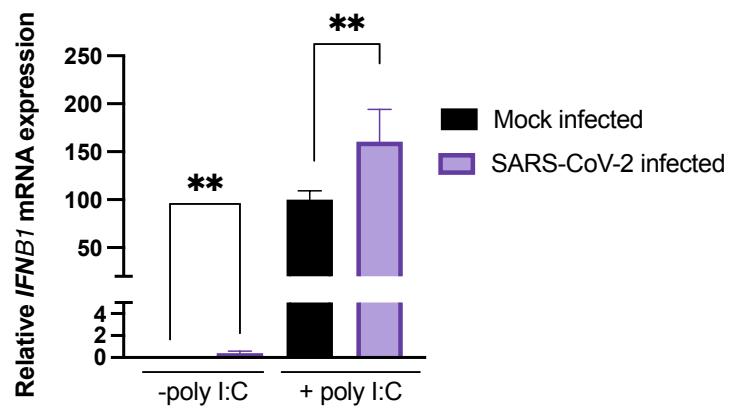
687

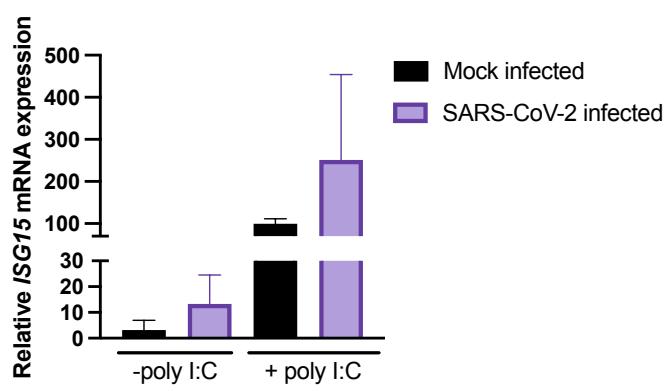
688

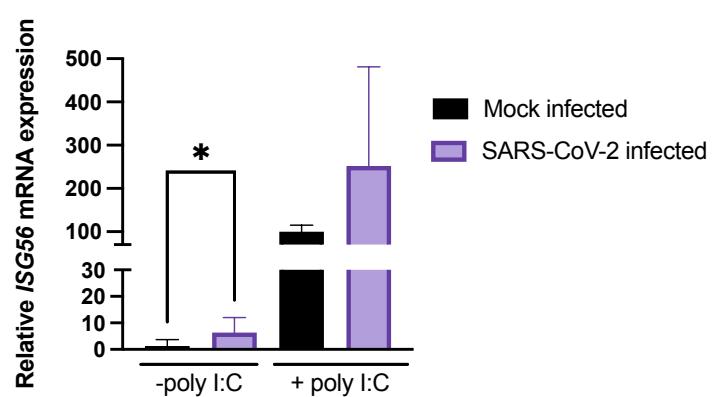
689

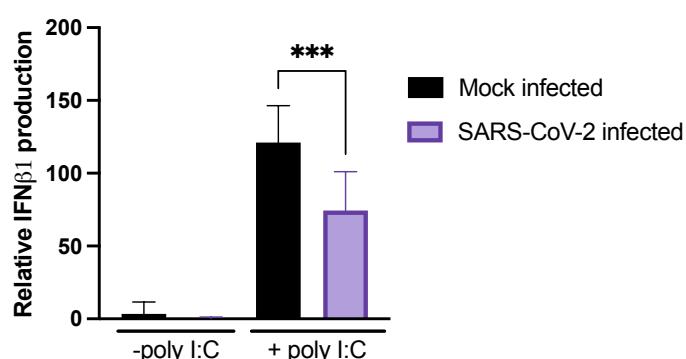
Figure 1

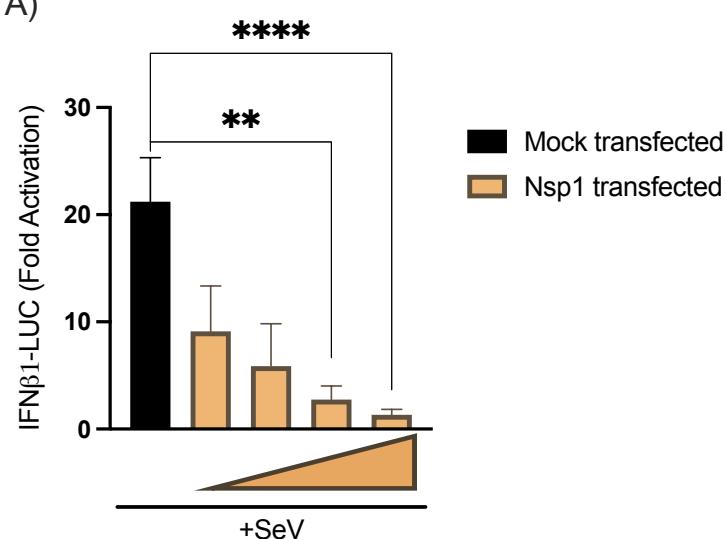

Figure 2


Figure 3


B)


C)

D)



E)

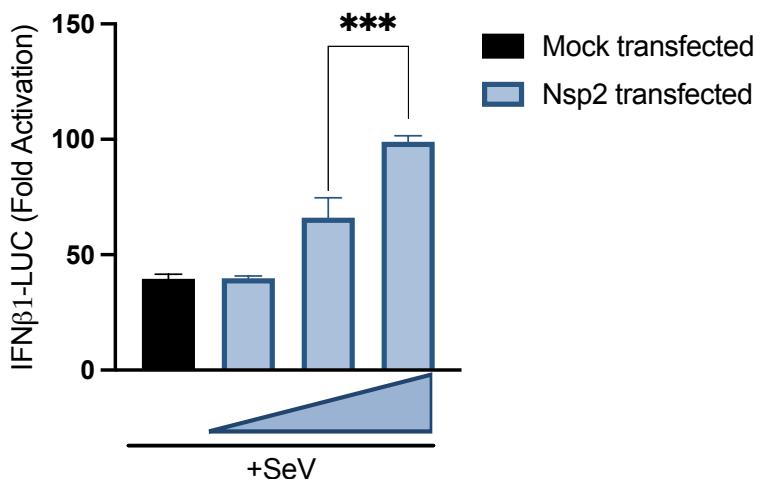
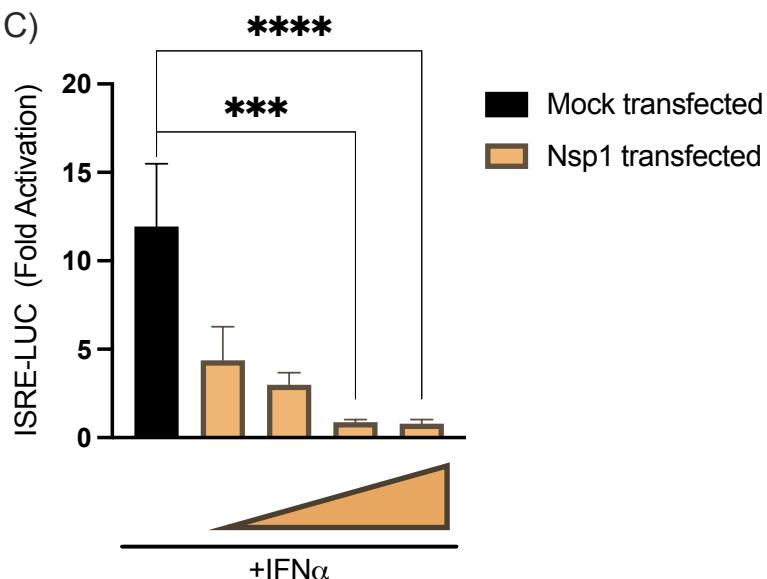
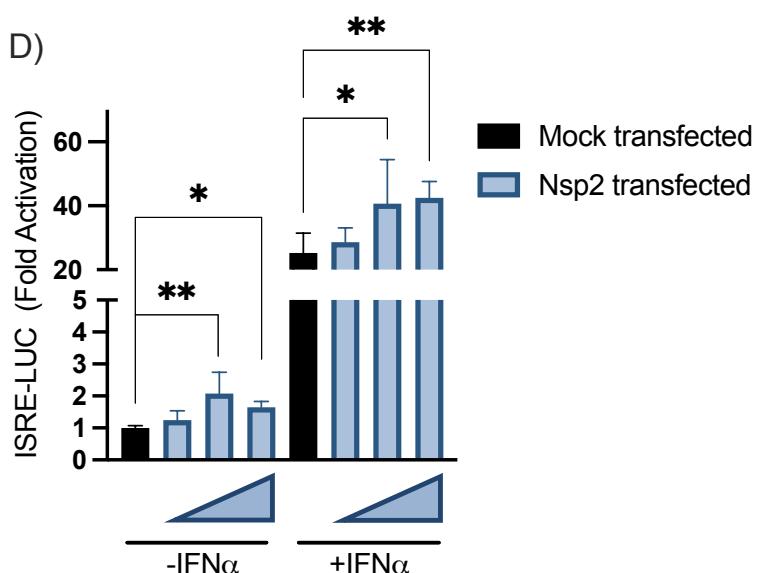
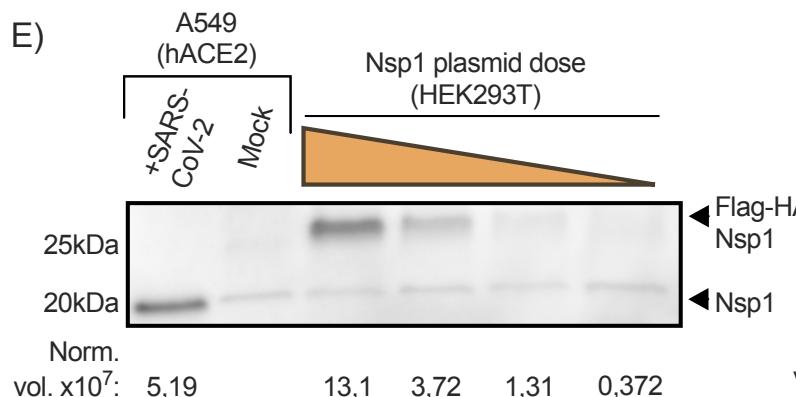
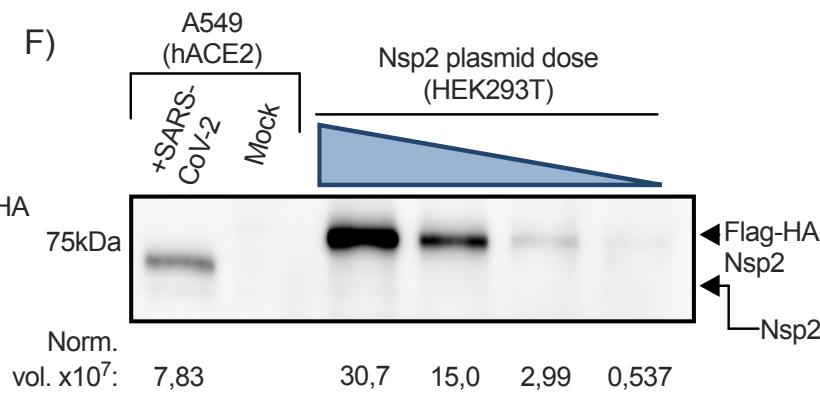


Figure 4

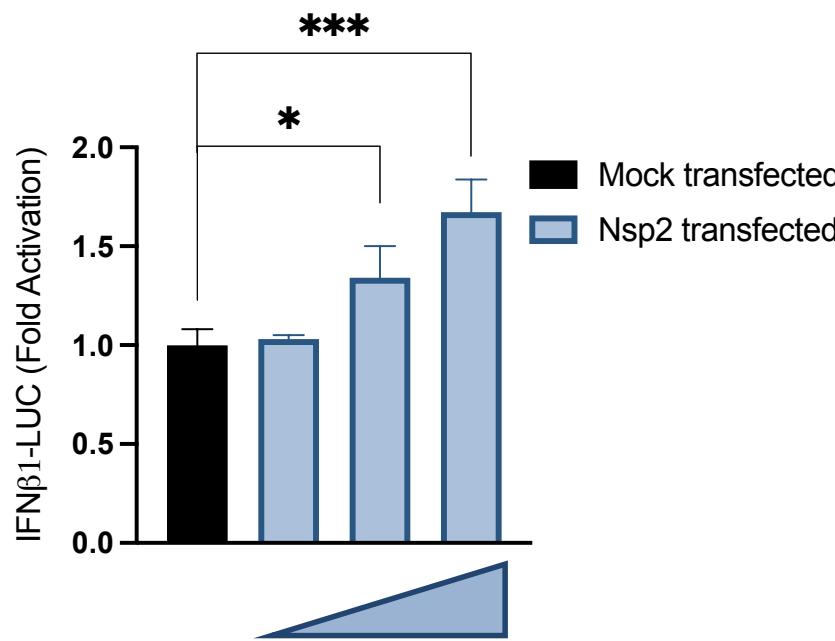

A)


B)


C)


D)

E)



F)

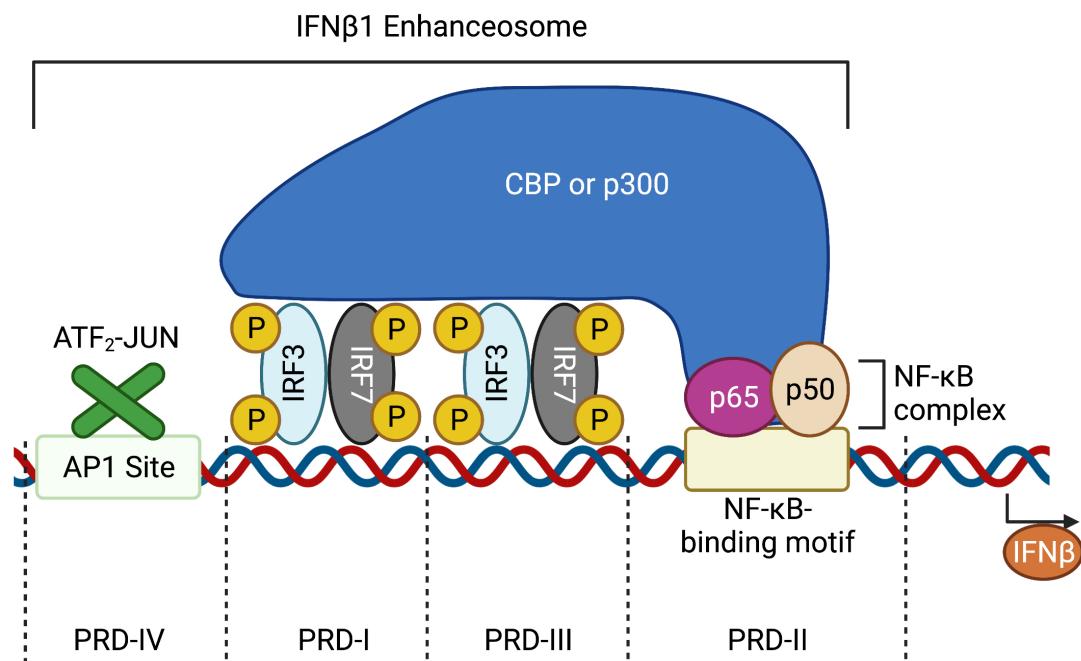
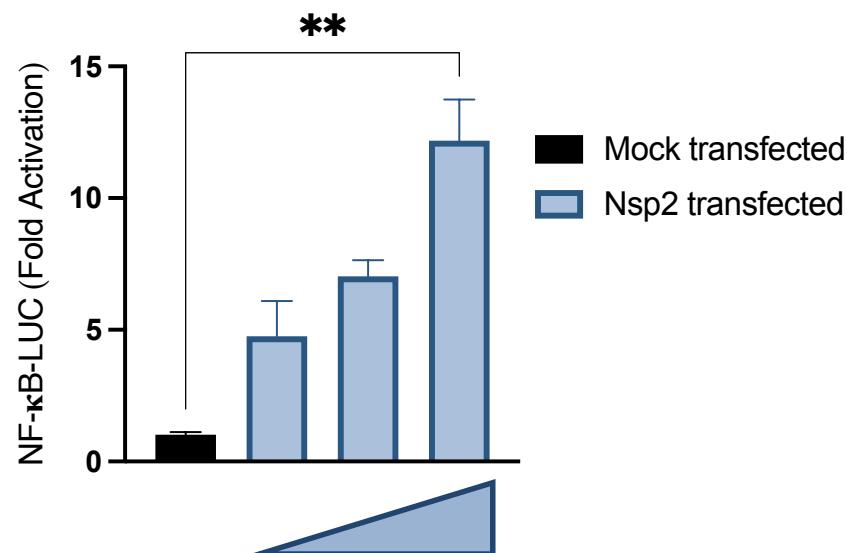
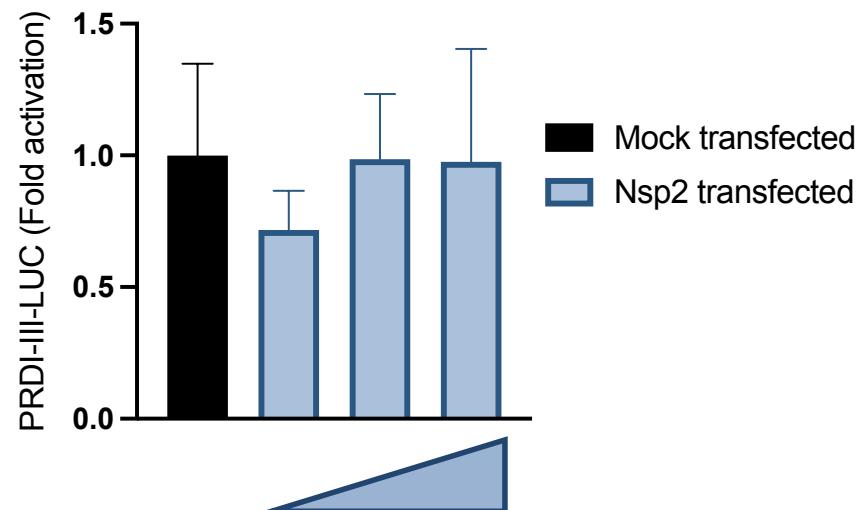
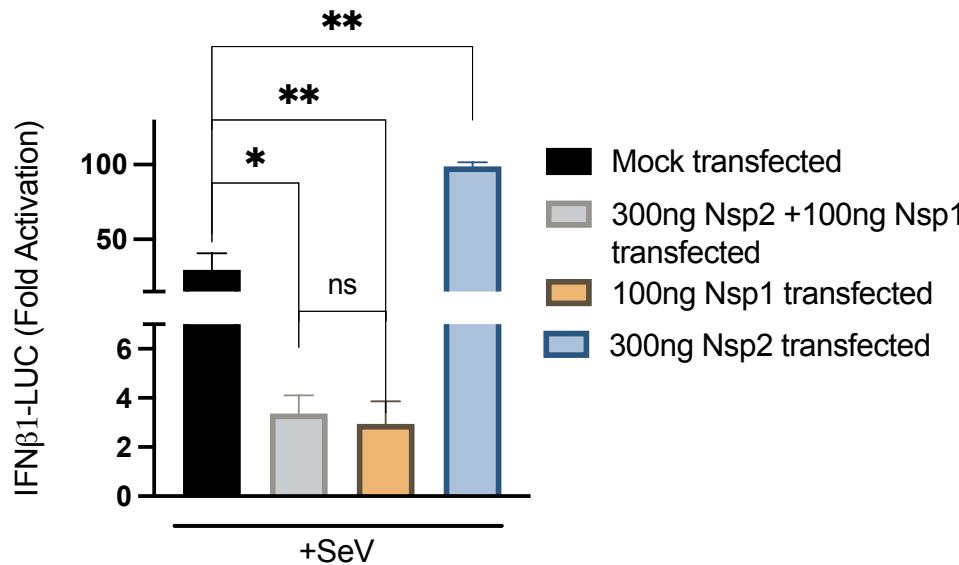


Figure 5


A)


B)

C)



D)

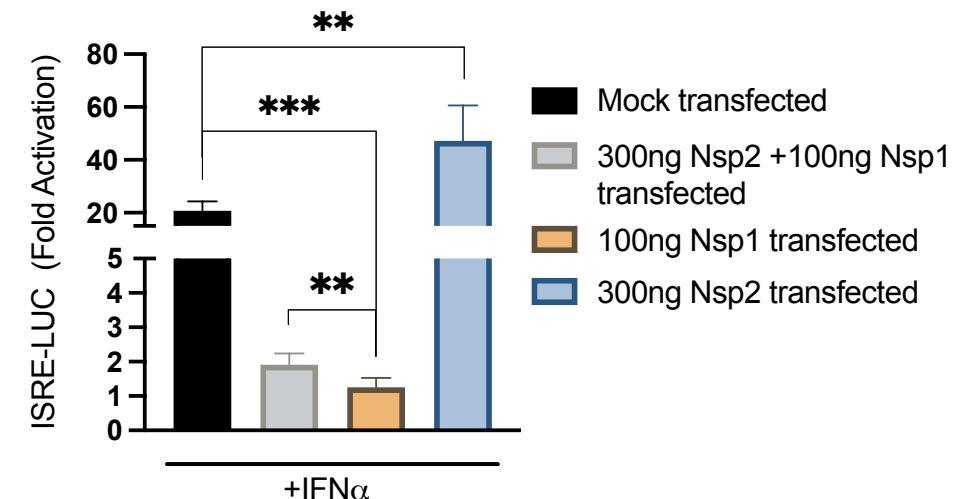
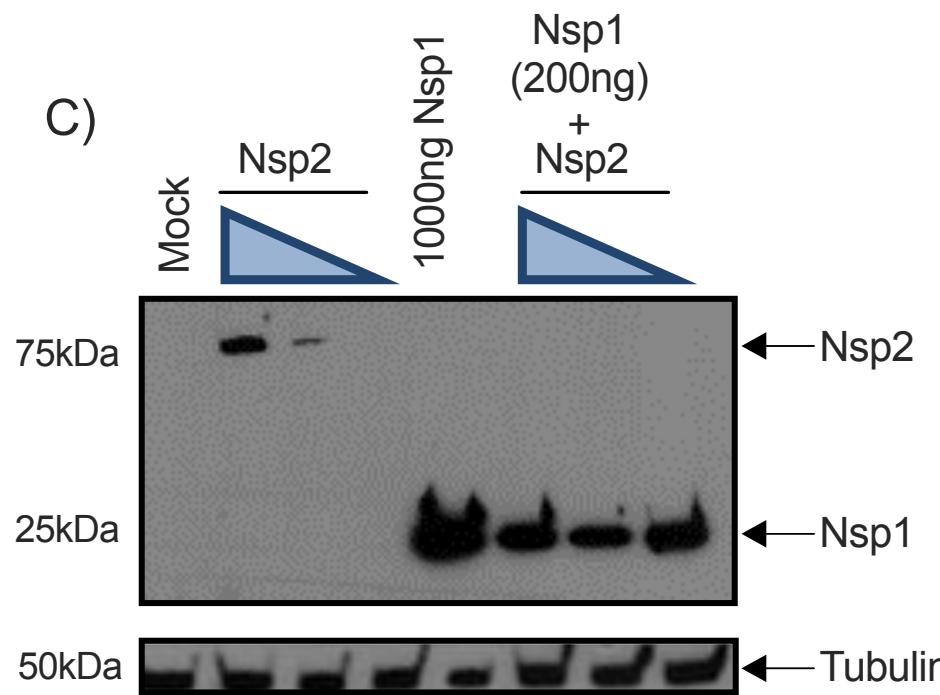
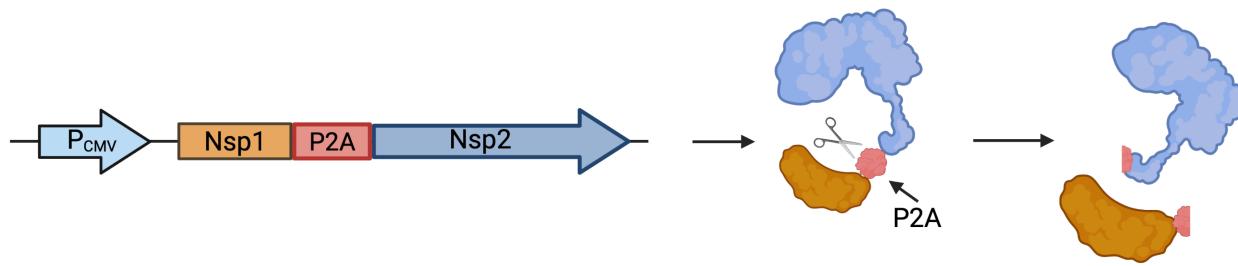


Figure 6


A)

B)



C)

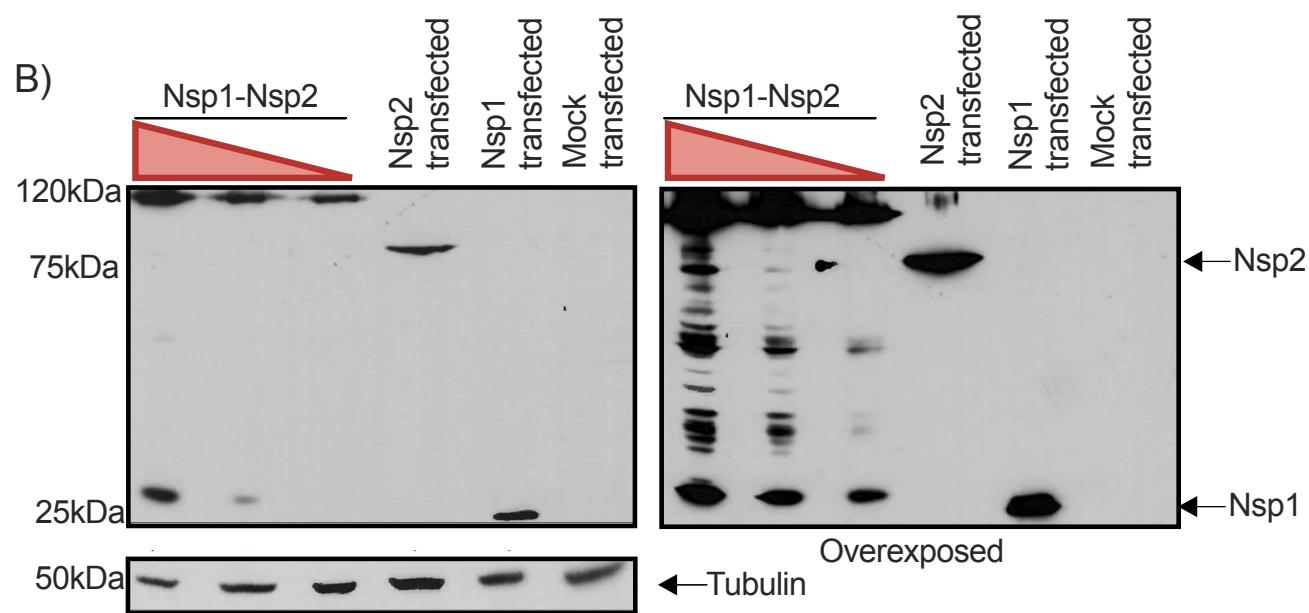
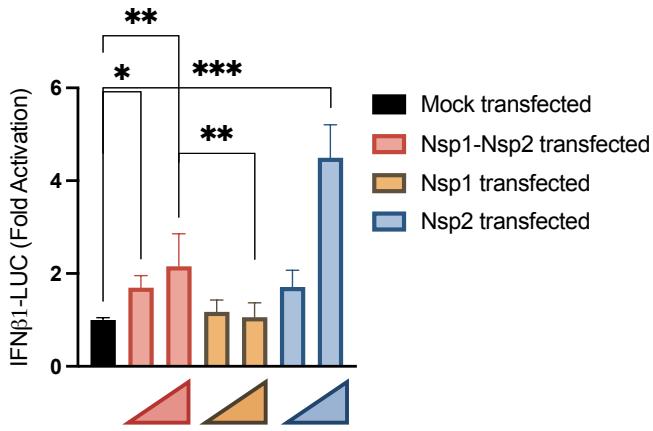
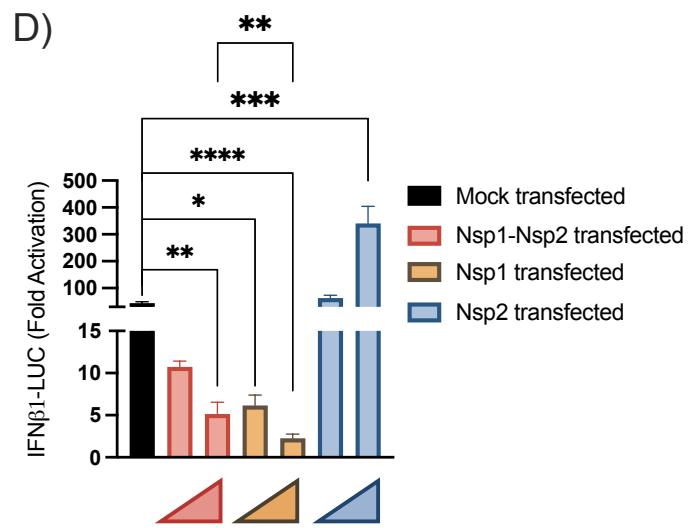
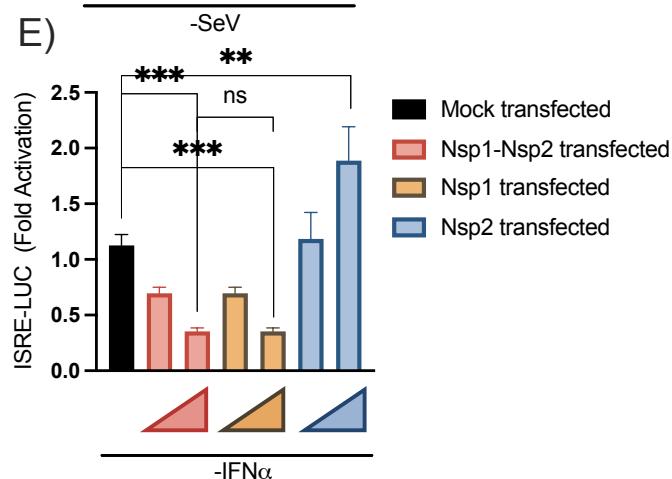
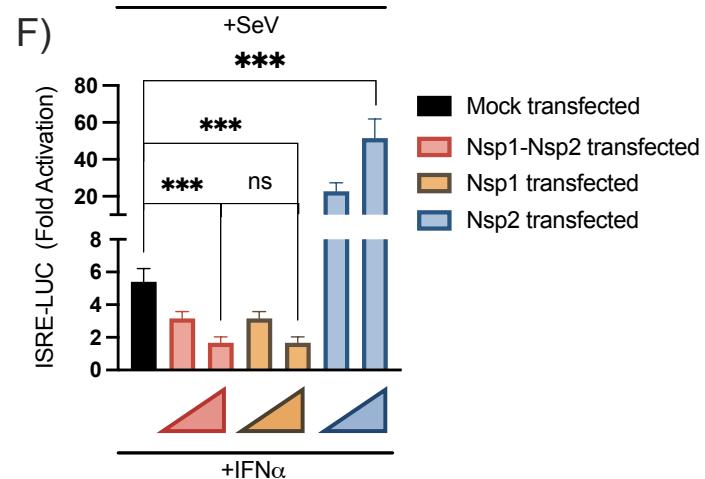


Figure 7

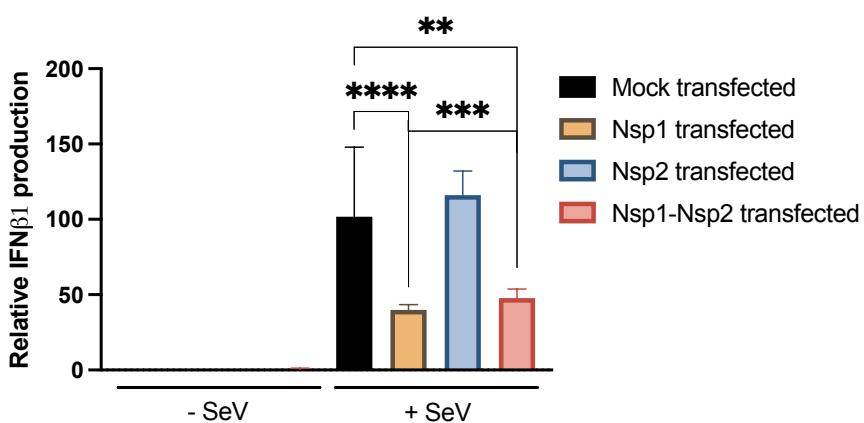

A)


B)


C)


D)

E)



F)

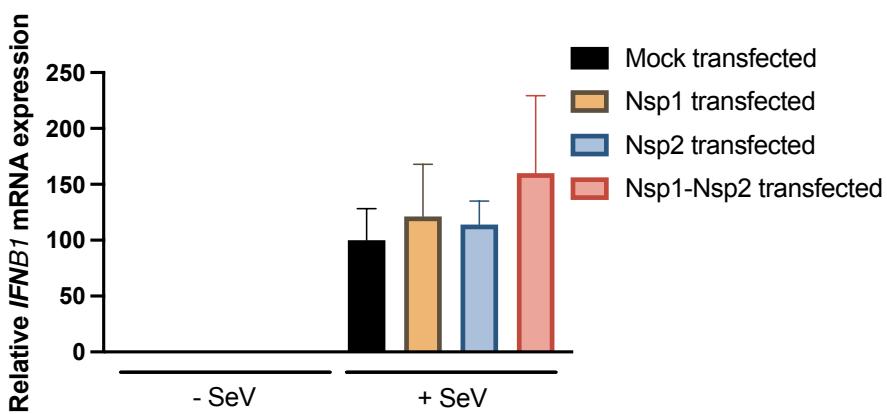
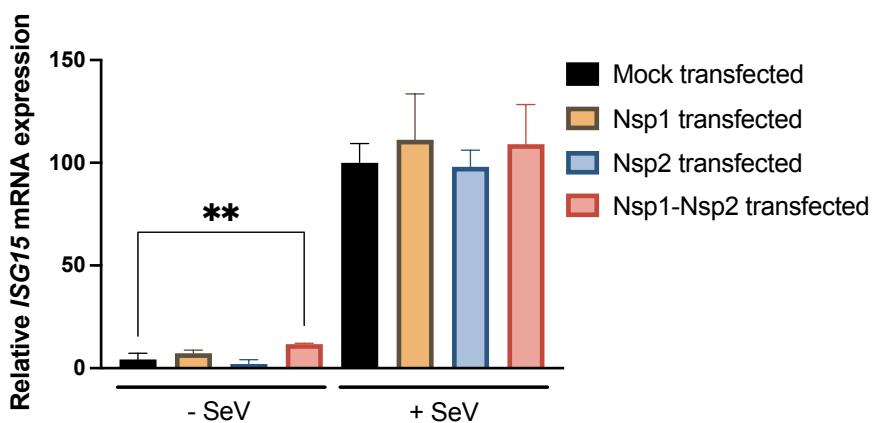
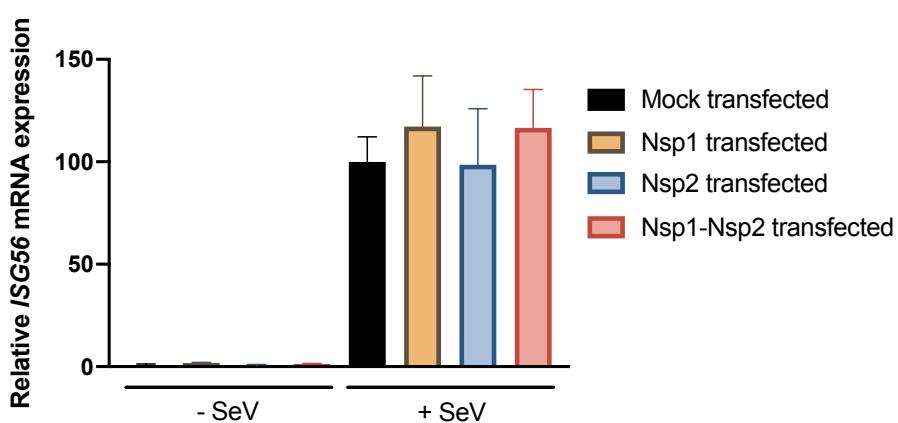


Figure 8


A)


B)

C)

D)

Supplementary table 1. Primers used for plasmid construction.

Plasmid construction primers	Forward (5'-3')	Reverse (5'-3')
pENTR_SARS-CoV-2_Nsp1	CACCATGGGAACCAATTCAAGGAGAGCCTGTCCTGGTTTC	GGTCTAGATATCTGAGTGCTTACCCCTCGTTAAGCTCAC
pENTR_SARS-CoV-2_Nsp2	CACCATGGGAACCAATTCAAGGCATACTCGCTATGTC	GGTCTAGATATCTGAGTGCTTAACCGCCTTGAGTGTG
pCDNA5-Nsp1-P2A-Nsp2	GATACATATGATCATGACATCGATTACAAGGATGACGATG	GTCATCGTCATCCTGTAATCTGCTGCAGGACCTGGATTCT CCTCCACATCTCCTGCCTGCTTAACAGAGAGAAATTAGTA GCGTATGCCCTCCGTTAAGCTCACGC

Supplementary table 2. Primers and probes used for RT-qPCR and ddPCR experimentations.

Mouse RT-qPCR and ddPCR			
	Forward (5'-3')	Reverse (5'-3')	Probe (5'-3')
<i>Cxcl1</i>	CCCAAACCGAAGTCATAGCC	TGGGGACACCTTTAGCATC	-
<i>Ccl2</i>	AGAGCTACAAGAGGATCACCA	GTATGTCTGGACCCATTCCCTC	-
<i>lsg56</i>	CAGGATATTACACCTCCGCTATG	CCTCCAAGCAAAGGACTTCT	-
<i>Ifny</i>	ATGAACGCTACACACTGCATC	CCATCCTTGCCAGTCCCTC	-
<i>Ifnα panel</i>	GCAACCCCTCCTAGACTCATTCTGC	TATKCTCTCACAGCCAGCAG	-
<i>Gapdh</i>	AACTTGGCATTGTAGAAGG	ACACATTGGGTTAGGAACA	-
<i>Rpp30</i>	AGATTGGATTAAAGAGCG	GAGCAGCAGTCTCCACGAGT	5HEX/AGAGCCTTC/ZEN/AGGTCTGAGCC /3IABkFQ
Human RT-qPCR and ddPCR			
	Forward (5'-3')	Reverse (5'-3')	Probe (5'-3')
<i>IFNβ</i>	AAACTCATGAGCAGTCTGCA	AGGAGATCTCAGTTCCCAGG	56-FAM/ATGGTCCAGGCACAGTGACTGTCC TC/3HQ_1
<i>GAPDH</i>	TTCACACCCATGACGAACAT	AATCCCACCATCATCTTCCAG	5HEX/CGACGTACT/ZEN/CAGCGCCAGC ATC/3IABkFQ
<i>ISG15</i>	CATGGGCTGGGACCTGACG	CGCCAATCTCTGGGTGATCTG	-
<i>ISG56</i>	CTTGAGCCTCTGGGTCG	GCTGATATCTGGGTGCCTAAGG	-
SARS-CoV-2_E	TTCTTGCTTCGTGGTATTCT	GACTCACGTTAACATATTGCAG	E_SARBEKO_P1 PROBE

Supplementary table 3. Genes included in RT² profiler PCR Arrays Mouse Antiviral Response (PAMM-122ZR).

Symbol	Description	Symbol	Description
Aim2	Absent in melanoma 2	Map2k1	Mitogen-activated protein kinase kinase 1
Atg12	Autophagy-related 12 (yeast)	Map2k3	Mitogen-activated protein kinase kinase 3
Atg5	Autophagy-related 5 (yeast)	Map3k1	Mitogen-activated protein kinase kinase 1
Azi2	5-azacytidine induced gene 2	Map3k7	Mitogen-activated protein kinase kinase 7
Card9	Caspase recruitment domain family, member 9	Mapk1	Mitogen-activated protein kinase 1
Casp1	Caspase 1	Mapk14	Mitogen-activated protein kinase 14
Casp8	Caspase 8	Mapk3	Mitogen-activated protein kinase 3
Ccl3	Chemokine (C-C motif) ligand 3	Mapk8	Mitogen-activated protein kinase 8
Ccl4	Chemokine (C-C motif) ligand 4	Mavs	Mitochondrial antiviral signaling protein
Ccl5	Chemokine (C-C motif) ligand 5	Mefv	Mediterranean fever
Cd40	CD40 antigen	Mx1	Myxovirus (influenza virus) resistance 1
Cd80	CD80 antigen	Myd88	Myeloid differentiation primary response gene 88
Cd86	CD86 antigen	Nfkbl	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105
Chuk	Conserved helix-loop-helix ubiquitous kinase	Nfkbia	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
Cnpy3	Canopy 3 homolog (zebrafish)	Nlrp3	NLR family, pyrin domain containing 3
Ctsb	Cathepsin B	Nod2	Nucleotide-binding oligomerization domain containing 2
Ctsl	Cathepsin L	Oas2	2'-5' oligoadenylate synthetase 2
Ctss	Cathepsin S	Pin1	Protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting 1
Cxcl10	Chemokine (C-X-C motif) ligand 10	Pstpip1	Proline-serine-threonine phosphatase-interacting protein 1
Cxcl11	Chemokine (C-X-C motif) ligand 11	Pycard	PYD and CARD domain containing
Cxcl9	Chemokine (C-X-C motif) ligand 9	Rela	V-rel reticuloendotheliosis viral oncogene homolog A (avian)
Cyld	Cylindromatosis (turban tumor syndrome)	Ripk1	Receptor (TNFRSF)-interacting serine-threonine kinase 1
Dak	Dihydroxyacetone kinase 2 homolog (yeast)	Spp1	Secreted phosphoprotein 1
Ddx3x	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked	Stat1	Signal transducer and activator of transcription 1
Ddx58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	Sugt1	SGT1, suppressor of G2 allele of SKP1 (S. cerevisiae)
Dhx58	DEXH (Asp-Glu-X-His) box polypeptide 58	Tank	TRAF family member-associated Nf-kappa B activator
Fadd	Fas (TNFRSF6)-associated via death domain	Tbk1	TANK-binding kinase 1
Fos	FBJ osteosarcoma oncogene	Tbkbp1	TBK1 binding protein 1
Hsp90aa1	Heat shock protein 90, alpha (cytosolic), class A member 1	Ticam1	Toll-like receptor adaptor molecule 1
Ifih1	Interferon induced with helicase C domain 1	Tlr3	Toll-like receptor 3
Ifna2	Interferon alpha 2	Tlr7	Toll-like receptor 7
Ifnar1	Interferon (alpha and beta) receptor 1	Tlr8	Toll-like receptor 8
Ifnb1	Interferon beta 1, fibroblast	Tlr9	Toll-like receptor 9
Ikbkb	Inhibitor of kappaB kinase beta	Tnf	Tumor necrosis factor
Il12a	Interleukin 12A	Tradd	TNFRSF1A-associated via death domain
Il12b	Interleukin 12B	Traf3	Tnf receptor-associated factor 3
Il15	Interleukin 15	Traf6	Tnf receptor-associated factor 6
Il18	Interleukin 18	Trim25	Tripartite motif-containing 25
Il1b	Interleukin 1 beta	Actb	Actin, beta
Il6	Interleukin 6	B2m	Beta-2 microglobulin
Irak1	Interleukin-1 receptor-associated kinase 1	Gapdh	Glyceraldehyde-3-phosphate dehydrogenase
Irf3	Interferon regulatory factor 3	Gusb	Glucuronidase, beta
Irf5	Interferon regulatory factor 5	Hsp90ab1	Heat shock protein 90 alpha (cytosolic), class B member 1
Irf7	Interferon regulatory factor 7	MGDC	Mouse Genomic DNA Contamination
Isg15	ISG15 ubiquitin-like modifier	RTC	Reverse Transcription Control
Jun	Jun oncogene	PPC	Positive PCR Control