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A fundamental goal in plant microbiome research is to determine the relative impacts of host and
environmental effects on root microbiota composition, particularly how host genotype impacts bacterial
community composition. Most studies characterizing the effect of plant genotype on root microbiota
undersample host genetic diversity and grow plants outside of their native ranges, making the associations
between host and microbes difficult to interpret. Here we characterized the root microbiota of a large
population of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its
native range. Our data, composed of >2000 samples, suggest field location is the primary determinant of
microbiome composition; however, substantial heritable variation is widespread across bacterial taxa,
especially those in the Sphingomonadaceae family. Despite diverse compositions, we find that relatively few
highly prevalent bacterial taxa make up the majority of the switchgrass root microbiota, a large fraction of
which is shared across sites. Local genotypes preferentially recruit / filter for local microbes, supporting the
idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci
impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune
responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core
microbiota (i.e. microbes in >80% of samples) regardless of field location. Finally, we show a genetic
relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study
brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.

Recent insight into the composition, ecology, and functional importance of the plant microbiome has greatly
increased interest in the potential to harness root microbiota to sustainably increase crop resilience and yield. Microbial
inoculants have historically been discussed as a means to achieve this goal, but more recent calls for using plant breeding
to enrich beneficial bacteria from the native microbiota have begun to emerge. A roadblock hampering this effort is a
lack of understanding about which microbes can respond to breeding practices, whether breeding can instill consistent
effects on microbial assemblages across differing environments, and which genes and pathways from the host can be
adjusted to modify microbiomes.

Plant root bacterial microbiomes are derived from soil-borne communities, for which membership is largely
driven by environmental factors such as geography and climate ', land use history *, and seasonal variation *°. The
host plant exerts additional influence over its microbiota through active and passive mechanisms, resulting in filtered

subsets of soil microbiota often composed of consistently enriched microbial taxa on and inside root tissue. Given that
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microbiota can impart positive and negative outcomes on plant health, especially under varying environmental
conditions, it follows that the filtering process may be under selection and lead to microbe-mediated local adaptation 7.
Heritable variation is required for a trait to respond to selection. Indeed, several recent studies indicate that

abundances of thizosphere and root microbiome members are heritable 83

, 1.e. specific microbes and overall community
composition vary depending on the genetic background of the host. These studies allude to the possibility of enriching
for beneficial microbial associations through breeding, but given that most of these types of studies only look at a few
host genotypes and/or grow host plants outside of their native ranges, the role of host genetics in root - microbe
interactions has been difficult to interpret. Furthermore, given our relatively recent understanding that features of the

1416 genomic loci underlying root associated microbiome composition are still largely

microbiome are heritable
uncharacterized. There are notable exceptions however: Deng et al used the Sorghum Association Panel to uncover loci
impacting rhizosphere community composition 7. Bergelson et al. performed GWAS on Arabidopsis root (and leaf)
microbiome community metrics including richness and principal coordinates based upon community dissimilarity 8.
Uncovering the effects of host genetics on microbiomes across multiple native environments remains incomplete, but
these studies provide exciting avenues to leverage host genetics to enrich for beneficial properties of the microbiome.
Switchgrass (Panicum virgatum) is a wild C4 perennial prairie grass native to North America and has been
championed by the US DOE as a potential biofuel crop due to its biomass yield potential when grown in marginal soil
with minimal agricultural inputs. Its interesting biological features and important environmental and economic impact

have made switchgrass a popular model to investigate root-associated microbiota assembly, especially in the rhizosphere

(Singer et al. 2019; Ulbrich et al. 2021). Most recently, Sutherland et al. used a panel of switchgrass genotypes grown

in a single location in the northeast United States to uncover the role of host genotype on rhizosphere bacterial
assemblages 2!. The authors of this study used GWAS to uncover putative loci affecting the abundance of several
bacterial families in the rhizosphere and found gene ontology enrichments for diverse sets of functions. Still, relatively
little is known about how host genetics drive tightly adhering / endophytic root-associated bacterial communities.

In this study we addressed the following questions: 1) What bacteria are prominent members of the switchgrass
root-associated microbiome when plants are grown across their natural range? 2) How does the effect of host genotype
compare to that of the environment when determining the composition of root-associated bacterial microbiota? 3) Which
microbial lineages show heritable variation in roots, and is heritability consistent across field sites? 4) Which host
genomic loci impact the abundance of root associated bacteria? 5) Does microbial abundance show patterns of
association with host immunity variation. Answering these questions will bring us closer to harnessing and manipulating

beneficial microbial associations via host genetics.

RESULTS
Field site is a primary determinant of switchgrass root microbiota composition

We used a population of fully resequenced switchgrass (Panicum virgatum) natural accessions that were
clonally replicated and grown in field sites at Austin, TX, Columbia, MO; and Kellogg Biological Research Station, MI
(from here on referred to as ATX, CMO, and KMI, respectively Fig 1A, map inset) to uncover the role of environmental

variation and host genetics in shaping root microbiota composition. These plants had been established for two years,
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Figure 1 Field site is the primary determinant of switchgrass root microbiota composition. A) Principal
coordinate analysis based on Bray-Curtis dissimilarities. Inset: map of field locations, colors match those in the figure
legend. B) Relative abundance of phyla and Proteobacterial classes in every sample at each site. C) Effect sizes for
Site, Host Subpopulation, and Subpopulation x Site for ASVs in dataset broken down by phylum / class. D) Number
of ASVs with significant contrasts from the models displayed in panel C. E) Prevalence / abundance curves for each
field site. Each point represents a single ASV and the black dashed line is the 80% prevalence threshold used to call
core taxa. F) Venn diagram displaying overlaps of core microbiota from each site. G) Fraction of reads belonging to
the core microbiota at each site (colored boxes) and the shared core microbiota (92 overlapping microbes from panel
F, gray boxes).

show signatures of local adaptation 2>

, and have served as an important resource for switchgrass researchers. We first
investigated the effect of field site on root bacterial microbiota. Principal coordinate analysis (PCoA) revealed three
dominant clusters which were location-specific (Fig. 1A) and the significance of this observation was confirmed using
perMANOVA (R2 = 0.51, P <0.001). While the communities showed large differences between field sites at the
amplicon sequence variant (ASV) level, we found that phylum level relative abundances were largely consistent between
sites (Fig. 1B). Actinobacteria and Proteobacteria (namely Alpha and Gamma-proteobacteria) were dominant phyla
associated with switchgrass roots at every site, which is consistent with most other terrestrial, non-flooded, plant
microbiota studies.

A recent population genomic study of switchgrass found that tetraploid switchgrass can be broadly classified
into three genetic subpopulations: Gulf, Midwest, and Atlantic 2. The ranges for these subpopulations are largely
distinct (See Fig. 2A), with Gulf occupying habitats in the southern US, Atlantic occupying the Atlantic seaboard, and

Midwest spread across northern latitudes. We compared the effect of field site, host subpopulation, and their

interaction using linear models run on bacteria present in > 50% of the samples study-wide. The effect of field site
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was much larger than the secondary effects of host subpopulation and subpopulation x site interactions (Fig. 1C). We
then compared the variance explained by site between bacterial phyla / classes to better understand how experimental
factors impact broader taxonomic groupings. Effect sizes were largely consistent between these groups, with the
exception of Chloroflexi and Actinobacteria, which showed larger effect sizes than Deltaproteobacteria (P < 0.05,
Tukey’s Post-hoc Test). The large influence of field site on ASV relative abundance was also visible in the number of
ASVs which exhibited significant differences in relative abundance across field sites (Fig. 1D).

We next evaluated the relationship between ASV occupancy and mean relative abundance at each site (Fig 1E).
Our study used an atypically high depth of sequencing (Supp. Fig. 1) which gave us greater confidence in assessing
presence / absence of microbes in samples. In general, we found that ASVs with greater relative abundances were also
present in a higher proportion of root microbiomes. We next defined site-specific core microbiota; to be consistent with
other studies, we used a threshold of 80% occupancy ® (Supp. Table 1). ATX had the most ASVs passing this occupancy
threshold (Fig. 1F); we expected this, because we sequenced ATX samples at greater sequencing depths than the other
two sites (Sup. Fig. 1, See Methods). Still, we found that each site hosted overlapping core microbiota: For all three
sites, an overlap of 92 core microbes was found. CMO and KMI shared the most ASVs. The site-specific core microbiota
typically comprised ~60-70% of the total microbial population (Fig 1G, colored boxplots) within each respective site,
while the shared core microbiota made up ~25% of the total population (Fig 1G, gray boxplots). Thus, though field site
acts as the primary determinant of switchgrass root-associated microbiota composition, large proportions of switchgrass

root assemblages are shared between locations as a set of core microbes.

Evidence of affinity between host genotypes and local microbiota

Our analyses revealed that host subpopulation and subpopulation by location interactions are important
determinants of microbiota composition (Fig. 1C and D). Because the three switchgrass subpopulations are largely
constrained to distinct geographic regions (Fig. 2A), we hypothesized that plants grown closer to their native habitat
would show affinity for the microbes that persist and are abundant within these ranges. If this was true, then we would
expect, at each site, that more ASVs would show preferential colonization of individuals in the subpopulation grown in
its native range than in the other two subpopulations. To test this, we used linear models to analyze the abundance of
ASVs within each site and contrasted the abundances between the different subpopulations. We defined a specific
association as occurring if the relative abundance of an ASV was significantly greater in one subpopulation compared
to the other two. Gulf plants in their native ATX site had the most specific associations, while Midwest plants enriched
the most ASVs in native CMO and KMT sites (Fig. 2B, Supp. Table 2), supporting the notion that subpopulations enrich
more microbes in their native habitats. Furthermore, we found the ASVs with subpopulation specific associations also
tended to have significantly greater prevalence (Fig. 2C), but only for subpopulations growing within their native range.
That is, ASVs with specific associations in the Gulf subpopulation had significantly greater prevalence than the
background distribution at the ATX site, but not the other two sites. Likewise, microbes with specific associations in the

Midwest subpopulation showed significantly greater prevalence in both CMO and KMI sites compared to the
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background prevalence distributions (Fig 2C). These
comparisons suggest there is preferential sorting of
local microbiota onto

locally adapted plant

genotypes, especially for highly prevalent microbes.

Switchgrass root microbiota show widespread
heritable variation and genotype by environment
interactions

Our analysis of switchgrass subpopulation
effects on microbiota abundances underscores the
importance of broad level host genotype in
modulating root microbiome assembly. We next used
an approach which incorporates a kinship matrix
denoting  finer genetic relationships among
individuals of the population into the model to
estimate how host genetic variation contributes to
variation in microbe abundance. We used a suite of
mixed effects models to partition additive genetic
variance in microbial abundance (Va) using the host
population genetic relationship matrix and how Va
differs across the three environments (Vaxe) with a
compound symmetry model. Because microbiomes
can be defined and analyzed at various taxonomic
levels by aggregating counts at nodes of the bacterial
phylogenetic tree, we tested the affect of host
genotype on the relative abundance of taxa at various
taxonomic levels. Across each taxonomic level both
Voxe and Va significantly explained variation in
microbial abundance (Fig 3A, Supp. Table 3). For
microbial features within the top 10th percentile for
Va and Vxe, we found generally increasing estimates
for Va and decreasing estimates for Voxe from
phylum to ASV (Fig. 3B). We next asked whether
taxonomic groupings of microbes at the ASV level
were more likely to be under the influence of host

genetics. Significant, non-zero Va and Voxe were

widespread across the microbial phylogeny, however
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Figure 2 Plants show evidence of affinity to local bacterial strains.
A) Map depicting locations where individuals within the population
were collected. Colors represent their subpopulation memberships.
Field sites are depicted with their three letter abbreviations. ATX =
Austin, TX; CMO = Columbia, MO; KMI = KBS, MI. B) Proportion
of ASVs showing specific enrichments in one subpopulation
compared to the other two broken up by site. C) Histograms of
microbial prevalence showing specific enrichments by subpopulation
and site. P values represent the significance of the mean prevalence
being greater than that of the background distribution. This was
calculated by randomly drawing the number of enriched ASVs from
the background distribution and asking how often we saw a mean
prevalence greater than that of the focal set.
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Figure 3 Switchgrass root microbiota show widespread heritability which is influenced by field site differences. A) Variance
components for aggregated abundances of different taxonomic levels and for ASVs. To be included in the models, features must
have been present in greater than 80% of the samples, study-wide. B) The relationship between genetic variance components and
microbial taxonomic rank C) The number of ASVs showing either significant GXE, V4, or no association to host genotype D)
Comparison of the magnitude of V4 vs GXE is presented as the log fold-change in the ratio of V5 to GXE for measured units within
each taxonomic level. E) V4 estimates for the core microbiota present at every site. The size of the circles indicate the magnitude
of estimated V4 and dark perimeters of the circles indicate a significant association (FDR <0.1).

135 specific orders were overrepresented in the data (Fig. 3C). In particular each tested ASV within the orders
136 Sphingomonadales, Subgroup 6 (Acidobacteria), Gammaproteobacteria Incertae Sedis displayed significant Va or Vixe.
137 We next compared the contribution of Va to Vaxe. In general, we found that more microbial features showed greater
138 Vaxe and this was consistent across taxonomic levels (Fig. 3D). The prominence of GXE suggested that levels of Va

139  differ between locations. To better understand the contribution of V within each site, we fit an unstructured model to
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140  ASVs which allowed for site-specific Va and as many unique covariances as site combinations. We applied these models
141 to ASVs with prevalences > 80% in at least two field sites (Fig. 3E), finding similar trends to the compound symmetry
142 model (Supp. Fig. 2). When analyzing the core microbiota (i.e. the 92 ASVs with prevalence >80% in all three sites),
143 we found 95 instances of significant site-specific Va spread across 64 unique ASVs (Supp. Table 4). CMO had the most
144 ASVs displaying significant Va (n = 38) while KMI had the least (n = 24). We also tested if there was a genetic
145 association between the abundance of an ASV across multiple sites by focusing on the genetic covariance of root-
146 associated microbial traits across sites. Genetic covariances were mainly positive (Supp. Fig. 3A) and site comparison
147 had a significant effect on covariance strength (P =0.005, ANOVA). Specifically, we found that CMO/KMI covariances
148  were significantly greater than those from ATX/KMI (adjusted P = 0.006, Tukey’s Post Hoc Test), but not ATX/CMO
149 (P> 0.05, Tukey’s Post Hoc Test). We tested for ASVs that showed significant genetic covariance between sites and
150 found 78 total significant estimates spread across 59 unique ASVs. Similar to the aggregate genetic covariance
151 distributions, we found the most cases of significant genetic covariance between CMO/KMI, while CMO/ATX and
152  KMO/ATX had equal instances of significant estimates (Sup. Fig. 3B). Together, these results indicate the host genetics
153 plays a significant role in modulating an extensive phylogenetic swath of root-associated microbiota, that some bacterial
154 clades are more likely to display heritable variation, and that genotype by environment interactions are widespread
155 determinants of bacterial relative abundances on switchgrass roots.

156

157 GWAS reveals microbiota assembly is a complex trait with extensive pleiotropy

158 After establishing that host genotypic variation influences the abundance of bacterial taxa, especially within
159 single field sites, we next asked if host genomic regions responsible for heritable variation in associated bacteria could
160 be localized with a genome wide association study (GWAS) framework. We first performed GWAS on community
161 composition using the first three principal coordinates for each site (Supp. Fig. 4). Significant associations between
162 SNPs and community composition were detected for each site, albeit on different PCo axes. These results indicate that
163 variation in community composition is associated with host allelic variation. To better understand how host allelic
164  variation influences individual microbes, we extended our analysis to perform GWAS on each ASV x site combination.
165 We analyzed ASVs present in at least 80% of the samples, resulting in 1019 independent analyses of ASV x Site
166  combinations. GWAS results were examined using a genome-wide significance threshold of 5x10® to identify SNPs
167  associated with the abundance of various microbes, a common cutoff used in microbiome GWAS studies where many
168  phenotypes are analyzed together *?°. Using this criterion, we found 1,153 SNPs associated with 459 ASV x Site
169 combinations. Most ASVs with significant SNP associations were from the ATX site (253 ASVs), while CMO and
170 KMI had similar numbers of ASVs with associated SNPs (101 and 105 ASVS, respectively). Taxa with associated SNPs
171 were diverse, but no bacterial orders were over-represented (Fig 4A-C). Most ASVs with associated SNPs were specific
172 to field sites; however, of the 179 ASVs that were tested in multiple sites, 50 showed associations across multiple field
173 sites, with 9 showing associations across all three sites (Supp. Fig. 5D). In line with our heritability analysis, bacteria
174  within Sphingomonadaceae featured prominently among ASVs with GWAS hits across multiple sites: 7 of the 10 ASVs
175 within this family showed hits across 2 or more sites and 2 Sphingobium ASVs had at least one significantly associated

176  SNP at all three sites (Fig. 5D).
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Figure 4 Pleiotropic loci influencing root microbiota. A) Number of ASVs detected in the 0.5% tails of the ASV x site GWAS
p-value distributions. The top 5 most frequently observed genomic bins for each site are highlighted in site-specific colors. B)
Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass roots and shoots. V1-V3 represent
phenological stages of the plant and red boxes around expression values represent genes differentially expressed between roots and
shoots (FDR < 0.05) C) Taxonomic breakdown of ASVs affected by putatively pleiotropic loci. D) Comparison of QTL similarity
(1 - Jaccard Dissimilarity) and ASV sequence similarity.
177 We next asked whether any host genomic loci affected multiple microbial taxa (i.e. had statistically pleiotropic
178 effects on microbiota and from here on referred to as pleiotropic loci) by compiling the 0.5% tail of 25 kB genomic bins
179 into a quantitative trait locus (QTL) x ASV matrix for each site (see Methods). We first investigated the most commonly
180  observed 25 kb genomic bins for each site by selecting the top 5 loci associated with the most ASVs within each site
181  (ATX=38-45 ASVs; CMO = 18-23 ASVs; KMI = 19-25 ASVs, Supp. Table 5). Two pleiotropic loci overlapped with
182 loci detected from our initial GWAS on community metrics (Supp. Fig. 4; CMO:ChrOIN and ATX:Chr02K), indicating
183 that while some pleiotropic loci account for larger trends in community composition, most identify variation not seen
184  along the first three axes of community composition.
185 To better characterize the candidate genes underlying these loci, we next compiled expression patterns for genes
186 within these intervals. Most loci contained genes displaying higher expression patterns in switchgrass roots than shoots,
187 implicating promising candidate genes affecting multiple microbiota members. These included several proteins involved
188 in calcium signaling, immunity, and secondary cell wall biosynthesis. The microbes associated with pleiotropic loci
189 were taxonomically diverse, with multiple bacterial phyla affected by each locus. In general, the additive effects of the
190 QTL were largely consistent in sign across the different ASVs. This observation was also reflected in the taxa being
191 affected by the loci: several loci show patterns where the relative abundances of Actinobacteria, Chloroflexi, or
192 Alphaproteobacteria ASVs had consistent effect signs. This observation led us to the hypothesis that there may be an
193 association between the QTL landscape and phylogenetic relationship for pairs of microbes. We found a positive and
194 significant association between the sequence similarity of ASVs and their associated QTLs. This association differed
195 weakly but significantly between sites with ATX showing a weaker correlation than CMO or KMI (P = 0.06 and 0.0015,
196  respectively). Each site had a closely related ASV pair which stood out in terms of shared QTLs. These included two
197  Sphingobium ASVsin ATX, Bacillus in CMO, and Acidibacter in KMI. Together these results indicate that host genomic
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Figure 5 GWAS reveals loci associated with core switchgrass root microbiota. A) Manhattan plot showing
the association between SNPs and abundances of core ASVs. P values are derived from combining P-values
using Fisher’s method. Peaks are colored by the Phylum / Class of the ASV. B) The most strongly enriched
Gene Ontology (GO) terms within the core ASV GWAS tails.

198  variation can have pleiotropic effects on microbiota and that the abundances of related microbes are more likely to be
199  affected by the same host loci.

200 The pleiotropic loci included several promising candidate genes, but to have a more robust understanding of
201  the functional categories influencing switchgrass root associated microbiota we performed gene ontology (GO)
202 enrichments for annotated genes underlying the ASV x QTL matrix. We found that 789 of the ASV x site combinations
203  displayed at least one significant GO enrichment. The most commonly observed GO term enrichments showed
204  overlapping as well as contrasting patterns between sites (Supp. Fig. 6, Supp. Table 6). For example, the terms ‘response
205 to biotic stimulus’, ‘response to auxin’, ‘negative regulation of growth’, and ‘sucrose biosynthesis’ were observed in
206 multiple ASVs across every site, while ‘Defense response’, ‘prophenate biosynthetic process’, and ‘carbohydrate
207 binding’ showed more site-specific patterns. These results indicate that variation in host molecular pathways can
208 influence the abundance of microbiota members and that some pathways are putatively dependent on environmental
209  conditions.

210 To better understand the contribution of loci independent of field site, we subsetted our scans to ASVs which
211 had been tested in every site (i.e. the core microbiota), joining P-values generated during GWAS for a single ASV across
212 each field site using Fisher’s method, a practice commonly used in meta-analyses to identify statistical tests with
213 repeatable signal across multiple trials. A total of 239 SNPs passed a P value threshold of 5x1078, revealing 44 out of 92
214 core ASVs had a significant association (Fig. SA, Sup. Fig. 5D). More than half of the ASVs with significant associations
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and cell walls form physical barriers as well as

associated with the abundance of various microbes

implicated across multiple environments and the

processes by which the host plant modulates core microbiota are diverse.

Pattern triggered immunity responses genetically co-vary with root-associated microbiome composition

Plants surveil their biotic environment through perception of microbial associated molecular patterns, eliciting
the activation of the pattern triggered immunity (PTI) pathway. We hypothesized that loci responsible for observed
variation in PTI may overlap with host genetic variation controlling microbial abundance. To test this hypothesis we
treated leaf disks from the population of plants growing in Austin, TX with Flg22, perhaps the most well studied MAMP.
We measured the release of reactive oxygen species (ROS) over time using a well-characterized assay (see Methods).

Flg22 elicited a range of ROS burst profiles in the population while mock treated samples did not display the typical
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252 response curve of treated plants (Fig 6A). We converted the time series into principal components to better understand
253 the different modes of variation displayed across treated samples. The tails of the PC axes were informative of the type
254 of variation observed in the population (Fig. 6B): PC1 best explained the magnitude of response; PC2 separated plants
255 with acute vs gradual responses; and PC3 showed a timing difference of peak ROS burst. All three axes showed
256 significant 4’ ranging from 0.48 to 0.38 (Fig. 6C). These results indicate that switchgrass genotypes significantly vary
257  in their response to the PTI elicitor flg22.

258 The plant immune system has been implicated to actively shape the microbiome 28, therefore we hypothesized
259  that genetic variation for PTI responses may genetically co-vary with abundance of various root-associated microbiota.
260 To test this hypothesis we calculated the genetic co-variances for the PTI PC axes against the relative abundance of core
261 bacterial ASVs in the ATX site. We found significant genetic co-variances across each PTI axis: in total 126 / 739 ASVs
262 showed significant genetic covariances with PTI axes (Bonferroni P < 0.05, Fig 6D). PTI PC1 had the most associations
263 and PC2 had the least. PTI PCs 2 and 3 predominantly had negative co-variances with ASVs while PC1 had a similar
264 amount of positive and negative co-variances. These results indicate that bacterial microbiota show positive and negative

265 genetic correlations with PTI responsiveness and that associations between these traits are not phylogenetically limited.

266
267 DISCUSSION

268 Here we have used natural switchgrass accessions growing in field sites spanning its native range to evaluate

269 the contribution of environment and host genotype on root-associated bacterial assemblages. Field site was a major
270  determinant of bacterial community assemblages in our study. Within sites, however, host genetics influenced the
271 assembly of bacterial microbiomes, with local microbes preferentially colonizing native genotypes. We found numerous
272 associations between bacterial relative abundances and host genomic loci through a GWAS framework, linking the
273 abundance of taxa to host ontology groups and candidate genes. Our meta-analyses of GWAS scans performed on core
274 ASVs implicated host loci affecting microbiota assembly independent of field location. Finally, we present evidence of
275 correlation between pattern triggered immunity in the host and abundance of bacterial taxa associated with the roots.
276

277

278 Genotype by environment interactions in host-associated microbiomes

279 A key finding of our study was that relative abundances of bacteria were strongly influenced by the interaction
280 of host genetic variation and field site (Fig. 2 and Fig 3). Further, we found that there were affinities between genotypes
281 growing in their home environments and the local microbiota (Fig 2B). Interestingly, microbes with specific enrichments
282 to local genotypes consistently had higher prevalence than expected (Fig 2C). A potential explanation is that home
283  genotypes, as opposed to foreign genotypes, are more in sync with their native climates, photoperiods, and soil
284 properties. This in turn, may reduce host stress and culminate in the acquisition of consistent microbiota. Alternatively,
285 these results could be explained by a co-evolutionary framework, where evolution in the microbes drives selection on
286 the host, and consequent selection in the microbes '°. However, given the stochastic dispersal of soil microbes 2°, the
287 more likely explanation is one-sided evolution where the local microbe population imposes selection and evolution on

288 the host, rather than the host imposing selection on the microbes. Perhaps the elevated prevalence of enriched microbes
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289 equate to more chances for interaction and act to exert stronger selection on hosts (Fig 2C). Another display of GXE was
290 that ASVs rarely showed heritable variation across every site. While GXE for microbial community composition is often
291 complex in these types of studies, the fundamental ‘disease triangle’ framework from the plant pathology field is useful
292 when considering host-microbe associations, regardless of pathogenesis. This theory dictates that for disease to occur, a
293 susceptible host genotype, virulent pathogen, and favorable environmental condition must co-exist. Each of the three
294 points of the triangle can be explored further to explain GXE in root microbiota assemblages. We discuss these three
295 points in the context of our study below.

296 Firstly, environmental variation occurs in biotic and abiotic flavors, which are not mutually exclusive. Our
297 results indicate that the environment greatly influences the composition of root microbiota at each field site (Fig 1A).
298 Field site had an almost universal effect on the abundance of ASVs (Fig. 1C). The three field sites do differ in their field
299 uses, a factor which can contribute to soil microbiome variation *. Columbia, MO and Kellogg Biological Research
300 Station, Ml sites are converted prairie and forest, respectively, and have histories of cultivating crops either agriculturally
301 or experimentally. The ATX field site is located within city limits on a campus with no known history of agricultural
302 cultivation. These land use history differences may explain the relatively large microbiome compositional variation
303 between ATX and CMO / KMI sites. Furthermore, climate patterns are distinct between the sites, CMO and KMI having
304 more similar climate patterns. Alternative favorable conditions may promote growth of certain taxa, which may
305  ultimately influence the abundance of other microbes.

306 The microbial component of the disease triangle states that a virulent form of the pathogen must be present to
307 infect a host and initiate disease. Implicit to this point is that genetic variation exists for microbes in addition to hosts.
308 Unfortunately, we could not examine genetic variation of individual ASVs in our study, as we based the detection and
309 abundance of different taxa on a small 250 bp segment of a single gene. While this may suffice to classify most microbes
310  down to the genus or species level, it is insufficient to explore bacterial strain level variation. Every ASV in a site is
311  under selective pressure by the local environment. Therefore, an ASV detected at one site will most likely have distinct
312 polymorphisms with adaptive consequences compared to the same ASV at a different field site. Even within sites, ASVs
313 can be composed of multiple microbial lineages, each conveying distinct phenotypes to the host 3. Polymorphisms,
314 especially between sites, may preclude the microbe from falling under the genetic influence of the host, explaining why
315 we detect significant heritability for the same ASV in some sites but not others. Nevertheless, we identified ASVs where
316  combined p-values generated from site-specific GWAS helped to uncover loci consistently associated with their
317 abundance. This was the case for half of the ASVs tested under this framework, suggesting that modulation of ASVs
318 through shared mechanisms across field sites is relatively common, yet may not have effects passing a threshold in single
319 ASV x site GWAS. A potential method to study GXE with host associated microbiomes is through construction of
320 synthetic communities, which offer an ecologically relevant, yet controlled system for plants and microbes to interact
321 while experiencing an experimental environment change. However, it must be noted that synthetic communities will
322 remain incomplete representations of root-associated bacterial communities until highly prevalent and abundant, yet
323 recalcitrant microbes become more easily cultivable. For example, strains belonging to Chloroflexi, Acidobacteria, and
324 Verrucomicrobia are prominent members of plant microbial communities, but remain conspicuously absent from root

325 bacterial culture collections 3733,
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326 Finally, the third point of the disease triangle stipulates that a host plant must be susceptible to infection in
327  order for pathogenesis to occur. In our case, this equates to host genetic variants being compatible for colonization by
328 the local ASV. Susceptibility / compatibility, is likely dependent upon both biotic and abiotic environmental conditions.
329 That is, habitat variation and microbial community variation between sites may activate or repress the expression of
330 allelic variants responsible for regulation of microbial colonization. For example, increased temperature attenuates
331  effector triggered immunity in Arabidopsis, increasing susceptibility to Pseudomonas syringae **. Xin et al demonstrate
332 that elevated humidity can greatly influence the pathogenesis of Pseudomonas syringae, but in a host genotype
333 dependent manner *°. In addition, given that the microbiomes vary substantially between sites, the biotic component of
334 the environment may contribute to expression differences between allelic variants, thus leading to differential enrichment
335 of metabolic, immunity, and developmental pathways. One fascinating angle recently put forward is that microbes which
336 subvert plant immunity may ultimately serve as keystone taxa 38 by dampening the immune response, allowing other
337  microbiota to side-step the host immune system. Given that the biotic environment largely varies between sites,
338 contrasting keystone taxa may exert alternative effects on different genotypes.

339 In all of these scenarios it is important to acknowledge that both microbes and plants are sensitive to
340 environmental conditions. Microbes are a critical part of the host plant’s environment, and likewise, the host plant is an
341 environment for the microbes. Environmental variation may change local microbiota community structure which in turn
342 may affect the expression of host genes impacting microbiota assembly.

343

344 Which taxonomic level is appropriate for calculating heritability of bacteria?

345 We find that heritability of microbiota features can be observed across every taxonomic level. Several studies
346  have calculated heritability of rhizosphere or root associated bacteria 2!, Typically, the analysis is conducted at the
347 OTU or ASV level (i.e. the taxonomic level with the highest resolution). In the case of Sutherland et al., the authors
348 chose to calculate heritability for aggregated counts of bacterial families. This begs the question: which taxonomic level
349 is appropriate for calculating heritability of host-associated bacteria? Our results indicate that, while individual ASVs
350 displayed the greatest h? on average, relatively high h? can be observed even at the bacterial order and family level. This
351 observation lends some support to the idea that plants do not select for particular microbes (i.e. specific ASVs), but
352 rather for microbes with particular functional attributes '*. In some cases, it may be that functional attributes impacting
353 host phenotypes diverge across closely related microbes “°, therefore the ASV level may be most appropriate. In other
354  cases, a functional attribute selected for by the host may be conserved across wider evolutionary distances allowing for
355 detection of h? at higher taxonomic levels. Uncovering the appropriate unit for calculating heritable signal in host
356 associated microbial communities will be an important challenge for future studies.

357

358 Genetic architecture of host-microbiome interactions in roots

359 We identified numerous regions of the host genome associated with the abundance of core taxa. In addition,
360 our results indicate that associated SNPs passing a genome wide threshold are rarely shared across multiple ASVs, yet
361 the tails of GWAS p-value distributions contain commonly associated loci. These results suggest that loci with the largest

362 effects on any particular ASV’s abundance are specific to that microbe while loci with smaller effects are shared between
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363 ASVs. Together, these results indicate that microbiome assembly is a complex trait given that the microbiome constitutes
364 a consortium of interdependent bacteria; that many significant loci were identified associated with these microbes’
365 abundances; and that many GO term enrichments were uncovered associated with these loci. That is, many genes and
366  processes contribute relatively small effects to influence the relative abundance for various ASVs.

367 A difficulty in presenting these data is their complexity and the plethora of uncovered candidate genes
368  putatively involved in microbiota assembly. We therefore focused on loci impacting the most members of the
369  microbiome (i.e. pleiotropic loci, Fig 4). Several compelling candidate genes were identified among the commonly
370  associated loci which showed enriched expression in roots. Among these were a cellulose synthase subunit, whose
371 ortholog in Arabidopsis is involved in secondary cell wall synthesis and has been reported to influence resistance to soil-
372  borne bacterial pathogens in a defense hormone-independent manner #!. We also identified two root-expressed candidate
373 nucleotide-binding leucine rich repeat proteins (NLRs) showing associations to multiple ASVs. NLRs are important
374 sensors involved in effector triggered immunity and have been implicated in affecting sorghum rhizosphere microbiota
375 V. Given the diversity of NLR genes within plant species (switchgrass has well over 1000 annotated NLR genes) and
376  the presence / absence variation between individuals within species *2, an open question is how the repertoire of NLR
377 genes shapes root associated microbiota. The co-evolution between NLR genes and microbiota will remain an
378 compelling hypothesis to explain local adaptation to the biotic environment and may serve as a means for fine-tuning
379 microbial communities. Ultimately, uncovering specific mechanisms and genetic networks controlling microbiota
380 assembly requires reverse genetic approaches. Several studies in maize have used mutants to show that ablation of
381 specific metabolites in exudates can modify microbial community composition * and can lead to a significant impact
382 on plant resistance to herbivory . Our study provides a list of possible candidate loci to target for future research.

383

384 An association between Pattern-triggered immunity and root microbiota composition

385 Several of our analyses implicated physical and immune defenses as modulators of microbiome composition.
386 In our study we investigated the role of plant genotype in explaining PTI variation using the elicitor flg22. While flg22
387 is one of many known elicitors, it serves as a good proxy for PTI given that pattern recognition receptors share similar
388 co-receptors which funnel into similar pathways *° and downstream transcriptional responses show strong overlaps *°.
389  Much like a recent study in Arabidopsis, our results revealed strong heritable variation in PTI response within our
390 population ¥’. Further, our analysis revealed a link between the abundance of the ATX core microbiota and modes of
391 PTI variation within our switchgrass population. Particularly strong associations, both negative and positive, were
392 observed between the first axis of PTI variation (ROS burst magnitude) and a phylogenetically broad set of root-
393 associated microbes (Fig 6D). PTI canonically inhibits the entry of perceived pathogens *%, but our results suggest that
394 it may also gate or limit the proliferation of commensal bacteria and their interactors, at least for ASVs with negative
395 genetic covariances. This result is in line with previous studies showing that attenuation of PTI can lead to altered
396  microbiota composition and even dysbiosis *. Similarly, mutant Arabidopsis plants with altered defense hormone
397 production host atypical root microbiota, indicating that immune signaling is an important modulator of microbiota
398  assembly . On the other hand, we found ASVs with strong positive genetic covariance with PTI . These ASVs may 1)
399  stimulate PTI sensitivity, such as in the case of induced systemic resistance (ISR); 2) escape the effects of PTI; or 3)
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400 benefit from the exclusion of PTI sensitive microbes. Deciphering the role and mechanisms of the host immune system
401 in regulating microbiota assembly processes and how assembly of microbiota in turn modulates the host immune system

402 is an active area of investigation with implications for the design of plant probiotics 5.

403
404 CONCLUSION
405 We found that though environmental variation in natural field locations is the primary driver of microbial

406 community composition, host genotype leaves a significant, widespread footprint on the root microbiome. We find
407 evidence that locally adapted host genotypes enrich highly prevalent local microbes compared to foreign genotypes.
408 Leveraging the associations with microbiota via manipulation of host genetics to favor desirable outcomes on plant
409 fitness or yield is a goal that is currently unrealized. By characterizing which microbes are responsive to plant genotype
410 and potential loci involved in host-microbiome interactions, the insights from this study may be of use when engineering

411  or configuring associations between plants and microbes in the field.

412
413 METHODS
414 Plant collection, propagation, and planting

415 Collection, propagation, and field planting of the switchgrass population was previously described by Lovell et al. Briefly, the
416 diversity population was established by collecting seeds and rhizomes from natural as well as common garden resources and
417 transported to Austin, TX where the accessions were clonally propagated. Switchgrass is an outcrossing perennial plant, hence
418 individuals in the planting populations are clonally propagated ramets and it is not possible to raise identical plants from seed. The
419 genomes for individuals within the population were resequenced, aligned to the reference genome, and genomic variants were
420 identified. Initial growth of plants and seedlings occurred in a mixture of Promix peat-based potting soil and calcined clay (Turface).
421 Rhizome propagules were transplanted into 5 gallon pots containing finely ground pine-bark mulch and nutrients were supplied
422 through slow release fertilizer (14-14-14, Osmocote). Final propagation of the accessions occurred in 2018 where ramets were grown
423 in 1 gallon pots containing pine-bark mulch. In May to June 2018 the ramets were transplanted into the common gardens. Briefly, the
424 fields were covered with weed cloth and the layout was marked such that each plant had a minimum of 1.56 m from the four
425 surrounding plants. Holes were cut into the weed cloth and the soil was excavated using a spade shovel. The plants were placed into
426 the holes, surrounded by soil, and hand watered. The lowland cultivar ‘Blackwell” was planted around the edge of the field sites to
427  account for border effects.

428

429

430 Root Sample Collection and Processing

431 Samples were collected in the summer of 2019. Samples from ATX were collected in June, 2019 while CMO and KMI samples were
432 collected in early August or 2019. The gap in sample collection timing between the sites was intentionally set to account for
433 phenological differences in AP13, the reference genome accession, between locations. The size of our plantings as well as various
434 characteristics of switchgrass plants presented several challenges during sampling. Switchgrass plants are obligately outcrossing
435 therefore cannot be destructively sampled. Given that microbiomes can be dynamic, and can potentially respond to weather events,
436 sampling of the fields had to occur within one day. Our plantings are large, and a team of samplers was employed to quickly collect
437 root samples. A 1-inch diameter punch core was used for sample collection. Briefly, the corer was placed at the edge of the crown

438 and rotated to be tangential to the crown. This allowed us to avoid the original potting soil directly underneath the crown where the
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439 original transplantation occurred and minimized the chance of capturing legacy microbiota from the pre-transplanted roots. The corers
440 were pushed 10-15 cm below the surface at a 45-degree angle. The soil-bound roots were extracted from the instrument using a
441 scoopula and placed into a plastic baggie. Between samples, the corer was cleaned of remaining soil using a paper towel, but no effort
442 was made to sterilize the instrument between samples as ethanol cannot remove DNA and bleaching / washing the instruments was
443 not feasible for conducting the sampling in a reasonable timeframe. Roots were encased by surrounding soil in the core, therefore the
444 risk of cross contamination was negligible. After a row was completed, the sampler returned to a workstation and the baggies were
445  organized and placed into a cooler with ice packs or wet ice.

446 The samples were processed the next day. Living roots from the baggies were picked using ethanol and flame sterilized
447 forceps. Two or three 1-inch pieces of roots were placed into a 2 mL tube with 1 mL sterile PBS. Typical root samples contained both
448 transport roots with attached absorptive roots. The roots were vortexed in PBS for 10 seconds then sterilely transferred to a new, clean
449 tube with 1 mL PBS. Again the roots were again vortexed to remove soil adhering to the surface and the resulting dirty PBS was
450 discarded. This process was repeated until the PBS solution was clear and no soil remained in the tube. The roots in the tubes were

451 then frozen and stored at -80 degrees until DNA extraction took place.

452
453 DNA Extraction
454 DNA was extracted from samples using a procedure similar to Bollman-Giolai et al. 3. Briefly, root samples are ground to

455 a fine powder with two sterile steel beads in a 2 mL tube using a GenoGrinder for 30s at 1750 rpm. After grinding 0.25 g of garnet
456 particles (Lysing Matrix A, BioSpec) were decanted into the tube and 540 uL of Buffer I (181 mM NaPO4, 121 mM Guanidinium
457 Thiocyanate) was pipetted into each tube. The samples were briefly vortexed, and 60 uL of buffer II (150 mM NaCl, 4% SDS, 500
458 mM Tris pH 8) was added. The samples were then placed into the Genogrinder for 2 min at 1500 RPM to grind / lyse. The tubes were
459 centrifuged at 10,000 g for 1 min to palette debris. The supernatant (500 uL) was transferred to a deepwell (1mL) 96-well plate and
460 250 uL of Buffer III (133 mM Ammonium Acetate) was added to the samples and vortexed to precipitate SDS and proteins. The
461 plates were placed in 4 degrees for 5 min, then centrifuged at 4000 g. The supernatant (500 uL) was transferred to a new plate and
462 120 uL of Buffer IV (120 mM Aluminum Ammonium Sulfate Dodecahydrate) was added to precipitate fulvic and humic acids, typical
463 PCR inhibitors from plant and soil samples. The samples were put at 4 degree for 5 min, then centrifuged for 2 min at 4000 g. After
464 this step, the supernatant can be frozen /stored or directly used for the next SPRI bead purification step. For the SPRI cleanup, 300
465 uL of the supernatant is mixed with 240 uL of SPRI beads in a deepwell 96-well plate and incubated for 5 min. The plates were then
466 placed on a magnet, allowed to clear, and the supernatant was discarded. The beads were then washed twice with 80% ethanol and
467 allowed to dry for 5§ min. DNA was then eluted using 50 uL of water and transferred to a 96 well plate for storage at -20.

468

469 Library preparation and sequencing

470 We amplified the V4 region of 16S rRNA gene to survey microbial membership and relative abundance in the samples. We
471 used a two-step strategy, where V4 regions were first amplified using modified primers published by Parada et al. 2. The primers
472 were modified to add nextera sequencing primer annealing sites to the amplicons. The resulting PCRs were checked for amplification
473 on a gel and cleaned using SPRI beads. The second round of PCR added barcodes and flow cell annealing adapters to the amplicons.
474 Our barcoding strategy adds 12 bp Golay barcodes to both ends of the amplicon. The libraries were purified again using SPRI beads
475 and quantified using Qubit high sensitivity assays. The amplicons were normalized for concentration by pooling samples at different
476 volumes depending on their concentrations. The resulting pools were then concentrated using SPRI beads and run on a 2% agarose
477 gel. The appropriate band was cut from the gel and purified (Nucleospin) and sent for sequencing.

478 Sequencing occurred at multiple centers. Our first two libraries were sent to both the HudsonAlpha Genomic Sequencing
479 Facility and to the Joint Genome Institute (JGI). All of the other libraries were sent to JGI. All sequencing was performed using
480 [llumina NovaSeq configured with the SP flowcell which is capable of 250 x 250 bp paired end read lengths.
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481
482 Sequence processing and ASV calling
483 Resulting  reads  were  demultiplexed, if needed, wusing the demultiplex Python  software

484  (https:/demultiplex.readthedocs.io/en/latest/index.html). Reads were trimmed to remove adapter sequences using cutadapt 53, ASVs

485 were called using the dada2 R software package .

486
487 Beta diversity measurements
488 Bray-Curtis dissimilarities were calculated using the vegdist function from the Vegan R package >° on log2 transformed

489 ASV relative abundances. Principal coordinate analysis was done using the capscale function from the Vegan package. Permanova
490 was conducted using the adonis function.

491

492 Modeling site and subpopulation effects on ASVs

493 We used a linear modeling framework to model the effect of field site, genetic subpopulation, and subpopulation x site
494 effects on microbes. To be included in the analysis, an ASV must have been present in >= 50% of the total samples included in the
495 study. For every ASV a linear model was run with the following structure

496

497  Im(ASV_abundance; ~ log10(depth) + Site + Subpopulation + Site:Subpopulation)

498

499 Where ASV_abundance; is the vector of rank-based inverse normal transformation for the i ASV. This transformation was performed
500 using the function RankNorm() from the R package RNOmni *°. Sequencing depth was accounted for by including the log10(depth)
501 term in the model. Site represents the vector of field locations and Subpopulation represents the switchgrass genetic population of the
502 host. Site:Subpopulation is the term capturing interaction effects between these two factors. Rank-based inverse normal
503 transformations were performed to coax ASV relative abundances into a normal distribution, to fit the assumptions of the model.
504 Variance partitioning of the terms was performed by running the function Anova() from the Car package on individual models and
505 percent variance was calculated by dividing a factor’s sum of squares by the total sum of squares. Contrasts across model variables

506 were calculated using the emmeans package .

507

508 Genetic variance component analyses

509 Additive genetic variance and GxE variance was first calculated using the compound symmetry model in the R package
510 Sommer. The compound symmetry structure model assumes constant total variance within each site as well as constant covariance
511 between sites. This is the simplest model structure and was selected as the first step in our analysis because the model returns
512 components for additive genetic variance and genotype by environment variance. To be included in the analysis, a feature must have

513 been detected in >= 80% of the samples. The full model was run with the following structure.

514

515 Full_model <- mmer(rst ~ Site + log10(depth), random =~ vs(PLANT _ID, Gu=K) + vs(Site:PLANT _ID, Gu=EK), rcov = ~units,
516 data = x2, tolparinv = le-01, verbose = T)

517

518 rst is the vector of rank-based inverse normal transformed ASV relative abundance (or aggregated relative abundance if

519 classification is above ASV). Rank-based inverse normal transformations were applied to the counts within each site for each ASV
520 and resulted in a constant overall variance, fulfilling this assumption of the compound symmetry structure. In this model Site and
521 sequencing depth were fit as fixed effects. PLANT ID is the plant accession name and K is the kinship matrix with pairwise

522 relationships between individuals in the population based upon SNP data. Site is the field location and ‘vs(Site:PLANT ID,
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523 Gu=EK)’ captures the variance of GXE in the model, where EK is a list of site-specific kinship matrices. Reduced models were
524 constructed to test the contribution of Ve and Va to the models. They were encoded as follows

525

526 reduced 1 <- mmer(rst ~ Site + log10(depth), random =~ vs(PLANT _ID, Gu=K), rcov = ~units, data = x2, tolparinv = 1e-01,
527  verbose=T)

528

529 Notably, this model lacks the GXE term ‘vs(Site:PLANT ID, Gu=EK)’. This model was compared to the full model using a

530 likelihood ratio test to examine whether GXE influenced the abundance of the tested ASV. To test for the effect of host genotype,
531 we compared reduced 1 to the below model.

532

533 reduced 2 <- mmer(rst ~ Site + log10(depth), rcov = ~units, data = x2, tolparinv = le-01, verbose = T)

534

535 This model lacks the effect of genotype altogether, thus comparing reduced 2 to reduced 1 using a likelihood ratio test examining
536 whether host genotype contributes to the observed variance of the tested ASV. To make a call on whether GXE or V, influenced
537 microbial abundances, we first asked if GXE showed an adjusted P value < 0.1. If so, our analysis stopped and we flagged the tested
538 ASYV as showing significant GXE. If not, then we tested whether V4 had an effect with an adjusted P value <0.1. If so, we made a
539 call that the ASV is affected by host additive genetic variance. If not, we inferred that the ASV was not affected by host genotype.
540

541 We next used the unstructured model in the sommer package to ask about additive genetic variance within each site. The

542 unstructured model allows for unequal additive genetic variances within sites as well as unequal covariances between sites. This
543 allowed us to ask about the influence of host genotype within sites and whether the influence of host genotype is consistent across
544  multiple sites.

545

546

547 Multiple testing was accounted for through correction by the Benjamini-Hochberg approach, and a significant contribution of either
548 parameter was determined at FDR <0.1.

549

550 Microbial Genome Wide Associations

551 We performed GWAS for microbes found in >80% of the samples within each site. For this analysis, where we were
552 performing quantitative models, we removed samples where the focal ASV was not detected and the relative abundance were
553 transformed as previously mentioned using the rank-based inverse normal transformation. GWAS was run using the

554 SwitchgrassGWAS R package (https:/github.com/Alice-MacQueen/switchgrassGWAS) 22, This package dynamically chooses the
555 number of genetic PCs to include as covariates in the model to control for population structure and reduce genomic inflation. The
556 SNP matrix used in the analysis was dense, composed of over 25 million SNPs generated from the Panicum virgatum V5 genome.
557 The gene content near SNPs passing a threshold of 5x10°® was generated using BEDTools window 8 on the P. virgatum v5.1

558 genome annotation with a window size of 50 kb.

559 For the core microbiota, i.e. microbes detected in >= 80% of the samples in each field site, the P-values for the GWAS
560 scans of each microbe were combined using Fisher’s Method from the R package ‘metap’ *.

561

562 Detection of pleiotropic loci affecting multiple microbes

563 To identify regions of the host genome putatively influencing the abundance of multiple microbes we divided the genome

564 into 25 kb bins, consistent with average linkage equilibrium decays suggested in other switchgrass studies . For each microbe, this
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resulted in 43,402 bins. We next calculated the minimum p-value of the SNPs within each bin for each microbe and retained the top
0.5% of bins with the lowest p-values (217 bins). The resulting QTL bins were then compiled into a presence / absence matrix and
we kept the top 5 loci from each site for further analysis. We tested the likelihood of observing the number of overlapping loci in
our data by using a permutation framework. In our QTL x ASV matrix, the ASVs were the rows and QTL were the columns. We
randomized the QTLs for each ASV in the matrix and counted the maximum number of overlaps, stratifying by field location. This
was performed 1000 times to develop a null distribution. All of our top 5 pleiotropic loci had p <0.001. We chose to only analyze

the top 5 loci for each site for presentability, but include the other loci passing this significance threshold in the supplemental tables.

Gene Ontology Enrichments
We identified the gene content of the QTL matrix composed above using bedtools window, then extracted the Gene
Ontology categories for each gene within each 25kb genomic bin. Enrichment was calculated against the background genome GO

counts using a hypergeometric test and P values were corrected for multiple tests using the Benjamini-Hochberg procedure.

Gene Expression Analysis

The expression values for gene underlying putative pleiotropic loci were extracted from the Panicum virgatum gene
expression atlas which can be found on Phytozome 13. The FPKM values for P. virgatum gene expression across tissues and
environments were generously shared with us by the group of Jeremy Schmutz. Differential expression between root and shoot
tissue was performed using the following linear model on FPKM values.

Im(log2(expression) ~ Tissue)

The resulting P-values for the term ‘Tissue’ were corrected using the Benjamini-Hochberg procedure and significance was called at

adjusted p value < 0.05.

Pattern Triggered Immunity Assays

Leaf tissue was collected from the ATX field site plants in the spring of 2020. Leaf disks were punched from the leaves
on location in the field and immediately placed in 2 mL of sterile DI water in a 48 well plate and covered with aluminum foil. The
plates were gently shaken for 2 hours, then the disks were transferred to white, opaque 96 well plates in 50 uL of sterile DI water,
wrapped in aluminum foil, and left overnight. The next day, the disks were treated with 50 uL of Flg22 elicitor cocktail (10ug/mL
horseradish peroxidase, 34 ug/mL L-012, and 1 uM Flg22). The plates were read over a time series on a SpectraMax M3 plate
reader. Negative control plates with a randomly selected group of genotypes were mock treated (10ug/mL horseradish peroxidase,
34 ug/mL L-012, water). Each genotype was read in triplicate. To analyze the data, we log transformed the relative luminescence

units of the time series and reduced the dimensionality using PCA.
Genetic covariances of PTI axes and bacterial abundances

We performed genetic covariances between the first three PTI PCA axes and ATX root microbe relative abundances
using the R package Sommer. We used the following mixed effects model.

covar_mod <- mmer(cbind(ASV_abund, PTI PC) ~ 1, random= ~vs(PLANT _ID, Gu=K), data=data, tolparinv = le-1)

The terms for ASV_abund and PTI_PC changed depending on the focal ASV and focal PTI PC axis. Covariance estimates and

standard errors for the estimates were gathered using the following command.
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607 covar <- vpredict(covar_mod, covar ~ V2 / sqrt(V1*V3))
608

609 P values for observing the covariance estimate or larger (in magnitude) were calculated as p = 2*pnorm(estimate / standard_error,

610  lower.tail=FALSE)

Figure Legends

Figure 1. Field site is the primary determinant of switchgrass root microbiota composition. A) Principal coordinate
analysis based on Bray-Curtis dissimilarities. Inset: map of field locations, colors match those in the figure legend. B)
Relative abundance of phyla and Proteobacterial classes in every sample at each site. C) Effect sizes for Site, Host
Subpopulation, and Subpopulation x Site for ASVs in dataset broken down by phylum / class. D) Number of ASVs
with significant contrasts from the models displayed in panel C. E) Prevalence / abundance curves for each field site.
Each point represents a single ASV and the black dashed line is the 80% prevalence threshold used to call core taxa.
F) Venn diagram displaying overlaps of core microbiota from each site. G) Fraction of reads belonging to the core
microbiota at each site (colored boxes) and the shared core microbiota (92 overlapping microbes from panel F, gray
boxes).

Figure 2. Plants show evidence of affinity to local bacterial strains. A) Map depicting locations where individuals
within the population were collected. Colors represent their subpopulation memberships. Field sites are depicted with
their three letter abbreviations. ATX = Austin, TX; CMO = Columbia, MO; KMI = KBS, MI. B) Proportion of ASVs
showing specific enrichments in one subpopulation compared to the other two broken up by site. C) Histograms of
microbial prevalence showing specific enrichments by subpopulation and site. P values represent the significance of
the mean prevalence being greater than that of the background distribution. This was calculated by randomly drawing
the number of enriched ASVs from the background distribution and asking how often we saw a mean prevalence
greater than that of the focal set.

Figure 3. Switchgrass root microbiota show widespread heritability which is influenced by field site differences. A)
Variance components for aggregated abundances of different taxonomic levels and for ASVs. To be included in the
models, features must have been present in greater than 80% of the samples, study-wide. B) The relationship between
genetic variance components and microbial taxonomic rank C) The number of ASVs showing either significant GxE,
Va, or no association to host genotype D) Comparison of the magnitude of Va vs GxE is presented as the log fold-
change in the ratio of Va to GxE for measured units within each taxonomic level. E) Va estimates for the core
microbiota present at every site. The size of the circles indicate the magnitude of estimated Va and dark perimeters of
the circles indicate a significant association (FDR < 0.1).

Figure 4. Pleiotropic loci influencing root microbiota. A) Number of ASVs detected in the 0.5% tails of the ASV x
sitt GWAS p-value distributions. The top 5 most frequently observed genomic bins for each site are highlighted in
site-specific colors. B) Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass
roots and shoots. V1-V3 represent phenological stages of the plant and red boxes around expression values represent
genes differentially expressed between roots and shoots (FDR < 0.05) C) Taxonomic breakdown of ASVs affected by
putatively pleiotropic loci. D) Comparison of QTL similarity (1 - Jaccard Dissimilarity) and ASV sequence similarity.

Figure 5 GWAS reveals loci associated with core switchgrass root microbiota. A) Manhattan plot showing the
association between SNPs and abundances of core ASVs. P values are derived from combining P-values using Fisher’s
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method. Peaks are colored by the Phylum / Class of the ASV. B) The most strongly enriched Gene Ontology (GO)
terms within the core ASV GWAS tails.

Figure 6. ASV abundances co-vary with mamp triggered immune responses A) Response curves for the switchgrass
population planted at the ATX site for treatment with 1 uM Flg22. B) Response curves for mock inoculated plants. C)
Narrow sense heritability estimates for the three PC axes of PTI response variation. D) The 5% and 95% percent tails
of the first three PC axes of PTI response variation. E) Microbial manhattan plot displaying the p-values for the
covariances between ASV relative abundance and the PC axes of PTI variation. Colored circles represent ASVs
passing a Bonferroni threshold of 0.05.

Supplementary Figure 1. Sequencing depths for samples included in this study

Supplementary Figure 2. Comparison of the results from the compound symmetry and
unstructured models used to estimate genetic variance components contributing to the abundance
of ASVs. How ASVs change in their assignment of significant Va (G), GxE, or no association to
host genetic variation (y-axis) between the two model structures (x-axis) are denoted by lines. The

number of ASVs changing assignments are denoted by line thickness and written values.

Supplemental Figure 3. Covariances of the same ASVs compared across different sites. A) Density
plots showing the distribution of covariance estimates. B) Number of ASVs with significant

covariance.

Supplemental Figure 4. GWAS reveals loci contributing to community structure in each field site.

GWAS on the first three PCo of community dissimilarity metrics (Bray) from each field location.

The genome-wide threshold, set at 5x1078, is indicated by a dashed line in each Manhattan plot.
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Supplemental Figure 5. ASV by site GWAS scans identify diverse taxa affected by genomic
variation. Bacterial ASVs tested for and showing significant associations with SNPs (P < 5x107%)
in A) Austin, TX, B) Columbia, MO, and C) KBS, MI. The number of tested microbes is in black
while ASVs with significant associations show up in the color corresponding to the field site. The
inset in panel C is the association between h2 and having at least one SNP associated with
microbial abundance. D) Heatmap of ASVs where GWAS was performed in multiple sites. Black

boxes indicate microbes with at least one significant SNP associated with relative abundance.

Supplemental Figure 6. Gene Ontology enrichments show similar and contrasting patterns across

locations.

Supplemental Table 1 Study-wide and site-specific core taxa
Supplemental Table 2 Subpopulation specific enriched microbes
Supplemental Table 3 Compound Symmetry Model Results
Supplemental Table 4 VA estimates using unstructured model
Supplemental Table 5 Statistical Pleiotropic Loci

Supplemental Table 6 Proportion of microbes with enriched GO terms
Supplemental Table 7 Enriched GO terms from GWAS meta-analysis
Supplemental Table 8 Significant GWAS Metanalysis Annotations
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