

1 **Title Page**
2 **An atypical F-actin capping protein modulates cytoskeleton behaviors crucial to colonization of**
3 ***Trichomonas vaginalis***
4 Kai-Hsuan Wang^{1, #}, Jing-Yang Chang^{1, #}, Fu-An Li², Yen-Ju Chen¹, Kuan-Yi Wu¹, Tse-Ling Chu³,
5 Jessica Lin³, and Hong-Ming Hsu^{1, *}
6 ¹Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University,
7 Taipei, Taiwan 100233.
8 ²The Proteomic Core, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529.
9 ³Taipei First Girls High School, Taipei, Taiwan 100006.
10 [#]These authors contributed equally to this work.
11 ^{*}Address correspondence to:
12 Hong-Ming Hsu, Department of Tropical Medicine and Parasitology, College of Medicine, National
13 Taiwan University, Taipei, Taiwan 100. Tel: 886-2-23123456 ext. 88260; Fax: 886-2-23915294; E-
14 Mail: hsuhm@ntu.edu.tw
15
16 **Running title:** CP regulates *T. vaginalis* colonization
17

18 **Abstract**

19 Cytoadherence and consequential migration are crucial for pathogens to establish colonization in
20 the host. In contrast to the nonadherent isolate of *Trichomonas vaginalis*, the adherent one expresses
21 more actin-related machinery proteins with more active flagellate-amoeboid morphogenesis, amoeba
22 migration, and cytoadherence, activities that were abrogated by an actin assembly blocker. By
23 immunoprecipitation coupled with label-free quantitative proteomics, an F-actin capping protein
24 (*TvFACP* α) was identified from the actin-centric interactome, with an atypically greater binding
25 preference to G-actin than F-actin. *TvFACP* α partially colocalized with F-actin at the parasite
26 pseudopodia protrusion and formed the protein complexes with α -actin through its c-terminal domain.
27 Meanwhile, *TvFACP* α overexpression suppresses F-actin polymerization, amoeboid morphogenesis,
28 and cytoadherence in this parasite. Ser² phosphorylation of *TvFACP* α enriched in the amoeboid stage
29 of adhered trophozoites was reduced by a CKII inhibitor. The site-directed mutagenesis and CKII
30 inhibitor treatment revealed that Ser² phosphorylation acts as a switching signal to alter *TvFACP* α
31 actin-binding activity and consequent actin cytoskeleton behaviors. Through CKII signaling, *TvFACP* α
32 also controls the conversion of adherent trophozoite from amoeboid migration to flagellate form with
33 axonemal motility. Together, CKII-dependent Ser² phosphorylation regulates *TvFACP* α binding actin
34 to fine-tune cytoskeleton dynamics and drive crucial behaviors underlying host colonization of *T.*
35 *vaginalis*.

36

37 **Keywords:** Actin capping protein/ Actin Cytoskeleton/ Cytoadherence/ Colonization/ *Trichomonas*
38 *vaginalis*

39

40 **Introduction**

41 *Trichomonas vaginalis* is a pathogenic protist causing trichomoniasis which is one of the most
42 prevalent non-viral sexually transmitted diseases, with approximately 180 million new infections
43 worldwide annually (1).

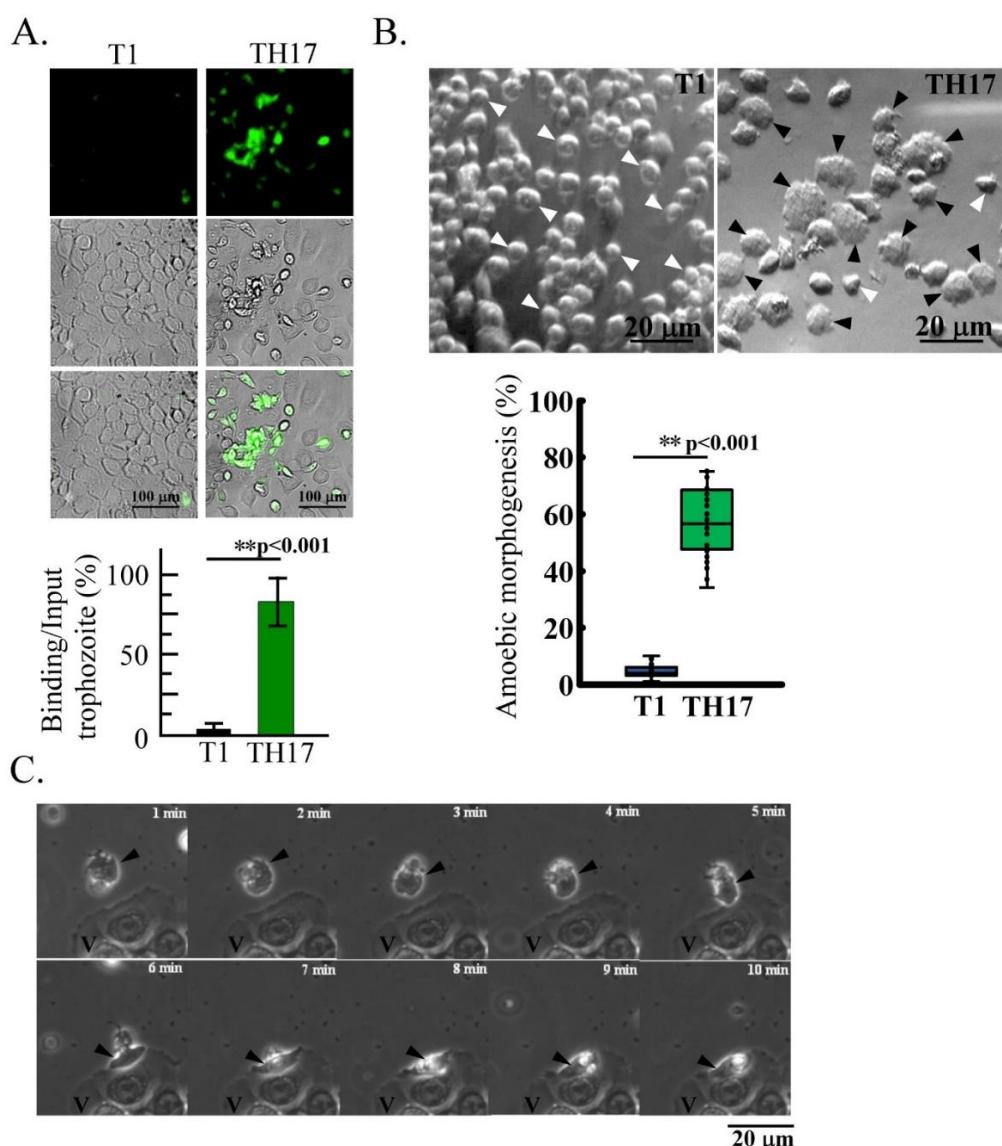
44 A successful pathogenic infection includes cytoadherence to establish colonization, followed by
45 migration for population spread. Numerous studies on *Trichomonas vaginalis* have focused on the
46 cytoadherence mechanism in adhesion molecules, like cadherin (2), rhomboid protease (3), legumain
47 protease (4), BAP proteins (5), *TvAD1* protein (6), and surface-expressed hydrogenosomal proteins (7,
48 8, 9, 10). However, the effects of these reputed adhesins in cytoadherence are limited when analyzed
49 by the gain- or loss-of-function assays (2-10). Thus, we postulated that the cytoadherence of *T.*
50 *vaginalis* might be regulated by pathways other than adhesion molecules. In mammalian adhesion cells,
51 transmembrane integrins link peripheral focal protein complexes underneath the cell membrane for
52 focal adhesion, which is the site that connects the extracellular matrix to transmit traction forces
53 required for cell migration and activates downstream signaling followed by local cytoskeleton
54 reorganization (11, 12, 13). A few studies have used ligand competition or antibody neutralization to
55 demonstrate the involvement of integrin-like molecules in the cytoadherence of *T. vaginalis* (14, 15,
56 16). Recently, the adherence of clinical *T. vaginalis* isolates to the plastic surface or host cells was

57 shown to be influenced by an actin polymerization blocker (17), implying that the actin cytoskeleton
58 might coordinate cytoadherence in *T. vaginalis*, but the regulatory mechanism was unknown.

59 Furthermore, flagellate-amoeboid transition immediately after contact with a solid surface or
60 human vagina epithelium cells (hVECs), is another striking feature in adherent isolates of *T. vaginalis*
61 (18). Upon morphological transformation, the free-swimming flagellar trophozoite converts to an
62 adherent trophozoite that crawls over a solid surface by pseudopodia-like protrusions referred to as
63 amoeboid migration. A similar flagellate-amoeboid transition was observed in the pathogenic amoeba,
64 *Naegleria fowleri*. This free-living trophozoite builds lamellipodia-like protrusions for phagocytosis
65 and migration driven by actin cytoskeleton machines (19), in which actin expression correlates with its
66 virulence (20).

67 The actin cytoskeleton is a complex network of actin filaments and actin-associated proteins that
68 shape cell morphology, drive cellular locomotion, and confer cell adhesion (21, 22, 23). The globular
69 actin monomer (G-actin) polymerizes into filamentous actin polymers (F-actin), which
70 are further organized into bundles or branched into three-dimensional networks
71 for complicated cytoskeleton activities. In the polarized F-actin filament, growth initiates from the
72 assembly of the Arp2/3 nucleation complex (24), then G-actin is continuously added at the fast-
73 growing barbed end or dissociated from the pointed end (25). The cellular actin cytoskeleton dynamics
74 are tightly modulated by a variety of accessory effectors for actin polymerization, depolymerization,
75 branching, and reorganization (26). In high eukaryotes, F-actin capping protein (CP) is heterodimerized
76 from α (CP α) and β (CP β) subunits to form a mushroom-shaped structure capping the fast-growing
77 barbed end of F-actin to block off G-actin access and subsequent polymerization. The C-terminal
78 regions of CP α and CP β form as two tentacles to bind actin (27, 28, 29). A set of regulatory proteins
79 binds to the barbed end of F-actin to prevent the binding of CP, or several proteins directly bind CP to
80 spatially guide subcellular localization or allosterically alter actin capping activity for instant regulation
81 of cytoskeleton remodeling (30, 31).

82 Post-translational modifications like phosphorylation and acetylation on the interacting
83 interface within the c-terminal tentacle of CP β alter the actin-binding dynamics (32). Human CP α
84 forms a protein complex with Casein kinase II-interacting protein (CKIP-1) and Casein kinase II (CKII).
85 CKII phosphorylates the Ser⁹ of CP α coordinating CKIP-1 to inhibit capping activity, but this
86 inhibitory effect seems to be independent of Ser⁹ phosphorylation (33, 34). The capacity of CP binding
87 actin filaments is tightly regulated in a spatial or allosteric manner to fine-tune the actin assembly
88 dynamics in cells.


89 The mechanisms of actin cytoskeleton regulation in *T. vaginalis* have not been fully elucidated.
90 *TvFimbrin1* protein (*TvFim1*) has been identified *in vitro* to accelerate actin assembly and *in vivo* to
91 co-localize with F-actin at the cell membrane periphery in the pseudopod-like structures of *T. vaginalis*
92 upon phagocytosis or migration (35). In this study, a putative F-actin capping protein subunit α
93 (*TvFACP* α) was identified and characterized from the α -associated protein complexes in *T. vaginalis*.

94 Results

96 **Differential morphogenesis, cytoadherence, and motility of *T. vaginalis***

97 The differential host-parasite interaction between nonadherent T1 and adherent TH17 isolates
98 was evaluated by the cytoadherence, morphogenesis, and motility. CFSE-labeled trophozoites were co-
99 cultured with the hVECs monolayer at MOI of 2:1. Post 60-min infection, ~80% of TH17 but little T1
100 trophozoites bound to the hVECs monolayer (Figure 1A). Most T1 trophozoites maintained an oval-
101 shaped flagellate form, but ~60% of TH17 trophozoites transformed into a flat disk or irregular
102 ameboid form and tightly adhered to the slide surface (Figure 1B). To further observe the dynamics of
103 host-parasite interaction, the trophozoites co-cultured with hVECs were monitored by time-lapse
104 imaging (Figure 1C and Videos 1 and 2), showing that nonadherent T1 trophozoites maintained a
105 flagellate form and swam by flagellar locomotion only randomly coming into contact with the hVECs.
106 By contrast, adherent TH17 trophozoites rapidly transformed into an amoeboid form within 10 min of
107 contact with the glass slide and crawled toward hVECs via pseudopod-like protrusions, referred to as
108 amoeboid migration. In contrast to *T. vaginalis* nonadherent isolate, the adherent isolate displayed more
109 active cytoadherence and amoeboid morphogenesis and migration.

Fig.1

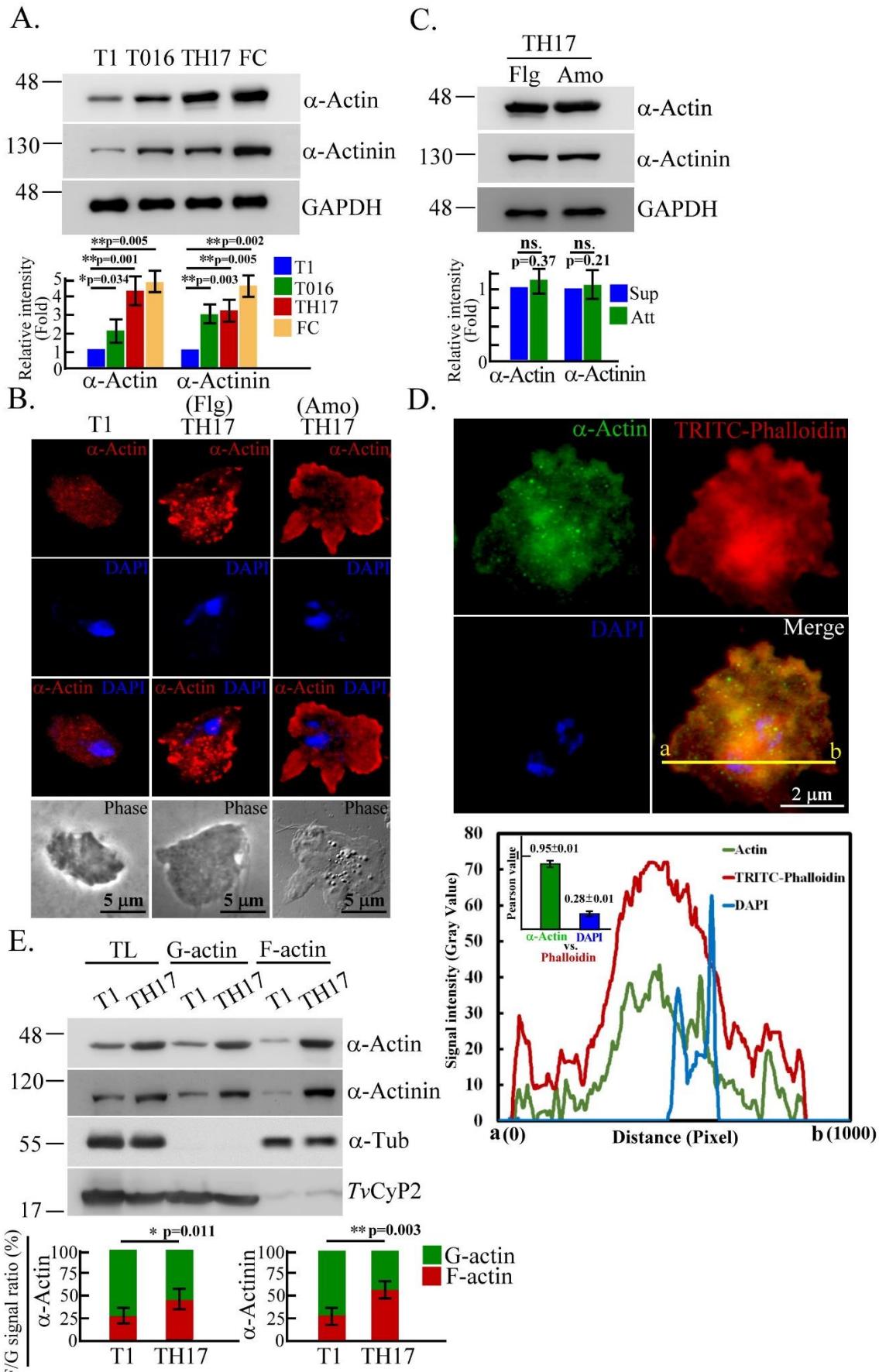
Figure 1. Differential cytoadherence, morphogenesis, migration mode of *T. vaginalis*. A variety of behaviors were observed in the nonadherent (T1) and adherent (TH17) isolates. (A.) The CFSE-preloaded trophozoites were cultured with hVECs, then fixed 1 hr post-infection. The cytoadherence capacity was evaluated by the ratio of binding versus input trophozoites as shown in the histogram. Scale bar: 100 μ m. (B.) The ratio of T1 or TH17 trophozoites at the amoeboid form was measured in ~600 trophozoites from 12 random microscopic fields as shown in the box and whisker plot. The black and white arrowheads respectively indicate the representative amoeboid and flagellate trophozoites. Scale bar: 20 μ m. (C.) TH17 trophozoite (black arrowhead) was co-cultured with hVECs (V). The dynamics of ameboid migration and morphogenesis were recorded by time-lapse imaging at one frame per 15 sec over 10 min. Scale bar: 20 μ m. All experiments were repeated three times. Data in histogram are presented as mean \pm SEM. Statistical significance with p-value for each group of data was analyzed by Student's t-test as indicated (n=3, $P< 0.01^{**}$, $P< 0.05^*$, and ns, no significance).

(Please see the attached Video 1)

Video1 Dynamics of amoeboid morphogenesis and migration in the adherent isolate of *T. vaginalis*. The trophozoites from TH17 adherent isolate were co-cultured with hVECs. The dynamics of trophozoite activities were recorded by time-lapse imaging at the capturing rate of one frame per 30 sec over time as defined.

(Please see the attached Video 2)

Video2 Dynamics of migration in the nonadherent isolate of *T. vaginalis*. The trophozoites from nonadherent T1 isolate were co-cultured with hVECs. The dynamics of trophozoite activities were recorded by time-lapse imaging at the capturing rate of one frame per 30 sec over time as defined.

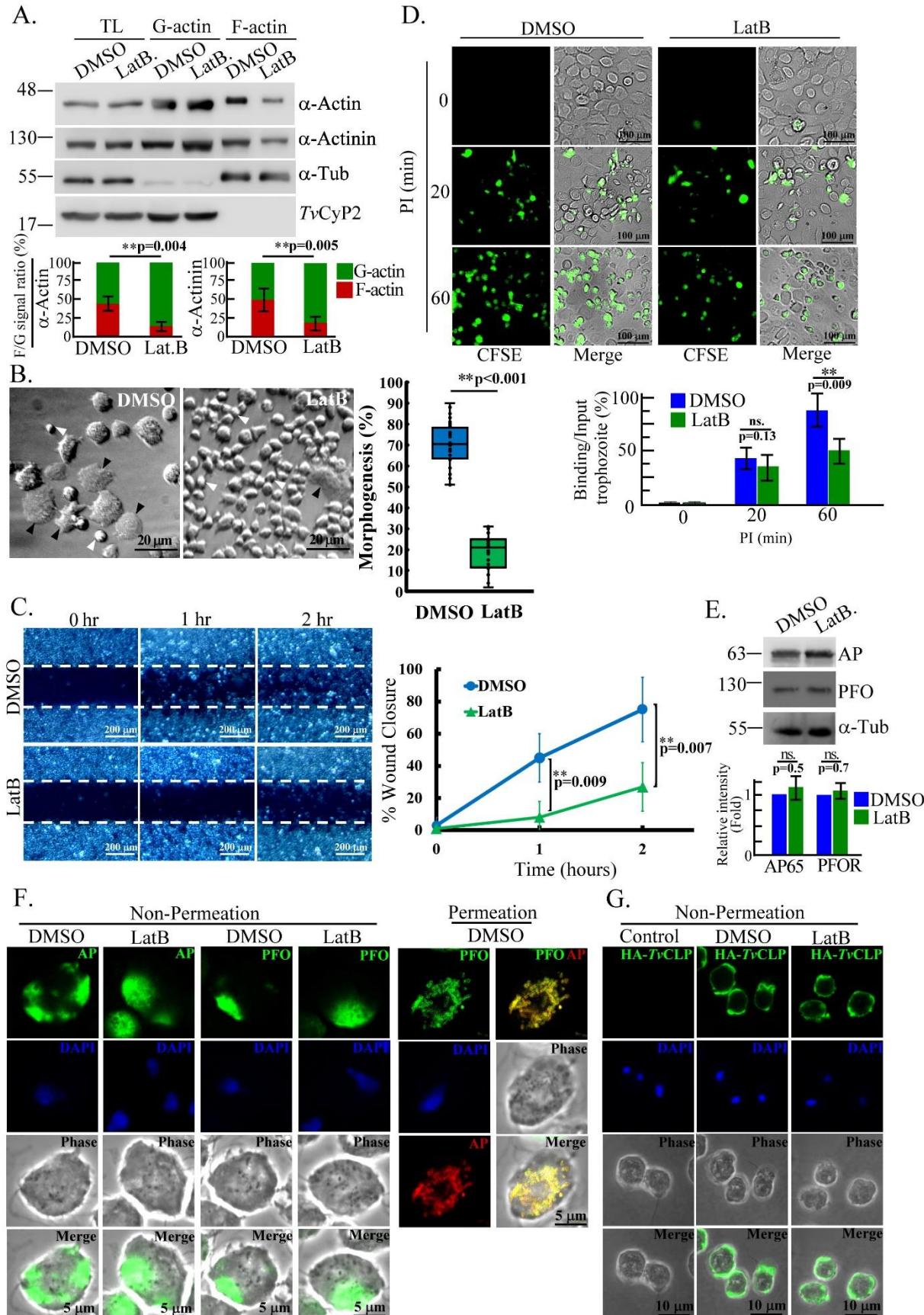

Differential expression of actin-related proteins in *T. vaginalis*

Cytoadherence and migration in *T. vaginalis* correlate with actin cytoskeleton (17, 35), therefore, the expression of α -actin and α -actinin, the respective major component and actin bundle linker protein in the cytoskeleton were investigated. The expression of α -actin and α -actinin varied between isolates and was higher in adherent TH17 and T016 isolates compared to nonadherent T1, special in a fresh adherent isolate from a clinical vaginitis patient (Figure 2A). The overexpression of HA-Tvactin in a nonadherent isolate did not induce amoeboid morphogenesis or cytoadherence (Figure 2-Figure Supplement 1), suggesting that α -actin might be determinant but insufficient to confer cytoadherence in a nonadherent isolate. Additionally, no detectable α -actin on the adherent parasite surface indicates that α -actin is unlikely to act as an adhesion molecule (Figure 2-Figure Supplement 2).

The immunostaining of α -actin was more intense in TH17 than T1 trophozoites and detected in tiny punctate or short bundles in the cytoplasm of the free-swimming flagellate TH17 but in dense fine

150 networks in the cytoplasm with sporadic clumps underneath the plasma membrane of the amoeboid-
151 adhered TH17. However, the expression of α -actin and α -actinin was similar between the two forms of
152 TH17 trophozoites according to western blotting (Figure 2C). The validated phalloidin binding sites
153 are conserved in α -actin of *T. vaginalis* (Figure 2-Figure Supplement 3) (36). F-actin was double-
154 stained by TRITC-conjugated phalloidin and anti- α -actin antibody (Figure 2D), showing prominent F-
155 actin and α -actin signals concentrated in the juxtanuclear region, referred to as perinuclear actin cap
156 (39), with intense staining underneath the cell membrane of the leading edge in protrusive pseudopods,
157 and less intense staining in the cytoplasm. The signal colocalization of α -actin and phalloidin had a
158 Pearson's correlation coefficient value of 0.95 (Figure 2D, bottom panel). To evaluate F-actin assembly
159 in cells, G-actin, F-actin, and co-sediments were fractionated, and western blotting analysis revealed
160 an F-actin ratio of ~70% in the adherent isolate and ~30% in the nonadherent one (Figure 2E), similar
161 to α -actinin. It is speculated that F-actin polymerization is more active in the adherent than the
162 nonadherent isolate, and that the actin assembly pattern is also distinct.

Fig. 2



164 **Figure 2. Differential expression of actin-based machinery proteins in *T. vaginalis*.** (A.)
165 The total lysates from T1, T016, TH17, and a fresh clinical isolate (FC) were subjected to
166 western blotting. (B., C.) TH17 flagellates (Flg) trophozoites suspended in the medium or
167 amoeboid (Amo) trophozoites adhered to the glass surface were sampled for IFA as shown in
168 (B.) or western blotting as shown in (C.). Scale bar in (B.), 5 μ m. (D.) TH17 cultured on a
169 glass slide and fixed for IFA double-staining with anti- α -actin antibody and TRITC-
170 conjugated phalloidin. Signal colocalization was evaluated by a plot profile analysis to show
171 the signal intensity distribution on the yellow line between a and b sites as shown in the
172 diagram. The colocalization of phalloidin with α -actin or DAPI was evaluated by Pearson's
173 correlation coefficient as shown in the inset histogram. Data are presented as mean \pm SEM.
174 Scale bar: 2 μ m. (E.) The protein lysates of actin fractionation from T1 and TH17 trophozoites
175 were examined by western blotting. The ratio of indicated protein signal in F-actin and G-
176 actin fractions was analyzed as shown in the histogram. All experiments were repeated three
177 times. Data in histogram are presented as mean \pm SEM. Statistical significance with p-value
178 for each group of data was measured by Student's t-test as indicated (n=3, P< 0.01**, P<
179 0.05 **, and ns, no significance).
180
181

182 **Actin-based morphogenesis, migration, and cytoadherence in *T. vaginalis*.**

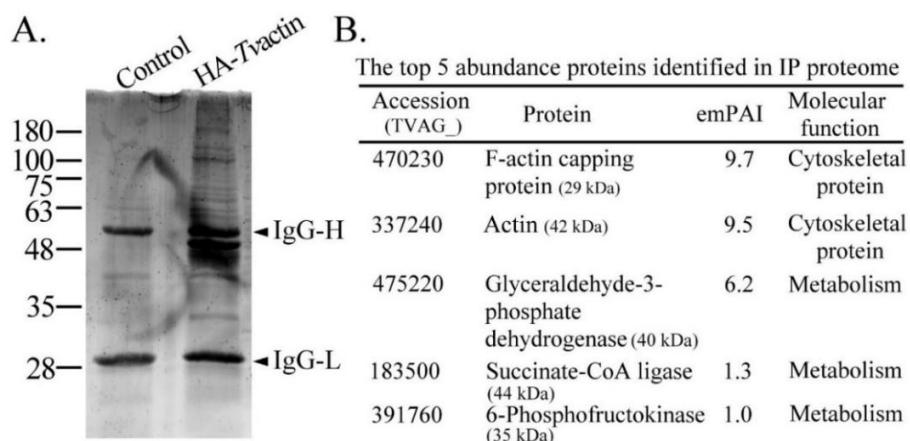
183 Latrunculin B (LatB) binding sites are conserved in α -actin of *T. vaginalis* (Figure 2-Figure
184 Supplement 3), therefore adherent TH17 trophozoites were treated with LatB to study the role of F-
185 actin in cytoskeleton behavior and cytoadherence. LatB treatment reduced the ratio of F-actin assembly
186 (Figure 3A) and morphogenesis (Figure 3B) in the parasite compared to the DMSO control, as well as
187 decreasing the wound closure rate (Figure 3C) and cytoadherence 60-min post-infection (Figure 3D),
188 showing that F-actin disorder retarded morphogenesis, amoeboid migration, and cytoadherence of this
189 parasite. To rule out the effects from the reputed adhesion molecules (2, 7, 10), the expression of AP65
190 and PFO (Figure 3E), and their surface distributions (Figure 3F) were analyzed, showing that there was
191 no change in adhesion molecules in the trophozoites with or without LatB treatment. Under IFA
192 permeation condition, hydrogenosomal colocalization of AP65 and PFO proved their surface signal
193 specificities (7, 10). Also, the surface localization of HA-tagged Cadherin-like protein (CLP) was not
194 affected by LatB treatment (Figure 3G). Taken together, actin polymerization is positively associated
195 with the parasite morphological transition, amoeboid migration, and cytoadherence. Also, LatB-
196 inhibited cytoadherence might be independent of adhesion molecules.

Fig. 3

198 **Figure 3. The dysregulation of cytoskeleton-dependent behaviors in *T. vaginalis*.** TH17
199 adherent trophozoites pretreated with DMSO or LatB were sampled for various assays. (A.)
200 Total lysates (TL) or protein lysates of actin fractionation were subjected to western blot. The
201 signal ratio of F-actin versus G-actin (F/G) was measured as shown in the histogram. (B.)
202 Trophozoite morphology was observed by phase-contrast microscopy. The proportion of
203 trophozoites in amoeboid form was measured in 600 trophozoites from 12 random
204 microscopic fields as shown in the box and whisker plot. The black and white arrowheads
205 respectively indicate the representative amoeboid and flagellate forms of trophozoites. Scale
206 bar: 20 μ m. (C.) In the wound healing assay, the representative images were captured at 0, 1,
207 and 2 hr. The wound closure rate was measured as the percentage of wound recovery area at
208 indicated time points. The white dashed lines depict the initial wound edge. (D.) In the
209 binding assay, the conditional trophozoites were co-cultured with hVECs for the time as
210 indicated. The ratio of trophozoites binding versus input was calculated as shown in the
211 histogram. Scale bar: 100 μ m. (E.) Total lysates from conditional trophozoites were subjected
212 to western blotting. (F.) The fixed trophozoites with or without permeation were stained by
213 anti-PFO and anti-AP65 antibodies for IFA. Scale bar: 5 μ m. (G.) The non-transgenic control
214 and transgenic trophozoites overexpressing HA-*TvCLP* were stained by anti-HA antibody for
215 IFA under non-permeation conditions. Scale bar: 10 μ m. All experiments were repeated three
216 times. Data in histogram and line chart are presented as mean \pm SEM. Statistical significance
217 with p-value for each group of data was analyzed by Student's t-test as indicated (n=3, P<
218 0.01**, P< 0.05 **, and ns, no significance).
219
220

221 ***TvFACP α* as an α -actin effectors**

222 Since α -actin is not sufficient to promote the cytoadherence in *T. vaginalis* nonadherence isolate,
223 we attempted to identify the regulatory proteins in the α -actin-associated complexes. HA-*Tvactin* was
224 immunoprecipitated from transgenic TH17 trophozoites and subjected to mass spectrometry analysis
225 (Figure 4A), identifying 41 α -actin-associated proteins with an emPAI score above 0.25 or specific in
226 the immunoprecipitant of HA-*Tvactin* (Table 1). These proteins were classified by function into
227 multiple cellular pathways, including cytoskeleton proteins (22%), chaperones (5%), membrane
228 trafficking and transporter (10%), protein binding or modification (7%), DNA/RNA regulation and
229 translation (17%), metabolism enzymes (37%), and uncharacterized proteins (2%) (Figure 4- Figure
230 Supplement 1). The top five abundant protein identified in IP proteome were listed in Figure 4B. Bait
231 HA-*Tvactin* was identified with an emPAI score of ~9.5, an F-actin CP subunit α homolog, referred to
232 as *TvFACP α* (TVAG_470230), had an emPAI score of ~9.7 (Figure 4B) and 40% identified peptide
233 coverage (Figure 4C), supporting the possibility of a strong protein-protein interaction between
234 *TvFACP α* and *Tvactin*. The in-silico protein sequence analysis revealed that *TvFACP α* encodes 267
235 amino acids with a molecular weight of 29.1 kDa and a PI value of 5.43 and shares 17% identity and
236 63% similarity with CP α from high eukaryotes (Figure 4D). *TvFACP α* contains a highly conserved


237 actin-binding domain at C-terminus spanning amino acids from 237 to 261. By a phosphorylation site
 238 prediction algorithm (NetPhos 3.1 Generic phosphorylation prediction:
 239 Services.healthtech.dtu.dk/service.php?NetPhos-3.1), Ser², Ser⁴⁶, Ser⁸⁸, Ser¹⁰⁶, and Ser²²³ were
 240 predicted as CKII phosphorylation sites. The sequence of ²SESE⁵ fits the putative CKII
 241 phosphorylation motif (pS/pTDXE) possibly recognized by a phospho-CKII substrate antibody. In the
 242 TrichDB database, BLAST analysis identified two CPα homologous proteins (TVAG_470230 and
 243 TVAG_212270) with 32% sequence similarity (Figure 4-Figure Supplement 2) but whether they are
 244 functionally redundant in this parasite remains to be studied.

245

246 (Please see the attached Table 1 file)

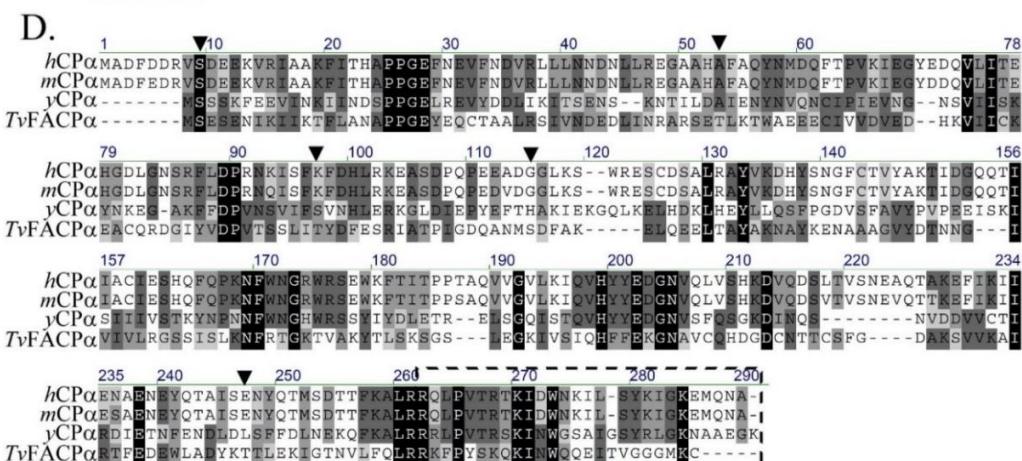

247 **Table 1. The list of *Tvactin*-interacted proteins identified by LC-MS/MS.** The proteins identified
 248 by mass spectrometry with emPAI value above 0.25 or the peptides specific in the immunoprecipitant
 249 of HA-*Tvactin* were listed.

Fig. 4

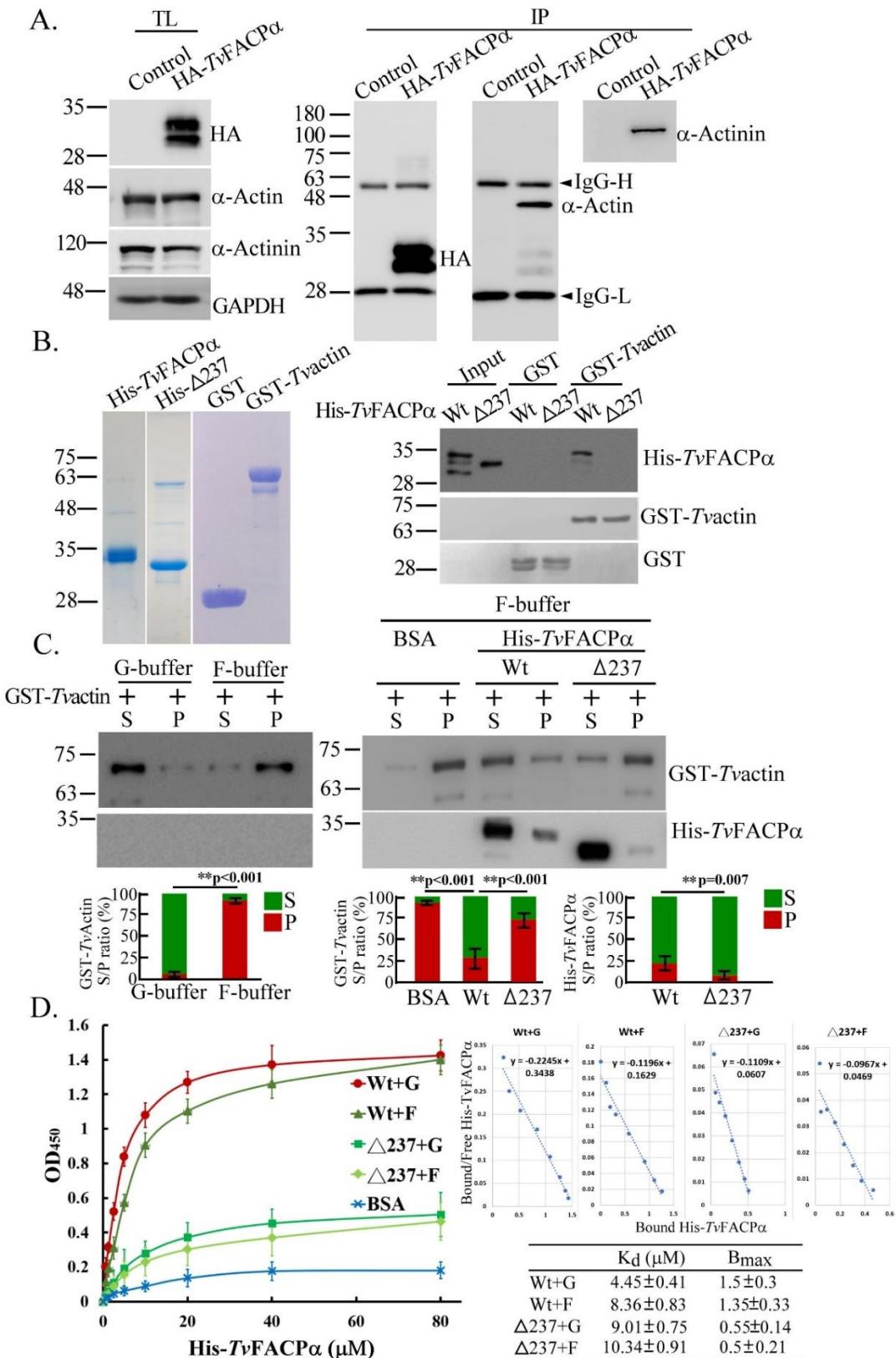
C. TVAG_470230, F-Actin capping protein, 29 kDa

MSESENKIIKTFLANAPPGEYEQCTAALRSIVN
 DEDLINRARSETLKTWAEECIVVDVEDHKVII
 CKEACQRDGIVDPVTSSLITYDFESRIATPIGD
 QANMSDFAKELQEELTAYAKNAYKENAAAGV
 YDTNNGIVIVLRGSSISLKNFRTGKTVAKYTLSK
 SGSLEKIVSIQHFFEGNAVCQHDGDCNTTCS
 FGDAKSVVKAIRTFEDEWLADYKTTLKIGTN
 VLFQLRKFPYSKQKINWQQEITVGGGMKCC

250

251 **Figure 4. Proteomic identification of actin-binding effectors.** (A.) The immunoprecipitants
252 from non-transgenic control or transgenic TH17 trophozoites overexpressing HA-*Tvactin*
253 were separated by SDS-PAGE, followed by SYPRO Ruby staining. (B.) In-gel tryptic digests
254 were processed for a label-free quantitative proteomic analysis. The top five abundant
255 proteins were listed by their emPAI in descending order. The all identified proteins were
256 summarized in Table 1. (C.) *TvFACPα*-specific peptides identified by LC-MS/MS were
257 labeled in red to show the coverage. (D.) The full-length protein sequence of *TvFACPα* was
258 aligned with the *CPα* from human (*hCPα*, P52907), mouse (*mCPα*, P47753), and yeast (*yCPα*,
259 P28495). The conserved amino acid sequences are highlighted. The predicted Casein kinase
260 II phosphorylation sites are indicated by downward arrowheads, and the actin-binding domain
261 is boxed by a black dashed line.

262
263
264 **The non-canonical interaction of *TvFACPα* to α -actin**


265 Immunoprecipitation was performed to examine whether *TvFACPα* forms the protein complexes
266 with α -actin in *T. vaginalis*, with two major bands at \sim 30 and \sim 32 kDa recognized by an anti-HA
267 antibody in the total lysates. A 42-kDa α -actin and a 110-kDa α -actinin band were co-
268 immunoprecipitated from the trophozoites overexpressing HA-*TvFACPα* but not the non-transfected
269 control (Figure 5A). To further confirm the direct interaction of *TvFACPα* and α -actin, His-*TvFACPα*,
270 His- Δ 237 mutant, GST and GST-*Tvactin* were purified to homogeneity for the pull-down assay
271 (Figure 5B, left panel). When an equal amount of His-*TvFACPα* and His- Δ 237 were reacted with GST
272 or GST-*Tvactin* for the pull-down assay, the signal from His-*TvFACPα* but not His- Δ 237 was pulled
273 down with GST-*Tvactin*, showing that the c-terminal domain is vital for the direct binding of *TvFACPα*
274 and α -actin (Figure 5B, right panel).

275 The function of *TvFACPα* in actin assembly was analyzed by an *in vitro* polymerization assay.
276 When over \sim 95% G-actin polymerized into F-actin in F-buffer in the absence of His-*TvFACPα* (Figure
277 5C left panel), F-actin polymerization ratio was only \sim 25% in the presence of His-*TvFACPα*, of which
278 25% of His-*TvFACPα* co-sedimented with F-actin. By contrast, the polymerization ratio was 75% in
279 the presence of His- Δ 237, and less than 5% of His- Δ 237 could be co-sedimented with F-actin (Figure
280 5C), indicating that *TvFACPα* directly interacts with actin molecules to attenuate polymerization. Of
281 note, only 25% of *TvFACPα* co-sedimented with F-actin but it inhibited over \sim 70% F-actin formation
282 in the polymerization assay, suggesting that *TvFACPα* also binds G-actin to inhibit its polymerization.

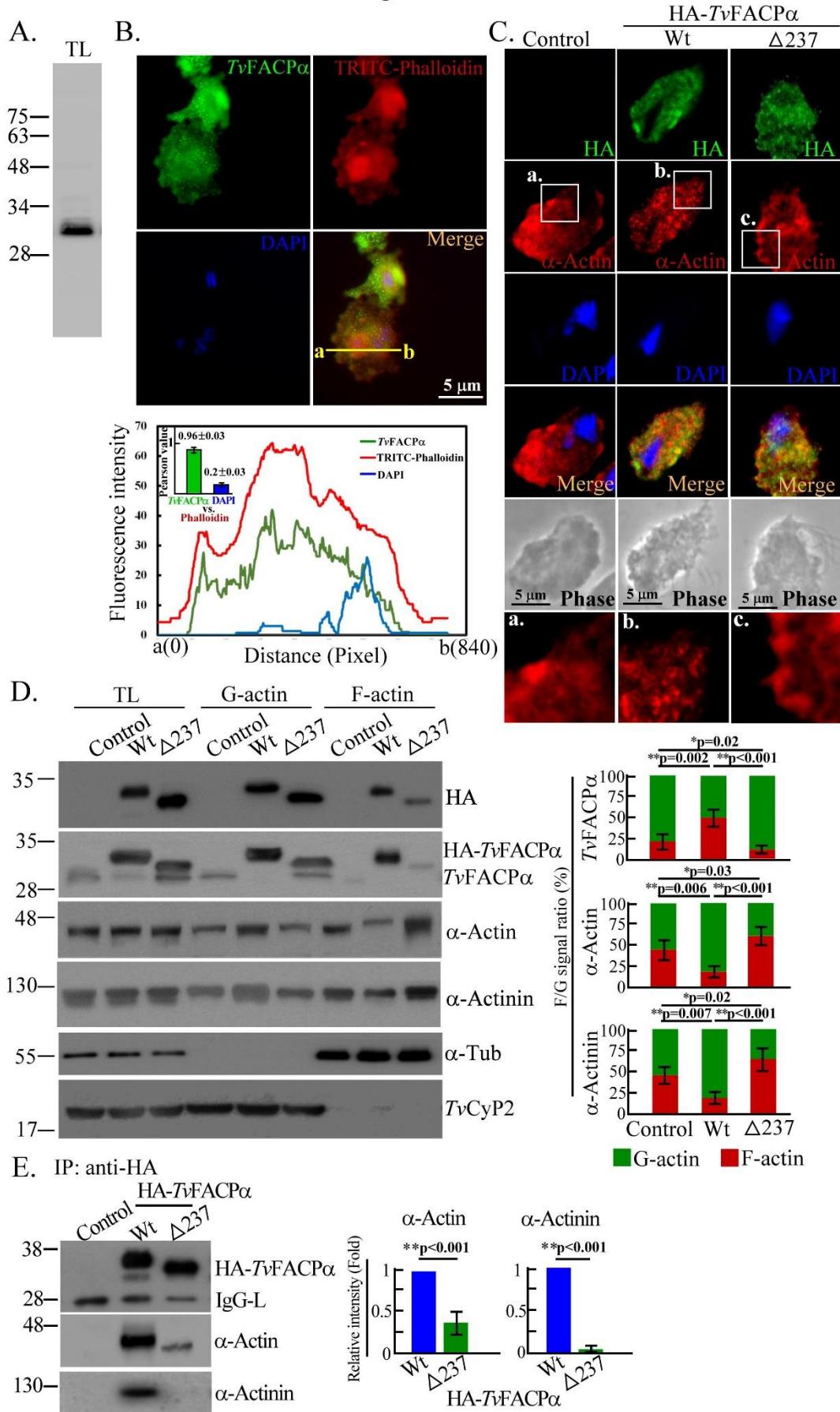
283 To determine the kinetics of *TvFACPα* binding G-actin and F-actin by a solid phase binding
284 immunoassay, two forms of actin were reacted with various concentrations of His-*TvFACPα* or His-
285 Δ 237 mutant to measure the K_d and B_{max} values (Figure 5D). The binding signal increased
286 with increasing concentration of His-*TvFACPα* or derived mutant, and plateaued in the presence of
287 over 20 μ M of His-*TvFACPα*. The binding curves show that His-*TvFACPα* binds F-actin with a K_d of
288 8.36 μ M and B_{max} of 1.35 and G-actin with a K_d of 4.45 μ M and B_{max} of 1.5. By contrast, His- Δ 237
289 binds both F-actin and G-actin with a similar B_{max} of \sim 0.5, only one-third of His-*TvFACPα* (Figure 5D)

290 inset table). In contrast with the canonical F-actin binding preference for high eukaryotic CP α , the *in*
 291 *vitro* assays demonstrated that *TvFACP* α bound G-actin with an affinity greater than F-actin to suppress
 292 actin polymerization.

Fig. 5

293

294 **Figure 5. Direct interaction of *TvFACPα* with G-actin and F-actin.** (A.) The total lysate
295 (TL) from non-transgenic control or transgenic TH17 trophozoites expressing HA-*TvFACPα*
296 was immunoprecipitated by anti-HA antibody (IP), followed by western blotting. GAPDH
297 was detected as the loading control. (B.) The purities of recombinant His-*TvFACPα* wild type
298 (Wt), His- Δ 237, GST, and GST-*Tvactin* were examined by SDS-PAGE with Coomassie blue
299 staining (left panel). Equimolar GST or GST-*Tvactin* immobilized on glutathione beads was
300 incubated with His-*TvFACPα* (Wt) or His- Δ 237 mutant for the GST pull-down assay. The
301 pull-down samples were blotted on PVDF membrane for western blotting with anti-6 \times His
302 antibody or for Ponceau S staining (right panel). 1/10 of the input protein was loaded for
303 positive control. (C.) *In vitro* actin polymerization assay was performed to react G-actin in
304 G- or F-buffer (left panel) or reaction in the presence of His-*TvFACPα*, His- Δ 237 or BSA
305 control (right panel). After ultracentrifugation, F-actin and its associates were isolated in the
306 pellet (P) from G-actin in the supernatant (S), then examined with western blotting by anti-
307 α -actin or anti-6 \times His antibody. The signal ratio of indicated protein in the supernatant versus
308 pellet (S/P) was quantified as shown in the histogram. (D.) The equimolar G-actin (G) and F-
309 actin (F) coated on a 96-well microplate were incubated with various concentrations of His-
310 *TvFACPα* (Wt) or His- Δ 237 (Δ 237) mutant. The saturation binding curve is plotted by the
311 OD₄₅₀ absorbance against various concentrations of His-*TvFACPα* or His- Δ 237 mutant
312 protein to create Scatchard plots and calculates K_d and B_{max} values as summarized in the inset
313 table. The assays were repeated three times. Data are presented as mean \pm SEM. Significant
314 difference with p-value for each group of data was statistically analyzed by Student's t-test
315 as indicated (n=3, P<0.01**, P<0.05*, and ns, no significance).
316
317


318 ***TvFACPα* represses F-actin assembly in *T. vaginalis***

319 By western blotting, the anti-*TvFACPα* antibody identified a ~30-kDa protein band in the total
320 lysate from TH17 trophozoites (Figure 6A) and colocalized with TRITC-phalloidin with the Pearson's
321 correlation coefficient value of 0.96, indicating the colocalization of *TvFACPα* with F-actin in this
322 parasite (Figure 6B). To further study if *TvFACPα* regulates F-actin polymerization, HA-*TvFACPα*
323 wild type or actin-binding domain deletion mutant Δ 237 were overexpressed in TH17 trophozoites.
324 By IFA, HA-*TvFACPα* was detected as network-like structures extending extensively into the
325 cytoplasm and slightly intense immunostaining condensed near the cell membrane (Figure 6C). In the
326 non-transgenic control TH17, α -actin was distributed in the cytoplasm as fine-dense tubular networks.
327 However, cytoplasmic α -actin was observed as numerous stubby rods with punctate signals in HA-
328 *TvFACPα*-overexpressed TH17, and the pattern in Δ 237 transfectants was similar to that in the non-
329 transgenic TH17 control, indicating that *TvFACPα* overexpression may alter α -actin organization in
330 this parasite.

331 In western blotting, HA-*TvFACPα* or Δ 237 were overexpressed at a level ~5-fold higher than
332 the endogenous form in the non-transgenic control, and the former inhibited endogenous *TvFACPα*

333 expression in the transfectant (Figure 6D), suggesting that this parasite may have a feedback
334 mechanism to maintain cellular *TvFACPα* levels. Western blotting showed that the expression of α -
335 actin or α -actinin did not change between transfectants (Figure 6D). Actin fractionation revealed that
336 ~45% F-actin co-sedimented with ~25% *TvFACPα* in the non-transgenic TH17 control. In transfectants
337 overexpressing HA-*TvFACPα*, the F-actin level reduced to ~25% but co-sedimented HA-*TvFACPα*
338 was ~2-fold higher than the endogenous form of the non-transfectant. In the $\Delta 237$ mutant, the F-actin
339 ratio was slightly higher but co-sedimented $\Delta 237$ was lower than the non-transfectant, therefore,
340 *TvFACPα* may repress actin polymerization. A similar trend was observed for α -actinin. By
341 immunoprecipitation, co-precipitated α -actin and α -actinin were detected in HA-*TvFACPα* but much
342 less in the $\Delta 237$ mutant (Figure 6E), indicating that actin-binding activity is essential for *TvFACPα* to
343 inhibit actin assembly.

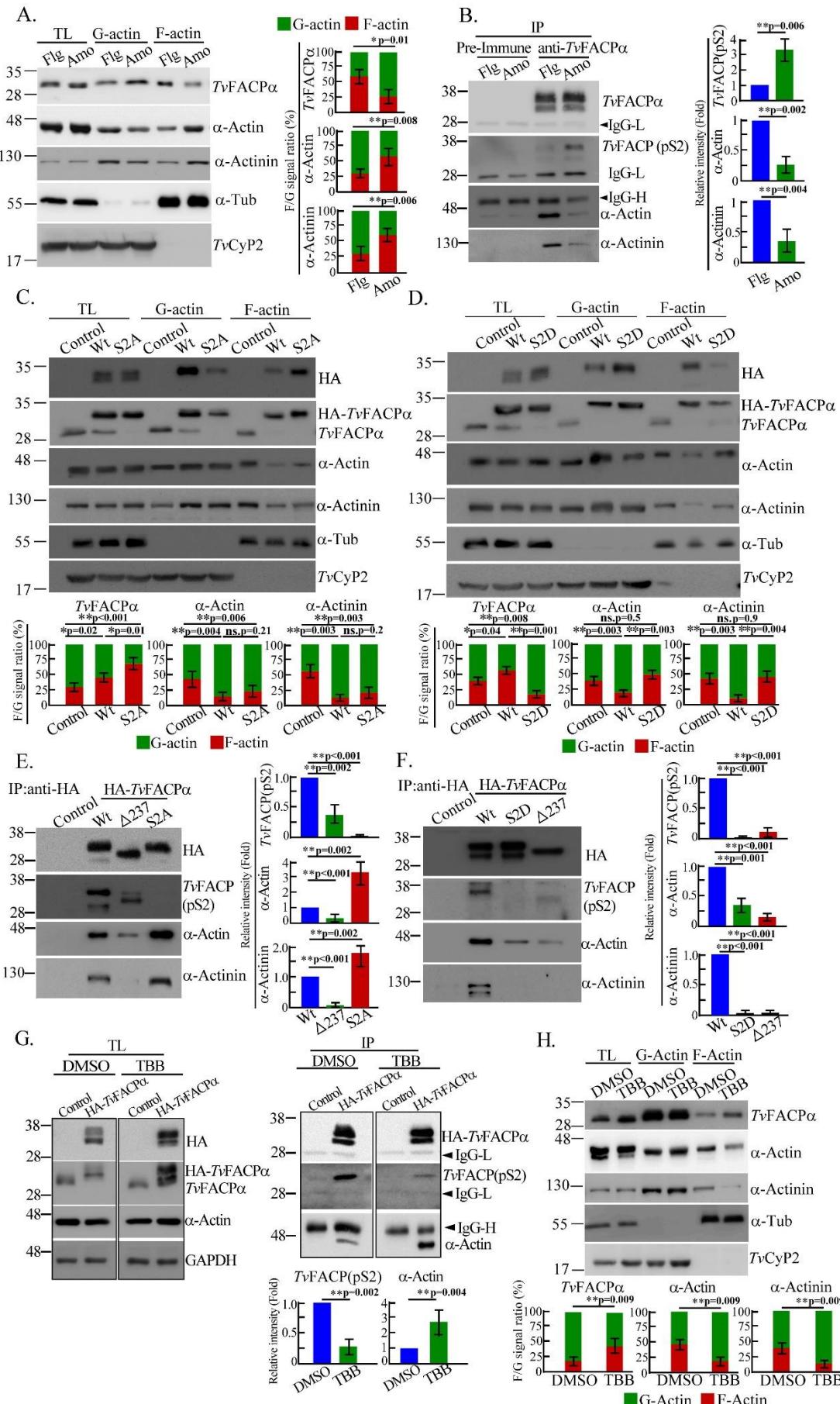
Fig. 6

345 **Figure 6. *TvFACPα* binds actin to block F-actin assembly in *T. vaginalis*.** (A.) The total
346 lysate from TH17 trophozoites was subjected to western blotting with an anti-*TvFACPα*
347 antibody. (B.) TH17 trophozoites cultivated on a glass slide were co-stained with anti-
348 *TvFACPα* antibody and TRITC-Phalloidin. Signal was assessed by the plot profile analysis
349 to display intensity distribution between sites a to b on the yellow line. The colocalization of
350 phalloidin with α -actin or DAPI was evaluated by Pearson correlation coefficient as shown
351 in the inset histogram. Data are presented as mean \pm SEM. Scale bar: 5 μ m. (C.) The IFA
352 from the non-transgenic control and transgenic TH17 trophozoites overexpressing HA-
353 *TvFACPα* or Δ 237 were detected by anti-HA and anti- α -actin. The magnified regions were
354 boxed and images are shown in a-c. Scale bar: 5 μ m. (D.) Total lysates and actin fractionations
355 from non-transgenic control and transgenic TH17 trophozoites were examined by western
356 blotting. The ratio of indicated protein signal in F-actin and G-actin fractions (F/G) was
357 analyzed as shown in the histogram. (E.) The total lysates from the trophozoites as shown in
358 (D.) were immunoprecipitated with an anti-HA antibody for western blotting. The relative
359 intensity of indicated protein signal was measured and shown in the histogram. All assays
360 were repeated three times. Data in histogram are presented as mean \pm SEM. Statistical
361 significance with p-value for each group of data was analyzed by Student's t-test as indicated
362 ($n=3$, $P<0.01^{**}$, $P<0.05^*$, and ns, no significance).

363

364

365 ***TvFACPα* function in actin polymerization is regulated by CKII signaling.**

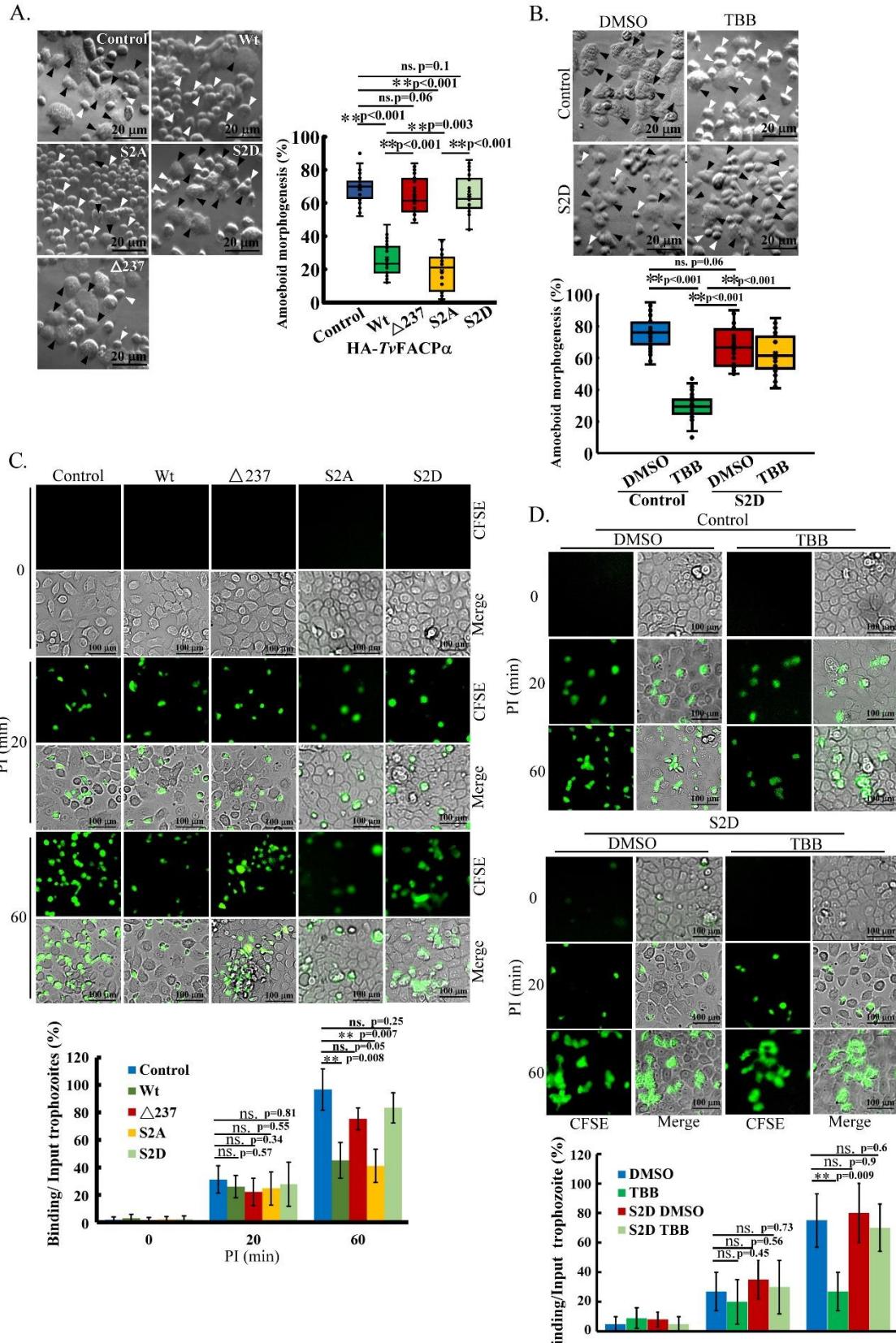

366 Compared to the nonadherent T1 isolate, more *TvFACPα* and α -actin were detected in adherent
367 TH17 isolates but less *TvFACPα* co-sedimented with F-actin (Figure 7-Figure Supplement 1). The
368 immunostaining of α -actin was different between the flagellate and amoeboid forms of the adherent
369 isolate (Figure 2B), with equal amounts of *TvFACPα*, α -actin, and α -actinin detected in the total lysates
370 (Figure 7A). The F-actin ratio in the amoeboid trophozoites was two-fold higher than the flagellate
371 form (Figure 7A), whereas the *TvFACPα* co-sedimented with F-actin in amoeboid trophozoites was
372 two-fold lower than flagellate form. A similar trend was observed for α -actinin, indicating that adhered-
373 amoeboid *T. vaginalis* displays more active F-actin polymerization and less *TvFACPα* binding α -actin.

374 Regarding the post-translation modifications of *TvFACPα*, *TvFACPα* Ser² was previously
375 predicted as a CKII phosphorylation sites (Figure 4D) potentially recognized by a phospho-motif
376 (pS/pTDXE)-specific antibody, referred to as *TvFACP(pS2)*. When *TvFACPα* was equally
377 immunoprecipitated from the trophozoites, more *TvFACP(pS2)* but less α -actin and α -actinin were co-
378 pulled down from the amoeboid trophozoites than the flagellate form (Figure 7B). Ser² hyper-
379 phosphorylation enriched in the amoeboid form trophozoites, in which *TvFACPα* binding α -actin or
380 α -actinin was low. To confirm the role of Ser² phosphorylation in the complex formation of *TvFACPα*
381 and α -actin, hypo-phosphorylation mimic S2A or hyper-phosphorylation mimic S2D mutant were
382 introduced into TH17 trophozoites for actin fractionation and immunoprecipitation. The overall level
383 of α -actin and α -actinin were similar in the total lysates from *TvFACPα*, S2A, and S2D transfectants.

384 Compared to the non-transgenic control, both HA-*TvFACP* α and S2A overexpression repressed F-actin
385 levels in the transfectants, with higher levels of co-sedimented HA-*TvFACP* α or S2A in the F-actin
386 fraction (Figure 7C). By contrast, a similar level of F-actin was detected in the non-transfector and
387 S2D mutants but co-sedimented S2D in the F-actin fraction was lower than HA-*TvFACP* α (Figure 7D).
388 Similar results were obtained for α -actinin. Furthermore, α -actin signals co-immunoprecipitated from
389 the S2A and S2D mutant were three-fold higher and 70% lower respectively than HA-*TvFACP* α
390 (Figures 7E and 7F), with the low signal intensity of α -actin co-immunoprecipitated with Δ 237 mutant,
391 implying that Ser² phosphorylation is crucial for the actin-binding activity of *TvFACP* α . Meanwhile,
392 the low intensity of *TvFACP*(pS2) signal precipitated from Δ 237 mutant implying that the actin-
393 binding domain integrity might be important for Ser² phosphorylation. Ser² phosphorylation is a major
394 signal for the dissociation of *TvFACP* α and α -actin. The undetectable *TvFACP*(pS2) signal in the S2A
395 or S2D mutant proves the antibody specificity.

396 To verify whether Ser² phosphorylation is regulated by CKII signaling, TH17 trophozoites
397 overexpressing HA-*TvFACP* α were treated with DMSO or TBB for immunoprecipitation and actin
398 fractionation, showing that the overall expression of HA-*TvFACP* α or α -actin was not influenced by
399 TBB treatment. When an equal amount of HA-*TvFACP* α was immunoprecipitated from the
400 trophozoites treated with or without TBB, decreasing *TvFACP*(pS2) but increasing α -actin signals were
401 detected in the co-immunoprecipitants from the parasite treated by TBB (Figure 7G). Furthermore, the
402 overall expression of *TvFACP* α , α -actin, and α -actinin remained constant in TH17 trophozoites with or
403 without TBB treatment, and when F-actin in TBB-treated parasite was inhibited to one-third of the
404 basal level, the *TvFACP* α co-sedimented with F-actin was three-fold higher than the DMSO control
405 (Figure 7H). In summary, CKII-dependent Ser² phosphorylation triggers dissociation of *TvFACP* α and
406 α -actin to evoke actin polymerization.

Fig. 7


408 **Figure 7. CKII signaling regulates actin-binding of *TvFACPα*.** (A.) Total lysates from
409 TH17 trophozoites in the flagellate (Flg) and amoeboid (Amo) forms were fractionated to
410 determine the ratio of indicated protein signal in F-actin to G-actin (F/G) by western blotting.
411 (B.) The immunoprecipitants from total lysates from (A.) by anti-*TvFACPα* antibody were
412 examined by western blotting. (C., D.) Total lysates from the non-transgenic control or TH17
413 trophozoites overexpressing HA-*TvFACPα* and S2A as shown in (C.), or S2D as shown in
414 (D.), were fractionated for western blotting. The ratio of indicated protein signal from F-actin
415 and G-actin fractions (F/G) was analyzed as shown in the histogram. (E., F.) The total lysates
416 from trophozoites overexpressing HA-*TvFACPα* and S2A as shown in (E.) or S2D as shown
417 in (F.), were immunoprecipitated by an anti-HA antibody for western blotting. The relative
418 intensities of indicated signals were quantified as shown in the histograms. (G.) The total
419 lysates from the non-transgenic control or HA-*TvFACPα*-overexpressed TH17 trophozoites
420 with DMSO or TBB treatment were sampled for western blotting (left panel) or
421 immunoprecipitation by anti-HA antibody (right panel). The relative intensities of signals
422 were quantified as shown in the histogram. (H.) TH17 trophozoites treated with DMSO or
423 TBB were fractionated for western blotting. The ratio of indicated protein signal in F-actin
424 and G-actin fractions (F/G) was quantified as shown in the histogram. All assays were
425 repeated three times. Data are presented as mean \pm SEM. Statistical significance with p-value
426 for each group of data was measured by Student's t-test as indicated (n=3, P< 0.01**,
427 P<0.05**, and ns, no significance).

428
429
430 ***TvFACPα* in morphogenesis and cytoadherence of *T. vaginalis*.**

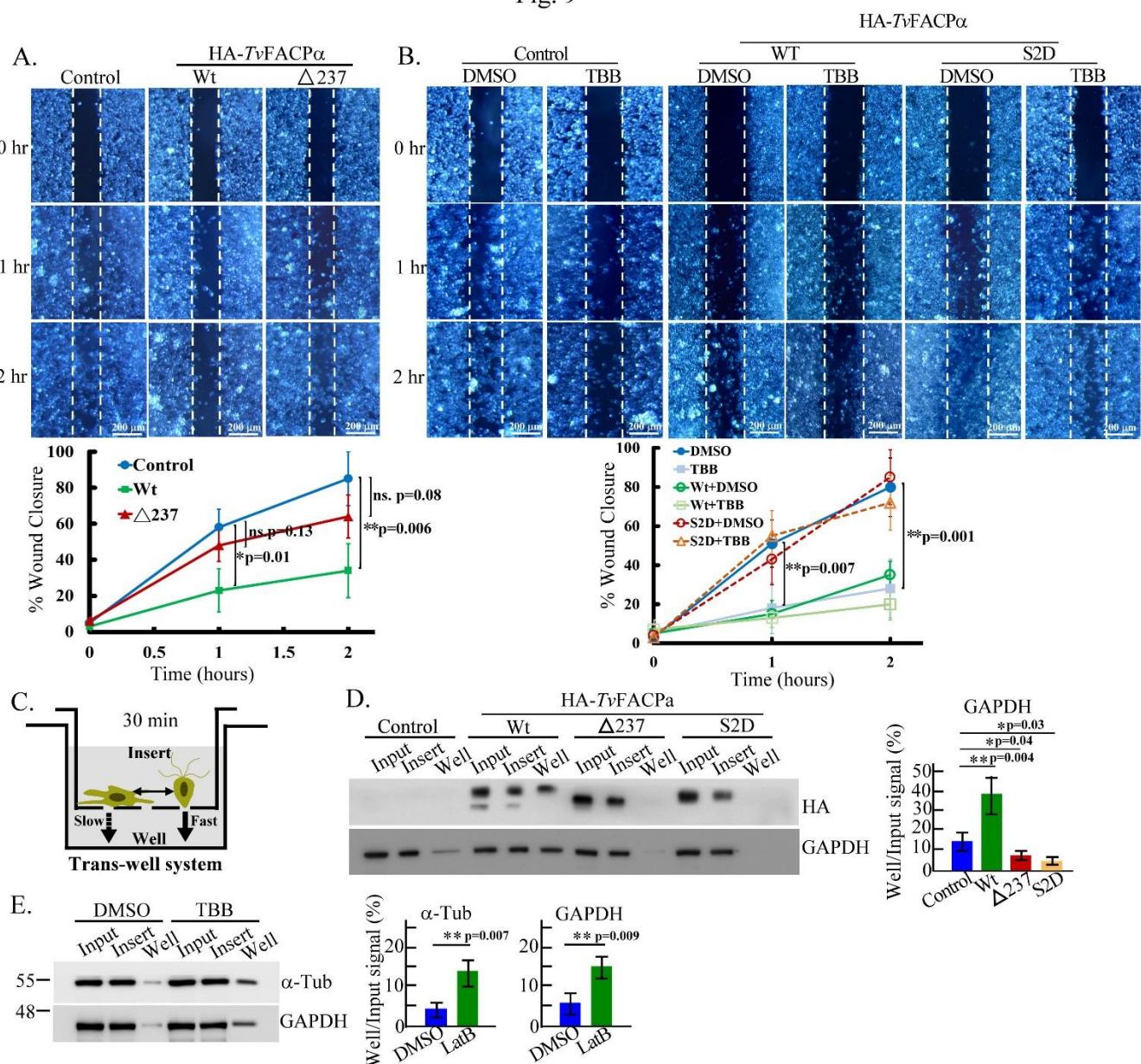
431 To examine the role of Ser² phosphorylation on cytoskeleton behaviors, the morphogenesis of
432 TH17 trophozoites overexpressing HA-*TvFACPα* and derived mutants was observed by phase-contrast
433 microscopy. Morphogenesis in the trophozoites overexpressing HA-*TvFACPα* and S2A was reduced
434 to ~20% compared to ~70% morphogenesis in the non-transgenic control, whereas it was restored to
435 ~70% in the Δ 237 and S2D mutants (Figure 8A). TBB treatment also reduced the morphological
436 transformation of TH17 trophozoites from ~80% in DMSO control cells to ~30% in the TBB-treated
437 trophozoites. Notably, the TBB effect inhibiting morphogenesis was abolished in the S2D transfectant,
438 suggesting that CKII-dependent Ser² phosphorylation in *TvFACPα* is crucial to the regulation of
439 morphogenesis in *T. vaginalis* (Figure 8B). The differential cytoadherence of various HA-*TvFACPα*
440 transfectants was monitored over time, showing that the non-transgenic TH17 trophozoites achieved
441 ~100% cytoadherence 60-min post-infection, reducing to ~40% in HA-*TvFACPα* and S2A
442 transfectants and increasing to ~80% in Δ 237 and S2D transfectants. TBB treatment also significantly
443 reduced the cytoadherence 60-min post-infection and this effect was abrogated in the S2D transfectant
444 (Figure 8D). Notably, the overexpression of HA-*TvFACP* and related mutants or TBB treatment did
445 not affect the cytoadherence at the initial 20-min infection (Figure 8C). These findings were consistent
446 with our previous observation that LatB only perturbed cytoadherence from the staging 60-min post-

447 infection (Figure 3D). The data strongly supports that CKII-dependent Ser² phosphorylation regulates
 448 *TvFACPα* function in cytoskeleton-mediated morphogenesis and consequential cytoadherence of *T.*
 449 *vaginalis*. The morphogenesis capacity of this parasite tightly correlates its cytoadherence.

Fig. 8

451 **Figure 8. *TvFACPα* regulates actin-related morphogenesis and cytoadherence in *T.***
452 ***vaginalis*.** (A., B.) Non-transgenic control and transgenic TH17 trophozoites overexpressing
453 HA-*TvFACPα*, Δ 237, S2A, and S2D as shown in (A.), and the non-transgenic TH17
454 trophozoites and those overexpressing S2D with DMSO and TBB as shown in (B.), were
455 cultured on the glass slide for 1 hr. The cell morphology was recorded by phase-contrast
456 microscopy. The proportion of parasites in amoeboid form was measured in ~600
457 trophozoites from 12 microscopic fields as shown in the box and whisker plots. The black
458 and white arrowheads respectively indicate the representative amoeboid and flagellate forms
459 of trophozoites. Scale bar: 20 μ m. (C., D.) For the cytoadherence binding assay, the CFSE-
460 labeled trophozoites overexpressing HA-*TvFACPα* and derived mutants as shown in (C.), or
461 the non-transgenic or S2D transgenic TH17 trophozoites pretreated with DMSO and TBB as
462 shown in (D.), were co-cultured with *hVECs* for the indicated timeframes. After removing
463 unbound trophozoites, the ratios of those binding versus input was measured as shown in the
464 histograms. Scale bar: 100 μ m. All assays were repeated three times. Data in histogram are
465 presented as mean \pm SEM. Statistical significance with p-value for each group of data was
466 analyzed by Student's t-test as indicated (n=3, $P<0.01^{**}$, $P<0.05^{**}$, and ns, no significance).
467
468

469 **The function of *TvFACPα* in amoeboid migration.**


470 The conversion of morphology and motility is the dominant features in adherent isolates (Video
471 1) and retarded by LatB (Figure 3C), so we investigated the role of *TvFACPα* in amoeboid migration.
472 Since cytoskeletal disorder retarded the morphogenesis and reduced the adherent activity of *T.*
473 *vaginalis*, the conditional trophozoites had to be sufficiently cultured in the T25 flask until forming a
474 confluent parasite monolayer for the wound heal assay. The wound recovery rate was significantly
475 suppressed in the TH17 trophozoites overexpressing HA-*TvFACPα* but the rate was similar in the non-
476 transgenic control and Δ 237 mutant, indicating that actin-binding activity is essential for *TvFACPα* to
477 reduce the amoeboid migration (Figure 9A). Also, the wound recovery rate in the non-transgenic
478 parasite was inhibited by TBB to a similar level to the HA-*TvFACPα* transfectant. By contrast, the
479 wound closure rate in the S2D mutant was similar to the non-transgenic parasite and not influenced by
480 TBB treatment (Figure 9B), revealing that the S2D mutant counteracted the TBB inhibitory effect on
481 amoeboid migration. This observation indicates that CKII-dependent Ser² phosphorylation might play
482 a key role in *TvFACPα*-regulated amoeboid migration.
483

484 ***TvFACPα* regulates motility switching in *T. vaginalis*.**

485 Next, we tested whether parasite motility is changed with the morphology transition using the
486 trans-well system (Figure 9C). The relative GAPDH signal in the western blotting indicates the relative
487 amount of migratory trophozoites between the bottom wells and top inserts. When GAPDH expression
488 was equal in the input trophozoites, the HA signal was also similar between the transfectants. Focusing
489 GAPDH signal from the bottom well of the 30-min trans-well plate, HA-*TvFACPα* was higher but

490 $\Delta 237$ and S2D mutants were lower than the non-transgenic control, revealing that more trophozoites
 491 with HA-*TvFACP* α overexpression migrated into the bottom well in a short time (Figure 9D). As
 492 observed by microscopy, the trophozoites in the bottom well displayed the morphology at the free-
 493 swimming flagellate form (Figure 9-Figure Supplement 1), suggesting that HA-*TvFACP* α
 494 overexpression may retain the parasite in the flagellate form with faster movement driven by motile
 495 flagellum. The motility conversion involved actin binding activity regulated by Ser² phosphorylation.
 496 TBB inhibited Ser² phosphorylation in *TvFACP* α (Figure 7G), with the GAPDH signal from the TBB-
 497 treated trophozoites in the bottom well higher than in the DMSO-treated trophozoites (Figure 9D).
 498 Together, *TvFACP* α Ser² hypo-phosphorylation retarded amoeboid migration in the adhered
 499 trophozoites but expanded the population of free trophozoites that rapidly moved via flagellar
 500 locomotion (Figure 9E).

Fig. 9

501

502 **Figure 9. *TvFACP* α regulates amoeboid migration and motility switching of *T. vaginalis*.**

503 (A., B.) The migrations of non-transgenic control and TH17 trophozoites overexpressing HA-
504 *TvFACPα* and Δ 237 in (A.), those overexpressing HA-*TvFACPα* and S2D with DMSO or
505 TBB treatment in (B.), were evaluated by a scratch wound healing assay. The representative
506 images showing wound closure were captured at 0, 1, and 2 hr, and the closure rate was
507 measured by the percentage of wound recovery area at indicated time points as shown in the
508 line charts. The white dash lines mark the wound scratched boundaries. Scale bar: 200 μ m.
509 (C.) A schematic diagram illustrates the working principle of a trans-well system applied to
510 assess migration. Within a short interval, the free trophozoites swim by flagellar locomotion
511 to pass through the boundary membrane faster than crawling by pseudopodia migration. (D.,
512 E.) The migrations of TH17 trophozoites overexpressing HA-*TvFACPα*, Δ 237, and S2D in
513 (D.), TH17 trophozoites treated with DMSO and TBB in (E.), were evaluated by trans-well
514 assay. The relative intensities of signals in the bottom well were evaluated by western blotting
515 and quantified as shown in the histograms. All assays were repeated three times. Data are
516 presented as mean \pm SEM. Statistical significance with p-value for each group of data was
517 statistically measured by Student's t-test as indicated (n=3, $P<0.01^{**}$, $P<0.05^{**}$, and ns, no
518 significance).
519
520

521 Discussion

522 *TvFACPα* was identified as an actin-binding protein that suppressed actin polymerization via the
523 direct interaction with G-actin monomers and F-actin polymers. Furthermore, CKII-dependent
524 signaling plays a key in the switch from morphology and motility. These cytoskeleton-mediated
525 behaviors are crucial for optimizing the cytoadherence and population spread of this parasite. In the
526 human urogenital tract, the intermittent flushing action of body fluid generates a mechanical barrier to
527 either impair or eliminate the retention of uropathogenic microbes, therefore switching to the opportune
528 motility mode to instantly counteract the environmental challenges or physical defenses would be
529 beneficial for *T. vaginalis* colonization (37).

530 Unfortunately, the real-time tracking system for fluorescence protein within a living parasite did
531 not work in our assay system, so the overall actin assembly and cytoskeleton activities were evaluated
532 by western blotting and IFA to show the relevance of *TvFACPα* and actin dynamics in the adherent
533 trophozoites under a steady-state condition.

534 The DNA sequences of the *tvfacpα* gene from nonadherent and adherent *T. vaginalis* isolates share
535 100% identity (38), thus the differential cytoskeleton behaviors between isolates are unlikely to be
536 attributed to sequence polymorphism in *TvFACPα*. Meanwhile, α -actin overexpression dose not
537 promote adherence in the nonadherent isolate, thus cytoskeleton-dependent cytoadherence is unlikely
538 to be determined by one single molecule.

539 Compared to the nonadherent T1 isolate, more *TvFACPα* and α -actin were detected in adherent
540 TH17 isolates but less *TvFACPα* co-sedimented with F-actin (Figure 7-Figure Supplement 1), possibly
541 explaining why the adherent isolate displays more active cytoskeleton behaviors than the nonadherent

542 isolate. Furthermore, the adherent isolate may require a larger *TvFACPα* reservoir to immediately
543 modulate cytoskeleton dynamics in response to sudden environmental challenges.

544 The perinuclear actin cap was observed in the trophozoite with dividing nuclei. One of the known
545 functions of the perinuclear actin cap is to govern nuclear location and movement during nuclear
546 division (39), therefore F-actin may function in the nuclear division of this parasite. When there was
547 colocalization of *TvFACPα* and F-actin at the leading edge of the extending pseudopodia, there was
548 less colocalization observed near the actin cap (Figure 6), suggesting that F-actin bundle assembly in
549 peripheral motile structure is presumably manipulated by *TvFACPα*, distinct from that in the central
550 juxtanuclear actin cap. Human CKIP-1 protein containing pleckstrin homology domain directs CPα to
551 the cell membrane periphery and bridges the interaction of CPα with CKII kinase to co-regulate cell
552 morphology (33, 34).

553 *TvFACPα* Ser² identified as a CKII phosphorylation site is conserved with Ser⁹ on human or yeast
554 CPα (Figure 4D) (33, 34, 40). Human CPα Ser⁹ has been demonstrated to be phosphorylated by CKII
555 kinase but does not directly affect actin assembly (33), indicating that the regulation of human CPα is
556 divergent to *TvFACPα* in this early evolutionary-branched protozoan. Also, yeast CPα Ser⁹ resides in
557 the stalk domain but not the actin-binding domain, thus Ser² phosphorylation may not directly interfere
558 with *TvFACPα* actin-binding, instead altering function by an allosteric effect or binding with other CPα
559 interacting partners to co-regulate actin dynamics (40).

560 Iron was previously found to trigger a protein kinase A-dependent signaling to activate the Myb3
561 transcription factor sequential phosphorylation and ubiquitination essential to its nuclear translocation
562 (48). However, iron was observed to slightly change *T. vaginalis* morphogenesis long-term cultured in
563 iron-restricted growth medium, so whether iron triggers the CKII pathway to regulate cytoskeleton
564 dynamics in this parasite remains to be elucidated.

565 When the gain- or loss-of-function assay was employed to study the role of Ser² phosphorylation,
566 F-actin assembly was repressed in the hypo-phosphorylation mimic S2A mutant but restored to near
567 the basal level instead of exceeding it in the hyper-phosphorylation mimic S2D mutant. This implies
568 the existence of additional pathways promoting F-actin assembly under our tested conditions. For
569 example, *TvFim1* protein reveals an opposite function to *TvFACPα* to accelerate F-actin polymerization
570 that favors phagocytosis and migration in *T. vaginalis* (35). In TrichDB database, BLAST analysis
571 identified two CPα homologous proteins (TVAG_470230 and TVAG_212270) with 32% sequence
572 similarity (Figure 4-Figure Supplement 2) but whether they are functionally redundant in this parasite
573 remains to be studied.

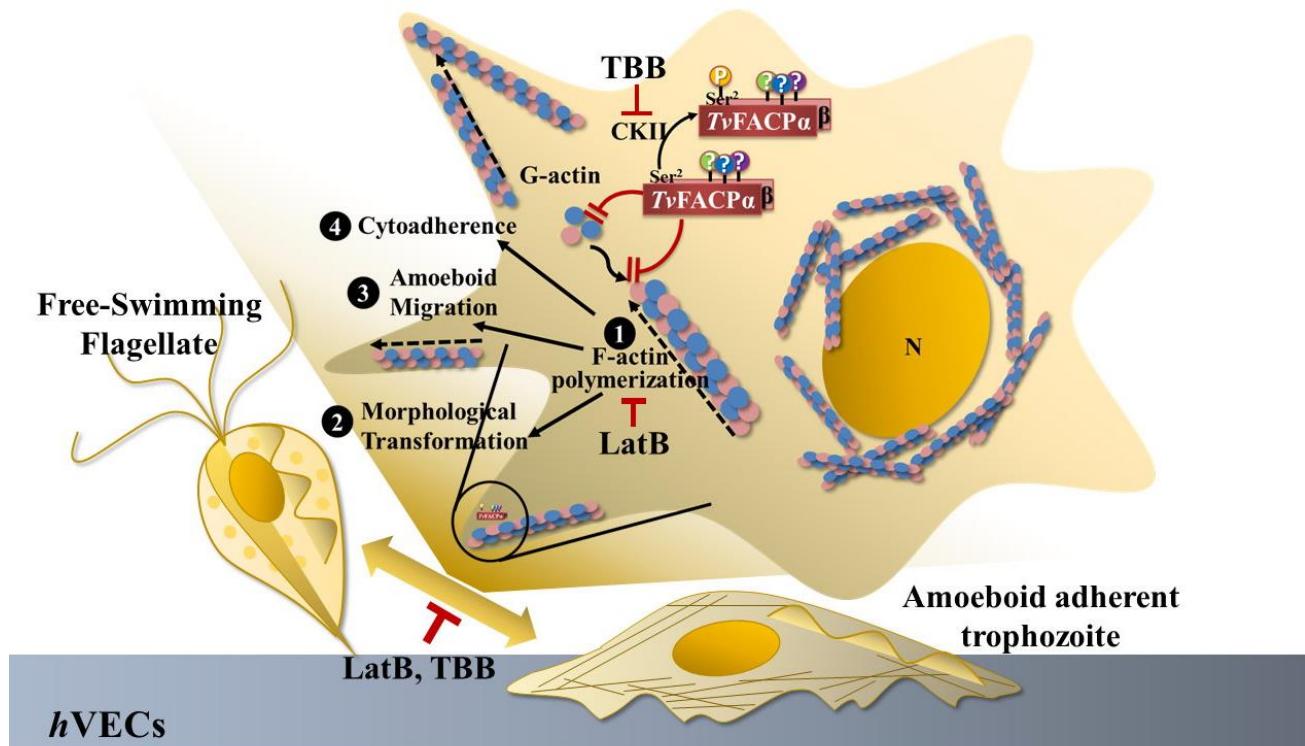
574 A previous proteomic study reported that surface fibronectin-binding might change actin
575 expression in this parasite. In this report, α-actin expression was constant in the free-swimming
576 flagellate or adhered-amoeboid forms, implying less involvement of fibronectin-binding in the
577 morphogenesis and cytoadherence under our test condition (15).

578 Mass spectrometry data revealed GAPDH as a major interacting partner of *Tvactin*. In chicken
579 neuron cells, GAPDH acts as a chaperone for α-actin and co-translocates with α-actin to specialized
580 axon sites for polymerization (41). In yeast, GAPDH associates with α-actin and RpB7 subunit of RNA

581 polymerase II to regulate transcription (42, 43). The significance of GAPDH complexed with the actin
582 cytoskeleton in *T. vaginalis* remains to be studied.

583 The EC₅₀ of TBB is varied in different cell types. Numerous CKII alpha subunit (CKIIα) proteins
584 predicted from TrichDB shared less sequence consensus in the TBB binding pocket to high eukaryotic
585 CKIIα (38, 44), possibly explaining why Ser² phosphorylation and downstream cytoskeleton activities
586 were partially inhibited by TBB treatment. Again, the S2D mutation was unable to promote actin
587 polymerization efficiency beyond that of the non-transgenic parasite, suggesting that actin filament
588 growth might be modulated by additional pathways.

589 The opportunistic amoeba, *Naegleria fowleri*, exists in three life stages: flagellate trophozoite,
590 amoeba trophozoite, and cyst. Multiple environmental factors, like growth temperature, cation level,
591 steroid hormone, or chemical agents, affect the flagellate to amoeba transformation (45, 46, 47). In *T.*
592 *vaginalis*, other than the contact-dependent effect (14, 18, 35), the factors that trigger the morphological
593 transition are virtually unknown. Overexpression of actin increases the phagocytosis and cytotoxicity
594 of *N. fowleri* (20) but does not affect *T. vaginalis*. (Figure 2-Figure Supplement 1). Although they have
595 the cognate behavior of flagellate-amoeba conversion, their regulation in these two protozoa is distinct.
596 The immediate conversion to motility may allow the parasite to rapidly respond to environmental
597 fluctuations or flushing by humoral fluid flow in the urogenital tract (37).


598 LatB had little effect on the initial 20-min cytoadherence and surface expression of adhesion
599 molecules, AP, PFO, and cadherin, thus we speculate that the adhesion molecules on the cell surface
600 may play roles in the initial cytoadherence, thereafter actin-based morphogenesis reinforces
601 cytoadherence at the later stage of cytoadherence (49). In our previous study, *TvCyp2* was
602 demonstrated to shuttle between intracellular membrane compartments, involving the endoplasmic
603 reticulum, Golgi apparatus, and hydrogenosome before translocation onto the cell membrane (50). The
604 cell surface presentation of adhesion proteins may occur through similar endomembrane trafficking
605 routes.

606

607 Conclusion

608 In conclusion, *TvFACPα* directly binds G- or F-actin to block actin filament extension (Figure
609 10), with Ser² phosphorylation on *TvFACPα* decreasing actin-binding activity and triggering actin
610 polymerization. In adherent *T. vaginalis* trophozoites, *TvFACPα* spatially colocalizes with actin
611 molecules at the membrane periphery of motile protrusive pseudopodia, where *TvFACPα* regulates
612 actin assembly dynamics to control the cytoskeleton behaviors of motility switching, amoeboid
613 migration, or cytoadherence consequent to the morphogenesis. The Ser² phosphorylation status is
614 crucial for *TvFACPα* function in the regulation of cytoskeleton behaviors. The cytoskeleton-driven
615 activities are also inhibited by a cytoskeleton (LatB) or CKII (TBB) inhibitor. These findings may
616 provide potential therapeutic targets for cytoskeleton aspects to prevent *T. vaginalis* colonization and
617 transmission.

Fig. 10

Figure 10. The proposed model for *TvFACPα* function and regulation. *TvFACPα* is an actin-binding protein containing a c-terminal actin-binding domain and CKII-dependent Ser² phosphorylation. *TvFACPα* directly interacts with G-actin and F-actin through the actin-binding domain, and Ser² phosphorylation is the essential signal triggering dissociation of *TvFACPα* and α -actin. *TvFACPα* colocalizes with actin at the leading edge of the peripheral motile protrusions inhibiting actin filament polymerization ①, leading to the diminishment of the flagellate-amoeboid transformation and motility switching ②, amoeboid migration ③, and the cytoadherence ④ in this parasite. As expected, the above behaviors were also inhibited by TBB and LatB, supporting the significance of CKII and cytoskeleton activities on parasitism. Tight adherence and immediate migration conversion may be approaches adopted by this parasite to counteract environmental fluctuations or evade the host defense. This novel mechanism of *T. vaginalis* cytoadherence may provide new therapeutic targets for future treatment.

Materials and Methods

Cell cultures

T. vaginalis trophozoites were cultured in TYI medium at 37°C (48). Two *T. vaginalis* isolates, nonadherent T1 (48) and adherent TH17, were used in this study. T1 with only flagellate trophozoites freely swim in the medium suspension. TH17 displayed vigorous morphogenesis and tightly adhered

639 on glass surface of culture tube. Once the void surface is saturated by adhered trophozoites, the
640 unbound parasite at the flagellate form freely swims in the medium suspension (Figure 1 and Videos 1
641 and 2). The flagellate trophozoites in the medium suspension and adherent trophozoite on the culture
642 tube surface were collected for analysis as described below. Human vaginal epithelium cells (*h*VECs,
643 VK2/E6E7) were cultivated in Keratinocyte-Serum Free medium (Thermo Fisher Scientific,
644 Massachusetts, USA) at 37°C in 5% CO₂ as the suggestion by ATCC.

645

646 **Lysate preparation from adherent-amoeboid and nonadherent-flagellate trophozoites.**

647 Approximately 2×10⁷ trophozoites from TH17 adherent isolate were inoculated into culture tube
648 with 15 ml of medium and incubated at 37°C for 2 hr. The free-trophozoites in suspension were
649 transferred to a new tube and recovered by centrifugation. The cell pellet was lysed in 1 ml lysis buffer
650 (1% Triton X-100, 1× Protease inhibitor cocktail, 1×Phophatase inhibitor cocktail, 100 µg ml⁻¹ TLCK,
651 5 mM EDTA, in TBS). The trophozoites adhering to the glass tube were directly lysed by adding 1 ml
652 lysis buffer and vigorously vortexing for 5 min at 4°C.

653

654 **Plasmid construction**

655 The full-length coding sequence of the *tvfacpα* gene (TVAG_470230) was amplified from *T. vaginalis*
656 genomic DNA using the primer pair of *TvFACPα*-BamHI-5' and *TvFACPα*-XhoI-3'. The PCR
657 product was gel-purified, then digested by BamHI/XhoI, and ligated into BamHI/XhoI-predigested
658 Flp-HA-*TvCyP2* or pET28a backbone plasmid to obtain Flp-HA-*TvFACPα* or pET28-His-*TvFACPα*
659 plasmid. Following a similar procedure, the DNA fragments were amplified from Flp-HA-*TvFACPα*
660 individually using the primer pairs, *TvFACPα*S2A-5' and *TvFACPα*-XhoI-3' for the S2A mutation,
661 *TvFACPα*S2D-5' and *TvFACPα*-XhoI-3' for the S2D mutation, and *TvFACPα*-BamHI-5' and
662 *TvFACPα*△237-3' for the actin-binding domain deletion mutant (△237). The PCR products were gel-
663 purified and subcloned into Flp-HA-*TvFACPα* or pET28a backbone with BamHI/XhoI sites to generate
664 Flp-HA-*TvFACPα*(S2A), Flp-HA-*TvFACPα*(S2D), Flp-HA-*TvFACPα*(△237), or pET28-His-
665 *TvFACPα*(△237) plasmid.

666 To express HA-tagged α-actin in *T. vaginalis* or glutathione S-transferase (GST) fused-α-actin
667 for the GST pull-down or actin polymerization assays, the full-length coding sequence of the *tvactin*
668 gene (TVAG_337240) was amplified from *T. vaginalis* genomic DNA by the primer pair of *Tvactin*-
669 BamHI-5' and *Tvactin*-XhoI-3'. The gel-purified PCR product was digested with BamHI and XhoI,
670 then ligated into BamHI and XhoI-predigested Flp-HA-*TvFACPα* or pGST-*TvCyP2* plasmid (50) to
671 generate Flp-HA-*Tvactin*, or pGST-*Tvactin* plasmid.

672 The *TvCadherin* expression plasmid was constructed, the coding sequence of the *tvcadherin* gene
673 (TVAG_393390) (2) was amplified from *T. vaginalis* genomic DNA by the primer pair of *TvCadherin*-
674 BamHI-5' and *TvCadherin*-XhoI-3', and subcloned into Flp-HA-*TvFACPα* backbone vector with
675 BamHI and XhoI sites to produce Flp-HA-*TvCadherin* plasmid.

676

677

678 The primer oligonucleotides used in this study.

679	680	Primer	Sequence
681		<i>TvFACPα-BamHI-5'</i>	(5'A <u>AGGATCC</u> ATGAGCGAGAGCGAAAAT3')
682		<i>TvFACPα-XhoI-3'</i>	(5'A <u>ACTCGAG</u> TTAGCACTTCATGCCACC3')
683		<i>TvFACPαΔ237-3'</i>	(5'A <u>ACTCGAG</u> ACGAAGCTGGAAAAGAAC3')
684		<i>TvFACPαS2A-5'</i>	(5'A <u>AGGATCC</u> ATG g ccGAGAGCGAAAATATC3')
685		<i>TvFACPαS2D-5'</i>	(5'A <u>AGGATCC</u> ATG g atGAGAGCGAAAATAT3')
686		<i>Tvactin-BamHI-5'</i>	(5'A <u>AGGATCC</u> CATGGCTGAAGAAAGACGTTCAGAC3')
687		<i>Tvactin-XhoI-3'</i>	(5'A <u>ACTCGAG</u> TTAGAAGCACTTGC G GTGGAC3')
688		<i>TvCadherin-BamHI-5'</i>	(5'GGATCCATGATTGGACTTTTATTGCAG3')
689		<i>TvCadherin-XhoI-3'</i>	(5'CTCGAGTTACTTCTAAGCCAAAGAATTATTACT-3')

690 The restriction sites are underlined, and mutation sites are indicated in lowercase italics.

691

692 Cytoadherence binding assay

693 *h*VECs was cultured in a 24-well plate to an 85% confluent monolayer. Mid-log phase *T. vaginalis*
694 prelabeled with 5 μ M of carboxyfluorescein diacetate succinimidyl ester dye (CFSE; CellTraceTM,
695 Thermo Fisher Scientific, Massachusetts, USA), were inoculated by a multiplicity of infection (MOI)
696 of 2:1 into *h*VECs culture. At the specific time point, the medium was aspirated and unbound
697 trophozoites were removed by washing two times with PBS for 5 min each. Samples were fixed in 4%
698 formaldehyde for fluorescence microscopy.

699

700 Real-time microscopy

701 The activity of trophozoites on the confluent *h*VECs monolayer in a glass-bottom culture dish was
702 monitored in real-time by confocal microscopy (LSM-700, Zeiss, Oberkochen, Germany) under a
703 phase-contrast mode with the sampling rate at one frame per 15 sec over time as indicated.

704

705 Inhibitor treatment

706 1 μ M of LatB (Sigma-Aldrich, Massachusetts, USA) or 250 μ M of TBB (Sigma-Aldrich,
707 Massachusetts, USA) was added into the *T. vaginalis* culture and incubated at 37°C for 2 hr before
708 analysis.

709

710 Morphology analysis

711 Trophozoites were cultured on a glass slide in a humid chamber at 37°C for 1 hr and the
712 morphology was observed by phase-contrast microscopy (CKX31, Olympus, Tokyo, Japan). The
713 percentage of flagellate or amoeboid form was measured from 600 trophozoites within 12 random
714 microscopic fields.

715

716 Immunofluorescence assay (IFA)

717 *T. vaginalis* was fixed with 4% formaldehyde and permeabilized with 0.2% Triton X-100. The
718 samples were then incubated with the primary antibodies: rabbit anti- α -actin (200 \times , GenScript, New
719 Jersey, USA), mouse anti- α -actin (400 \times , Abcam Ac-40, Cambridge, UK), mouse anti-HA (200 \times ,
720 Sigma-Aldrich HA-7, Massachusetts, USA), mouse anti-AP65 (7), rabbit anti-PFO (10), rabbit anti-
721 *TvFACP α* , followed by reaction with FITC or Cy3-conjugated goat anti-mouse or rabbit IgG secondary
722 antibodies (200 \times , Jackson ImmunoResearch, Pennsylvania, USA). The specimens were air-dried and
723 mounted in medium with DAPI (Vector laboratories, California, USA) for observation by confocal
724 microscopy (LSM-700, Zeiss, Oberkochen, Germany).

725 **F-actin staining**

727 Trophozoites were fixed with 4% formaldehyde, then permeabilized with 0.2% Triton X-100. The
728 sample was incubated with 20 μ g ml $^{-1}$ of TRITC-conjugated Phalloidin (Sigma-Aldrich, Massachusetts,
729 USA) diluted in PBS with 1% BSA in the dark at room temperature for 1 hr. After washing three times
730 with PBS, the glass slide was air-dried and mounted in anti-fade medium (Vector laboratories,
731 California, USA) for fluorescence microscopy (BX-60, Olympus, Tokyo, Japan).

732 **733 Signal colocalization evaluation**

734 The fluorescent intensity distributed in the fluorescence assays was measured by plot analysis of
735 ImageJ (Version 1.53q, National Institutes of Health, Maryland, USA). Pearson's correlation
736 coefficient was calculated to evaluate the signal co-localization, with a value of 1 indicating perfect
737 colocalization, -1 indicating anti-correlation, and 0 representing no correlation.

738 **739 Western blotting**

740 The protein samples denatured in 1x SDS sample buffer were separated by sodium dodecyl sulfate-
741 polyacrylamide gel electrophoresis (SDS PAGE) in a 12% gel before blotted to polyvinylidene
742 difluoride (PVDF) membrane by the wet transblot system (Bio-Rad, California, USA). The blocked
743 membrane was incubated with the primary antibodies: mouse anti-HA (2,000 \times , Sigma-Aldrich HA-7,
744 Massachusetts, USA), mouse anti- α -actin (20,000 \times , Abcam Ac-40, Cambridge, UK), mouse anti-
745 *TvCyP2* (5,000 \times) (50), mouse anti- α -tubulin (10,000 \times , Sigma-Aldrich DM-1A, Massachusetts, USA),
746 rabbit anti-*TvFACP α* (3,000 \times), mouse anti-6 \times His (2,000 \times , Abcam AD1.1.10, Cambridge, UK),
747 rabbit anti-phospho-CKII substrate [(pS/pT)DXE] (1,000 \times , Cell Signaling Technology, Massachusetts,
748 USA), rabbit anti-PFO (5,000 \times) (10), mouse anti-AP65 (10,000 \times) (7), mouse anti-GAPDH (10,000 \times)
749 (51) and mouse anti- α -actinin (5,000 \times) (51) at 4°C overnight, followed by HRP-conjugated anti-
750 mouse or rabbit IgG secondary antibodies (5,000 \times , Jackson ImmunoResearch, Pennsylvania, USA)
751 at 37°C for 1 hr. The membrane reacted with the enhanced chemiluminescence substrate (ECL, Thermo
752 Fisher Scientific, Massachusetts, USA) were detected and quantified by UVP image system
753 (ChemiDoc-It 815 Imager, VisionWorksLS 8.6 software, Analytik Jena Company, Jena, Germany).

754 **755 Immunoprecipitation**

756 Briefly, 6×10^7 trophozoites were lysed in 1ml of lysis buffer (1% Triton X-100, 1× Protease
757 inhibitor cocktail, 1× Phosphatase inhibitor cocktail, 100 $\mu\text{g ml}^{-1}$ TLCK, 5 mM EDTA, in TBS) and
758 centrifuged to remove unbroken cell debris, before the addition of 20 μl of anti-HA antibody-
759 conjugated agarose beads (Sigma-Aldrich, Massachusetts, USA), then incubated on a rotator at 4°C
760 overnight. The beads were recovered by centrifugation and washed three times with 1ml lysis buffer.
761 The precipitates were denatured in 1× SDS sample buffer for western blotting or staining (48, 50).
762

763 Label-free quantitative proteomic analysis

764 The proteins separated by SDS-PAGE were fixed in methanol for SYPRO Ruby staining (Thermo
765 Fisher Scientific, Massachusetts, USA) and visualization by the Typhoon9410 imaging system (GE
766 healthcare, Illinois, USA). Each gel lane was equally cut into 4 pieces, then sliced into smaller 1-mm³
767 cubes. The gel cubes were desalting by five washes sequentially in 1 ml of 20 mM triethylammonium
768 bicarbonate buffer (TEABC) and 1 ml of 20 mM TEABC with 50% acetonitrile, with the vigorous
769 vortex. The samples were sequentially reduced in 20 mM dithiothreitol (DTT) at 56°C for 1 hr,
770 alkylated in 55 mM iodoacetamide in the dark at room temperature for 30 min and digested with trypsin
771 (Promega, Wisconsin, USA) at 37°C overnight. The tryptic peptides were extracted by vortexing three
772 times sequentially in 20%, 50%, and 100% acetonitrile, then dried in a vacuum concentrator (SpeedVac,
773 Thermo Fisher Scientific, Massachusetts, USA) for LC-MS/MS analysis (48). The protein abundance
774 from the mass spectrometry data was analyzed by a label-free quantitative method by Mascot search,
775 which provides an automated calculation of the Exponentially Modified Protein Abundance Index
776 (emPAI) to estimate the coverage of the identified peptides and abundance for each protein in a dataset.
777 The identified proteins with an emPAI above 0.25 or specific in the co-pull-down sample with their
778 function category are summarized in Table 1. The mass spectrometry proteomics raw data have been
779 deposited to Dryad (<https://datadryad.org/stash/share/e30mZQELM-nBNmJOniuiGSBJWBkB7V4-t0XzQ891cX8>) or the ProteomeXchange Consortium via the PRIDE (www.ebi.ac.uk/pride/) (52)
780 partner repository with a dataset identifier number of PXD034359.
781

782 PRIDE Reviewer access account details:

783 Username: reviewer_pxd034359@ebi.ac.uk, Password: XpCqEnqW
784

785 In silico analysis of protein sequence and function

786 The functions of the proteins identified by mass spectrometry were categorized by Protein Analysis
787 Through Evolutionary Relationships (PANTHER) Classification System (www.pantherdb.org/). The
788 *TvFACPα* protein homologue was searched in TrichDB (trichdb.org/trichdb/app). The multiple protein
789 sequence alignment was analyzed by the Vector NTI AdvanceR 11.5.1 software (Thermo Fisher
790 Scientific, Massachusetts, USA). The protein search was performed by the Basic Local Alignment
791 Search Tool (BLAST, blast.ncbi.nlm.nih.gov/Blast.cgi) or UniProt (www.uniprot.org/).
792

793 Production of recombinant protein

794 The recombinant protein was produced as previously described (48, 50). The majority of GST-

795 *Tvactin* was expressed in the inclusion bodies of *E. coli* (BL21). For the GST-pull-down assay, the
796 inclusion bodies from 200 ml of *E. coli* culture were dissolved in 1 ml of 8 M urea at 4°C for 20 min
797 to solubilize the proteins. Then, 1 ml of lysate was immediately added to 14 ml PBS and incubated at
798 4°C for 30 min to refold proteins. After the removal of the insoluble pellets by low-speed centrifugation
799 at 23,000×*g*, soluble GST-*Tvactin* was incubated with glutathione-conjugated sepharose beads as
800 suggested by the supplier (GE healthcare, Illinois, USA) at 4°C for 3 hr and then eluted in GST elution
801 buffer (50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0). For the solid-phase binding and *in vitro*
802 actin polymerization assays, the bacterial inclusion bodies were solubilized in 8 M urea and directly
803 reconstituted in 14 ml of G-buffer (0.2 mM CaCl₂, 0.2 mM ATP, 0.5 mM DTT, 5 mM Tris-HCl pH
804 8.0) at 4°C overnight. The insoluble materials were removed by ultracentrifugation at 100,000×*g* to
805 recover the soluble G-actin in the supernatant (53). Soluble G-actin was further purified by glutathione-
806 conjugated sepharose beads and eluted in G-buffer with 10 mM reduced glutathione.

807

808 **GST pull-down assay**

809 GST pull down assay was performed as previously described (50). Briefly, 80 picomoles of GST
810 or GST-*Tvactin* immobilized on 20 μ l of glutathione conjugated-sepharose beads 4B (GE healthcare,
811 Illinois, USA) was incubated with 80 picomoles of His-*TvFACP α* or derived mutants in 1 ml GST
812 binding buffer (PBS contains 0.2% Triton X-100 and 1 mM EDTA) at 4°C rotation overnight. The GST
813 beads were washed three times by 1 ml of GST binding buffer then denatured in 1× SDS sample buffer
814 for further analysis.

815

816 ***TvFACP α* antiserum production**

817 The recombinant His-*TvFACP α* full-length protein was produced and purified by a standard
818 protocol as suggested by the supplier (QIAGEN, Hilden, Germany) (48, 50). Using the purified His-
819 *TvFACP α* protein to immunize rabbits for antiserum production is a customized service provided by
820 the manufacturer (Genetex, California, USA). The antibody specificity of anti-*TvFACP α* was tested by
821 western blotting as shown in Figure 6A.

822

823 ***In vitro* actin polymerization and co-sedimentation assay**

824 Insoluble GST-*Tvactin* denatured in 0.5 ml of 8M urea was reconstituted in 7.5 ml of G-buffer (0.2
825 mM CaCl₂, 0.2 mM ATP, 0.5 mM DTT, 5 mM Tris-HCl, pH 8.0) at 4°C overnight to ensure that the
826 thorough GST-*Tvactin* depolymerizes into the G-actin form. Then, 80 picomoles of G-actin in 1 ml of
827 G-buffer were added 1/10 volume of 10× F-buffer (500 mM KCl, 20 mM MgCl₂, and 10 mM ATP,
828 100 mM Tris, pH 7.5) at 4°C for 1 hr to trigger actin polymerization. F-actin was recovered from the
829 pellet by 100,000×*g* ultracentrifugation, whereas soluble G-actin in the supernatant (54). The ratio of
830 F-actin versus G-actin was evaluated with Coomassie blue staining or Western Blot detection.
831 Alternatively, F-actin and co-sediments were recovered from the pellet by 100,000×*g*
832 ultracentrifugation of the *in vitro* actin polymerization assay in the presence of 80 picomoles of His-
833 *TvFACP α* wild type or His- Δ 237 at 4°C for 1 hr.

834

835 **ELISA-based solid-phase binding assay**

836 The solid-phase binding assay was performed as described previously, with a few modifications
837 (54). Briefly, 100 μ l of 2.5 μ M G-actin in G-buffer or F-actin in F-buffer was added to a 96-well
838 microplate and incubated at 4°C with gentle shaking for 8 hr. After three washes with PBST (0.05%
839 Tween 20 in PBS), the samples were blocked in PBST with 5% non-fat milk at 37°C for 2 hr before
840 100 μ l aliquots of different concentrations of His-TvFACP α (0, 2.5, 5, 10, 20, 40, and 80 μ M) were
841 added to the wells and incubated at 4°C with gentle agitation overnight for protein-protein interaction.
842 Unbound protein was removed by three washes with PBST and the plate was incubated with mouse
843 anti-6 \times His primary antibody (10,000 \times , in PBST containing 5% non-fat milk) at room temperature for
844 2 hr, followed by three washes with PBST. The wells were incubated with HRP-conjugated goat anti-
845 mouse IgG secondary antibody (5000 \times in PBST containing 5% non-fat milk, Jackson
846 ImmunoResearch, Pennsylvania, USA) at room temperature for 2 hr. The wells were washed before
847 the addition of 100 μ l/well of 3, 3', 5, 5'-tetramethylbenzidine (TMB, Sigma-Aldrich, Massachusetts,
848 USA) substrate at room temperature for 5 min. The colorimetric reaction was stopped by the addition
849 of 100 μ l/well 1N HCl and the absorbance was detected by spectrophotometry at OD₄₅₀ (Molecular
850 Device, California, USA). The absorbances at OD₄₅₀ were plotted against the concentrations of His-
851 TvFACP α to generate Scatchard plots and calculate K_d and B_{max} values (54).

852

853 **Actin biochemical fractionation**

854 G- and F-actin were fractionated and enriched using a commercial *in vivo* assay biochem kit
855 (Cytoskeleton Inc, Colorado, USA), according to the manufacturer's instructions with minor
856 modifications. Briefly, around 3 \times 10⁷ trophozoites were incubated in cell lysis buffer (Cytoskeleton
857 Inc, Colorado, USA) with vigorous agitation at 4°C for 30 min and homogenized by a 23-gauge needle
858 on a 5-ml syringe. The total lysate was centrifuged at 1,000 \times g to remove the unbroken cell debris,
859 followed by ultracentrifugation at 100,000 \times g for 1 hr to separate the insoluble F-actin and associated
860 proteins in the pellet from soluble G-actin in the supernatant. In western blotting, α -tubulin and TvCyp2
861 were respectively detected as purity markers for F-actin and G-actin fractions.

862

863 **Cell migration assay**

864 For the wound healing assay, adherent *T. vaginalis* trophozoites were cultured to a confluent
865 monolayer in a T25 flask. A scratch (200- μ m to 1-mm wide) was generated by scraping the trophozoite
866 monolayer with a P200 tip. After removal of cell debris by washing once with the growth medium, the
867 culture flask was incubated at 37°C and images were captured in a defined area at an interval of 30 min
868 over 2 hr. The wound closure area in each image was measured by ImageJ software (Version 1.53q,
869 National Institutes of Health, Maryland, USA). For the trans-well migration assay, ~1 \times 10⁷
870 trophozoites suspended in 2 ml of TYI medium were inoculated into the top insert divided by a
871 polyester membrane with 3- μ m pores (4.6 cm², JET Biofil, Guangzhou, China). The top insert was
872 placed in a 6-well culture plate containing 2 ml of TYI medium and cultured at 37 °C for 30 min. The

873 trophozoites in the top insert and bottom well were collected for microscopic observation and western
874 blotting.

875

876 Statistical analysis

877 Statistical significance of data collected from control and conditional samples was analyzed by
878 Microsoft Office Excel 2019 software with Student's t-test. P< 0.05 is considered as significant
879 difference.

880

881 Acknowledgement

882 We are grateful to Dr. Jung-Hsiang Tai (Institute of Biomedical Sciences, Academia Sinica, Taiwan)
883 for *T. vaginalis* T1 isolate, Dr. John Alderete (Washington State University, USA) for the anti- α -actinin,
884 anti-GAPDH, and anti-AP65 antibodies, and Dr. Rossana Arroyo (CINVESTA, Mexico City, Mexico)
885 for the anti-PFO antibody. Also, we are grateful to the Proteomics Core Facility (Institute of Biomedical
886 Sciences, Academia Sinica, Taiwan) for the LC-MS/MS analysis. This work was supported by grants
887 from the Ministry of Science and Technology of Taiwan (110-2320-B-002-048- and 110-2320-B-002-
888 076-).

889

890 Author contributions

891 Kai-Hsuan Wang: Investigation, Validation, and Methodology.
892 Jing-Yang Chang: Investigation, Validation, and Methodology.
893 Fu-An Li: Investigation, Validation, and Methodology.
894 Yen-Ju Chen: Investigation, Validation, and Methodology.
895 Kuan-Yi Wu: Investigation, Validation, and Methodology.
896 Tse-Ling Chu: Investigation and Validation
897 Jessica Lin: Investigation and Validation
898 Hong-Ming Hsu: Investigation, Validation, Project Administration, Supervision, Funding Acquisition,
899 Conceptualization, Writing-Original Draft Preparation, and Writing-Review & Editing.

900

901 Statement of conflict of interest

902 The authors declare that they have no competing interests in this manuscript.

903

904 Data availability Section

905 All data generated or analyzed during this study are included in the manuscript and supplementary data;
906 Source Data files have been provided for Table 1, the statistical analysis of quantification, and raw gel
907 or blot images generated in this study. The proteomics raw data have been deposited to Dryad
908 (<https://datadryad.org/stash/share/e30mZQEIM-nBNmJOniuiGSBJWBkB7V4-t0XzQ891cX8>) and
909 PRIDE (www.ebi.ac.uk/pride/) with a dataset identifier number PXD034359. (PRIDE Reviewer access
910 account details: Username: reviewer_pxd034359@ebi.ac.uk, Password: XpCqEnqW).

911

912 **References**

- 913 1. World Health Organization (2008) Global incidence and prevalence of selected curable sexually
914 transmitted infections. ISBN 978 92 4 150383 9
- 915 2. Chen YP, Riestra AM, Rai AK, Johnson PJ (2019) A Novel Cadherin-like Protein Mediates
916 Adherence to and Killing of Host Cells by the Parasite *Trichomonas vaginalis*. *mBio*
917 10(3):e00720-19
- 918 3. Riestra AM., Gandhi S, Sweredoski MJ, Moradian A, Hess S, Urban S, Johnson P J (2015) A
919 *Trichomonas vaginalis* Rhomboid Protease and Its Substrate Modulate Parasite Attachment and
920 Cytolysis of Host Cells. *PLoS pathogens* 11(12): e1005294
- 921 4. Rendón-Gandarilla FJ, Ramón-Luing Lde L, Ortega-López J, Rosa de Andrade I, Benchimol M,
922 Arroyo R. (2013) The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in
923 *Trichomonas vaginalis* cytoadherence. *Biomed Res Int* :561979. doi:10.1155/2013/561979
- 924 5. Pachano T, Nievas YR, Lizarraga A, Johnson PJ, Strobl-Mazzulla PH, de Miguel N (2017)
925 Epigenetics regulates transcription and pathogenesis in the parasite *Trichomonas vaginalis*. *Cell*
926 *Microbiol* 19(6):10.1111/cmi.12716. doi:10.1111/cmi.12716
- 927 6. Molgora BM, Rai AK, Sweredoski MJ, Moradian A, Hess S, Johnson PJ (2021) A Novel
928 *Trichomonas vaginalis* Surface Protein Modulates Parasite Attachment via Protein:Host Cell
929 Proteoglycan Interaction. *mBio* 12(1):e03374-20
- 930 7. Alderete JF, Nguyen J, Mundodi V, Lehker MW (2003) Heme-iron increases levels of AP65-
931 mediated adherence by *Trichomonas vaginalis*. *Microb Pathog* 36(5):263-271.
932 doi:10.1016/j.micpath..12.007
- 933 8. Alderete JF, O'Brien JL, Arroyo R, Engbring JA, Musatovova O, Lopez O, Lauriano C, Nguyen J
934 (1995) Cloning and molecular characterization of two genes encoding adhesion proteins involved
935 in *Trichomonas vaginalis* cytoadherence. *Mol Microbiol* 17(1):69-83. doi: 10.1111/j.1365-
936 2958.1995.mmi_17010069.x.
- 937 9. O'Brien JL, Lauriano CM, Alderete JF (1996) Molecular characterization of a third malic enzyme-
938 like AP65 adhesin gene of *Trichomonas vaginalis*. *Microb Pathog* 20(6):335-49. doi:
939 10.1006/mpat.1996.0032.
- 940 10. Moreno-Brito V, Yáñez-Gómez C, Meza-Cervantez P, Avila-González L, Rodríguez MA, Ortega-
941 López J, González-Robles A, Arroyo R (2005) A *Trichomonas vaginalis* 120 kDa protein with
942 identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron.
943 *Cell Microbiol* 7(2):245-58. doi: 10.1111/j.1462-5822.2004.00455.x.
- 944 11. Wu C (2007) Focal adhesion: a focal point in current cell biology and molecular medicine. *Cell*
945 *Adh Migr* 1(1):13-18. doi:10.4161/cam.1.1.4081.
- 946 12. Fournier MF, Sauser R, Ambrosi D, Meister JJ, Verkhovsky AB (2010) Force transmission in
947 migrating cells. *J Cell Biol* 188(2):287-297. doi:10.1083/jcb.200906139.
- 948 13. Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM (2017) Actin-Based Adhesion Modules Mediate
949 Cell Interactions with the Extracellular Matrix and Neighboring Cells. *Cold Spring Harb Perspect*
950 *Biol* 9(7):a023234.

951 14. Casta e Silva Filho F, de Souza W, Lopes JD (1988) Presence of laminin-binding proteins in
952 trichomonads and their role in adhesion. *Proc Natl Acad Sci U S A* 85(21):8042-8046.
953 doi:10.1073/pnas.85.21.8042

954 15. Huang KY, Huang PJ, Ku FM, Lin R, Alderete JF, Tang P (2012) Comparative transcriptomic and
955 proteomic analyses of *Trichomonas vaginalis* following adherence to fibronectin. *Infect Immun*
956 80(11):3900-3911. doi:10.1128/IAI.00611-12

957 16. Lama A, Kucknoor A, Mundodi V, Alderete JF (2009) Glyceraldehyde-3-phosphate dehydrogenase
958 is a surface-associated, fibronectin-binding protein of *Trichomonas vaginalis*. *Infect Immun*
959 77(7):2703-2711. doi:10.1128/IAI.00157-09

960 17. Dos Santos O, Rigo GV, Macedo AJ, Tasca T (2017) *Trichomonas vaginalis* clinical isolates:
961 cytoadherence and adherence to polystyrene, intrauterine device, and vaginal ring. *Parasitol Res*
962 116(12):3275-3284. doi:10.1007/s00436-017-5638-0

963 18. Arroyo R, González-Robles A, Martínez-Palomo A, Alderete JF (1993) Signalling of *Trichomonas*
964 *vaginalis* for amoeboid transformation and adhesion synthesis follows cytoadherence. *Mol*
965 *Microbiol* 7(2):299-309. doi:10.1111/j.1365-2958.1993.tb01121.x

966 19. Velle KB, Fritz-Laylin LK (2020) Conserved actin machinery drives microtubule-independent
967 motility and phagocytosis in *Naegleria*. *J Cell Biol* 219(11):e202007158.
968 doi:10.1083/jcb.202007158

969 20. Sohn HJ, Song KJ, Kang H, Ham AJ, Lee JH, Chwae YJ, Kim K, Park S, Kim JH, Shin HJ (2019)
970 Cellular characterization of actin gene concerned with contact-dependent mechanisms in *Naegleria*
971 *fowleri*. *Parasite Immunol* 41(8):e12631. doi: 10.1111/pim.12631

972 21. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. *Science*
973 326(5957):1208-1212. doi:10.1126/science.1175862

974 22. Friedl P, Bröcker EB (2000) The biology of cell locomotion within three-dimensional extracellular
975 matrix. *Cell Mol Life Sci* 57(1):41-64. doi:10.1007/s000180050498

976 23. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics
977 and cellular tension. *Nat Rev Mol Cell Biol* 11(9):633-643. doi:10.1038/nrm2957

978 24. Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin:
979 nucleation, high affinity pointed end capping, and formation of branching networks of filaments.
980 *Proc Natl Acad Sci U S A* 95(11):6181-6186. doi:10.1073/pnas.95.11.6181.

981 25. Tang DD, Gerlach BD (2017) The roles and regulation of the actin cytoskeleton, intermediate
982 filaments and microtubules in smooth muscle cell migration. *Respir Res.* 2017;18(1):54.
983 doi:10.1186/s12931-017-0544-7

984 26. Bearer EL (1993) Role of actin polymerization in cell locomotion: molecules and models. *Am J*
985 *Respir Cell Mol Biol* 8(6):582-591. doi:10.1165/ajrcmb/8.6.582

986 27. Funk J, Merino F, Schaks M, Rottner K, Raunser S, Bieling P (2021) A barbed end interference
987 mechanism reveals how capping protein promotes nucleation in branched actin networks. *Nat*
988 *Commun* 12(1):5329. doi:10.1038/s41467-021-25682-5

989 28. Wear MA, Yamashita A, Kim K, Maéda Y, Cooper JA (2003) How capping protein binds the barbed

990 end of the actin filament. *Curr Biol* 13(17):1531-1537. doi:10.1016/s0960-9822(03)00559-1

991 29. Kim K, Yamashita A, Wear MA, Maéda Y, Cooper JA (2004) Capping protein binding to actin in
992 yeast: biochemical mechanism and physiological relevance. *J Cell Biol* 164(4):567-580.
993 doi:10.1083/jcb.200308061

994 30. Hernandez-Valladares M, Kim T, Kannan B, Tung A, Aguda AH, Larsson M, Cooper JA, Robinson
995 RC (2010) Structural characterization of a capping protein interaction motif defines a family of
996 actin filament regulators. *Nat Struct Mol Biol* 17(4):497-503. doi: 10.1038/nsmb.1792

997 31. Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA (2014) Capping protein
998 regulators fine-tune actin assembly dynamics. *Nat Rev Mol Cell Biol* 15(10):677-689.
999 doi:10.1038/nrm3869

1000 32. Solís C, Russell B (2021) Striated muscle proteins are regulated both by mechanical deformation
1001 and by chemical post-translational modification. *Biophys Rev* 13(5):679-695. doi:10.1007/s12551-
1002 021-00835-4

1003 33. Canton DA, Olsten ME, Kim K, Doherty-Kirby A, Lajoie G, Cooper JA, Litchfield DW (2005)
1004 The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell
1005 morphology and the actin cytoskeleton and interaction with actin capping protein. *Mol Cell Biol*
1006 25(9):3519-34. doi: 10.1128/MCB.25.9.3519-3534.2005

1007 34. Canton DA, Olsten ME, Niederstrasser H, Cooper JA, Litchfield DW (2006) The role of CKIP-1
1008 in cell morphology depends on its interaction with actin-capping protein. *J Biol Chem*
1009 281(47):36347-59. doi: 10.1074/jbc.M607595200.

1010 35. Kusdian G, Woehle C, Martin WF, Gould SB (2013) The actin-based machinery of *Trichomonas*
1011 *vaginalis* mediates flagellate-amoeboid transition and migration across host tissue. *Cell Microbiol*
1012 15(10):1707-1721. doi:10.1111/cmi.12144

1013 36. Vandekerckhove J, Deboben A, Nassal M, Wieland T (1985) The phalloidin binding site of F-actin.
1014 *EMBO J* 4(11):2815-2818. PMID: 4065095; PMCID: PMC554583.

1015 37. Weichhart T, Haidinger M, Hörl WH, Säemann MD (2008) Current concepts of molecular defence
1016 mechanisms operative during urinary tract infection. *Eur J Clin Invest* 38 Suppl 2:29-38.
1017 doi:10.1111/j.1365-2362.2008.02006.x

1018 38. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL,
1019 Alsmark UC, Besteiro S, Sicheritz-Ponten T *et al* (2007) Draft genome sequence of the sexually
1020 transmitted pathogen *Trichomonas vaginalis*. *Science* 315(5809):207-212.
1021 doi:10.1126/science.1132894

1022 39. Davidson PM, Cadot B (2021) Actin on and around the Nucleus. *Trends Cell Biol* 31(3):211-223.
1023 doi:10.1016/j.tcb.2020.11.009

1024 40. Falck S, Paavilainen VO, Wear MA, Grossmann JG, Cooper JA, Lappalainen P. (2004) Biological
1025 role and structural mechanism of twinfilin-capping protein interaction. *EMBO J* 23(15):3010-3019.
1026 doi:10.1038/sj.emboj.7600310

1027 41. Yuan A, Mills RG, Bamburg JR, Bray JJ (1999) Cotransport of glyceraldehyde-3-phosphate
1028 dehydrogenase and actin in axons of chicken motoneurons. *Cell Mol Neurobiol* 19(6):733-744.

1029 doi:10.1023/a:1006953022763

1030 42. Choder M (2004) Rpb4 and Rpb7: subunits of RNA polymerase II and beyond. *Trends Biochem Sci* 29(12):674-681. doi:10.1016/j.tibs.2004.10.007

1031

1032 43. Mitsuzawa H, Kimura M, Kanda E, Ishihama A (2005) Glyceraldehyde-3-phosphate

1033 dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7

1034 subunit. *FEBS Lett* 579(1):48-52. doi:10.1016/j.febslet.2004.11.045

1035 44. Battistutta R, De Moliner E, Sarno S, Zanotti G, Pinna LA (2001) Structural features underlying

1036 selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. *Protein*

1037 *Sci* 10(11):2200-2206. doi:10.1110/ps.19601

1038 45. Cable BL, John DT (1986) Conditions for maximum enflagellation in *Naegleria fowleri*. *J*

1039 *Protozool* 33(4):467-72. doi: 10.1111/j.1550-7408.1986.tb05643.x

1040 46. Yuyama S (1971) The effects of selected chemical agents on the amoeba-flagellate transformation

1041 in *Naegleria gruberi*. *J Protozool* 18(2):337-343. doi:10.1111/j.1550-7408.1971.tb03328.x

1042 47. Willmer EN. (1961) Amoeba-flagellate transformation. *Exp Cell Res Suppl* 8:32-46.

1043 doi:10.1016/0014-4827(61)90338

1044 48. Hsu HM, Lee Y, Hsu PH, Liu HW, Chu CH, Chou YW, Chen YR, Chen SH, Tai JH (2014) Signal

1045 transduction triggered by iron to induce the nuclear importation of a Myb3 transcription factor in

1046 the parasitic protozoan *Trichomonas vaginalis*. *J Biol Chem* 289(42):29334-29349.

1047 doi:10.1074/jbc.M114.599498

1048 49. Fuhrmann A, Engler AJ (2015) The cytoskeleton regulates cell attachment strength. *Biophys J*

1049 109(1):57-65. doi:10.1016/j.bpj.2015.06.003

1050 50. Hsu HM, Huang YH, Aryal S, Liu HW, Chen C, Chen SH, Chu CH, Tai JH (2020) Endomembrane

1051 Protein Trafficking Regulated by a TvCyp2 Cyclophilin in the Protozoan Parasite, *Trichomonas*

1052 *vaginalis*. *Sci Rep* 10(1):1275. doi:10.1038/s41598-020-58270-6

1053 51. Neace CJ, Alderete JF (2013) Epitopes of the highly immunogenic *Trichomonas vaginalis* α -actinin

1054 are serodiagnostic targets for both women and men. *J Clin Microbiol* 51(8):2483-2490.

1055 doi:10.1128/JCM.00582-13

1056 52. Perez-Riverol, Y, Bai, J, Bandla, C, García-Seisdedos, D, Hewapathirana, S, Kamatchinathan, S,

1057 Kundu, DJ, Prakash, A, Frericks-Zipper, A, Eisenacher, M, Walzer, M, Wang, S, Brazma, A,

1058 Vizcaíno, JA (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based

1059 proteomics evidences. *Nucleic acids research*, 50(D1), D543–D552. doi: 10.1093/nar/gkab1038..

1060 53. Hatano T, Alioto S, Roscioli E, Palani S, Clarke ST, Kamnev A, Hernandez-Fernaud JR,

1061 Sivashanmugam L, Chapa-Y-Lazo B, Jones AME *et al* (2018) Rapid production of pure

1062 recombinant actin isoforms in *Pichia pastoris*. *J Cell Sci* 131(8):jcs213827.

1063 doi:10.1242/jcs.213827

1064 54. He HJ, Wang XS, Pan R, Wang DL, Liu MN, He RQ (2009) The proline-rich domain of tau plays

1065 a role in interactions with actin. *BMC Cell Biol* 10:81. doi:10.1186/1471-2121-10-81

1066

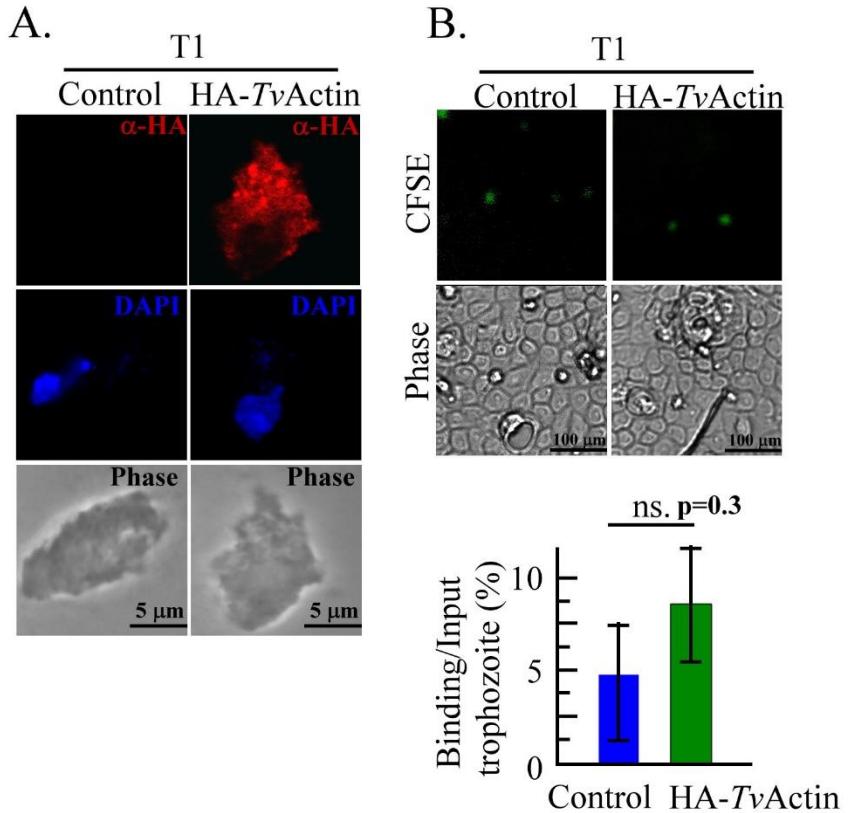
1067

1068 **Table 1. The list of *Tvactin*-interacted proteins identified by LC-MS/MS**

1069 The proteins identified by mass spectrometry with emPAI value above 0.25 or the peptides specific in
 1070 the immunoprecipitant of HA-*Tvactin* were listed.

Accession	Score	Mass	emPAI	Description
Chaperone				
A2DS85	56	58182	0.15	T-complex protein 1 subunit delta, TVAG_066690
A2E9D9	62	58553	0.15	Chaperonin subunit alpha1 CCTalpha, putative, TVAG_364270
DNA/RNA-binding, or -regulatory protein				
A2DHC5	37	15204	0.31	Histone H2A OS=Trichomonas vaginalis, TVAG_021440
A2ELI6	46	11528	0.42	HTH myb-type domain-containing protein, TVAG_257520
A2D755	78	127201	0.1	DEAD/DEAH box helicase family protein, TVAG_119080
Cytoskeletal protein				
A2FE30	541	29551	9.69	F-actin-capping protein subunit alpha, TVAG_470230
A2E0V9	104	46956	0.3	Actin-like protein 3, putative, TVAG_371880
A2E755	69	533676	0.02	Dynein heavy chain family protein, TVAG_006480
A2EIJ3	43	48424	0.19	Coronin, TVAG_124870
A2DC16	208	50493	0.51	Tubulin beta chain, TVAG_008680
A2EGW8	73	515283	0.02	Dynein heavy chain family protein, TVAG_497260
A2GKR2	363	26669	5.37	Actin (Fragment), TVAG_534990
P90623	659	42154	9.49	Actin, TVAG_337240
A2DKH3	163	106648	0.21	Alpha-actinin, putative, TVAG_190450
Membrane traffic protein				
A2EV08	90	85200	0.1	Clathrin and VPS domain-containing protein, TVAG_369030
Metabolite interconversion enzyme				
A2DSX4	80	107447	0.21	Alpha-1,4 glucan phosphorylase, TVAG_348330
A2EBX0	218	44060	0.76	Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial, TVAG_259190
A2FR66	116	35697	0.26	6-phosphofructokinase, TVAG_496160
A2E9H3	37	47022	0.19	Pyrophosphate--fructose 6-phosphate 1-phosphotransferase 2, TVAG_364620
A2FVK7	224	44039	1.12	Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial, TVAG_144730
A2DM03	169	34697	0.61	6-phosphofructokinase, TVAG_462920
A2FKA7	82	34780	0.27	6-phosphofructokinase, TVAG_293770
A2EM29	503	39758	6.2	Glyceraldehyde-3-phosphate dehydrogenase, TVAG_475220
Q27088	86	129430	0.1	Pyruvate:ferredoxin oxidoreductase A, TVAG_198110
A2EAJ8	98	42785	0.47	Malic enzyme, TVAG_491670
A2DM76	95	38889	0.11	Thymidine kinase, TVAG_083490
A2D987	238	44049	1.33	Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial, TVAG_183500
A2DFT9	198	35079	1.02	6-phosphofructokinase, TVAG_391760
A2F259	111	109764	0.16	Amylomaltase, TVAG_154680
A2D7H3	94	110021	0.08	Amylomaltase, TVAG_120280

Protein modifying enzyme					
A2EPF2	49	95046	0.09	Proteasome/cyclosome repeat family protein, TVAG_286380	
Protein-binding activity modulator					
A2EB65	53	40705	0.22	G-protein alpha subunit, putative, TVAG_274750	
A2EJL0	36	24328	0.18	IBD domain-containing protein, TVAG_197940	
Translation protein					
A2E4D0	39	40574	0.11	Ribosomal protein, putative, TVAG_128790	
A2DSF6	55	48559	0.19	Elongation factor 1-alpha, TVAG_067400	
A2ECS2	117	94235	0.36	Tr-type G domain-containing protein, TVAG_276410	
A2DSV0	99	28352	0.34	Ribosomal protein S3Ae, putative, TVAG_348090	
Transporter					
A2FS41	70	49238	0.18	V-ATPase_H_C domain-containing protein, TVAG_262750	
A2ED49	68	68309	0.2	H(+)-transporting two-sector ATPase, TVAG_420260	
A2ES57	50	55789	0.41	Vacuolar proton pump subunit B, TVAG_453110	
Uncharacterized protein					
A2E2D0	59	149814	0.06	Uncharacterized protein, TVAG_098000	


1071

1072 **Supplement data and legends**

1073

1074 **Figure 2-Figure Supplement 1.**

Fig 2. S1

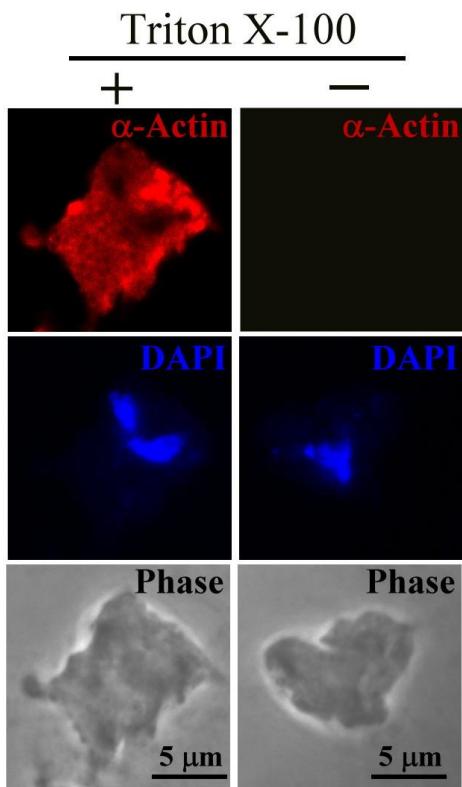
1075

1076 **Figure 2-Figure Supplement 1. Overexpression of HA-*Tvactin* in nonadherent T1**
1077 **isolate.** (A.) The non-transgenic and HA-*Tvactin* transgenic T1 trophozoites were fixed for
1078 IFA by an anti-HA antibody and then incubated with a Cy3-conjugated secondary antibody.
1079 The nuclei were stained by DAPI and the morphology was observed by phase-contrast
1080 microscopy. The scale bars represent 5 μ m. (B.) The non-transgenic and HA-*Tvactin*
1081 transgenic T1 trophozoites prelabeled by CFSE were co-cultured with hVECs at MOI of 2:1
1082 for 1 hr in the cytoadherence binding assay. The scale bars represent 100 μ m. The assays
1083 were repeated three times. Data in the histogram are presented as mean \pm SEM. Significance
1084 with p-value is statistically analyzed by Student's t-test as indicated. (n=3, P<0.01, P<0.05,
1085 and ns, no significance).

1086

1087

1088


1089

1090

1091

Figure 2-Figure Supplement 2.

Fig 2. S2

1092

1093

Figure 2-Figure Supplement 2. No detectable α -actin on the cell surface of *T. vaginalis*.

1094

The TH17 trophozoites with or without Triton X-100 permeation were examined by IFA using

1095

an anti- α -actin antibody, followed by incubation with a Cy3-conjugated secondary antibody.

1096

The nuclei were stained by DAPI. The morphology was observed by phase-contrast

1097

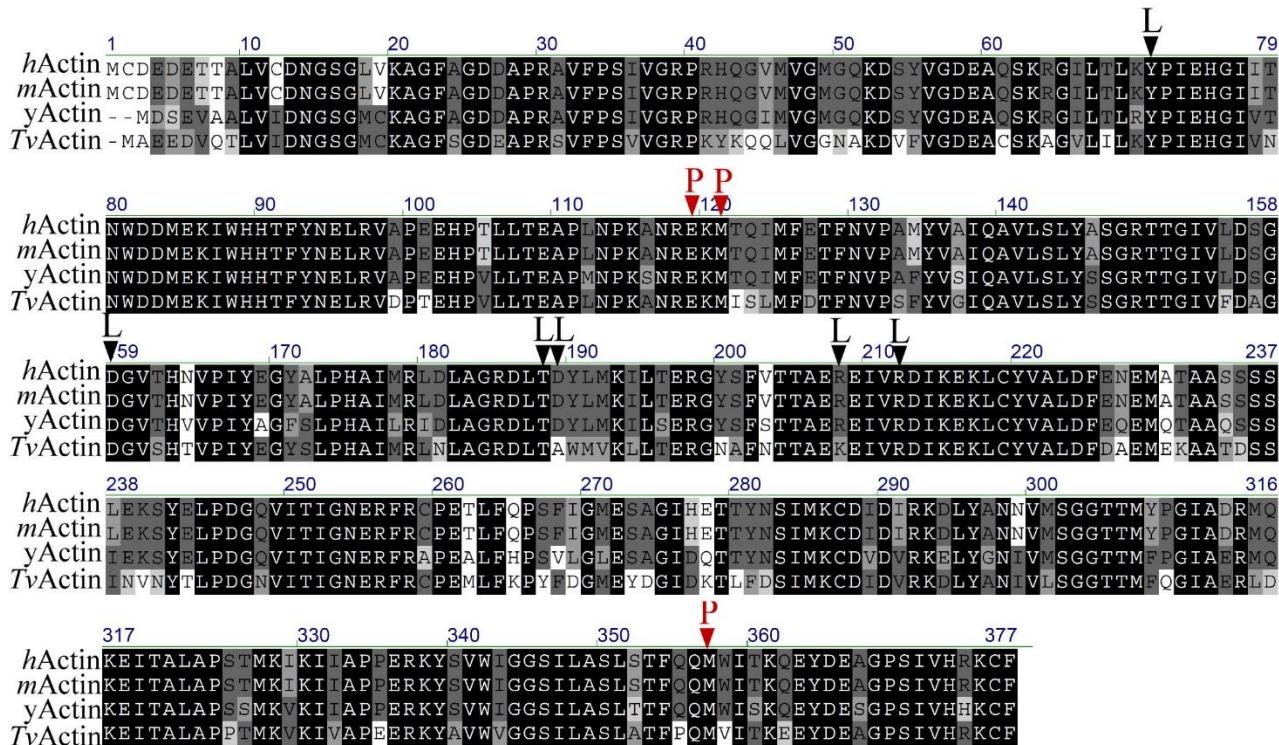
microscopy. The scale bars represent 5 μ m.

1098

1099

1100

1101


1102

1103

1104

1105 **Figure 2-Figure Supplement 3.**

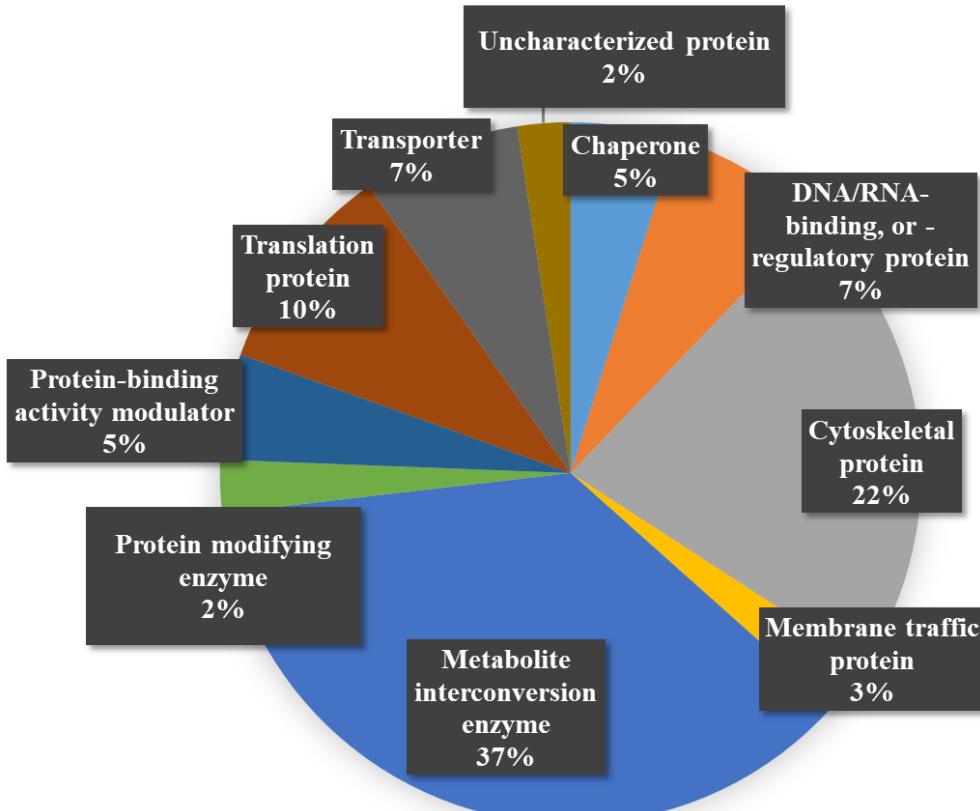
Fig 2. S3

1106

1107

Figure 2-Figure Supplement 3. Protein sequence alignment of α -actin and *TvFACPa*.

1108


(A.) The full-length protein sequences of α -actin from human (*hActin*, P68133), mouse (*mActin*, P68134), yeast (*yActin*, P60010), and *T. vaginalis* (*TvActin*, TVAG_337240) were aligned to show the protein sequence similarity. The conserved amino acid residues are highlighted, and the binding sites of phalloidin or LatB in α -actin are indicated by P or L as shown at the top of sequences, respectively.

1112

1113

1114 **Figure 4-Figure Supplement 1.**

Fig 4. S1

1115

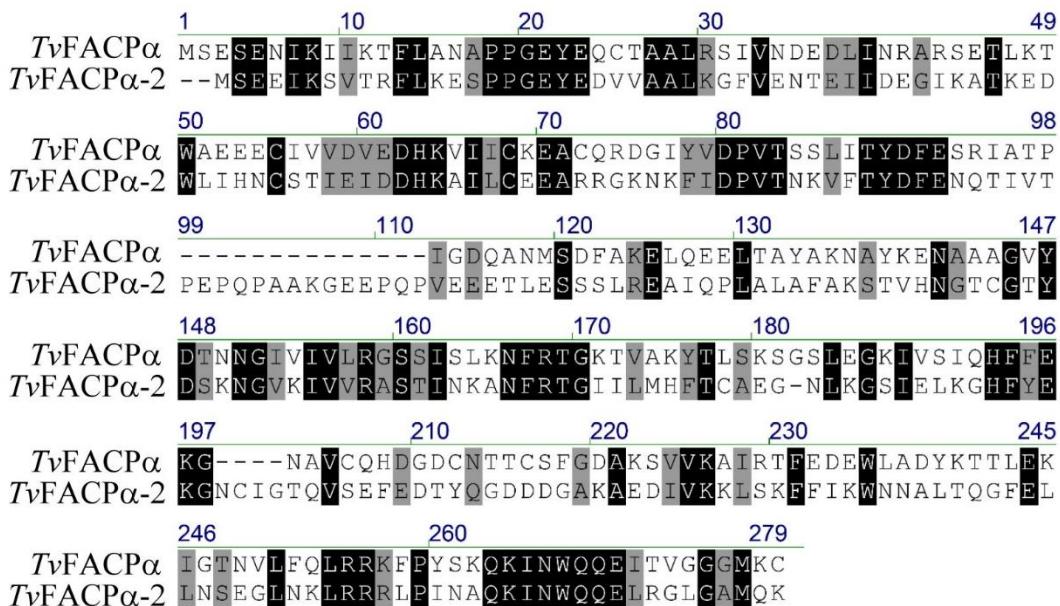
1116

Figure 4-Figure Supplement 1. Protein function category. The mass identified proteins were classified by function into multiple cellular pathways, including cytoskeleton proteins (22%), chaperones (5%), membrane trafficking (3%), transporter (7%), protein binding (5%), modification (2%), DNA/RNA regulation (7%) and translation (10%), metabolism enzymes (37%), and uncharacterized proteins (2%).

1117

1118

1119

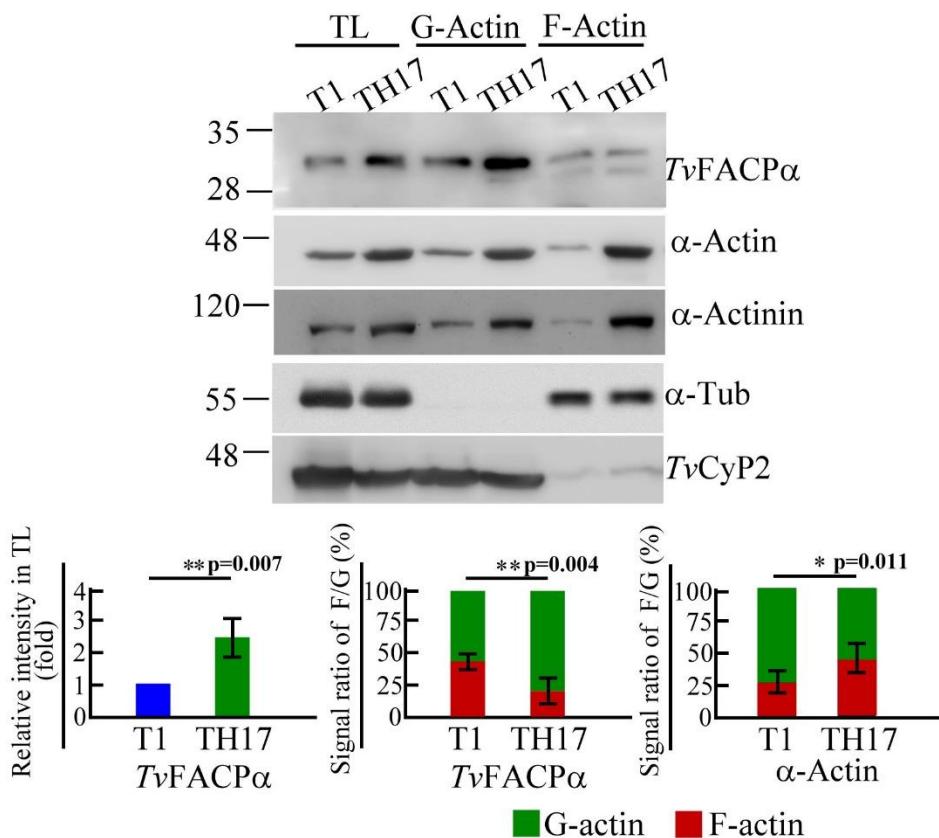

1120

1121

1122

1123 **Figure 4-Figure Supplement 2.**

Fig 4. S2


1124

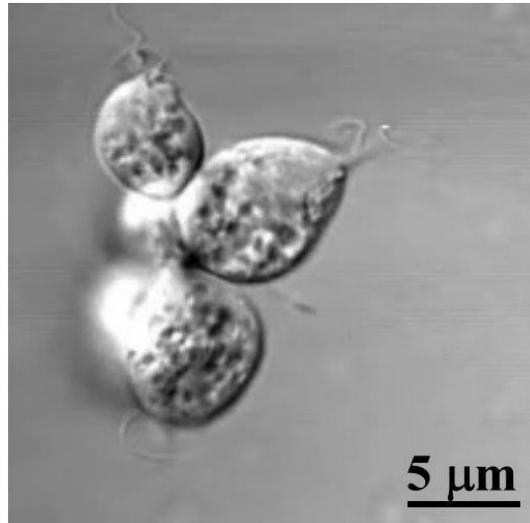
1125 **Figure 4-Figure Supplement 2. The sequence alignment for *TvFACPs* in *T. vaginalis*.** The
1126 protein sequences of *TvFACPα* (TVAG_470230) and *TvFACPα-2* (TVAG_212270) were aligned.
1127 The conserved amino acid residues are highlighted.

1128

1129 **Figure 7-Figure Supplement 1.**

Fig 7. S1

1130


1131 **Figure 7-Figure Supplement 1. Differential expression of *TvFACPα* in nonadherent and**
1132 **adherent isolates of *T. vaginalis*.** The protein lysates from Figure 2E were re-examined by
1133 western blotting with the anti-*TvFACPα* antibody. The relative intensity of *TvFACPα* detected
1134 in total lysate, the signal ratio of *TvFACPα* in F-actin versus G-actin fractions were shown in
1135 the histograms. The assays were repeated three times. Data in histograms are presented as mean
1136 \pm SEM. Significance with p-value is statistically analyzed by Student's t-test as indicated. (n=3,
1137 P<0.01, P<0.05, and ns, no significance).

1138

1139

Figure 9-Figure Supplement 1.

Fig 9. S1

1140

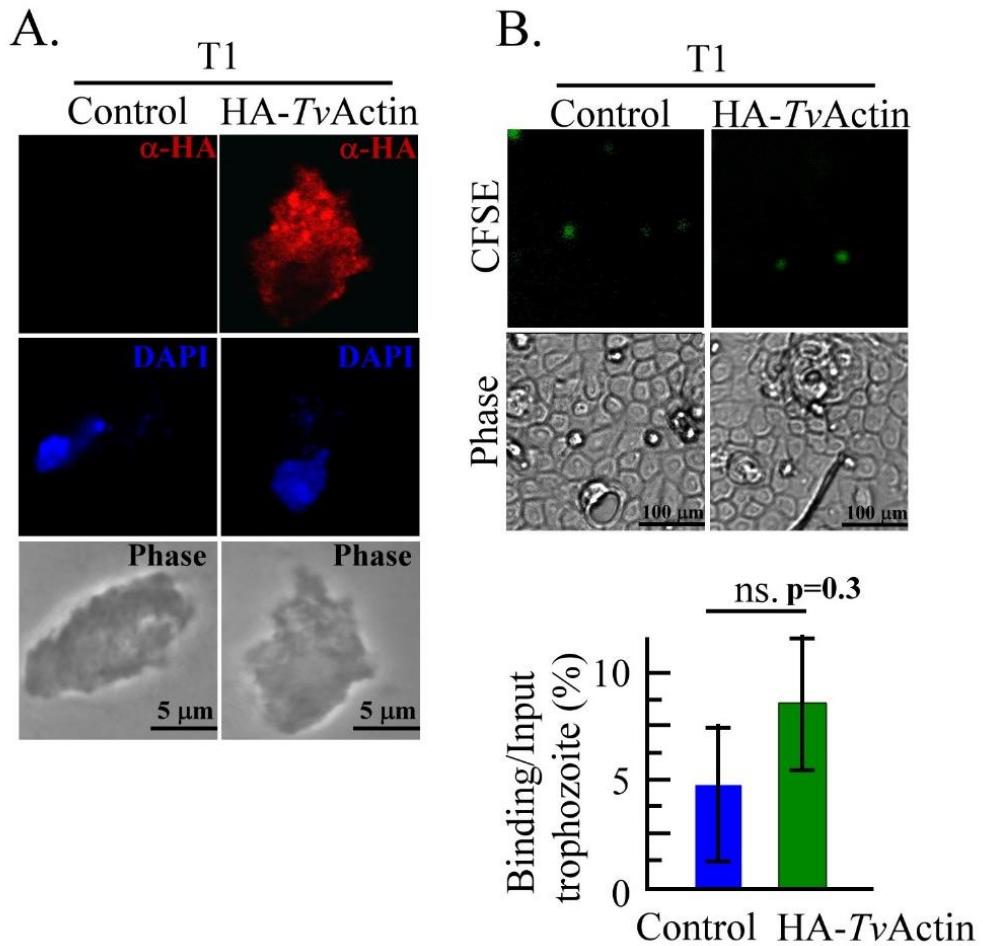
Figure 9-Figure Supplement 1. Morphology of trophozoites in the bottom well of trans-well assay. Morphology of trophozoites migrating into the bottom well was recorded by microscopy. The parasite in the bottom well were observed in dominant flagellate trophozoite with clear flagella under our assay conditions. The scale bar represents 5 μ m.

1141

1142

1143

1144

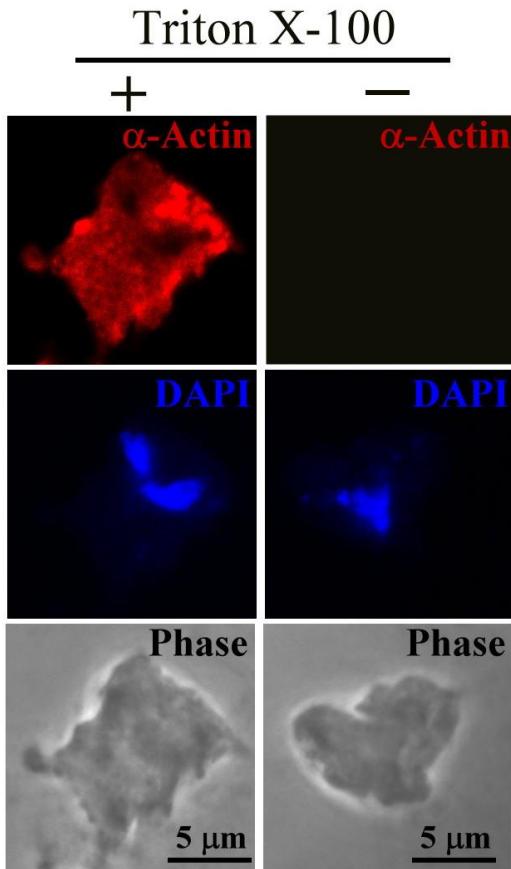

1145

1146

1147

1 **Supplement data and legends**

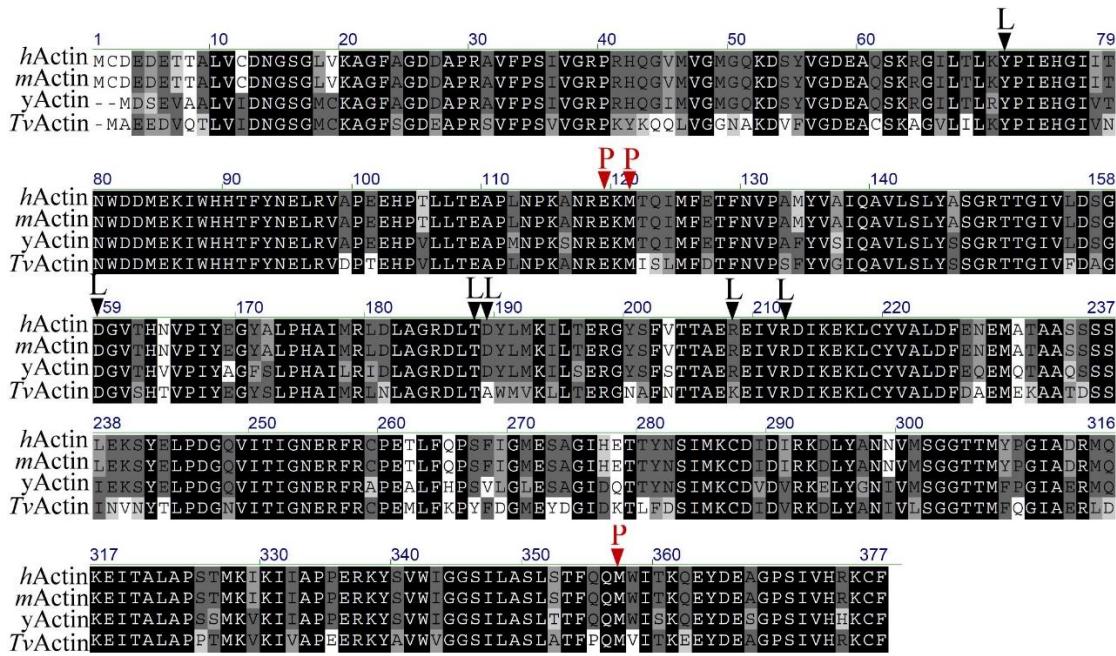
Fig 2. S1



2

3 **Figure 2-Figure Supplement 1. Overexpression of HA-*Tvactin* in nonadherent T1**
4 **isolate.** (A.) The non-transgenic and HA-*Tvactin* transgenic T1 trophozoites were fixed
5 for IFA by an anti-HA antibody and then incubated with a Cy3-conjugated secondary
6 antibody. The nuclei were stained by DAPI and the morphology was observed by phase-
7 contrast microscopy. The scale bars represent 5 μ m. (B.) The non-transgenic and HA-
8 *Tvactin* transgenic T1 trophozoites prelabeled by CFSE were co-cultured with hVECs
9 at MOI of 2:1 for 1 hr in the cytoadherence binding assay. The scale bars represent 100
10 μ m. The assays were repeated three times. Data in the histogram are presented as
11 mean \pm SEM. Significance with p-value is statistically analyzed by Student's t-test as
12 indicated. (n=3, P<0.01, P<0.05, and ns, no significance).

13


Fig 2. S2

14

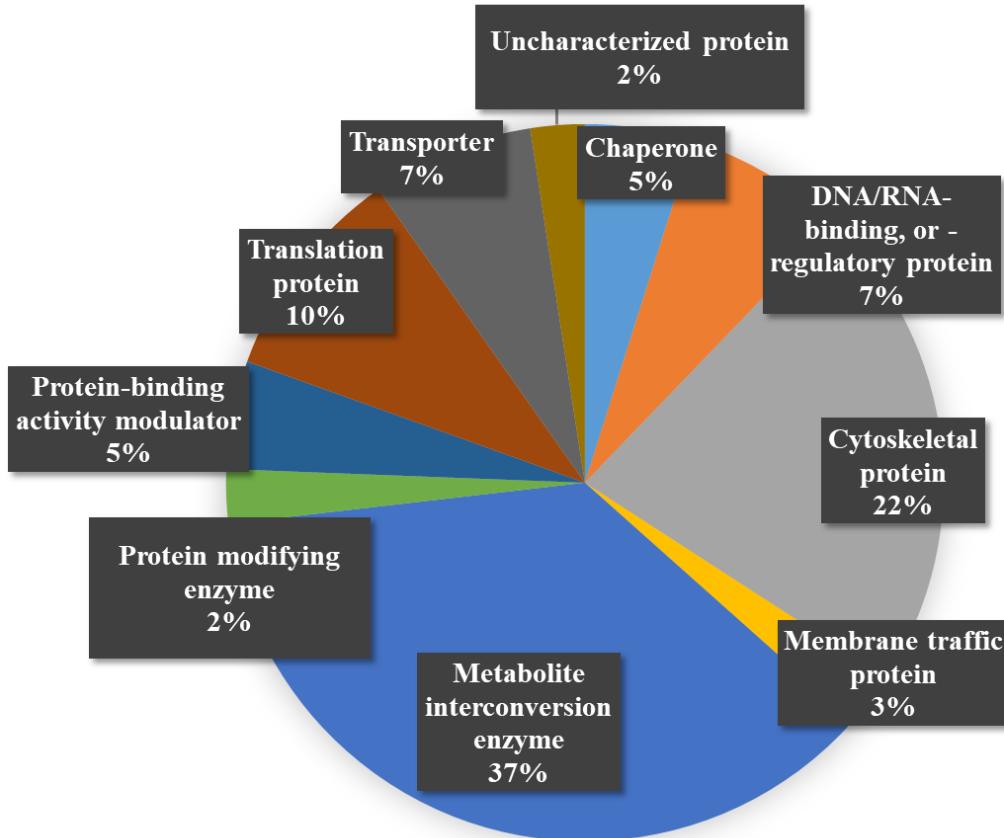
15 **Figure 2-Figure Supplement 2. No detectable α -actin on the cell surface of *T.***
16 ***vaginalis*.** The TH17 trophozoites with or without Triton X-100 permeation were
17 examined by IFA using an anti- α -actin antibody, followed by incubation with a Cy3-
18 conjugated secondary antibody. The nuclei were stained by DAPI. The morphology was
19 observed by phase-contrast microscopy. The scale bars represent 5 μ m.

Fig 2. S3

20

21 **Figure 2-*Figure Supplement 3. Protein sequence alignment of α -actin and***

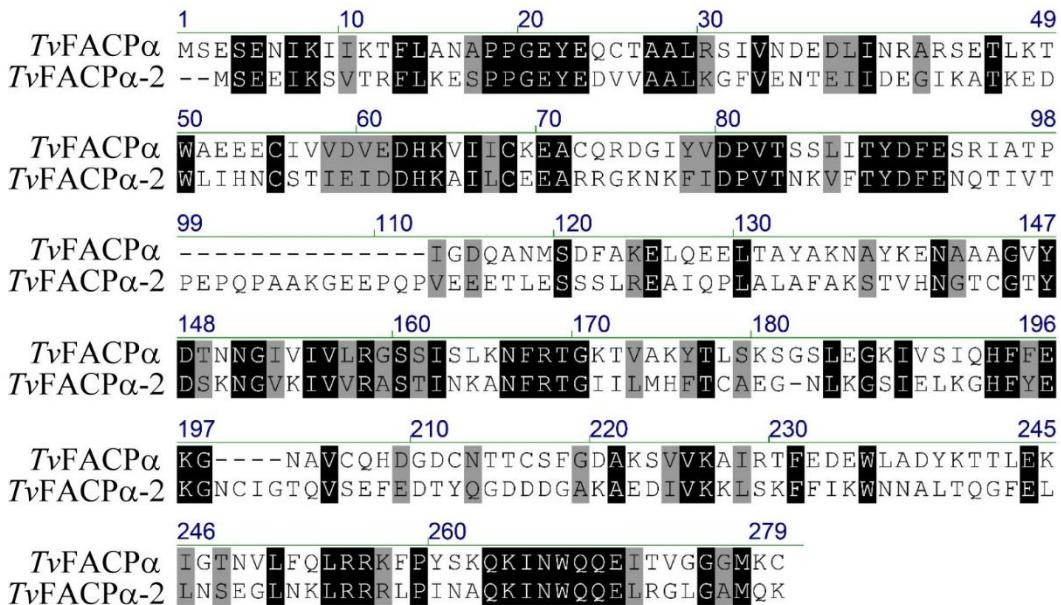
22 ***TvFACPa*.** (A.) The full-length protein sequences of α -actin from human (*h*Actin,


23 P68133), mouse (*m*Actin, P68134), yeast (*y*Actin, P60010), and *T. vaginalis* (*Tv*actin,

24 TVAG_337240) were aligned to show the protein sequence similarity. The conserved

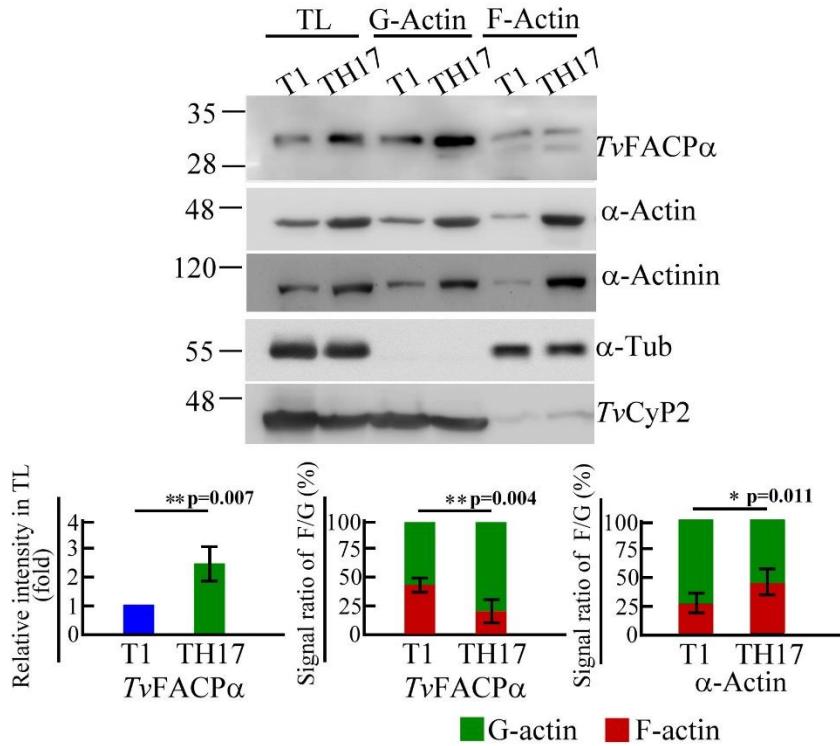
25 amino acid residues are highlighted, and the binding sites of phalloidin or LatB in α -

26 actin are indicated by P or L as shown at the top of sequences, respectively.


Fig 4. S1

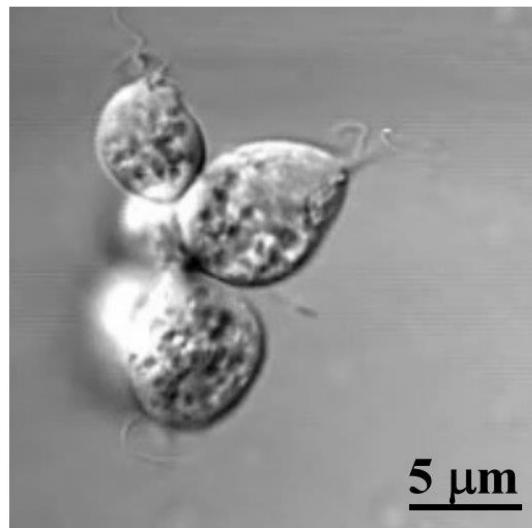
27

28 **Figure 4-Figure Supplement 1. Protein function category.** The mass identified
29 proteins were classified by function into multiple cellular pathways, including
30 cytoskeleton proteins (22%), chaperones (5%), membrane trafficking (3%),
31 transporter (7%), protein binding (5%), modification (2%), DNA/RNA regulation (7%)
32 and translation (10%), metabolism enzymes (37%), and uncharacterized proteins (2%).


Fig 4. S2

33

34 **Figure 4-Figure Supplement 2. The sequence alignment for *TvFACPs* in *T*
35 *vaginalis*.** The protein sequences of *TvFACPα* (TVAG_470230) and *TvFACPα-2*
36 (TVAG_212270) were aligned. The conserved amino acid residues are highlighted.


Fig 7. S1

37

38 **Figure 7-Figure Supplement 1. Differential expression of *TvFACPα* in**
39 **nonadherent and adherent isolates of *T. vaginalis*.** The protein lysates from Fig. 2E
40 were re-examined by western blotting with the anti-*TvFACPα* antibody. The relative
41 intensity of *TvFACPα* detected in total lysate, the signal ratio of *TvFACPα* in F-actin
42 versus G-actin fractions were shown in the histograms. The assays were repeated three
43 times. Data in histograms are presented as mean \pm SEM. Significance with p-value is
44 statistically analyzed by Student's t-test as indicated. (n=3, P<0.01, P<0.05, and ns, no
45 significance).

Fig 9. S1

46

47 **Figure 9-Figure Supplement 1. Morphology of trophozoites in the bottom well of**
48 **trans-well assay.** Morphology of trophozoites migrating into the bottom well was
49 recorded by microscopy. The trophozoites in the bottom well were observed in
50 dominant flagellate form with clear flagella under our assay conditions. The scale bar
51 represents 5 μ m.