bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Genomic prediction using machine learning: A comparison of
the performance of regularized regression, ensemble,
instance-based and deep learning methods on synthetic and
empirical data

Vanda M. Lourenco®”, Joseph O. Ogutu?, Rui A.P. Rodrigues', Hans-Peter Piepho?

1 Center for Mathematics and Applications (CMA), FCT NOVA and Department of
Mathematics, FCT NOVA, Caparica, Portugal
2 Biostatistics Unit, University of Hohenheim, Stuttgart, Germany

* vmml@fct.unl.pt

Abstract

The accurate prediction of genomic breeding values is central to genomic selection in
both plant and animal breeding studies. Genomic prediction involves the use of
thousands of molecular markers spanning the entire genome and therefore requires
methods able to efficiently handle high dimensional data. Not surprisingly, machine
learning methods are becoming widely advocated for and used in genomic prediction
studies. These methods encompass different groups of supervised and unsupervised
learning methods. Although several studies have compared the predictive performances
of individual methods, studies comparing the predictive performance of different groups
of methods are rare. However, such studies are crucial for identifying (i) groups of
methods with superior genomic predictive performance and assessing (ii) the merits and
demerits of such groups of methods relative to each other and to the established
classical methods. Here, we comparatively evaluate the genomic predictive performance
and computational cost of several groups of supervised machine learning methods,
specifically, reqularized regression methods, deep, ensemble and instance-based learning
algorithms, using one simulated animal breeding dataset and three empirical maize
breeding datasets obtained from a commercial breeding program. Our results show that
the relative predictive performance and computational expense of the groups of machine
learning methods depend upon both the data and target traits and that for classical
regularized methods, increasing model complexity can incur huge computational costs
but does not necessarily always improve predictive accuracy. Thus, despite their greater
complexity and computational burden, neither the adaptive nor the group regularized
methods clearly improved upon the results of their simple regularized counterparts.
This rules out selection of one procedure among machine learning methods for routine
use in genomic prediction. The results also show that, because of their competitive
predictive performance, computational efficiency, simplicity and therefore relatively few
tuning parameters, the classical linear mixed model and regularized regression methods
are likely to remain strong contenders for genomic prediction. The dependence of
predictive performance and computational burden on target datasets and traits call for
increasing investments in enhancing the computational efficiency of machine learning
algorithms and computing resources.

June 8, 2022

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

43

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Author summary

Machine learning methods are well suited for efficiently handling high dimensional data.

Particularly, supervised machine learning methods have been successfully used in
genomic prediction or genome-enabled selection. However, their comparative predictive
accuracy is still poorly understood, yet this is a critical issue in plant and animal
breeding studies given that increasing methodological complexity can substantially
increase computational complexity or cost. Here, we show that predictive performance
is both data and target trait dependent thus ruling out selection of one method for
routine use in genomic prediction. We also show that for this reason, relatively low
computational complexity and competitive predictive performance, the classical linear
mixed model approach and regularized regression methods remain strong contenders for
genomic prediction.

Introduction

Rapid advances in genotyping and phenotyping technologies have enabled widespread
and growing use of genomic prediction (GP). The very high dimensional nature of both
genotypic and phenotypic data, however, is increasingly limiting the utility of the
classical statistical methods. As a result, machine learning (ML) methods able to
efficiently handle high dimensional data are becoming widely used in GP. It is therefore
important to establish the relative predictive performance of different groups of ML
methods. Even so, the predictive performance of groups of ML, methods has attracted
relatively little attention. The rising importance of ML methods in plant and animal
breeding research and practice, increases both the urgency and importance of evaluating
the relative predictive performance of groups of ML methods relative to each other and
to classical methods. This can facilitate identification of groups of ML methods that
balance high predictive accuracy with low computational cost for routine use with high
dimensional phenotypic and genomic data, such as for GP, say.

ML is perhaps one of the most widely used branches of contemporary artificial
intelligence. Using the ML methods facilitates automation of model building, learning
and efficient and accurate predictions. The ML algorithms can be subdivided into two
major classes: supervised and unsupervised learning algorithms. Supervised regression
ML methods encompass regularized regression methods, deep, ensemble and
instance-based learning algorithms. Supervised ML methods have been successfully used
to predict genomic breeding values for unphenotyped genotypes, a crucial step in
genome-enabled selection [25] 40 (4T, [42] [43] [44) [45] [46), [49]. Furthermore, several
studies have assessed the relative predictive performance of supervised ML methods in
GP, including two ensemble methods and one instance-based method [44]; four
regularized and two adaptive regularized methods [45]; three regularized and five
regularized group methods [46] and several deep learning methods [40, [4T], [42] [43] [49].
However, no study has comprehensively evaluated the comparative predictive
performance of all these groups of methods relative to each other or to the classical
regularized regression methods. We therefore rigorously evaluate the comparative
predictive performance as well as the computational complexity or cost of three groups
of popular and state-of-the-art ML methods for GP using one simulated animal dataset
and three empirical datasets obtained from a commercial maize breeding program. We
additionally offer brief overviews of the mathematical properties of the methods with
emphasis on their salient properties, strengths and weaknesses and relationships with
each other and with the classical regularization methods.

The rest of the paper is organized as follows. First we present the synthetic and real

June 8, 2022

229

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

datasets. Second, we detail the methods compared in this study. Next, the results from
the comparative analyses of the data are presented. Finally, a discussion of the results
and closing remarks follow.

Data

Simulated (animal) data

We consider one simulated dataset [46], an animal breeding outbred population
simulated for the 16-th QTLMAS Workshop 2012. The dataset consists of 4020
individuals genotyped for 9969 SNP markers. Out of these, 3000 individuals were
phenotyped for three quantitative milk traits and the remaining 1020 were not
phenotyped (see [46] for details). The goal of the analysis of the simulated dataset is to
predict the genomic breeding values (PGBVs) for the 1020 unphenotyped individuals
using the available genomic information. The simulated dataset also provides true
genomic breeding values (TGBVs) for the 1020 genotypes for all the traits.

As in [46], to enable model fitting for the grouping methods, markers were grouped by
assigning consecutive SNP markers systematically to groups of sizes 10, 20, ..., 100
separately for each of the five chromosomes. Typically, the last group of each grouping
scheme has fewer SNPs than the prescribed group size. Table [I] summarizes the
simulated phenotypic data and highlights differences in the magnitudes of the three
simulated quantitative traits T3, T and T3.

Table 1. Summary statistics for the three quantitative traits (77, T» and T3) in the
simulated training dataset (n = 3000 genotypes).

Trait

Min.

1st Qu. Median Mean 3rd Qu. Max. Sd

Ty
15
T3

-584.993650
-32.233530
-0.095720

-116.244762 -1.711490 -0.000004 112.248515 587.189720 176.518911

-6.502070 0.075480 -0.000004 6.615977 32.514590 9.514060
-0.015893 0.000650 0.000005 0.016450 0.085240 0.024474

Real (plant) data

For the application to empirical data sets, we use three empirical maize breeding
datasets produced by KWS (breeding company) for the Synbreed project during 2010,
2011 and 2012. We first performed separate phenotypic analyses for each of the three
real maize data sets to derive the adjusted means used in genomic prediction using a
single stage mixed model assuming that genotypes are uncorrelated. The fixed effect in
the mixed model comprised a tester (Tester) with two levels, genotypic group (GRP)
with three levels, Tester x GRP and Tester x GRPxG (G=genotype). The random
factors were location (LOC), trial (TRIAL) nested within location, replicate (REP)
nested within trial and block (BLOCK) nested within replicate. The fitted random
effects were LOC, LOCXTRIAL, LOCxTRIALXREP, LOCxTRIALXxREPxBLOCK,
Tester x GRPxSWITCH2x G and Tester x GRPxSWITCH1xG2. SWITCH1 and
SWITCH?2 in the last two effects are operators explained in greater detail in [13]. All the
three maize datasets involved two testers and three genotypic groups. Accordingly, prior
to genomic prediction, we accounted for and removed the effect of the tester xgenotypic
group (GRP) effect from the adjusted means (Ismeans) of maize yield by computing the
arithmetic mean of the Ismeans for the interaction of testers with GRP for the
genotyped lines. This mean was then subtracted from the Ismeans for each tester x GRP
interaction term. The resulting deviations were subtracted from the Ismeans of the
individual genotypes corresponding to each Tester x GRP interaction. This enabled us

June 8, 2022

38

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

not to consider the Tester x GRP effect in the genomic prediction model. The SAS codes
used for the preceding phenotypic analysis and computation of the adjusted genotype
means used as the response variable in genomic prediction is provided in S5 File.

For all the years, every line was genotyped for 32217 SNP markers. A subset of the SNP
markers with non-zero variances were split into groups of sizes

10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. Groups were defined by systematically grouping
consecutive and spatially adjacent markers, separately for each of 10 chromosomes. The
SAS code used to define the groups is provided in S6 File. All the checks (standard
varieties) and check markers were deleted prior to genomic prediction. More details
specific to the three datasets follow (Table [2| summarizes the number of genotypes in the
training and validation datasets). The true breeding values are not known in this case.

Table 2. Number of genotypes in the training dataset (folds F1-F4) and validation
dataset (fold F'5) for each of the 10 cross-validation replicates for the 2010,2011 and

2012 KWS real maize datasets.

2010 2011 2012
Folds
F1-F4 F5 F1-F4 F5 F1-F4 F5
Data
Training 859 856 685 688 1104 1108
Validation 214 217 172 169 277 273

The 2010 dataset: the phenotypic dataset consists of 1073 individuals genotyped for
32217 SNPs and randomly split into 5 datasets, which we call folds, for 5-fold cross

validation. The random splitting procedure was repeated 10 times to yield 10 replicates.

In folds 1 — 4, 859 individuals (across all replicates) are used for training and 214
(across all replicates) individuals are used for validation. In fold 5, 856 individuals
(across all replicates) are used for training and 217 (across all replicates) individuals are
used for validation.

The 2011 dataset: the phenotypic dataset consists of 857 individuals genotyped for
32217 SNPs and randomly split into 5 datasets, which we call folds, for 5-fold cross

validation. The random splitting procedure was repeated 10 times to yield 10 replicates.

In folds 1 — 4, 685 individuals (across all replicates) are used for training and 172
(across all replicates) individuals are used for validation. In fold 5, 688 individuals
(across all replicates) are used for training and 169 (across all replicates) individuals are
used for validation.

The 2012 dataset: the phenotypic dataset consists of 1381 individuals genotyped for
32217 SNPs and randomly split into 5 datasets, which we call folds, for 5-fold cross

validation. The random splitting procedure was repeated 10 times to yield 10 replicates.

In folds 1 — 4, 1104 individuals (across all replicates) are used for training and 277
(across all replicates) individuals are used for validation. In fold 5, 1108 individuals
(across all replicates) are used for training and 273 (across all replicates) individuals are
used for validation.

Table [3] summarizes the KWS phenotypic data for 2010, 2011 and 2012. Each data split
for each year (2010, 2011 and 2012) contained approximately 20% of the phenotypic
observations and was obtained using stratified random sampling using the algorithm S7
File of [60] as modified in S8 File. The strata were defined by the combinations of the
two testers and three genotypic groups.

June 8, 2022

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 3. Summary statistics for maize yield in the KWS real maize datasets for 2010,

2011 and 2012.

Dataset

1st Qu. Median Mean 3rd Qu. Max. Sd

121.550000 127.880000 126.806883 132.670000 149.930000 8.297735
139.310000 144.710000 144.221949 150.070000 164.060000 8.155595
139.160000 143.810000 143.719182 148.470000 169.160000 7.318531

Methods

In this section we describe the four supervised ML groups of methods.

Regularized regression methods

Consider the general linear regression model

p
Yi = Bo + Zﬁsz‘j +ei, i=1,..,n (1)

j=1

where y; is the i-th observation of the response variable, x;; is the i-th observation of
the j-th covariate (p is the number of all covariates), 8; are the regression coefficients
(unknown fixed parameters), €; are i.i.d. random error terms with E(e;) = 0 and

var(g;) = 02, where o2 is an unknown random variance, and n is the sample size. The

ordinary least squares estimator of 3 = (fo, ..., p)’, which is unbiased, is obtained by
minimizing the residual sum of squares (RSS), i.e.,

. " u 2
Bois = arggm'n > (yi —Po — Zﬂjfﬁm‘) = arggﬂn ly — X8z,
i=1 j=1

where
1 T11 X12 I13 - T1p
, 1 21 X222 X23 ... T2p .
y=W1-.,un)s X=1]. . .) and ||.||2 is the £3-norm.
1 zp1 Tpe Tpz oo Ty

This estimator is typically not suitable when the design matrix X is less than full rank
(X has a full rank if the number of its linearly independent rows or columns
k = min(p,n)) or is close to collinearity (i.e., the covariates are close to being linear

combinations of one another) [I6]; problems that are frequently associated with p >> n.

In genomic prediction (GP) one is interested in estimating the p regression coefficients
B; so that genomic breeding values of non-phenotyped genotypes can be predicted from
the fitted model. The response variable y is often some quantitative trait and the 3;’s
are the coefficients of molecular markers spanning the whole genome, usually Single
Nucleotide Polymorphisms (SNPs). Because in GP typically p >> n, the ordinary least
squares (OLS) estimator breaks down and thus other methods for estimating 3 in
must be sought. Indeed, the increasingly high dimensional nature of high-throughput
SNP-marker datasets has prompted increasing use of the power and versatility of
regularization methods in genomic prediction to simultaneously select and estimate
important markers and account for multicollinearity [44] 45].

Without loss of generality, we assume, consistent with the standard practice in
regularized estimation where a distance-based metric is used for prediction, that the

June 8, 2022

58

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

response variable is mean-centered whereas the covariates in are standardized, so

that
n n
Zyiz(), inj:O and nflzx?jzl, i=1,...,p.
i=1 i=1 =

Regularized regression methods minimize a non-negative loss function (RSS or other)
plus a non-negative penalty function. Standardizing the covariates prior to model fitting
ensures that the penalty is applied evenly to all covariates. Mean-centering the response
and the covariates is usually done for notational simplicity but also eliminates the need
to estimate the intercept (.

After the penalized models have been fit, the final estimates are obtained by back
transformation to the original scale by re-introducing an intercept (5p). In particular,
for a mean-centered response y and standardized predictor X*, predictions are obtained
by

with ,@* = (Bl*, . ,B;), the regression coefficients from the model fit with the
mean-centered response y and standardized covariates X*, X% = (z1j,...,%,;)" the j-th
covariate and fp = y. One can also choose to predict using the original predictor X*
without standardization. In that case one should back transform the 37 to the original
scale and consider

with Bj = BJ* /85,85 = ,|n71 z x?J the standard deviation of the j-th covariate X} and
i=1

Bo = v — X3, where X, = (mj,...,m;)" is a vector of size n with m; being the mean

of the j-th covariate X7.

The primary goal of regularization methods is to reduce model complexity resulting
from high dimensionality by reducing the number of predictors in the model. This is
achieved by either shrinking some coefficients to become exactly zero, and so drop out
of the model, or shrinking all coefficients to be close to zero and each other but not
exactly zero. Ideally, a desirable estimator of 3 should (i) correctly select the nonzero
coefficients with probability converging to 1 (i.e. with near certainty; selection
consistency) and (ii) yield estimators of the nonzero coefficients that are asymptotically
normal with the same means and covariances that they would have if the zero
coefficients were known exactly in advance (asymptotic normality). An estimator
satisfying these two conditions is said to possess the oracle property [14] [15].

For the remainder of the paper, we assume that X is a n x p marker matrix (e.g., with
the genotypes {aa, Aa, AA} coded as {0,1,2} or {—1,0,1} for p biallelic SNPs under an
additive model) with X; denoting the j-th SNP covariate and 8 = (81, ..., Bp) denoting
the unknown vector of marker effects. Table 4| (upper half) summarizes the methods
discussed in this sub-section.

Bridge-type estimators

The most popular regularization methods in genomic prediction include ridge regression
(RR; [26]), the least absolute shrinkage and selection operator (LASSO; [57]) and the

June 8, 2022

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint

(which was not certified by peer review)

is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 4. A summary of the estimators and penalty functions for the bridge-type and
adaptive bridge-type regularized regression methods used in this study. The adaptive
methods have an a prefix in their names.

Method Penalty Estimator
bridge pay(B) = /\zp: 1851”7 Bb'r‘idge = arggmin {RSS +)\i |,8j|7}, v>0, A>0 (2)
=1 j=
e e
LASSO pa(8) = AIBIh Buasso = angmin {RSS+IBlI:} (3)
oy =2
ridge pa(B) = AIBI2 Bridge = argmin {Rss +AIBI3} (4)
e Combination of LASSO and ridge penalties (y = 1,2, respectively):
ENET pa(8) = M8l + XallB3 Bener = (1+2) x {argmin RS + Xi[18]1 + 2ol 313} (5)
P P
abridge pr,(8) = A z; w;|B;]” Babm’dge = ngﬂn {RSS +)\leﬂﬁjp} (6)
— iz
B : ;/_: __________ I L L L LT L ___________.
aLASSO pA(B) = A|wB|1 Batasso = arg;nin {RSS + Allwlilll} (7)
e Combination of alLASSO and ridge penalties (v = 1, 2, respectively):
AENET pa(8) = MWl + 2allB3 Beence = x (argmin {RSS + Xy Bl + el }) (8)

elastic net (ENET; [67]). All these methods are special cases of the bridge estimator
[16] 20] given by

p
Boriage = argmin {RSS+AD" (8,17}, >0, A0, (2)
B

j=1

where the regularization parameter \ balances the goodness-of-fit against model

complexity and the shrinkage parameter v determines the order of the penalty function.

The optimal combination of A\ and 7 can be selected adaptively for each dataset by grid
search using cross-validation (CV; if the focus is on predictive performance) or by
information criteria (e.g., AIC or BIC; if the focus is on model fit). Bridge regression
automatically selects relevant predictors when 0 < v < 1, shrinks the coefficients when
~ > 1 and reduces to subset selection when v = 0. The bridge estimator reduces to the
LASSO estimator when v = 1 and to the ridge estimator when v = 2. Specifically,

@asso = argmin {RSS +)\||ﬂ||1}, (3)
B

where ||.||1 is the ¢;-norm, and

,@Tidge = argmin {RSS + /\||ﬂ||§} (4)
B

June 8, 2022

213

214

215

216

217

218

219

220

222

223

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

The bridge estimator also enjoys several other useful and interesting properties (see
128, 33] for more details). We summarize these salient properties with emphasis on the
special cases of the LASSO (v = 1) and the ridge estimators (y = 2).

1. The asymptotic properties of bridge estimators have been studied by [28]. In

particular, for p < n with p increasing to infinity with n and under appropriate
regularity conditions, bridge estimators enjoy the oracle property for 0 < v < 1,
implying that, neither the LASSO nor the ridge estimator enjoys the oracle
property [14], 15]. If p >> n and no assumptions are imposed on the covariate
matrix, then the regression parameters are generally non identifiable. However, if
a suitable structure is assumed for the covariate matrix, then bridge estimators
achieve consistent variable selection and estimation [28].

. Although the LASSO estimator performs automatic variable selection, it is a

biased and inconsistent estimator [64] 65]. Moreover, it is unstable with
high-dimensional data because it

i) cannot select a larger number of predictors p than the sample size n if
g
p>>n;

(ii) arbitrarily selects one member of a set of pairwise highly correlated
predictors and ignores the other.

. The ridge estimator performs well for many predictors each of which has a small

effect but cannot shrink the coefficients to become exactly zero. Moreover, the
ridge estimator

(i) prevents coefficients of linear regression models with many correlated
variables from being poorly determined and exhibiting high variance;

(ii) shrinks coefficients of correlated predictors equally towards zero and towards
each other;

(iii) retains all predictor variables in the model leading to complex and less
interpretable models.

In addition, RR has close connections with marker-based BLUP and genomic
BLUP [38], which we clarify in what follows. The ridge estimator is given by

Bm’dge = (X/X + /\I)ilxlbﬁ

where, if)\ is estimated by cross-validation as suggested above, then the ridge
estimator may be denoted by RR-CV.

Another way of looking at the ridge estimator is to assume in that

B~ N(0, IO’%) is a random vector of unknown marker effects and that

€ ~ N(0,102) is an unknown random error term, where 03 and o2 are the
unknown marker-effect and error variances, respectively. This model is now a
linear mixed model and hence, the variances can be estimated via the restricted
maximum likelihood (REML) method. The BLUP solution for the marker effects
under model is given by

~ o2 N1
BeLup = (X/X + j1> X'y,

o
B
establishing the equivalence of BLUP and RR [51], [54] and that one can actually
~2
estimate the ridge parameter A by A = f—;. Because we use REML to estimate the
o
B

two variance components in B BrLup, we refer to this RR appproach as RR-REML.

June 8, 2022

829

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

The underlying mixed model for gBLUP (ignoring fixed effects and considering
just one random effect per individual) is

y=Ig+e,

where, g ~ N(O, Gag) is the random vector of unknown genotypic (breeding)
values, 03 is the unknown genetic variance, € and o2 are defined as before, and
G = XX/ is the genomic (marker-based) relationship matrix. The
genomic-estimated breeding values (GEBVs; g) are equivalent to the estimates
X3 from model [24, [50]. Indeed, for this special case var(y) = XX’U?I + 102,
which is exactly the same as that for model when 3 is taken as random.

4. Due to the nature of the ¢; penalty, particularly for high values of A, the LASSO
estimator will shrink many coefficients to exactly zero, something that never
happens with the ridge estimator.

Elastic net estimator

The elastic net estimator blends two bridge-type estimators, the LASSO and the ridge,
to produce a composite estimator that reduces to the LASSO when \s = 0 and to the
ridge when A\; = 0. Specifically, the elastic net estimator is specified by

Benet = ki x {arggn’n RSS + M|l + Ae1BI3 }- (5)

with & = 1 + Ay if the predictors are standardized (as we assume) or k =1+ Ay/n
otherwise. Even when A1, Ao # 0, the elastic net estimator behaves much like the
LASSO but with the added advantage of being robust to extreme correlations among
predictors. Moreover, the elastic net estimator is able to select more than n predictors
when p >> n. Model sparsity occurs as a consequence of the 1 penalty term.
Mazumder et al. [36] proposed an estimation procedure based on sparse principal
components analysis (PCA), which produces an even more sparse model than the
original formulation of the elastic net estimator [67]. Because it blends two bridge-type
estimators, neither of which enjoys the oracle property, the ENET also lacks the oracle
property.

Other competitive regularization methods that are asymptotically oracle efficient (p < n
with p increasing to infinity with n), which do not fall into the category of bridge-type
estimators, are the smoothly clipped absolute deviations (SCAD [15] B1]) and the
minimax concave penalty (MCP [63] [65]) methods. Details of the penalty functions and
other important properties of both methods can be found elsewhere [5, 46].

Adaptive regularized regression methods

The adaptive regularization methods are extensions of the regularized regression
methods that allow the resulting estimators to achieve the oracle property under certain
regularity conditions. Table [4] (lower half) summarizes the adaptive methods considered
here.

Adaptive bridge-type estimators
Adaptive bridge estimators extend the bridge estimators by introducing weights in the
penalty term. More precisely,

P
Babridge = argmin {RSS + AijWjP}, v>0, A>0 (6)
B

Jj=1

June 8, 2022

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

where {w; };’:1 are adaptive data-driven weights. As with the bridge-type estimator, the
adaptive bridge estimator simplifies to the adaptive LASSO (aLASSO) estimator when
~v =1 and to the adaptive ridge estimator when v = 2. Chen et al. [I0] studied the
properties of adaptive bridge estimators for the particular case when p < n (with p
increasing to infinity with n), 0 <y < 2 and w; = (|B\Ji‘"it|)_1 with 8"t = B,,5. They
showed that for 0 < v < 1, and under additional model assumptions, adaptive bridge
estimators enjoy the oracle property. For p >> n, B, cannot be computed and thus
other initial estimates, such as Br;qge, have to be used. Theoretical properties of the
adaptive bridge estimator for p >> n do not seem to have been well studied thus far.

The adaptive LASSO estimator was proposed by [6§] to remedy the problem of the lack
of the oracle property of the LASSO estimator [I4, [I5]. The penalty for the adaptive
LASSO is given by (adaptive bridge estimator with v = 1)

p
pA(B) = A D_w;lB)]
j=1

where the adaptive data-driven weights {w;}"_, can be computed as w; = (|3§"“|)_”

with ,@m“ an initial root-n consistent estimate of 3 obtained through least squares (or
ridge regression if multicollinearity is important) and v is a positive constant.
Consequently,

B\alasso = argmin {RSS + >\HW5H1} (7)
B

with v chosen appropriately, performs as well as the oracle, i.e., the adaptive LASSO
achieves the oracle property. Nevertheless, this estimator still inherits the LASSO’s
instability with high dimensional data. The values of A and v can be simultaneously
selected from a grid of values, with values of v selected from {0.5,1, 2}, using
two-dimensional cross-validation [68].

Grandvalet [21] shows that the adaptive ridge estimator (adaptive bridge estimator with
~v = 2) is equivalent to the LASSO in the sense that both produce the same estimate
and thus the adaptive ridge is not considered further.

Adaptive elastic-net

The adaptive elastic-net (aENET) combines the ridge and alLASSO penalties to achieve
the oracle property [70] while at the same time alleviating the instability of the
alLASSO with high dimensional data. The method first computes ,@enet as described
above for the elastic net estimator, then constructs the adaptive weights as

W; = (|Bj,enet|) ™", where v is a positive constant, and then solves

Bucner = kx {arymin RSS + X [ws + X283 ®)

where k = 1 4 Ay if the predictors are standardized (as we assume) or k =1+ Ay/n
otherwise. In particular, when Ay = 0 the adaptive elastic-net reduces to the alLASSO
estimator. This is also the case when the design matrix is orthogonal regardless of the
value of Ay [67) [68], [70].

Other adaptive regularization methods are the multi-step adaptive ENET (maENET),
the adaptive smoothly clipped absolute deviations (aSCAD) and the adaptive minimax
concave penalty (aMCP) methods. Details of the penalty functions and noteworthy
properties of the latter three methods are summarized elsewhere [45] [59].

June 8, 2022

10/128

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Regularized group regression methods

Regularized regression methods that select individual predictors do not exploit
information on potential grouping structure among markers, such as that arising from
the association of markers with particular Quantitative Trait Loci (QTL) on a
chromosome or haplotype blocks, to enhance the accuracy of genomic prediction. The
nearby SNP markers in such groups are linked, producing highly correlated predictors.
If such grouping structure is present but is ignored by using models that select
individual predictors only, then such models may be inefficient or even inappropriate,
reducing the accuracy of genomic prediction [46]. Regularized group regression methods
are regularized regression methods with penalty functions that enable the selection of
the important groups of covariates and include group bridge (gbridge), group LASSO
(gLASSO), group SCAD (gSCAD) and group MCP (gMCP) methods (see

[11, [6, (301 [46], [47, [61] for detailed reviews). Some grouping methods such as the group
bridge, sparse group LASSO (sgLASSO) and group MCP, besides allowing for group
selection, also select the important members of each group [4] and are therefore said to
perform bi-level selection, i.e., group-wise and within-group variable selection. Bi-level
selection is appropriate if predictors are not distinct but have a common underlying
grouping structure.

Estimators and penalty functions for the regularized grouped methods can be
formulated as follows. Consider subsets Ay,..., Ar of {1,...,p} (L being the total
number of covariate groups), representing known covariate groupings of design vectors,
which may or may not overlap. Let 84, = (Bk, k € A;) be the regression coefficients in
the I-th group and p; the cardinality of the I-th group (i.e., the number of unique
elements in A;). Regularized group regression methods estimate 8 = (84,,...,84,)" by
minimizing

n L 2
FLB) =Y (yz - ZﬂAlxu) +paA(B), (9)
1 =1

1=

where X ; is a matrix with columns corresponding to the predictors in group I.

n L 2
Because Z (yZ — Z B ALXU) in is equivalent to RSS some authors use the RSS
i=1 1=

1=
formulation directly. It is assumed that all the covariates belong to at least one of the
groups. Table [p| summarizes the methods described in this section.

Table 5. Penalty functions and estimators for some group regularized regression
methods used in this study.

Method Penalty Estimator
L L
gbridge Pra~(B) = A Z allBa i ngridge = argmin {R,SS + A Z allBa, M} (10)
°
gLASSO pA(B) =AY VpillBalz Batasso = argmin {RSS + 13 Vil } (1)
=1 =1

L L
sgLASSO pra(B) =Bl + (1 —)XY vallBill: Begrasso = m'ggzin {Rss +a|Blh+ (1 —a)A > \@Hgluz} (12)
=1

=1

Group bridge-type estimators

L
Group bridge-type estimators use in the penalty term py(8) = A Z cllBa,|l7 with
1=1

June 8, 2022

118

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

¢; constants that adjust for the different sizes of the groups. The group bridge-type
estimators are thus obtained as

L
Bgbridge = arg;nin RSS +)‘ZClHﬁAz 17, v>0, Xx>0. (10)
=1

. 1—
A simple and usual choice for the ¢; constants consists in considering each ¢; o p; .

When 0 < v < 1 group bridge can be used simultaneously for group and individual
variable selection. Also, note that under these assumptions, the group bridge estimator
correctly selects groups with nonzero coefficients with probability converging to one
under reasonable regularity conditions, i.e., it enjoys the oracle group selection property
(see [27] for details). When the group sizes are all equal to one, ie.,, pp =1V 1<I<L,
then group bridge estimators reduce to the bridge estimators.

Group LASSO and sparse group LASSO

L

Group LASSO regression uses in (9)) the penalty function py(8) = A Z Voil1Ba,ll2-
1=1

The group LASSO estimator is thus given by

L
ﬁglasso = arggm'n {RSS +)‘Z \/ﬁHﬁAl ||2}7 A > 0. (11)
=1

Unlike the group bridge estimator (0 < vy < 1), gLASSO is designed for group selection,
but does not select individual variables within the groups. Indeed, its formulation is
more akin to that of the adaptive ridge estimator [27]. As with the group-bridge
estimator, when the group sizes are all equal to one, i.e., p; =1V 1 <[< L, the
gLASSO estimator reduces to the LASSO estimator.

Because the gLASSO does not yield sparsity within a group (it either discards or
retains a whole group of covariates) the sparse group lasso (sgLLASSO), which blends
the LASSO and the gLASSO penalties, was proposed [I8], [56]. Specifically, the
sgLASSO estimator is given by

L
Bestasso = argmin {RSS + (1=)3 Vallilla + a1l | (12)
=1

where « € [0, 1] provides a convex combination of the lasso and group lasso penalties
(a = 0 gives the gLASSO fit, o = 1 gives the LASSO fit). The gLLASSO is superior to
the standard LASSO under the strong group sparsity and certain other conditions,
including a group sparse eigenvalue condition [29]. Because the sgLASSO lacks the oracle
property, the adaptive sparse group LASSO was recently proposed to remedy this
drawback [52].

Note that there are two types of sparsity, i.e., (i) “groupwise sparsity”, which refers to
the number of groups with at least one nonzero coefficient, and (ii) “within group
sparsity” that refers to the number of nonzero coefficients within each nonzero group.
The “overall sparsity” usually refers to the total number of non-zero coefficients
regardless of grouping.

Other group regularization methods are the hierarchical group LASSO (hLASSO), the
group smoothly clipped absolute deviations (gSCAD) and the group minimaz concave
penalty (gMCP) methods. Details of the penalty functions and salient properties of
these methods can be found in [35] [406] (48] 667].

June 8, 2022

128

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Ensemble methods

Ensemble methods build multiple models using a given learning algorithm and then
combine their predictions to produce an optimal estimate. The two most commonly
used algorithms are bagging (or bragging) and boosting. Whereas bagging is a stagewise
procedure that combines the predictions of multiple models (e.g., classification or
regression trees) to yield an average prediction, boosting is a stagewise process in which
each stage attempts to improve the predictions at the previous stage by up-weighting
poorly predicted values. Below, we briefly discuss two popular ensemble methods,
namely, random forests, an extension of bagging, and gradient boosting algorithms.
Note that, although variable scaling (centering or standardizing) might accelerate
convergence of the learning algorithms, the ensemble methods do not require it. Indeed,
the collection of partition rules used with the ensemble methods should not change with
scaling.

Random forests (RF)

The random forests algorithm is an ensemble algorithm that uses an ensemble of
unpruned decision (classification or regression) trees, each grown using a bootstrap
sample of the training data, and randomly selected (without replacement) subsets of the
predictor variables (features) as candidates for splitting tree nodes. The randomness
introduced by bootstrapping and selecting a random subset of the predictors reduces

the variance of the random forest estimator, often at the cost of a slight increase in bias.

The RF regression prediction for a new observation y;, say g7, is made by averaging the
output of the ensemble of B trees {T'(y;, Uy)}p=1,....5 as [23]

B
1

~B _ .

Yi = B b§—1 T(yi, ¥s)

where W, characterizes the b-th RF tree in terms of split variables, cut points at each
node, and terminal node values. Recommendations on how to select the number of trees
to grow, the number of covariates to be randomly chosen at each tree node and the
minimum size of terminal nodes of trees, below which no split is attempted, are
provided by [9, [34]. We refer to [, 23] [34] for further details on the RF regression.

Stochastic Gradient Boosting (SGB)

Boosting enhances the predictive performance of base learners such as classification or
regression trees, each of which performs only slightly better than random guessing, to
become arbitrarily strong [23]. As with RF, boosting algorithms can also handle
interactions, nonlinear relationships, automatically select variables and are robust to
outliers, missing data and numerous correlated and irrelevant variables. In regression,
boosting is an additive expansion of the form

M
Yy =f(X) = Brnh(X;vm)

m=1

where 1, ..., By are the expansion coefficients and the basis functions h(X;), base
learners, are functions of the multivariate argument X, characterized by a set of
parameters v = (v1,...,vm). Typically these models are fit by minimizing a loss
function L (e.g., the squared-error loss) averaged over the training data

n M
min L (yi, Z ﬁmh(xi;’Ym)> .

m=1

We used regression trees as basis functions in which the parameters v, are the splitting

June 8, 2022

13/128

394

395

396

397

398

399

400

401

403

404

405

406

407

408

409

410

411

412

414

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

variables, split points at the internal nodes, and the predictions at the terminal nodes.
Boosting regression trees involves generating a sequence of trees, each grown on the
residuals of the previous tree. Prediction is accomplished by weighting the ensemble
outputs of all the regression trees. We refer to [23, 53] for further details on SGB (see,
e.g., [65] for the interpretation of boosting in terms of regression for a continuous,
normally distributed response variable).

Instance-based methods

For the instance-based methods, scaling before applying the method is crucially
important. Scaling the variables (features) prior to model fitting prevents possible
numerical difficulties in the intermediate calculations and helps avoid domination of
numeric variables with smaller by those with greater magnitude and range.

Support Vector Machines

Support vector machines (SVM) is a popular supervised learning technique for
classification and regression of a quantitative response y on a set of predictors, in which
case the method is called support vector regression or SVR [58]. In particular, SVR uses
the model

yi = f(xi) = Bo + h(x:)" B, (13)

with x; = (z41,..., %) and where the approximating function f(x;) is a linear
combination of basis functions h(x;)T, which can be linear (or nonlinear)
transformations of x;. The goal of SVR is to find a function f such that f(x;) deviates
from y; by a value no greater than ¢ for each training point x;, and at the same time is
as flat as possible. This so-called e-insensitive SVR, or simply e-SVR, thus fits a model
(13) using only those residuals which are smaller in absolute value than e and a linear
loss function for larger residuals. The choice of the loss function (e.g., linear, quadratic,
Huber) usually considers the noise distribution pertaining to the data samples, level of
sparsity and computational complexity.

If Eq is the usual linear regression model, i.e., y; = f(x;) = Bo + xI 3, one
considers the following minimization problem

n
A
min (S Viy - f(x)) + 5 181°) 14
min (32 Vi = 5) + 5181 (14)
where X is the regularization parameter (cost) that controls the trade-off between
flatness and error tolerance, ||.| refers to the norm under a Hilbert space (i.e.,
[Ix|| = /(x,x) with x a p > 1 dimensional vector) and
0, if|[r] <e
V(r) = v
|r| —e, otherwise

is an e-insensitive linear loss. Given the minimizers of BO and ﬁ, the solution
function has the form
A n A n ~
B=> (4 —a)x; and f(x)=> (4] —&:)(xx:) + fo
i=1 1=1
where &, &; are positive weights given to each observation (i.e., to the column vector
x;) estimated from the data. Typically only a subset of (4&F — &;) are non-zero with the
observations associated to these so called support vectors, and thus the name of the
method, SVM. More details on SVM can be found in [23].

June 8, 2022

14/28

415

416

417

418

419

420

421

422

423

424

425

426

428

429

430

431

432

433

434

436

437

438

439

441

442

443

444

445

446

447

448

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Deep learning methods

Deep learning (DL) algorithms are a special class of neural networks and encompass an
assortment of architectures (e.g., convolutional, recurrent and densely connected neural
networks) that depend on many parameters (hyperparameters) whose careful
optimization is crucial to enhancing predictive accuracy and minimizing overfitting (see
12, 12], 391 [49] [62] [7T] for further insights into DL architectures and other particulars and
the supplementary materials https://github.com/miguelperezenciso/DLpipeline
of [49] for a list of the main DL hyperparameters, their role and related optimization
issues). It can be very challenging to achieve great improvements in predictive accuracy
in genomic prediction studies with DL because hyperparameter optimization can be
extremely demanding and also because DL requires very large training datasets which
might not always be available [40], 4T, 42} 43].

Regardless of the selected DL architecture and the adopted hyperparameter calibration,
when building the neural network model an optimization method must also be selected.
The three top ranked optimizers for neural networks are mini-batch gradient descent,
gradient descent with momentum and adaptive moment estimation (ADAM; [32]).
Among the three, the mini-batch gradient descent and Adam are usually preferred,
because they perform well most of the time. In terms of convergence speed ADAM is
often clearly the winner and thus a natural choice [53].

Next, we offer a few more details on the feed-forward neural network (FFNN), also
known in the literature as a multi-layer perceptron (MLP), which, besides being one of
the most popular DL architectures, is well suited for regression problems.

Feed-forward neural network (FFNN)

A feed-forward neural network (FFNN), is a neural network that does not assume a
specific structure in the input features (i.e., in the covariates). This neural network
consists of an input layer, an output layer and multiple hidden layers between the input
and output layers.

The model for a FFNN with one hidden layer expressed as a multiple linear regression

model is given by
Yi =+ Z wh¢(0th + Z wjhxij)
h J

where the y; (output) and z;; (input) are defined as in model (I]), « is the output bias,
h runs over the units of the hidden layer, ay, refers to the bias of the A-th unit of the
hidden layer, w;j refer to the weights between the inputs and the hidden layer, wy, refer
to the weights between the hidden layer and the output, ¢ is the activation function of
the hidden layer. The model parameters o, oy, wy, and wj, are unknown network
parameters that need to be estimated by minimizing some fitting criterion such as least
squares or some measure of entropy from some training data (network training). This
model can be represented graphically as a set of inputs linked through a hidden layer to
the outputs as shown in Fig[I]

Fig. 1. Graphical representation of a feed-forward neural network (FFNN) with one
hidden layer.

Further details on neural networks in general and the FFNN in particular can be found
in [23] 40 4T], 42] 43], 49]. Note that, to avoid potential numerical difficulties, it is
recommended that both the target (response variable; here assumed to be continuous
and normally distributed), and the features (covariates) are standardized prior to
training the network [49].

June 8, 2022

15/128

449

450

451

453

454

455

456

458

459

460

462

463

464

465

467

468

469

471

472

473

474

475

476

477

478

480

481

482

483

484

486

487

488

489

https://github.com/miguelperezenciso/DLpipeline
https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Performance assessment & noteworthy details of model fitting

Performance assessment

For the simulated dataset, we assessed predictive performance using predictive accuracy
(PA), the Pearson correlation between the PGBVs and the TGBVs breeding values. For
all the three KWS empirical data sets, predictive performance was expressed as
predictive ability (PA), the Pearson correlation between the PGBVs and the observed
genomic breeding values (OGBVs), also calculated using cross validation. The higher
the PA, the better is the relative predictive performance of a method. We additionally
assessed the predictive performance of the methods using the out-of-sample mean
squared prediction error (MSPE) and the mean absolute prediction error (MAPE).
Specifically,

i 1 . 1 ~
PA = , MSPE=—> (yi—#:)°, MAPE = - Z \yi—0il,

\/nyi 0 Y- i) e

where the y; and y are, respectively, the TGBVs and mean TGBVs for the single
simulated dataset, but the OGBVs and mean OGBVs for the empirical datasets, and
the ¢; are the PGBVs. 10-fold CV is used to assess the PA for each method for the
simulated datasets in contrast to the 5-fold CV used with the three empirical maize
datasets.

For the cross validation, we aimed to have at least 150 individuals per fold. Accordingly,
each phenotypic dataset was randomly split into k& approximately equal parts. The
breeding values for each of the k folds were predicted by training the model on the & — 1
remaining folds and a CV error (CVE) computed for each of the & folds. The method
with the smallest CVE was selected to predict the breeding values for the unphenotyped
genotypes for the simulated dataset, and the phenotyped genotypes in the validation
sets for each of the three empirical maize datasets.

Noteworthy details of model fitting

Because we used CV for model selection, we fixed the data split whenever possible by
setting a specific positive seed before splitting the data to enhance the reproducibility of
results. Besides the k-fold split, common to all the methods, some methods involve
additional kinds of randomization, making it impossible to reproduce results even if the
data split or the seed for the random number generator are fixed prior to fitting the
model (RF, SVM and FFNN methods). This happens because some of the routines
internally generate some random number seeds when they initialize the computations.
Consequently, this introduces an additional source of variation between results obtained
from different runs or even from using different computing platforms. Ideally, for such
cases, and at the risk of vastly increasing the computational burden, the model could be
fitted a large number of times until the average and the range (or standard error) of PA

stabilize. Even so, we considered only single model runs for the RF and SVM methods.

For the FFNN method we implemented 1000 runs for the simulated data and 10 for the
KWS data.

In addition, the following details of model fitting are noteworthy:
(1) ~ = 0.5 was considered in the bridge and grouped bridge methods.

(ii) Calibration of random forests involves selecting the number of trees to grow
(Nirees), the random number of covariates to select for growing each tree (neopars)
and the minimum size of the terminal nodes per tree (n,odes), below which no

June 8, 2022

16/128

490

491

492

493

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

split is attempted. The parameters that affect the final accuracy the most are the
first two. Increasing the my..es only increases the accuracy up to some point but
can substantially increase the computational time. Here, we fix ngpees = 1000
(this ensures that every input row gets predicted at least a couple of times) and
Nnodes = 1 and search for the best value of n¢ppars in {0.5,1,2} x (p/3).

(iii) For the SGB method we assumed the Gaussian distribution for minimizing
squared-error loss. The basic boosting algorithm requires the specification of two
parameters: the number of splits (J; or the number of nodes, which equals the
number of splits plus one) and the number of trees (or iterations; nyrees) to be
fitted. Hastie et al [23] point out that the number of splits J such that 4 < .J <8
generally works well with results being fairly insensitive to particular choices in
this range. We use J = 6. As for npees, it should neither be too small (bad fit)
nor too large (overfit). Usually, the suitable ng.ees can be found by checking how
well the model fits a test dataset, where a typical fraction of the data used for
testing is 0.5 (can be much smaller if the dataset is very large). We search for
Nirees i {500, 1500, 3000}. As with RF, we fix the number of terminal nodes per
tree Nypodes = 1. In addition, we set the shrinkage factor applied to each tree in
the expansion to 0.001 and the subsampling fraction to 0.5 [17].

(iv) For the SVR method, we considered an insensititvity zone of € = 0.001 across
traits with the regularization parameter A (cost) determined by grid-search over
the values {0.01,0.1,1, 10, 100}.

(v) We used the Adam optimizer, 'Relu’ (rectified linear units) activation function
and a linear output layer in the configuration of the FFNN.

Because we used the Python software and GPU to fit the neural networks, we
were able to produce 1000 different runs of the FFNNs for the simulated dataset
and 10 runs of the FFNNs for each of the three real datasets (amounting to

10 runs x 5 folds x 10 reps FFNNs fits for each real dataset), and report the
average plus the range for the PA.

All the methods are implemented in the R software and are available in various R
packages. Table [0] lists the R packages we used to analyse the synthetic and real
datasets. For the FFNN method, and because of fine tuning requirements, we used the
Python software and packages Numpy, Pandas and Tensorflow.

Results

Although we did not fully quantify the computational costs of the different methods,
the computational burden increased strikingly from the simple regularized through the
adaptive to the grouped methods. A similar trend was also apparent from the ensemble,
through the instance-based to the deep learning methods. Computational time may be
reduced greatly by parallelizing the estimation or optimization algorithms, but this
strategy may not always be available and can be challenging to implement for some
methods.

Simulated (animal) data

The relative performances of the various methods on the simulated data varied with the
target trait and with whether performance was assessed in terms of predictive accuracy
or prediction error. Performance also varied in terms of computational cost with some

June 8, 2022

17/128

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 6. List of R packages and routines used in this paper

Type Method Package Routine
Bridge grpreg [7| cv.grpreg()
RR-CV, ENET lmnet [19 .glmnet () *
Regularized ' glunet [19] cv.glunet)
RR-REML rrBLUP [I1] mixed.solve()
LASSO, SCAD, MCP ncvreg [8] cv.ncvreg() *
Sparse regularized ENET sparsenet [30] cv.sparsenet ()
LASSO glmnet [19] cv.glmnet () *
SCAD t(O)*
Adaptive regularized asnet()
MCP msaenet [59] amnet ()*
ENET aenet()*, msaenet()*
Hierarchical LASSO glinternet [35] glinternet.cv()
) Sparse LASSO SGL [56] cvSGL(Q)
Group regularized
Bridge
LASSO, MCP, SCAD grpreg [cv.grpreg()
gel, cMCP (bi-level)
Random Forests randomForest [9] randomForest()
Ensemble
Stochastic Gradient Boosting gbm [22] gbm.fit ()
Instance-based Support Vector Machine e1071 [37] tune.svm()

* These functions allow for internal parallelization of computations.

methods requiring considerably more time than others. Results of genomic prediction s
accuracy for the simulated data are displayed in Tables [7] to Table [12] reports the 569

calibration details for the fitted FFNN. 570
Table [0 displays the range of the observed predictive accuracies across all the classes of sn
the regularized methods for traits 77 — T5. Neither the adaptive nor the group 572
regularized methods seem to improve upon the results of their regularized counterparts, s
although group regularized methods do provide some slight improvement upon the 574

results of the adaptive regularized methods. Even though all the regularized regression s
methods had comparable overall performance, the best compromise between high PA 576
(> 0.77 for Ty, 0.82 for T, and 0.81 for T3) and small prediction errors was achieved by s
the LASSO, ENET, sENET and SCAD (Table|7]; first half). Within the class of 578
adaptive regularized methods, the best compromise was achieved by alLASSO and 579
aENET (Table [7]; second half; PA> 0.72 for T3, 0.78 for T and 0.80 for for T3). For 580
the group regularized methods, a good compromise was achieved by the gLASSO and sa
gSCAD (Table [8f mean PA values > 0.76 for Ty, 0.82 for T5 and 0.81 for 75). Whereas s
the worst performing group regularized methods in terms of the estimated PAs were the —sss
¢MCP and gel for T; (PA< 0.7), sgLASSO and gel for 75 (PA< 0.8) and hLASSO and ss
gel for T3 (PA< 0.8), the worst performing methods in terms of prediction errors were sss
the gel (71 & T» only) and sgLASSO (T35 only). Of all the group regularized methods, s
the most time consuming were the sgLASSO and hLASSO, with sgLASSO requiring 587
several more months to compute results for trait 7 than for traits 75 or T3. 568

The ensemble, instance-based and deep learning methods did not improve upon the 589
results of the regularized or the group regularized methods (Tables [L0[& . Among 590
the latter groups of methods, RF provided the best compromise between high PA and s«

June 8, 2022 18

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

small prediction errors.

Predictive performance varied not only among the methods but also with the target
quantitative traits. Specifically, trait T5 had the highest predictive accuracies for the
adaptive methods, whereas trait T» was generally top ranked across all the remaining
methods.

Table 7. Prediction accuracy (PA) of the regularized and adaptive regularized
methods, computed as the Pearson correlation coefficient between the true breeding
values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset,
where T7 — T3 refer to three quantitative milk traits. The choice of A, where applicable,
was based on the 10-fold CV. The mean squared and absolute prediction errors are also

provided.

Method T Te Ty

PA MSPE MAPE PA MSPE MAPE PA MSPE MAPE
bridge 0.716 7133.7 68.1 0.751 47.2 5.9 0.769 0.922 0.283
RR-CV 0.736 6561.0 64.9 0.771 52.2 6.3 0.762 0.928 0.283
RR-REML 0.732 6570.3 65.0 0.770 51.4 6.2 0.758 0.931 0.283
LASSO 0.775 5951.3 61.7 0.827 47.3 6.1 0.817 0.920 0.286
ENET 0.777 5957.6 61.7 0.829 47.2 6.0 0.817 0.921 0.286
sENET 0.779 5920.2 61.5 0.814 47.8 6.1 0.817 0.914 0.285
SCAD 0.775 5878.8 61.1 0.815 48.2 6.1 0.808 0.922 0.286
MCP 0.742 6308.4 63.1 0.790 49.9 6.2 0.799 0.921 0.285

© alLASSO 0724 65915 658 | 0.779 483 | 6.0 | 0796 0966 0293

aENET*® 0.726 6812.1 65.1 0.786 49.6 6.1 0.805 0.915 0.285
aENET" 0.722 6674.6 66.0 0.789 47.3 6.0 0.801 0.950 0.290
maENET® 0.704 7231.0 67.1 0.773 50.7 6.2 0.791 0.915 0.283
maENET” 0.692 71174 68.2 0.756 52.4 6.3 0.767 0.892 0.278
aSCAD*® 0.645 7732.4 70.8 0.739 56.6 6.5 0.750 0.926 0.282
aSCAD" 0.700 6833.5 66.3 0.721 58.5 6.7 0.730 0.892 0.275
aMCP™ 0.682 7323.4 68.8 0.754 56.4 6.5 0.755 0.922 0.282
aMCP” 0.681 6987.3 66.9 0.714 59.2 6.7 0.734 0.884 0.274

s: sparse method; a: adaptive method; ma: multi-step adaptive method.

s: snet penalty; r: ridge penalty; m: mnet penalty; e: enet penalty;

* MSPE is multiplied by 10* and MAPE by 10" to enhance comparison with corresponding values for T and Tb.

Real (plant) data

The ridge regression methods plus the overall best performing methods (high PA values
and low prediction errors) for each class of methods based on the analysis of the
simulated dataset, were applied to each of the three KWS empirical maize datasets.
The specific methods fitted to the KWS maize datasets comprised RR-CV, RR-REML,
sENET, aENET (enet penalty), gLASSO, RF and FFNN.

Results are displayed in Table [I3] Across the three real maize datasets, the highest
predicitive abilities were obtained for the 2010 dataset. The estimated predictive
abilities (PA) are under 0.7 for the 2010 dataset but under 0.6 for the 2011 dataset and
2012 (except for RR-REML with an estimated PA of 0.616), regardless of the method
used. RR-REML (2011 & 2012 datasets) and RF (2010 dataset) are evidently the best
performing methods (higher PA values and lower prediction errors). On the other hand,

June 8, 2022

19/128

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 8. Prediction accuracy (PA) of the group regularized methods (mean and

range values of PA across the different groupings), computed as the Pearson correlation
coefficient between the true breeding values (TBVs) and the predicted breeding values
(PBVs), for the simulated dataset, where T7 — T3 refer to three quantitative milk traits.

Choice of A was based on the 10-fold CV. Display refers to the mean, max and min
values of PA across all the 10 grouping schemes. The mean squared and absolute
prediction errors are also provided.

Method T T2 T
Mean Range Mean Range Mean Range
PA 0.716 0.659-0.762 0.813 0.794-0.829 0.803 0.779-0.816
ghridge MSPE 6468.7 5957.5-7095.8 48.9 44.5-52.5 0.919 0.907-0.946
MAPE 64.6 62.0-67.4 6.1 5.8-6.4 0.285 0.284-0.288
S PA 0766 0.732-0.793 0.820 0.795-0.852 0.814 0.802-0.838
gLASSO MSPE 6047.3 5484.3-6533.3 49.9 47.7-52.4 0.902 0.881-0.924
MAPE 623 59.6-64.4 6.2 6.1-6.3 0.282 0.277-0.288
S PA 0724 0.722-0.724 0.792 0.790-0.804 0.809 0.784-0.815
sgLASSO MSPE 7392.1 7378.1-7420.9 47.9 47.6-48.2 0.951 0.929-0.957
MAPE 68.5 68.4-68.7 6.0 6.0-6.1 0.291 0.284-0.292
S PA 0763 0.731-0.793 0.820 0.799-0.843 0.807 0.789-0.822
gSCAD MSPE 6059.5 5314.7-6595.2 48.4 46.9-51.1 0.901 0.862-0.929
MAPE 62.4 58.8-64.7 6.1 6.0-6.3 0.282 0.273-0.288
S PA 0742 0.701-0.776 0.806 0.775-0.832 0.799 0.779-0.821
gMCP MSPE 6239.8 5273.2-7353.6 48.6 46.6-50.8 0.899 0.859-0.951
MAPE 63.5 58.9-69.1 6.1 6.0-6.3 0.281 0.274-0.290
S PA 0653 0.633-0.655 0.808 0.808-0.809 0.8176 0.8175-0.8177
cMCP MSPE 7430.9 7368.8-7989.9 48.5 48.4-48.6 0.91935 0.91930-0.91943
MAPE 68.6 68.4-70.6 6.11 6.10-6.12 0.28607 0.28606-0.28611
S PA 0677 0.623-0.756 0.758 0.697-0.800 0.765 0.744-0.804
gel MSPE 7732.3 5839.5-9099.4 51.0 48.2-53.0 0.915 0.873-0.970
MAPE 70.4 60.8-77.0 6.2 6.0-6.4 0.281 0.273-0.290
777777777 PA 075 - 0819 - 07195 -
hLASSO* MSPE 6592.6 - 49.9 - 0.901 -
MAPE 65.5 - 6.2 - 0.280 -

s and h stand for the sparse and hierarchical versions of the corresponding method;

* the groupings here are achieved through interactions between markers unlike in the previous methods; a single PA value is produced

and reported, which is not a mean across the different groups;

* MSPE is multiplied by 10® and MAPE by 10! to enhance comparison with corresponding values for 71 and Tj; five decimal places

were needed for cMCP.

aENET® (2010 & 2011 datasets) and RF (2012 dataset) are the worst performing
methods (lower PA and higher prediction errors). Interestingly, the RF performed both
the best (2010 dataset) and the worst (2012 dataset), clearly emphasizing that the
methods are strongly data dependent.

June 8, 2022

20/128}

609

610

611

612

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 9. Range of the estimated predictive accuracies across the classes of regularized

methods for traits Ty — T53.

T, T, T3
Regularized 0.716 — 0.779 0.770 — 0.829 0.758 — 0.817
Adaptive Regularized 0.645 —0.726 0.714 —0.789 0.730 — 0.805
Group Regularized® 0.653 — 0.766 0.758 — 0.820 0.765 — 0.814

T Values refer to the range of the observed mean PAs.

Table 10. Prediction accuracy (PA) of the ensemble and instance-based methods,
computed as the Pearson correlation coefficient between the true breeding values

(TBVs) and the predicted breeding values (PBVs), for the simulated dataset, where

Ty — T3 refer to three quantitative milk traits.

T1 T2 T3*
Method
PA MSPE MAPE PA MSPE MAPE PA MSPE MAPE
Random Forests (RF)T 0.741 7945.8 72.4 0.788 58.6 6.5 0.713 0.924 0.272
Stochastic Gradient Boosting (SGB)* 0.690 8382.5 73.8 0.725 67.6 7.0 0.676 0.950 0.275
Support Vector Machines (SVM)* 0.695 7102.1 67.2 0.740 53.9 6.4 0.731 0.934 0.282

f reported values refer to a single run of the random forest with the subset of markers selected randomly for growing each tree set equal

t0 0.5 x 2.

* the best number of trees grown was 3000 for all traits;
¥ reported values refer to a single run of the SVM with the best cost A = 100 for trait 1 and A = 10 for traits 2 and 3;
* MSPE is multiplied by 10®> and MAPE by 10’ to enhance comparison with corresponding values for T; and T5.

Table 11. Prediction accuracy (PA) of the deep learning methods, computed as the
Pearson correlation coefficient between the true breeding values (TBVs) and the

predicted breeding values (PBVs), for the simulated dataset, where T7 — T3 refer to

three quantitative milk traits.

Ty T, Ty
Mean Range Mean Range Mean Range
PA 0.705 0.692-0.717 0.725 0.705-0.741 0.703 0.651-0.731
Feed Forward Neural Networks (FFNN)* MSPE 8092.5 6046.5-13556.7 60.6 32.5-102.4 0.974 0.464-1.790
MAPE 61.6-95.4 6.6 4.6-9.1 0.284 0.183-0.402

t values refer to 1000 different runs of the neural network;
* MSPE is multiplied by 10®> and MAPE by 10! to enhance comparison with corresponding values for T; and T%.

Discussion

We have investigated the predictive performance of several state-of-the art machine
learning methods in genomic prediction via the use of one simulated and three real
datasets. All the methods showed reasonably high predictive performance for most
practical selection decisions. But the relative predictive performance of the methods was
both data and target trait dependent, complicating and precluding omnibus
comparative evaluations of the genomic prediction methods, thus ruling out selection of
one procedure for routine use in genomic prediction. If reproducibility of results, low
computational cost and time are important considerations, then using the regularized
regression methods comes highly recommended because they consistently produced,

June 8, 2022

21/2§

613

614

615

616

617

618

619

620

621

622

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 12. Best FFNN model calibration parameters selected for each of the three
quantitative milk traits 77 — T5.

FFNN Ty To Ty
Number of hidden layers 1 3 3
Number of units (hidden layer) 200 800 400
Number of epochs 200 260 300
Dropout rate (input layer) 0.1 0.15 0.15
Batch size 128 32 16
Learning rate 1074 2x107° 2x107°
Dropout rate (hidden layers) 0.8 0.8 0.5
Dropout rate (last hidden layer) 0.8 0.88 0.775
Batch normalization (hidden layer) No Yes Yes

with relatively lower computational cost and computing time, reasonably accurate and
competitive predictions relative to the other groups of methods for the simulated and
the three real datasets. Even among the regularized regression methods, increasing
model complexity from simple through the adaptive to grouped methods, generally only
increased computing time without clearly improving predictive performance.

The ensemble, instance-based and deep-learning ML methods need the tuning of
numerous hyperparameters thus requiring considerable computing time to adequately
explore the entire hyperparameter space. This will not always be possible in most
applications because of limiting time and computational resources leading to potentially
less than optimal results and may well partly explain why these methods did not clearly
outperform the classical ML methods. Indeed, the computational costs of the ensemble,
instance-based and deep learning methods can quickly become prohibitive, if all the
parameters are tuned by searching over the often large grid of values. This will typically
require not only proficiency in programming and algorithm parallelization and
optimization, but excellent computing resources. These constraints, plus the growing
size of phenotypic and genomic data, make it difficult to identify methods for routine
use in genomic prediction and call for greater focus on and investment in enhancing the
computational efficiencies of algorithms and computing resources.

Supporting information

S1 File. S1 Data. Simulated (animal breeding) dataset.
(Z1IP)

S2 File. S2 Data. Simulated dataset that mimics the original KWS real dataset set
for 2010.
(Z1P)

S3 File. S1 Code. R codes used to fit the machine learning algorithms to the

simulated (animal breeding) dataset.
(ZIP)

S4 File. S2 Code. Python code used to fit the deep learning (FFNN) algorithm to
the simulated (animal breeding) dataset.

June 8, 2022

222§

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 13. Predictive ability (PA; mean and range values computed across the 5-fold

validation datasets and 10 replicates) of the regularized and adaptive regularized

methods, computed as the Pearson correlation coefficient between the observed breeding
values (OBVs) and the predicted breeding values (PBVs), for the KWS datasets. The

choice of A\, where applicable, was based on 4-fold CV.

Method 2010 2011 2012

Mean Range | Mean Range | Mean Range
PA 0.632 0.529-0.724 | 0.555 0.441-0.648 | 0.598 0.549-0.674
RR-CV MSPE 41.9 31.7-58.3 46.4 35.5-62.1 34.5 29.1-41.5
MAPE 4.7 4.1-5.2 5.2 4.6-6.1 4.6 4.3-5.0

77777777777777777777 PA 0649 0.523-0.725 | 0.576 0.469-0.663 | 0.616 0.555-0.678
RR-REML MSPE 41.2 31.2-59.2 44.4 35.4-63.4 33.4 27.8-40.2
MAPE 4.6 4.0-5.2 5.0 4.5-6.0 4.5 4.1-4.9

77777777777777777777 PA 0626 0.502-0.723 | 0527 0.372-0.639 | 0.596 0.531-0.697
sENET MSPE 42.4 32.6-62.4 48.8 37.2-84.5 34.7 28.0-42.2
MAPE 4.7 4.3-5.3 5.3 4.6-6.8 4.6 4.2-5.1

77777777777777777777 PA 0592 0.453-0.701 | 0.482 0.326-0.651 | 0.572 0.501-0.676
aENET® MSPE 46.5 37.4-67.6 54.3 37.7-98.9 37.0 30.6-46.3
MAPE 4.9 4.5-5.6 5.6 4.9-7.2 4.7 4.4-5.1

77777777777777777777 PA 0584 0.494-0.673 | 0512 0.404-0.606 | 0.586 0.514-0.679
gLASSO# MSPE 46.3 36.0-59.8 49.5 37.5-65.6 35.5 28.1-42.5
MAPE 4.9 4.3-5.5 5.4 4.6-6.3 4.7 4.2-5.1

77777777777777777777 PA 0656 0.549-0.727 | 0.570 0.474-0.659 | 0.556 0.484-0.633
Random Forests' MSPE 39.7 28.9-56.3 45.7 34.1-61.4 37.3 29.9-46.3
MAPE 4.6 4.0-5.1 5.1 4.4-6.0 4.8 4.3-5.3

77777777777777777777 PA 0634 05140728 | 0541 0.412-0.656 | 0.586 0.512-0.663
Feed Forward Neural Networks* MSPE 42.9 31.9-61.7 49.6 38.4 -75.1 36.5 29.0-48.5
MAPE 4.7 4.0-5.4 5.3 4.6 —6.6 4.7 4.2-5.3

a: adaptive method; s: sparse method; g: grouped method; e: enet penalty;

treported values refer to the grouping indexes (or sizes) 50, 30 and 80 for the 2010, 2011 & 2012 datasets, respectively;

Treported values refer to a single run of the random forest with the subset of markers selected randomly for growing each tree set equal
to 0.5 X P for the 2010 and 2011 datasets but to 2 x P for the 2012 dataset;

* The best FFNN performing model, in terms of PA, for the 2010 and 2011 datasets was the one used for trait T3 from the simulated
data, whereas for the 2012 dataset, it was the one used for trait 77 from the simulated data.

(ZIP)

S5 File. S1 Text. SAS code used for phenotypic analysis of the KWS real maize
dataset and computation of the adjusted genotypic means used as the response variable
in genomic prediction.

(DOCX)

S6 File. S2 Text. SAS code used to assign consecutive and spatially adjacent SNP
markers on the same chromosome to groups of sizes 10, 20, 30, ..., 100 for use with the

grouped regularized regression models.

(DOCX)

June 8, 2022

652

653

654

655

656

657

658

659

660

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

S7 File. S3 Text. SAS Macro written by [60] used to split each of the KWS

2010, 2011 and 2012 datasets into 5 distinct parts based on a specified probability vector.

(DOCX)

S8 File. S4 Text. SAS macro used to split each of the KWS 2010, 2011 and 2012
datasets into 5 distinct parts using stratified random sampling and the macro of [60].

(DOCX)

Acknowledgements

We thank KWS for providing the maize datasets.

Data availability

The simulated animal data from the QTLMAS workshop is provided in S1 File in the
supplementary materials together with the R and Python codes used to analyse these
data (respectively, S3 File and S4 File). The KWS data is proprietary data and cannot
be shared publicly for confidentiality reasons. As a result, we provide a synthetic
dataset that mimics the KWS data in S2 File, which can be used with our codes to
illustrate the implementation of the machine learning methods.

Funding

This work is funded by national funds through the FCT - Fundagao para a Ciéncia e a
Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and
UIDP/00297/2020 (Center for Mathematics and Applications). The German Federal
Ministry of Education and Research (BMBF) funded this research within the
AgroClustEr “Synbreed - Synergistic plant and animal breeding” (Grant ID: 0315526).
JOO was additionally supported by the German Research Foundation (DFG, Grant #
257734638). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing interests

The authors declare that no competing interests exist.

Author details

! Center for Mathematics and Applications (CMA), FCT NOVA and Department of
Mathematics, FCT NOVA, 2829-516 Caparica, Portugal. ? Institute of Crop Science,
Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart,
Germany.

References

1. Bach, F. (2008). Consistency of the group lasso and multiple kernel learning.
Journal of Machine Learning, 9, 1179-1225.

June 8, 2022

24/2§)

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep
architectures. In Neural Networks: Tricks of the trade (pp. 437-478). Springer,
Berlin, Heidelberg.

Bien, J., Taylor, J. & Tibshirani, R. (2013). A lasso for hierarchical interactions.
The Annals of Statistics, 41, 1111-1141.

Breheny, P. & Huang, J. (2009). Penalized methods for bi-level variable selection.
Statistics Interface, 2, 369-380.

Breheny, P. & Huang, J. (2011). Coordinate descent algorithms for nonconvex
penalized regression, with applications to biological feature selection. Annals of
Applied Statistics, 5, 232-253.

Breheny, P., & Huang, J. (2015). Group descent algorithms for nonconvex
penalized linear and logistic regression models with grouped predictors. Statistics
and Computing, 25(2), 173-187.

Breheny, P. & Breheny, M. P. (2021). Package ‘grpreg’.
Breheny, P. & Breheny, M. P. (2021). Package ‘ncvreg’.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.

Chen, Z., Zhu, Y. & Zhu, C. (2016). Adaptive bridge estimation for
high-dimensional regression models. Journal of Inequalities and Applications, 1,
258.

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection
with R package rrBLUP. The plant genome, 4(3).

Eraslan, G., Avsec, 7., Gagneur, J. & Theis, F.J. (2019). Deep learning: new
computational modelling techniques for genomics. Nature Reviews Genetics,
20(7), 389-403.

Estaghvirou, S. B. O., Ogutu, J. O., Schulz-Streeck, T., Knaak, C., Ouzunova, M.,
Gordillo, A., & Piepho, H. P. (2013). Evaluation of approaches for estimating the
accuracy of genomic prediction in plant breeding. BMC Genomics, 14(1), 1-21.

Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of the American Statistical Association, 96,
1348-1360.

Fan, J. & Peng, H. (2004). Nonconcave penalized likelihood with a diverging
number of parameters. Annals of Statistics, 32, 928-961.

Frank, I.E. & Friedman, J.H. (1993). A statistical view of some chemometrics
regression tools (with discussion). Technometrics, 35, 109-148.

Friedman, J. (2001). Greedy function approximation: a gradient boosting
machine. Annals of Statistics, 29, 1189-1232.

Friedman, J., Hastie, T. & Tibshirani, R. (2010). A note on the group lasso and
sparse group lasso. arXiv preprint arXiv:1001.0736.

Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N.,
Qian, J. (2022). Package ‘glmnet’. Journal of Statistical Software. 2010a, 33(1).

June 8, 2022

25/128

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Fu, W.J. (1998). Penalized regressions: The bridge versus the lasso. Journal of
Computational and Graphical Statistics, 7, 397-416.

Grandvalet, Y. (1998). Least absolute shrinkage is equivalent to quadratic
penalization. International Conference on Artificial Neural Networks, 201-206).
Springer, London.

Greenwell, B., Boehmke, B., Cunningham, J., Developers, G. B. M. & Greenwell,
M. B. (2019). Package ‘gbm’.

Hastie, T.J., Tibshirani, R. & Friedman, J. (2009). The elements of statistical
learning, Second edition, New York: Springer.

Hayes, B. J., Visscher, P. M. & Goddard, M. E. (2009). Increased accuracy of
artificial selection by using the realized relationship matrix. Genetics Research,
91(1), 47-60.

Heslot, N., Yang, H.P., Sorrells, M.E. & Jannink, J.L. (2012). Genomic selection
in plant breeding: a comparison of models. Crop Science, 52, 146-160.

Hoerl, A.E. & Kennard, R.W. (1970). Ridge regression: biased estimation for
non-orthogonal problems. Technometrics, 12, 55-67.

Huang, J., Ma, S., Xie, H. & Zhang, C-H. (2009). A group bridge approach for
variable selection. Biometrika, 96, 339-355.

Huang, J., Horowitz, J.L. & Ma, S. (2008). Asymptotic properties of bridge
estimators in sparse high-dimensional regression models. Annals of Statistics, 36,
587—-613.

Huang, J. & Zhang, T. (2010). The benefit of group sparsity. Annals of Statistics,
38, 1978-2004.

Huang, J., Breheny, P. & Ma, S. (2012). A Selective Review of Group Selection in
High-Dimensional Models. Statistical Science, 27(4), 10.1214/12-STS392.

Kim, Y., Choi, H. & Oh, H. S. (2008). Smoothly clipped absolute deviation on
high dimensions. Journal of the American Statistical Association, 103(484),
1665-1673.

Kingma, D.P. & Ba, J.L. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Knight, K. & Fu, W. (2000). Asymptotics for Lasso-type estimators. Annals of
Statistics, 28, 356—-1378.

Liaw, A. & Wiener, M. (2002). Classification and regression by randomForest. R
News, 2, 18-22.

Lim, M. & Hastie, T. (2015). Learning interactions via hierarchical group-lasso
regularization. Journal of Computational and Graphical Statistics, 24(3),
627-654.

Mazumder, R., Friedman, J.H. & Hastie, T. (2011). Sparsenet: Coordinate
descent with nonconvex penalties. Journal of the American Statistical
Association, 106(495), 1125-1138.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. C.
et al (2019). Package ‘1071’ The R Journal.

June 8, 2022

26/128

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

Meuwissen, T. H., Hayes, B. J. & Goddard, M. (2001). Prediction of total genetic
value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.

Min, S., Lee, B. & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in
Bioinformatics, 18(5), 851-869.

Montesinos-Lépez, A., Montesinos-Lépez, O.A., Gianola, D., Crossa, J. &
Herndndez-Sudrez, C.M. (2018). Multi-environment genomic prediction of plant
traits using deep learners with dense architecture. G3: Genes, Genomes, Genetics,
8(12), 3813-3828.

Montesinos-Loépez, O.A.; Montesinos-Loépez, A., Crossa, J., Gianola, D.,
Hernandez-Sudrez, C.M., & Martin-Vallejo, J. (2018). Multi-trait,
multi-environment deep learning modeling for genomic-enabled prediction of
plant traits. G3: Genes, Genomes, Genetics, 8(12), 3829-3840.

Montesinos-Lépez, O.A., Martin-Vallejo, J., Crossa, J., Gianola, D.,
Herndndez-Sudrez, C.M., Montesinos-Lépez, A., Philomin J. & Singh, R. (2019).
A benchmarking between deep learning, support vector machine and Bayesian
threshold best linear unbiased prediction for predicting ordinal traits in plant
breeding. G3: Genes, Genomes, Genetics, 9(2), 601-618.

Montesinos-Lopez, O.A., Martin-Vallejo, J., Crossa, J., Gianola, D.,
Herndndez-Sudrez, C.M., Montesinos-Lépez, A., Juliana, P. & Singh, R., (2019).
New deep learning genomic-based prediction model for multiple traits with
binary, ordinal, and continuous phenotypes. G3: Genes, Genomes, Genetics, 9(5),
1545-1556.

Ogutu, J.O., Piepho, H-P. & Schultz-Streeck, T. (2011). A comparison of random
forests, boosting and support vector machines for genomic selection. BMC
Proceedings, 5(3), BioMed Central Ltd.

Ogutu, J.O., Schulz-Streeck, T. & Piepho H-P. (2012). Genomic selection using
regularized linear regression models: ridge regression, lasso, elastic net and their
extensions. BMC Proceedings, 6(2), BioMed Central Ltd.

Ogutu, J.O. & Piepho, H-P. (2014). Regularized group regression methods for
genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group
lasso, group MCP and group SCAD. BMC Proceedings, 8(5), BioMed Central
Ltd.

Park, C. & Yoon, Y.J. (2011). Bridge regression: adaptivity and group selection.
Journal of Statistical Planning and Inference, 141, 3506-3519.

Percival, D. (2011). Theoretical properties of the overlapping groups lasso.
Electronic Journal of Statistics, 6, 269-288.

Pérez-Enciso, M. & Zingaretti, L.M. (2019). A Guide on Deep Learning for
Complex Trait Genomic Prediction. Genes, 10(7), p.553.

Piepho H-P. (2009). Ridge regression and extensions for genomewide selection in
maize. Crop Science, 49, 1165-1176.

Piepho, H-P., Ogutu, J.O., Schulz-Streeck, T., Estaghvirou, B., Gordillo, A. &
Technow, F. (2012). Efficient computation of ridge-regression best linear unbiased
prediction in genomic selection in plant breeding. Crop Science, 52, 1093—-1104.

June 8, 2022

27/128]

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.09.495423; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

92.

53.

o4.

95.

56.

o7.

98.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Poignard, B. (2020). Asymptotic theory of the adaptive Sparse Group Lasso.
Annals of the Institute of Statistical Mathematics, 72(1), 297-328.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regression.
Cambridge University Press.

Schonlau, M. (2005). Boosted regression (boosting): An introductory tutorial and
a Stata plugin. The Stata Journal, 5(3), 330-354.

Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. (2013). A sparse-group lasso.
Journal of Computational and Graphical Statistics, 22, 231-245.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58, 267-288.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New
York.

Xiao, N. & Xu, Q. S. (2015). Multi-step adaptive elastic-net: reducing false
positives in high-dimensional variable selection. Journal of Statistical
Computation and Simulation, 85(18), 3755-3765.

Xie, L. (2009). Randomly split SAS data set exactly according to a given
probability Vector.

https://silo.tips/download/
randomly-split-sas—-data-set-exactly-according-to-a-given-probability-vector

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society, Series B, 68, 49-67.

Yue, T. & Wang, H. (2018). Deep learning for genomics: A concise overview.
arXiv preprint arXiv:1802.00810.

Zhang, C-H. (2007). Penalized linear unbiased selection. Department of Statistics
and Bioinformatics, Rutgers University, Technical Report #2007-003.

Zhang, C-H. & Huang, J. (2008.) The sparsity and bias of the lasso selection in
high-dimensional linear regression. The Annals of Statistics, 36, 1567-1594.

Zhang, C-H. (2010). Nearly unbiased variable selection under minimax concave
penalty. Annals of Statistics, 38, 894-942.

Zhou, N. & Zhu, J. (2010). Group variable selection via a hierarchical lasso and
its oracle property. Statistics and its Interface, 3, 557-574.

Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Association, Series B, 67, 301-320.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101, 1418-1429.

Zou, H,. Hastie, T. & Tibshirani, R. (2006). Sparse principal component analysis.
Journal of Computational and Graphical Statistics, 15(2), 265-286.

Zou, H. & Zhang, H.H. (2009). On the adaptive elastic-net with a diverging
number of parameters. The Annals of Statistics, 37(4), 1733-1751.

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A. & Telenti, A. (2019).
A primer on deep learning in genomics. Nature Genetics, 51(1), 12-18.

June 8, 2022

28128}

https://silo.tips/download/randomly-split-sas-data-set-exactly-according-to-a-given-probability-vector
https://silo.tips/download/randomly-split-sas-data-set-exactly-according-to-a-given-probability-vector
https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

Input
layer

Input #1 —

Hidden
layer

Output
layer

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/

