

METHOD

Markonv: a novel convolutional layer with inter-positional correlations modeled

Jing-Yi Li^{1†}, Yuhao Tan^{1,2†}, Zheng-Yang Wen¹, Yu-Jian Kang¹, Yang Ding^{1,3*} and Ge Gao^{1*}

*Correspondence:
dingy@mail.cbi.pku.edu.cn;
gaog@mail.cbi.pku.edu.cn

¹State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneerering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), 100871 Peking University, Beijing, China

Full list of author information is available at the end of the article

†Equal contributor

Abstract

Deep neural networks equipped with convolutional neural layers have been widely used in omics data analysis. Though highly efficient in data-oriented feature detection, the classical convolutional layer is designed with inter-positional independent filters, hardly modeling inter-positional correlations in various biological data. Here, we proposed Markonv layer (Markov convolutional neural layer), a novel convolutional neural layer with Markov transition matrices as its filters, to model the intrinsic dependence in inputs as Markov processes. Extensive evaluations based on both synthetic and real-world data showed that Markonv-based networks could not only identify functional motifs with inter-positional correlations in large-scale omics sequence data effectively, but also decode complex electrical signals generated by Oxford Nanopore sequencing efficiently. Designed as a drop-in replacement of the classical convolutional layer, Markonv layers enable an effective and efficient identification for inter-positional correlations from various biological data of different modalities. All source codes of a PyTorch-based implementation are publicly available on GitHub for academic usage.

Keywords: Convolutional layer, Markov process, RNA-Binding Protein, Oxford Nanopore basecalling, Motif

1 Background

In biology, motifs usually refer to recurring patterns associated with particular functions[1, 2, 3]. While site-independent model like position weight matrix (PWM) is a commonly used representation of biological motifs[4, 5, 6, 7], inter-positional correlations are pervasive in functional elements, like transcription factors binding sites[8, 9, 10, 11, 12, 10], RNA structure [13] as well as protein domains[14]. On the other hand, while feature correlation has been successfully identified by previous studies via stacking multiple convolutional, LSTM, and Transformer layers[15, 16, 17, 18, 19], such strategy requires additional parameters and hardly represents an intuitive interpretation as that of classical convolutional layer.

Here, we proposed the Markonv layer (Markov convolutional neural layer), as a generalized form of convolutional neural layer, which models inter-positional correlations as Markov processes directly. Case studies based on both synthetic and real-world data demonstrated Markonv is effective and efficient in identifying motifs with intrinsic correlation for various scenarios, with a biology-meaningful, interpretable representation. Of note, Markonv layers can be a drop-in replacement of the convolutional layer in neural networks and can be adopted by existing

networks with minimal effort. A PyTorch-based implementation of Markov is publicly available on https://github.com/gao-lab/Markovn_figures.

2 Methods

In this section, we introduce the Markov operator and the Markov layer based on the Markov operator. Both the Markov operator and the Markov layer are inspired by the convolutional layer, so we adopt the term ‘kernel’ to denote the mechanism of modeling the Markov process.

Notation: We first define a Markov convolution kernel as K , $K \in R^{k_l \times c \times c \times n}$. Where k_l represents the kernel length, c represents the number of channels (e.g., 4 for a one-hot encoded DNA sequence), and n represents the number of kernels. Then, we define the inputted sequence as S , $S \in R^{b \times c \times l}$, Where b represents the batch size, and l represents the sequence length. Finally, the output obtained by the feedforward Markov operator is referred to as *output*, $output \in R^{b \times (l - k_l) \times n}$. All coordinates are one-based (i.e., starting from one).

Definition: For a given $0 < b_0 \leq b$, $0 < n_0 \leq n$, $0 < l_0 \leq l - k_l$, the output is defined as:

$$output_{b_0, l_0, n_0} = \sum_{i=1}^{k_l} \sum_{j_1=1}^c \sum_{j_2=1}^c S_{b_0, j_1, l_0+i-1} \times K_{i, j_1, j_2, n_0} \times S_{b_0, j_2, l_0+i}$$

When using the chain rule to compute the gradients of the kernel and the inputted sequence, it can be proven that, for a given $0 < k_0 \leq k$, $0 < c_0 \leq c$, $0 < c_1 \leq c$, $0 < n_0 \leq n$, the gradient of *kernel* is:

$$\left(\frac{\partial f}{\partial K} \right)_{k_0, c_0, c_1, n_0} = \sum_{i=1}^b \sum_{j=1}^{l-k_l} S_{i, c_0, j+k_0-1} \times S_{i, c_1, j+k_0} \times \left(\frac{\partial f}{\partial output} \right)_{i, j, n_0}$$

Where $\frac{\partial f}{\partial output}$ is the gradient of the output of Markov.

Also, for a given $0 < b_0 \leq b$, $0 < c_2 \leq c$, $0 < l_0 \leq l$, the gradient of *input* is:

$$\begin{aligned} \left(\frac{\partial f}{\partial S} \right)_{b_0, c_2, l_0} &= \sum_{i=1}^n \sum_{j=1}^c \sum_{k_1=\max\{1, k+l_0+1-l\}}^{\min\{l_0, k_l\}} S_{b_0, j, l_0+1} \times K_{k_1, c_2, j, i} \\ &\quad \times \left(\frac{\partial f}{\partial output} \right)_{b_0, l_0-k_1+1, i} \\ &+ \sum_{i=1}^n \sum_{j=1}^c \sum_{k_1=\max\{1, k+l_0-l\}}^{\min\{l_0-1, k_l\}} S_{b_0, j, l_0-1} \times K_{k_1, j, c_2, i} \times \left(\frac{\partial f}{\partial output} \right)_{b_0, l_0-k_1, i} \end{aligned}$$

The Markov kernel defined in this work fully determines the closed form solution of the (log-)probability of generating the sequence fragments from the corresponding first-order Markov process, given the observation of the initial state (see Appendix A for more details). We remove the probability of observing the initial state from the generation probability for simplicity. As a result, Markov operator uses a new convolution kernel, which consists of a series of transition probability matrices, to compute the probability on the inputted sequence. As it scans the sequence for the

first-order Markov process, it can extract inter-positional correlated features from the sequence.

We build the Markov layer with the Markov operator along with two optional modules for flexibility: the reverse sequence module and the boundary control module. The reverse sequence module reverses the inputted sequence to find the Markov process in the opposite direction. The boundary control module uses the same strategy as vConv[20] to adjust the kernel length adaptively during training (see Appendix B for more details).

3 Results

3.1 Benchmark datasets

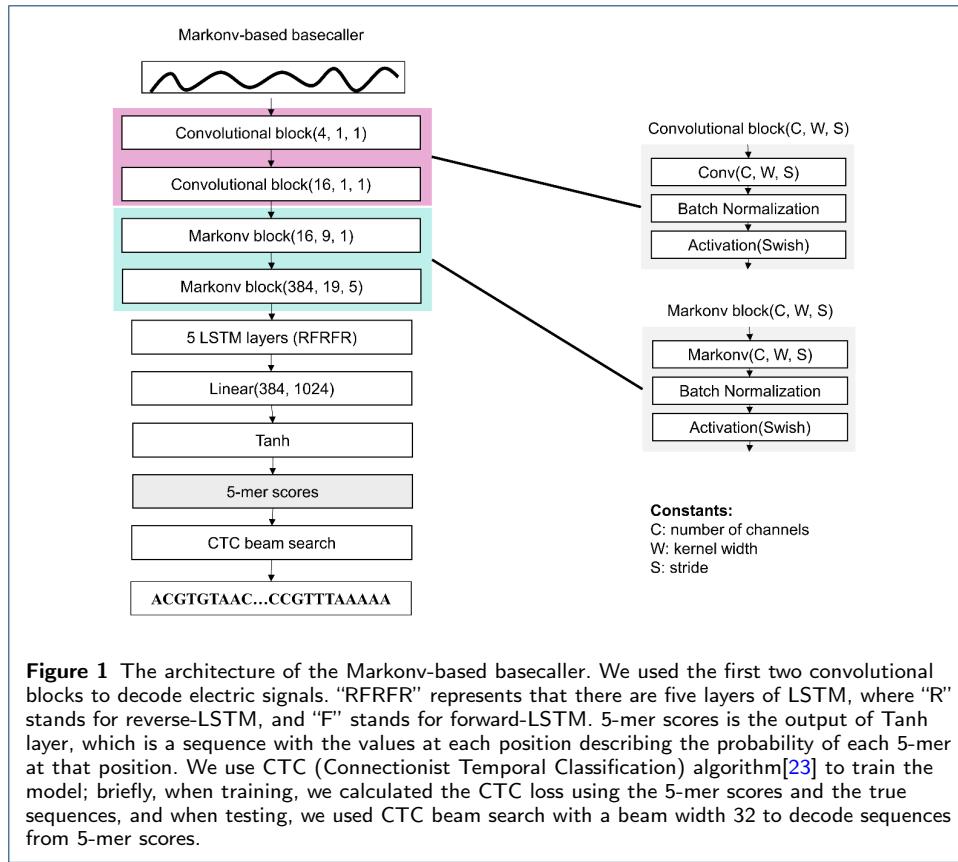
In this section, we tested the performance of Markov on three different datasets:

- 1 To test whether Markov-based networks could model first-order Markov processes and converge with popular optimizers, we constructed four different simulation datasets.
- 2 To test whether Markov-based network could be trained with less complexity than convolution-based networks on omics data while still obtaining a comparable performance, we compared Markov-based networks with HOCNNLB[21] on RNA-binding protein (RBP) datasets.
- 3 To test whether Markov-based network could be efficient in mining continuous input data, we compared our Markov-based basecaller with Bonito (<https://github.com/nanoporetech/bonito>) on Oxford Nanopore datasets.

Simulation datasets: We constructed four different motifs, each of which is a Markov process (see Appendix C for more details). The Shannon entropy, a metric of motif chaoticness, gradually increases from the first motif to the fourth motif. We simulated for each motif case 6,000 sequences (with 3,000 positive and 3,000 negative) of length 1,000, picked 600 as the test dataset randomly, and randomly split the rest into 4,860 training and 540 validation sequences. The name of the dataset describes the index of the motif used; for example, Dataset “1” means that the dataset contains the first motif. Each negative sequence is a random sequence whose bases were independently sampled from the categorical distribution $P(A)=P(C)=P(G)=P(T)=0.25$. For each positive sequence, we first constructed a random sequence as described above, and then substituted a sequence fragment generated from one of the motifs associated with the case for a randomly chosen fragment of the same length.

RBP datasets: We downloaded the original dataset used by Zhang et al. from <https://github.com/NWPU-903PR/HOCNNLB>, including the training set and test set[21]. We randomly selected 20% of the training set to construct a validation set. At the same time, we downloaded the results of different neural network structures from Zhang et al. (<https://ars.els-cdn.com/content/image/1-s2.0-S0003269719303513 mmc1.docx>).

Oxford Nanopore datasets: We used the training and validation dataset in Bonito release v0.5.1 (<https://github.com/nanoporetech/bonito>). We used a benchmarking read set from *Klebsiella pneumoniae* as test set, as suggested by Wick et al.[22].



3.2 Network structures in each experiment

The networks we established and the baseline methods to compare within each experiment are elucidated below.

Networks for simulation datasets: We built a simple Markov-based network with a Markov layer, a global max-pooling layer, and a dense layer (see model structure details in Appendix D). The baseline method is the convolution-based network with the same structure.

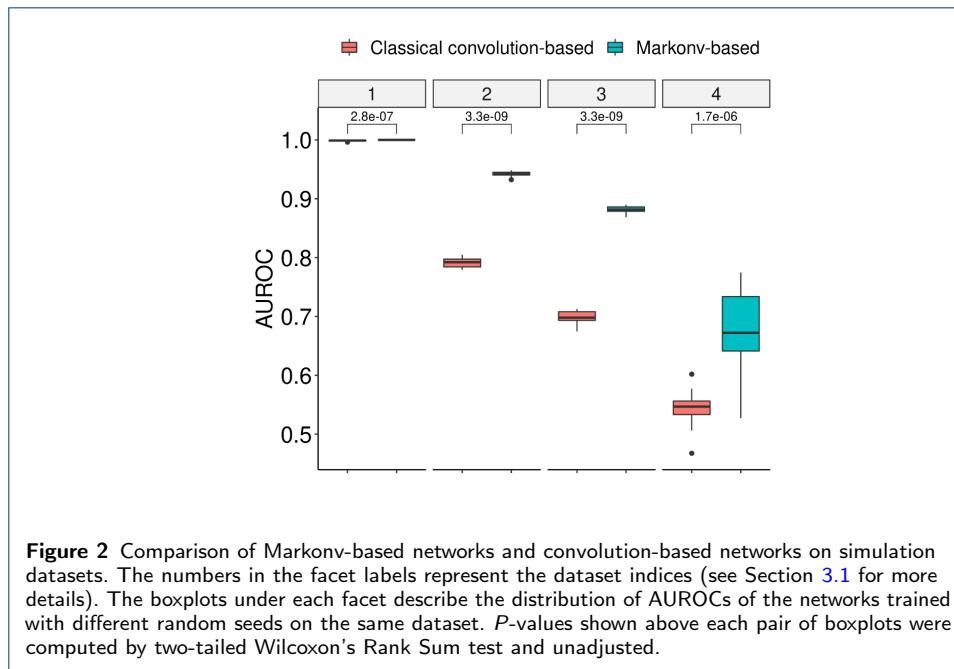
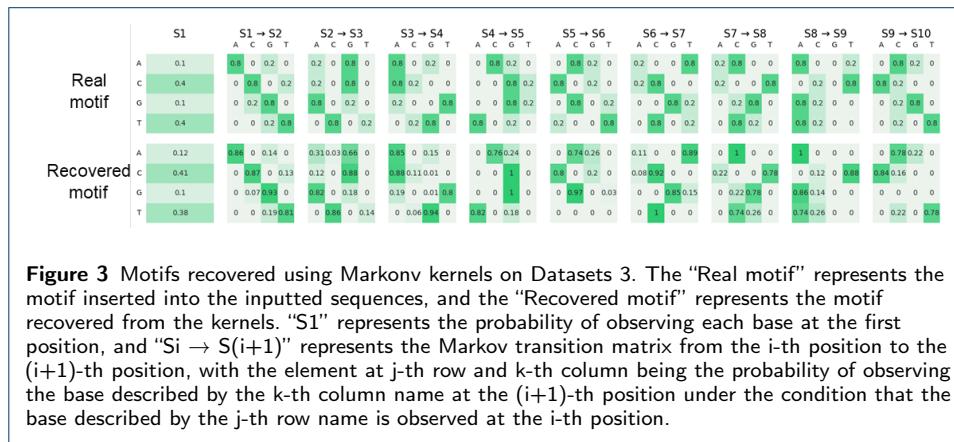
Networks for RBP datasets: For Markov-based networks, we followed the construction in the simulation case above. Baseline methods are HOCNNLB-1 to HOCNNLB-4, where “HOCNNLB- k ” represents that the network encodes k -mer nucleotide as a one-hot vector and models the inputted sequence as a $(k - 1)$ -order Markov process (if $k \geq 2$), or just leaves the input as-is (if k is 1). These models are all neural networks mentioned in Zhang et al.’s work [21].

Networks for Oxford Nanopore datasets: Inspired by Bonito, we built a Markov-based basecaller (Fig. 1). The baseline method is Bonito v3 network (config “dna_r9.4.1_e8_sup@v3.3” in Bonito release v0.5.1).

The details of the training method are in Appendix E.

3.3 Results

Markov-based networks outperformed convolution-based networks on simulation datasets. We compared the AUROC of the models on four simulation datasets generated by different motifs (Fig. 2). As the Shannon entropy of the motif



increases, the amount of information contained in the motif decays rapidly, associated with the observation that the AUROC of the Markov-based network becomes higher than that of the convolution-based network. When the data inserted in the dataset was relatively simple (Dataset 1), the Markov-based network had a performance similar to that of the convolution-based network, but as the complexity of the motif increased (Datasets 2, 3, and 4), the Markov-based network was statistically better than the convolution-based network, with the *p*-value of the two-tailed Wilcoxon's Rank Sum test less than 0.001.

We selected for each Markov-based network those Markov kernels that are predictive (see Appendix F for details of the method), and recovered a first-order Markov process similar to the inserted real motif (Fig. 3; see Appendix G for the comparison between all pairs of real and recovered motifs).

Markov-based networks could use fewer parameters to outperform the more complex HOCNNLB models on classifying RBP datasets. Fig.

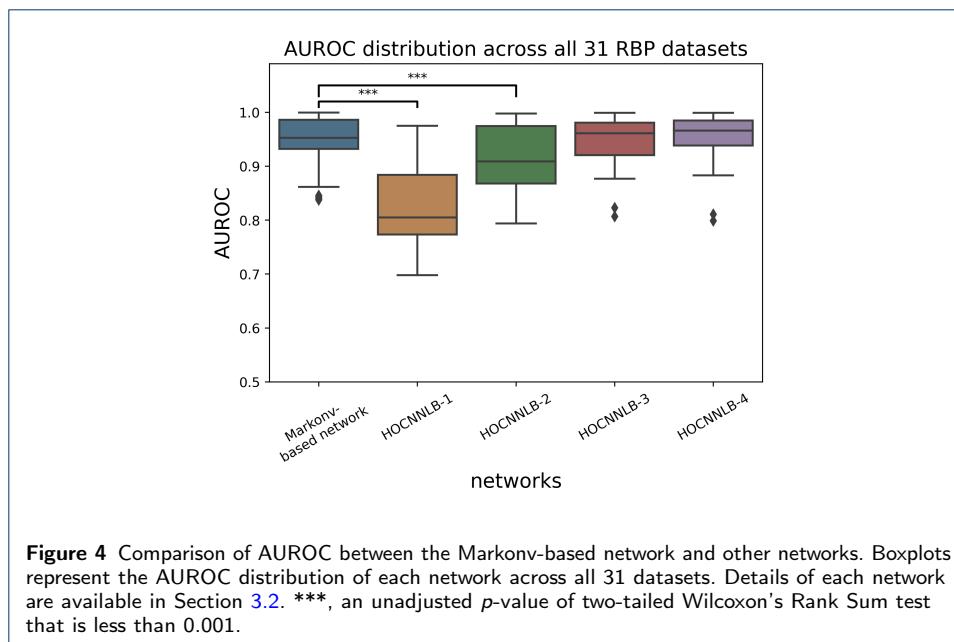


Table 1 Comparison of the computational complexity of different neural layers. where N represents the number of kernels, l represents the length of the convolution kernel, n represents the length of the inputted sequence, c represents the number of channels, and k represents the order of HOCNNLB.

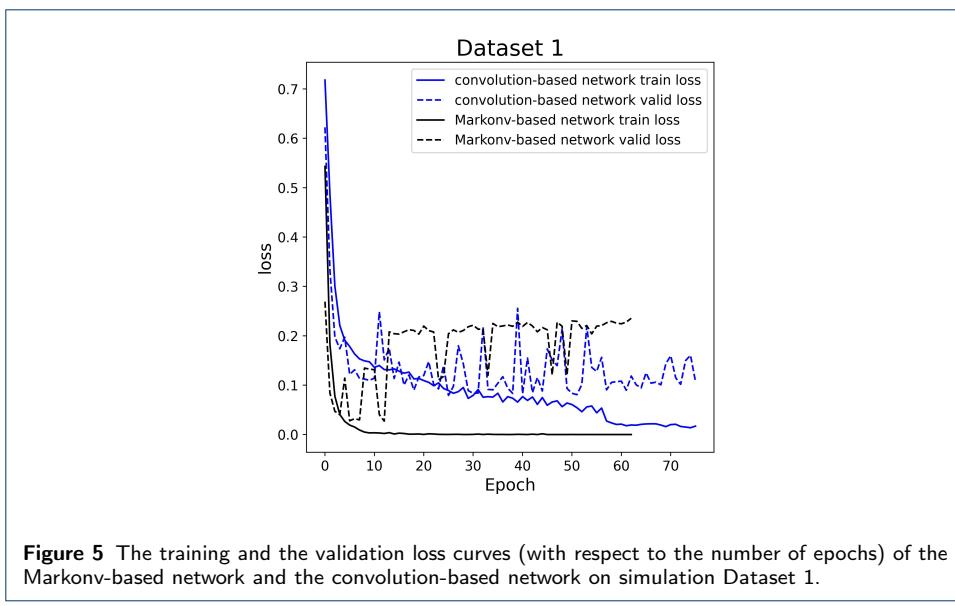
Name	Computational complexity	Space complexity
Convolutional layer	$O(N * l * c * n)$	$O(N * l * c * n)$
Markov	$O(N * l * c^2 * n)$	$O(N * l * c * n)$
HOCNNLB- k 's convolutional layer	$O(N * l * c^k * n)$	$O(N * l * c^k * n)$

Figure 4 displays the distribution of different networks' AUROC across all RBP datasets. While the Markov-based network has lower space complexity than HOCNNLB models (Table 1), it not only outperformed the simple convolutional neural network (HOCNNLB-1), but also the one designed to model the first-order Markov process (HOCNNLB-2), and even had a performance close to those modeling higher-order representation (HOCNNLB-3 and HOCNNLB-4).

Markov-based basecaller rivaled Bonito's basecaller performance with much fewer parameters. Table 2 summarizes the performance of the Bonito and Markov-based basecaller. Although trained with the same default optimizer and learning rate scheduler, the Markov-based basecaller could still use much fewer parameters than Bonito to achieve a comparable performance, suggesting Markov's potential broad application to various types of biological data.

Table 2 Performance of the Bonito and Markov-based basecaller. Read accuracy is the sequence identity between each reference read and its basecalled result; similarly, consensus accuracy is the sequence identity between the reference and the consensus sequence (which is assembled from overlapping basecalled results).

Name	Median read accuracy	Median consensus accuracy	Number of network parameters
Bonito	92.12%	99.92%	27,008,104
Markov-based basecaller	92.44%	99.94%	9,115,728



4 Discussion

As an attempt to identify complex motifs with intrinsic correlation effectively and efficiently, we here proposed Markov, a novel convolutional layer combining the classical convolution operator and the Markov generation process. Experiments on simulation datasets demonstrated that Markov layers could recover first-order Markov processes and improve the model performance. The evaluation on RBP datasets and Oxford Nanopore sequencing datasets demonstrated that Markov-based networks achieved a comparable performance with fewer parameters than classical convolution-based networks, suggesting its potential advantage in reducing model complexity. The loss curve of each model on the simulation dataset shows that the convergence speed of the Markov-based network was comparable to that of the classical convolution-based network, suggesting Markov did not increase the optimization difficulty (Fig. 5; see Appendix H for details of loss curve for each dataset).

Markov is a neural layer that could be used as a module for processing one-dimensional sequence data to replace the classical convolutional neural layer or (in theory) the recurrent neural layer in the neural network. Compared to convolutional neural layers, Markov can model first-order Markov processes with only one layer. Compared with the parameters in recurrent neural layers, the Markov kernel is interpretable in the sense that an equivalent Markov process can be constructed from the kernel (see Appendix F-G) for subsequent data analysis. Our work has opened some meaningful directions to be further exploited: (i) although we have provided the loss curves to demonstrate the speed of convergence for Markov, the theoretical guarantee of convergence (if exists) is still needed; (ii) the results on RBP datasets suggested that biological sequences contain higher-order representations, so it would be meaningful to expand the idea of Markov to model higher-order representations.

Author details

¹State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics

(CBI), 100871 Peking University, Beijing, China. ²Integrated Science Program, Yuanpei College, Peking University, 100871 Beijing, China. ³Institute of Health Service and Transfusion Medicine, 100850 Beijing, China.

References

1. Achar, A., Sætrom, P.: Rna motif discovery: a computational overview. *Biology direct* **10**(1), 1–22 (2015)
2. Kulakovskiy, I.V., Makeev, V.J.: Dna sequence motif: a jack of all trades for chip-seq data. *Advances in Protein Chemistry and Structural Biology* **91**, 135–171 (2013)
3. D'haeseleer, P.: What are dna sequence motifs? *Nature biotechnology* **24**(4), 423–425 (2006)
4. Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., Van Der Lee, R., Bessy, A., Cheneby, J., Kulkarni, S.R., Tan, G., et al.: Jaspar 2018: update of the open-access database of transcription factor binding profiles and its web framework. *Nucleic acids research* **46**(D1), 260–266 (2018)
5. Kulakovskiy, I.V., Vorontsov, I.E., Yevshin, I.S., Soboleva, A.V., Kasianov, A.S., Ashoor, H., Ba-Alawi, W., Bajic, V.B., Medvedeva, Y.A., Kolpakov, F.A., et al.: Hocomoco: expansion and enhancement of the collection of transcription factor binding sites models. *Nucleic acids research* **44**(D1), 116–125 (2016)
6. Pachkov, M., Balwierz, P.J., Arnold, P., Ozonov, E., Van Nimwegen, E.: Swissregulon, a database of genome-wide annotations of regulatory sites: recent updates. *Nucleic acids research* **41**(D1), 214–220 (2012)
7. Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., et al.: Transfac® and its module transcompe®: transcriptional gene regulation in eukaryotes. *Nucleic acids research* **34**(suppl_1), 108–110 (2006)
8. Zhao, Y., Stormo, G.D.: Quantitative analysis demonstrates most transcription factors require only simple models of specificity. *Nature biotechnology* **29**(6), 480–483 (2011)
9. Benos, P.V., Bulyk, M.L., Stormo, G.D.: Additivity in protein–dna interactions: how good an approximation is it? *Nucleic acids research* **30**(20), 4442–4451 (2002)
10. Weirauch, M.T., Cote, A., Norel, R., Annala, M., Zhao, Y., Riley, T.R., Saez-Rodriguez, J., Cokelaer, T., Vedenko, A., Talukder, S., et al.: Evaluation of methods for modeling transcription factor sequence specificity. *Nature biotechnology* **31**(2), 126–134 (2013)
11. Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K.R., Rastas, P., Morgunova, E., Enge, M., Taipale, M., Wei, G., et al.: Dna-binding specificities of human transcription factors. *Cell* **152**(1-2), 327–339 (2013)
12. Luscombe, N.M., Laskowski, R.A., Thornton, J.M.: Amino acid–base interactions: a three-dimensional analysis of protein–dna interactions at an atomic level. *Nucleic acids research* **29**(13), 2860–2874 (2001)
13. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an rna family database. *Nucleic acids research* **31**(1), 439–441 (2003)
14. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L.: The pfam protein families database. *Nucleic acids research* **30**(1), 276–280 (2002)
15. Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. *Genome research* **26**(7), 990–999 (2016)
16. Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J.R., Grabska-Barwinska, A., Taylor, K.R., Assael, Y., Jumper, J., Kohli, P., Kelley, D.R.: Effective gene expression prediction from sequence by integrating long-range interactions. *Nature methods* **18**(10), 1196–1203 (2021)
17. Fudenberg, G., Kelley, D.R., Pollard, K.S.: Predicting 3d genome folding from dna sequence with akita. *Nature methods* **17**(11), 1111–1117 (2020)
18. Chaabane, M., Williams, R.M., Stephens, A.T., Park, J.W.: Circdeep: deep learning approach for circular rna classification from other long non-coding rna. *Bioinformatics* **36**(1), 73–80 (2020)
19. Jain, M., Olsen, H.E., Paten, B., Akeson, M.: The oxford nanopore minion: delivery of nanopore sequencing to the genomics community. *Genome biology* **17**(1), 1–11 (2016)
20. Li, J.-Y., Jin, S., Tu, X.-M., Ding, Y., Gao, G.: Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network. *Briefings in Bioinformatics* **22**(6), 233 (2021)
21. Zhang, S.-W., Wang, Y., Zhang, X.-X., Wang, J.-Q.: Prediction of the rbp binding sites on lncrnas using the high-order nucleotide encoding convolutional neural network. *Analytical biochemistry* **583**, 113364 (2019)
22. Wick, R.R., Judd, L.M., Holt, K.E.: Performance of neural network basecalling tools for oxford nanopore sequencing. *Genome biology* **20**(1), 1–10 (2019)
23. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks, 369–376 (2006)