

1 **Medulloblastoma Group 3 and 4 Tumors Comprise a Clinically and**
2 **Biologically Significant Expression Continuum Reflecting Human**
3 **Cerebellar Development**

4 Daniel Williamson^{1*}, Edward C Schwalbe^{1,2}, Debbie Hicks¹, Kimberly A Aldinger³, Janet C Lindsey¹,
5 Stephen Crosier¹, Stacey Richardson¹, Jack Goddard¹, Rebecca M Hill¹, Jemma Castle¹, Yura
6 Grabovska^{1,4}, James Hacking¹, Barry Pizer⁵, Stephen B Wharton⁶, Thomas S Jacques⁷, Abhijit Joshi⁸,
7 Simon Bailey¹, Steven C Clifford^{1*}.

8 ¹ Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle
9 University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.

10 ² Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.

11 ³ Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA

12 ⁴ Division of Molecular Pathology, Institute of Cancer Research, London, UK

13 ⁵ Institute of Translational Research, University of Liverpool, Liverpool, UK.

14 ⁶ Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.

15 ⁷ Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London and Department
16 of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK

17 ⁸ Department of Neuropathology, Royal Victoria Infirmary (RVI), Newcastle University Teaching Hospitals
18 NHS Foundation Trust, Newcastle upon Tyne, UK

19

20 *** Corresponding Authors:** e-mail: daniel.williamson@newcastle.ac.uk, steve.clifford@newcastle.ac.uk

21

22 **Summary:**

23 Medulloblastoma is currently sub-classified into distinct DNA methylation subgroups/subtypes with particular
24 clinico-molecular features. Using RNA-seq in large well annotated cohorts of medulloblastoma we show that
25 transcriptionally Group3 and Group4 medulloblastomas exist not as discrete types but as intermediates on a
26 bipolar continuum between archetypal Group3 and Group4 entities. Continuum position is prognostic, reflects
27 propensity for specific DNA copy-number changes, key switches in isoform/enhancer usage and RNA-editing.
28 Examining scRNA-seq profiles we show intra-tumoral transcriptional heterogeneity along the continuum is
29 limited in a subtype-dependent manner. By integrating with a human scRNA-seq reference atlas we show this
30 continuum is mirrored by an equivalent continuum of transcriptional cell types in early fetal cerebellar
31 development. We identify unique developmental niches for all four major subgroups and link each to a common
32 developmental antecedent. Our findings show a transcriptional continuum arising from oncogenic disruption of
33 highly specific fetal cerebellar cell types, linked to almost every aspect of Group3/Group4 molecular biology
34 and clinico-pathology.

35 **Introduction**

36 The division of medulloblastoma into molecular subgroups has defined the past decade of medulloblastoma
37 research making it all but impossible to interpret new findings except through the prism of these fundamental
38 biological subdivisions. Medulloblastoma was first divided into subgroups on the basis of profiling by
39 expression array (Cho et al., 2011; Fattet et al., 2009; Kool et al., 2008; Northcott et al., 2011; Thompson et al.,
40 2006) and subsequently DNA methylation array (Hovestadt et al., 2014; Schwalbe et al., 2013). The current
41 consensus is that there exist four major medulloblastoma subgroups (MB_{SHH}, MB_{WNT}, MB_{Grp3}, MB_{Grp4}) each
42 with unique clinico-biological characteristics (Taylor et al., 2012); MB_{WNT} and MB_{SHH} are named after
43 characteristic disruptions in the WNT (*CTNNB1* mutation (Ellison et al., 2005)) and SHH (*PTCH*, *SUFU*, *SMO*
44 mutation or *GLI2* amplification (Kool et al., 2014)) pathways respectively. MB_{WNT} denotes an almost entirely
45 curable disease (Ellison et al., 2005) and MB_{SHH} occur more frequently in infants (Kool et al., 2014). The
46 remaining two subgroups Group3 (MB_{Grp3}) and Group4 (MB_{Grp4}) do not exhibit subgroup defining mutations
47 (Northcott et al., 2017) but nonetheless possess distinct clinico-biological characteristics; MB_{Grp3} patients have
48 a greater incidence of “high-risk” features such as LCA (large-cell/anaplastic) histology and *MYC* amplification
49 (Kool et al., 2012; Northcott et al., 2012; Ryan et al., 2012; Taylor et al., 2012). MB_{Grp4} tumors more frequently
50 demonstrate isochromosome 17q (i17q) (Sharma et al., 2019). The advent of routine medulloblastoma
51 molecular subgrouping has enabled the current generation of molecularly driven trials (e.g. NCT02066220,
52 NCT01878617, NCT02724579, NCT01125800) (Li et al., 2019; G. W. Robinson et al., 2015) which exploit
53 MB_{WNT}/MB_{SHH} biology to stratify treatments or direct biological therapeutics.

54 Further elaborations of the consensus subgroups were published, based primarily upon methylomic definitions
55 (Cavalli et al., 2017; Northcott et al., 2017; Schwalbe et al., 2017). These were followed by a second consensus
56 study which defined 8 subtypes within MB_{Grp3}/MB_{Grp4} named I-VIII; a number of which comprised a mix of
57 MB_{Grp3} and MB_{Grp4} tumors (Sharma et al., 2019). Furthermore, MB_{SHH} can be further divided into subtypes
58 broadly associated with age at diagnosis^{10,18,20}.

59 Based on murine modelling, expression and imaging studies (Gibson et al., 2010), MB_{WNT} and MB_{SHH} are
60 believed to derive from two spatially distinct developmental origins in the early hindbrain; lower rhombic
61 lip/dorsal brainstem and upper rhombic lip/early cerebellum, respectively. The developmental origins of MB_{Grp3}

62 and MB_{Grp4} were investigated in a study mapping subgroup-specific super-enhancer elements, suggesting deep
63 cerebellar nuclei residing in the nuclear transitory zone as the cell of origin for MB_{Grp4} (Lin et al., 2016). More
64 recently, two studies which compared bulk and single-cell transcriptomic (scRNA-seq) MB profiles with
65 developing murine cerebellar scRNA-seq reference datasets described MB_{Grp3} and MB_{Grp4} as most closely
66 resembling Nestin positive stem cells (Vladoiu et al., 2019) and Unipolar Brush Cells (UBC) respectively,
67 highlighting putative cells of origin (Hovestadt et al., 2019; Vladoiu et al., 2019). It is notable that the
68 conclusions of each of these studies rely principally upon cross-species comparisons with murine as opposed to
69 human developmental references. Human rhombic lip development is more complex and prolonged than that
70 of mouse possessing unique features not shared with any other vertebrates (Haldipur et al., 2019).

71 Here, we characterize the transcriptomic landscape of 331 primary medulloblastoma, with clinico-pathological
72 annotation, DNA methylation and copy number profiles, and we catalogue subgroup-specific isoforms and
73 RNA-editing events. We show that, despite the discrete methylomic subdivisions of the MB_{Grp3}/MB_{Grp4}
74 methylation subtypes I-VIII, these tumors manifest transcriptionally on a bipolar continuum between MB_{Grp3}
75 and MB_{Grp4} archetypes. Moreover, an individual tumor's position on this continuum is predictive of methylation
76 subtype, prognosis, specific copy number and mutational alterations, and activation of key molecular pathways
77 and regulatory events. By using human scRNA-seq fetal cerebellar reference data, we show that this continuum
78 mirrors and recapitulates the major developmental trajectories within early human cerebellar development
79 allowing us to map the interplay between key oncogenic events and putative cells of origin for each
80 medulloblastoma subtype.

81 **Results**

82 **Medulloblastoma shows a continuum of expression between MB_{Grp3} and MB_{Grp4}**

83 RNA-seq (~90M paired-end reads) was performed on 331 snap-frozen primary samples from patients with a
84 diagnosis of medulloblastoma (Supplementary Table 1). Transformed gene-level read counts were subject to
85 consensus NMF clustering with resampling to determine the most stable number of clusters and metagenes i.e.
86 major biological effects described by multiple genes and summarized as a single score. As expected, a 4-

87 metagene/4-cluster solution was optimally stable, reflecting the four major consensus subgroups as currently
88 understood (Figure 1A). ~3% (10/331) of samples were defined as non-classifiable i.e. low probability of
89 classification. ~4% (13/331) samples could only be classified as indeterminate MB_{Grp3}/MB_{Grp4}, i.e. confidently
90 classifiable as either MB_{Grp3} or MB_{Grp4} but not specific as to which. The distribution of clinico-biological
91 features was consistent with previously described features of the consensus MB subgroups (Figure 1A & 1SA);
92 for instance, Chromosome 6 loss in 83% (24/29) of MB_{WNT}.

93 The two metagenes which described MB_{Grp3} and MB_{Grp4} samples were notably gradated and overlapping in an
94 anti-correlative manner (Figure 1A) implying that, contrary to some previous descriptions using expression
95 microarrays (Cavalli et al., 2017), MB_{Grp3} and MB_{Grp4} are not distinct transcriptional entities but rather exist as
96 a continuum between two transcriptional polarities we refer to here as G3 and G4. To describe this continuum,
97 we created a continuous score (G3/G4-score) scaled between 0 and 1 to reflect the proportionate amount of
98 G3/G4 metagene expression in each MB_{Grp3}/MB_{Grp4} (i.e. all non-WNT/non-SHH tumors) whereby a score of '0'
99 indicates a 100% G4 tumor and '1' 100% G3 (Figure 1A). This was applied to the 223 samples classified as
100 MB_{Grp3}, MB_{Grp4} or intermediate MB_{Grp3}/MB_{Grp4}.

101 For convenient comparison, we sub-divided the expression continuum (G3/G4-score) into five notional groups:
102 HighG4 (0-0.2, n=69/223 (31%)), LowG4 (0.2-0.4, n=60/223 (27%), G3.5 (0.4-0.6, n=39/223 (17%)), LowG3
103 (0.6-0.8, n=22/223 (10%)) & HighG3 (0.8-1 G3/G4-score, n=33/223 (15%)). All samples with >0.5 G3/G4
104 score were classified as MB_{Grp3}. Notably, 15/20 (75%) MB_{Grp3}/MB_{Grp4} samples which showed disagreement in
105 classification between RNA-seq and DNA methylation array were classified as indeterminate MB_{Grp3}/MB_{Grp4}
106 by RNA-seq (Figure 1A). Examining the MB_{Grp3}/MB_{Grp4} subtype (I-VIII) calls by t-SNE (Figure 1B) shows
107 clustering by subtype, suggesting that each methylation subtype imparts distinct secondary expression
108 characteristics beyond the primary G3/G4 continuum metagene. Regardless, the MB_{Grp3}/MB_{Grp4} subtypes may
109 be broadly ordered upon the G3/G4 continuum in partially overlapping domains from most Group4-like to most
110 Group3-like (VIII, VI, VII, V, I, III, IV, II respectively) (Figure 1C).

111 Specific clinico-biological features were significantly non-randomly distributed across the G3/G4 continuum
112 (Figure 2A). For instance, LCA pathology is significantly enriched at the G3 end of the continuum (D=0.339,
113 p=0.046, n=158); MB_{Grp3} patients display LCA (Large Cell Anaplasia) pathology ~3 times more frequently if

114 HighG3 as opposed to LowG3. Large (arm level/chromosomal) copy number alterations are likewise non-
115 randomly distributed with respect to the G3/G4 continuum. Most notably, i17q is proportionately greater in
116 HighG4 individuals (75% compared to 36% in Low G4, $D=0.402$, $p<0.001$, $n = 201$) and chromosome 8 gain
117 more frequent in HighG3 (44% in High G3, 5% in Low G3, $D=0.69$, $p<0.001$, $n=201$) (Figure 1S). Mutations
118 are not frequent in MB_{Grp3}/MB_{Grp4} (Northcott et al., 2017), however non-synonymous mutations of *ZMYM3*,
119 *KDM6A* are significantly non-randomly distributed with respect to the continuum (each $p<0.01$) (Figure 2S).

120 We examined the relationship between the G3/G4 score and prognosis. Treating the G3/G4 score as categorical
121 showed a progressively poorer 5-year overall survival (OS) across the continuum; Log-rank $p=0.026$, $n=191$,
122 HighG3=46%, LowG3=57%, G3.5=71%, LowG4=81%, HighG4=76% (Figure 2B). Cox-regression indicates
123 the continuous G3/G4 score is highly significant ($p=0.003$, $n=191$) showing an increase in relative risk of death
124 (RR) of 4.7 times greater for a patient with a G3/G4 score 0 compared to a score of 1. Using the G3/G4 score
125 as a categorical variable, only HighG3 patients have significantly poorer prognosis (RR=2.8, $p=0.001$, $n=191$),
126 Multivariable Cox-regression analysis of progression free survival including other risk factors *MYC*
127 amplification, LCA histology and metastatic disease showed that the HighG3 category retains significance
128 (RR=2.4, $p=0.014$, $n=135$) indicating the G3/G4 score possesses significant independent prognostic power
129 distinct from its association with other “high-risk” disease features (Figure 2C).

130 **A G3/G4 continuum score can be reverse-engineered from DNA methylation profiles to validate clinico-
131 pathological associations**

132 A series of sample cohorts of MB_{Grp3}/MB_{Grp4} with DNA methylation profiles have previously been published
133 by ourselves and others (Cavalli et al., 2017; Northcott et al., 2017; Schwalbe et al., 2017; Sharma et al., 2019).
134 To these we added 166 profiles to produce a large cohort ($n=1670$) better powered to validate and further expand
135 our findings made using transcriptomic datasets. We therefore explored the possibility of reverse-engineering a
136 G3/G4 score from DNA methylation data. Using the same method as used for expression was impossible, given
137 that the constrained range (i.e. 0 (fully unmethylated) to 1 (fully methylated)) and bimodal distribution of CpG
138 methylation does not lend itself straightforwardly to a continuous score (Figure 3SA). Unlike expression, which
139 tends to follow a log-linear association with G3/G4 score, methylation follows a sigmoidal distribution from
140 hypo- to hyper-methylation or *vice versa*. The inflection point along the G3/G4 continuum at which these CpGs

141 “switch” from one state to the other varies by CpG (Figure 3A, 3SB,C). We trained a classifier using a training
142 cohort of MB_{Grp3}/MB_{Grp4} samples for which we possessed both RNA-seq and DNA methylation profiles
143 (n=192). Pre-selecting 400 cross-validated CpG features which distinguish between each of the G3/G4
144 categorical states we used these to train a random forest classifier to accurately predict (RMSE = 0.036) a G3/G4
145 score from DNA methylation data alone (Figure 3B).

146 Using this larger MB_{Grp3}/MB_{Grp4} methylation cohort we were able to demonstrate significant non-random
147 distribution with respect to the continuum of infant status (<3 years), metastases, LCA, and *MYC* amplification
148 (each more frequent in HighG3 patients) and mutations of *PRDM6*, *KDM6A*, *KMT2C* and *ZMYM3* (more
149 frequent in HighG4 patients) (each p<0.001, Figure 4SA). Likewise, chromosomal gains of 1q, 5, 6, 8 and 16q
150 (each p<0.001 and most frequent in HighG3) and i17q (p<0.001 most frequent in HighG4) (Figure 4SA). These
151 findings thus validated our findings from the initial RNA-seq cohort.

152 The larger cohort size allowed us to also explore the relationship between the G3/G4 continuum and the
153 MB_{Grp3}/MB_{Grp4} subtypes (I-VIII) as well as their previously reported clinico-pathological/mutational
154 characteristics (Sharma et al., 2019). The MB_{Grp3}/MB_{Grp4} subtypes as predicted from DNA methylation data
155 once again occupy discrete but partly overlapping domains within the G3/G4 continuum; broadly ordered - as
156 per the RNA-seq only cohort - from most archetypally MB_{Grp4} to MB_{Grp3} VIII, VI, VII, V, I, III, IV, II (Figure
157 3C).

158 We next asked whether the variation in distribution of clinicopathological features and mutation previously
159 described as being characteristic of MB_{Grp3}/MB_{Grp4} subtypes (I-VIII) (Sharma et al., 2019) were attributable to
160 position on the G3/G4 continuum, MB_{Grp3}/MB_{Grp4} subtype (I-VIII) or indeed both. Certain frequent
161 clinicopathological features and copy number changes (e.g. metastatic disease, *MYC* amplification, LCA
162 histology, i17q, loss of chromosome 8, gain of chromosome 5) are significantly non-randomly distributed with
163 respect to G3/G4 continuum, even within individual subtypes (Figure 4SB,C). For example, 100% (11/11) of
164 subtype III with *MYC* amplifications are HighG3 compared to 59% (69/117) without *MYC* amplification. The
165 presence of i17q as the only major chromosomal alteration is a highly characteristic change in subtype VIII but
166 when considering only medulloblastoma subtype VIII is still significantly enriched at the High G4 end of the
167 continuum (D=0.162, p=0.014). The relative contribution of MB_{Grp3}/MB_{Grp4} subtype and G3/G4 continuum to

168 predicting presence/absence of a clinicopathological or mutational change was additionally demonstrated by
169 logistic regression (Figure 4SD). This showed that, in several instances (e.g. LCA, *MYC* amplification, i17q as
170 only chromosomal aberration) the response variable was better described using the G3/G4 continuum rather
171 than the medulloblastoma subtype (I-VIII) as an explanatory variable.

172 The relationship between G3/G4 score and risk of death is significant and striking, allowing us to validate the
173 findings of our RNA-seq cohort with greater confidence; patients age >3 years Log-rank p<0.0001 n=589,
174 HighG3=49%, LowG3=59%, G3.5=64%, LowG4=77%, HighG4=83% (Figure 3D, 5SA). A similar result is
175 found in patients of all ages; Log-rank p<0.0001 n=654 (Figure 5SA). Modelling G3/G4 score as a continuous
176 variable using a Cox proportional hazards again in patients age > 3years shows a 3x increased risk of death from
177 one end of the continuum to the other (RR=3, n=589, p<0.001) (Figure 5SB). MB_{Grp3}/MB_{Grp4} subtypes (I-VIII)
178 are also significantly associated with overall survival (n=524, p<0.001) (Figure 5SC).

179 **The G3/G4 continuum is associated with differential regulation of oncogenic/developmental pathways.**

180 The expression of 590 genes are significantly correlated with the G3/G4 score in our RNA-seq cohort (p<0.01,
181 log₂ fold change>10, n=223), increasing/decreasing log-linearly across the continuum. Most notably, *MYC*
182 expression correlates significantly with G3/G4 score (Rho=0.73, p<0.001, n = 223). HighG3 samples had a
183 mean expression of *MYC* 46 times greater than HighG4 and 2 times greater than LowG3 (Figure 4A).
184 Performing Gene Set Enrichment Analysis (GSEA) we observed that transcriptional targets of *MYC* were also
185 significantly upregulated (NES = 3.37, p=0.007) (Figure 4B). ssGSEA analysis (Hänelmann et al., 2013) was
186 used to represent activation/repression of pathway/signatures for each individual and found several oncogenic
187 pathways which were progressively activated or repressed in a manner significantly correlated (each p<0.001)
188 with the G3/G4 continuum including *MYC*, Cell Cycle, MTOR, TGF-Beta (activated at the G3 pole) and
189 NOTCH (activated at the G4 pole) (Figure 4C). In addition, a broad pattern of progressive neuronal
190 differentiation at the G4 pole and photoreceptor (CRX/NRL) characteristics at the G3 pole of the G3/G4
191 continuum were observed.

192 We examined differentially methylated regions (DMRs) within previously identified MB_{Grp3}/MB_{Grp4} specific
193 enhancer loci(Lin et al., 2016), identifying 45 which also overlapped with gene promoters; each “switched”
194 from hypomethylated to hypermethylated or *vice versa* at specific points along the G3/G4 continuum. The

195 expression of 33/45 of these genes are significantly correlated with the G3/G4 continuum ($p<0.01$). This
196 switching appears progressive, with certain MB_{Grp3}/MB_{Grp4} enhancer loci “switching” earlier and others later.
197 For instance, the enhancer/DMR loci overlapping with the promoters of medulloblastoma lineage
198 development/differentiation genes *LHX1*, *NEUROD2*, *LMX1A*, and *HLX* on average “switch” at points 0.23,
199 0.49, 0.56, 0.87 on the G3/G4 continuum (Figure 4D,E). We note also that expression of each of these genes is
200 significantly correlated with the G3/G4 continuum and DMR methylation ($p<0.01$). This is consistent with a
201 developmental identity controlled by cumulative changes in underlying epigenetic architecture driving
202 progressive transition from an MB_{Grp3} to a MB_{Grp4} cell state.

203 **The G3/G4 continuum is associated with post-transcriptional regulation of isoform expression and RNA-
204 editing**

205 To explore the clinico-biological significance of differentially expressed transcriptional isoforms across
206 subgroups, Kallisto (Bray et al., 2016) was used to estimate abundance. Taking TPM (Transcripts Per Million)
207 >10 as indicative of a moderate-highly expressed isoform it is notable that the diversity of isoforms being
208 expressed across subgroups was significantly greater in MB_{Grp4} than MB_{Grp3} ($p<0.001$, $F=9.877$) (Figure 6SA).
209 153 genes were identified whose expression overall is invariant but for which expression of specific isoforms
210 correlates significantly with G3/G4 score (Figure 5A). For instance, overall expression of *GTF2I* (*General
211 Transcription Factor IIi*) is ubiquitous but a progressive isoform switch corresponding to the balance between
212 β/δ (*GTF2I-215/GTF2I-218*) and α/γ (*GTF2I-221/GTF2I-212*) isoforms correlates significantly to G3/G4 score
213 (Figure 5B). These isoforms switches are known to alter protein stability (Shirai et al., 2015) and subcellular
214 localization (Shirai et al., 2017).

215 4,668,508 established RNA editing sites were profiled using the QEdit/Redditools pipeline (Giudice et al., 2020);
216 we observed significant differences in overall A-I editing level. The OEI (Overall Editing Index - i.e. total
217 number of reads with G at all known editing positions over the number of all reads covering the positions)
218 differs significantly with respect to subgroup ($F=9.761$, $n=223$, $p<0.001$); post-hoc testing showed RNA editing
219 events in MB_{Grp4} to be significantly more numerous than MB_{Grp3} and MB_{SHH} (each $p<0.01$) (Figure 6SB).
220 Analysis of 5174 non-synonymous RNA editing sites showed 32 significantly differentially edited with respect
221 to the G3/G4 continuum ($p<0.05$, Figure 5C). One such RNA editing site is *AZIN1* chr8:103841636T>C, known

222 to result in a S367G substitution which causes conformational changes, cytoplasmic-to-nuclear translocation
223 and gain of function increasing tumor potential in hepatocellular carcinoma (Chen et al., 2013), non-small-cell
224 lung cancer (Hu et al., 2017), colorectal cancer (Shigeyasu et al., 2018) and gastric cancer (Okugawa et al.,
225 2018) (Figure 5D). It is also notable that *ADAR1* and *ADAR2* expression are both correlated with G3/G4 score
226 (rho=0.54, p<0.001 and rho=0.33, p<0.001, n=223, respectively).

227 **Intra-tumoral cellular heterogeneity with respect to the G3/G4 continuum is apparent but constrained by
228 subtype**

229 We projected our MB_{Grp3}/MB_{Grp4} metagenes onto a MB_{Grp3}/MB_{Grp4} scRNA-seq dataset comprising 4,256 cells
230 from 15 individuals (5xSubtype-II, 2xSubtype-III, 1xSubtype-I, 2xSubtype-V, 4xSubtype-VIII) previously
231 published by Hovestadt *et al* (Hovestadt et al., 2019). This allowed us to estimate a G3/G4 score for each cell
232 within a given sample. MB_{Grp3} individuals were described by Hovestadt *et al* as being dominated by cells with
233 an undifferentiated progenitor-like expression program and MB_{Grp4} dominated by a differentiated neuronal-like
234 program; these appear to broadly equate with our MB_{Grp3} and MB_{Grp4} metagenes. MB_{Grp3}/MB_{Grp4} intermediate
235 tumors were described by Hovestadt *et al* as a partial admixture of cell types. The distribution of G3/G4 scores
236 at the single cell level shows that, whilst there is a certain amount of intra-tumoral cellular variation (Figure
237 6A), the majority of cells fall within the same G3/G4 range observed in the equivalent subtype bulk RNA-seq
238 profiles (Figure 6B). For example, amongst medulloblastoma subtype VIII individuals 78% (667/853) of cells
239 fall within the HighG4 range, 22% (184/853) within LowG4 and 0.2% (2/853) within G3.5. This is equivalent
240 to the bulk profiles for which 83% (40/48) of individuals fall within the HighG4 range and 17% (8/48) fall
241 within the LowG4 range (Figure 6B). In short, the phenomenon of a G3/G4 continuum observed in bulk RNA-
242 seq analysis seems not to be produced by differently proportioned admixtures of otherwise wholly Group3 and
243 Group4 cells but rather medulloblastoma are composed of populations of individual cells, which themselves
244 display continuous G3/G4 expression characteristics; these being constrained to occupy a discrete part of the
245 G3/G4 continuum as dictated by their MB_{Grp3}/MB_{Grp4} (I-VIII) subtype.

246 **Medulloblastoma subtypes and the G3/G4 continuum are mirrored in early human cerebellar development**

247 The origins of medulloblastoma within spatially and temporally distinct regions of the fetal cerebellum (Upper
248 Rhombic Lip/Granule Cell lineage for MB_{SHH} and Lower Rhombic Lip for MB_{WNT}) have been primarily

249 established by mouse modelling (Gibson et al., 2010; Lin et al., 2016) and, more recently, by comparison with
250 reference to mouse fetal cerebellum scRNA-seq datasets which suggest a unipolar brush cell (UBC) origin for
251 MB_{Grp4} (Hovestadt et al., 2019; Vladoiu et al., 2019). Such comparisons in embryonal tumors are predicated on
252 the idea that partial transformation in an early prenatal cell interrupts development/differentiation resulting in a
253 proportion of the expression characteristics of the tumor initiating cell being retained.

254 Here, we avoid any cross-species comparisons by using instead a human fetal cerebellum scRNA-seq reference
255 set (69,174 cerebellar cells 9-21 post conception weeks (PCW)). We reconstructed a pseudotemporal cellular
256 trajectory within a broadly defined rhombic lip lineage (12,243 cells, comprising rhombic lip precursors (RL),
257 excitatory cerebellar nuclei/unipolar brush cells (eCN/UBC), granule cell precursors (GCP), and granule cell
258 neurons sub-divided into four clusters (GN)) (Figure 7A). We projected our 4 subgroup metagenes onto these
259 cerebellar cells, identifying those cells which showed highest expression of each metagene. These cells occupy
260 distinct branches of our lineage. High MB_{WNT} metagene expressing cells, as expected, occupy a discrete subset
261 of the RL precursors (Figure 7B). High MB_{Grp3}/MB_{Grp4} metagene expressing cells occupy a distinct eCN/UBC
262 branch beginning with RL precursors (highly expressing MB_{Grp3} metagenes) and transitioning midway to
263 eCN/UBC cells highly expressing the MB_{Grp4} metagene (Figure 7B); this cell trajectory in effect mirrors the
264 G3/G4 continuum. This can be demonstrated formally by calculating a projected per-cell G3/G4 score, revealing
265 a smooth transition from a MB_{Grp3}-like to a MB_{Grp4}-like expression state (Figure 7C). More straightforwardly,
266 this is demonstrated by observing the significant change in expression with respect to pseudotime of those
267 G3/G4 continuum-associated genes whose expression is sufficiently high to be consistently detectable within
268 the relatively low depth scRNA-seq data (each p<0.01, Figure 7SA).

269 Cells which express the MB_{SHH} metagene most highly, as expected, occupy a granule cell developmental branch
270 beginning with GCPs and extending partly into the earliest GN cell types (Figure 7B). Two metagenes
271 representing MB_{SHH-Infant} (primarily patients <4 years) and MB_{SHH-Child} (primarily patients > 4 years) - as
272 described in previous studies (Kool et al., 2014; Schwalbe et al., 2017) - were also projected onto the cells in
273 this branch. This indicated a switch midway through the granule cell pseudotemporal lineage from a
274 predominantly MB_{SHH-Infant} metagene to a predominantly MB_{SHH-Child} metagene expression; this coincided
275 approximately with the first transition from GCPs to GNs (Figure 7D). Again, where expression of individual

276 genes which distinguish infant MB_{SHH} from childhood MB_{SHH} were sufficiently detectable within the scRNA-
277 seq profiles they were significantly associated with pseudotime (each p<0.01, Figure 7SB).

278 Thus, by aligning the oncogenic G3/G4 scale with the pseudotemporal scale we were able to order and assign
279 tumorigenic events to specific points within fetal cerebellar developmental lineages (Figure 8). *MYC*
280 amplification, for instance, tends to coincide with the earlier RL pseudotemporal space as opposed to *KDM6A*
281 mutation which occupies the later more differentiated eCN/UBC space. Likewise for aneuploidies, gain of
282 chromosome 8 coincides with the earlier RL developmental space and i17q (as the sole copy number alteration)
283 with the later eCN/UBC cell types.

284 We note that as well as the pseudotemporal transition from MB_{Grp3} to MB_{Grp4} or MB_{SHH-Infant} to MB_{SHH-Child} there
285 is also a literal temporal transition as well. The cerebellar cells most closely associated with the archetypal
286 MB_{Grp3} are predominant at 11PCW (and possibly before). By 18PCW, those most closely associated with the
287 archetypal MB_{Grp4} predominate; this persists until at least 20PCW and between 12PCW and 14PCW, cells
288 associated with G3.5 and LowG4 predominate. This temporal staging from early to late forms of MB_{Grp3}/MB_{Grp4}
289 is also mirrored in the average age of onset of disease. The distribution of age at diagnosis of each
290 MB_{Grp3}/MB_{Grp4} (I-VIII) subtype closely parallels the distribution across the G3/G4 continuum (Figure 8SA) and
291 there is a significant correlation between G3/G4 score and age at diagnosis (Figure 8SB). On the RL to GN
292 branch, cells most closely associated with MB_{SHH-Infant} are predominant at PCW11 and reduced by PCW20 at
293 which point MB_{SHH-Child} associated cells predominate (Figure 8B).

294 We also note that the relative frequencies of MB_{Grp3}, MB_{Grp4} and the distribution of the patient population across
295 the G3/G4 continuum is mirrored in the size of the relevant pseudotemporal space; by space we mean the
296 estimated proportion of putative cells of origin for each subtype (adjusted by number of cells sampled) as a
297 function of the length of time they persist throughout development (9-21 PCW) (Figure 8SC,D). For instance,
298 in our methylation cohort the incidence of MB_{Grp3} relative to MB_{Grp4} is approximately 1:2 (35% 585/1670
299 MB_{Grp3} vs 65% 1085/1670). The overlap with the relevant proportion of matched pseudotemporal space
300 indicates the same 1:2 ratio (38% MB_{Grp3} matched space vs 62% MB_{Grp4} matched space). The bimodal empirical
301 distribution of the G3/G4 continuum is also paralleled by the pseudotemporal space occupied (Figure 8SD). We
302 regard the above observations as likely explanatory of the relative differences in age of onset and frequency of

303 the different MB_{Grp3}/MB_{Grp4} subtypes and reflective of the relative window of opportunity in terms of time and
304 developmental space for transformation to occur.

305 **Discussion**

306 Here we show that, with regards to their transcriptomes, the primary inter-tumoral variation in MB_{Grp3}/MB_{Grp4}
307 patients is continuous, in contrast to the discrete nature of the methylation MB_{Grp3}/MB_{Grp4} subtypes (I-VIII)
308 (Cavalli et al., 2017; Northcott et al., 2017; Schwalbe et al., 2013; Sharma et al., 2019). This is not in itself
309 contradictory, as we show that the MB_{Grp3}/MB_{Grp4} methylation subtypes are ordered along the G3/G4 continuum
310 in discrete but partially overlapping domains (Figure 1D). Furthermore, as has been demonstrated previously
311 (Cavalli et al., 2017; Sharma et al., 2019), the methylation subtypes are reflected to some extent in their
312 expression profiles (Figure 1C). Nonetheless, these are shown here to be secondary expression characteristics
313 subordinate to the overarching primary expression characteristic which is the G3/G4 continuum.

314 The position of an individual MB_{Grp3}/MB_{Grp4} tumor upon the continuum is significantly associated with certain
315 mutations, copy number aberrations, clinico- and histopathology. This is to be expected, as many of these have
316 been shown to be non-randomly associated with MB_{Grp3}/MB_{Grp4} subtypes (Sharma et al., 2019). That both
317 methylation subtype and the expression continuum are related to key tumor characteristics and indeed to one
318 another is clear. The question remains to what extent the inter-tumoral variation in such characteristics may be
319 better explained by position upon the continuum than by methylation subtype. For at least some of these
320 characteristics - those which are frequent and not specific to single subtypes (e.g. *MYC* amplification, LCA,
321 i17q, gain of chromosome 5 and loss of chromosome 8) - the answer appears to be that they are better explained
322 by the continuum (Figure 4SB, C, D).

323 The most striking association is between the G3/G4 continuum and risk of death; at least during the first 5 years
324 post-diagnosis. Risk increases continuously with the G3/G4 continuum (Figure 3D), the documented
325 phenomenon (Sharma et al., 2019) of late (>5-year post diagnosis) relapse in subtype VIII notwithstanding. We
326 regard this study as a description of an extremely close and therefore important relationship between biology
327 and clinical course rather than an advocacy for its use as a clinical biomarker. Those judgements should be
328 made using prospective clinical trials and the cohort used here, whilst sizeable and carefully reviewed, is a

329 retrospective cohort with all the limitations and caveats that implies. Nevertheless, we note that when it comes
330 to incorporating molecular data into risk stratification schemes the use of a single G3/G4 risk score for all
331 MB_{Grp3}/MB_{Grp4} patients has a certain pragmatic logic over atomizing a rare cancer into 8 separate subtypes.
332 Pathway analysis of the G3/G4 continuum shows a concomitant activation of oncogenic processes (e.g. MYC,
333 MTOR, TP53) as tumors become more MB_{Grp3}-like, which itself suggests a more aggressive phenotype. The
334 influence of the G3/G4 continuum also extends to post-transcriptional regulation i.e. isoform usage and RNA-
335 editing. A close relationship with cell differentiation (e.g. CRX/NRL, neuronal differentiation) is also evident
336 and consistent with previous descriptions of MB_{Grp3}/MB_{Grp4} biology cell identity and differentiation
337 (Bandopadhyay et al., 2019; Garancher et al., 2018). This is further reflected in the progressive switches in
338 methylation status we observe within MB_{Grp3}/MB_{Grp4} specific enhancers (Lin et al., 2016).
339 Importantly, we show here that the MB_{Grp3}/MB_{Grp4} continuum is not produced as the result of an admixture of
340 discrete cell types in different proportions but by individual cells which themselves exist upon the same
341 expression continuum as the bulk tumors. In part, this was observed by Hovestadt *et al* (Hovestadt et al., 2019)
342 in their original analysis of their pooled MB_{Grp3}/MB_{Grp4} scRNA-seq data. They described two metagenes
343 diverging according to *MYC* expression and describe bulk tumors as composed of cells of either a predominately
344 MB_{Grp3}, MB_{Grp4} or intermediate type which themselves represent a continuum of neuronal differentiation
345 (Hovestadt et al., 2019). We have expanded this by fitting individual cells onto the same metagene scale used
346 to define the bulk tumor transcriptome, thereby defining more precisely the range of transcriptional intra-
347 tumoral heterogeneity within MB_{Grp3}/MB_{Grp4} tumors and showing that it appears to be confined to certain limits
348 prescribed by MB_{Grp3}/MB_{Grp4} subtype. This is in turn consistent with the finding that medulloblastoma sampled
349 from different areas of the tumor or at diagnosis and relapse rarely alter subgroup (Kumar et al., 2021; Morrissy
350 et al., 2016; Ramaswamy et al., 2013).
351 Unlike previous studies which attempted to define cells of origin we used a human rather than a mouse scRNA-
352 seq reference set for comparison. The use of a human atlas is significant because human RL persists longer
353 through cerebellar development than the mouse and has unique cytoarchitectural features not shared with any
354 other vertebrates (Haldipur et al., 2019). Mouse RL is a transient, proliferative stem cell zone present between
355 E12.5 and E17.5 whereas human RL begins as a progenitor niche and is later compartmentalized into ventricular

356 and subventricular zones, forming a human-specific progenitor pool within the posterior lobule, which persists
357 until birth (Haldipur et al., 2019). We show that the MB_{Grp3}/MB_{Grp4} continuum is paralleled by a fetal cerebellar
358 lineage that begins with an RL progenitor and ends with eCN/UBC. This points to highly specific windows of
359 opportunity - which we define in part here - within developmental pseudotemporal space for oncogenic events
360 to successfully provoke medulloblastoma of a given subtype. These windows of opportunity are highly coherent
361 with both the age of onset of the disease and the relative frequency of the individual subtypes. Importantly, we
362 were able to identify a developmental niche for each of the 4 main medulloblastoma subgroups including a
363 separate space for MB_{SHH-Child} and MB_{SHH-Infant}. Each of these is contained within a branch of the same early
364 cerebellar lineage explicitly unifying each of the 4 subgroups to a common developmental antecedent;
365 something not reported in previous studies. For instance, Hovestadt *et al* (Hovestadt et al., 2019) were unable
366 to identify a significant matching reference cell type for MB_{Grp3} and MB_{WNT} whereas Vladoiu *et al* (Vladoiu et
367 al., 2019) did not analyze MB_{WNT} and note a prosaic resemblance of MB_{Grp3} to Nestin⁺ early neural stem-like
368 cells. We should note that we were selective, albeit based on prior knowledge, in the subset of cell types we
369 considered as potential candidate cells of origin: figuratively by assigning them to what we broadly described
370 as the Rhombic lip lineage and literally by the physical process of cell extraction and the points in early human
371 development for which sampling was possible (PCW 9-21). MB_{WNT} in particular is thought to originate in the
372 dorsal brainstem, and it may be that certain alternative cells of origin were excluded or curtailed on that basis.
373 Nevertheless, previous studies follow a similar logic to our own and the coherent picture of the relationships
374 between the subgroups would seem to bear out our choices.

375 In conclusion, our findings point to the following important insights. First, that Group3/Group4 MB and their
376 methylation subtypes exist transcriptionally upon a continuum and that this is mirrored entirely by an equivalent
377 continuum of transcriptional cell types in early human fetal cerebellar development. Second, that by using a
378 human scRNA-seq reference all four MB subtypes can be linked to a common developmental antecedent within
379 the RL lineage. Third, that transcriptional intra-tumoral heterogeneity is limited to certain domains within the
380 continuum as dictated by subtype and finally, that the continuum is linked with almost every aspect of
381 Group3/Group4 molecular biology and clinico-pathology. We anticipate this to have implications for the future

382 treatment and modelling of the disease, most pressingly a need to match cell type with specific timing of
383 mutations to develop faithful models.

384 **Acknowledgements**

385 Supporting Grants: This work was supported by Cancer Research UK (C8464/A13457 & C8464/A2339), Tom
386 Graham Trust/CCLG and by the INSTINCT network, co-funded by The Brain Tumour Charity, Great Ormond
387 Street Children's Charity, and Children with Cancer UK (grant 16/193). TSJ is grateful for additional funding
388 from the Olivia Hodson Cancer Fund, Cancer Research UK and the National Institute of Health Research. All
389 research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of
390 Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The
391 views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department
392 of Health.

393 **Author Contributions**

394 Conceptualization D.W., E.C.S., S.B. and S.C.C; Methodology D.W., E.C.S., S.B. and S.C.C; Formal Analysis
395 D.W., E.C.S, K.A.A. and Y.G.; Investigation D.W., E.C.S, D.H, K.A.A, J.C.L, S.C., S.R., J.G., R.M.H., J.C.,
396 S.B.W., T.S.J., A.J., S.B. and S.C.C.; Resources K.A.A., B.P., S.B.W., T.S.J. and A.J.; Data Curation D.W.,
397 E.C.S., D.H., J.C.L., S.R., J.G., R.M.H., J.C., Y.G., and J.H.; Writing – Original Draft D.W., E.C.S and S.C.C;
398 Writing – Review & Editing D.H., K.A.A., S.R., J.G., R.M.H, B.P., and S.B.; Visualization D.W. and J.H.;
399 Supervision D.W., S.B. and S.C.C.; Funding Acquisition D.W., S.B. and S.C.C. All authors approved final
400 version of the manuscript.

401 **References**

402 Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-throughput sequencing data.
403 Bioinformatics 31, 166–169. doi:10.1093/bioinformatics/btu638

404 Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D., Irizarry, R.A., 2014. Minfi:
405 a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays.
406 Bioinformatics 30, 1363–1369. doi:10.1093/bioinformatics/btu049

407 Bandopadhyay, P., Piccioni, F., O'Rourke, R., Ho, P., Gonzalez, E.M., Buchan, G., Qian, K., Gionet, G., Girard, E.,
408 Coxon, M., Rees, M.G., Brenan, L., Dubois, F., Shapira, O., Greenwald, N.F., Pages, M., Balboni Iniguez, A., Paoletta,
409 B.R., Meng, A., Sinai, C., Roti, G., Dharia, N.V., Creech, A., Tanenbaum, B., Khadka, P., Tracy, A., Tiv, H.L., Hong,
410 A.L., Coy, S., Rashid, R., Lin, J.-R., Cowley, G.S., Lam, F.C., Goodale, A., Lee, Y., Schoolcraft, K., Vazquez, F., Hahn,
411 W.C., Tsherniak, A., Bradner, J.E., Yaffe, M.B., Milde, T., Pfister, S.M., Qi, J., Schenone, M., Carr, S.A., Ligon, K.L.,

412 Kieran, M.W., Santagata, S., Olson, J.M., Gokhale, P.C., Jaffe, J.D., Root, D.E., Stegmaier, K., Johannessen, C.M.,
413 Beroukhim, R., 2019. Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition
414 in MYC-driven medulloblastoma. *Nat Commun* 10, 2400–16. doi:10.1038/s41467-019-10307-9

415 Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-seq quantification. *Nat.*
416 *Biotechnol.* 34, 525–527. doi:10.1038/nbt.3519

417 Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R., 2018. Integrating single-cell transcriptomic data across
418 different conditions, technologies, and species. *Nat. Biotechnol.* 36, 411–420. doi:10.1038/nbt.4096

419 Capper, D., Jones, D.T.W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C., Sahm, F., Chavez, L., Reuss,
420 D.E., Kratz, A., Wefers, A.K., Huang, K., Pajtler, K.W., Schweizer, L., Stichel, D., Olar, A., Engel, N.W., Lindenbergh, K.,
421 Harter, P.N., Braczynski, A.K., Plate, K.H., Dohmen, H., Garvalov, B.K., Coras, R., Hölsken, A., Hewer, E., Bewerunge-
422 Hudler, M., Schick, M., Fischer, R., Beschorner, R., Schittenhelm, J., Staszewski, O., Wani, K., Varlet, P., Pages, M.,
423 Temming, P., Lohmann, D., Selt, F., Witt, H., Milde, T., Witt, O., Aronica, E., Giangaspero, F., Rushing, E., Scheurlen,
424 W., Geisenberger, C., Rodriguez, F.J., Becker, A., Preusser, M., Haberler, C., Bjerkvig, R., Cryan, J., Farrell, M., Deckert,
425 M., Hench, J., Frank, S., Serrano, J., Kannan, K., Tsirigos, A., Brück, W., Hofer, S., Brehmer, S., Seiz-Rosenthalen, M.,
426 Hänggi, D., Hans, V., Rozsnoki, S., Hansford, J.R., Kohlhof, P., Kristensen, B.W., Lechner, M., Lopes, B., Mawrin, C.,
427 Ketter, R., Kulozik, A., Khatib, Z., Heppner, F., Koch, A., Jouvet, A., Keohane, C., Mühleisen, H., Mueller, W., Pohl, U.,
428 Prinz, M., Benner, A., Zapata, M., Gottardo, N.G., Driever, P.H., Kramm, C.M., Müller, H.L., Rutkowski, S., Hoff, von,
429 K., Frühwald, M.C., Gnekow, A., Fleischhacker, G., Tippelt, S., Calaminus, G., Monoranu, C.-M., Perry, A., Jones, C.,
430 Jacques, T.S., Radlswimmer, B., Gessi, M., Pietsch, T., Schramm, J., Schackert, G., Westphal, M., Reifenberger, G.,
431 Wesseling, P., Weller, M., Collins, V.P., Blümcke, I., Bendszus, M., Debus, J., Huang, A., Jabado, N., Northcott, P.A.,
432 Paulus, W., Gajjar, A., Robinson, G.W., Taylor, M.D., Jaunmuktane, Z., Ryzhova, M., Platten, M., Unterberg, A., Wick,
433 W., Karajannis, M.A., Mittelbronn, M., Acker, T., Hartmann, C., Aldape, K., Schüller, U., Buslei, R., Lichter, P., Kool,
434 M., Herold-Mende, C., Ellison, D.W., Hasselblatt, M., Snuderl, M., Brandner, S., Korshunov, A., Deimling, von, A.,
435 Pfister, S.M., 2018. DNA methylation-based classification of central nervous system tumours. *Nature* 555, 469–474.
436 doi:10.1038/nature26000

437 Cavalli, F.M.G., Remke, M., Rampasek, L., Peacock, J., Shih, D.J.H., Luu, B., Garzia, L., Torchia, J., Nor, C., Morrissey,
438 A.S., Agnihotri, S., Thompson, Y.Y., Kuzan-Fischer, C.M., Farooq, H., Isaev, K., Daniels, C., Cho, B.-K., Kim, S.-K.,
439 Wang, K.-C., Lee, J.-Y., Grajkowska, W.A., Perek-Polnik, M., Vasiljevic, A., Faure-Conter, C., Jouvet, A., Giannini, C.,
440 Nageswara Rao, A.A., Li, K.K.W., Ng, H.-K., Eberhart, C.G., Pollack, I.F., Hamilton, R.L., Gillespie, G.Y., Olson, J.M.,
441 Leary, S., Weiss, W.A., Lach, B., Chambliss, L.B., Thompson, R.C., Cooper, M.K., Vibhakar, R., Hauser, P., van Veelen,
442 M.-L.C., Kros, J.M., French, P.J., Ra, Y.-S., Kumabe, T., López-Aguilar, E., Zitterbart, K., Sterba, J., Finocchiaro, G.,
443 Massimino, M., Van Meir, E.G., Osuka, S., Shofuda, T., Klekner, A., Zollo, M., Leonard, J.R., Rubin, J.B., Jabado, N.,
444 Albrecht, S., Mora, J., Van Meter, T.E., Jung, S., Moore, A.S., Hallahan, A.R., Chan, J.A., Tirapelli, D.P.C., Carlotti, C.G.,
445 Fouladi, M., Pimentel, J., Faria, C.C., Saad, A.G., Massimi, L., Liau, L.M., Wheeler, H., Nakamura, H., Elbabaa, S.K.,
446 Perezpeña-Diazcontí, M., Chico Ponce de León, F., Robinson, S., Zapotocky, M., Lassaletta, A., Huang, A., Hawkins,
447 C.E., Tabori, U., Bouffet, E., Bartels, U., Dirks, P.B., Rutka, J.T., Bader, G.D., Reimand, J., Goldenberg, A., Ramaswamy,
448 V., Taylor, M.D., 2017. Intertumoral Heterogeneity within Medulloblastoma Subgroups. *Cancer Cell* 31, 737–754.e6.
449 doi:10.1016/j.ccr.2017.05.005

450 Chang, C.H., Housepian, E.M., Herbert, C., 1969. An operative staging system and a megavoltage radiotherapeutic technic
451 for cerebellar medulloblastomas. *Radiology* 93, 1351–1359. doi:10.1148/93.6.1351

452 Chen, L., Li, Y., Lin, C.H., Chan, T.H.M., Chow, R.K.K., Song, Y., Liu, M., Yuan, Y.-F., Fu, L., Kong, K.L., Qi, L.,
453 Zhang, N., Tong, A.H.Y., Kwong, D.L.-W., Man, K., Lo, C.M., Lok, S., Tenen, D.G., Guan, X.-Y., 2013. Recoding RNA
454 editing of AZIN1 predisposes to hepatocellular carcinoma. *Nat. Med.* 19, 209–216. doi:10.1038/nm.3043

455 Cho, Y.-J., Tsherniak, A., Tamayo, P., Santagata, S., Ligon, A., Greulich, H., Berhoukim, R., Amani, V., Goumnerova, L.,
456 Eberhart, C.G., Lau, C.C., Olson, J.M., Gilbertson, R.J., Gajjar, A., Delattre, O., Kool, M., Ligon, K., Meyerson, M.,
457 Mesirov, J.P., Pomeroy, S.L., 2011. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that
458 drives poor clinical outcome. *J. Clin. Oncol.* 29, 1424–1430. doi:10.1200/JCO.2010.28.5148

459 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013.
460 STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21. doi:10.1093/bioinformatics/bts635

461 Ellison, D.W., Onilude, O.E., Lindsey, J.C., Lusher, M.E., Weston, C.L., Taylor, R.E., Pearson, A.D., Clifford, S.C., United
462 Kingdom Children's Cancer Study Group Brain Tumour Committee, 2005. beta-Catenin status predicts a favorable
463 outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee.
464 *J. Clin. Oncol.* 23, 7951–7957. doi:10.1200/JCO.2005.01.5479

465 Fattet, S., Haberler, C., Legoix, P., Varlet, P., Lellouch-Tubiana, A., Lair, S., Manie, E., Raquin, M.-A., Bours, D.,
466 Carpentier, S., Barillot, E., Grill, J., Doz, F., Puget, S., Janoueix-Lerosey, I., Delattre, O., 2009. Beta-catenin status in

467 paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and
468 clinical characteristics. *J. Pathol.* 218, 86–94. doi:10.1002/path.2514

469 Garancher, A., Lin, C.Y., Morabito, M., Richer, W., Rocques, N., Larcher, M., Bihannic, L., Smith, K., Miquel, C.,
470 Leboucher, S., Herath, N.I., Dupuy, F., Varlet, P., Haberler, C., Walczak, C., Tayara, El, N., Volk, A., Puget, S., Doz, F.,
471 Delattre, O., Druillennec, S., Ayrault, O., Wechsler-Reya, R.J., Eychène, A., Bourdeaut, F., Northcott, P.A., Pouponnot,
472 C., 2018. NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma.
473 *Cancer Cell* 33, 435–449.e6. doi:10.1016/j.ccr.2018.02.006

474 Gibson, P., Tong, Y., Robinson, G., Thompson, M.C., Currle, D.S., Eden, C., Kranenburg, T.A., Hogg, T., Poppleton, H.,
475 Martin, J., Finkelstein, D., Pounds, S., Weiss, A., Patay, Z., Scoggins, M., Ogg, R., Pei, Y., Yang, Z.-J., Brun, S., Lee, Y.,
476 Zindy, F., Lindsey, J.C., Taketo, M.M., Boop, F.A., Sanford, R.A., Gajjar, A., Clifford, S.C., Roussel, M.F., McKinnon,
477 P.J., Gutmann, D.H., Ellison, D.W., Wechsler-Reya, R., Gilbertson, R.J., 2010. Subtypes of medulloblastoma have distinct
478 developmental origins. *Nature* 468, 1095–1099. doi:10.1038/nature09587

479 Giudice, Lo, C., Silvestris, D.A., Roth, S.H., Eisenberg, E., Pesole, G., Gallo, A., Picardi, E., 2020. Quantifying RNA
480 Editing in Deep Transcriptome Datasets. *Front Genet* 11, 194. doi:10.3389/fgene.2020.00194

481 Haldipur, P., Aldinger, K.A., Bernardo, S., Deng, M., Timms, A.E., Overman, L.M., Winter, C., Lisgo, S.N., Razavi, F.,
482 Silvestri, E., Manganaro, L., Adle-Biassette, H., Guimiot, F., Russo, R., Kidron, D., Hof, P.R., Gerrelli, D., Lindsay, S.J.,
483 Dobyns, W.B., Glass, I.A., Alexandre, P., Millen, K.J., 2019. Spatiotemporal expansion of primary progenitor zones in the
484 developing human cerebellum. *Science* 366, 454–460. doi:10.1126/science.aax7526

485 Hänzelmann, S., Castelo, R., Guinney, J., 2013. GSVA: gene set variation analysis for microarray and RNA-seq data. *BMC
486 Bioinformatics* 14, 7–15. doi:10.1186/1471-2105-14-7

487 Hovestadt, V., Jones, D.T.W., Picelli, S., Wang, W., Kool, M., Northcott, P.A., Sultan, M., Stachurski, K., Ryzhova, M.,
488 Warnatz, H.-J., Ralser, M., Brun, S., Bunt, J., Jäger, N., Kleinheinz, K., Erkek, S., Weber, U.D., Bartholomae, C.C., Kalle,
489 von, C., Lawerenz, C., Eils, J., Koster, J., Versteeg, R., Milde, T., Witt, O., Schmidt, S., Wolf, S., Pietsch, T., Rutkowski,
490 S., Scheurlen, W., Taylor, M.D., Brors, B., Felsberg, J., Reifenberger, G., Borkhardt, A., Lehrach, H., Wechsler-Reya,
491 R.J., Eils, R., Yaspo, M.-L., Landgraf, P., Korshunov, A., Zapatka, M., Radlwimmer, B., Pfister, S.M., Licher, P., 2014.
492 Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. *Nature* 510, 537–541.
493 doi:10.1038/nature13268

494 Hovestadt, V., Smith, K.S., Bihannic, L., Filbin, M.G., Shaw, M.L., Baumgartner, A., DeWitt, J.C., Groves, A., Mayr, L.,
495 Weisman, H.R., Richman, A.R., Shore, M.E., Goumnerova, L., Rosencrance, C., Carter, R.A., Phoenix, T.N., Hadley, J.L.,
496 Tong, Y., Houston, J., Ashmun, R.A., DeCuyper, M., Sharma, T., Flasch, D., Silkov, A., Ligon, K.L., Pomeroy, S.L.,
497 Rivera, M.N., Rozenblatt-Rosen, O., Rusert, J.M., Wechsler-Reya, R.J., Li, X.-N., Peyrl, A., Gojo, J., Kirchhofer, D.,
498 Lötisch, D., Czech, T., Dorfer, C., Haberler, C., Geyeregger, R., Halfmann, A., Gawad, C., Easton, J., Pfister, S.M., Regev,
499 A., Gajjar, A., Orr, B.A., Slavc, I., Robinson, G.W., Bernstein, B.E., Suvà, M.L., Northcott, P.A., 2019. Resolving
500 medulloblastoma cellular architecture by single-cell genomics. *Nature* 572, 74–79. doi:10.1038/s41586-019-1434-6

501 Hu, X., Chen, J., Shi, X., Feng, F., Lau, K.W., Chen, Y., Chen, Y., Jiang, L., Cui, F., Zhang, Y., Xu, X., Li, J., 2017. RNA
502 editing of AZIN1 induces the malignant progression of non-small-cell lung cancers. *Tumour Biol* 39, 1010428317700001.
503 doi:10.1177/1010428317700001

504 Kool, M., Jones, D.T.W., Jäger, N., Northcott, P.A., Pugh, T.J., Hovestadt, V., Piro, R.M., Esparza, L.A., Markant, S.L.,
505 Remke, M., Milde, T., Bourdeaut, F., Ryzhova, M., Sturm, D., Pfaff, E., Stark, S., Hutter, S., Seker-Cin, H., Johann, P.,
506 Bender, S., Schmidt, C., Rausch, T., Shih, D., Reimand, J., Sieber, L., Wittmann, A., Linke, L., Witt, H., Weber, U.D.,
507 Zapatka, M., König, R., Beroukhim, R., Bergthold, G., van Sluis, P., Volckmann, R., Koster, J., Versteeg, R., Schmidt, S.,
508 Wolf, S., Lawerenz, C., Bartholomae, C.C., Kalle, von, C., Unterberg, A., Herold-Mende, C., Hofer, S., Kulozik, A.E.,
509 Deimling, von, A., Scheurlen, W., Felsberg, J., Reifenberger, G., Hasselblatt, M., Crawford, J.R., Grant, G.A., Jabado, N.,
510 Perry, A., Cowdrey, C., Croul, S., Zadeh, G., Korbel, J.O., Doz, F., Delattre, O., Bader, G.D., McCabe, M.G., Collins,
511 V.P., Kieran, M.W., Cho, Y.-J., Pomeroy, S.L., Witt, O., Brors, B., Taylor, M.D., Schüller, U., Korshunov, A., Eils, R.,
512 Wechsler-Reya, R.J., Licher, P., Pfister, S.M., ICGC PedBrain Tumor Project, 2014. Genome sequencing of SHH
513 medulloblastoma predicts genotype-related response to smoothed inhibition. *Cancer Cell* 25, 393–405.
514 doi:10.1016/j.ccr.2014.02.004

515 Kool, M., Korshunov, A., Remke, M., Jones, D.T.W., Schlanstein, M., Northcott, P.A., Cho, Y.-J., Koster, J., Schouten-
516 van Meeteren, A., van Vuurden, D., Clifford, S.C., Pietsch, T., Bueren, von, A.O., Rutkowski, S., McCabe, M., Collins,
517 V.P., Bäcklund, M.L., Haberler, C., Bourdeaut, F., Delattre, O., Doz, F., Ellison, D.W., Gilbertson, R.J., Pomeroy, S.L.,
518 Taylor, M.D., Licher, P., Pfister, S.M., 2012. Molecular subgroups of medulloblastoma: an international meta-analysis of
519 transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. *Acta
520 Neuropathol.* 123, 473–484. doi:10.1007/s00401-012-0958-8

521 Kool, M., Koster, J., Bunt, J., Hasselt, N.E., Lakeman, A., van Sluis, P., Troost, D., Meeteren, N.S.-V., Caron, H.N., Cloos,
522 J., Mrsic, A., Ylstra, B., Grajkowska, W., Hartmann, W., Pietsch, T., Ellison, D., Clifford, S.C., Versteeg, R., 2008.

523 Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and
524 clinicopathological features. PLoS ONE 3, e3088. doi:10.1371/journal.pone.0003088

525 Kumar, R., Smith, K.S., Deng, M., Terhune, C., Robinson, G.W., Orr, B.A., Liu, A.P.Y., Lin, T., Billups, C.A.,
526 Chintagumpala, M., Bowers, D.C., Hassall, T.E., Hansford, J.R., Khuong-Quang, D.-A., Crawford, J.R., Bendel, A.E.,
527 Gururangan, S., Schroeder, K., Bouffet, E., Bartels, U., Fisher, M.J., Cohn, R., Partap, S., Kellie, S.J., McCowage, G.,
528 Paulino, A.C., Rutkowski, S., Fleischhacker, G., Dhall, G., Klesse, L.J., Leary, S., Nazarian, J., Kool, M., Wesseling, P.,
529 Ryzhova, M., Zheludkova, O., Golanov, A.V., McLendon, R.E., Packer, R.J., Dunham, C., Hukin, J., Fouladi, M., Faria,
530 C.C., Pimentel, J., Walter, A.W., Jabado, N., Cho, Y.-J., Perreault, S., Croul, S.E., Zapotocky, M., Hawkins, C., Tabori,
531 U., Taylor, M.D., Pfister, S.M., Klimo, P., Boop, F.A., Ellison, D.W., Merchant, T.E., Onar-Thomas, A., Korshunov, A.,
532 Jones, D.T.W., Gajjar, A., Ramaswamy, V., Northcott, P.A., 2021. Clinical Outcomes and Patient-Matched Molecular
533 Composition of Relapsed Medulloblastoma. *J. Clin. Oncol.* 39, 807–821. doi:10.1200/JCO.20.01359

534 Li, Y., Song, Q., Day, B.W., 2019. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of
535 paediatric and adult MB patients: a systemic review and meta-analysis. *Acta Neuropathol Commun* 7, 123–8.
536 doi:10.1186/s40478-019-0773-8

537 Lin, C.Y., Erkek, S., Tong, Y., Yin, L., Federation, A.J., Zapatka, M., Haldipur, P., Kawauchi, D., Risch, T., Warnatz, H.-
538 J., Worst, B.C., Ju, B., Orr, B.A., Zeid, R., Polaski, D.R., Segura-Wang, M., Waszak, S.M., Jones, D.T.W., Kool, M.,
539 Hovestadt, V., Buchhalter, I., Sieber, L., Johann, P., Chavez, L., Gröschel, S., Ryzhova, M., Korshunov, A., Chen, W.,
540 Chizhikov, V.V., Millen, K.J., Amstislavskiy, V., Lehrach, H., Yaspo, M.-L., Eils, R., Lichter, P., Korbel, J.O., Pfister,
541 S.M., Bradner, J.E., Northcott, P.A., 2016. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.
542 *Nature* 530, 57–62. doi:10.1038/nature16546

543 Lopes, M.C., Joyce, C., Ritchie, G.R.S., John, S.L., Cunningham, F., Asimit, J., Zeggini, E., 2012. A combined functional
544 annotation score for non-synonymous variants. *Hum Hered* 73, 47–51. doi:10.1159/000334984

545 Louis, D.N., Perry, A., Reifenberger, G., Deimling, von, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler,
546 O.D., Kleihues, P., Ellison, D.W., 2016. The 2016 World Health Organization Classification of Tumors of the Central
547 Nervous System: a summary. *Acta Neuropathol.* 131, 803–820. doi:10.1007/s00401-016-1545-1

548 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
549 DESeq2. *Genome Biol.* 15, 550. doi:10.1186/s13059-014-0550-8

550 McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Flicek, P., Cunningham, F., 2016. The
551 Ensembl Variant Effect Predictor. *Genome Biol.* 17, 122–14. doi:10.1186/s13059-016-0974-4

552 Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., Remke, M., Cavalli, F.M.G.,
553 Ramaswamy, V., Lindsay, P.E., Jelveh, S., Donovan, L.K., Wang, X., Luu, B., Zayne, K., Li, Y., Mayoh, C., Thiessen, N.,
554 Mercier, E., Mungall, K.L., Ma, Y., Tse, K., Zeng, T., Shumansky, K., Roth, A.J.L., Shah, S., Farooq, H., Kijima, N.,
555 Holgado, B.L., Lee, J.J.Y., Matan-Lithwick, S., Liu, J., Mack, S.C., Manno, A., Michealraj, K.A., Nor, C., Peacock, J.,
556 Qin, L., Reimand, J., Rolider, A., Thompson, Y.Y., Wu, X., Pugh, T., Ally, A., Bilenky, M., Butterfield, Y.S.N., Carlsen,
557 R., Cheng, Y., Chuah, E., Corbett, R.D., Dhalla, N., He, A., Lee, D., Li, H.I., Long, W., Mayo, M., Plettner, P., Qian, J.Q.,
558 Schein, J.E., Tam, A., Wong, T., Birol, I., Zhao, Y., Faria, C.C., Pimentel, J., Nunes, S., Shalaby, T., Grotzer, M., Pollack,
559 I.F., Hamilton, R.L., Li, X.-N., Bendel, A.E., Fults, D.W., Walter, A.W., Kumabe, T., Tominaga, T., Collins, V.P., Cho,
560 Y.-J., Hoffman, C., Lyden, D., Wisoff, J.H., Garvin, J.H., Stearns, D.S., Massimi, L., Schüller, U., Sterba, J., Zitterbart,
561 K., Puget, S., Ayrault, O., Dunn, S.E., Tirapelli, D.P.C., Carlotti, C.G., Wheeler, H., Hallahan, A.R., Ingram, W.,
562 MacDonald, T.J., Olson, J.J., Van Meir, E.G., Lee, J.-Y., Wang, K.-C., Kim, S.-K., Cho, B.-K., Pietsch, T., Fleischhacker,
563 G., Tippelt, S., Ra, Y.-S., Bailey, S., Lindsey, J.C., Clifford, S.C., Eberhart, C.G., Cooper, M.K., Packer, R.J., Massimino,
564 M., Garre, M.L., Bartels, U., Tabori, U., Hawkins, C.E., Dirks, P., Bouffet, E., Rutka, J.T., Wechsler-Reya, R.J., Weiss,
565 W.A., Collier, L.S., Dupuy, A.J., Korshunov, A., Jones, D.T.W., Kool, M., Northcott, P.A., Pfister, S.M., Largaespada,
566 D.A., Mungall, A.J., Moore, R.A., Jabado, N., Bader, G.D., Jones, S.J.M., Malkin, D., Marra, M.A., Taylor, M.D., 2016.
567 Divergent clonal selection dominates medulloblastoma at recurrence. *Nature* 529, 351–357. doi:10.1038/nature16478

568 Northcott, P.A., Buchhalter, I., Morrissy, A.S., Hovestadt, V., Weischenfeldt, J., Ehrenberger, T., Gröbner, S., Segura-
569 Wang, M., Zichner, T., Rudneva, V.A., Warnatz, H.-J., Sidiropoulos, N., Phillips, A.H., Schumacher, S., Kleinheinz, K.,
570 Waszak, S.M., Erkek, S., Jones, D.T.W., Worst, B.C., Kool, M., Zapatka, M., Jäger, N., Chavez, L., Hutter, B., Bieg, M.,
571 Paramasivam, N., Heinold, M., Gu, Z., Ishaque, N., Jäger-Schmidt, C., Imbusch, C.D., Jugold, A., Hübschmann, D., Risch,
572 T., Amstislavskiy, V., Gonzalez, F.G.R., Weber, U.D., Wolf, S., Robinson, G.W., Zhou, X., Wu, G., Finkelstein, D., Liu,
573 Y., Cavalli, F.M.G., Luu, B., Ramaswamy, V., Wu, X., Koster, J., Ryzhova, M., Cho, Y.-J., Pomeroy, S.L., Herold-Mende,
574 C., Schuhmann, M., Ebinger, M., Liau, L.M., Mora, J., McLendon, R.E., Jabado, N., Kumabe, T., Chuah, E., Ma, Y.,
575 Moore, R.A., Mungall, A.J., Mungall, K.L., Thiessen, N., Tse, K., Wong, T., Jones, S.J.M., Witt, O., Milde, T., Deimling,
576 von, A., Capper, D., Korshunov, A., Yaspo, M.-L., Kriwacki, R., Gajjar, A., Zhang, J., Beroukhim, R., Fraenkel, E., Korbel,
577 J.O., Brors, B., Schlesner, M., Eils, R., Marra, M.A., Pfister, S.M., Taylor, M.D., Lichter, P., 2017. The whole-genome
578 landscape of medulloblastoma subtypes. *Nature* 547, 311–317. doi:10.1038/nature22973

579 Northcott, P.A., Jones, D.T.W., Kool, M., Robinson, G.W., Gilbertson, R.J., Cho, Y.-J., Pomeroy, S.L., Korshunov, A.,
580 Lichter, P., Taylor, M.D., Pfister, S.M., 2012. Medulloblastomics: the end of the beginning. *Nat. Rev. Cancer* 12, 818–
581 834. doi:10.1038/nrc3410

582 Northcott, P.A., Korshunov, A., Witt, H., Hielscher, T., Eberhart, C.G., Mack, S., Bouffet, E., Clifford, S.C., Hawkins,
583 C.E., French, P., Rutka, J.T., Pfister, S., Taylor, M.D., 2011. Medulloblastoma comprises four distinct molecular variants.
584 *J. Clin. Oncol.* 29, 1408–1414. doi:10.1200/JCO.2009.27.4324

585 Northcott, P.A., Lee, C., Zichner, T., Stütz, A.M., Erkek, S., Kawauchi, D., Shih, D.J.H., Hovestadt, V., Zapatka, M.,
586 Sturm, D., Jones, D.T.W., Kool, M., Remke, M., Cavalli, F.M.G., Zuyderduyn, S., Bader, G.D., VandenBerg, S., Esparza,
587 L.A., Ryzhova, M., Wang, W., Wittmann, A., Stark, S., Sieber, L., Seker-Cin, H., Linke, L., Kratochwil, F., Jäger, N.,
588 Buchhalter, I., Imbusch, C.D., Zipprich, G., Raeder, B., Schmidt, S., Diessl, N., Wolf, S., Wiemann, S., Brors, B.,
589 Lawerenz, C., Eils, J., Warnatz, H.-J., Risch, T., Yaspo, M.-L., Weber, U.D., Bartholomae, C.C., Kalle, von, C., Turányi,
590 E., Hauser, P., Sandén, E., Darabi, A., Siesjö, P., Sterba, J., Zitterbart, K., Sumerauer, D., van Sluis, P., Versteeg, R.,
591 Volckmann, R., Koster, J., Schuhmann, M.U., Ebinger, M., Grimes, H.L., Robinson, G.W., Gajjar, A., Mynarek, M., Hoff,
592 von, K., Rutkowski, S., Pietsch, T., Scheurlen, W., Felsberg, J., Reifenberger, G., Kulozik, A.E., Deimling, von, A., Witt,
593 O., Eils, R., Gilbertson, R.J., Korshunov, A., Taylor, M.D., Lichter, P., Korbel, J.O., Wechsler-Reya, R.J., Pfister, S.M.,
594 2014. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. *Nature* 511, 428–434.
595 doi:10.1038/nature13379

596 Okugawa, Y., Toiyama, Y., Shigeyasu, K., Yamamoto, A., Shigemori, T., Yin, C., Ichikawa, T., Yasuda, H., Fujikawa,
597 H., Yoshiyama, S., Hiro, J., Ohi, M., Araki, T., Kusunoki, M., Goel, A., 2018. Enhanced AZIN1 RNA editing and
598 overexpression of its regulatory enzyme ADAR1 are important prognostic biomarkers in gastric cancer. *J Transl Med* 16,
599 366–11. doi:10.1186/s12967-018-1740-z

600 Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.-A., Trapnell, C., 2017. Single-cell mRNA quantification and differential
601 analysis with Census. *Nat. Methods* 14, 309–315. doi:10.1038/nmeth.4150

602 Ramaswamy, V., Remke, M., Bouffet, E., Faria, C.C., Perreault, S., Cho, Y.-J., Shih, D.J., Luu, B., Dubuc, A.M., Northcott,
603 P.A., Schüller, U., Gururangan, S., McLendon, R., Bigner, D., Fouladi, M., Ligon, K.L., Pomeroy, S.L., Dunn, S., Triscott,
604 J., Jabado, N., Fontebasso, A., Jones, D.T.W., Kool, M., Karajannis, M.A., Gardner, S.L., Zagzag, D., Nunes, S., Pimentel,
605 J., Mora, J., Lipp, E., Walter, A.W., Ryzhova, M., Zheludkova, O., Kumirova, E., Alshami, J., Croul, S.E., Rutka, J.T.,
606 Hawkins, C., Tabori, U., Codispoti, K.-E.T., Packer, R.J., Pfister, S.M., Korshunov, A., Taylor, M.D., 2013. Recurrence
607 patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. *Lancet Oncol.* 14, 1200–1207.
608 doi:10.1016/S1470-2045(13)70449-2

609 Robinson, G.W., Orr, B.A., Wu, G., Gururangan, S., Lin, T., Qaddoumi, I., Packer, R.J., Goldman, S., Prados, M.D.,
610 Desjardins, A., Chintagumpala, M., Takebe, N., Kaste, S.C., Rusch, M., Allen, S.J., Onar-Thomas, A., Stewart, C.F.,
611 Fouladi, M., Boyett, J.M., Gilbertson, R.J., Curran, T., Ellison, D.W., Gajjar, A., 2015. Vismodegib Exerts Targeted
612 Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor
613 Consortium Studies PBTC-025B and PBTC-032. *J. Clin. Oncol.* 33, 2646–2654. doi:10.1200/JCO.2014.60.1591

614 Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative
615 genomics viewer. *Nat. Biotechnol.* 29, 24–26. doi:10.1038/nbt.1754

616 Ryan, S.L., Schwalbe, E.C., Cole, M., Lu, Y., Lusher, M.E., Megahed, H., O'Toole, K., Nicholson, S.L., Bognár, L.,
617 Garami, M., Hauser, P., Korshunov, A., Pfister, S.M., Williamson, D., Taylor, R.E., Ellison, D.W., Bailey, S., Clifford,
618 S.C., 2012. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood
619 medulloblastoma. *Acta Neuropathol.* 123, 501–513. doi:10.1007/s00401-011-0923-y

620 Schwalbe, E.C., Lindsey, J.C., Nakjang, S., Crosier, S., Smith, A.J., Hicks, D., Rafiee, G., Hill, R.M., Iliasova, A., Stone,
621 T., Pizer, B., Michalski, A., Joshi, A., Wharton, S.B., Jacques, T.S., Bailey, S., Williamson, D., Clifford, S.C., 2017. Novel
622 molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study.
623 *Lancet Oncol.* doi:10.1016/S1470-2045(17)30243-7

624 Schwalbe, E.C., Williamson, D., Lindsey, J.C., Hamilton, D., Ryan, S.L., Megahed, H., Garami, M., Hauser, P.,
625 Dembowska-Baginska, B., Perek, D., Northcott, P.A., Taylor, M.D., Taylor, R.E., Ellison, D.W., Bailey, S., Clifford, S.C.,
626 2013. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction
627 using formalin-fixed biopsies. *Acta Neuropathol.* 125, 359–371. doi:10.1007/s00401-012-1077-2

628 Sharma, T., Schwalbe, E.C., Williamson, D., Sill, M., Hovestadt, V., Mynarek, M., Rutkowski, S., Robinson, G.W., Gajjar,
629 A., Cavalli, F., Ramaswamy, V., Taylor, M.D., Lindsey, J.C., Hill, R.M., Jäger, N., Korshunov, A., Hicks, D., Bailey, S.,
630 Kool, M., Chavez, L., Northcott, P.A., Pfister, S.M., Clifford, S.C., 2019. Second-generation molecular subgrouping of
631 medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. *Acta Neuropathol.* 34, 396–18.
632 doi:10.1007/s00401-019-02020-0

633 Shigeyasu, K., Okugawa, Y., Toden, S., Miyoshi, J., Toiyama, Y., Nagasaka, T., Takahashi, N., Kusunoki, M., Takayama,
634 T., Yamada, Y., Fujiwara, T., Chen, L., Goel, A., 2018. AZIN1 RNA editing confers cancer stemness and enhances
635 oncogenic potential in colorectal cancer. *JCI Insight* 3. doi:10.1172/jci.insight.99976

636 Shihab, H.A., Gough, J., Cooper, D.N., Stenson, P.D., Barker, G.L.A., Edwards, K.J., Day, I.N.M., Gaunt, T.R., 2013.
637 Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov
638 models. *Hum Mutat* 34, 57–65. doi:10.1002/humu.22225

639 Shirai, Y., Li, W., Suzuki, T., 2017. Role of Splice Variants of Gtf2i, a Transcription Factor Localizing at Postsynaptic
640 Sites, and Its Relation to Neuropsychiatric Diseases. *Int J Mol Sci* 18, 411. doi:10.3390/ijms18020411

641 Shirai, Y., Watanabe, M., Sakagami, H., Suzuki, T., 2015. Novel splice variants in the 5“UTR of Gtf2i expressed in the rat
642 brain: alternative 5”UTRs and differential expression in the neuronal dendrites. *J Neurochem* 134, 578–589.
643 doi:10.1111/jnc.13136

644 Tamayo, P., Scanfeld, D., Ebert, B.L., Gillette, M.A., Roberts, C.W.M., Mesirov, J.P., 2007. Metagene projection for cross-
645 platform, cross-species characterization of global transcriptional states. *Proc. Natl. Acad. Sci. U.S.A.* 104, 5959–5964.
646 doi:10.1073/pnas.0701068104

647 Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.-J., Clifford, S.C., Eberhart, C.G., Parsons, D.W.,
648 Rutkowski, S., Gajjar, A., Ellison, D.W., Lichter, P., Gilbertson, R.J., Pomeroy, S.L., Kool, M., Pfister, S.M., 2012.
649 Molecular subgroups of medulloblastoma: the current consensus. *Acta Neuropathol.* 123, 465–472. doi:10.1007/s00401-
650 011-0922-z

651 Thompson, M.C., Fuller, C., Hogg, T.L., Dalton, J., Finkelstein, D., Lau, C.C., Chintagumpala, M., Adesina, A., Ashley,
652 D.M., Kellie, S.J., Taylor, M.D., Curran, T., Gajjar, A., Gilbertson, R.J., 2006. Genomics identifies medulloblastoma
653 subgroups that are enriched for specific genetic alterations. *J. Clin. Oncol.* 24, 1924–1931. doi:10.1200/JCO.2005.04.4974

654 Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K.,
655 Roazen, D., Thibault, J., Banks, E., Garimella, K.V., Altshuler, D., Gabriel, S., DePristo, M.A., 2013. From FastQ data to
656 high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* 43,
657 11.10.1–11.10.33. doi:10.1002/0471250953.bi1110s43

658 Vladoiu, M.C., El-Hamamy, I., Donovan, L.K., Farooq, H., Holgado, B.L., Sundaravadanam, Y., Ramaswamy, V.,
659 Hendrikse, L.D., Kumar, S., Mack, S.C., Lee, J.J.Y., Fong, V., Jurashcka, K., Przelicki, D., Michealraj, A., Skowron, P.,
660 Luu, B., Suzuki, H., Morrissey, A.S., Cavalli, F.M.G., Garzia, L., Daniels, C., Wu, X., Qazi, M.A., Singh, S.K., Chan, J.A.,
661 Marra, M.A., Malkin, D., Dirks, P., Heisler, L., Pugh, T., Ng, K., Notta, F., Thompson, E.M., Kleinman, C.L., Joyner,
662 A.L., Jabado, N., Stein, L., Taylor, M.D., 2019. Childhood cerebellar tumours mirror conserved fetal transcriptional
663 programs. *Nature* 572, 67–73. doi:10.1038/s41586-019-1158-7

664 **Figure Legends**

665 **Figure 1**

666 **A:** Heatmap showing 4 consensus NMF metagenes calculated for n=331 MB and grouped by subgroup.
667 MB_{Grp3}/MB_{Grp4} individuals are ordered by G3/G4 score. Annotation shows subgroup as determined by RNA-
668 seq (Expression Subgroup), subgroup as determined by methylation (Methylation Subgroup), methylation
669 MB_{Grp3}/MB_{Grp4} subtype (I-VIII) as per Sharma *et al* 2019(Sharma et al., 2019) defined using MNPV2
670 classifier(Capper et al., 2018) (Grp3/4 Subtype). All other characteristics are indicated to be present or not by
671 dark grey shading according to the following scheme: Infant = age at diagnosis < 3 years, Adult = age at
672 diagnosis > 16 years, DN = Desmoplastic/Nodular, LCA = Large-cell/anaplastic, STR = Sub-Total Resection,
673 DOD=Dead of Disease. Side annotation (top left) shows a heatmap of chi-square residuals indicating subgroup
674 enrichment and significance where relevant. The line plot (bottom) shows G3/G4 score. **B:** t-SNE plot showing
675 MB_{Grp3}/MB_{Grp4} samples shaded by subgroup (top) and methylation MB_{Grp3}/MB_{Grp4} subtype (I-VIII) (bottom).
676 **C:** Violin plot showing G3/G4 score by MB_{Grp3}/MB_{Grp4} subtype (I-VIII).

677 **Figure 2**

678 **A:** Rug plot showing distribution of clinico-path features with respect to G3/G4 score. Summary counts are
679 given according to the divisions of HighG4, LowG4, G3.5, LowG3, HighG3 and reflected by the red line plots.
680 Presence of a feature is indicated by a bold tick mark the color of which indicates methylation MB_{Grp3}/MB_{Grp4}
681 subtype (I-VIII). Adjusted p-values for a Kolmogorov-Smirnoff statistic (D) are shown to denote non-random
682 distribution of features with respect to G3/G4 score. Mismatch=mismatch between methylation and expression
683 call, Infant=age at diagnosis < 3 years, M+=Metastatic, DOD=Dead of Disease, LCA = Large-Cell/anaplastic,
684 PRDM6 = *PRDM6* rearrangement. **B:** Kaplan-Meier plot showing significant differences in MB_{Grp3}/MB_{Grp4}
685 overall survival by G3/G4 continuum position. **C:** Forest plot showing a multivariate Cox model fitted to
686 progression free survival and containing the independently significant variables High G3, *MYC* amplification,
687 LCA and M+.

688 **Figure 3**

689 **A:** Fitted sigmoid curve representing the relationship between CpG beta-value and G3/G4 Score. Top 40 most
690 discriminatory CpGs distinguishing HighG4 (dark green), LowG4 (light green), Low G3 (yellow) and High G3
691 (orange) are shown. **B:** The performance of the cross-validated random forest classifier showing predicted
692 G3/G4 score (derived from DNA methylation values) against actual G3/G4 score (derived from RNA-seq) n =
693 192. **C:** Violin plot showing G3/G4 score (derived from methylation) by MB_{Grp3}/MB_{Grp4} (I-VIII) subtype. **D:**
694 Kaplan-Meier plot showing significant differences in MB_{Grp3}/MB_{Grp4} overall survival in patients aged > 3 years
695 by G3/G4 score (as derived from methylation values) n = 589.

696 **Figure 4**

697 **A:** Scatterplot showing significant correlation (p<0.001) between *MYC* expression and G3/G4 score. Log-linear
698 line of best fit is shown. Dotted lines divide into High G4, Low G4, G3.5, Low G3, High G3 and Log2 fold
699 change for each category relative to HighG4 are shown. **B:** GSEA enrichment plot showing significant
700 enrichment of *MYC* target genes. Genes were ranked by correlation with G3/G4 score. **C:** Heatmap of ssGSEA
701 results showing level of pathway enrichment for 223 MB_{Grp3}/MB_{Grp4} individuals ordered by G3/G4 score.
702 MsigDB pathways are curated into pathways (see methods). **D:** Lollipop plot showing mean beta fold change
703 for DMRs within MB_{Grp3}/MB_{Grp4} specific enhancers/superenhancers. The position on the x axis reflects the
704 average point on the continuum at which the methylation level switches from hypo- to hypermethylation. **E:**
705 Plot showing an MB_{Grp3}/MB_{Grp4} specific enhancer within the MB_{Grp3} specific gene *LMX1A* which overlaps with
706 a differentially methylated region significantly associated with the G3/G4 continuum. The mean beta value per
707 G3/G4 category (High G4, Low G4, G3.5, Low G3, High G3) and MB_{Grp3}/MB_{Grp4} subtype (I-VIII) is shown by
708 line and the 95%CI by shaded area.

709 **Figure 5**

710 **A:** Heatmap showing expression of top significantly differentially expressed isoforms of genes whose overall
711 expression is otherwise not significantly differentially expressed with respect to G3/G4 score. **B:** Schematic
712 showing exon structure of 4 *GTF2I* isoforms significantly differentially expressed with respect to G3/G4 score
713 (left) and scatterplot showing expression of these *GTF2I* isoforms vs G3/G4 score; line represents fitted log-
714 linear model NB: *GTF2I* is not significantly differentially expressed at the gene level. **C:** Top 10 significantly

715 differentially edited non-synonymous RNA editing positions with respect to G3/G4 score. **D:** Boxplot showing
716 level of T>C RNA editing at a non-synonymous position S367G within *AZIN1*; level of editing is significantly
717 associated with G3/G4 score.

718 **Figure 6**

719 **A:** Violin plot showing per-cell G3/G4 score (derived from projection onto scRNA-seq data) for 15
720 MB_{Grp3}/MB_{Grp4} patients aggregated by subtype. **B:** Ridgeplot showing distribution of per-cell G3/G4 score
721 (derived from projection onto scRNA-seq data) for each of 15 MB_{Grp3}/MB_{Grp4} patients shown alongside the
722 G3/G4 score distribution of equivalent subtype bulk tumors. n=x refers to number of individuals for bulk tumors
723 and number of cells for the scRNA-seq data.

724 **Figure 7**

725 **A:** UMAP plot of scRNA-seq profiles showing 12,243 cells of the rhombic lip lineage arranged according to
726 developmental trajectory which is indicated by black line. Color denotes cell type as determined by graph based
727 clustering; RL=Rhombic Lip precursors, GCP=Granule Cell Precursors, GN-I, GN-II, GN-III, GN-IV = four
728 Granule Neuron cell types, eCN/UBC=excitory Cerebellar Neurons/Unipolar Brush Cells. **B:** UMAP plot of
729 the rhombic lip lineage with those cells within the top decile of metagene expression are marked with the
730 following colors: MB_{Grp4}=green, MB_{Grp3}=yellow, MB_{SHH}=red, MB_{WNT}=blue. **C:** Scatterplot showing per-cell
731 scaled metagene expression along the RL to eCN/UBC branch. Fitted sigmoid curves are shown with SD
732 indicated as dashed lines. The grey line represents a sigmoid curve fitted to per-cell G3/G4 score as a function
733 of pseudotime. **D:** Scatterplot showing per-cell scaled metagene expression along the GCP to GN branch. Fitted
734 curves are shown with SD shown as dashed lines. Curves are scaled to be constrained to a range of 0 and 1, in
735 order to be coherent with bulk analysis. For this reason, by definition, some individual cells lie outside the 0
736 and 1 range.

737 **Figure 8**

738 **A:** Schema showing the RL to eCN/UBC developmental branch, the relationship between pseudotime and
739 G3/G4 score and the staging of key tumor characteristics. From top to bottom: a violin plot showing pseudotime
740 distribution of cells by time of sampling, color transition red to purple marks the point along the developmental
741 trajectory where cells are defined as eCN/UBC. A fitted sigmoid curve showing the relationship between

742 pseudotime and G3/G4 score. Tumor characteristics are transformed from the G3/G4 scale to the pseudotime
743 scale and marked at the appropriate points. Color bars represent subgroups. Methylation subtypes (I-VIII),
744 mutations and copy number changes are marked by box and whisker. Dot represents median distribution thick
745 line represent the interquartile range and the thinner lines corresponds to range. Dotted lines denote where the
746 range extends up to a G3/G4 score of 0 and 1, i.e. matching the *ne plus ultra* pseudotime after which G3/G4
747 score is unchanged and exact relationship must be extrapolated. **B:** Schematic showing the GCP to GN
748 developmental branch, the relationship between pseudotime and MB_{SHH-Infant} or MB_{SHH-Child} metagene. From top
749 to bottom: a violin plot showing pseudotime distribution of cells by time of sample, color transition green to
750 blue marks the point along the developmental trajectory where cells become defined as GN. A loess curve
751 showing the relationship between pseudotime and MB_{SHH-Infant} (red) or MB_{SHH-Child} metagene (dark red). Color
752 bars show parts of trajectory paralleled by MB_{SHH-Infant} or MB_{SHH-Child} tumors. **C:** UMAP of developmental
753 trajectory marked with colors to denote parts most associated with each MB subgroup and the relevant
754 pseudotime (PsT) scale.

755 **Figure 1S**

756 **A:** Heatmap showing copy number changes by chromosome for n=331 MB and grouped by subgroup.
757 MB_{Grp3}/MB_{Grp4} individuals are ordered by G3/G4 score. Column annotation shows subgroup as determined by
758 RNA-seq (Expression Subgroup) as determined by DNA methylation array (Methylation Subgroup), and DNA
759 methylation MB_{Grp3}/MB_{Grp4} subtype (I-VIII) as per Sharma *et al* 2019(Sharma et al., 2019) as defined using
760 MNPy2 classifier(Capper et al., 2018) (Grp3/4 Subtype). The line plot (bottom) shows G3/G4 score. **B:** Rug
761 plot showing distribution of aneuploidy/copy number change with respect to G3/G4 score. Summary counts are
762 given according to the convenient divisions of HighG4, LowG4, G3.5, LowG3, HighG3 and reflected by the
763 red line plots. Presence of a given feature is indicated by a bold tick mark, the color of which indicates
764 methylation MB_{Grp3}/MB_{Grp4} subtype (I-VIII). Adjusted P-values for a Kolmogorov-Smirnoff statistic (D) are
765 shown to denote non-random distribution of features with respect to G3/G4 score.

766 **Figure 2S**

767 **A:** Heatmap showing 4 consensus NMF metagenes calculated for n=331 MB and grouped by subgroup.
768 MB_{Grp3}/MB_{Grp4} individuals are ordered by G3/G4 score. Column annotation shows subgroup as determined by

769 RNA-seq (Expression Subgroup) as determined by methylation (Methylation Subgroup), methylation
770 MB_{Grp3}/MB_{Grp4} subtype (I-VIII) as per Sharma *et al* 2019 as defined using MNpV2 classifier (Grp3/4 Subtype).
771 Presence of mutations are indicated to be present or not by dark grey shading. White indicates missing data. **B:**
772 Rug plot showing distribution of mutations with respect to G3/G4 score. Summary counts are given according
773 to the convenient divisions of HighG4, LowG4, G3.5, LowG3, HighG3 and reflected by the red line plots.
774 Presence of a given feature is indicated by a bold tick mark the color of which indicates methylation
775 MB_{Grp3}/MB_{Grp4} subtype (I-VIII). P-values for a Kolmogorov-Smirnoff statistic (D) are shown to denote non-
776 random distribution of features with respect to G3/G4 score.

777 **Figure 3S**

778 **A:** Heatmap showing top 50 genes most significantly differentially expressed (top) and top 50 CpGs
779 differentially methylated between MB_{Grp3} and MB_{Grp4}. Samples are ordered according to G3/G4 score. Note the
780 difference in gradation for the expression values as opposed to the more binary distribution of DNA methylation
781 beta-values. **B:** Heatmap showing DNA methylation values of the top 40 most discriminatory CpGs
782 distinguishing HighG4 (dark green), LowG4 (light green), Low G3 (yellow) and High G3 (orange). G4
783 hypermethylated CpGs are shown on the left and hypomethylated CpGs on the right. Samples are ordered
784 according to G3/G4 score and G3/G4 categories (HighG4, LowG4, G3.5, LowG3, HighG3) are annotated. **C:**
785 Scatterplot showing beta-values for CpG “cg19784198” colored by G3/G4 categories (HighG4, LowG4, G3.5,
786 LowG3, HighG3) an example of a CpG differentially expressed between MB_{Grp3} and MB_{Grp4} showing a bimodal
787 methylation distribution. The relationship with G3/G4 score can effectively be modelled by a sigmoid/logistic
788 function.

789 **Figure 3S**

790 **A:** Rug plot showing distribution of clinicopath features (top) mutations (middle) and copy number (bottom)
791 with respect to G3/G4 score derived from DNA methylation data. Summary counts are given according to the
792 convenient divisions of HighG4, LowG4, G3.5, LowG3, HighG3 and reflected by the red line plots. Presence
793 of a given feature is indicated by a bold tick mark the color of which indicates methylation MB_{Grp3}/MB_{Grp4}
794 subtype (I-VIII). P-values for a Kolmogorov-Smirnoff statistic (D) are shown to denote non-random distribution
795 of features with respect to G3/G4 score. Infant=age at diagnosis < 3 years, Metastases = M+, DOD=Dead of

796 Disease, LCA = Large Cell Anaplasia, PRDM6 = *PRDM6* rearrangement. **B:** Empirical density and rug plots
797 showing the distribution of M+ in MB_{Grp3}/MB_{Grp4} subtype III, LCA in MB_{Grp3}/MB_{Grp4} subtype II and *MYC*
798 amplification in MB_{Grp3}/MB_{Grp4} subtype III with respect to G3/G4 score. The given clinico-pathological features
799 are significantly non randomly distributed with respect to G3/G4 score even within specific MB_{Grp3}/MB_{Grp4}
800 subtypes as shown by Kolmogorov-Smirnoff test (D). **C:** Empirical density and rug plots showing the
801 distribution of copy number changes i17q in MB_{Grp3}/MB_{Grp4} subtype VIII, Gain of chromosome 5 in
802 MB_{Grp3}/MB_{Grp4} subtype II and loss of chromosome 8 in MB_{Grp3}/MB_{Grp4} subtype VI with respect to G3/G4 score.
803 The given copy number features are significantly non randomly distributed with respect to G3/G4 score even
804 within specific MB_{Grp3}/MB_{Grp4} subtypes as shown by Kolmogorov-Smirnoff test (D). **D:** Heatmap showing (z-
805 scores) of either methylation MB_{Grp3}/MB_{Grp4} subtypes (I-VIII) or G3/G4 score as an explanatory variable in a
806 logistic regression determining presence or absence of the indicated clinico-path, copy number changes or
807 mutational characteristics.

808 **Figure 4S**

809 **A:** Kaplan-Meier plot showing significant differences in MB_{Grp3}/MB_{Grp4} overall survival (patients of all ages)
810 by G3/G4 continuum position. **B:** Forest plot showing univariate Cox models (patients > 3 years) of overall
811 survival containing the variables G3/G4 score (as predicted by DNA methylation) treated as a categorical
812 variable and **C:** MB_{Grp3}/MB_{Grp4} methylation subtype.

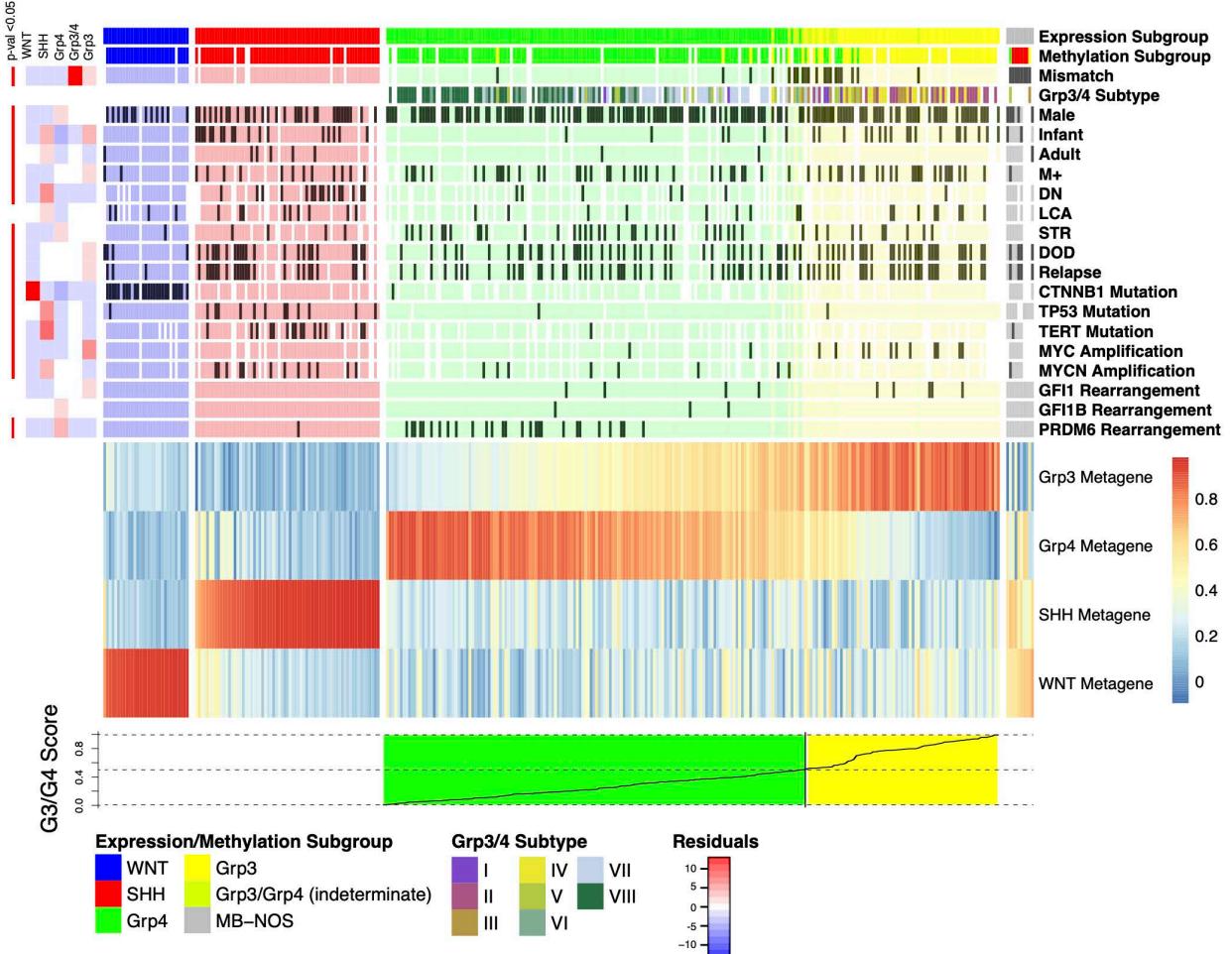
813 **Figure 5S**

814 **A:** Boxplot showing the distribution by MB subgroup of moderately expressed genes, isoforms, CDS or TSS
815 as defined by a TPM>10. **B:** Boxplot showing significant differences in OEI (Overall Editing Index), i.e. level
816 of RNA-editing by MB subgroup.

817 **Figure 6S**

818 Plots showing the per-cell expression of genes whose expression varies according to pseudotime on the **A:** RL
819 to eCN/UBC branch (MB_{Grp3} specific genes are shown on the left and MB_{Grp4} specific genes shown on the right)
820 and the **B:** GCP to GN branch (MB_{SHH-Infant} specific genes are show on the left and MB_{SHH-Child} specific genes

821 are shown on the right). Cell type is denoted by color. Black line represents a loess curve. Expression is
822 represented as normalized count data.


823 **Figure 8S**

824 **A:** Ridgeplots showing (left) distribution of G3/G4 score MB_{Grp3}/MB_{Grp4} patients by methylation subtype (I-
825 VIII) (right) and distribution of age at diagnosis by DNA methylation subtype (I-VIII). **B:** Scatterplot showing
826 age at diagnosis by G3/G4 score (as determined by DNA methylation), 2d empirical density is shown as red
827 shading and a loess curve with 95% CI is shown as blue line with grey shading. **C:** Plot showing 3d weighted
828 empirical density of cells on the RL to eCN/UBC branch in fetal cerebellar development from 9-21 PCW and
829 by pseudotime. Cells were weighted according to the proportion of cerebellar cells sampled at that time point.
830 **D:** Empirical density plots showing (left) distribution of MB_{Grp3}/MB_{Grp4} patients by G3/G4 score and (right) the
831 empirical density cumulatively across 9-21 PCW (essentially the 3d volume under the plane shown in panel C)
832 by pseudotime. Note the similarities in distribution. The dotted line shows the divide between Grp3 and Grp4
833 space on both G3/G4 and pseudotime scales and the percentages relate to the relative amounts of density
834 represented on either side of the divide.

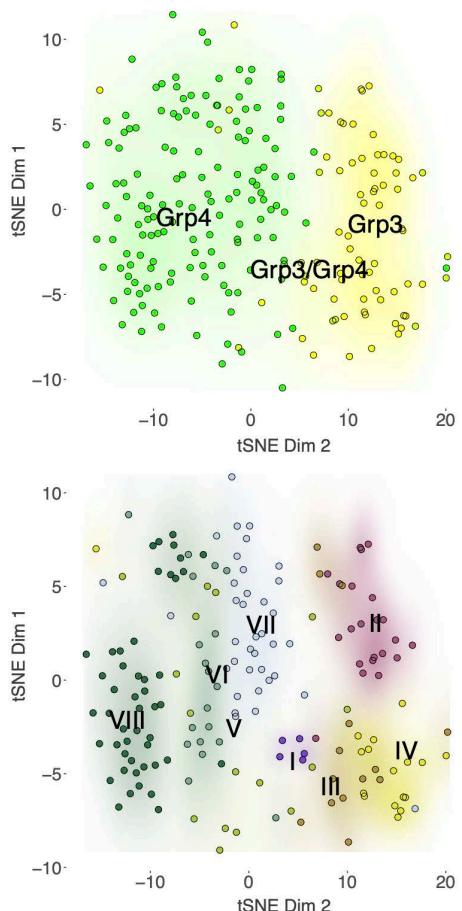
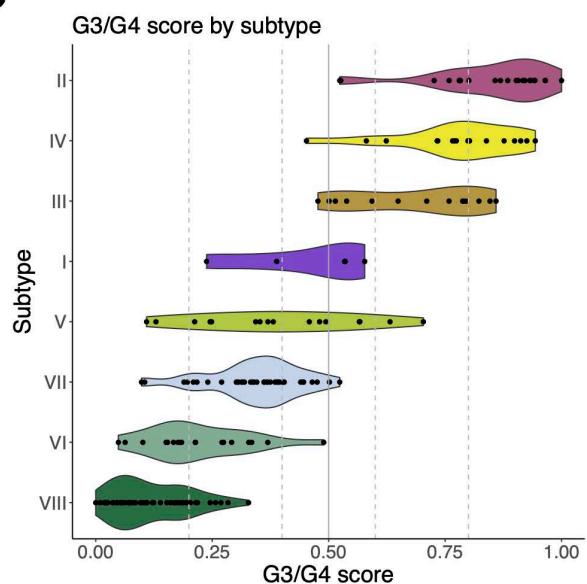
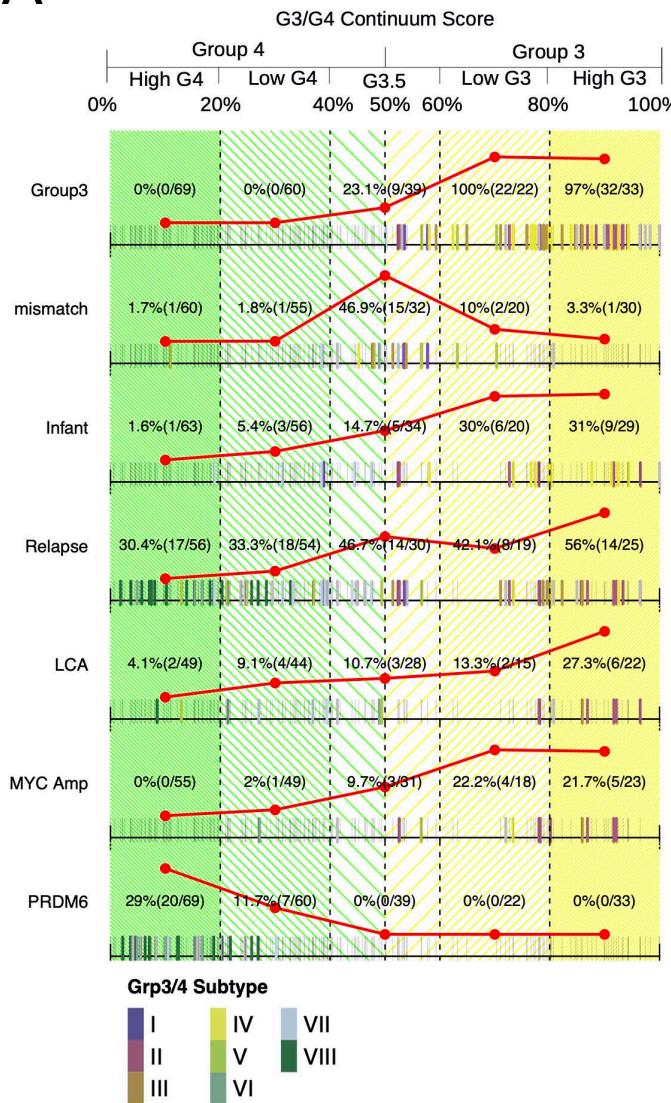

835

Figure 1


A

B



C

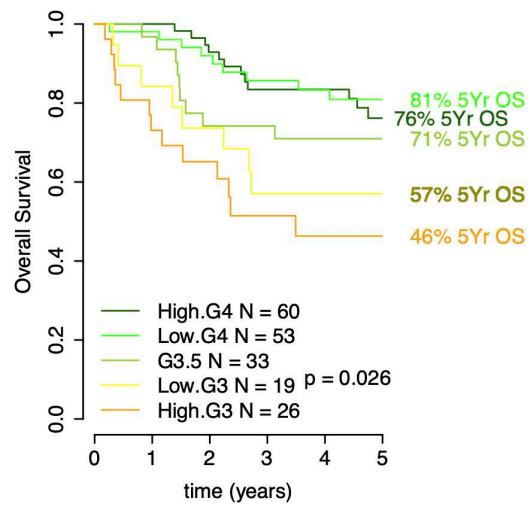
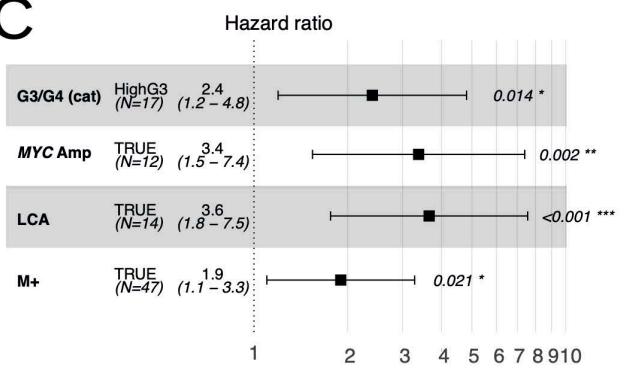
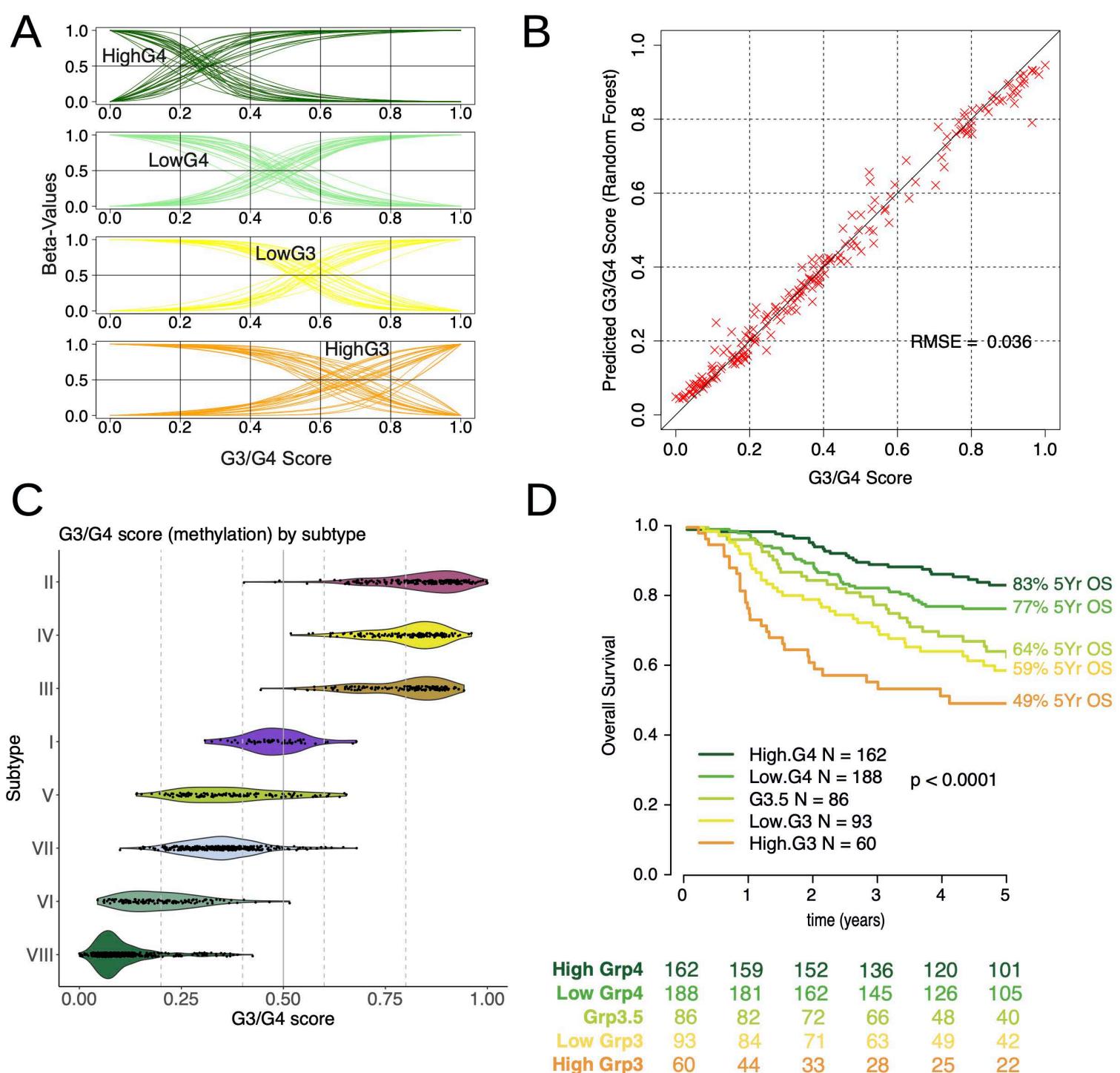


Figure 2


A


B

C

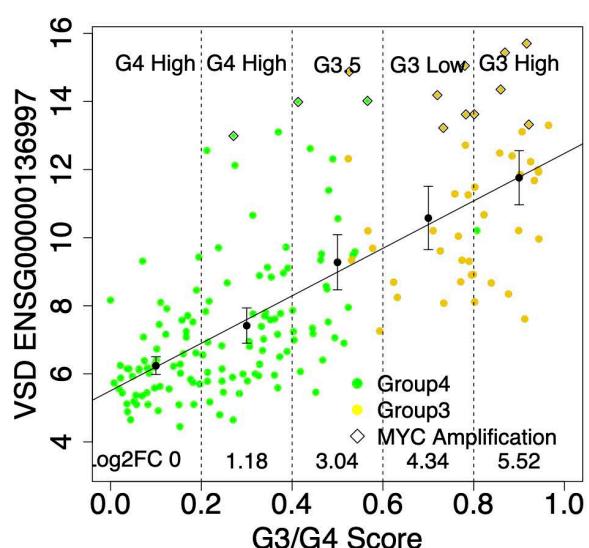


Figure 3

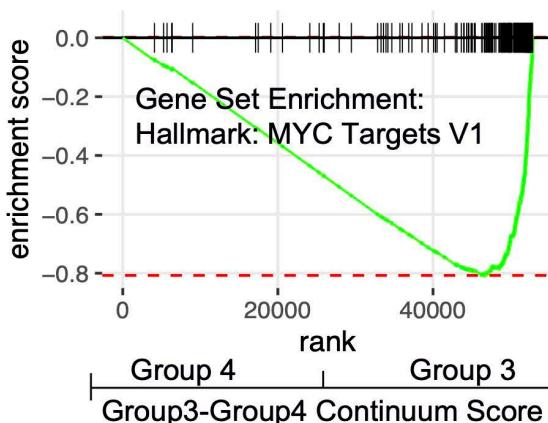
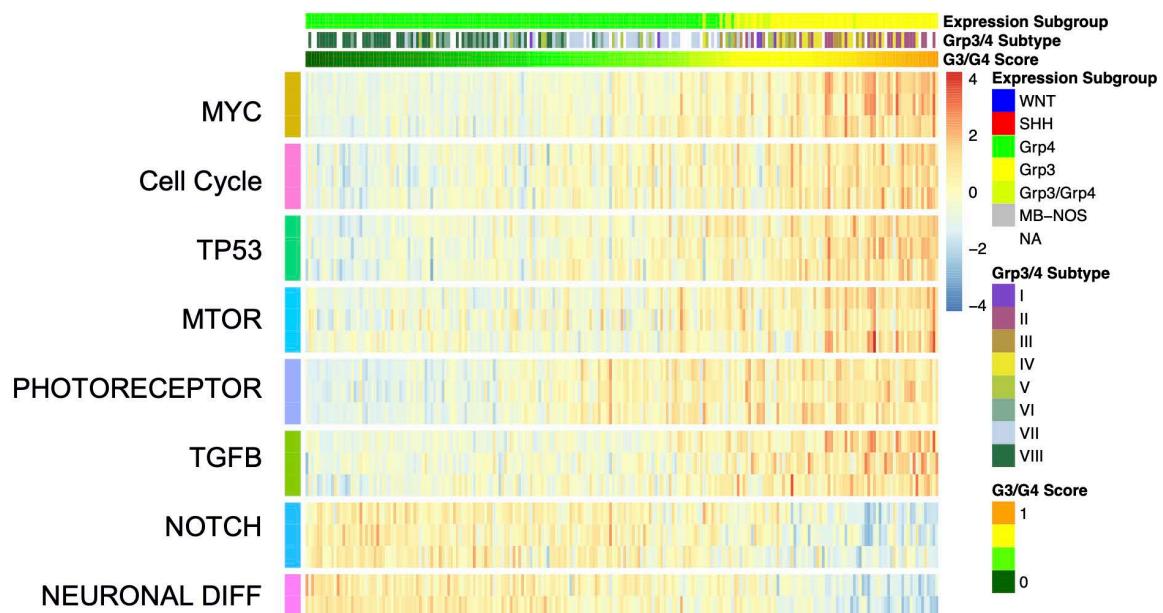
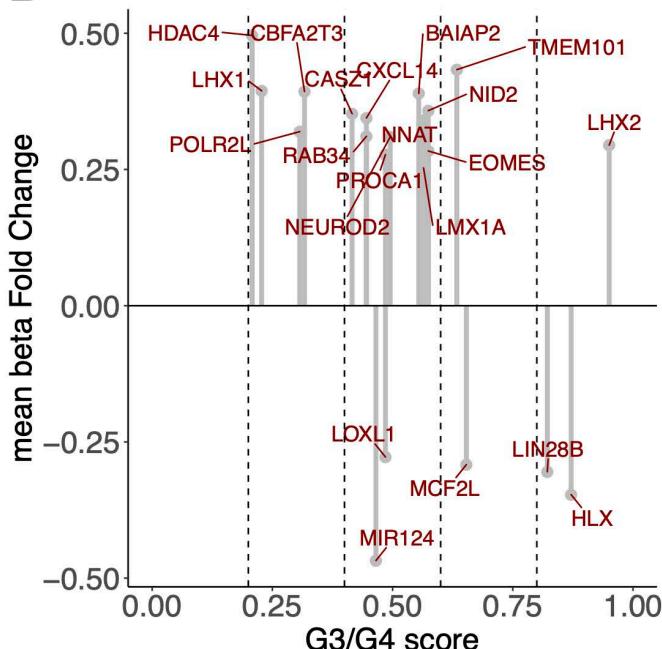
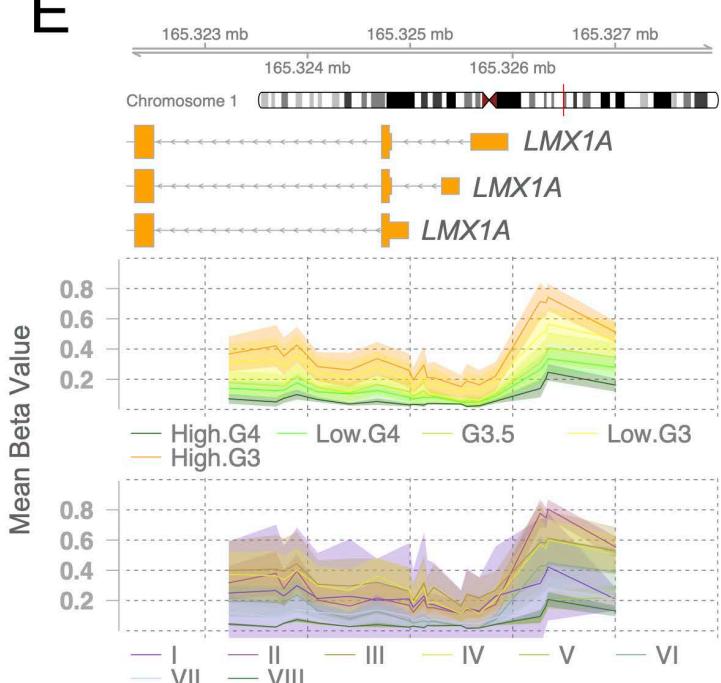


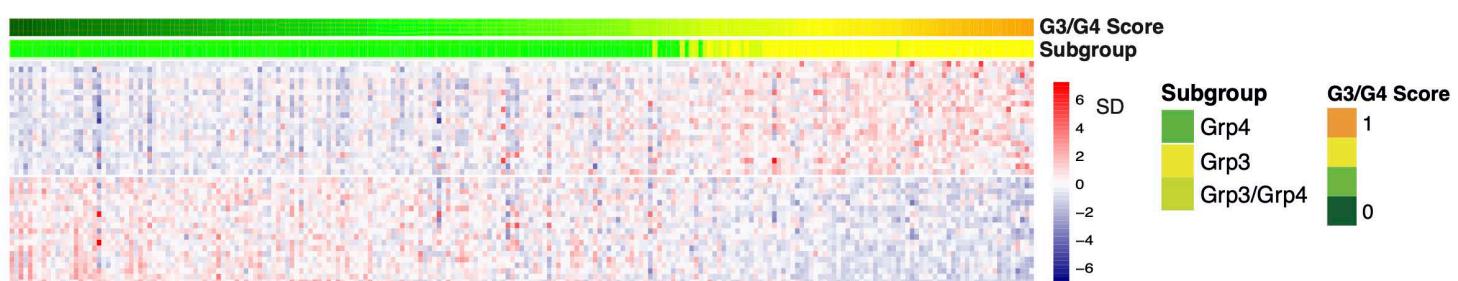
Figure 4


A


B


C

D



E

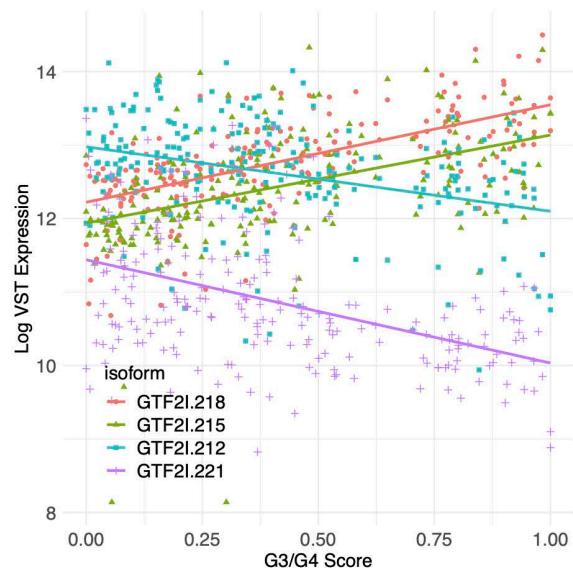
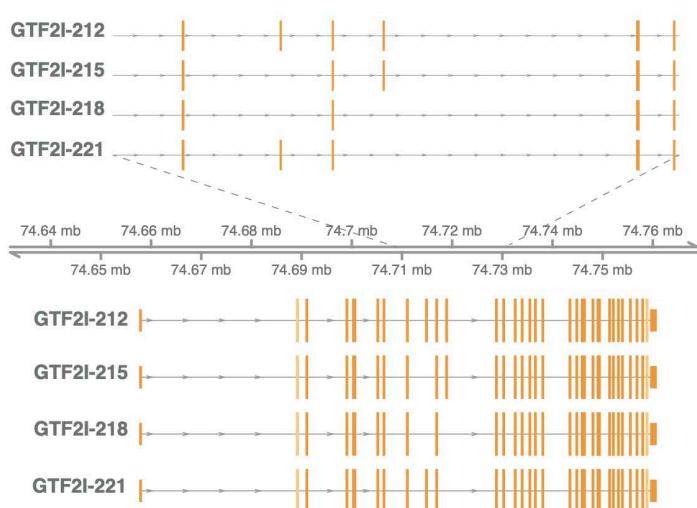
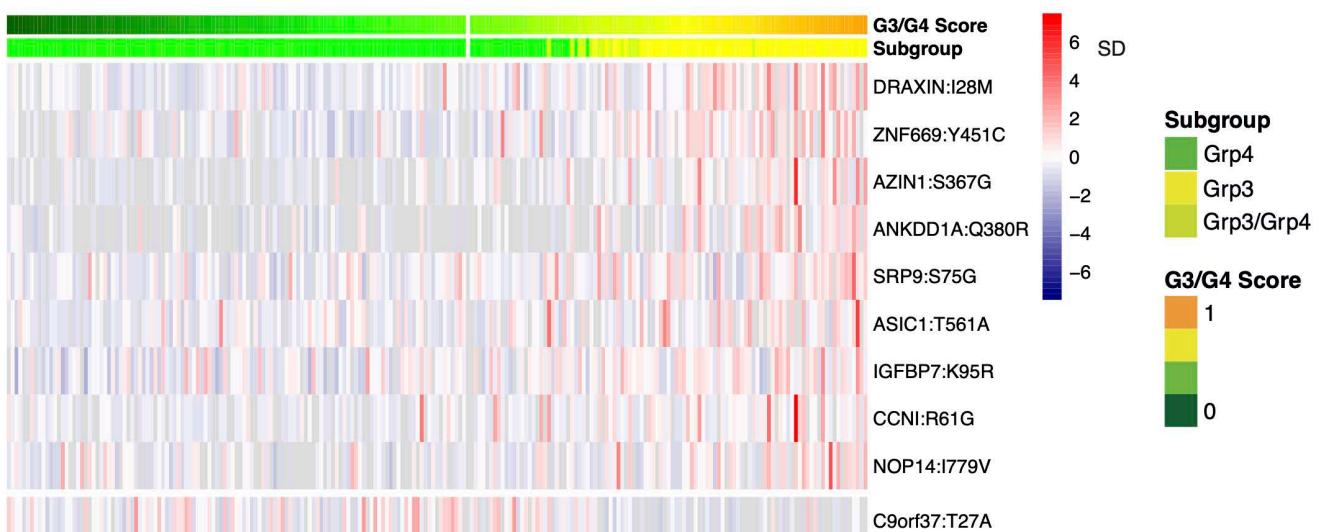
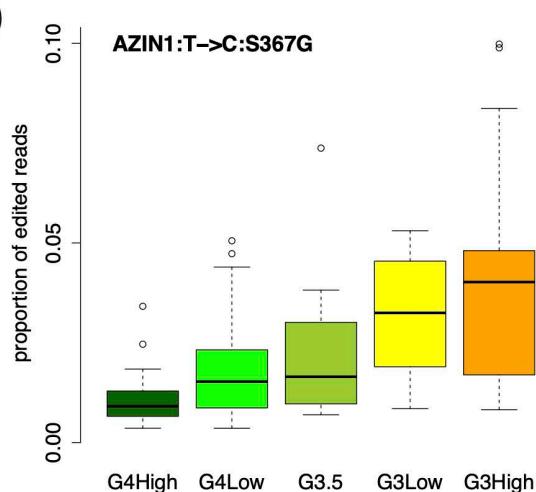
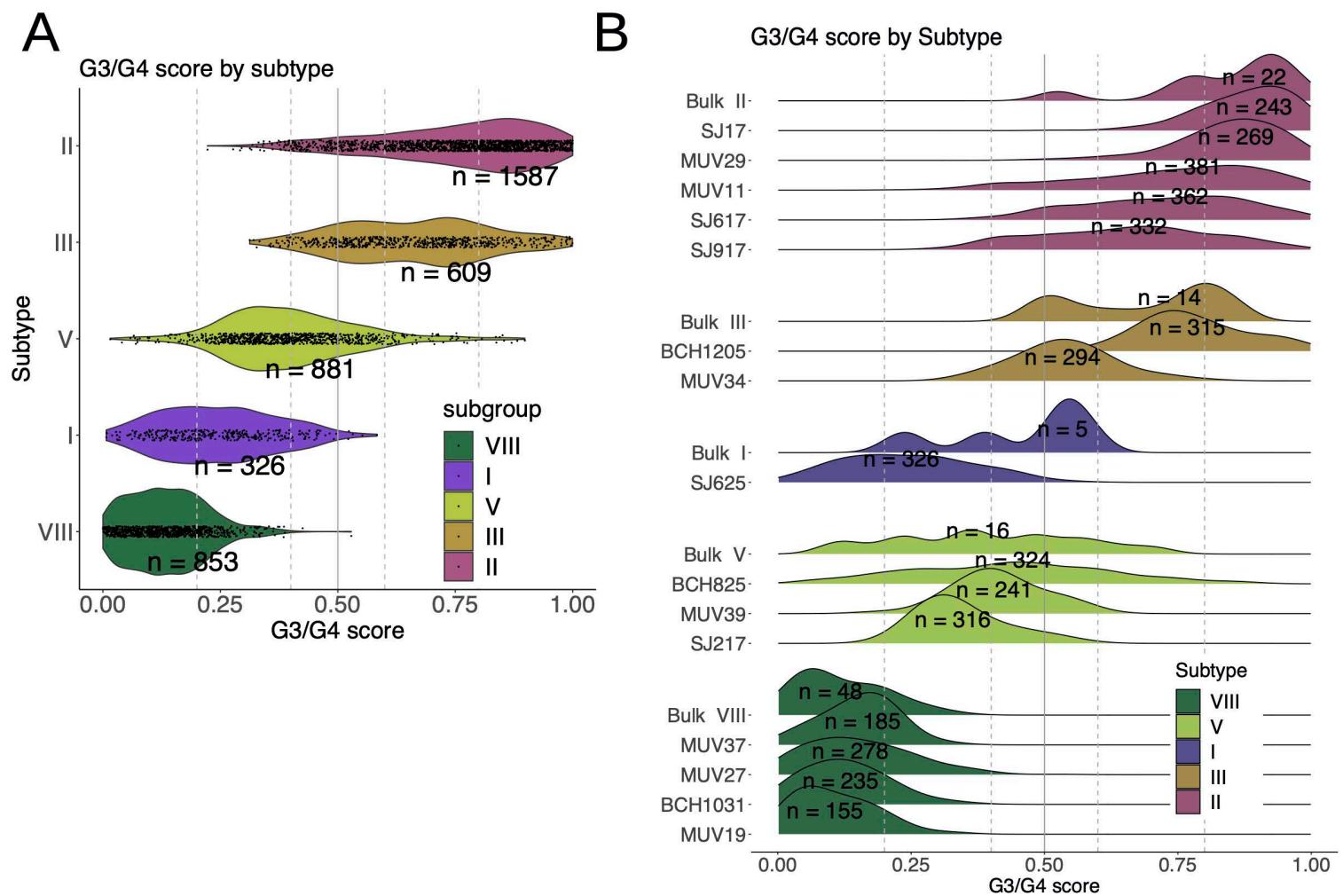
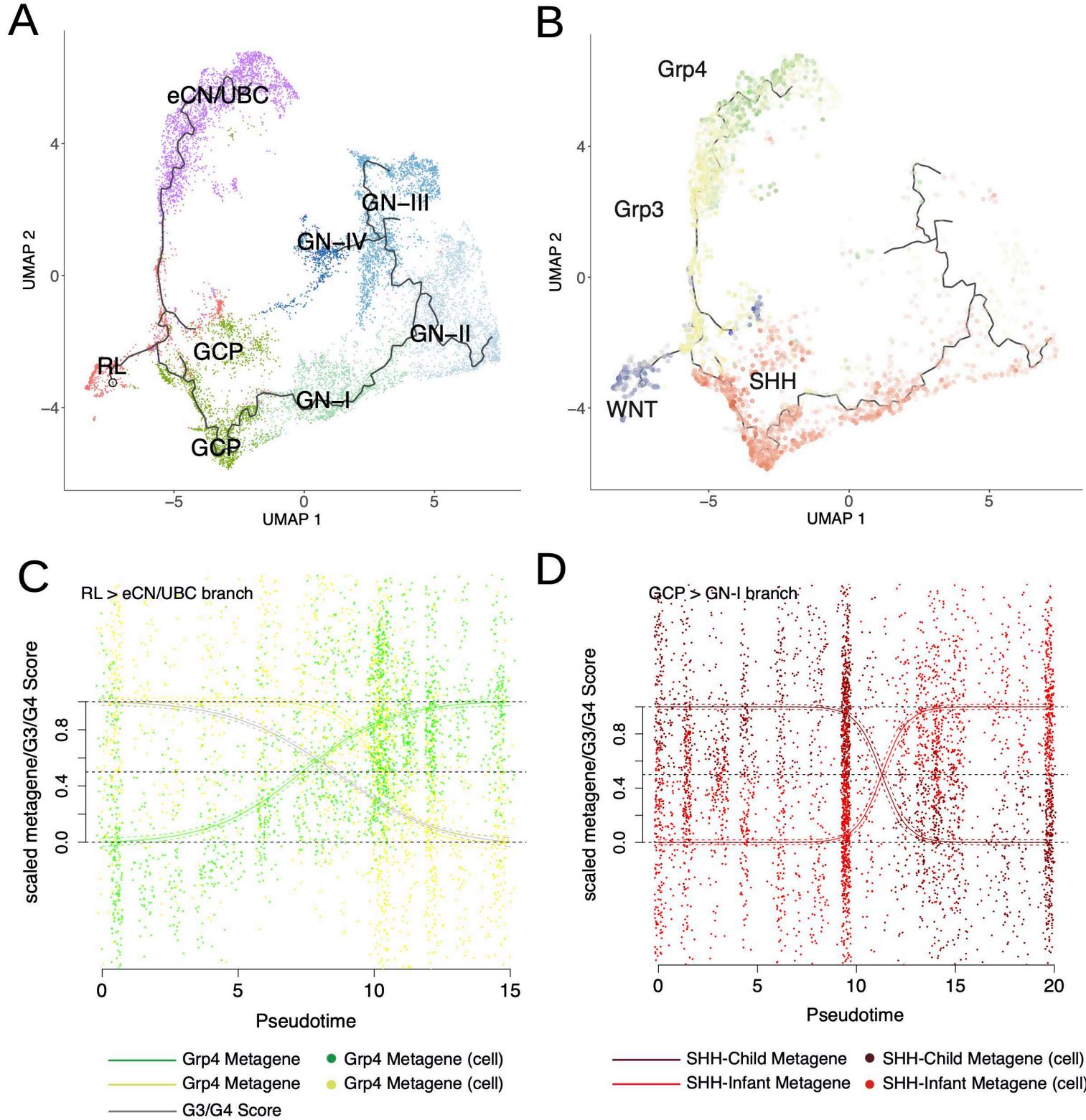



Figure 5


A


B


C


D

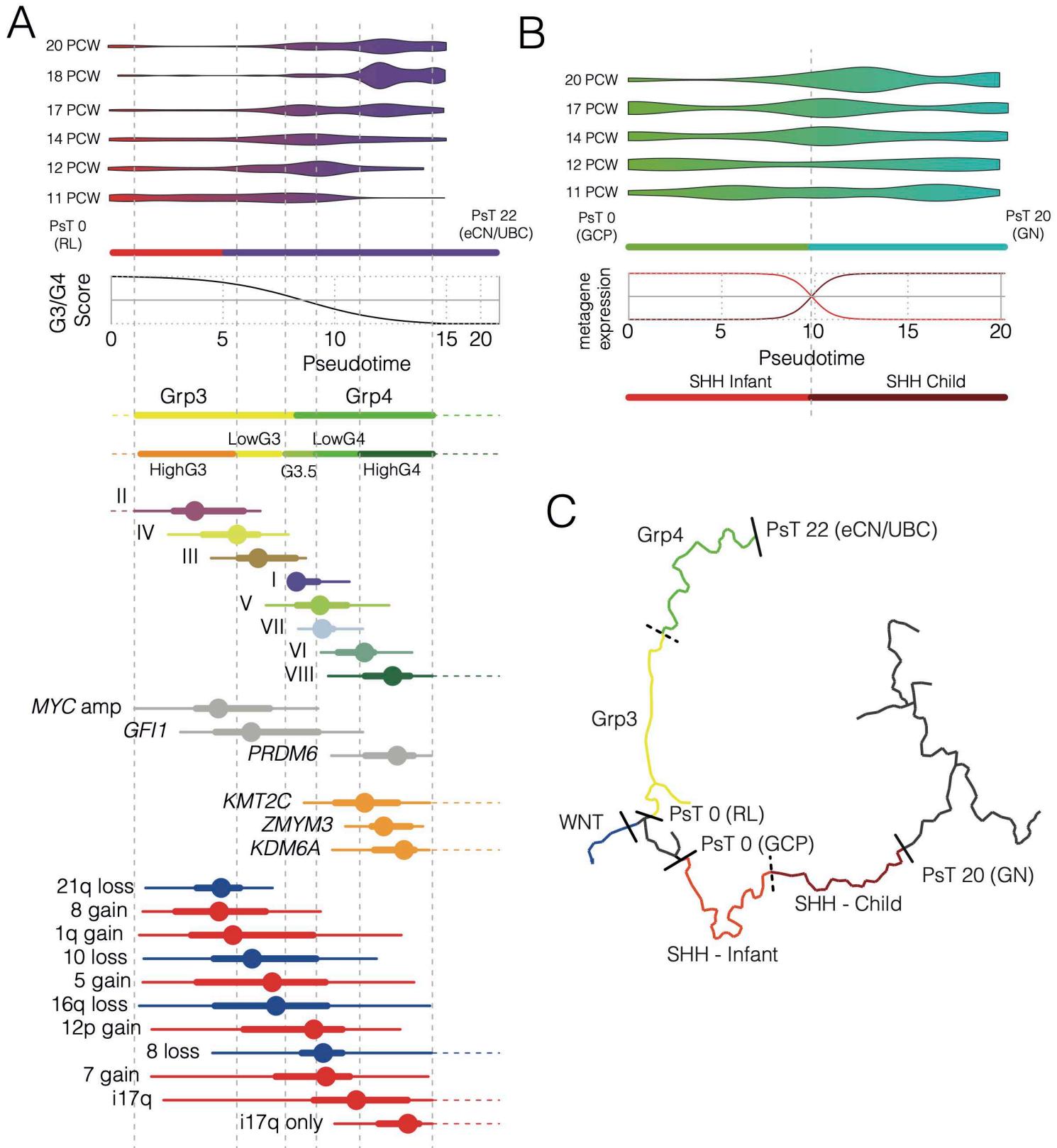

Figure 6

Figure 7

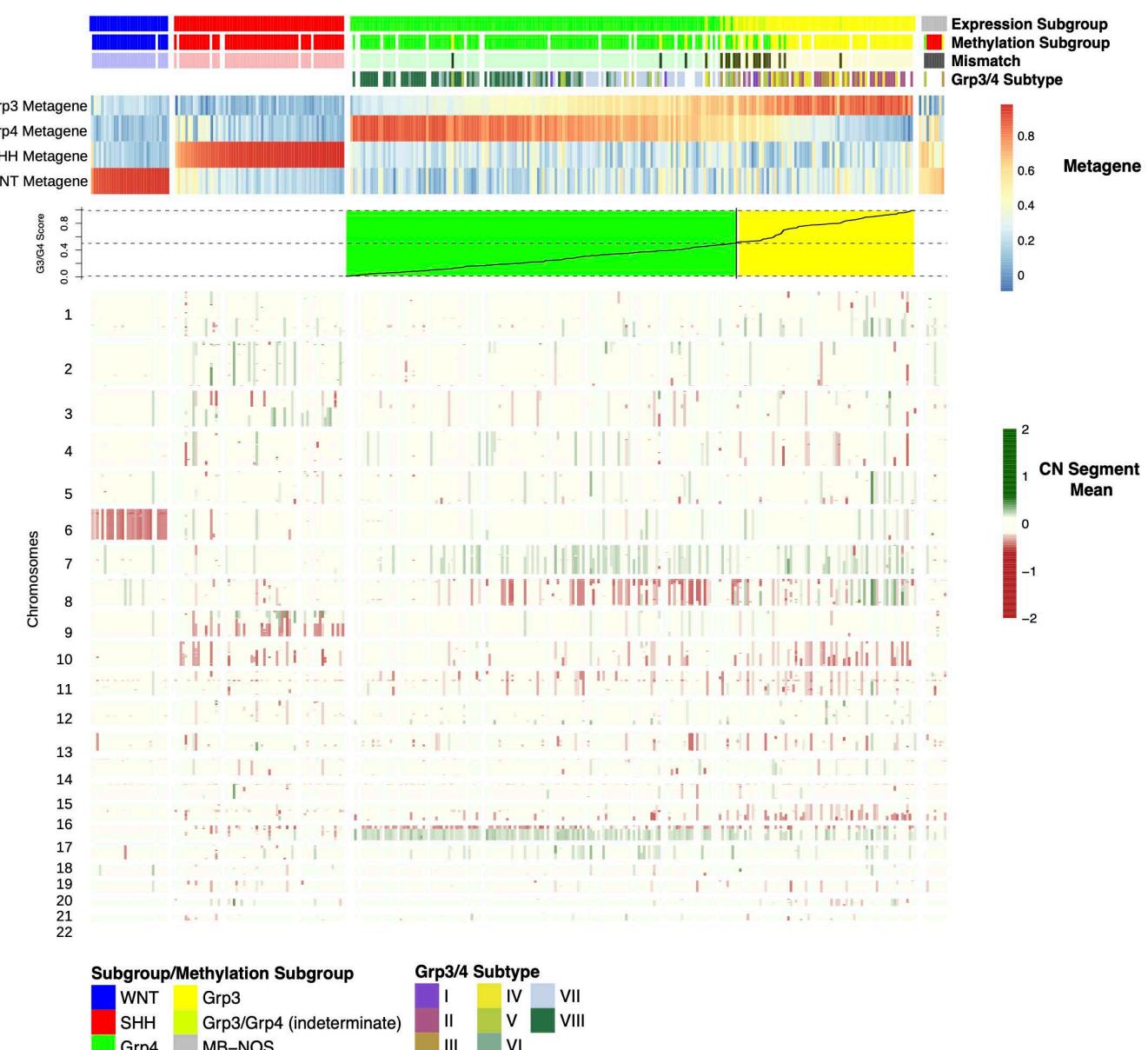


Figure 8

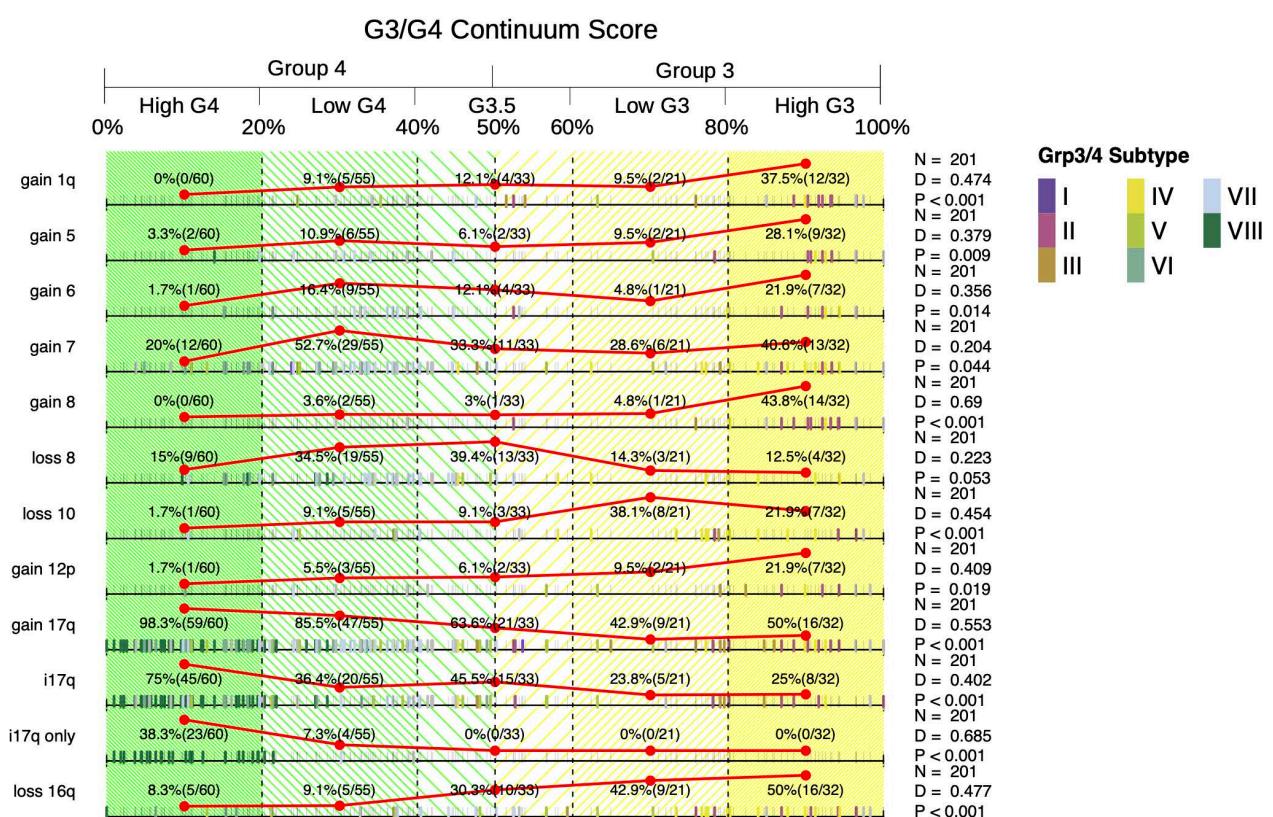
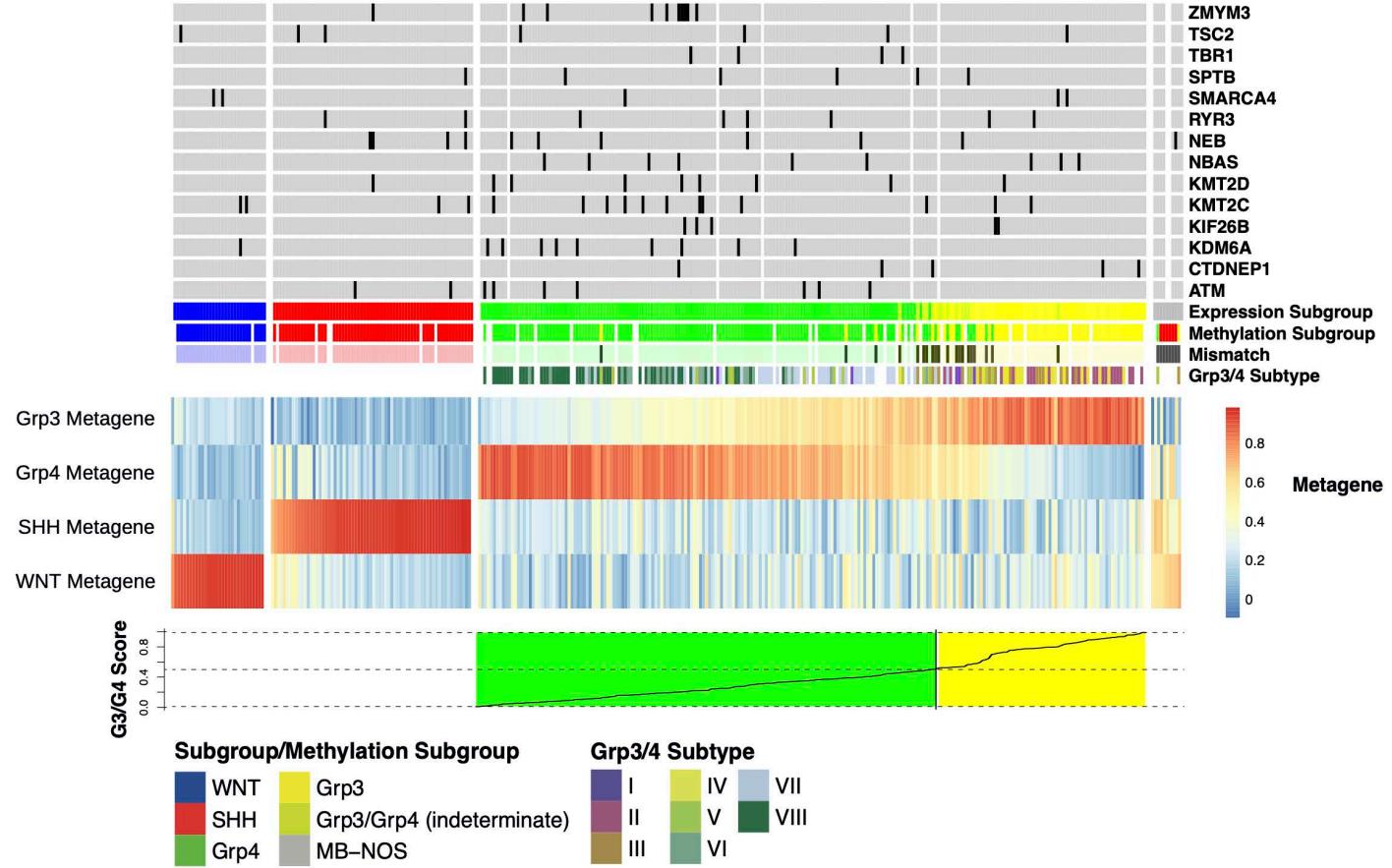


Figure 1S

A



B

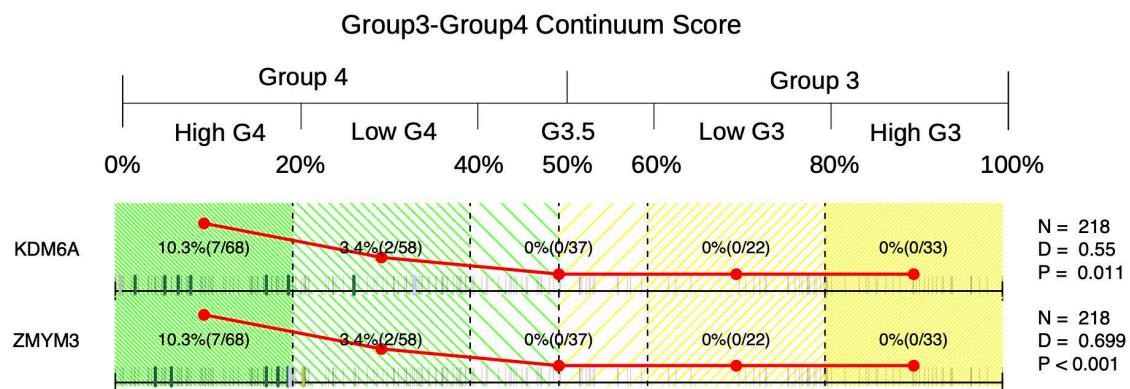
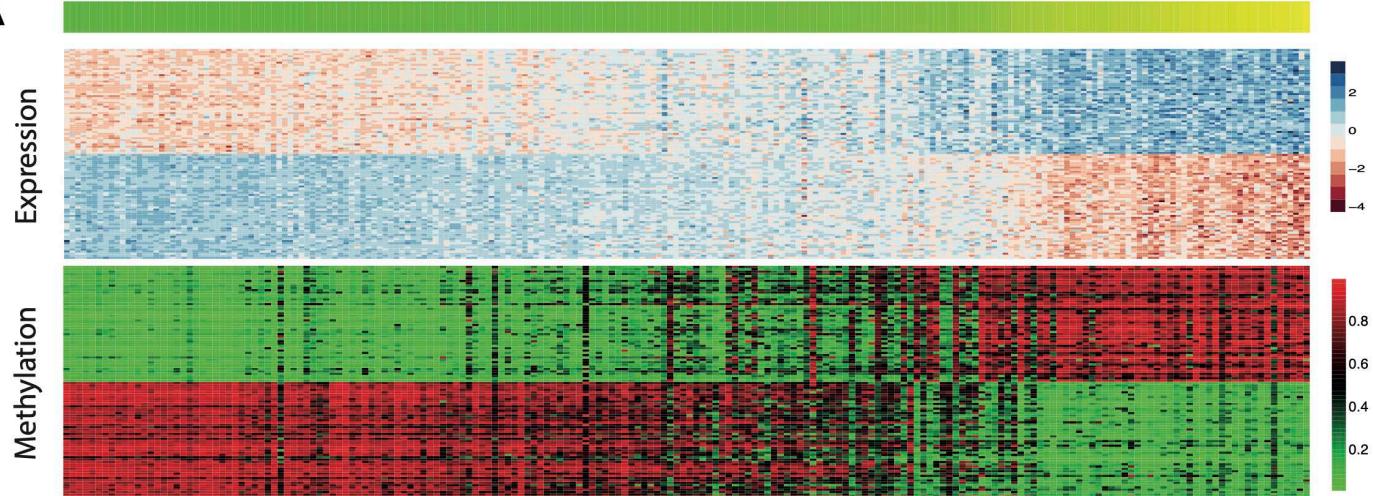


Figure 2S

A



B

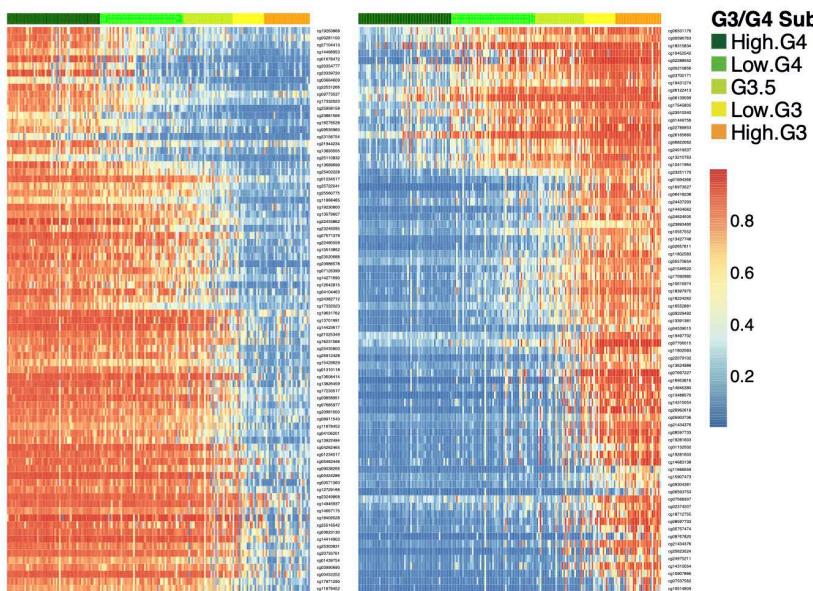
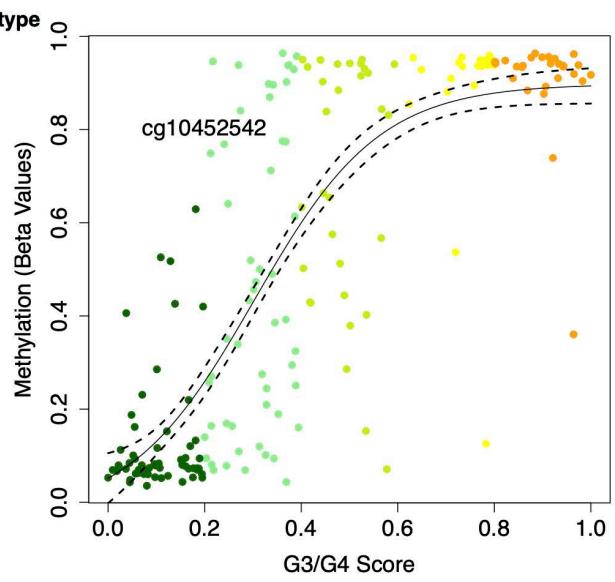
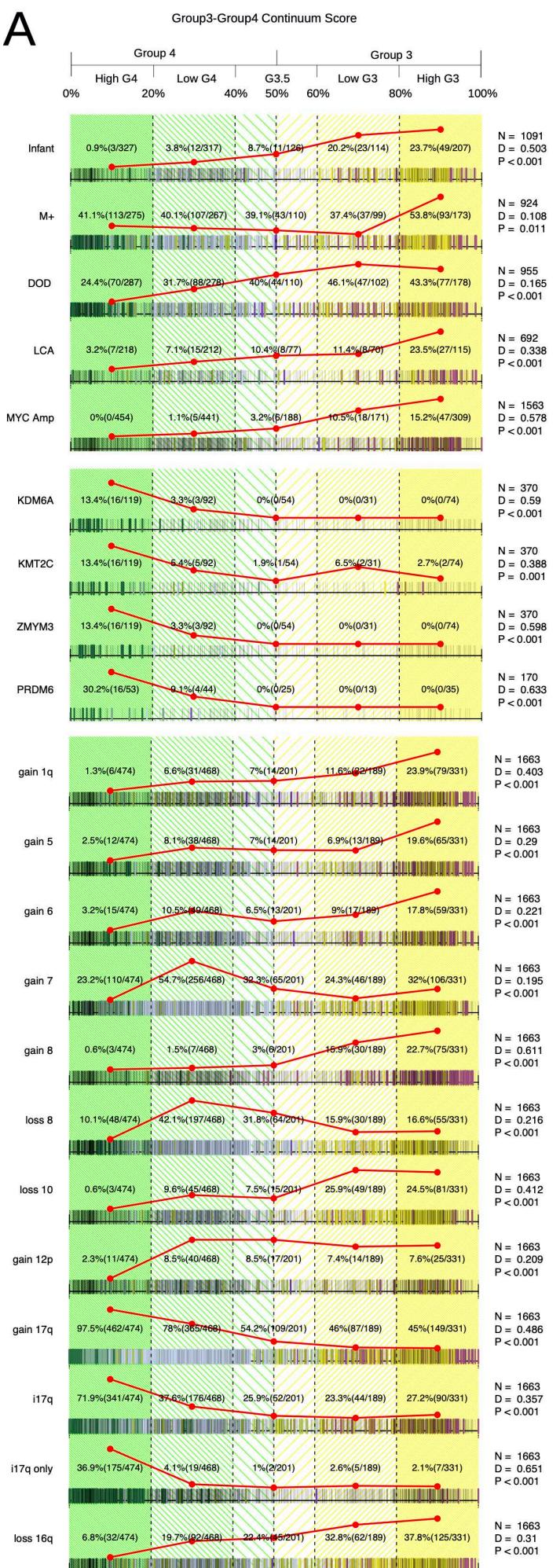


Figure 3S


A

B



C

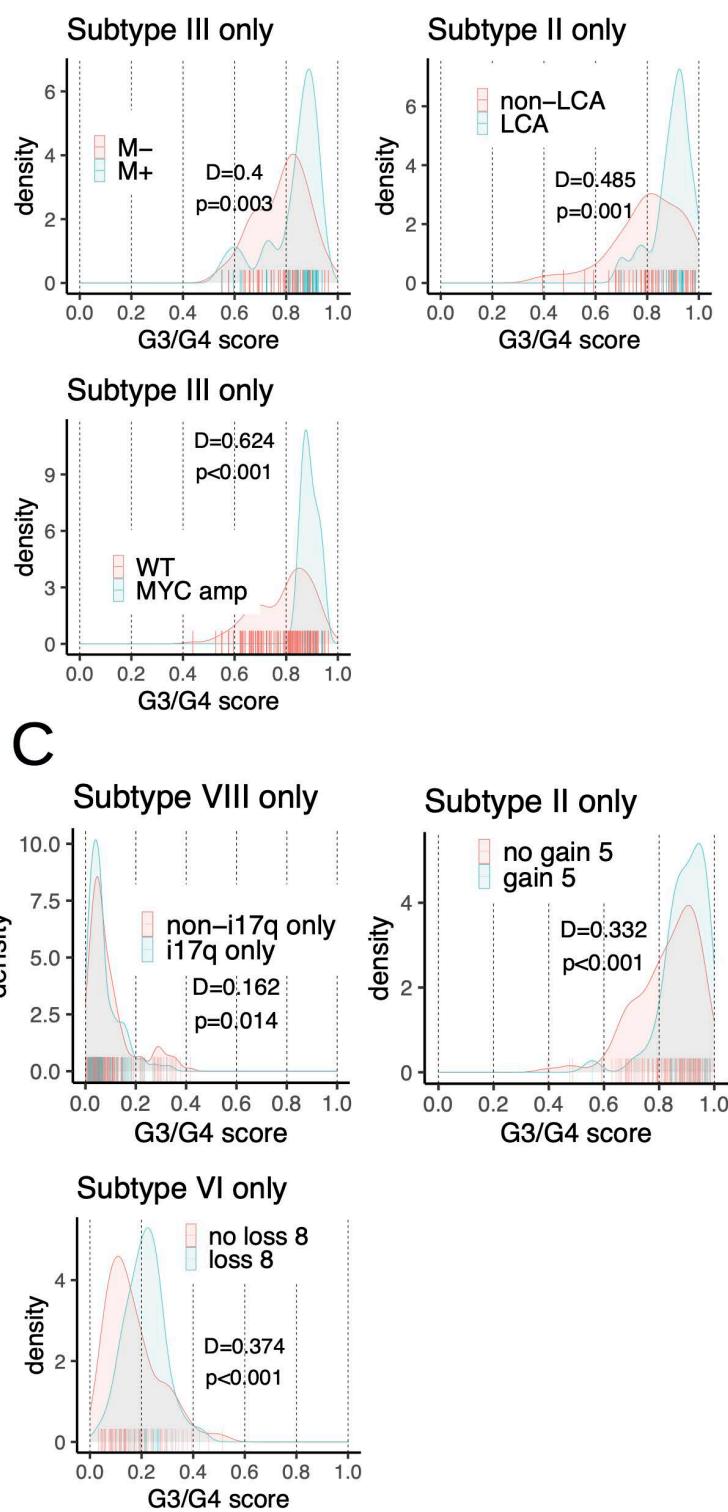
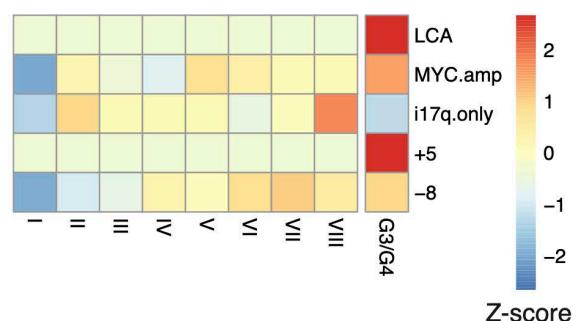
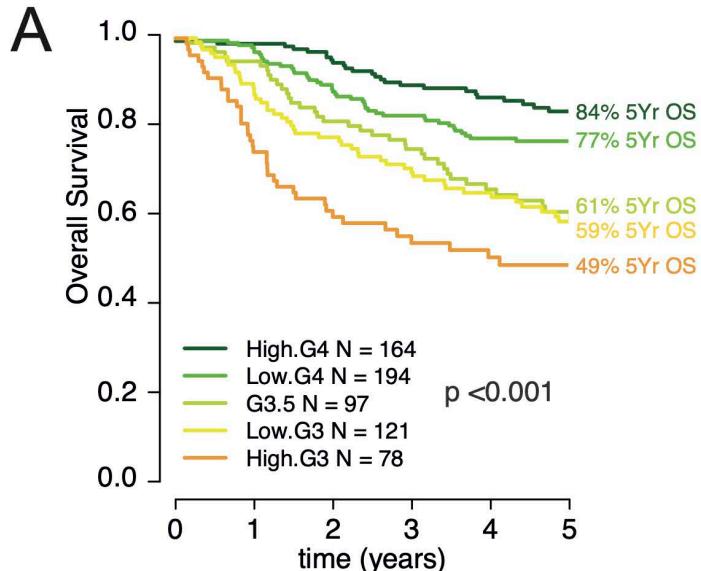


Figure 4S


A


B

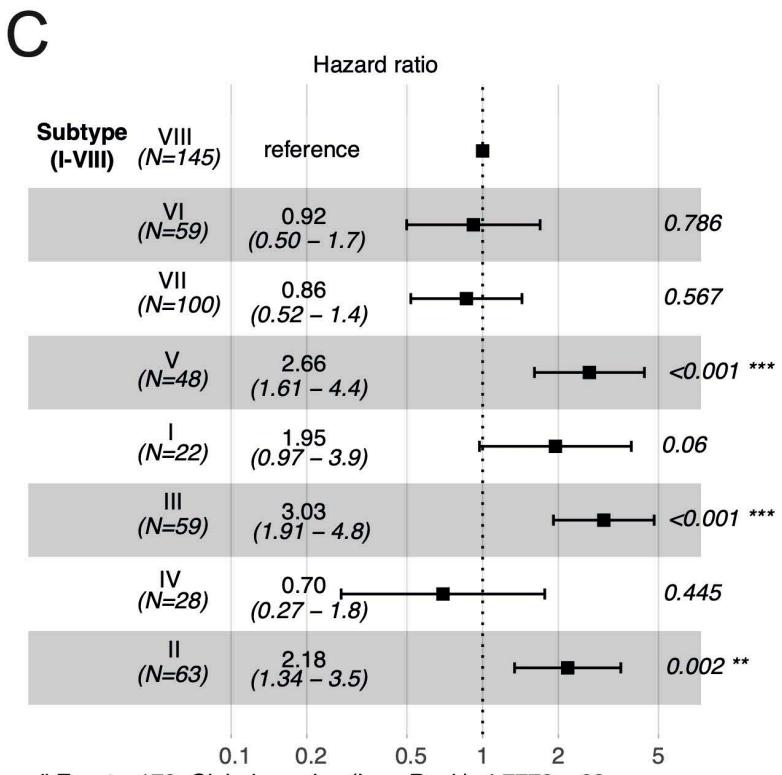
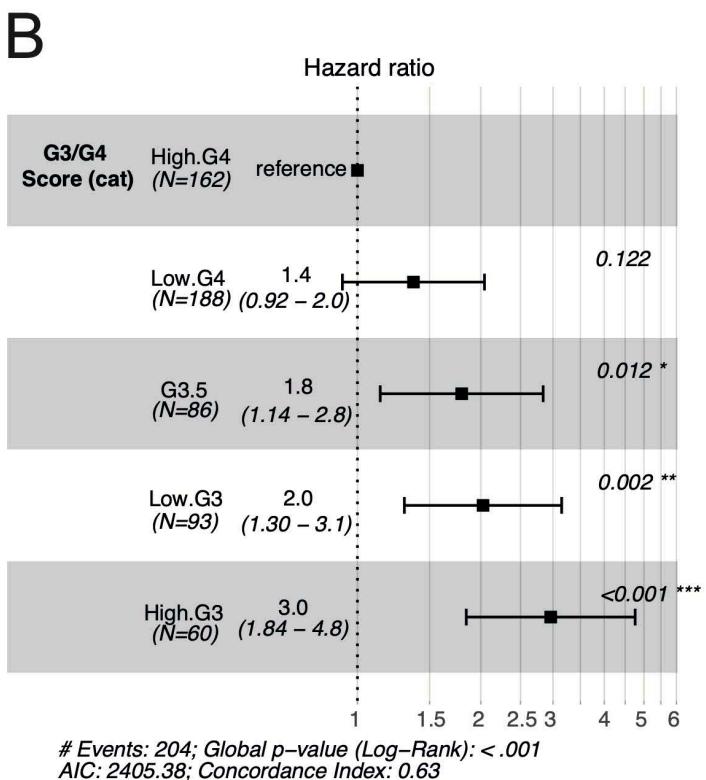
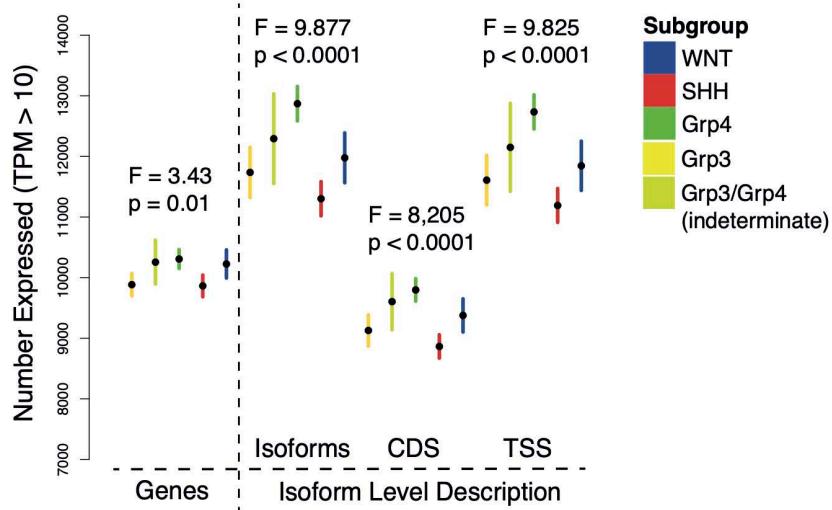


D

Figure 5S



High Grp4	164	161	154	137	121	102
Low Grp4	194	187	167	150	131	110
Grp3.5	97	91	78	72	53	42
Low Grp3	121	104	89	80	64	53
High Grp3	78	58	44	36	31	27

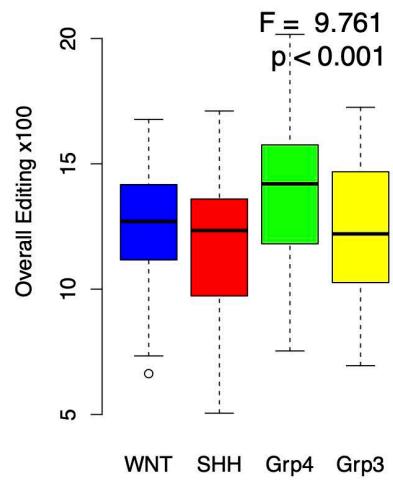
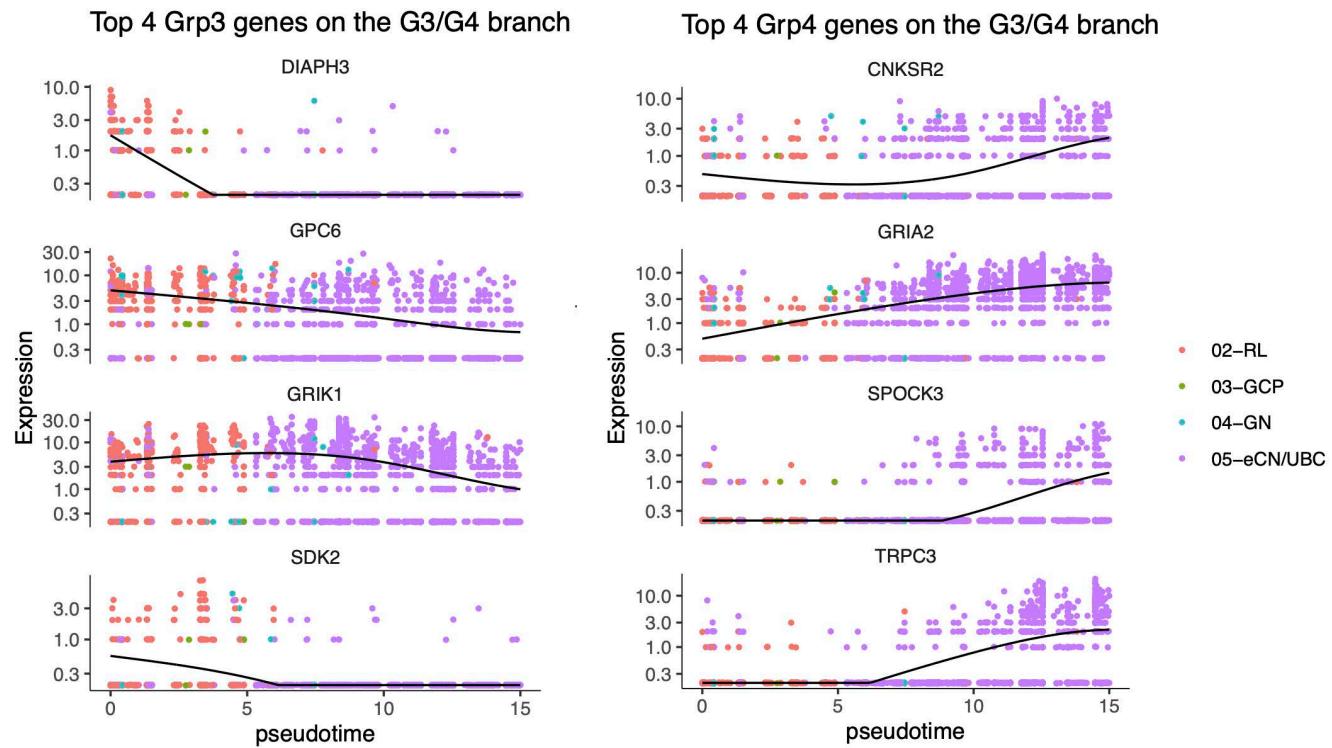


Figure 6S

A



B

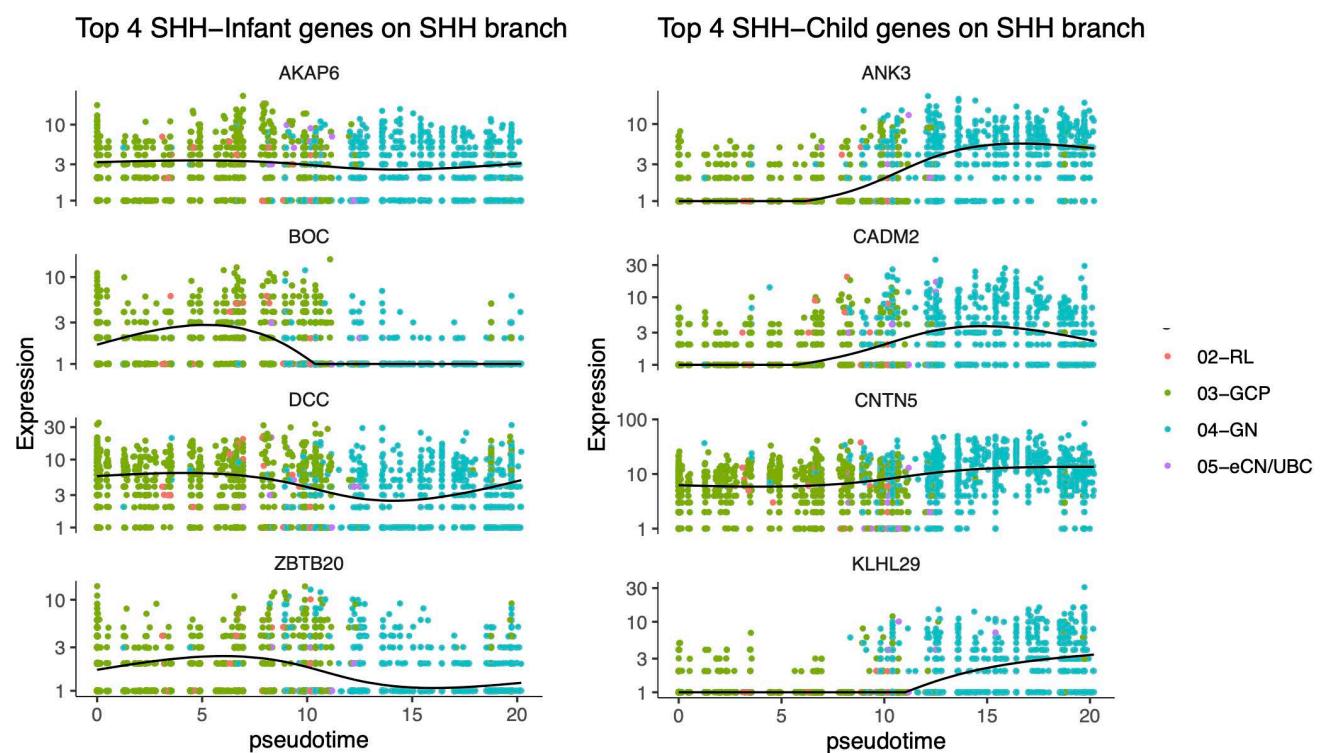
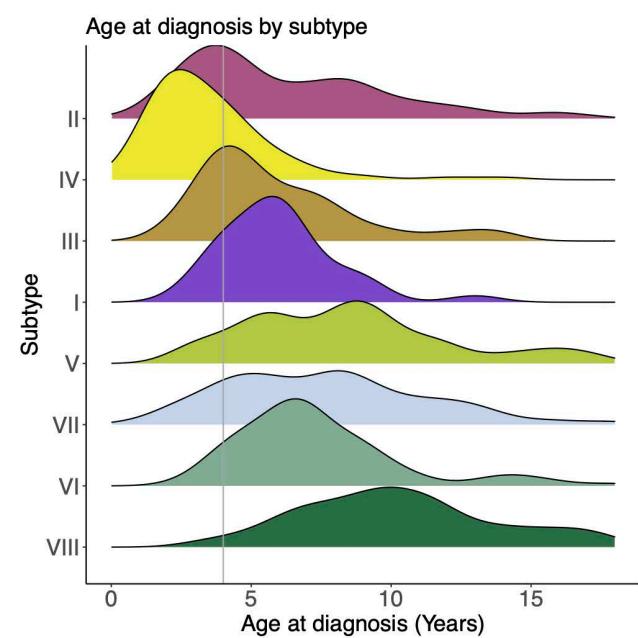


Figure 7S

A




B

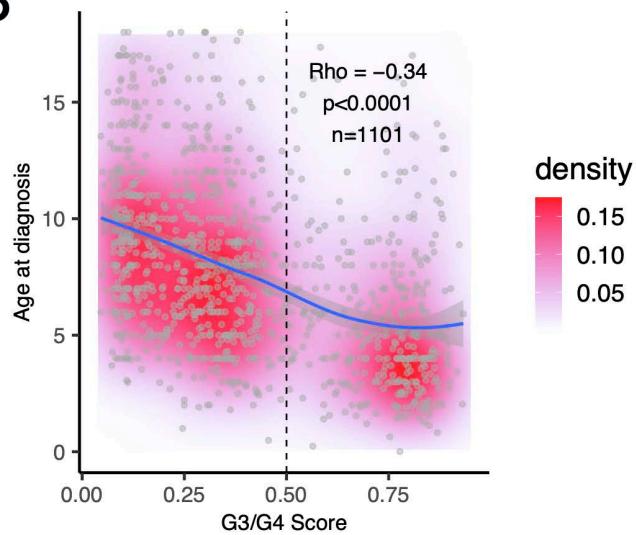
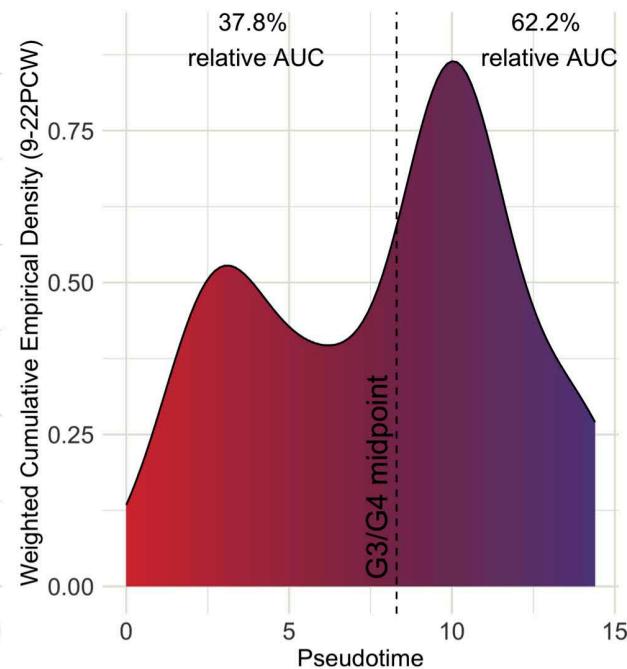
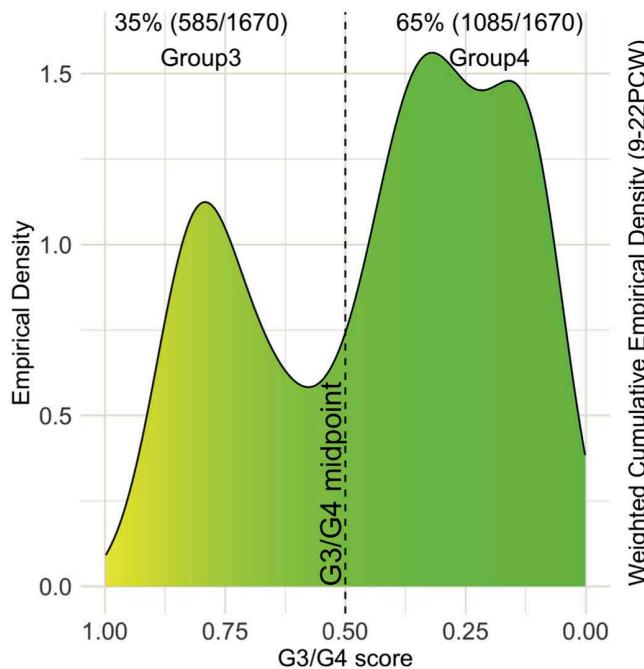


Figure 8S


A



B

C

D

836 **STAR Methods**

837 **Resource Availability**

838 **Lead contact**

839 Further information and request for resources and reagents should be directed to and will be fulfilled by the lead
840 contact, Daniel Williamson (daniel.williamson@ncl.ac.uk).

841 **Materials availability**

842 This study did not generate new unique reagents.

843 **Data and code availability**

844 Data arising from this study has been deposited in E-MTAB-10754 and E-MTAB-10767 (ArrayExpress) and
845 are publicly available as of the date of publication. Additionally, this study makes use of previously deposited
846 data sets GSE130051, GSE93646, GSE119926 (GEO/NCBI). For scRNA-seq fetal cerebellar data, processed
847 data are available through the Human Cell Atlas (<https://www.covid19cellatlas.org/aldinger20>) and the UCSC
848 Cell Browser (<https://cbl-dev.cells.ucsc.edu>). Sequence data is available in the Database of Genotypes and
849 Phenotypes, under accession number phs001908.v2.p1 (dbGAP/NCBI). Details are listed in the key resources
850 table and method details section. No custom code was used in this study. Open-source algorithms were used as
851 detailed in the method details section. Details on how these algorithms were used are available from the
852 corresponding authors upon request.

853 **Experimental Models**

854 **Human tissue samples**

855 Snap frozen tumor samples from individuals with confirmed medulloblastoma diagnosis were used for RNA-
856 seq analysis. These were provided as part of UK CCLG-approved biological study BS-2007-04 and/or with
857 approval from Newcastle North Tyneside Research Ethics Committee (study reference 07/Q0905/71);
858 informed, written consent was obtained from parents of all patients younger than 16 years.

859 **Method Details**

860 **Patient samples and study cohort**

861 331 tumor samples from individuals with confirmed medulloblastoma diagnosis were used for the RNA-seq
862 analysis. Histopathological variants were defined according to the WHO 2016 guidelines (Louis et al., 2016).
863 Metastatic status (M+) was defined as M>1 as per Chang's criteria (Chang et al., 1969). *MYC* and *MYCN*
864 amplification status was assessed by fluorescence in situ hybridization and/or copy-number estimates from
865 methylation array and *TP53*, *CTNNB1*, and *TERT* mutation status by Sanger sequencing. DNA was extracted
866 using Qiagen DNeasy blood and tissue kit. Other mutations were assessed using next-generation sequencing.
867 Whole-exome and targeted gene panel sequencing was performed using the Agilent SureSelect target
868 enrichment platform and Illumina paired-end sequencing according to manufacturer's instructions. NGS
869 datasets were analyzed for coding/exonic region variants using Genome Analysis Toolkit (GATK) version 3.7,
870 according to Broad Institute's best practices (Burrows wheeler alignment, Haplotype Caller, Variant Quality
871 Score Recalibration for exomes and Hard-filtering for panel) (Van der Auwera et al., 2013) and annotated using
872 Ensembl Variant Effect Predictor (McLaren et al., 2016). Variants were predicted pathogenic if their
873 consequence included coding or splice donor/acceptor mutations, max allele frequency was <0.01 in each of
874 the large sequencing studies (ExAC, GnomAD/exomes, 1000 Genomes, ALFA) and predicted to be deleterious
875 by both CAROL and FATHMM prediction tools (Lopes et al., 2012; Shihab et al., 2013). Variants called by
876 targeted panel sequencing were called at a mean read depth of 278 (Standard Error of Mean=11). Exome studies
877 were performed at mean depth of 40x. Pathogenic variants required a variant allele frequency $\geq 10\%$, a minimum
878 read depth ≥ 10 and a minimum 2 variant forward reads and 2 variant reverse reads. Variants were further curated
879 for obvious artefacts by visual inspection in Integrative Genomics Viewer (IGV) (J. T. Robinson et al., 2011).
880 Chromosome-arm level copy-number estimates were derived from DNA methylation array data using
881 conumee (R/Bioconductor). A larger previously published MB_{Grp3}/MB_{Grp4} cohort (Sharma et al., 2019)
882 (Schwalbe et al., 2017) (GSE130051 & GSE93646) to which 166 novel profiles were added (E-MTAB-10754)
883 (n=1670, exact samples used are detailed in Supplementary Table 2) was used for methylation-only analysis.

884 **RNA-seq analysis**

885 Total RNA was extracted from snap frozen tissue samples using trizol extraction followed by Qiagen RNeasy
886 Cleanup Kit and then subjected to transcriptome sequencing using Illumina TruSeq RNA Library Prep and
887 HiSeq 2500 platform achieving a ~90M paired end reads per sample. Following QC checks (fastqc/bamqc)
888 samples were aligned to genome hg19 using *RNA-star* (Dobin et al., 2013) in two-pass alignment mode and per
889 gene read counts generated using *ht-seq count* (Anders et al., 2015) and Gencode v25. Where isoform abundance
890 estimates were required these were generated using *kallisto* (Bray et al., 2016). For differential expression
891 analysis *DESeq2* (Love et al., 2014) (R/Bioconductor) was used for other analysis, clustering and visualization.
892 Read counts were first normalized and a variance stabilizing transform was first applied using the *vst* function
893 within *DESeq2* (R/Bioconductor). Additionally, a batch correction controlling for sequencing batch was applied
894 using the implementation of ComBat within the *sva* package (R/Bioconductor). Consensus NMF analysis was
895 performed as per the method described in Schwalbe *et al* (Schwalbe et al., 2017) and Sharma *et al* (Sharma et
896 al., 2019). Briefly, multi-run NMF is performed with n=250 iterations of 80% bootstrapping. Metagenes
897 calculated following each iteration are projected on to each removed sample and k-means clustering used to
898 predict the class of each removed sample based on the larger training set. A range of NMF metagene ranks (3-
899 10) and k-means clusters (3-10) are tested and cophenetic indices (a shorthand measure of the robustness of
900 sample clustering) used to evaluate the consistency of classification for each combination of metagenes.
901 Samples which were assigned to the same class with <90% consistency upon resampling were designated as
902 MB-NOS, except where they were alternately assigned as MB_{Grp3} or MB_{Grp4} with >90% consistency, in which
903 case they were classified as MB_{Grp3}/MB_{Grp4}.

904 Averaged and standardized metagene h-values from across the bootstraps were used as measures of metagene
905 expression. All NMF projections were performed using column-rank and post-projection normalization as per
906 the method described by Tamayo *et al* (Tamayo et al., 2007). t-SNE were used for visualization was performed
907 using the *Rtsne* package (R/CRAN).

908 G3/G4 score was calculated by applying a logistic transformation $1/(1+\exp(-x))$ to the MB_{Grp3} and MB_{Grp4}
909 metagenes (excluding two outliers). The G3/G4 score was calculated as the MB_{Grp3} proportion of the total
910 metagene scaled to between 0 and 1. For convenience of visualization, or where categorical comparison was

911 required, we referred to individuals >0 & ≤ 0.2 as “HighG4”, >0.2 & ≤ 0.4 as “LowG4”, >0.4 & ≤ 0.6 as “G3.5”,
912 >0.6 & ≤ 0.8 as “LowG3” and >0.8 & ≤ 1 as “HighG3”.

913 RNA editing was estimated using the QEdit/Redditools pipeline as previously described
914 (<https://github.com/BioinfoUNIBA/QEdit>) (Giudice et al., 2020). Differential RNA-editing was calculated
915 using a p-adjusted (Benjamini-Hochberg) Mann-Whitney U-test for two group analysis and Anova with
916 TukeyHSD (post-hoc) for multi-group analysis. Where unknown from DNA analysis *GFI1/GFI1B, PRDM6*
917 rearrangements were each inferred from RNA-seq data as per the method used originally by Northcott *et al*
918 (Northcott et al., 2017; 2014).

919 GSEA was performed using MsigDb library version 7.1 and the implementation of the original algorithm within
920 the package *fgsea* (R/Bioconductor) and ssGSEA using the implementation within *GSVA* (R/Bioconductor)
921 (Hänelmann et al., 2013). The following gene sets were selected as reflective of the pathway categories given
922 in Figure 4C. MYC = "HALLMARK_MYC_TARGETS_V2", "MYC_UP.V1_UP",
923 "DANG_MYC_TARGETS_UP". Cell Cycle = "FISCHER_G1_S_CELL_CYCLE",
924 "GO_POSITIVE_REGULATION_OF_CELL_CYCLE", "GO_SIG
925 NAL_TRANSDUCTION_INVOLVED_IN_CELL_CYCLE_CHECKPOINT", TP53 = "CEBALL
926 OS_TARGETS_OF_TP53_AND_MYC_UP", "REACTOME_TRANSCRIPTIONAL_REGULATION
927 _BY_TP53", "REACTOME_TP53_REGULATES", MTOR = "HALLMARK_MTORC1_SIGNALING",
928 "MTOR_UP.V1_UP", "MTOR_UP.N4.V1_UP", PHOTORECEPTOR = "GO_EYE_PHOTOREC
929 EPTOR_CELL_DIFFERENTIATION", "GO_CAMERA_TYPE_EYE_PHOTORECEPTOR_CELL_
930 DIFFERENTIATION", "GO_EYE_PHOTORECEPTOR_CELL_DEVELOPMENT", TGFB1 = "KARL
931 SSON_TGFB1_TARGETS_UP", "JAZAG_TGFB1_SIGNALING_VIA_SMAD4_UP", "KARAKAS_
932 TGFB1_SIGNALING" NOTCH = "GO_POSITIVE_REGULATION_OF_NOTCH_SIGNALING
933 _PATHWAY", "REACTOME_ACTIVATED_NOTCH1_TRANSMITS_SIGNAL_TO_THE_NUCLEUS",
934 "NGUYEN_NOTCH1_TARGETS_UP", Neuronal Diff = "GO_CENTRAL_NERVOUS_SYSTEM
935 _NEURON_DIFFERENTIATION" "LE_NEURONAL_DIFFERENTIATION_UP".

936 In analyzing association with G3/G4 score, the loss or gain of each non-acrocentric chromosome arm was
937 considered as were the more frequent MB_{Grp3}/MB_{Grp4} mutations in genes *ATM*, *CTDNEPI*, *KDM6A*, *KIF26B*,
938 *KMT2C*, *KMT2D*, *NBAS*, *NEB*, *RYR3*, *SMARCA4*, *SPTB*, *TBR1*, *TSC2*, and *ZMYM3*.

939 **DNA methylation analysis**

940 Beta/M-values were derived from HumanMethylation450 BeadChip (450k) and Infinium
941 HumanMethylationEPIC (850k) arrays using the ssNOOB method within the package *minfi* (Aryee et al., 2014)
942 excluding known SNPs and cross-hybridizing probes. In order to construct a random forest classifier which
943 predicted G3/G4 score from DNA methylation data, we performed feature selection of CpGs using 192
944 MB_{Grp3}/MB_{Grp4} samples with both RNA-seq (i.e. known G3/G4 score) and Methylation array. We constructed
945 using *limma* (R/Bioconductor) a number of bootstrapped (80% with 100 iterations) significance tests testing
946 differential methylation between each of the categories HighG4, LowG4, G3.5, LowG3 and HighG3. We
947 measured average performance for a range of numbers of features (10-100) on removed samples using a tuned
948 support vector machine, however performance plateaued after a certain number of features, so it was decided
949 to select the top 80 most frequently selected CpGs for each comparison. Thus n=400 CpG features were used
950 to train a random forest classifier which was then subject to recursive feature elimination using 50x cross-
951 validation and implemented using the *rfe/rfeControl* function within the *caret* package (R/CRAN). Where
952 sigmoid curves are shown, these were fitted using the *fitmod* function within the *DoseFinding* package
953 (R/Bioconductor). For visualization these were scaled to a minimum 0 and maximum 1.

954 Methylation subtype calling (Sharma et al., 2019) was obtained using an extension of the Heidelberg brain
955 tumor classifier available at [<https://www.molecularneuropathology.org/mnp>]. A methylation classifier
956 prediction score of >0.8 was used to assign subtype. Samples were excluded if not confirmed as MB by MNP.
957 Significantly differentially methylated regions (DMRs) distinguishing G4High, G4Low, G3.5, G3Low and
958 G3High were calculated using *dmrcate* (R/Bioconductor) using settings lambda=1000, C=2. Regions were
959 considered when the total number of CpGs ≥ 5 , the minimum FDR < 0.05 and the mean Beta fold change $>$
960 0.25. These were further filtered to identify DMRs which overlapped with the MB_{Grp3}/MB_{Grp4} specific
961 enhancer/superenhancer regions identified by Lin *et al* (Lin et al., 2016).

962 **scRNA-seq analysis**

963 Previously published medulloblastoma scRNA-seq dataset (Hovestadt *et al.*, 2019) GSE119926 was used.
964 However, we used only the MB_{Grp3}/MB_{Grp4} primary patient samples (excluding the patient-derived xenografts)
965 (n=4256 cells, n=15 samples) and excluded patients SJ970 and SJ723 due to the relatively few available cells.
966 The pre-publication Human fetal cerebellar single cell reference data set, consisting of 69,174 cells, classified
967 into 21 cell types and derived from 15 donors between 9 and 21 PCW, details can be found within
968 <https://www.biorxiv.org/content/10.1101/2020.06.30.174391v1> (Aldinger *et al* in press Nature Neuroscience).
969 For the purposes of metagene projection *Seurat* (R/Bioconductor) (Butler *et al.*, 2018) was used to select the
970 5000 most variable features using the “vst” method for both data sets and the resulting normalized matrices
971 subject to NMF projection of the bulk metagenes and calculation of the G3/G4 score as per the bulk analysis
972 described above. In this way, a per-cell metagene score and G3/G4 score was calculated.
973 Developmental trajectory analysis was performed using *monocle v3* (Qiu *et al.*, 2017) (R/Bioconductor) using
974 12,243 cells classified as RL, GCP, GN or eCN/UBC which we defined broadly as the rhombic lip lineage as
975 per Aldinger *et al.* Monocle v3 functions used were preprocess_cds, align_cds, reduce_dimension, cluster_cells,
976 learn_graph, order_cells and plot_cells to visualize by UMAP. The relevant branches for the MB_{Grp3}/MB_{Grp4}
977 and MB_{SHH} were divided as indicated (Figure 8) and the relationship between pseudotime and G3/G4
978 score/metagene was defined using a loess curve function. This enabled developmental and oncogenic events to
979 be mapped onto a common scale (Figure 8). Genes whose expression varied significantly according to
980 pseudotime were detected using Moran’s test statistic as implemented by *monocle v3*. For analysis of the
981 differences between MB_{SHH-Infant} and MB_{SHH-Child}, a further metagene calculated using NMF rank = 2 only on
982 MB_{SHH} (67/331 samples) was additionally projected onto the single cells in the same manner as the other
983 metagenes. For calculating empirical density, the *density* function was used (R/Bioconductor) except where
984 weighted two-dimensional estimation was needed in which case the *kde2d.weighted* function from the package
985 *ggtern* (R/Bioconductor) was used. Weights were calculated as the number of cells at a given sampling point
986 (9-21PCW) as a proportion of the total number of cells sampled.

987 **Quantification and Statistical Analysis**

988 Data analysis and visualization was carried out in R 3.5.3 except for the analysis of fetal cerebellar scRNA-seq
989 which was performed using R 4.0.2. CRAN and Bioconductor packages used are given in the key resources
990 table. To test significant association with time to death/progression free survival a log-rank test or cox-
991 regression was used. Association analysis of individual clinico-pathological mutational and copy number
992 features with G3/G4 score was performed using Kolmogorov-Smirnoff test. Where gene expression/pathway
993 associations with G3/G4 score are assessed, these are assessed using Pearson's correlation coefficient. The test
994 statistics and significant P-values ($p<0.05$) are stated in text and figures and were adjusted for multiple
995 hypothesis testing using Benjamini-Hochberg where appropriate throughout. Where values of n are given, these
996 generally pertain to number of sample/individual patients except where otherwise indicated. Boxplots, where
997 used, show dispersion as per standard i.e. (center line = median, box = interquartile range, whisker= range minus
998 outliers).

999 Data were excluded where samples were clearly indicated to be duplicated across multiple related datasets.
1000 Additional exclusions were carried out for samples where methylation array detection P value did not reach
1001 significance threshold in at least 90% of the array. Methylation samples were excluded from the analysis if not
1002 confirmed as medulloblastoma by MNP2.0. In our analysis of the scRNA-seq dataset GSE119926 we excluded
1003 patients SJ970 and SJ723 due to the relatively few available cells.

1004

Key Resources Table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Biological samples		
Snap frozen medulloblastoma	CCLG Biobank/ Biological study and collaborating centres	See Supplementary Table S1
Chemicals, peptides, and recombinant proteins		
Trizol	Thermo Fisher	15596026
1 X Low TE Buffer (10mM Tris-HCL, ph 7.5-8.0, 0.1 mM EDTA)	Thermo Fisher	120900915
100% Ethanol, molecular biology grade	Sigma-Aldrich	E7023
Nuclease-free Water	Thermo Fisher	AM9930
Critical commercial assays		
RNeasy MinElute Cleanup Kit	Qiagen	74204
DNeasy Blood and Tissue Kit	Qiagen	69504
Agilent SureSelect XT2	Agilent	G9621A
Agilent SureSelect XTHS (Low Input)	Agilent	G9703A
Agilent SureSelect Custom DNA Target Enrichment Probes Tier 1 (500Kb)	Agilent	5190-4813
Afilent SureSelect XT Human All Exon v6 + UTR	Agilent	5190-8881
AMPure XP Kit	Beckman Coulter	A63880
Herculase II Fusion DNA Polymerase	Agilent	600677
Dynabeads MyOne Streptavidin T1	Thermo Fisher	65601
Qubit dsDNA HS Assay Kit	Thermo Fisher	Q32851
Deposited data		
Medulloblastoma methylation array dataset E-MTAB-10754	This paper	Array Express: E-MTAB-10754
Medulloblastoma RNA-seq dataset E-MTAB-10767	This paper	Array Express: E-MTAB-10767
Medulloblastoma Methylation array dataset GSE130051	Sharma et al.	GEO accession: GSE130051
Medulloblastoma Methylation array dataset GSE93646	Schwalbe et al.	GEO accession: GSE93646
Medulloblastoma scRNA-seq dataset GSE119926	Hovestadt et al	GEO accession: GSE119926
Human fetal cerebellum scRNA-seq dataset	Human Cell Atlas (https://www.covid19cellatlas.org/aldinger20)	dbGAP accession: phs001908.v2.p1
Software and algorithms		
R v3.5.3 & v4.0.2 & R base packages	https://www.r-project.org	
Bioconductor	http://bioconductor.org	
Kallisto v0.46.0	https://pachterlab.github.io/kallisto/about	
RNA-STAR v2.7.0e	https://github.com/alexdobin/STAR	
HTSeq v0.9.1	https://htseq.readthedocs.io/en/master/	
SAMtools v1.9,	http://www.htslib.org	
Picard v2.2.4	https://broadinstitute.github.io/picard/	
QEdit	https://github.com/BioinformaticsUNIBA/QEdit	

Genome Analysis Toolkit (GATK) version 3.7	https://gatk.broadinstitute.org/hc/en-us	
Ensembl Variant Effect Predictor (VEP)	https://www.ensembl.org/info/docs/tools/vep/index.html	
DESeq2_1.22.2	bioconductor package: http://bioconductor.org	
minfi_1.28.4	bioconductor package: http://bioconductor.org	
NMF_0.23.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
limma_3.38.3	bioconductor package: http://bioconductor.org	
sva_3.36.0	bioconductor package: http://bioconductor.org	
tximport_1.10.1	bioconductor package: http://bioconductor.org	
tximportData_1.10.0	bioconductor package: http://bioconductor.org	
caret_6.0-86	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
DMRcate_1.18.0	bioconductor package: http://bioconductor.org	
Rtsne_0.15	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
biomaRt_2.38.0	bioconductor package: http://bioconductor.org	
ggplot2_3.3.2	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
SingleCellExperiment_1.4.1	bioconductor package: http://bioconductor.org	
Seurat_3.2.0	bioconductor package: http://bioconductor.org	
survival_3.2-7	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
tidyverse_1.3.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
mclust_5.4.6	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	

fgsea_1.8.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
vcdExtra_0.7-1	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
survminer_0.4.8	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
GSVA_1.30.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
Hmisc_4.4-1	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
lumi_2.34.0	bioconductor package: http://bioconductor.org	
e1071_1.7-3	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
mlbench_2.1-1	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
randomForest_4.6-14	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
DoseFinding_0.9-17	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
car_3.0-10	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
gplots_3.1.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	

RColorBrewer_1.1-2	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
pheatmap_1.0.12	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggridges_0.5.2	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggrepel_0.8.2	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggnewscale_0.4.3	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
Gviz_1.26.5	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
patchwork_1.0.1	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
SingleCellExperiment_1.10.1	bioconductor package: http://bioconductor.org	
Seurat_4.0.1	bioconductor package: http://bioconductor.org	
bestNormalize_1.7.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggnewscale_0.4.5	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
scales_1.1.1	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggpattern_0.1.3	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	

ggtern_3.3.0	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
MASS_7.3-51.6	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggridges_0.5.3	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
plotly_4.9.3	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
ggplot2_3.3.3	cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html	
monocle3_0.2.2	bioconductor package: http://bioconductor.org	

1006

1007 **Supplemental information**

1008 Supplementary Table 1. Demographic summary of patients.

1009 Supplementary Table 2. Sentrix IDs of samples used in larger methylation cohort.