

1 **Genomic analysis unveils the role of genome degradation events and gene flux in the**

2 **emergence and persistence of *S. Paratyphi A* lineages**

3 Jobin John Jacob^{1†}, Agila K Pragasam^{1†}, Karthick Vasudevan^{1,2†}, Aravind V¹, Monisha Priya
4 T¹, Tharani Priya T¹, Pallab Ray³, Madhu Gupta³, Arti Kapil⁴, Sulochana Putil Bai⁵, Savitha
5 Nagaraj⁶, Karnika Saigal⁷, Temsunaro Rongsen Chandola⁸, Maria Thomas⁹, Ashish
6 Bavdekar¹⁰, Sheena Evelyn Ebenezer¹¹, Jayanthi Shastri¹², Anuradha De¹², Shantha Dutta¹³,
7 Anna P Alexander¹⁴, Roshine Mary Koshy¹⁵, Dasaratha R Jinka¹⁶, Ashita Singh¹⁷, Sunil
8 Kumar Srivastava¹⁸, Shalini Anandan¹, Gordon Dougan¹⁹, Jacob John¹, Gagandeep Kang¹,
9 Balaji Veeraraghavan^{1*}, Ankur Mutreja^{19*}

10 ¹Christian Medical College, Vellore, India

11 2REVA University, Bangalore, India

12 ³Post Graduate Institute of Medical & Educational Research, Chandigarh, India

13 ⁴All India Institute of Medical Sciences, New Delhi, India

14 ⁵Kanchi Kamakoti Childs Trust Hospital, Chennai, India

15 ⁶St. John's Medical College, Bengaluru, India

16 ⁷Chacha Nehru Bal Chikitsalaya, Delhi, India

17 ⁸Centre for Health Research & Development-Society for Applied Studies, New Delhi, India

18 ⁹Christian Medical College, Ludhiana, India

19 ¹⁰KEM Hospital & Research Centre, Pune, India

¹¹The Duncan Hospital, Raxaul, India

²¹ ¹²Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India

22 ¹³ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India

23 ¹⁴Lady Willingdon Hospital, Manali, India

24 ¹⁵Makunda Christian Leprosy & General Hospital, Karimjang, India

25 ¹⁶Rural Development Trust Hospital, Bathalapalli, Andhra Pradesh, India

26 ¹⁷Chinchpada Christian Hospital, Nandurbar, India

27 ¹⁸ Dept. of Microbiology, SSN College, University of Delhi, Delhi, India

28 ¹⁹Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID),

29 Department of Medicine, University of Cambridge, Cambridge, United Kingdom

30 [†]Contributed equally to this work

31 ^{*}Address correspondence to

32 Dr. Balaji Veeraraghavan

33 Professor

34 Department of Clinical Microbiology

35 Christian Medical College, Vellore – 632 004

36 Tamil Nadu, India

37 Ph: +91 9442210555

38 E-mail: vbalaji@cmcvellore.ac.in

39 &

40 Dr. Ankur Mutreja

41 Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID)

42 Department of Medicine, University of Cambridge, Cambridge, UK

43 Tel: +44 - 1223-336512

44 Email: am872@medschl.cam.ac.uk

45

46

47 **Abstract**

48 Paratyphoid fever caused by *S. Paratyphi A* is endemic in parts of Asia and Sub-Saharan Africa. The
49 proportion of enteric fever cases caused by *S. Paratyphi A* has substantially increased, yet only limited
50 data is available on the population structure and genetic diversity of this serovar. We examined the
51 phylogenetic distribution and evolutionary trajectory of *S. Paratyphi A* isolates collected as part of the
52 Indian enteric fever surveillance study “Surveillance of Enteric Fever in India (SEFI).” In the study
53 period (2017-2020), *S. Paratyphi A* comprised 17.6% (441/2503) of total enteric fever cases in India,
54 with the isolates highly susceptible to all the major antibiotics used for treatment except
55 fluoroquinolones. Phylogenetic analysis clustered the global *S. Paratyphi A* collection into seven
56 lineages (A-G), and the present study isolates were distributed in lineages A, C and F. Our analysis
57 documented that the genome degradation events and gene acquisitions or losses play a major role in the
58 evolution of new *S. Paratyphi A* lineages/sub-lineages. A total of 10 pseudogene-forming mutations
59 possibly associated with the emergence of lineages were identified. Pan-genome analysis identified the
60 insertion of P2/PSP3 phage and acquisition of IncX1 plasmid during the selection in 2.3.2/2.3.3 and
61 1.2.2 genotypes, respectively. We also identified that the six characteristic missense mutations
62 associated with the lipopolysaccharide (LPS) biosynthesis genes of *S. Paratyphi A* confer only a low
63 structural impact and would therefore have minimal impact on vaccine effectiveness. Since *S. Paratyphi*
64 *A* is human restricted, high levels of genetic drift are not expected unless these bacteria transmit to
65 naive hosts. However, public-health investigation and intervention by means of genomic surveillance
66 would be continually needed to avoid *S. Paratyphi A* serovar becoming a public health threat similar to
67 the *S. Typhi* of today.

68 **Keywords:** *S. Paratyphi A*; Enteric fever; Evolution; Lineages; Selection, India

69 **Introduction**

70 Enteric fever is a life-threatening systemic febrile illness caused by infections with *Salmonella*
71 *enterica* serovar Typhi, Paratyphi A, B and C [1]. *S. Typhi* is the predominant cause of enteric fever,
72 with an estimated 12 - 25 million cases of typhoid per year globally [2]. Among the three serovars that

73 cause paratyphoid fever, *S. Paratyphi A* is the most prevalent and infections with *S. Paratyphi B* and *C*
74 serotypes are extremely rare [3]. Both Typhoid and paratyphoid infections are endemic in parts of
75 South-central Asia, South East Asia and Sub-Saharan Africa [4]. Though only limited data is available
76 on the true burden of *S. Paratyphi A* in these regions, it is estimated to cause around 5 million cases of
77 enteric fever annually [5]. However, the actual number of infections was underestimated as paratyphoid
78 is clinically indistinguishable from typhoid fever [6]. Recent data suggests that the proportion of enteric
79 fever cases caused by *S. Paratyphi A* has substantially increased from 20% to 50% in some endemic
80 regions of South Asia [7].

81 The sequential emergence of antimicrobial resistance in serovar Typhi over the past 50 years is
82 well documented. Clinical, laboratory and genomic features of the evolution of antimicrobial resistance
83 in *S. Typhi* against chloramphenicol (1960), first-line antimicrobials (1990), fluoroquinolones, third-
84 generation cephalosporins and azithromycin are already established [8 - 9]. However, unlike *S. Typhi*,
85 serovar Paratyphi A is predominantly susceptible to most antibiotics. Nevertheless, high
86 fluoroquinolone non-susceptibility in *S. Paratyphi A* has been witnessed in recent years, with sporadic
87 reports of multidrug resistant (MDR) and azithromycin resistant isolates [10 - 11].

88 *S. Paratyphi A* was found to have substantial regional differences with the emergence of seven
89 distinct lineages (A-G), each having originated in a specific geographical location [12]. Among the
90 lineages, A and C have expanded throughout South Asia and Southeast Asian countries to become
91 successful clones, whereas other lineages are still rare. Unlike *S. Typhi*, the genome-level difference of
92 *S. Paratyphi A* was investigated in only a few isolates [13 - 14]. Interestingly, evolutionary changes in
93 *S. Paratyphi A* by means of gene gain or loss or mutations are mostly considered transient and are
94 continuously removed by purifying selection [12]. However, a positive selection that may favor the
95 diversification and expansion of certain lineages has not been studied previously. Here, we examined
96 the phylogenetic distribution of *S. Paratyphi A* isolates collected as part of the Indian enteric fever
97 surveillance named Surveillance of Enteric Fever in India (SEFI). We also examined the gain, loss and
98 inactivation of genes at the genomic level to shed light on the ongoing process of evolution in *S.*
99 *Paratyphi A*.

100 **Results**

101 ***Surveillance of S. Paratyphi A infections***

102 During the study period between October 2017 to September 2020, 441 *S. Paratyphi A* were isolated
103 from blood and bone marrow cultures performed at all study sites. Laboratory-based surveillance in
104 tertiary care hospitals yielded significant positivity rates of up to 80% ($n=354$), followed by 12%
105 ($n=54$) in secondary care hospitals and 8% ($n=33$) from community cohorts. The isolation rates of *S.*
106 *Paratyphi A* were compared with *S. Typhi* to obtain the proportion that was found to range between 1:5
107 to 1:11 across various sites, as described in **Suppl Table 3**. Overall, *S. Paratyphi A* comprised 17.6%
108 (441/2503) of total enteric fever cases in India and was majorly recorded in the tertiary care settings.

109 ***Antimicrobial susceptibility testing of S. Paratyphi A isolates***

110 The antimicrobial susceptibility test demonstrated that 100% of *S. Paratyphi* clinical isolates ($n=441$)
111 were non-MDR and susceptible to each of the first-line antibiotics (ampicillin, chloramphenicol, and
112 trimethoprim-sulfamethoxazole). Fluoroquinolone non-susceptibility remained at nearly 98.9%, while
113 a high degree of susceptibility to current alternative treatment options was recorded (100%
114 susceptibility to azithromycin and ceftriaxone) (**Suppl Table 4**). Overall, Indian *S. Paratyphi A* isolates
115 were found to be generally non-susceptible to ciprofloxacin, while they continue to be susceptible to
116 first-line agents.

117 ***Phylogeny and Population structure of S. Paratyphi A***

118 Phylogenetic relationship of 552 *S. Paratyphi A* isolates based on 4,458 core genome SNPs
119 showed the distribution of study isolates within a global genomic framework. The observed global
120 phylogeny clustered the isolates into seven previously defined lineages (A-G), in which the study
121 isolates were distributed between lineage A (65.8%; 100/152), C (26.3%; 40/152) and F (7.9%; 12/152)
122 (**Figure 1**). RhierBAPS (level 1) yielded five clusters, while level-2 clustering has distinguished a total
123 of 21 sub-lineages (**Suppl Table 2**). Though previous studies have described the sub-lineage level
124 distribution of *S. Paratyphi A* isolates, we have used the recently developed ‘Paratype scheme’ [15] to
125 define sublineages/genotypes within lineage A, C and F. We identified nine genotypes (2.4.1 - 2.4.9)

126 within the dominant lineage A (genotype 2.4) based on Paratype scheme. Geographical distribution of
127 lineage A isolates showed genotype 2.4.3 (previously A1) being predominant in Nepal, 2.4.1 (formerly
128 A2) was present in both Nepal and India and 2.4.4 (previously A3) was primarily found in Bangladesh.
129 Genotype 2.4.2 was predominantly seen in India with a sparse presence in other South Asian countries.
130 The Paratype scheme assigned five new genotypes (2.4.5 – 2.4.9), mainly consisting of Indian isolates.
131 Among the new genotypes, 2.4.5 have been circulating globally, while 2.4.6, 2.4.7 and 2.4.8 consist of
132 Indian isolates distributed distinctly in different geographic regions across the country. Notably,
133 genotype 2.4.9 was geographically confined to a single site in Northern India, indicating a large
134 localized outbreak. The geographical distribution of Paratyphi A genotypes from the study collection
135 is shown as a scattered pie chart (**Suppl Figure 1**).

136 The existing population structure defining sub-lineages of C (C1-C5) was not consistent with
137 rhierBAPS clusters due to its genomic diversity and broad geographical representation, unlike
138 regionally restricted lineage A. Sub-lineages C1 and C2 were represented by polytomies while C4 and
139 C5 were not following the BAPS level 2 clustering (**Suppl Table 2**). The classification of lineage C
140 (2.3) based on the Paratype scheme provides genotypes 2.3.1 (previously C5), 2.3.2 and 2.3.3 (formerly
141 C4). Geographical distribution of global *S. Paratyphi A* isolates showed genotype 2.3 (previously C3)
142 was represented by isolates originating from Africa and Pakistan. Genotype 2.3.2 were isolates
143 predominantly from south Asia, while genotype 2.3.3 isolates were mainly from China, Southeast Asia,
144 and South Asia. Similarly, the first cluster in sub-lineage C5 was designated as genotype 2.3.4 with
145 isolates almost exclusively from India (80%; 20/25), whereas the second cluster (referred to as 2.3.1)
146 was represented by outbreak isolates from Cambodia (**Suppl Figure 2**). Genotyping of lineage F
147 (genotype 1) was predicted to contain four sub-clusters (1, 1.1, 1.2.1 and 1.2.2), of which 1.2.2
148 comprised contemporary *S. Paratyphi A* isolates from both India (the present study isolates) and
149 Bangladesh.

150 **MLST, quinolone resistance mutations and plasmids**

151 Isolates belonging to lineage A were grouped into sequence type 129 (ST129), while lineages B-F were
152 predominantly ST85. The single isolate clustered in lineage G was distinct and belonged to ST479, a

153 double locus variant of ST85. The isolates in our study were pan-susceptible to antibiotics, except for
154 fluoroquinolones. Resistance to the first-line antibiotics (ampicillin, chloramphenicol and co-
155 trimoxazole) was not observed among our study isolates. In contrast, a few ($n=4$) isolates from the
156 global collection were multidrug-resistant (MDR). Genes associated with the MDR phenotype (bla_{TEM} ,
157 cat , $dfrA$, sul) were absent in all study isolates.

158 Fluoroquinolone non-susceptibility in dominant lineages (A, C and F) of *S. Paratyphi A* was driven
159 mainly by *gyrA*-S83F substitutions, with a few isolates harboring *gyrA*-S83Y (predominantly genotype
160 2.3) variant. Also, a significant number of isolates were fluoroquinolone susceptible with no mutations
161 in the quinolone-resistance-determining region (QRDR), particularly genotype 2.3.1 (**Figure 1**).
162 Plasmid profiling revealed that most of the lineage C isolates ($n=116$) harbored a ColRNAI plasmid
163 with no AMR genes. Interestingly, isolates belonging to genotype 1.2.2 ($n=27$) possessed IncX1
164 plasmid, while the MDR isolates from the global collection carried the AMR genes in either IncFIB or
165 IncH1B plasmid.

166 ***Lineage-specific evolution of S. Paratyphi A***

167 Mutations and gene flux that defines or drives the lineages or sub-lineages of *S. Paratyphi A* were
168 identified from the population structure. The role of gene flux in evolution was determined by pan-
169 genome analysis, while gene inactivation (frameshift mutations) and non-synonymous substitutions
170 were determined by accessing the variant type. Synonymous mutations were not considered as their
171 effect on evolution is likely negligible on the short evolutionary timescale captured in modern molecular
172 epidemiological studies.

173 Pan-genome analysis revealed the variation of gene content between *S. Paratyphi A* genomes. About
174 73.8% (3944/5344) were considered core genes (found in >99% genomes), while 18.7% (997) genes
175 were shared by $\leq 15\%$ of isolates among the 552 screened (**Suppl Fig. 3**). Lineage-specific gene gain or
176 loss during the evolutionary process showed the phylogenetically distinct lineage G lack SPI2. (**Table**
177 **1**). Gene gains that likely represent the host adaptation or pathogenicity with respect to the phylogenetic
178 lineages were rather limited to mobile genetic elements. For example, the C4 sub-lineage (genotype

179 2.3.2 and 2.3.3) of *S. Paratyphi A* has acquired prophage regions P2/ PSP3 phage that could account
180 for their host specificities (**Suppl Fig. 4**). Interestingly, genotype 1.2.2 was found to have acquired
181 IncX1 plasmid while the plasmid was absent in the older isolates from the lineage F (**Figure 1**).

182 Accumulation of pseudogenes/genome degradation events during the evolution provides insights into
183 the continuous host adaptation or adaptive selection of *S. Paratyphi A*. We identified several lineage-
184 specific pseudogenes since they diverged from ancestral lineages. In addition to the 133 pseudogenes
185 conserved across all lineages except in lineage G, 50 additional genes were identified to be associated
186 with loss of gene function through nonsense substitutions or frameshift mutations (**Suppl Table 6**). A
187 total of 10 pseudogene-forming mutations that could be associated with the emergence of lineages are
188 listed in **Table 2**. Gene flux information and pseudogenes specific to lineages during the evolution of
189 *S. Paratyphi A* are overlaid on a timed phylogenetic tree generated using Figtree in **Figure 2**.

190 Time-scaled Bayesian phylogenetic analysis showed that the model combination best fitted the data
191 was a relaxed molecular clock paired with a constant population size. This analysis dated the most
192 recent common ancestor (MRCA) of *S. Paratyphi A* to the year 1693 (95% HPD 1540-1799) when a
193 single isolate belongs to the distinct clade (lineage G) was excluded for bayesian analysis. The dominant
194 lineages C and A have likely diversified between 1835 (95% HPD: 1804-1873) and 1856 (95% HPD:
195 1833-1884), respectively. Similarly, genotype 1.2.2 is estimated to have expanded in the year 1877
196 (95% HPD: 1844 -1901) by acquiring IncX1 plasmid. Overall, the estimated evolutionary rate was was
197 4.008×10^{-5} or 0.301 substitutions/site/year (s/s/y).

198 **Mutations in O:2-antigen biosynthesis genes**

199 Mutation analysis of O:2-antigen biosynthesis genes (*rfb* region) showed the region carrying six
200 characteristic missense mutations in comparison with ATCC9150 reference strain (vaccine candidate).
201 Mutations in *rfb* gene cluster consist of single amino acid substitutions in *rfbG* (H348R), *rfbD* (G262S),
202 *rfbE* (S167L), *rfbS* (C249S), *rfbB* (H176Y) and *rfbC* (E154K). Interestingly, these mutations are
203 possibly associated with positive selection of lineages/genotypes currently circulating in south Asian
204 countries (**Suppl Fig. 5**). For instance, genotypes carrying a characteristic missense mutation in LPS

205 O-antigen biosyntheses such as 1.2.2 (*rfbC*: E154K), 2.3.3 (*rfbS*: C249S) and 2.4.2 (*rfbD*: G262S) are
206 increasingly being detected, particularly in India. The impact of these lineage-specific mutations on the
207 protein structure is still unknown, although slide agglutination tests showed no significant difference
208 between mutant genotypes and the wild-type strain. The predicted free energy gap difference ($\Delta\Delta G$)
209 between the wild type and mutant protein measures how the mutation impacts the protein stability. The
210 $\Delta\Delta G$ values of different *rfb* gene mutations indicated stabilizing scores except for *rfbC*: E154K (**Suppl**
211 **Table 7**). However, the significance of these mutations in the LPS structure and the potential impact on
212 current vaccine development is yet to be studied.

213 **Discussion**

214 Genome analysis of 152 *S. Paratyphi A* isolates collected from different geographical locations in India
215 between 2017-2020 revealed evolutionary changes that favor genetic diversity for its persistence and
216 spread. Comparative genome analysis unambiguously placed the contemporary *S. Paratyphi A* isolates
217 from India into three lineages, with lineages A and C being dominant. This concurs with the previous
218 analysis that reported the placement of present-day south Asian isolates in these three lineages
219 [9,12,16]. Further extension of the current designation of sub-lineages that belong to lineages A, C and
220 F based on the recently developed Paratype genotyping scheme [15] has improved the sub-lineage level
221 classification of major lineages. Our results provide a more detailed picture of the population structure
222 and geographical distribution of *S. Paratyphi A* isolates in south Asian countries, particularly in India.
223 Overall the contemporary Indian *S. Paratyphi A* isolates clustered closely with isolates originating from
224 Bangladesh, Nepal and Pakistan, suggesting the regional circulation of these lineages across south Asia.
225 Geographical distribution of genotypes confirms the dominance of *S. Paratyphi A* isolates from Nepal
226 (2.4.3 & 2.4.1), Bangladesh (2.4..4) and India (2.4 and 2.4.2) in the sub-clusters of A. Within lineage
227 C, genotype 2.3 predominantly contains isolates from Africa and Pakistan. Similarly, isolates from India
228 (2.3.2 & 2.3), China (2.3.3) and Cambodia (2.3.1) were distributed as geographically confined sub-
229 lineages, respectively [17,18]. The phylogenetic positioning of contemporary *S. Paratyphi A* isolates in
230 lineage F was unexpected; however, recent reports from Bangladesh also documented similar findings
231 [15,16]. A closer look at the lineage F isolates revealed the positioning of older isolates from the global

232 collection in genotype 1/1.1, while the contemporary isolates from India and Bangladesh form the
233 genotype 1.2.2. The emergence of genotype 1.2.2 can be attributed to the acquisition of IncX1 plasmid,
234 highlighting the role of horizontal gene transfer in favoring the successful evolution and long-term
235 persistence of these clones.

236 Antimicrobial resistance determined by phenotypic and genomic analysis of the study isolates showed
237 low-level resistance to antimicrobials except for fluoroquinolones. These results were consistent with
238 the previous estimates as most of the studies from south Asia report either no or low levels of multidrug
239 resistance [19]. Though MDR phenotypes were observed in a few *S. Paratyphi A* strains from the global
240 collection, the plasmid was eventually lost during the evolution due to the greater fitness of antibiotic-
241 sensitive strains [12]. On the contrary, fluoroquinolone non-susceptibility (FQNS) was high amongst
242 *S. Paratyphi A* in South Asia, with FQNS strains from the SEFI collection accounting for 98% of all
243 isolates [20].

244 The FQNS *S. Paratyphi A* were predominantly single QRDR mutant (*gyrA*-S83F) and distributed across
245 the dominant phylogenetic lineages (A, C and F). Interestingly, the successes of all three lineages/sub-
246 lineages in south Asian countries appear to be largely driven by the development of *gyrA* S83F mutation
247 (except for a subcluster in 2.3 -*gyrA* S83Y). Though this mutation is not unique to these lineages, there
248 is a strong association between reduced susceptibility to fluoroquinolones caused by the S83F mutation
249 and the persistence/spread of these lineages. Our data is in line with the emergence of FQNS *S. Typhi*
250 lineages with positively selected S83F mutant in south Asian countries [21]. Nevertheless, acquired
251 AMR genes or mutations within these QRDR regions are not the sole factors that determine the
252 evolution of *S. Paratyphi A* [18].

253 The evolution of *Salmonella* sp. is strongly associated with gene influx, genome degradation and
254 rearrangement events that aid in host adaptation [22]. Modern isolates of *S. Paratyphi A* possess an
255 average of 173 genome degradation events through pseudogene formation in comparison to the 25-35
256 pseudogenes observed in host generalists, such as *S. Typhimurium* [23]. Since *S. Paratyphi A* evolved
257 into a human-specific systemic pathogen approximately 450 years ago, many of these adaptive
258 mutations would have occurred very early [12]. The genetic features responsible for causing enteric

259 fever were a perpetual change, while the recent microevolution is transient and will likely be removed
260 by purifying selection in the future [12].

261 In our study, we also focused on critical events that may have contributed to the expansion or extinction
262 of the seven modern lineages of *S. Paratyphi A*. Our observations indicate that the emergence of these
263 lineages and sub-lineages was primarily associated with gene acquisitions or losses and mutations in
264 genomic regions related to metabolism (Fig. 2). Pan-genome analysis of SEFI isolates and
265 representative isolates from a global collection showed the gain of prophages or plasmids during the
266 selection of lineages (Table 1). Evaluation of gene degradation also depicted that disruption of
267 metabolic pathways along the phylogenetic lineages/sub-lineages are key factors in evolution (Table
268 2). These findings further confirm that differences in metabolic functions due to environmental and/or
269 human behavioral factors play a significant role in the expansion of lineages.

270 Identifying missense mutations occurring specifically in genes responsible for LPS biosynthesis is
271 crucial since these genes are the critical targets for developing vaccines and diagnostic assays [24].
272 Though the impact of these mutations on phenotype, fitness and evolution is currently unknown, the
273 presence of lineage/genotype-specific association may be considered as a signature of positive selection
274 [25]. Among the six missense mutations, at least five have been predicted to stabilize the protein
275 structure ($\Delta\Delta G \geq 0$). Serotyping the genotypes (carrying *rfb* loci mutations) by slide agglutination
276 confirmed good agglutination with the O2 antisera, which suggests no or low impact structural changes
277 in LPS. However, the experimental impact of these mutations will require more laboratory analyses.
278 Further sequencing of isolates may reveal the existence of any selective pressure that may aid the
279 genotypes in evading the host immune response. At present, the *S. Paratyphi A* O-polysaccharide
280 glycoconjugate vaccine will have a protective response against all currently circulating *S. Paratyphi A*
281 lineages.

282 Several isolates belonging to the global collection could not be assigned to genotypes by Paratype,
283 which would require sequencing of more *S. Paratyphi A* isolates from the region in the future. We could
284 robustly evaluate the global phylogenomics of this mostly neglected pathogen with the collection we

285 had. Still, more extensive studies and continuous surveillance is needed to draw better public health
286 policies for *S. Paratyphi A* control.

287 **Materials and Methods**

288 ***Study settings***

289 A total of 19 centers across the country, with a diverse and vast population, in a three-tiered surveillance
290 system consisting of community-level health care setting (Tier 1), secondary hospitals (Tier 2) and
291 tertiary care hospitals (Tier 3) were selected to form an Indian Typhoid network entitled “Surveillance
292 of Enteric Fever in India” (SEFI) [26]. Details of the isolates, participation centers and respective
293 epidemiological settings are provided in the supplementary material (**Suppl Table 1**).

294 ***Bacterial isolates and antimicrobial susceptibility testing***

295 Clinical isolates of *S. Paratyphi A* isolated from blood and bone marrow cultures from the participating
296 centers were received at the central reference laboratory at the Department of Clinical Microbiology,
297 Christian Medical College, Vellore, India. These isolates were further identified and confirmed
298 as *S. Paratyphi A* by standard biochemical and agglutination tests by the Kauffmann-White scheme
299 [27]. Antimicrobial susceptibility testing was performed for the commonly used agents such as
300 ampicillin (10 µg), chloramphenicol (30 µg), co-trimoxazole (1.25/23.75 µg), ciprofloxacin (5 µg),
301 pefloxacin (5 µg), ceftriaxone (30 µg) and azithromycin (15 µg) by disk diffusion. Test results were
302 interpreted as per clinical breakpoints recommended by the Clinical and Laboratory Standards Institute
303 [28]. Azithromycin zone size interpretation was based on CLSI *S. Typhi* criteria (Sensitive ≥13 mm;
304 Resistant ≤12 mm)

305 ***Genomic DNA extraction and Sequencing***

306 A subset of 152 *S. Paratyphi A* isolates from the collection ($n=152$) were selected for WGS by ensuring
307 temporal and geographic representation across India. Each bacterial isolate was grown in LB broth
308 (Oxoid) at 37°C and growth was assessed by the increase in turbidity and by microbial count ($>10^9$
309 cfu/ml). The liquid cultures were centrifuged at 10,000 rpm and DNA was extracted from the pelleted

310 cells using Wizard DNA purification kit (Promega, Madison, USA) as per the manufacturer's protocol.
311 The purity and concentration of extracted DNA were measured using Nanodrop One (Thermo
312 scientific) and Qubit dsDNA HS Assay Kit (Life Technologies).

313 Sequencing ready, paired-end library was prepared using 100 ng of DNA with the Nextera DNA sample
314 preparation kit as per the manufacturer's instructions (Illumina, Inc., San Diego, USA). This was
315 followed by sequencing on Illumina NextSeq 500 and HiSeq X 10 platforms with a paired-end run of
316 2X150 bp. Raw reads were quality checked to remove adapters and the filtered high-quality reads were
317 assembled using Unicycler (<https://github.com/rrwick/Unicycler>).

318 ***Genome data acquisition and characterization***

319 A global representation of *S. Paratyphi A* ($n=400$) isolates was selected from a curated subset of
320 Enterobase (<http://enterobase.warwick.ac.uk/species/senterica/>) and other previously published
321 genomes [9, 12, 13, 16 – 18]. The corresponding paired-end reads were downloaded from European
322 Nucleotide Archive (ENA; <http://www.ebi.ac.uk/ena>). Genotypes were assigned from raw reads using
323 Paratype (<https://github.com/CHRF-Genomics/Paratype>). The high coverage (>50X) reads were
324 assembled using Unicycler v0.4.9 (<https://github.com/rrwick/Unicycler>). The assembled genomes were
325 analyzed using Seqsero v2.0 [29] to confirm the antigenic profile of the serotype. Sequence types of the
326 isolates were designated using the Multilocus sequence typing (MLST) pipeline available in the Center
327 for Genomic Epidemiology (CGE) (<https://cge.cbs.dtu.dk/services/>). AMR genes, point mutations and
328 plasmids were screened against resfinder and PlasmidFinder database by using ABRicate
329 (<https://github.com/tseemann/abricate>). In total, 152 *S. Paratyphi A* study isolates from SEFI collection
330 along with 400 genome sequences from the public database were included. The complete list of
331 genomes used in this study and metadata is available in **Suppl Table 2**.

332 ***Variant calling and Phylogenetic Tree construction***

333 The assembled genomes were mapped against the reference genome *S. Paratyphi A* ATCC 9150
334 (Accession No: CP000026.1) using Snippy v4.6.0 [30]. The core genome SNP differences between the
335 genomes, with respect to the reference, were generated as an alignment file. Further, Gubbins (v.2.3.1)

336 was used to remove the recombination regions from the core genome alignment to produce a
337 recombination filtered alignment file [31]. The Maximum likelihood (ML) phylogenies were
338 constructed using the Fasttree [32] with GTRGAMMA model and the generated phylogenetic tree was
339 visualized and annotated using iTOL [33]. Phylogenetic clusters were assigned using rhierBAPS [34]
340 specifying two cluster levels with 30 initial clusters (snp.matrix, max.depth = 2, n.pops = 30,
341 n.extra.rounds = Inf, quiet = TRUE).

342 To assess the temporal structure, root-to-tip genetic distances from (ML) tree against sample collection
343 dates using TempEst v 1.5.1 (<http://tree.bio.ed.ac.uk>) was performed. Using the regression analysis of
344 root-to-tip distances, an association between sampling times and genetic divergence (molecular clock)
345 was determined. The timed evolution of *S. Paratyphi A* lineages was estimated using Bayesian
346 phylogenetic methods available in BEAST v.1.10 [35, 36]. The recombination free alignment file was
347 used as the input for the time-scaled phylogenetic analysis. The Hasegawa, Kishino and Yano model
348 (HKY) substitution with different demographic models (Bayesian skyline, exponential and constant)
349 was investigated. To determine the best-fitting coalescent model to describe changes in effective
350 population size over time, log marginal likelihoods were calculated using path sampling and stepping
351 stone sampling methods. Finally, Bayes factor [37] was used to determine the best fit model with the
352 formula [$\log BF = \log Pr(D|M1) - \log Pr(D|M2)$]. The selected bayesian skyline with uncorrelated
353 relaxed clock model was run in 3 independent chains for 200 million with a sampling of 10000
354 generations. A burn-in of 20% was discarded from each run and resulting log files were combined using
355 LogCombiner 1.8.1 [38]. The convergence and mixing were manually inspected using Tracer.v.1.7
356 [39] to ensure that all the parameters converged to an ESS of >200. The maximum clade credibility
357 (MCC) tree was generated using Treeannotator v.1.8.2 [40]. The output was analyzed using Tracer v1.7,
358 with uncertainty in parameter estimates reflected as the 95% highest probability density (HPD). The
359 annotated phylogenetic tree was visualized using FigTree v.1.4.4 [41].

360 ***Lineage wise mutation profiling***

361 Mutations were identified by *in-silico* determination of single nucleotide polymorphisms (SNPs) using
362 the Snippy v4.6.0 mapping and variant calling pipeline (<https://github.com/tseemann/snippy>). To obtain

363 SNPs, the draft genome of the study population was mapped against the annotated feature of reference
364 genome *S. Paratyphi A* ATCC 9150 (CP000026.1). In-house written bash scripts were used to retrieve
365 the pattern of mutation accumulation with respect to the phylogenetic lineages. Genes that contained
366 either frameshift mutation or a premature stop codon were manually curated and classified
367 hypothetically disrupted coding sequences (HDCS) or pseudogenes. The identified pseudogenes in
368 different lineages were compared with the data reported previously [13,23].

369 ***Pan-genome analysis***

370 The pan-genome of all the study isolates of *S. Paratyphi A* ($n=552$) was annotated using Prokka v. 1.14
371 [42] using a custom database created with “prokka-genbank_to_fasta_db” based on 1328 annotated *S.*
372 *Paratyphi A* genomes downloaded from NCBI
373 (<https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/152>). To remove redundancy, CD-HIT
374 version 4.8.1 was used with the following parameters: -T 0 -M 0 -g 1 -s 0.8 -c 0.90 [43]. The Prokka-
375 compatible protein sequence fasta file (custom database) was confirmed to be used by the Prokka with
376 relevant flags as follows --genus spa --usegenus --rfam --evaluate 1e-05 --coverage 50
377 (<https://github.com/tseemann/prokka>). The annotated draft assemblies in GFF3 format was used as
378 input to evaluate pan-genome diversity using Panaroo [44]. Panaroo was run using its “strict” mode
379 with ‘remove invalid genes enabled -I option *.gff -o results --clean-mode strict --remove-invalid-genes
380 --core_threshold 0.98 -t 6 -c 0.80. The gene presence or absence in each genome obtained were grouped
381 according to the phylogenetic lineages (A-G) using twilight scripts
382 (<https://github.com/ghoresh11/twilight>) with default parameters [45]. Gene gain or loss was curated
383 manually and mapped into the timed Bayesian phylogenetic tree generated using Figtree
384 (<http://tree.bio.ed.ac.uk/software/figtree/>).

385 **Mutations in LPS biosynthesis genes**

386 Snippy based variant calling was performed on the assembled genomes ($n=551$) using the *rfb* loci of
387 strain ATCC9150 (CP000026: 860063 – 884690) as the reference. SNPs and Indels occurring within
388 the coding region of *rfb* loci were considered and the mutations were screened and arranged according

389 to phylogenetic lineage in tabulated format. Whole-genome alignment (.full.aln) from the snippy output
390 was used to build a maximum likelihood phylogeny using FastTree [32] with GTRGAMMA
391 model. The generated phylogenetic tree was visualized and annotated using iTOL. The three-
392 dimensional structures of rfb genes were modelled using ModWeb
393 (<https://modbase.compbio.ucsf.edu/modweb/>) homology-based method. The quality of the model was
394 evaluated using Ramachandran plot and the effect of mutations at a molecular level were then further
395 analyzed using FoldX version 4 (<http://foldxsuite.crg.eu/node/196>).

396 **Data availability**

397 Whole genome sequenced raw read data is available at the European Nucleotide Archive (ENA) and
398 individual sample accession numbers are listed in Supplementary Table S2

399 **Acknowledgments**

400 We thank Prof. Nicholas Grassly, Imperial College London, for assistance with study design and
401 research proposal development and, Arif M. Tanmoy, CHRF, Dhaka for help with the genotyping
402 analysis. We acknowledge Dr. Duncan Steele, Ms. Megan Carey & Dr. Supriya Kumar, Bill & Melinda
403 Gates Foundation for their technical support throughout the study on behalf of SEFI consortium. We
404 thank all the lab members involved in SEFI reference lab activities, especially Dr. Anushree Amladi,
405 Ms. Baby Abirami S, Ms. Dhanabhagyam K, Ms. Beebi E, Ms. Suganya S, Ms. Udaya and Mr.
406 Ayyanraj N, CMC Vellore implicated in phenotypic testing and stock culture maintenance. We would
407 also like to thank all the members of SEFI consortium, Wellcome Trust Research Laboratory, CMC
408 Vellore and core sequencing teams at the Wellcome Trust Sanger Institute for their contribution to
409 genome sequencing. The authors thank Ms. Catherine Trueman (Clinical Pharmacist, CMC Vellore)
410 for helping with language editing. This study was approved by the Institutional Review Board (IRB) of
411 Christian Medical College, Vellore (IRB Min No: 10393 dated 30.11.2016).

412 **Financial support**

413 This work was funded by grants from Bill & Melinda Gates Foundation, USA (Investment ID INV-
414 009497 OPP1159351) for the Project “National Surveillance System for Enteric Fever in India.” GK,

415 BV and AM is supported by OPP1159351. The funders had no role in study design, data collection and
416 analysis, decision to publish, or preparation of the manuscript.

417 **Competing interests:** The authors have declared that no competing interests exist.

418 **Reference**

419 1. Crump JA, Mintz ED. Global trends in typhoid and paratyphoid fever. *Clin Infect Dis*.
420 2010;50(2):241-6

421 2. Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA, Troeger CE, et al. The
422 global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global
423 Burden of Disease Study 2017. *Lancet Infect Dis*. 2019;19(4):369-81.

424 3. Crump JA, Wain J. *Salmonella*. In Quah SR, Cockerham WC, editors, *International*
425 *Encyclopedia of Public Health*. 2 ed. Elsevier. 2017. p. 425-433
426 <https://doi.org/10.1016/B978-0-12-803678-5.00394-5>

427 4. Gibani MM, Britto C, Pollard AJ. Typhoid and paratyphoid fever: a call to action. *Curr*
428 *Opin Infect Dis*. 2018;31(5):440.

429 5. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. *Bull World Health*
430 *Organ*. 2004;82:346-53.

431 6. Maskey AP, Day JN, Tuan PQ, Thwaites GE, Campbell JI, Zimmerman M, et al.
432 *Salmonella enterica* serovar Paratyphi A and *S. enterica* serovar Typhi cause
433 indistinguishable clinical syndromes in Kathmandu, Nepal. *Clin Infect Dis*. 2006;
434 42(9):1247-53.

435 7. Arndt MB, Mosites EM, Tian M, Forouzanfar MH, Mokhdad AH, Meller M, et al.
436 Estimating the burden of paratyphoid A in Asia and Africa. *PLoS Negl Trop Dis*.
437 2014;8(6):e2925.

438 8. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical
439 presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management
440 of invasive *Salmonella* infections. Clin Microbiol Rev. 2015;28(4):901-37.

441 9. Britto CD, Wong VK, Dougan G, Pollard AJ. A systematic review of antimicrobial
442 resistance in *Salmonella enterica* serovar Typhi, the etiological agent of typhoid. PLoS
443 Negl Trop Dis. 2018;12(10):e0006779.

444 10. Browne AJ, Hamadani BH, Kumaran EA, Rao P, Longbottom J, Harriss E, et al. Drug-
445 resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis.
446 BMC Med. 2020;18(1):1-22.

447 11. Sajib MS, Tanmoy AM, Hooda Y, Rahman H, Andrews JR, Garrett DO, et al. Tracking
448 the emergence of azithromycin resistance in multiple genotypes of typhoidal *Salmonella*.
449 Mbio. 2021;12(1):e03481-20.

450 12. Zhou Z, McCann A, Weill FX, Blin C, Nair S, Wain J, et al. Transient Darwinian selection
451 in *Salmonella enterica* serovar Paratyphi A during 450 years of global spread of enteric
452 fever. Proc Natl Acad Sci. 2014;111(33):12199-204.

453 13. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, Bhutta ZA, et al. Pseudogene
454 accumulation in the evolutionary histories of *Salmonella enterica* serovars Paratyphi A and
455 Typhi. BMC Genomics. 2009 Dec;10(1):1-2.

456 14. Liang W, Zhao Y, Chen C, Cui X, Yu J, Xiao J, Kan B. Pan-genomic analysis provides
457 insights into the genomic variation and evolution of *Salmonella* Paratyphi A. PLoS One.
458 2012;7(9):e45346.

459 15. Tanmoy AM, Hooda Y, Sajib MS, da Silva KE, Iqbal J, Qamar FN, et al. Paratype: A
460 genotyping framework and an open-source tool for *Salmonella* Paratyphi A. medRxiv.
461 2021.

462 16. Rahman SI, Nguyen TN, Khanam F, Thomson NR, Dyson ZA, Taylor-Brown A, et al.
463 Genetic diversity of *Salmonella* Paratyphi A isolated from enteric fever patients in
464 Bangladesh from 2008 to 2018. PLoS Negl Trop Dis. 202;15(10):e0009748.

465 17. Lu X, Li Z, Yan M, Pang B, Xu J, Kan B. Regional transmission of *Salmonella* Paratyphi
466 A, China, 1998–2012. Emerg Infect Dis. 2017;23(5):833.

467 18. Kuijpers LM, Le Hello S, Fawal N, Fabre L, Tourdjman M, Dufour M, et al. Genomic
468 analysis of *Salmonella enterica* serotype Paratyphi A during an outbreak in Cambodia,
469 2013–2015. Microb Genom. 201;2(11).

470 19. Browne AJ, Hamadani BH, Kumaran EA, Rao P, Longbottom J, Harriss E, Moore CE,
471 Dunachie S, Basnyat B, Baker S, Lopez AD. Drug-resistant enteric fever worldwide, 1990
472 to 2018: a systematic review and meta-analysis. BMC Med. 2020;18(1):1-22

473 20. Veeraraghavan B, Pragasam AK, Ray P, Kapil A, Nagaraj S, Perumal SP, et al. Evaluation
474 of Antimicrobial Susceptibility Profile in *Salmonella* Typhi and *Salmonella* Paratyphi A:
475 Presenting the Current Scenario in India and Strategy for Future Management. J Infect Dis.
476 2021;224(Supplement_5):S502-16.

477 21. Baker S, Duy PT, Nga TV, Dung TT, Phat VV, Chau TT, et al. Fitness benefits in
478 fluoroquinolone-resistant *Salmonella* Typhi in the absence of antimicrobial pressure. Elife.
479 2013 Dec 10;2:e01229.

480 22. Tanner JR, Kingsley RA. Evolution of *Salmonella* within hosts. Trends Microbiol.
481 2018;26(12):986-98.

482 23. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, et al.
483 Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars
484 of *Salmonella enterica* that cause typhoid. Nat Genet. 2004;36(12):1268-74.

485 24. Martin LB, Simon R, MacLennan CA, Tennant SM, Sahastrabuddhe S, Khan MI. Status
486 of paratyphoid fever vaccine research and development. Vaccine. 2016;34(26):2900-2.

487 25. Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, et al. Structure and genetics of
488 *Escherichia coli* O antigens. *FEMS Microbiol Rev.* 2020;44(6):655-83.

489 26. Carey ME, MacWright WR, Im J, Meiring JE, Gibani MM, Park SE, et al. 2020. The
490 surveillance for enteric fever in asia project (SEAP), severe typhoid fever surveillance in
491 Africa (SETA), surveillance of enteric fever in India (SEFI), and strategic typhoid alliance
492 across Africa and Asia (STRATAA) population-based enteric fever studies: A Review of
493 methodological similarities and differences. *Clin Infect Dis* 71(Supplement_2), S102-
494 S110.

495 27. Grimont PA, Weill FX. Antigenic formulae of the *Salmonella* serovars. WHO collaborating
496 centre for reference and research on *Salmonella*. 2007;9:1-66.

497 28. Weinstein MP, Patel JB, Bobenik AM, Campeau S, Cullen SK, Galas MF, et al. M100
498 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for
499 Global Application. Performance Standards for Antimicrobial Susceptibility Testing
500 Performance Standards for Antimicrobial Susceptibility Testing. *Sci Rep.* 2020;2021.

501 29. Zhang S, den Bakker HC, Li S, Chen J, Dinsmore BA, Lane C, et al. SeqSero2: rapid and
502 improved *Salmonella* serotype determination using whole-genome sequencing data. *Appl*
503 *Environ Microbiol.* 2019;85(23):e01746-19.

504 30. Seemann T. Snippy: rapid haploid variant calling and core SNP phylogeny. GitHub.
505 Available at: [github. com/tseemann/snippy](https://github.com/tseemann/snippy). 2015.

506 31. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid
507 phylogenetic analysis of large samples of recombinant bacterial whole genome sequences
508 using Gubbins. *Nucleic Acids Res.* 2015;43(3):e15.

509 32. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for
510 large alignments. *PloS one.* 2010;5(3):e9490.

511 33. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
512 developments. *Nucleic Acids Res.* 2019;47(W1):W256-9.

513 34. Tonkin-Hill G, Lees JA, Bentley SD, Frost SD, Corander J. RhierBAPS: an R
514 implementation of the population clustering algorithm hierBAPS. *Wellcome Open Res.*
515 2018;3.

516 35. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUTi
517 and the BEAST 1.7. *Mol Biol Evol.* 2012;29(8):1969-73.

518 36. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian
519 phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evol.*
520 2018;4(1):vey016.

521 37. Kass RE, Raftery AE. Bayes factors. *J Am Stat Assoc.* 1995;90(430):773-95.

522 38. Rambaut A, Drummond AJ. LogCombiner v1. 8.2. LogCombinerv1. 2015;8:656.

523 39. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in
524 Bayesian phylogenetics using Tracer 1.7. *Syst Biol.* 2018;67(5):901.

525 40. Helfrich P, Rieb E, Abrami G, Lücking A, Mehler A. TreeAnnotator: Versatile visual
526 annotation of hierarchical text relations. *LREC 2018 - 11th Int Conf Lang Resour Eval.*
527 2018.

528 41. Rambaut A. FigTree v1. 3.1. <http://tree.bio.ed.ac.uk/software/figtree/>. 2009.

529 42. Seemann T. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics.*
530 2014;30(14):2068-9.

531 43. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation
532 sequencing data. *Bioinformatics.* 2012;28(23):3150-2.

533 44. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing
534 polished prokaryotic pangenomes with the Panaroo pipeline. *Genome Biol.* 2020;21(1):1-
535 21.

536 45. Horesh G, Taylor-Brown A, McGimpsey S, Lassalle F, Corander J, Heinz E, Thomson NR.
537 Different evolutionary trends form the twilight zone of the bacterial pan-genome. *Microb*
538 *Genom.* 2021;7(9).

539 **Figure Legend**

540 **Figure 1:** *Phylogenetic distribution of contemporary Indian S. Paratyphi A isolates in a global*
541 *context:* Rooted maximum likelihood phylogenetic tree of contemporary Indian *S. Paratyphi A*
542 ($n=152$), combined with global genome collection ($n=400$) representing the current global distribution.
543 The tree was derived from 4286 SNPs mapped against the reference genome of *S. Paratyphi* ATCC
544 9150 (Accession No: CP000026.1) using Snippy and rooted to the outgroup strain (ERR028986:
545 Lineage G). Red-colored dots at the tip of the branches indicates the position of this study isolates.
546 Contemporary Indian *S. Paratyphi A* isolates of this study were found distributed across the global tree
547 with both lineages A, C and F. Genomes with their respective metadata are labeled as color strips and
548 key for each variable were mentioned. Strip 1 and 2 indicates the location and 3 represent MLST of
549 each isolate. Heatmap represents the QRDR mutations that confer resistance to fluoroquinolone and
550 presence of plasmids. Scale bar indicates substitutions per site. Color keys for all the variables are given
551 in the inset legend. The tree was visualized and labeled using iTOL (<https://itol.embl.de/>) .

552 **Figure 2:** Time-calibrated Bayesian phylogeny phylogenetic tree showing the evolutionary events
553 (pseudogene forming mutations, insertions and deletions) that define the seven modern lineages and
554 sub-lineages of *S. Paratyphi A*. Major lineages/ genotypes were simplified as colored cartoon triangles
555 using FigTree (<http://tree.bio.ed.ac.uk/software/figtree/>). Red arrow represents frameshift mutation/
556 gene degradation, Black arrow represent acquisition/ gene gain. Grey arrows demarcate nodes of
557 interest, and the accompanying data indicate 95% HPD of node heights.

558

559

560

561 **Table**

562 **Table 1:** Loss and Gain detected between phylogenetic lineages/genotypes of *S. Paratyphi A*

S. No	Gene/ Region	Lineage/Genotype	Remarks
1	SPI-2	A-F	Either lost in G or gained by A-F
2	P2/ PsP3- like phage	2.3.2/2.3.3	Gained by 2.3.2/2.3.3 (C ₄)
3	IncX1 plasmid	1.2.2	Gained by 1.2.2

563 **Table 2:** List of functional gene inactivation mutations identified between phylogenetic lineages

S. No	Gene	Locus tag	Mutation	Lineage/Genotype	Function/Remarks
1	<i>tinR</i>	SPA2451	Ile51fs	F	Lrp/AsnC family transcriptional regulator (Toxin repressor)
2	<i>bcfB</i>	SPA0022	Asn4fs	F	fimbrial biogenesis chaperone BcfB
3	-	SPA2644	Asp60fs	E	Membrane transporter TctB family protein
4	<i>uhpB</i>	SPA3639	Ile167fs	A-E	Signal transduction histidine-protein
5	-	SPA3466	Ala642fs	A-E	AsmA family protein
6	<i>garD</i>	SPA3119	Lys132fs	A-E	Galactarate dehydratase
7	-	SPA0042	Ile438fs	A-B/2.4	Glycoside hydrolase family 31 protein (disrupts biofilm formation)
8	-	SPA0505	Pro305fs	A	Amino acid permease
9	<i>tdcD</i>	SPA3111	Tyr163fs	A ₁ /2.4.3	Propionate kinase
10	<i>ompSI</i>	SPA0875	Asn115fs	C ₅ /2.3.1	Unknown function in virulence and biofilm formation

565 **Supporting Information**

566 **Suppl Fig. 1:** Map of India showing the regional diversity of *S. Paratyphi A* genotypes. Pie chart colours

567 indicate the proportion of genotypes prevalent in three major geographical locations in India. Study sites

568 are represented as per the settings. Color keys for all the variables are given in the inset legend

569 **Suppl Fig. 2:** Rooted maximum likelihood phylogenetic tree of *S. Paratyphi A* isolates showing the

570 comparative phylogenetic clustering by lineages, predefined sub-lineages, RhierBAPS population

571 clustering (level 1) and Paratype genotyping scheme. Lineages are represented by various colored

572 branches. Sublineages, BAPS cluster and Paratype scheme are labeled as color strips.

573 **Suppl Fig. 3:** Visualization of pan-genome analysis data by Panaroo of 552 *S. Paratyphi A* genomes.

574 (a) Pie chart indicates the core, soft core, shell and cloud genome composition of *S. Paratyphi A*

575 genomes (b) Maximum likelihood tree of *S. Paratyphi A* genomes were compared to a matrix with the

576 presence (blue) and absence (white) of the accessory genes found in the pan-genome. The image was

577 prepared using Phandango (<https://jameshadfield.github.io/phandango/#/>)

578 **Suppl Fig. 4:** Linear representation of acquired prophage regions (P2/ PSP3 phage) generated using

579 Proksee (<https://proksee.ca/>) available at the CG view server (<https://cgview.ca/>)

580 **Suppl Fig. 5:** Rooted maximum likelihood phylogenetic tree of *rfb* loci of *S. Paratyphi A* isolates

581 derived from the whole genome alignment by mapping against the reference genome of *S. Paratyphi*

582 ATCC 9150 (Accession No: CP000026.1) using Snippy. Lineages and genotypes are labeled as color

583 strips. Amino acid substitutions in the *rfb* loci are represented by heatmaps.

584 **Suppl Table 1:** List of whole genome sequenced isolates collected from the participating sites of SEFI

585 network

586 **Suppl Table 2:** List of *S. Paratyphi A* genomes used in this study with accession IDs and metadata

587 **Suppl Table 3:** Distribution of *S. Typhi* and *S. Paratyphi A* isolates collected across the participating

588 sites of SEFI network

589 **Suppl Table 4:** Antimicrobial susceptibility profile of *S. Paratyphi A* tested in the present study

590 **Suppl Table 5:** Lineage-defining Frameshift mutations/stop codons in *S. Paratyphi A* genomes

591 **Suppl Table 6:** Lineage-defining missense mutations in *S. Paratyphi A* genomes

592 **Suppl Table 7:** List of lineage defining mutations in the O:2-antigen biosynthesis genes (*rfb*

593 region) of *S. Paratyphi A* and their predicted impact on protein structures

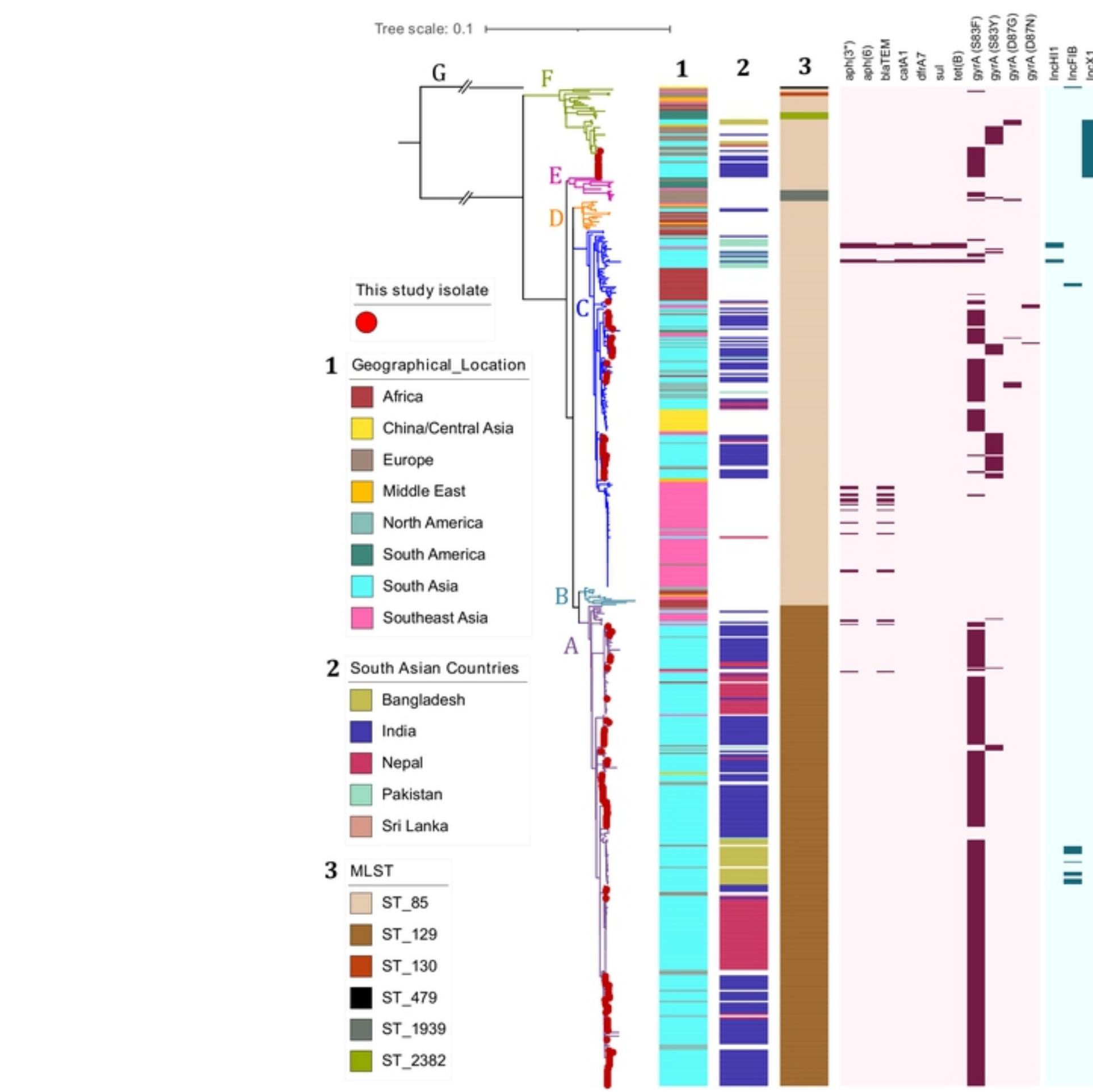


Figure 1

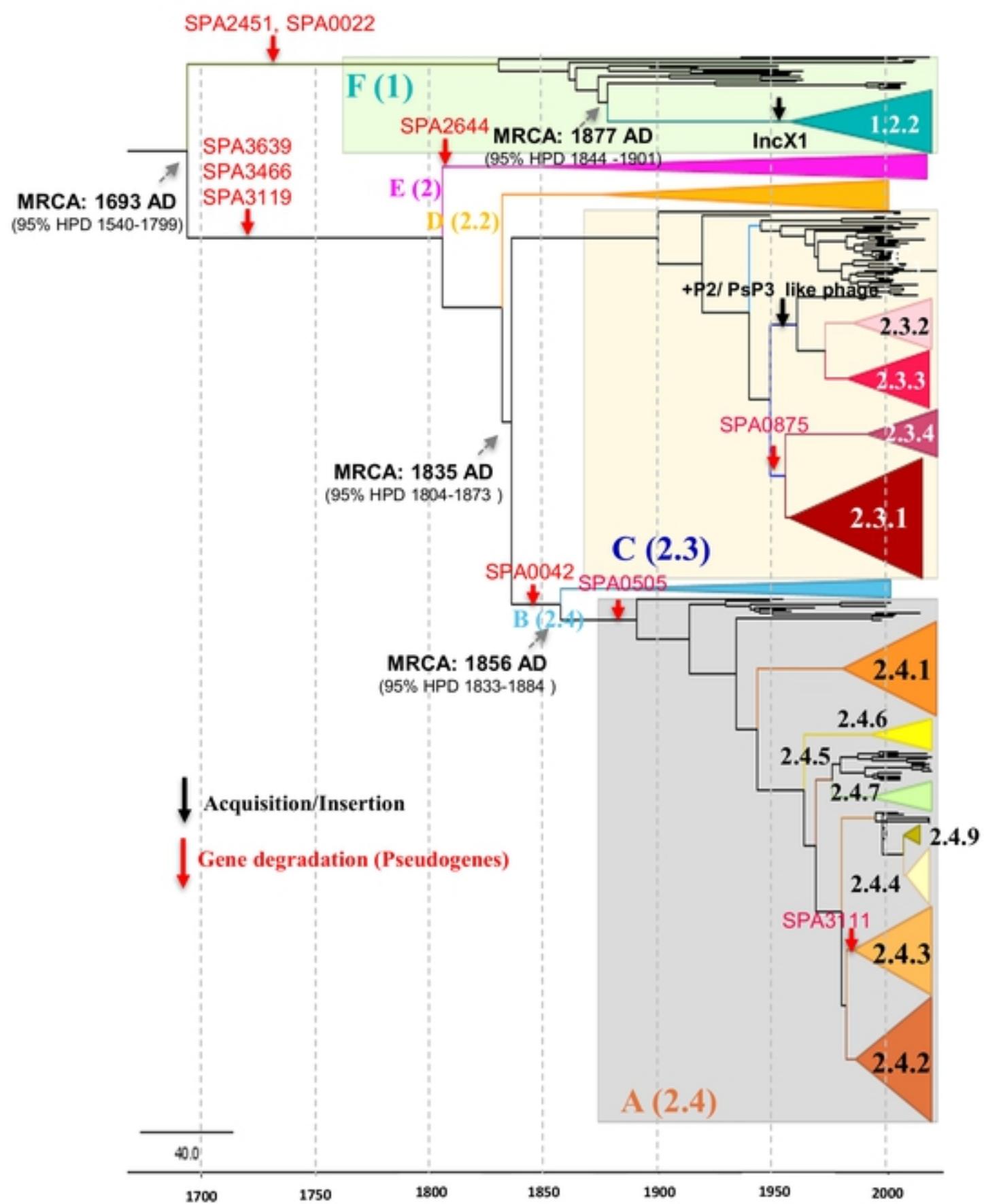


Figure 2