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Abstract 12

The accurate prediction of genomic breeding values is central to genomic selection in 13

both plant and animal breeding studies. Genomic prediction involves the use of 14

thousands of molecular markers spanning the entire genome and therefore requires 15

methods able to efficiently handle high dimensional data. Not surprisingly, machine 16

learning methods are becoming widely advocated for and used in genomic prediction 17

studies. These methods encompass different groups of supervised and unsupervised 18

learning methods. Although several studies have compared the predictive performances 19

of individual methods, studies comparing the predictive performance of different groups 20

of methods are rare. However, such studies are crucial for identifying (i) groups of 21

methods with superior genomic predictive performance and assessing (ii) the merits and 22

demerits of such groups of methods relative to each other and to the established 23

classical methods. Here, we comparatively evaluate the genomic predictive performance 24

and computational cost of several groups of supervised machine learning methods, 25

specifically, regularized regression methods, deep, ensemble and instance-based learning 26

algorithms, using one simulated animal breeding dataset and three empirical maize 27

breeding datasets obtained from a commercial breeding program. Our results show that 28

the relative predictive performance and computational expense of the groups of machine 29

learning methods depend upon both the data and target traits and that for classical 30

regularized methods, increasing model complexity can incur huge computational costs 31

but does not necessarily always improve predictive accuracy. Thus, despite their greater 32

complexity and computational burden, neither the adaptive nor the group regularized 33

methods clearly improved upon the results of their simple regularized counterparts. 34

This rules out selection of one procedure among machine learning methods for routine 35

use in genomic prediction. The results also show that, because of their competitive 36

predictive performance, computational efficiency, simplicity and therefore relatively few 37

tuning parameters, the classical linear mixed model and regularized regression methods 38

are likely to remain strong contenders for genomic prediction. The dependence of 39

predictive performance and computational burden on target datasets and traits call for 40

increasing investments in enhancing the computational efficiency of machine learning 41

algorithms and computing resources. 42

43
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Author summary 44

Machine learning methods are well suited for efficiently handling high dimensional data. 45

Particularly, supervised machine learning methods have been successfully used in 46

genomic prediction or genome-enabled selection. However, their comparative predictive 47

accuracy is still poorly understood, yet this is a critical issue in plant and animal 48

breeding studies given that increasing methodological complexity can substantially 49

increase computational complexity or cost. Here, we show that predictive performance 50

is both data and target trait dependent thus ruling out selection of one method for 51

routine use in genomic prediction. We also show that for this reason, relatively low 52

computational complexity and competitive predictive performance, the classical linear 53

mixed model approach and regularized regression methods remain strong contenders for 54

genomic prediction. 55

Introduction 56

Rapid advances in genotyping and phenotyping technologies have enabled widespread 57

and growing use of genomic prediction (GP). The very high dimensional nature of both 58

genotypic and phenotypic data, however, is increasingly limiting the utility of the 59

classical statistical methods. As a result, machine learning (ML) methods able to 60

efficiently handle high dimensional data are becoming widely used in GP. It is therefore 61

important to establish the relative predictive performance of different groups of ML 62

methods. Even so, the predictive performance of groups of ML methods has attracted 63

relatively little attention. The rising importance of ML methods in plant and animal 64

breeding research and practice, increases both the urgency and importance of evaluating 65

the relative predictive performance of groups of ML methods relative to each other and 66

to classical methods. This can facilitate identification of groups of ML methods that 67

balance high predictive accuracy with low computational cost for routine use with high 68

dimensional phenotypic and genomic data, such as for GP, say. 69

ML is perhaps one of the most widely used branches of contemporary artificial 70

intelligence. Using the ML methods facilitates automation of model building, learning 71

and efficient and accurate predictions. The ML algorithms can be subdivided into two 72

major classes: supervised and unsupervised learning algorithms. Supervised regression 73

ML methods encompass regularized regression methods, deep, ensemble and 74

instance-based learning algorithms. Supervised ML methods have been successfully used 75

to predict genomic breeding values for unphenotyped genotypes, a crucial step in 76

genome-enabled selection [25, 40, 41, 42, 43, 44, 45, 46, 49]. Furthermore, several 77

studies have assessed the relative predictive performance of supervised ML methods in 78

GP, including two ensemble methods and one instance-based method [44]; four 79

regularized and two adaptive regularized methods [45]; three regularized and five 80

regularized group methods [46] and several deep learning methods [40, 41, 42, 43, 49]. 81

However, no study has comprehensively evaluated the comparative predictive 82

performance of all these groups of methods relative to each other or to the classical 83

regularized regression methods. We therefore rigorously evaluate the comparative 84

predictive performance as well as the computational complexity or cost of three groups 85

of popular and state-of-the-art ML methods for GP using one simulated animal dataset 86

and three empirical datasets obtained from a commercial maize breeding program. We 87

additionally offer brief overviews of the mathematical properties of the methods with 88

emphasis on their salient properties, strengths and weaknesses and relationships with 89

each other and with the classical regularization methods. 90

The rest of the paper is organized as follows. First we present the synthetic and real 91
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datasets. Second, we detail the methods compared in this study. Next, the results from 92

the comparative analyses of the data are presented. Finally, a discussion of the results 93

and closing remarks follow. 94

Data 95

Simulated (animal) data 96

We consider one simulated dataset [46], an animal breeding outbred population 97

simulated for the 16-th QTLMAS Workshop 2012. The dataset consists of 4020 98

individuals genotyped for 9969 SNP markers. Out of these, 3000 individuals were 99

phenotyped for three quantitative milk traits and the remaining 1020 were not 100

phenotyped (see [46] for details). The goal of the analysis of the simulated dataset is to 101

predict the genomic breeding values (PGBVs) for the 1020 unphenotyped individuals 102

using the available genomic information. The simulated dataset also provides true 103

genomic breeding values (TGBVs) for the 1020 genotypes for all the traits. 104

As in [46], to enable model fitting for the grouping methods, markers were grouped by 105

assigning consecutive SNP markers systematically to groups of sizes 10, 20, ..., 100 106

separately for each of the five chromosomes. Typically, the last group of each grouping 107

scheme has fewer SNPs than the prescribed group size. Table 1 summarizes the 108

simulated phenotypic data and highlights differences in the magnitudes of the three 109

simulated quantitative traits T1, T2 and T3. 110

Table 1. Summary statistics for the three quantitative traits (T1, T2 and T3) in the
simulated training dataset (n = 3000 genotypes).

Trait Min. 1st Qu. Median Mean 3rd Qu. Max. Sd
T1 -584.993650 -116.244762 -1.711490 -0.000004 112.248515 587.189720 176.518911
T2 -32.233530 -6.502070 0.075480 -0.000004 6.615977 32.514590 9.514060
T3 -0.095720 -0.015893 0.000650 0.000005 0.016450 0.085240 0.024474

Real (plant) data 111

For the application to empirical data sets, we use three empirical maize breeding 112

datasets produced by KWS (breeding company) for the Synbreed project during 2010, 113

2011 and 2012. We first performed separate phenotypic analyses for each of the three 114

real maize data sets to derive the adjusted means used in genomic prediction using a 115

single stage mixed model assuming that genotypes are uncorrelated. The fixed effect in 116

the mixed model comprised a tester (Tester) with two levels, genotypic group (GRP) 117

with three levels, Tester×GRP and Tester×GRP×G (G=genotype). The random 118

factors were location (LOC), trial (TRIAL) nested within location, replicate (REP) 119

nested within trial and block (BLOCK) nested within replicate. The fitted random 120

effects were LOC, LOC×TRIAL, LOC×TRIAL×REP, LOC×TRIAL×REP×BLOCK, 121

Tester×GRP×SWITCH2×G and Tester×GRP×SWITCH1×G2. SWITCH1 and 122

SWITCH2 in the last two effects are operators explained in greater detail in [13]. All the 123

three maize datasets involved two testers and three genotypic groups. Accordingly, prior 124

to genomic prediction, we accounted for and removed the effect of the tester×genotypic 125

group (GRP) effect from the adjusted means (lsmeans) of maize yield by computing the 126

arithmetic mean of the lsmeans for the interaction of testers with GRP for the 127

genotyped lines. This mean was then subtracted from the lsmeans for each tester×GRP 128

interaction term. The resulting deviations were subtracted from the lsmeans of the 129

individual genotypes corresponding to each Tester×GRP interaction. This enabled us 130
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not to consider the Tester×GRP effect in the genomic prediction model. The SAS codes 131

used for the preceding phenotypic analysis and computation of the adjusted genotype 132

means used as the response variable in genomic prediction is provided in S5 File. 133

For all the years, every line was genotyped for 32217 SNP markers. A subset of the SNP 134

markers with non-zero variances were split into groups of sizes 135

10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. Groups were defined by systematically grouping 136

consecutive and spatially adjacent markers, separately for each of 10 chromosomes. The 137

SAS code used to define the groups is provided in S6 File. All the checks (standard 138

varieties) and check markers were deleted prior to genomic prediction. More details 139

specific to the three datasets follow (Table 2 summarizes the number of genotypes in the 140

training and validation datasets). The true breeding values are not known in this case. 141

Table 2. Number of genotypes in the training dataset (folds F1-F4) and validation
dataset (fold F5) for each of the 10 cross-validation replicates for the 2010, 2011 and
2012 KWS real maize datasets.

2010 2011 2012

Data

Folds
F1-F4 F5 F1-F4 F5 F1-F4 F5

Training 859 856 685 688 1104 1108

Validation 214 217 172 169 277 273

The 2010 dataset: the phenotypic dataset consists of 1073 individuals genotyped for 142

32217 SNPs and randomly split into 5 datasets, which we call folds, for 5-fold cross 143

validation. The random splitting procedure was repeated 10 times to yield 10 replicates. 144

In folds 1 − 4, 859 individuals (across all replicates) are used for training and 214 145

(across all replicates) individuals are used for validation. In fold 5, 856 individuals 146

(across all replicates) are used for training and 217 (across all replicates) individuals are 147

used for validation. 148

The 2011 dataset: the phenotypic dataset consists of 857 individuals genotyped for 149

32217 SNPs and randomly split into 5 datasets, which we call folds, for 5-fold cross 150

validation. The random splitting procedure was repeated 10 times to yield 10 replicates. 151

In folds 1 − 4, 685 individuals (across all replicates) are used for training and 172 152

(across all replicates) individuals are used for validation. In fold 5, 688 individuals 153

(across all replicates) are used for training and 169 (across all replicates) individuals are 154

used for validation. 155

The 2012 dataset: the phenotypic dataset consists of 1381 individuals genotyped for 156

32217 SNPs and randomly split into 5 datasets, which we call folds, for 5-fold cross 157

validation. The random splitting procedure was repeated 10 times to yield 10 replicates. 158

In folds 1 − 4, 1104 individuals (across all replicates) are used for training and 277 159

(across all replicates) individuals are used for validation. In fold 5, 1108 individuals 160

(across all replicates) are used for training and 273 (across all replicates) individuals are 161

used for validation. 162

Table 3 summarizes the KWS phenotypic data for 2010, 2011 and 2012. Each data split 163

for each year (2010, 2011 and 2012) contained approximately 20% of the phenotypic 164

observations and was obtained using stratified random sampling using the algorithm S7 165

File of [60] as modified in S8 File. The strata were defined by the combinations of the 166

two testers and three genotypic groups. 167
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Table 3. Summary statistics for maize yield in the KWS real maize datasets for 2010,
2011 and 2012.

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. Sd
2010 86.597600 121.550000 127.880000 126.806883 132.670000 149.930000 8.297735
2011 101.670000 139.310000 144.710000 144.221949 150.070000 164.060000 8.155595
2012 114.840000 139.160000 143.810000 143.719182 148.470000 169.160000 7.318531

Methods 168

In this section we describe the four supervised ML groups of methods. 169

Regularized regression methods 170

Consider the general linear regression model 171

yi = β0 +
p∑

j=1
βjxij + εi, i = 1, ..., n (1)

where yi is the i-th observation of the response variable, xij is the i-th observation of
the j-th covariate (p is the number of all covariates), βj are the regression coefficients
(unknown fixed parameters), εi are i.i.d. random error terms with E(εi) = 0 and
var(εi) = σ2

e , where σ2
e is an unknown random variance, and n is the sample size. The

ordinary least squares estimator of β = (β0, . . . , βp)′, which is unbiased, is obtained by
minimizing the residual sum of squares (RSS), i.e.,

β̂ols = argmin
β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2
= argmin

β
∥y − Xβ∥2

2,

where 172

y = (y1 . . . , yn)′, X =


1 x11 x12 x13 . . . x1p

1 x21 x22 x23 . . . x2p

...
...

...
. . .

...
1 xn1 xn2 xn3 . . . xnp

 and ∥.∥2 is the ℓ2-norm.

This estimator is typically not suitable when the design matrix X is less than full rank 173

(X has a full rank if the number of its linearly independent rows or columns 174

k = min(p, n)) or is close to collinearity (i.e., the covariates are close to being linear 175

combinations of one another) [16]; problems that are frequently associated with p >> n. 176

In genomic prediction (GP) one is interested in estimating the p regression coefficients 177

βj so that genomic breeding values of non-phenotyped genotypes can be predicted from 178

the fitted model. The response variable y is often some quantitative trait and the βj ’s 179

are the coefficients of molecular markers spanning the whole genome, usually Single 180

Nucleotide Polymorphisms (SNPs). Because in GP typically p >> n, the ordinary least 181

squares (OLS) estimator breaks down and thus other methods for estimating β in (1) 182

must be sought. Indeed, the increasingly high dimensional nature of high-throughput 183

SNP-marker datasets has prompted increasing use of the power and versatility of 184

regularization methods in genomic prediction to simultaneously select and estimate 185

important markers and account for multicollinearity [44, 45]. 186

Without loss of generality, we assume, consistent with the standard practice in
regularized estimation where a distance-based metric is used for prediction, that the
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response variable is mean-centered whereas the covariates in (1) are standardized, so
that

n∑
i=1

yi = 0,
n∑

i=1
xij = 0 and n−1

n∑
i=1

x2
ij = 1, j = 1, . . . , p.

Regularized regression methods minimize a non-negative loss function (RSS or other) 187

plus a non-negative penalty function. Standardizing the covariates prior to model fitting 188

ensures that the penalty is applied evenly to all covariates. Mean-centering the response 189

and the covariates is usually done for notational simplicity but also eliminates the need 190

to estimate the intercept β0. 191

After the penalized models have been fit, the final estimates are obtained by back
transformation to the original scale by re-introducing an intercept (β0). In particular,
for a mean-centered response y and standardized predictor X∗, predictions are obtained
by

ŷ = β0 +
p∑

j=1
X∗

j β̂∗
j

with β̂∗ = (β̂∗
1 , . . . , β̂∗

p), the regression coefficients from the model fit with the
mean-centered response y and standardized covariates X∗, X∗

j = (x1j , . . . , xnj)′ the j-th
covariate and β0 = ȳ. One can also choose to predict using the original predictor X∗

without standardization. In that case one should back transform the β̂∗
j to the original

scale and consider

ŷ = β0 +
p∑

j=1
X∗

j β̂j

with β̂j = β̂∗
j /sj , sj =

√√√√n−1
n∑

i=1
x2

ij the standard deviation of the j-th covariate X∗
j and 192

β0 = ȳ − X̃β̂, where X̃j = (mj , . . . , mj)′ is a vector of size n with mj being the mean 193

of the j-th covariate X∗
j . 194

The primary goal of regularization methods is to reduce model complexity resulting 195

from high dimensionality by reducing the number of predictors in the model. This is 196

achieved by either shrinking some coefficients to become exactly zero, and so drop out 197

of the model, or shrinking all coefficients to be close to zero and each other but not 198

exactly zero. Ideally, a desirable estimator of β should (i) correctly select the nonzero 199

coefficients with probability converging to 1 (i.e. with near certainty; selection 200

consistency) and (ii) yield estimators of the nonzero coefficients that are asymptotically 201

normal with the same means and covariances that they would have if the zero 202

coefficients were known exactly in advance (asymptotic normality). An estimator 203

satisfying these two conditions is said to possess the oracle property [14, 15]. 204

For the remainder of the paper, we assume that X is a n × p marker matrix (e.g., with 205

the genotypes {aa, Aa, AA} coded as {0, 1, 2} or {−1, 0, 1} for p biallelic SNPs under an 206

additive model) with Xj denoting the j-th SNP covariate and β = (β1, . . . , βp) denoting 207

the unknown vector of marker effects. Table 4 (upper half) summarizes the methods 208

discussed in this sub-section. 209

Bridge-type estimators 210

The most popular regularization methods in genomic prediction include ridge regression 211

(RR; [26]), the least absolute shrinkage and selection operator (LASSO; [57]) and the 212
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Table 4. A summary of the estimators and penalty functions for the bridge-type and
adaptive bridge-type regularized regression methods used in this study. The adaptive
methods have an a prefix in their names.

Method Penalty Estimator

bridge pλ,γ(β) = λ

p∑
j=1

|βj |γ β̂bridge = argmin
β

{
RSS + λ

p∑
j=1

|βj |γ
}

, γ > 0, λ ≥ 0 (2)

• γ = 1:

LASSO pλ(β) = λ∥β∥1 β̂lasso = argmin
β

{
RSS + λ∥β∥1

}
(3)

• γ = 2:

ridge pλ(β) = λ∥β∥2
2 β̂ridge = argmin

β

{
RSS + λ∥β∥2

2

}
(4)

• Combination of LASSO and ridge penalties (γ = 1, 2, respectively):

ENET pλ(β) = λ1∥β∥1 + λ2∥β∥2
2 β̂enet = (1 + λ2) ×

{
argmin

β
RSS + λ1∥β∥1 + λ2∥β∥2

2

}
(5)

abridge pλ,γ(β) = λ

p∑
j=1

wj |βj |γ β̂abridge = argmin
β

{
RSS + λ

p∑
j=1

wj |βj |γ
}

(6)

• γ = 1:

aLASSO pλ(β) = λ∥wβ∥1 β̂alasso = argmin
β

{
RSS + λ∥wβ∥1

}
(7)

• Combination of aLASSO and ridge penalties (γ = 1, 2, respectively):

aENET pλ(β) = λ1∥wβ∥1 + λ2∥β∥2
2 β̂aenet = k ×

(
argmin

β

{
RSS + λ1∥wβ∥1 + λ2∥β∥2

2

})
(8)

elastic net (ENET; [67]). All these methods are special cases of the bridge estimator 213

[16, 20] given by 214

β̂bridge = argmin
β

{
RSS + λ

p∑
j=1

|βj |γ
}

, γ > 0, λ ≥ 0, (2)

where the regularization parameter λ balances the goodness-of-fit against model 215

complexity and the shrinkage parameter γ determines the order of the penalty function. 216

The optimal combination of λ and γ can be selected adaptively for each dataset by grid 217

search using cross-validation (CV; if the focus is on predictive performance) or by 218

information criteria (e.g., AIC or BIC; if the focus is on model fit). Bridge regression 219

automatically selects relevant predictors when 0 < γ ≤ 1, shrinks the coefficients when 220

γ > 1 and reduces to subset selection when γ = 0. The bridge estimator reduces to the 221

LASSO estimator when γ = 1 and to the ridge estimator when γ = 2. Specifically, 222

β̂lasso = argmin
β

{
RSS + λ∥β∥1

}
, (3)

where ∥.∥1 is the ℓ1-norm, and 223

β̂ridge = argmin
β

{
RSS + λ∥β∥2

2

}
. (4)
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The bridge estimator also enjoys several other useful and interesting properties (see 224

[28, 33] for more details). We summarize these salient properties with emphasis on the 225

special cases of the LASSO (γ = 1) and the ridge estimators (γ = 2). 226

1. The asymptotic properties of bridge estimators have been studied by [28]. In 227

particular, for p < n with p increasing to infinity with n and under appropriate 228

regularity conditions, bridge estimators enjoy the oracle property for 0 < γ < 1, 229

implying that, neither the LASSO nor the ridge estimator enjoys the oracle 230

property [14, 15]. If p >> n and no assumptions are imposed on the covariate 231

matrix, then the regression parameters are generally non identifiable. However, if 232

a suitable structure is assumed for the covariate matrix, then bridge estimators 233

achieve consistent variable selection and estimation [28]. 234

2. Although the LASSO estimator performs automatic variable selection, it is a 235

biased and inconsistent estimator [64, 65]. Moreover, it is unstable with 236

high-dimensional data because it 237

(i) cannot select a larger number of predictors p than the sample size n if 238

p >> n; 239

(ii) arbitrarily selects one member of a set of pairwise highly correlated 240

predictors and ignores the other. 241

3. The ridge estimator performs well for many predictors each of which has a small 242

effect but cannot shrink the coefficients to become exactly zero. Moreover, the 243

ridge estimator 244

(i) prevents coefficients of linear regression models with many correlated 245

variables from being poorly determined and exhibiting high variance; 246

(ii) shrinks coefficients of correlated predictors equally towards zero and towards 247

each other; 248

(iii) retains all predictor variables in the model leading to complex and less 249

interpretable models. 250

In addition, RR has close connections with marker-based BLUP and genomic
BLUP [38], which we clarify in what follows. The ridge estimator is given by

β̂ridge = (X′X + λI)−1X′y,

where, if λ is estimated by cross-validation as suggested above, then the ridge 251

estimator may be denoted by RR-CV. 252

Another way of looking at the ridge estimator is to assume in (1) that
β ∼ N(0, Iσ2

β) is a random vector of unknown marker effects and that
ε ∼ N(0, Iσ2

e) is an unknown random error term, where σ2
β and σ2

e are the
unknown marker-effect and error variances, respectively. This model is now a
linear mixed model and hence, the variances can be estimated via the restricted
maximum likelihood (REML) method. The BLUP solution for the marker effects
under model (1) is given by

β̂BLUP =
(

X′X + σ2
e

σ2
β

I
)−1

X′y,

establishing the equivalence of BLUP and RR [51, 54] and that one can actually 253

estimate the ridge parameter λ by λ̂ = σ̂2
e

σ̂2
β

. Because we use REML to estimate the 254

two variance components in β̂BLUP , we refer to this RR appproach as RR-REML. 255
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The underlying mixed model for gBLUP (ignoring fixed effects and considering
just one random effect per individual) is

y = Ig + ε,

where, g ∼ N(0, Gσ2
g) is the random vector of unknown genotypic (breeding) 256

values, σ2
g is the unknown genetic variance, ε and σ2

e are defined as before, and 257

G = XX′ is the genomic (marker-based) relationship matrix. The 258

genomic-estimated breeding values (GEBVs; ĝ) are equivalent to the estimates 259

Xβ̂ from model (1) [24, 50]. Indeed, for this special case var(y) = XX′σ2
g + Iσ2

e , 260

which is exactly the same as that for model (1) when β is taken as random. 261

4. Due to the nature of the ℓ1 penalty, particularly for high values of λ, the LASSO 262

estimator will shrink many coefficients to exactly zero, something that never 263

happens with the ridge estimator. 264

Elastic net estimator 265

The elastic net estimator blends two bridge-type estimators, the LASSO and the ridge, 266

to produce a composite estimator that reduces to the LASSO when λ2 = 0 and to the 267

ridge when λ1 = 0. Specifically, the elastic net estimator is specified by 268

β̂enet = k ×
{

argmin
β

RSS + λ1∥β∥1 + λ2∥β∥2
2

}
. (5)

with k = 1 + λ2 if the predictors are standardized (as we assume) or k = 1 + λ2/n 269

otherwise. Even when λ1, λ2 ̸= 0, the elastic net estimator behaves much like the 270

LASSO but with the added advantage of being robust to extreme correlations among 271

predictors. Moreover, the elastic net estimator is able to select more than n predictors 272

when p >> n. Model sparsity occurs as a consequence of the ℓ1 penalty term. 273

Mazumder et al. [36] proposed an estimation procedure based on sparse principal 274

components analysis (PCA), which produces an even more sparse model than the 275

original formulation of the elastic net estimator [67]. Because it blends two bridge-type 276

estimators, neither of which enjoys the oracle property, the ENET also lacks the oracle 277

property. 278

Other competitive regularization methods that are asymptotically oracle efficient (p < n 279

with p increasing to infinity with n), which do not fall into the category of bridge-type 280

estimators, are the smoothly clipped absolute deviations (SCAD [15, 31]) and the 281

minimax concave penalty (MCP [63, 65]) methods. Details of the penalty functions and 282

other important properties of both methods can be found elsewhere [5, 46]. 283

Adaptive regularized regression methods 284

The adaptive regularization methods are extensions of the regularized regression 285

methods that allow the resulting estimators to achieve the oracle property under certain 286

regularity conditions. Table 4 (lower half) summarizes the adaptive methods considered 287

here. 288

Adaptive bridge-type estimators 289

Adaptive bridge estimators extend the bridge estimators by introducing weights in the 290

penalty term. More precisely, 291

β̂abridge = argmin
β

{
RSS + λ

p∑
j=1

wj |βj |γ
}

, γ > 0, λ ≥ 0 (6)
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where {wj}p
j=1 are adaptive data-driven weights. As with the bridge-type estimator, the 292

adaptive bridge estimator simplifies to the adaptive LASSO (aLASSO) estimator when 293

γ = 1 and to the adaptive ridge estimator when γ = 2. Chen et al. [10] studied the 294

properties of adaptive bridge estimators for the particular case when p < n (with p 295

increasing to infinity with n), 0 < γ < 2 and wj = (|β̂init
j |)−1 with β̂init = β̂ols. They 296

showed that for 0 < γ < 1, and under additional model assumptions, adaptive bridge 297

estimators enjoy the oracle property. For p >> n, β̂ols cannot be computed and thus 298

other initial estimates, such as β̂ridge, have to be used. Theoretical properties of the 299

adaptive bridge estimator for p >> n do not seem to have been well studied thus far. 300

The adaptive LASSO estimator was proposed by [68] to remedy the problem of the lack
of the oracle property of the LASSO estimator [14, 15]. The penalty for the adaptive
LASSO is given by (adaptive bridge estimator with γ = 1)

pλ(β) = λ

p∑
j=1

wj |βj |

where the adaptive data-driven weights {wj}p
j=1 can be computed as wj = (|β̂init

j |)−ν
301

with β̂init an initial root-n consistent estimate of β obtained through least squares (or 302

ridge regression if multicollinearity is important) and ν is a positive constant. 303

Consequently, 304

β̂alasso = argmin
β

{
RSS + λ∥wβ∥1

}
(7)

with ν chosen appropriately, performs as well as the oracle, i.e., the adaptive LASSO 305

achieves the oracle property. Nevertheless, this estimator still inherits the LASSO’s 306

instability with high dimensional data. The values of λ and ν can be simultaneously 307

selected from a grid of values, with values of ν selected from {0.5, 1, 2}, using 308

two-dimensional cross-validation [68]. 309

Grandvalet [21] shows that the adaptive ridge estimator (adaptive bridge estimator with 310

γ = 2) is equivalent to the LASSO in the sense that both produce the same estimate 311

and thus the adaptive ridge is not considered further. 312

Adaptive elastic-net 313

The adaptive elastic-net (aENET) combines the ridge and aLASSO penalties to achieve 314

the oracle property [70] while at the same time alleviating the instability of the 315

aLASSO with high dimensional data. The method first computes β̂enet as described 316

above for the elastic net estimator, then constructs the adaptive weights as 317

ŵj = (|β̂j,enet|)−ν , where ν is a positive constant, and then solves 318

β̂aenet = k ×
{

argmin
β

RSS + λ1∥wβ∥1 + λ2∥β∥2
2

}
, (8)

where k = 1 + λ2 if the predictors are standardized (as we assume) or k = 1 + λ2/n 319

otherwise. In particular, when λ2 = 0 the adaptive elastic-net reduces to the aLASSO 320

estimator. This is also the case when the design matrix is orthogonal regardless of the 321

value of λ2 [67, 68, 70]. 322

Other adaptive regularization methods are the multi-step adaptive ENET (maENET), 323

the adaptive smoothly clipped absolute deviations (aSCAD) and the adaptive minimax 324

concave penalty (aMCP) methods. Details of the penalty functions and noteworthy 325

properties of the latter three methods are summarized elsewhere [45, 59]. 326
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Regularized group regression methods 327

Regularized regression methods that select individual predictors do not exploit 328

information on potential grouping structure among markers, such as that arising from 329

the association of markers with particular Quantitative Trait Loci (QTL) on a 330

chromosome or haplotype blocks, to enhance the accuracy of genomic prediction. The 331

nearby SNP markers in such groups are linked, producing highly correlated predictors. 332

If such grouping structure is present but is ignored by using models that select 333

individual predictors only, then such models may be inefficient or even inappropriate, 334

reducing the accuracy of genomic prediction [46]. Regularized group regression methods 335

are regularized regression methods with penalty functions that enable the selection of 336

the important groups of covariates and include group bridge (gbridge), group LASSO 337

(gLASSO), group SCAD (gSCAD) and group MCP (gMCP) methods (see 338

[1, 6, 30, 46, 47, 61] for detailed reviews). Some grouping methods such as the group 339

bridge, sparse group LASSO (sgLASSO) and group MCP, besides allowing for group 340

selection, also select the important members of each group [4] and are therefore said to 341

perform bi-level selection, i.e., group-wise and within-group variable selection. Bi-level 342

selection is appropriate if predictors are not distinct but have a common underlying 343

grouping structure. 344

Estimators and penalty functions for the regularized grouped methods can be 345

formulated as follows. Consider subsets A1, . . . , AL of {1, . . . , p} (L being the total 346

number of covariate groups), representing known covariate groupings of design vectors, 347

which may or may not overlap. Let βAl
= (βk, k ∈ Al) be the regression coefficients in 348

the l-th group and pl the cardinality of the l-th group (i.e., the number of unique 349

elements in Al). Regularized group regression methods estimate β = (βA1 , ...,βAL
)′ by 350

minimizing 351

F L
λ,γ(β) =

n∑
i=1

(
yi −

L∑
l=1

βAl
Xil

)2
+ pλ(β), (9)

where X.l is a matrix with columns corresponding to the predictors in group l. 352

Because
n∑

i=1

(
yi −

L∑
l=1

βAl
Xil

)2
in (9) is equivalent to RSS some authors use the RSS 353

formulation directly. It is assumed that all the covariates belong to at least one of the 354

groups. Table 5 summarizes the methods described in this section. 355

Table 5. Penalty functions and estimators for some group regularized regression
methods used in this study.

Method Penalty Estimator

gbridge pλ,γ(β) = λ
L∑

l=1
cl∥βAl

∥γ
1 β̂gbridge = argmin

β

{
RSS + λ

L∑
l=1

cl∥βAl
∥γ

1

}
(10)

gLASSO pλ(β) = λ
L∑

l=1

√
pl∥βAl

∥2 β̂glasso = argmin
β

{
RSS + λ

L∑
l=1

√
pl∥βAl

∥2

}
(11)

sgLASSO pλ,α(β) = αλ||β||1 + (1 − α)λ
L∑

l=1

√
gl||βl||2 β̂sglasso = argmin

β

{
RSS + αλ||β||1 + (1 − α)λ

L∑
l=1

√
gl||βl||2

}
(12)

Group bridge-type estimators 356

Group bridge-type estimators use in (9) the penalty term pλ(β) = λ
L∑

l=1
cl∥βAl

∥γ
1 with 357
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cl constants that adjust for the different sizes of the groups. The group bridge-type 358

estimators are thus obtained as 359

β̂gbridge = argmin
β

RSS + λ
L∑

l=1
cl∥βAl

∥γ
1 , γ > 0, λ ≥ 0. (10)

A simple and usual choice for the cl constants consists in considering each cl ∝ p1−γ
l . 360

When 0 < γ < 1 group bridge can be used simultaneously for group and individual 361

variable selection. Also, note that under these assumptions, the group bridge estimator 362

correctly selects groups with nonzero coefficients with probability converging to one 363

under reasonable regularity conditions, i.e., it enjoys the oracle group selection property 364

(see [27] for details). When the group sizes are all equal to one, i.e., pl = 1 ∀ 1 ≤ l ≤ L, 365

then group bridge estimators reduce to the bridge estimators. 366

Group LASSO and sparse group LASSO 367

Group LASSO regression uses in (9) the penalty function pλ(β) = λ
L∑

l=1

√
pl||βAl

||2. 368

The group LASSO estimator is thus given by 369

β̂glasso = argmin
β

{
RSS + λ

L∑
l=1

√
pl||βAl

||2
}

, λ ≥ 0. (11)

Unlike the group bridge estimator (0 < γ < 1), gLASSO is designed for group selection, 370

but does not select individual variables within the groups. Indeed, its formulation is 371

more akin to that of the adaptive ridge estimator [27]. As with the group-bridge 372

estimator, when the group sizes are all equal to one, i.e., pl = 1 ∀ 1 ≤ l ≤ L, the 373

gLASSO estimator reduces to the LASSO estimator. 374

Because the gLASSO does not yield sparsity within a group (it either discards or 375

retains a whole group of covariates) the sparse group lasso (sgLASSO), which blends 376

the LASSO and the gLASSO penalties, was proposed [18, 56]. Specifically, the 377

sgLASSO estimator is given by 378

β̂sglasso = argmin
β

{
RSS + (1 − α)λ

L∑
l=1

√
gl||βl||2 + αλ||β||1

}
, (12)

where α ∈ [0, 1] provides a convex combination of the lasso and group lasso penalties 379

(α = 0 gives the gLASSO fit, α = 1 gives the LASSO fit). The gLASSO is superior to 380

the standard LASSO under the strong group sparsity and certain other conditions, 381

including a group sparse eigenvalue condition [29]. Because the sgLASSO lacks the oracle 382

property, the adaptive sparse group LASSO was recently proposed to remedy this 383

drawback [52]. 384

Note that there are two types of sparsity, i.e., (i) “groupwise sparsity”, which refers to 385

the number of groups with at least one nonzero coefficient, and (ii) “within group 386

sparsity” that refers to the number of nonzero coefficients within each nonzero group. 387

The “overall sparsity” usually refers to the total number of non-zero coefficients 388

regardless of grouping. 389

Other group regularization methods are the hierarchical group LASSO (hLASSO), the 390

group smoothly clipped absolute deviations (gSCAD) and the group minimax concave 391

penalty (gMCP) methods. Details of the penalty functions and salient properties of 392

these methods can be found in [35, 46, 48, 66? ]. 393
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Ensemble methods 394

Ensemble methods build multiple models using a given learning algorithm and then 395

combine their predictions to produce an optimal estimate. The two most commonly 396

used algorithms are bagging (or bragging) and boosting. Whereas bagging is a stagewise 397

procedure that combines the predictions of multiple models (e.g., classification or 398

regression trees) to yield an average prediction, boosting is a stagewise process in which 399

each stage attempts to improve the predictions at the previous stage by up-weighting 400

poorly predicted values. Below, we briefly discuss two popular ensemble methods, 401

namely, random forests, an extension of bagging, and gradient boosting algorithms. 402

Note that, although variable scaling (centering or standardizing) might accelerate 403

convergence of the learning algorithms, the ensemble methods do not require it. Indeed, 404

the collection of partition rules used with the ensemble methods should not change with 405

scaling. 406

Random forests (RF) 407

The random forests algorithm is an ensemble algorithm that uses an ensemble of
unpruned decision (classification or regression) trees, each grown using a bootstrap
sample of the training data, and randomly selected (without replacement) subsets of the
predictor variables (features) as candidates for splitting tree nodes. The randomness
introduced by bootstrapping and selecting a random subset of the predictors reduces
the variance of the random forest estimator, often at the cost of a slight increase in bias.
The RF regression prediction for a new observation yi, say ŷB

i , is made by averaging the
output of the ensemble of B trees {T (yi, Ψb)}b=1,...,B as [23]

ŷB
i = 1

B

B∑
b=1

T (yi, Ψb)

where Ψb characterizes the b-th RF tree in terms of split variables, cut points at each 408

node, and terminal node values. Recommendations on how to select the number of trees 409

to grow, the number of covariates to be randomly chosen at each tree node and the 410

minimum size of terminal nodes of trees, below which no split is attempted, are 411

provided by [9, 34]. We refer to [9, 23, 34] for further details on the RF regression. 412

Stochastic Gradient Boosting (SGB) 413

Boosting enhances the predictive performance of base learners such as classification or
regression trees, each of which performs only slightly better than random guessing, to
become arbitrarily strong [23]. As with RF, boosting algorithms can also handle
interactions, nonlinear relationships, automatically select variables and are robust to
outliers, missing data and numerous correlated and irrelevant variables. In regression,
boosting is an additive expansion of the form

y = f(X) =
M∑

m=1
βmh(X; γm)

where β1, . . . , βM are the expansion coefficients and the basis functions h(X; γ), base
learners, are functions of the multivariate argument X, characterized by a set of
parameters γ = (γ1, . . . , γM ). Typically these models are fit by minimizing a loss
function L (e.g., the squared-error loss) averaged over the training data

min
βm,γm

n∑
i=1

L

(
yi,

M∑
m=1

βmh(xi; γm)
)

.

We used regression trees as basis functions in which the parameters γm are the splitting 414
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variables, split points at the internal nodes, and the predictions at the terminal nodes. 415

Boosting regression trees involves generating a sequence of trees, each grown on the 416

residuals of the previous tree. Prediction is accomplished by weighting the ensemble 417

outputs of all the regression trees. We refer to [23, 55] for further details on SGB (see, 418

e.g., [55] for the interpretation of boosting in terms of regression for a continuous, 419

normally distributed response variable). 420

Instance-based methods 421

For the instance-based methods, scaling before applying the method is crucially 422

important. Scaling the variables (features) prior to model fitting prevents possible 423

numerical difficulties in the intermediate calculations and helps avoid domination of 424

numeric variables with smaller by those with greater magnitude and range. 425

Support Vector Machines 426

Support vector machines (SVM) is a popular supervised learning technique for 427

classification and regression of a quantitative response y on a set of predictors, in which 428

case the method is called support vector regression or SVR [58]. In particular, SVR uses 429

the model 430

yi = f(xi) = β0 + h(xi)Tβ, (13)

with xi = (xi1, . . . , xip)′ and where the approximating function f(xi) is a linear 431

combination of basis functions h(xi)T , which can be linear (or nonlinear) 432

transformations of xi. The goal of SVR is to find a function f such that f(xi) deviates 433

from yi by a value no greater than ε for each training point xi, and at the same time is 434

as flat as possible. This so-called ε-insensitive SVR, or simply ε-SVR, thus fits a model 435

(13) using only those residuals which are smaller in absolute value than ε and a linear 436

loss function for larger residuals. The choice of the loss function (e.g., linear, quadratic, 437

Huber) usually considers the noise distribution pertaining to the data samples, level of 438

sparsity and computational complexity. 439

If Eq (13) is the usual linear regression model, i.e., yi = f(xi) = β0 + xT
i β, one 440

considers the following minimization problem 441

min
β0,β

( n∑
i=1

V (yi − f(xi)) + λ

2 ∥β∥2
)

(14)

where λ is the regularization parameter (cost) that controls the trade-off between 442

flatness and error tolerance, ∥.∥ refers to the norm under a Hilbert space (i.e., 443

∥x∥ =
√

⟨x,x⟩ with x a p ≥ 1 dimensional vector) and 444

Vε(r) =
{

0, if |r| < ε

|r| − ε, otherwise

is an ε-insensitive linear loss. Given the minimizers of (14) β̂0 and β̂, the solution
function has the form

β̂ =
n∑

i=1
(α̂∗

i − α̂i)xi and f̂(x) =
n∑

i=1
(α̂∗

i − α̂i)⟨x,xi⟩ + β̂0

where α̂∗
i , α̂i are positive weights given to each observation (i.e., to the column vector 445

xi) estimated from the data. Typically only a subset of (α̂∗
i − α̂i) are non-zero with the 446

observations associated to these so called support vectors, and thus the name of the 447

method, SVM. More details on SVM can be found in [23]. 448
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Deep learning methods 449

Deep learning (DL) algorithms are a special class of neural networks and encompass an 450

assortment of architectures (e.g., convolutional, recurrent and densely connected neural 451

networks) that depend on many parameters (hyperparameters) whose careful 452

optimization is crucial to enhancing predictive accuracy and minimizing overfitting (see 453

[2, 12, 39, 49, 62, 71] for further insights into DL architectures and other particulars and 454

the supplementary materials https://github.com/miguelperezenciso/DLpipeline 455

of [49] for a list of the main DL hyperparameters, their role and related optimization 456

issues). It can be very challenging to achieve great improvements in predictive accuracy 457

in genomic prediction studies with DL because hyperparameter optimization can be 458

extremely demanding and also because DL requires very large training datasets which 459

might not always be available [40, 41, 42, 43]. 460

Regardless of the selected DL architecture and the adopted hyperparameter calibration, 461

when building the neural network model an optimization method must also be selected. 462

The three top ranked optimizers for neural networks are mini-batch gradient descent, 463

gradient descent with momentum and adaptive moment estimation (ADAM; [32]). 464

Among the three, the mini-batch gradient descent and Adam are usually preferred, 465

because they perform well most of the time. In terms of convergence speed ADAM is 466

often clearly the winner and thus a natural choice [53]. 467

Next, we offer a few more details on the feed-forward neural network (FFNN), also 468

known in the literature as a multi-layer perceptron (MLP), which, besides being one of 469

the most popular DL architectures, is well suited for regression problems. 470

Feed-forward neural network (FFNN) 471

A feed-forward neural network (FFNN), is a neural network that does not assume a 472

specific structure in the input features (i.e., in the covariates). This neural network 473

consists of an input layer, an output layer and multiple hidden layers between the input 474

and output layers. 475

The model for a FFNN with one hidden layer expressed as a multiple linear regression
model (1) is given by

yi = α +
∑

h

whϕ
(

αh +
∑

j

wjhxij

)
where the yi (output) and xij (input) are defined as in model (1), α is the output bias, 476

h runs over the units of the hidden layer, αh refers to the bias of the h-th unit of the 477

hidden layer, wjh refer to the weights between the inputs and the hidden layer, wh refer 478

to the weights between the hidden layer and the output, ϕ is the activation function of 479

the hidden layer. The model parameters α, αh, wh and wjh are unknown network 480

parameters that need to be estimated by minimizing some fitting criterion such as least 481

squares or some measure of entropy from some training data (network training). This 482

model can be represented graphically as a set of inputs linked through a hidden layer to 483

the outputs as shown in Fig 1. 484

Fig. 1. Graphical representation of a feed-forward neural network (FFNN) with one
hidden layer.

Further details on neural networks in general and the FFNN in particular can be found 485

in [23, 40, 41, 42, 43, 49]. Note that, to avoid potential numerical difficulties, it is 486

recommended that both the target (response variable; here assumed to be continuous 487

and normally distributed), and the features (covariates) are standardized prior to 488

training the network [49]. 489
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Performance assessment & noteworthy details of model fitting 490

Performance assessment 491

For the simulated dataset, we assessed predictive performance using predictive accuracy
(PA), the Pearson correlation between the PGBVs and the TGBVs breeding values. For
all the three KWS empirical data sets, predictive performance was expressed as
predictive ability (PA), the Pearson correlation between the PGBVs and the observed
genomic breeding values (OGBVs), also calculated using cross validation. The higher
the PA, the better is the relative predictive performance of a method. We additionally
assessed the predictive performance of the methods using the out-of-sample mean
squared prediction error (MSPE) and the mean absolute prediction error (MAPE).
Specifically,

PA =

∑
i

(yi − ȳ)(ŷi − ¯̂y)√∑
i

(yi − ȳ)2
∑

i

(ŷi − ¯̂y)2
, MSPE = 1

n

∑
i

(yi−ŷi)2, MAPE = 1
n

∑
i

|yi−ŷi|,

where the yi and ȳ are, respectively, the TGBVs and mean TGBVs for the single 492

simulated dataset, but the OGBVs and mean OGBVs for the empirical datasets, and 493

the ŷi are the PGBVs. 10-fold CV is used to assess the PA for each method for the 494

simulated datasets in contrast to the 5-fold CV used with the three empirical maize 495

datasets. 496

For the cross validation, we aimed to have at least 150 individuals per fold. Accordingly, 497

each phenotypic dataset was randomly split into k approximately equal parts. The 498

breeding values for each of the k folds were predicted by training the model on the k − 1 499

remaining folds and a CV error (CVE) computed for each of the k folds. The method 500

with the smallest CVE was selected to predict the breeding values for the unphenotyped 501

genotypes for the simulated dataset, and the phenotyped genotypes in the validation 502

sets for each of the three empirical maize datasets. 503

Noteworthy details of model fitting 504

Because we used CV for model selection, we fixed the data split whenever possible by 505

setting a specific positive seed before splitting the data to enhance the reproducibility of 506

results. Besides the k-fold split, common to all the methods, some methods involve 507

additional kinds of randomization, making it impossible to reproduce results even if the 508

data split or the seed for the random number generator are fixed prior to fitting the 509

model (RF, SVM and FFNN methods). This happens because some of the routines 510

internally generate some random number seeds when they initialize the computations. 511

Consequently, this introduces an additional source of variation between results obtained 512

from different runs or even from using different computing platforms. Ideally, for such 513

cases, and at the risk of vastly increasing the computational burden, the model could be 514

fitted a large number of times until the average and the range (or standard error) of PA 515

stabilize. Even so, we considered only single model runs for the RF and SVM methods. 516

For the FFNN method we implemented 1000 runs for the simulated data and 10 for the 517

KWS data. 518

In addition, the following details of model fitting are noteworthy: 519

(i) γ = 0.5 was considered in the bridge and grouped bridge methods. 520

(ii) Calibration of random forests involves selecting the number of trees to grow 521

(ntrees), the random number of covariates to select for growing each tree (ncovars) 522

and the minimum size of the terminal nodes per tree (nnodes), below which no 523
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split is attempted. The parameters that affect the final accuracy the most are the 524

first two. Increasing the ntrees only increases the accuracy up to some point but 525

can substantially increase the computational time. Here, we fix ntrees = 1000 526

(this ensures that every input row gets predicted at least a couple of times) and 527

nnodes = 1 and search for the best value of ncovars in {0.5, 1, 2} × (p/3). 528

(iii) For the SGB method we assumed the Gaussian distribution for minimizing 529

squared-error loss. The basic boosting algorithm requires the specification of two 530

parameters: the number of splits (J ; or the number of nodes, which equals the 531

number of splits plus one) and the number of trees (or iterations; ntrees) to be 532

fitted. Hastie et al [23] point out that the number of splits J such that 4 ≤ J ≤ 8 533

generally works well with results being fairly insensitive to particular choices in 534

this range. We use J = 6. As for ntrees, it should neither be too small (bad fit) 535

nor too large (overfit). Usually, the suitable ntrees can be found by checking how 536

well the model fits a test dataset, where a typical fraction of the data used for 537

testing is 0.5 (can be much smaller if the dataset is very large). We search for 538

ntrees in {500, 1500, 3000}. As with RF, we fix the number of terminal nodes per 539

tree nnodes = 1. In addition, we set the shrinkage factor applied to each tree in 540

the expansion to 0.001 and the subsampling fraction to 0.5 [17]. 541

(iv) For the SVR method, we considered an insensititvity zone of ε = 0.001 across 542

traits with the regularization parameter λ (cost) determined by grid-search over 543

the values {0.01, 0.1, 1, 10, 100}. 544

(v) We used the Adam optimizer, ’Relu’ (rectified linear units) activation function 545

and a linear output layer in the configuration of the FFNN. 546

Because we used the Python software and GPU to fit the neural networks, we 547

were able to produce 1000 different runs of the FFNNs for the simulated dataset 548

and 10 runs of the FFNNs for each of the three real datasets (amounting to 549

10 runs × 5 folds × 10 reps FFNNs fits for each real dataset), and report the 550

average plus the range for the PA. 551

All the methods are implemented in the R software and are available in various R 552

packages. Table 6 lists the R packages we used to analyse the synthetic and real 553

datasets. For the FFNN method, and because of fine tuning requirements, we used the 554

Python software and packages Numpy, Pandas and Tensorflow. 555

Results 556

Although we did not fully quantify the computational costs of the different methods, 557

the computational burden increased strikingly from the simple regularized through the 558

adaptive to the grouped methods. A similar trend was also apparent from the ensemble, 559

through the instance-based to the deep learning methods. Computational time may be 560

reduced greatly by parallelizing the estimation or optimization algorithms, but this 561

strategy may not always be available and can be challenging to implement for some 562

methods. 563

Simulated (animal) data 564

The relative performances of the various methods on the simulated data varied with the 565

target trait and with whether performance was assessed in terms of predictive accuracy 566

or prediction error. Performance also varied in terms of computational cost with some 567
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Table 6. List of R packages and routines used in this paper
Type Method Package Routine

Regularized

Bridge grpreg [7] cv.grpreg()

RR-CV, ENET glmnet [19] cv.glmnet() ∗

RR-REML rrBLUP [11] mixed.solve()

LASSO, SCAD, MCP ncvreg [8] cv.ncvreg() ∗

Sparse regularized ENET sparsenet [36] cv.sparsenet()

Adaptive regularized

LASSO glmnet [19] cv.glmnet() ∗

SCAD
msaenet [59]

asnet()∗

MCP amnet()∗

ENET aenet()∗, msaenet()∗

Group regularized

Hierarchical LASSO glinternet [35] glinternet.cv()

Sparse LASSO SGL [56] cvSGL()

Bridge
grpreg [7] cv.grpreg()LASSO, MCP, SCAD

gel, cMCP (bi-level)

Ensemble
Random Forests randomForest [9] randomForest()

Stochastic Gradient Boosting gbm [22] gbm.fit()

Instance-based Support Vector Machine e1071 [37] tune.svm()

* These functions allow for internal parallelization of computations.

methods requiring considerably more time than others. Results of genomic prediction 568

accuracy for the simulated data are displayed in Tables 7 to 11. Table 12 reports the 569

calibration details for the fitted FFNN. 570

Table 9 displays the range of the observed predictive accuracies across all the classes of 571

the regularized methods for traits T1 − T3. Neither the adaptive nor the group 572

regularized methods seem to improve upon the results of their regularized counterparts, 573

although group regularized methods do provide some slight improvement upon the 574

results of the adaptive regularized methods. Even though all the regularized regression 575

methods had comparable overall performance, the best compromise between high PA 576

(≥ 0.77 for T1, 0.82 for T2 and 0.81 for T3) and small prediction errors was achieved by 577

the LASSO, ENET, sENET and SCAD (Table 7 ; first half). Within the class of 578

adaptive regularized methods, the best compromise was achieved by aLASSO and 579

aENET (Table 7 ; second half; PA≥ 0.72 for T1, 0.78 for T2 and 0.80 for for T3). For 580

the group regularized methods, a good compromise was achieved by the gLASSO and 581

gSCAD (Table 8; mean PA values ≥ 0.76 for T1, 0.82 for T2 and 0.81 for T3). Whereas 582

the worst performing group regularized methods in terms of the estimated PAs were the 583

cMCP and gel for T1 (PA< 0.7), sgLASSO and gel for T2 (PA< 0.8) and hLASSO and 584

gel for T3 (PA< 0.8), the worst performing methods in terms of prediction errors were 585

the gel (T1 & T2 only) and sgLASSO (T3 only). Of all the group regularized methods, 586

the most time consuming were the sgLASSO and hLASSO, with sgLASSO requiring 587

several more months to compute results for trait T1 than for traits T2 or T3. 588

The ensemble, instance-based and deep learning methods did not improve upon the 589

results of the regularized or the group regularized methods (Tables 10 & 11). Among 590

the latter groups of methods, RF provided the best compromise between high PA and 591

June 8, 2022 18/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.09.495423doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.09.495423
http://creativecommons.org/licenses/by/4.0/


small prediction errors. 592

Predictive performance varied not only among the methods but also with the target 593

quantitative traits. Specifically, trait T3 had the highest predictive accuracies for the 594

adaptive methods, whereas trait T2 was generally top ranked across all the remaining 595

methods. 596

Table 7. Prediction accuracy (PA) of the regularized and adaptive regularized
methods, computed as the Pearson correlation coefficient between the true breeding
values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset,
where T1 − T3 refer to three quantitative milk traits. The choice of λ, where applicable,
was based on the 10-fold CV. The mean squared and absolute prediction errors are also
provided.

Method
T1 T2 T ⋆

3

PA MSPE MAPE PA MSPE MAPE PA MSPE MAPE
bridge 0.716 7133.7 68.1 0.751 47.2 5.9 0.769 0.922 0.283
RR-CV 0.736 6561.0 64.9 0.771 52.2 6.3 0.762 0.928 0.283
RR-REML 0.732 6570.3 65.0 0.770 51.4 6.2 0.758 0.931 0.283
LASSO 0.775 5951.3 61.7 0.827 47.3 6.1 0.817 0.920 0.286
ENET 0.777 5957.6 61.7 0.829 47.2 6.0 0.817 0.921 0.286
sENET 0.779 5920.2 61.5 0.814 47.8 6.1 0.817 0.914 0.285
SCAD 0.775 5878.8 61.1 0.815 48.2 6.1 0.808 0.922 0.286
MCP 0.742 6308.4 63.1 0.790 49.9 6.2 0.799 0.921 0.285
aLASSO 0.724 6591.5 65.8 0.779 48.3 6.0 0.796 0.966 0.293
aENETe 0.726 6812.1 65.1 0.786 49.6 6.1 0.805 0.915 0.285
aENETr 0.722 6674.6 66.0 0.789 47.3 6.0 0.801 0.950 0.290
maENETe 0.704 7231.0 67.1 0.773 50.7 6.2 0.791 0.915 0.283
maENETr 0.692 7117.4 68.2 0.756 52.4 6.3 0.767 0.892 0.278
aSCADs 0.645 7732.4 70.8 0.739 56.6 6.5 0.750 0.926 0.282
aSCADr 0.700 6833.5 66.3 0.721 58.5 6.7 0.730 0.892 0.275
aMCPm 0.682 7323.4 68.8 0.754 56.4 6.5 0.755 0.922 0.282
aMCPr 0.681 6987.3 66.9 0.714 59.2 6.7 0.734 0.884 0.274

s: sparse method; a: adaptive method; ma: multi-step adaptive method.
s: snet penalty; r: ridge penalty; m: mnet penalty; e: enet penalty;
⋆ MSPE is multiplied by 103 and MAPE by 101 to enhance comparison with corresponding values for T1 and T2.

Real (plant) data 597

The ridge regression methods plus the overall best performing methods (high PA values 598

and low prediction errors) for each class of methods based on the analysis of the 599

simulated dataset, were applied to each of the three KWS empirical maize datasets. 600

The specific methods fitted to the KWS maize datasets comprised RR-CV, RR-REML, 601

sENET, aENET (enet penalty), gLASSO, RF and FFNN. 602

Results are displayed in Table 13. Across the three real maize datasets, the highest 603

predicitive abilities were obtained for the 2010 dataset. The estimated predictive 604

abilities (PA) are under 0.7 for the 2010 dataset but under 0.6 for the 2011 dataset and 605

2012 (except for RR-REML with an estimated PA of 0.616), regardless of the method 606

used. RR-REML (2011 & 2012 datasets) and RF (2010 dataset) are evidently the best 607

performing methods (higher PA values and lower prediction errors). On the other hand, 608
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Table 8. Prediction accuracy (PA) of the group regularized methods (mean and
range values of PA across the different groupings), computed as the Pearson correlation
coefficient between the true breeding values (TBVs) and the predicted breeding values
(PBVs), for the simulated dataset, where T1 − T3 refer to three quantitative milk traits.
Choice of λ was based on the 10-fold CV. Display refers to the mean, max and min
values of PA across all the 10 grouping schemes. The mean squared and absolute
prediction errors are also provided.

Method
T1 T2 T ⋆

3

Mean Range Mean Range Mean Range

gbridge
PA 0.716 0.659–0.762 0.813 0.794–0.829 0.803 0.779-0.816

MSPE 6468.7 5957.5–7095.8 48.9 44.5–52.5 0.919 0.907–0.946
MAPE 64.6 62.0–67.4 6.1 5.8–6.4 0.285 0.284–0.288

gLASSO
PA 0.766 0.732–0.793 0.820 0.795–0.852 0.814 0.802–0.838

MSPE 6047.3 5484.3–6533.3 49.9 47.7–52.4 0.902 0.881–0.924
MAPE 62.3 59.6–64.4 6.2 6.1–6.3 0.282 0.277–0.288

sgLASSO
PA 0.724 0.722–0.724 0.792 0.790–0.804 0.809 0.784–0.815

MSPE 7392.1 7378.1–7420.9 47.9 47.6–48.2 0.951 0.929–0.957
MAPE 68.5 68.4–68.7 6.0 6.0–6.1 0.291 0.284–0.292

gSCAD
PA 0.763 0.731–0.793 0.820 0.799–0.843 0.807 0.789–0.822

MSPE 6059.5 5314.7–6595.2 48.4 46.9–51.1 0.901 0.862–0.929
MAPE 62.4 58.8–64.7 6.1 6.0–6.3 0.282 0.273–0.288

gMCP
PA 0.742 0.701–0.776 0.806 0.775–0.832 0.799 0.779–0.821

MSPE 6239.8 5273.2–7353.6 48.6 46.6–50.8 0.899 0.859–0.951
MAPE 63.5 58.9–69.1 6.1 6.0–6.3 0.281 0.274–0.290

cMCP
PA 0.653 0.633–0.655 0.808 0.808–0.809 0.8176 0.8175–0.8177

MSPE 7430.9 7368.8–7989.9 48.5 48.4–48.6 0.91935 0.91930–0.91943
MAPE 68.6 68.4–70.6 6.11 6.10–6.12 0.28607 0.28606–0.28611

gel
PA 0.677 0.623–0.756 0.758 0.697–0.800 0.765 0.744–0.804

MSPE 7732.3 5839.5–9099.4 51.0 48.2–53.0 0.915 0.873–0.970
MAPE 70.4 60.8–77.0 6.2 6.0–6.4 0.281 0.273–0.290

hLASSO*
PA 0.755 - 0.819 - 0.795 -

MSPE 6592.6 - 49.9 - 0.901 -
MAPE 65.5 - 6.2 - 0.280 -

s and h stand for the sparse and hierarchical versions of the corresponding method;
* the groupings here are achieved through interactions between markers unlike in the previous methods; a single PA value is produced
and reported, which is not a mean across the different groups;
⋆ MSPE is multiplied by 103 and MAPE by 101 to enhance comparison with corresponding values for T1 and T2; five decimal places
were needed for cMCP.

aENETe (2010 & 2011 datasets) and RF (2012 dataset) are the worst performing 609

methods (lower PA and higher prediction errors). Interestingly, the RF performed both 610

the best (2010 dataset) and the worst (2012 dataset), clearly emphasizing that the 611

methods are strongly data dependent. 612
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Table 9. Range of the estimated predictive accuracies across the classes of regularized
methods for traits T1 − T3.

T1 T2 T3

Regularized 0.716 − 0.779 0.770 − 0.829 0.758 − 0.817

Adaptive Regularized 0.645 − 0.726 0.714 − 0.789 0.730 − 0.805

Group Regularized† 0.653 − 0.766 0.758 − 0.820 0.765 − 0.814

† Values refer to the range of the observed mean PAs.

Table 10. Prediction accuracy (PA) of the ensemble and instance-based methods,
computed as the Pearson correlation coefficient between the true breeding values
(TBVs) and the predicted breeding values (PBVs), for the simulated dataset, where
T1 − T3 refer to three quantitative milk traits.

Method
T1 T2 T ⋆

3

PA MSPE MAPE PA MSPE MAPE PA MSPE MAPE
Random Forests (RF)† 0.741 7945.8 72.4 0.788 58.6 6.5 0.713 0.924 0.272
Stochastic Gradient Boosting (SGB)∗ 0.690 8382.5 73.8 0.725 67.6 7.0 0.676 0.950 0.275
Support Vector Machines (SVM)‡ 0.695 7102.1 67.2 0.740 53.9 6.4 0.731 0.934 0.282

† reported values refer to a single run of the random forest with the subset of markers selected randomly for growing each tree set equal
to 0.5 × p

3 ;
∗ the best number of trees grown was 3000 for all traits;
‡ reported values refer to a single run of the SVM with the best cost λ = 100 for trait 1 and λ = 10 for traits 2 and 3;
⋆ MSPE is multiplied by 103 and MAPE by 101 to enhance comparison with corresponding values for T1 and T2.

Table 11. Prediction accuracy (PA) of the deep learning methods, computed as the
Pearson correlation coefficient between the true breeding values (TBVs) and the
predicted breeding values (PBVs), for the simulated dataset, where T1 − T3 refer to
three quantitative milk traits.

T1 T2 T ⋆
3

Mean Range Mean Range Mean Range

Feed Forward Neural Networks (FFNN)†
PA 0.705 0.692–0.717 0.725 0.705–0.741 0.703 0.651–0.731
MSPE 8092.5 6046.5–13556.7 60.6 32.5–102.4 0.974 0.464–1.790
MAPE 72.1 61.6–95.4 6.6 4.6–9.1 0.284 0.183–0.402

† values refer to 1000 different runs of the neural network;
⋆ MSPE is multiplied by 103 and MAPE by 101 to enhance comparison with corresponding values for T1 and T2.

Discussion 613

We have investigated the predictive performance of several state-of-the art machine 614

learning methods in genomic prediction via the use of one simulated and three real 615

datasets. All the methods showed reasonably high predictive performance for most 616

practical selection decisions. But the relative predictive performance of the methods was 617

both data and target trait dependent, complicating and precluding omnibus 618

comparative evaluations of the genomic prediction methods, thus ruling out selection of 619

one procedure for routine use in genomic prediction. If reproducibility of results, low 620

computational cost and time are important considerations, then using the regularized 621

regression methods comes highly recommended because they consistently produced, 622
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Table 12. Best FFNN model calibration parameters selected for each of the three
quantitative milk traits T1 − T3.

FFNN T1 T2 T3

Number of hidden layers 1 3 3
Number of units (hidden layer) 200 800 400
Number of epochs 200 260 300
Dropout rate (input layer) 0.1 0.15 0.15
Batch size 128 32 16
Learning rate 10−4 2 × 10−5 2 × 10−5

Dropout rate (hidden layers) 0.8 0.8 0.5
Dropout rate (last hidden layer) 0.8 0.88 0.775
Batch normalization (hidden layer) No Yes Yes

with relatively lower computational cost and computing time, reasonably accurate and 623

competitive predictions relative to the other groups of methods for the simulated and 624

the three real datasets. Even among the regularized regression methods, increasing 625

model complexity from simple through the adaptive to grouped methods, generally only 626

increased computing time without clearly improving predictive performance. 627

The ensemble, instance-based and deep-learning ML methods need the tuning of 628

numerous hyperparameters thus requiring considerable computing time to adequately 629

explore the entire hyperparameter space. This will not always be possible in most 630

applications because of limiting time and computational resources leading to potentially 631

less than optimal results and may well partly explain why these methods did not clearly 632

outperform the classical ML methods. Indeed, the computational costs of the ensemble, 633

instance-based and deep learning methods can quickly become prohibitive, if all the 634

parameters are tuned by searching over the often large grid of values. This will typically 635

require not only proficiency in programming and algorithm parallelization and 636

optimization, but excellent computing resources. These constraints, plus the growing 637

size of phenotypic and genomic data, make it difficult to identify methods for routine 638

use in genomic prediction and call for greater focus on and investment in enhancing the 639

computational efficiencies of algorithms and computing resources. 640

Supporting information 641

S1 File. S1 Data. Simulated (animal breeding) dataset. 642

(ZIP) 643

S2 File. S2 Data. Simulated dataset that mimics the original KWS real dataset set 644

for 2010. 645

(ZIP) 646

S3 File. S1 Code. R codes used to fit the machine learning algorithms to the 647

simulated (animal breeding) dataset. 648

(ZIP) 649

S4 File. S2 Code. Python code used to fit the deep learning (FFNN) algorithm to 650

the simulated (animal breeding) dataset. 651
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Table 13. Predictive ability (PA; mean and range values computed across the 5-fold
validation datasets and 10 replicates) of the regularized and adaptive regularized
methods, computed as the Pearson correlation coefficient between the observed breeding
values (OBVs) and the predicted breeding values (PBVs), for the KWS datasets. The
choice of λ, where applicable, was based on 4-fold CV.

Method
2010 2011 2012

Mean Range Mean Range Mean Range

RR-CV
PA 0.632 0.529-0.724 0.555 0.441-0.648 0.598 0.549-0.674
MSPE 41.9 31.7-58.3 46.4 35.5-62.1 34.5 29.1-41.5
MAPE 4.7 4.1-5.2 5.2 4.6-6.1 4.6 4.3-5.0

RR-REML
PA 0.649 0.523-0.725 0.576 0.469-0.663 0.616 0.555-0.678
MSPE 41.2 31.2-59.2 44.4 35.4-63.4 33.4 27.8-40.2
MAPE 4.6 4.0-5.2 5.0 4.5-6.0 4.5 4.1-4.9

sENET
PA 0.626 0.502-0.723 0.527 0.372-0.639 0.596 0.531–0.697
MSPE 42.4 32.6–62.4 48.8 37.2–84.5 34.7 28.0–42.2
MAPE 4.7 4.3–5.3 5.3 4.6–6.8 4.6 4.2–5.1

aENETe

PA 0.592 0.453-0.701 0.482 0.326-0.651 0.572 0.501-0.676
MSPE 46.5 37.4-67.6 54.3 37.7-98.9 37.0 30.6-46.3
MAPE 4.9 4.5-5.6 5.6 4.9-7.2 4.7 4.4-5.1

gLASSO‡
PA 0.584 0.494-0.673 0.512 0.404-0.606 0.586 0.514-0.679
MSPE 46.3 36.0-59.8 49.5 37.5-65.6 35.5 28.1-42.5
MAPE 4.9 4.3-5.5 5.4 4.6-6.3 4.7 4.2-5.1

Random Forests†
PA 0.656 0.549-0.727 0.570 0.474-0.659 0.556 0.484-0.633
MSPE 39.7 28.9–56.3 45.7 34.1–61.4 37.3 29.9–46.3
MAPE 4.6 4.0–5.1 5.1 4.4–6.0 4.8 4.3–5.3

Feed Forward Neural Networks∗
PA 0.634 0.514–0.728 0.541 0.412–0.656 0.586 0.512–0.663
MSPE 42.9 31.9–61.7 49.6 38.4 –75.1 36.5 29.0–48.5
MAPE 4.7 4.0–5.4 5.3 4.6 –6.6 4.7 4.2–5.3

a: adaptive method; s: sparse method; g: grouped method; e: enet penalty;
‡reported values refer to the grouping indexes (or sizes) 50, 30 and 80 for the 2010, 2011 & 2012 datasets, respectively;
†reported values refer to a single run of the random forest with the subset of markers selected randomly for growing each tree set equal
to 0.5 × p

3 for the 2010 and 2011 datasets but to 2 × p

3 for the 2012 dataset;
∗ The best FFNN performing model, in terms of PA, for the 2010 and 2011 datasets was the one used for trait T3 from the simulated
data, whereas for the 2012 dataset, it was the one used for trait T1 from the simulated data.

(ZIP) 652

S5 File. S1 Text. SAS code used for phenotypic analysis of the KWS real maize 653

dataset and computation of the adjusted genotypic means used as the response variable 654

in genomic prediction. 655

(DOCX) 656

S6 File. S2 Text. SAS code used to assign consecutive and spatially adjacent SNP 657

markers on the same chromosome to groups of sizes 10, 20, 30, ..., 100 for use with the 658

grouped regularized regression models. 659

(DOCX) 660
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S7 File. S3 Text. SAS Macro written by [60] used to split each of the KWS 661

2010, 2011 and 2012 datasets into 5 distinct parts based on a specified probability vector. 662

(DOCX) 663

S8 File. S4 Text. SAS macro used to split each of the KWS 2010, 2011 and 2012 664

datasets into 5 distinct parts using stratified random sampling and the macro of [60]. 665

(DOCX) 666
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