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Abstract
Deep neural networks equipped with convolutional neural layers have been widely
used in omics data analysis. Though highly efficient in data-oriented feature
detection, the classical convolutional layer is designed with inter-positional
independent filters, hardly modeling inter-positional correlations in various
biological data. Here, we proposed Markonv layer (Markov convolutional neural
layer), a novel convolutional neural layer with Markov transition matrices as its
filters, to model the intrinsic dependence in inputs as Markov processes. Extensive
evaluations based on both synthetic and real-world data showed that
Markonv-based networks could not only identify functional motifs with
inter-positional correlations in large-scale omics sequence data effectively, but also
decode complex electrical signals generated by Oxford Nanopore sequencing
efficiently. Designed as a drop-in replacement of the classical convolutional layer,
Markonv layers enable an effective and efficient identification for inter-positional
correlations from various biological data of different modalities. All source codes of
a PyTorch-based implementation are publicly available on GitHub for academic
usage.

Keywords: Convolutional layer, Markov process, RNA-Binding Protein, Oxford
Nanopore basecalling, Motif

1 Background
In biology, motifs usually refer to recurring patterns associated with particular
functions[1, 2, 3]. While site-independent model like position weight matrix (PWM)
is a commonly used representation of biological motifs[4, 5, 6, 7], inter-positional
correlations are pervasive in functional elements, like transcription factors binding
sites[8, 9, 10, 11, 12, 10],RNA structure [13] as well as protein domains[14].On the
other hand, while feature correlation has been successfully identified by previous
studies via stacking multiple convolutional, LSTM, and Transformer layers[15, 16,
17, 18, 19], such strategy requires additional parameters and hardly represents an
intuitive interpretation as that of classical convolutional layer.

Here, we proposed the Markonv layer (Markov convolutional neural layer), as
a generalized form of convolutional neural layer, which models inter-positional
correlations as Markov processes directly. Case studies based on both synthetic
and real-world data demonstrated Markonv is effective and efficient in identifying
motifs with intrinsic correlation for various scenarios, with a biology-meaningful,
interpretable representation. Of note, Markonv layers can be a drop-in replacement
of the convolutional layer in neural networks and can be adopted by existing
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networks with minimal effort. A PyTorch-based implementation of Markonv is
publicly available on https://github.com/gao-lab/Markonv_figures.

2 Methods
In this section, we introduce the Markonv operator and the Markonv layer based
on the Markonv operator. Both the Markonv operator and the Markonv layer are
inspired by the convolutional layer, so we adopt the term ‘kernel’ to denote the
mechanism of modeling the Markov process.

Notation: We first define a Markonv convolution kernel as K, K ∈ Rkl×c×c×n.
Where kl represents the kernel length, c represents the number of channels (e.g.,
4 for a one-hot encoded DNA sequence), and n represents the number of kernels.
Then, we define the inputted sequence as S, S ∈ Rb×c×l, Where b represents the
batch size, and l represents the sequence length. Finally, the output obtained by the
feedforward Markonv operator is referred to as output, output ∈ Rb×(l−kl)×n. All
coordinates are one-based (i.e., starting from one).

Definition: For a given 0< b0 ≤ b, 0< n0 ≤ n, 0< l0 ≤ l − kl, the output is
defined as:

outputb0,l0,n0
=

kl∑
i=1

c∑
j1=1

c∑
j2=1

Sb0,j1,l0+i−1 ×Ki,j1,j2,n0 × Sb0,j2,l0+i

When using the chain rule to compute the gradients of the kernel and the inputted
sequence, it can be proven that, for a given 0< k0 ≤ k, 0< c0 ≤ c, 0< c1 ≤ c,
0< n0 ≤ n, the gradient of kernel is:

(
∂f

∂K
)
k0,c0,c1,n0

=

b∑
i=1

l−kl∑
j=1

Si,c0,j+k0−1 × Si,c1,j+k0 × (
∂f

∂output
)
i,j,n0

Where ∂f
∂output is the gradient of the output of Markonv.

Also, for a given 0< b0 ≤ b, 0< c2 ≤ c, 0< l0 ≤ l, the gradient of input is:

(
∂f

∂S

)
b0,c2,l0

=
n∑

i=1

c∑
j=1

min {l0, kl}∑
k1=max {1, k+l0+1−l}

Sb0,j,l0+1 ×Kk1,c2,j,i

×(
∂f

∂output
)
b0,l0−k1+1,i

+

n∑
i=1

c∑
j=1

min {l0−1, kl}∑
k1=max {1, k+l0−l}

Sb0,j,l0−1 ×Kk1,j,c2,i × (
∂f

∂output
)
b0,l0−k1,i

The Markonv kernel defined in this work fully determines the closed form solution
of the (log-)probability of generating the sequence fragments from the corresponding
first-order Markov process, given the observation of the initial state (see Appendix
A for more details). We remove the probability of observing the initial state from
the generation probability for simplicity. As a result, Markonv operator uses a new
convolution kernel, which consists of a series of transition probability matrices, to
compute the probability on the inputted sequence. As it scans the sequence for the
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first-order Markov process, it can extract inter-positional correlated features from
the sequence.

We build the Markonv layer with the Markonv operator along with two optional
modules for flexibility: the reverse sequence module and the boundary control module.
The reverse sequence module reverses the inputted sequence to find the Markov
process in the opposite direction. The boundary control module uses the same
strategy as vConv[20] to adjust the kernel length adaptively during training (see
Appendix B for more details).

3 Results
3.1 Benchmark datasets
In this section, we tested the performance of Markonv on three different datasets:

1 To test whether Markonv-based networks could model first-order Markov
processes and converge with popular optimizers, we constructed four different
simulation datasets.

2 To test whether Markonv-based network could be trained with less complexity
than convolution-based networks on omics data while still obtaining a compa-
rable performance, we compared Markonv-based networks with HOCNNLB[21]
on RNA-binding protein (RBP) datasets.

3 To test whether Markonv-based network could be efficient in mining continuous
input data, we compared our Markonv-based basecaller with Bonito (https:
//github.com/nanoporetech/bonito) on Oxford Nanopore datasets.

Simulation datasets: We constructed four different motifs, each of which is a
Markov process (see Appendix C for more details). The Shannon entropy, a metric
of motif chaoticness, gradually increases from the first motif to the fourth motif.
We simulated for each motif case 6,000 sequences (with 3,000 positive and 3,000
negative) of length 1,000, picked 600 as the test dataset randomly, and randomly
split the rest into 4,860 training and 540 validation sequences. The name of the
dataset describes the index of the motif used; for example, Dataset “1” means
that the dataset contains the first motif. Each negative sequence is a random
sequence whose bases were independently sampled from the categorical distribution
P(A)=P(C)=P(G)=P(T)=0.25. For each positive sequence, we first constructed
a random sequence as described above, and then substituted a sequence fragment
generated from one of the motifs associated with the case for a randomly chosen
fragment of the same length.

RBP datasets: We downloaded the original dataset used by Zhang et al. from
https://github.com/NWPU-903PR/HOCNNLB, including the training set and test
set[21]. We randomly selected 20% of the training set to construct a validation
set. At the same time, we downloaded the results of different neural network
structures from Zhang et al. (https://ars.els-cdn.com/content/image/1-s2.
0-S0003269719303513-mmc1.docx).

Oxford Nanopore datasets: We used the training and validation dataset in
Bonito release v0.5.1 (https://github.com/nanoporetech/bonito). We used a
benchmarking read set from Klebsiella pneumoniae as test set, as suggested by Wick
et al.[22].
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Figure 1 The architecture of the Markonv-based basecaller. We used the first two convolutional
blocks to decode electric signals. “RFRFR” represents that there are five layers of LSTM, where “R”
stands for reverse-LSTM, and “F” stands for forward-LSTM. 5-mer scores is the output of Tanh
layer, which is a sequence with the values at each position describing the probability of each 5-mer
at that position. We use CTC (Connectionist Temporal Classification) algorithm[23] to train the
model; briefly, when training, we calculated the CTC loss using the 5-mer scores and the true
sequences, and when testing, we used CTC beam search with a beam width 32 to decode sequences
from 5-mer scores.

3.2 Network structures in each experiment
The networks we established and the baseline methods to compare within each
experiment are elucidated below.

Networks for simulation datasets: We built a simple Markonv-based network
with a Markonv layer, a global max-pooling layer, and a dense layer (see model
structure details in Appendix D). The baseline method is the convolution-based
network with the same structure.

Networks for RBP datasets: For Markonv-based networks, we followed the
construction in the simulation case above. Baseline methods are HOCNNLB-1 to
HOCNNLB-4, where “HOCNNLB-k” represents that the network encodes k-mer
nucleotide as a one-hot vector and models the inputted sequence as a (k − 1)-order
Markov process (if k ≥ 2), or just leaves the input as-is (if k is 1). These models are
all neural networks mentioned in Zhang et al.’s work [21].

Networks for Oxford Nanopore datasets: Inspired by Bonito, we built a
Markonv-based basecaller (Fig. 1). The baseline method is Bonito v3 network (config
“dna_r9.4.1_e8_sup@v3.3” in Bonito release v0.5.1).

The details of the training method are in Appendix E.

3.3 Results
Markonv-based networks outperformed convolution-based networks on
simulation datasets. We compared the AUROC of the models on four simulation
datasets generated by different motifs (Fig. 2). As the Shannon entropy of the motif
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Figure 2 Comparison of Markonv-based networks and convolution-based networks on simulation
datasets. The numbers in the facet labels represent the dataset indices (see Section 3.1 for more
details). The boxplots under each facet describe the distribution of AUROCs of the networks trained
with different random seeds on the same dataset. P-values shown above each pair of boxplots were
computed by two-tailed Wilcoxon’s Rank Sum test and unadjusted.

Figure 3 Motifs recovered using Markonv kernels on Datasets 3. The “Real motif” represents the
motif inserted into the inputted sequences, and the “Recovered motif” represents the motif
recovered from the kernels. “S1” represents the probability of observing each base at the first
position, and “Si → S(i+1)” represents the Markov transition matrix from the i-th position to the
(i+1)-th position, with the element at j-th row and k-th column being the probability of observing
the base described by the k-th column name at the (i+1)-th position under the condition that the
base described by the j-th row name is observed at the i-th position.

increases, the amount of information contained in the motif decays rapidly, associated
with the observation that the AUROC of the Markonv-based network becomes higher
than that of the convolution-based network. When the data inserted in the dataset
was relatively simple (Dataset 1), the Markonv-based network had a performance
similar to that of the convolution-based network, but as the complexity of the motif
increased (Datasets 2, 3, and 4), the Markonv-based network was statistically better
than the convolution-based network, with the p-value of the two-tailed Wilcoxon’s
Rank Sum test less than 0.001.

We selected for each Markonv-based network those Markonv kernels that are
predictive (see Appendix F for details of the method), and recovered a first-order
Markov process similar to the inserted real motif (Fig. 3; see Appendix G for the
comparison between all pairs of real and recovered motifs).

Markonv-based networks could use fewer parameters to outperform
the more complex HOCNNLB models on classifying RBP datasets. Fig.
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Figure 4 Comparison of AUROC between the Markonv-based network and other networks. Boxplots
represent the AUROC distribution of each network across all 31 datasets. Details of each network
are available in Section 3.2. ***, an unadjusted p-value of two-tailed Wilcoxon’s Rank Sum test
that is less than 0.001.

Table 1 Comparison of the computational complexity of different neural layers. where N represents the
number of kernels, l represents the length of the convolution kernel, n represents the length of the
inputted sequence, c represents the number of channels, and k represents the order of HOCNNLB.

Name Computational complexity Space complexity

Convolutional layer O(N ∗ l ∗ c ∗ n) O(N ∗ l ∗ c ∗ n)
Markonv O(N ∗ l ∗ c2 ∗ n) O(N ∗ l ∗ c ∗ n)

HOCNNLB-k’s convolutional layer O(N ∗ l ∗ ck ∗ n) O(N ∗ l ∗ ck ∗ n)

4 displays the distribution of different networks’ AUROC across all RBP datasets.
While the Markonv-based network has lower space complexity than HOCNNLB
models (Table 1), it not only outperformed the simple convolutional neural network
(HOCNNLB-1), but also the one designed to model the first-order Markov process
(HOCNNLB-2), and even had a performance close to those modeling higher-order
representation (HOCNNLB-3 and HOCNNLB-4)

Markonv-based basecaller rivaled Bonito’s basecaller performance with
much fewer parameters. Table 2 summarizes the performance of the Bonito and
Markonv-based basecaller. Although trained with the same default optimizer and
learning rate scheduler, the Markonv-based basecaller could still use much fewer
parameters than Bonito to achieve a comparable performance, suggesting Markonv’s
potential broad application to various types of biological data.

Table 2 Performance of the Bonito and Markonv-based basecaller. Read accuracy is the sequence
identity between each reference read and its basecalled result; similarly, consensus accuracy is the
sequence identity between the reference and the consensus sequence (which is assembled from
overlapping basecalled results).

Name Median read
accuracy

Median consensus
accuracy

Number of
network parameters

Bonito 92.12% 99.92% 27,008,104
Markonv-based basecaller 92.44% 99.94% 9,115,728
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Figure 5 The training and the validation loss curves (with respect to the number of epochs) of the
Markonv-based network and the convolution-based network on simulation Dataset 1.

4 Discussion
As an attempt to identify complex motifs with intrinsic correlation effectively and
efficiently, we here proposed Markonv, a novel convolutional layer combining the
classical convolution operator and the Markov generation process. Experiments
on simulation datasets demonstrated that Markonv layers could recover first-order
Markov processes and improve the model performance. The evaluation on RBP
datasets and Oxford Nanopore sequencing datasets demonstrated that Markonv-
based networks achieved a comparable performance with fewer parameters than
classical convolution-based networks, suggesting its potential advantage in reducing
model complexity. The loss curve of each model on the simulation dataset shows
that the convergence speed of the Markonv-based network was comparable to that
of the classical convolution-based network, suggesting Markonv did not increase the
optimization difficulty (Fig. 5; see Appendix H for details of loss curve for each
dataset).

Markonv is a neural layer that could be used as a module for processing one-
dimensional sequence data to replace the classical convolutional neural layer or (in
theory) the recurrent neural layer in the neural network. Compared to convolutional
neural layers, Markonv can model first-order Markov processes with only one layer.
Compared with the parameters in recurrent neural layers, the Markonv kernel is
interpretable in the sense that an equivalent Markonv process can be constructed
from the kernel (see Appendix F-G) for subsequent data analysis. Our work has
opened some meaningful directions to be further exploited: (i) although we have
provided the loss curves to demonstrate the speed of convergence for Markonv, the
theoretical guarantee of convergence (if exists) is still needed; (ii) the results on RBP
datasets suggested that biological sequences contain higher-order representations,
so it would be meaningful to expand the idea of Markonv to model higher-order
representations.
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