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ABSTRACT

Deep learning has become an effective tool for classifying biological sex based on functional magnetic
resonance imaging (fMRI), but research on what features within the brain are most relevant to this
classification is still lacking. Model interpretability has become a powerful way to understand "black
box" deep-learning models and select features within the input data that are most relevant to the
correct classification. However, very little work has been done employing these methods to understand
the relationship between the temporal dimension of functional imaging signals and classification of
biological sex, nor has there been attention paid to rectifying problems and limitations associated
with feature explanation models, e.g. underspecification and instability. We provide a methodology to
limit the impact of underspecification on the stability of the measured feature importance, and then,
using intrinsic connectivity networks (ICNs) from fMRI data, we provide a deep exploration of sex
differences among functional brain networks. We report numerous conclusions, including activity
differences in the visual and cognitive domains, as well as major connectivity differences.

Keywords Sex differences, deep learning, brain connectivity, model interpretability

1 Introduction

Deep learning has been shown to be an effective tool for both classification of biological sex as well as understanding
the features relevant to the classification [1, 2, 3, 4]. However, it suffers from two critical flaws from the standpoint of
model interpretability: underspecification and instability of the relevant features. Underspecified [5] models can have
many local minima, or possible functions, which produce the same mapping between the input and the output under
different parameters. This is particularly problematic for feature attribution methods such as saliency [6], which are very
sensitive to changes in model architecture, even to initialization within a given architecture. Although saliency methods
can be informative about the data, there are several technical issues. Primarily, they are often unstable and very sensitive
to small perturbations of the model architecture or initialization state. This instability is particularly pronounced for
deep classification models applied to small datasets. A secondary flaw of saliency is specific to sequential/recurrent
models, such as long-short term memory models (LSTMs). In this case, saliency methods become ineffective due to a
phenomenon known as vanishing saliency [7], which significantly reduces the magnitude of the salient gradients as the
model backpropagates through time, providing inaccurate saliency maps.

In recent decades, functional magnetic resonance imaging (fMRI), has significantly extended our understanding of the
human brain [8]. We have witnessed great strides in analyzing fMRI data, particularly through the use of independent
component analysis (ICA) to extract intrinsic connectivity networks (ICNs) [9]. These ICNs and their associated
timecourses have become central to fMRI research, including research into brain activation patterns and biological sex.
Although there is now a wealth of information about sex differences among brain signals, there is still a long way to go
before we truly understand the nuances of how brain signals relate to biological sex [10]. One of the more promising
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avenues for fMRI research is the analysis of complex brain disorders such as schizophrenia, Alzheimer’s, and autism.
As a great deal of research has found sex differences relating to these disorders [11, 12, 13], it is imperative to better
understand the relationship between sex and fMRI signals as a whole. With a better understanding of this relationship,
researchers may have a better grasp of how best to treat these disorders based on sex. This can include medications,
dosage, and behavioral treatments.

In this paper, we present a methodology to mitigate instability in feature importance assessments using state-of-the-art,
non-linear models and feature attribution methods, then apply these methodologies to elucidate the relationship between
biological sex and mesoscale brain dynamics. Specifically, using an LSTM model coupled with a specific saliency
method known as integrated gradients (IG), we take a deep-dive into understanding sex differences among functional
networks estimated from fMRI data. LSTMs are important for this work because they can capture the dynamics of fMRI
temporal signals. Lastly, we present evidence that deep learning can be usefully employed as a “feature explainer”, or a
tool which highlights aspects of the brain function most relevant to sex differences.

With the power of novel deep learning methods, we take an in-depth look at sex differences among fMRI ICN
timecourses. These timecourses represent interpretable functional networks, making quantitative analysis of our results
relatively easy. We also use a very large sample size, from the UK Biobank (UKB) repository, which aids both
interpretability and model stability. Our approach to investigating these networks is a novel adaptation of simple
feature explanation techniques that fixes several key problems, primarily the instability of the feature maps and an
LSTM-specific issue, a phenomenon known as vanishing saliency. We then validate our methodology with synthetic
data in which the most relevant features are known beforehand. While showing visual representations of our maps, we
also quantitatively compare our proposed methodology to an existing methodology, the input-cell attention [7]. We
performed these analyses to ground our work and show quantitatively that our methods can discover truly data-relevant
signals. After this validation, we provide a broad set of post-hoc analysis, showing both validity of our model as well
as novel results, further expanding biological sex analysis based on fMRI data. Pointedly, we find, after comparing
to static functional network connectivity (sFNC), considerable sex-specific results within relationships between the
individual ICNs. And in particular, differences within key functional domains including the visual (VIS) and default
mode network (DMN).

2 Data & Methods

2.1 FMRI data and preprocessing

The data, a total of 8216 (4202 males and 4014 females) resting-state fMRI scans, was sourced from across 22 sites
within the United Kingdom between 2006 and 2018. Data processing and quality control were previously performed
in [14], where over 11k subjects were selected from the entire UKB dataset. However, we removed subjects with
inconclusive sex, meaning any subject where the documented biological sex is not consistent with the documented
gender, or subjects missing either field, which gives us the final 8216 subjects. Participants were between 40 and 69
years of age [15, 16]. The data acquisition protocol is as follows: 39ms echo time, a 0.735 second repetition time (TR),
52◦ flip angle, and a multiband factor of 8 using 3T Siemens machines. The T2 signal was both linearly and non-linearly
warped to MNI152 space. Each volume was resampled to 3mm3 for a final image size of 53 x 63 x 46 mm3, and 160
time steps using the statistical parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) MATLAB package.

After the preprocessing pipeline, the intrinsic connectivity networks (ICNs) were extracted using spatially constrained
ICA with the GIFT package [17] via the Neuromark pipeline [18] for MATLAB. ICA is a robust and evidence-based
method to capture regions of functional activity [19]. Since our goal is to analyze the brain functionality, we require
clean and data-driven representations of this activity. We also want to compare the functional relationships measured
with our methods to other connectivity metrics. Logically, we need the network timecourses so we can compare our
analyses of the relationships between networks to other robust connectivity estimations. This pipeline provides a
fully automated approach to compute ICA (both spatial components and timecourses) and output labeled and ordered
components. Overall, there were 53 networks, covering 7 domains: Subcortical (SC), auditory (AUD), sensorimotor
(SM), visual (VIS), cognitive control (CC), the default mode network (DMN), and the cerebellum (CB).

2.2 Our Model

A key aspect of our model, that mitigates vanishing saliency, is an additive attention mechanism [20] between the
outputs of a bi-directional LSTM (bi-LSTM) [21] and the final output layer, which creates a direct gradient flow path
from the classification to the input via the attention parameters [22]. A diagram of our model can be seen in figure 1. A
bi-directional LSTM was chosen because we do not consider streaming data, the additional parameters aid training, and
the extra directional flow for gradients may also improve the quality of the saliency maps.
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Figure 1: A diagram of our model. The data passes through an LSTM, from which the hidden states parameterize the
attention model. The attention weights scale the hidden states, which are summed over all states (i.e. step in the LSTM),
and is finally fed through a classification layer.
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Figure 2: Saliency maps (red rows) from several subjects compared to their associated ICA time course (below).

The attention mechanism [20] is a powerful way to amalgamate temporal information and “attend” only to the most
important steps in the LSTM output by assigning a weight to each step. To parameterize the attention mechanism,
we pass the LSTM output at each step through an attention network of two feed-forward layers to create a single,
per-step weight value. The weight values from all time steps are jointly softmaxed and used to adjust the LSTM output
at the individual time steps. As the model is bi-directional, we use the output from both the forward and backward
directions concatenated into a single vector as our context for the attention mechanism. In other words, h_backwardT is
concatenated with h_forwardT and passed through the attention mechanism to give us the respective attention weight
for that time step. Once the hidden outputs have been individually weighted by the attention scalar, they are summed
along the time dimension and pushed through a linear transform for classification.

2.3 Gradient-based Feature Attribution

Gradient-based feature attribution methods, commonly known as saliency, are model interpretability methods that
leverage the gradients of a trained model to better understand why the model makes its predictions. It is defined as the
gradients of the prediction of the correct class w.r.t. the input, or Sc(x) =

∣∣∂Y c

∂x

∣∣.
With this paradigm of using calculated gradients to interpret and understand the input data, there are numerous methods
to compute the gradients as Sc(x) =

∣∣∂Y c

∂x

∣∣. For our purposes, we chose a method called integrated gradients (IG) [23].

IG is defined, for any model, F as IG(xi) =
∫
(dF (x′+α∗(x−x′))

dxi
dα), where xi is feature i for a given input sample,

x, and x′ is defined as a baseline image, where, for our purposes we use a zero-valued "blank" image as our baseline.
Associated with the baseline image is an interpolation constant, α. Essentially, for each feature, we integrate over our
interpolation factor, α over a function in which we subtract the baseline from the input, pass this modified input through
the model, F, and then compute the gradients of the correct class with respect to input feature i. The interpolation factor
is, in our case, a set of linear steps between the baseline image and the input. An example of these maps can be seen in
figure 2. One thing to note about our implementation of integrated gradients is that we do not element-wise multiply
our gradient maps with the input, which is unlike the original formulation. We do this to ensure no information from the
input is enforced upon the gradient maps, meaning the attribution assignments from our maps are totally separate from
the input itself. All of our feature attribution calculations come from the Captum python library [24].

2.4 Our Approach

Using 10-fold cross-validation, from the trained model of each fold, we calculate the IG maps (aka saliency maps)
for each test sample. This accumulates to one map for each subject when the subject was used as a test sample. This
methodology ensures that none of the maps were from training subjects, which could bias the resulting maps. These
saliency maps highlight the features that the prediction likelihood of the correct class is the most sensitive to. However,
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Figure 3: Flowchart describing our pipeline for analyzing the ICA timecourses. For all other datasets, we use only the
first 4 steps to calculate the finalized maps. Step 1: we train 300 separate models (each with the same architecture)
using different random initializations for each model on the same set of ICA timecourses. Step 2: we calculate the
saliency maps for each sample from all 300 models. Step 3: We calculate the average saliency map for each sample
over all 300 models. Step 4: We select the per-model set of maps with the lowest Euclidean distance to the average
over all models, resulting in a stable saliency map for each input sample. This distance is weighted by the loss of that
subject/model pair, giving more importance (shorter distances) to more accurate model/subject pairs.

Table 1: Table comparing the LSTM+attention with the input-cell attention methodology on the boxes and VAR datasets.
Within each cell is the average and standard deviation of the metric over 3,000 test samples, and the p-value comparing
the two methodologies using a 2-sample t-test.

Boxes Dataset VAR Dataset
Euclidean
Distance

Overlapping
Values

Weighted
Jaccard

Euclidean
Distance

Overlapping
Values

Weighted
Jaccard

LSTM
+ Atten-
tion

µ=1.24,
σ=.23,
p< .0001

µ=.33,
σ=.07,
p< .0001

µ=.22,
σ=.04,
p< .0001

µ=4.57,
σ=1.16,
p< .0001

µ=.56,
σ=.31,
p< .0001

µ=.10,
σ=.05,
p< .0001

Input-Cell
Attention

µ=2.35,
σ=.45,
p< .0001

µ=.15,
σ=.05,
p< .0001

µ=.07,
σ=.02,
p< .0001

µ=5.34,
σ=1.42,
p< .0001

µ=.17,
σ=.14,
p< .0001

µ=.05,
σ=.03,
p< .0001

we observe that the maps are rarely stable, and vary widely with the initial randomization. To correct for this, we train
multiple models (keeping the hyperparameter settings the same) with different random initializations and calculate
saliency maps from each model (for all experiments, we train 300 total models). For each input sample, we select the
map that is closest (the distances are weighted by the loss for that subject/model pair to give more importance to better
performing models) to the average map over all models for that sample, using Euclidean distance. Then, the selected
maps are normalized by the sum. A diagram of our methodological flow is in figure 3.

2.5 Synthetic Data

The synthetic data is specifically engineered so that the relevant information within the data is quantifiable and
interpretable. In this work, we use two sets of synthetic data, and a third experiment can be found in the supplementary
material. In the first dataset of 30,000 samples, each sample is generated as random Gaussian noise with a sequence
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Figure 4: The results from the analysis of the boxes dataset. Several examples of resulting maps from both
LSTM+attention (a) and input-cell attention (b) where the green rectangle is a mask representing the truly rele-
vant information (i.e. box location). Boxplots (c) of the overlapping-values metric over all 3,000 samples for both
models. The overlap is defined as the percentage of the total sum of the maps that are within the relevant area seen in
the top figures.

length of 200 and 30 features, then randomly assigned a class label of either 0 or 1. For each sample, a window of 10
time steps is randomly chosen, within which a portion of the data is perturbed based on the assigned label. If the label is
0, the first 15 features in each of the 10 time steps are perturbed, and if the label is 1, the last 15 features are perturbed.
Each target feature is perturbed by adding randomly generated Gaussian noise. This creates a pattern of “boxes" for the
dataset, an example of which can be seen in figure 4. In essence, only the features themselves are predictive of the class
label, as opposed to temporal patterns. This box dataset, a trivial example, is a way to show the effectiveness of our
methodology in a vacuum with very few confounding variables.
A second synthetic experiment is used to show that the saliency maps are still accurate when the relevant information is
based on dynamic patterns. As with the first experiment, each sample begins as a Gaussian noise (µ=0,σ=1). However,
vector autoregression (VAR) is used to control the underlying dynamics of each sample. VAR explains the evolution
of a variable over time with the generalized equation: xt = c+ A1xt−1 + A2xt−2 + ...+ Apx(y − p) + et. For all
samples, the VAR is computed using a positive semi-definite matrix, A. Then, 15 successive steps are randomly chosen
to be perturbed with new dynamic information. Or, two more positive semi-definite matrices, B and C, are created
and VAR is again used to compute 15 new steps using Gaussian noise and either matrix B or C, depending on the
class label of the sample. These new steps, x′

t:t+15 are added to the sample at a randomly selected interval (xt:(t+15)),
with an interpolation variable, α resulting in the equation: αx′

t:(t+15) + (1 − α)xt:(t+15). Examples of this data are
seen in figure 5. This VAR dataset is again built specifically to show, without doubt, the efficacy of the methodology.
However, in this case, as it is specifically engineered to highlight dynamical information, we argue that it is somewhat
representative of fMRI data, where dynamical patterns are prevalent and highly influential.

2.6 Saliency Quality Metrics

Since the relevant information of the synthetic datasets is easily quantifiable, we can use basic similarity scores between
the saliency maps and proper representations of the input to understand the quality of the maps. We compare our
map quality on holdout samples to those of a input-cell attention model. Firstly, as the input data is noisy, we need a
reasonable representation of each sample. For both experiments, we represent each sample as a binary matrix in which
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Figure 5: The results from the analysis of the VAR dataset. Several examples of resulting maps from both
LSTM+attention (a) and input-cell attention (b) where the green rectangle is a mask representing the truly rele-
vant information (i.e. where the auto-regressive signal changes). Boxplots (c) of the overlapping-values metric over
all 3,000 holdout samples for both models. The overlap is defined as the percentage of the total sum of the maps
that is within the relevant area over the total sum of the map. The green blocks in (a) and (b) highlight these relevant
regions. Each baseline image has a certain underlying transition matrix, as computed by VAR, and each sample is
interpolated with one of two different transition matrices, depending on the class label (the label along the y axis)
within the highlighted relevant area. Notice the difficulty in which it can be to visually determine where the relevant
information occurs. This gives the dataset a complexity that is not found in other, simpler datasets, including our boxes
experiment.

only the elements within the perturbed regions are ones, and all other elements are zero. In the first experiment, the
randomly selected window of 10x15 elements are ones, and in the second experiment, the 15x30 window perturbed
with added dynamics is our non-null region. Additionally, for the saliency maps from both our method and input-cell
attention, we pass each sample through an absolute function [25]. To conduct a fair comparison with [7], we use both
of the similarity metrics therein: Euclidean distance and weighted Jaccard similarity. We also evaluate the sum of all
salient values within the window over the sum of the entire map.

To ensure an unbiased sampling of the timecourses with our model, we separate the data into 27000 training samples
and 3000 test samples. We train 300 models on the non-holdout set and generate the maps for every sample, then select
the saliency maps using the selection criteria described in our approach section and generate the saliency maps for
the holdout set as well. We chose 300 due to computational restrictions, as each model can take some time to train.
These maps are then fed through either a rectified linear unit (ReLU) function or absolute function (depending on the
experiment) to avoid relying on both positive and negative derivatives to find the relevant information. Recent research
has shown that removing negative values entirely from saliency can be beneficial [26].

2.7 Salient Networks

With the selected saliency maps, we sum along the temporal axis for each subject, resulting in a vector of size 53 for
each subject. We then compute the group-wise sex differences for each component using Cohen’s D. We select Cohen’s
D because, due to the large sample size of our data, we prefer an effect size measure that is agnostic to sample size.
This analysis highlights which networks (and which brain regions) are significantly more important for the correct
classification of men vs. women.
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Figure 6: Two ICA components, the middle temporal gyrus (top), which is most significant for men, and the hippocam-
pus, which is most significant for women (middle). Bar graph (right) showing the effect size of the most significantly
different components between men and women. Blue components are directed towards men, and components in red are
directed towards women.

Table 2: The confusion matrix over the average of all models and folds (3000 in total) for the UKB classification
accuracies using our modality. The values are normalized to be percentages.

Predict Female Predict Male
True Female .905 .095
True Male .082 .918

2.8 Co-Saliency

In order to better understand the sex differences within the ICA TCs, we computed the pairwise correlation of the
processed saliency maps, which we call "co-saliency", using Pearson correlation. These correlation matrices describe
the relationships between the relevancy of time-varying values of the ICA components. Notably, they capture similar
relationships to those found in fMRI connectivity.

3 Results

3.1 Synthetic Verification

Results from synthetic data show that our method is very effective at finding the truly relevant information. The
weighted Jaccard and Euclidean distance showed vast improvement for our method over a current state-of-the-art
method, input-cell attention for both the stationary dataset (in figure 4) and the more dynamic, VAR-induced dataset (in
figure 5). The VAR dataset is especially significant as it shows that our method can properly capture non-stationary
information. It is also important to note that both our method and the input-cell attention model got 99% accuracy on
holdout data from the stationary dataset. However, our model achieved much higher accuracy (92%) on holdout data
from the VAR dataset than input-cell attention (81%). Two tables of all metrics for both the boxes and VAR datasets are
in table 1.

3.2 Sex-Relevant functional Activity

To verify that our model is learning discriminatory patterns, we use stratified 10-fold cross-validation across the entire
dataset, and find that the average validation accuracy over all folds and all models was 91.3%. As we used 10-fold
cross-validation, we accumulated the predictions for each subject when they were used as a test sample for each model.
In the end, we had 2,464,800 predictions (300 models * 8216 subjects). 90.5% of women were correctly predicted,
and 91.8% of men were correctly predicted. A confusion matrix is found in table 2. Our model’s performance can be
compared to other fMRI studies, where accuracy can range from 85% accuracy [27] to 94% [28], showing our results
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fit well with the current spectrum. It should also be noted that prediction with structural MRI can lead to much higher
accuracy, closer to 100% [1].

Figure 6 shows the components with the highest Cohen’s D effect size between groups based on the per-component
relevancy averaged over time, where red networks are more salient for women, and blue are more salient for men. We
find that the AUD domain is particularly relevant for women [29]. The SC and VIS domains also appear to be highly
relevant for male classification, with the highest biological sex differences being within the VIS domain. Finally, the
SM domain is highly relevant, with different networks signaling for the two sexes.

Figure 7: Heatmaps for the co-saliency (left) T-values masked by the FDR corrected significance, where α = .01 (top),
the co-saliency for men (middle) and co-saliency for women (bottom). The corresponding sFNCs are on the right side.
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3.3 Co-Saliency Analysis Differences

From the co-saliency maps we find that the differences are almost “orthogonal”, showing that the saliency method starkly
separates the two sexesby focusing on network-specific timepoints that are intercorrelated in functionally structured
ways. The co-saliencies indicate that temporal patterning of network-specific saliencies in women is significantly more
strongly correlated than they are in men, as can be seen in the connectivity matrices in figure 5. This strong co-saliency
for women suggests that the model is identifying timepoints in which networks are more tightly aligned when correctly
classifying women, with networks in less tight temporal alignment at salient timepoints for the correct classification
of men. Figure 7 highlights the co-saliency differences in comparison to the differences among static connectivity.
Primarily what we see is that both co-saliency and sFNC show sex differences in the VIS, CC, and DMN domains.

Figure 8: The co-saliency (top) and sFNC (bottom) matrices organized by communities (black boxes) for women (left)
and men (right).

We capture this modularity with greedy graph modularity estimations. In figure 8, we can see the estimated communities
of the two sexes with the Clauset-Newman-Moore greedy algorithm [30]. From these communities, we computed
the overall modularity of each sex [31], giving us a final modularity score of .37 for women, and .31 for men. The
modularity for the sFNCs was .985 for women and 1.081 for men. The sFNC and co-saliency matrices organized by
community are also found in figure 8.

4 Discussion

After validating our methodology on synthetic data [22], we extract classification-relevant sex differences within the
ICA timecourses. Overall, we see that the saliency maps and post-hoc analyses capture several patterns that are found
within the data. The ICN differences from the saliency maps show that there are several domains that are key for sex
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classification, with many of these differences being backed by previous literature. The similarities between our results
and past research is important, as these results are values for the ICNs averaged over time, which makes them more
global, and presumptively, more representative of global, high-level differences.

Figure 6 highlights the ICN and domain differences. The high effect size of the difference between men and women in
the AUD domain shows that this domain is particularly relevant for the model’s classification of women. Our result
is supported by previous research [32], which shows major differences within the AUD domain between the two
sexes. The SM domain is also highly relevant for women, which is also supported by previous research [33]. These
findings are quite interesting, as they are the only domains that are primarily more relevant for women over men. A
striking aspect of our findings is that the visual domain seems to be very relevant for how the model classifies and
understands biological sex. We also see that 12 networks are significantly relevant for male classification, whereas only
6 networks are significantly relevant for female classification. This is important because, as each map is normalized to
be a probability map, it suggests that the relevant information for female classification is more concentrated to fewer
networks than male classification.
In addition to VIS, the SC domain is primarily relevant for correct classification of males. Currently, there is a wealth of
research connecting the SC to differences between men and women, from both MRI and functional MRI studies [34].
Specifically, previous research has found that sex differences in the gyrus [35], which supports our findings. These
previous findings show differences in complexity, or the spatial frequency of the brain surface [36].

Our co-saliency analysis, elucidated in figure 7, provides a wealth of information, much of which is consistent with
previous results. The areas of consistency offer indirect validation of the relatively new method presented here, which is
still being developed and refined. One important finding is that the dynamics of the networks within the CC domain, in
relation to networks both within and outside of the CC domain, figure strongly in the model’s ability to differentiate
male and female subjects. The connections between CC networks and the AUD, DMN, and SC domains significantly
inform the model’s decisions. Many networks within the CC domain also play a major role in model classification, and
we see a split, where some networks are highly relevant for male classification, and others are highly relevant for female
classification. Specifically, connections within and between the inferior and middle-frontal gyrus and the hippocampal
networks are primarily relevant for men. For women, the left inferior parietal lobule, the middle cingulate cortex, and
the superior frontal gyrus all have especially salient connectivity patterns. These two domains, CC and VIS also show
stark coherency differences, which can be visible in the co-saliency maps, and quantified in the community detection
and graph-modularity computation seen in figure 8. The differences that are weighted towards men, however, appear
de-modularized compared to the sFNCs. It’s also interesting to note that the most significant VIS co-saliency pairs are
entirely within the domain and female-centric. These patterns also appear in previous connectivity work [37, 38]. The
co-saliency maps seem to show these patterns, but with a great deal more contrast than in the raw data. This contrast
enhancement highlights subtle differences that are only weakly evident in the raw data, differences that look negligible
under a linear, univariate lens, but prove highly relevant to biological sex when employed in a multivariate nonlinear
classification model. Our results also show several key findings that appear to have been missed by non-linear analysis.
Specifically, we see substantial differences in how certain domains are organized. We find that VIS and DMN domains,
as well part of the CC are prominently modular for women. From the community and general graph analyses, we also
see an overall lack of modularity and even coherence for men. Figure 8 highlights our community/graph analysis results,
which show the overall modularity differences. The findings we report are complex and do not admit straightforward
interpretation framed by previous results. They suggest, however, that our understanding of biological sex has been
limited by the ubiquitous use of linear univariate models, and that expanding the traditional model space could help
better realize the scientific promise of noninvasive functional brain imaging.

The field of model interpretability is still young and rapidly evolving. While the focus of this paper is to introduce
approaches to stabilize and quantify deep-learning interpretability methods for analyzing brain imaging data, new and
more effective methods may emerge revealing different information. Recurrent models themselves, as we highlight in
this paper, are architecturally challenging to interpret using gradient-based approaches. Although we suggest that our
methods mitigate the gradient bias against distal timepoints and model instability across initializations, the computed
saliencies remain sensitive to changes in hyperparameters and architecture, and overall they can still be underspecified.

Another impediment to model interpretability is the complexity of the data itself. Although we have many carefully
crafted and effective methods for quantifying information from ICN timecourses, these timecourses are highly processed
dimensional reductions of the original scan data. This adds another layer of complexity to understanding the brain
functionality through the lens of saliency maps, increasing the possibility of erroneous interpretation of the findings.
These flaws can be mitigated in due time. As more researchers focus on these topics, both specifically to neuroimaging
and in general, we will find more robust and effectively interpretable maps. We also suggest that new methods to
analyze the maps (such as co-saliency) will become more prominent, opening the door for a better understanding of
intricate datasets, and especially neuroimaging.
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