

1 **Detecting sources of immune activation and viral rebound in HIV
2 infection**

3
4 Stephen W. Wietgrefe^{1*}, Lijie Duan^{1*}, Jodi Anderson^{2*}, Guillermo Marqués³, Mark
5 Sanders³, Nathan W. Cummins⁴, Andrew D. Badley⁴, Curtis Dobrowolski⁵, Jonathan
6 Karn⁵, Amélie Pagliuzza⁶, Nicolas Chomont^{6,7}, Géraly Sannier^{6,7}, Mathieu Dubé⁶,
7 Daniel E. Kaufmann^{6,8}, Paul Zuck⁹, Guoxin Wu⁹, Bonnie J Howell⁹, Cavan Reilly¹⁰, Alon
8 Herschhorn², Timothy W. Schacker², and Ashley T. Haase^{1#}

9

10 ¹ Department of Microbiology and Immunology, University of Minnesota, Minneapolis,
11 Minnesota, United States of America

12 ² Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United
13 States of America

14 ³ University Imaging Centers, University of Minnesota, Minneapolis, Minnesota, United
15 States of America

16 ⁴ Mayo Clinic and Research Foundation, Rochester, Minnesota, United States of
17 America

18 ⁵ Department of Molecular Biology and Microbiology, Case Western Reserve University,
19 Cleveland, Ohio, United States of America

20 ⁶ Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM),
21 Montréal, Quebec, Canada

22 ⁷ Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal,
23 Montréal, Quebec, Canada

24 ⁸ Department of Medicine, Université de Montréal, Montréal, Quebec, Canada

25 ⁹ Merck & Co., Inc., Kenilworth, New Jersey, United States of America

26 ¹⁰ Division of Biostatistics, School of Public Health, University of Minnesota,
27 Minneapolis, Minnesota, United States of America

28

29 Running head: Detecting immune activation and viral rebound sources

30

31 #Address correspondence to: Ashley T. Haase, haase001@umn.edu.

32

33

34

35 Stephen Wietgrefe, Lijie Duan and Jodi Anderson contributed equally to this work.

36 Author order was determined on the basis of seniority.

37

38 Word counts:

39 Abstract: 174 words

40 Text: 3,671 words

41

42

43

44 **Abstract**

45 Antiretroviral therapy (ART) generally suppresses HIV replication to undetectable
46 levels in peripheral blood, but immune activation associated with increased morbidity
47 and mortality is sustained during ART, and infection rebounds when treatment is
48 interrupted. To identify drivers of immune activation and potential sources of viral
49 rebound, we modified RNAscope in situ hybridization to visualize HIV-virus producing
50 cells as a standard to compare the following assays of potential sources of immune
51 activation and virus rebound following treatment interruption: 1) EDITS (envelope
52 detection by induced transcription-based sequencing) assay; 2) HIV-Flow; and 3) Flow-
53 FISH assays that can scan tissues and cell suspensions to detect rare cells expressing
54 env mRNA, gag mRNA/Gag protein and p24 respectively; and 4) an ultrasensitive
55 immunoassay that detects p24 in cell/tissue lysates at subfemtomolar levels. We show
56 that the sensitivity of these assays is sufficient to detect a rare HIV-producing/env
57 mRNA+/p24+ cell in a million uninfected cells. These high-throughput technologies thus
58 provide contemporary tools to detect and characterize rare cells producing virus and
59 viral antigens as potential sources of immune activation and viral rebound.

60 **Importance**

61 Anti-retroviral therapy (ART) has greatly improved the quality and length of life for
62 people living with HIV, but immune activation does not normalize during ART, and
63 persistent immune activation has been linked to increased morbidity and mortality. We
64 report a comparison of assays of two potential sources of immune activation during
65 ART: rare cells producing HIV virus or the virus' major viral protein, p24, benchmarked
66 on a cell model of active and latent infections and a method to visualize HIV-producing

67 cells. We show that assays of HIV Envelope mRNA (EDITS assay) and gag mRNA and
68 p24 (Flow-FISH, HIV-Flow and ultrasensitive p24 immunoassay) detect HIV-producing
69 cells and p24 at sensitivities of one infected cell in a million uninfected cells, thus
70 providing validated tools to explore sources of immune activation during ART in the
71 lymphoid and other tissue reservoirs.

72

73

74 Introduction

75 ART has greatly improved the quality and length of life for people living with HIV
76 (PLWH), but treatment must be continued indefinitely, because infection quickly
77 rebounds from persistent viral reservoirs if treatment is interrupted [1,2]. In addition to
78 the challenges that recrudescent infection poses for curing HIV infection, immune
79 activation (IA) decreases but does not normalize during ART, and persistent IA has
80 been linked to increased morbidity and early death from inflammatory mediated
81 conditions [3-10]. Thus, it will be important to identify the sources of residual IA to
82 devise mitigating strategies to improve long-term health outcomes for treatment of
83 people PLWH.

84 Here we report a comparison of assays of cells that harbor potentially replication
85 competent proviruses or defective proviruses that could nonetheless generate viral
86 antigens as potential drivers of IA: 1) EDITS [11] assay to detect cells expressing env
87 RNA; 2) HIV FISH/Flow [12] to detect cells expressing gag RNA and p24; 3) HIV-Flow
88 [13] to detect cells expressing p24; 4) p24 ultrasensitive immunoassay [14] to detect p24
89 at subfemtomolar levels. Because env+ and p24+ cells and p24 antigen during ART are
90 expected to be rare and in small quantity, we further asked whether the limits of
91 detection (LOD) for the EDITS, HIV-Flow, HIV-FISH/Flow, and ultrasensitive p24 high
92 throughput assays would respectively be able to detect rare env RNA+, gag
93 mRNA/p24+ or p24+ cells in a background of a million or more uninfected cells.

94 We developed a method to visualize HIV-producing ACH-2 cells to serve as a
95 standard to evaluate these high throughput assays for two reasons. First, as a latently
96 infected cell line in which virus production can be reactivated by treatment with phorbol

97 esters or TNF- α , ACH-2 cells as a surrogate for reactivated latently infected cells [15].
98 Second, we knew from previous ISH studies [16] that reactivation of ACH-2 cells results
99 in levels of HIV RNAs, Gag and Env protein that should be detectable in the EDITS and
100 p24 assays and thus serve as standards to evaluate the sensitivity of these approaches
101 to detect rare cells with HIV RNAs and antigen.

102 **Results**

103 **RNAscope ISH to detect HIV-producing cells**

104 The method we originally developed to detect SIV-producing cells [17] amplified the
105 signal from SIV RNA in virions by tyramide signal amplification to deposit sufficient -
106 product under diffusion limiting conditions to reveal visible virions at the resolution of
107 visible or fluorescent light microscopy. To reveal HIV-producing cells, we modified a
108 contemporary RNAscope ISH protocol [18] to visualize not only intracellular HIV RNA
109 but also HIV RNA in virions associated with the infected cells.

110 The substitution of the ELF 97 alkaline phosphatase substrate in RNAscope ISH
111 deposited sufficient ELF-97 product around HIV RNA in virions so that they were clearly
112 visible in ACH-2 cells (Fig 1). Prior to induction, about 5 percent of ACH-2 cells
113 undergoing spontaneous reactivation score as HIV-producing cells. Virus-producing
114 cells were not detected in the remaining 95 percent prior to induction, in CEM or Jurkat
115 HIV-negative cells, or in induced ACH-2 cells with plus sense probes (not shown).
116 Following induction, 100 percent of the cells were visibly producing HIV virions. In
117 counts of 78 cells where the z-series 3D images included all or nearly all the cells, the
118 average virion count per induced ACH-2 cell was 558, SD, 66. The average size of
119 virions rendered visible by the deposition of the ELF-97 substrate was ~ 260 nm,

120 consistent with the diffraction limit for ELF 97 emission at 530 nm. Thus, the in situ
121 single cell assay detects HIV-producing ACH-2 cells at the resolution of
122 immunofluorescence microscopy, and documents virus production in all induced cells,
123 thus providing enabling technology to visualize HIV producing cells as a standard for
124 subsequent assay comparisons.

125 **Relationship between HIV-producing cells and production of infectious virus**

126 Before evaluating the sensitivity of the high throughput assays with HIV producing
127 ACH-2 cells as the standard for comparison, we also investigated the relationship
128 between visible production of virions and production of infectious virus. For this
129 purpose, we used a previously described modified viral outgrowth assay (QVOA)
130 [19,20] to document production of infectious HIV by induced ACH-2 cells and determine
131 how accurately the QVOA would estimate the frequency of cells with inducible
132 replication competent proviruses. Serial dilutions of mixed ACH-2 cells and Jurkat T cell
133 samples were induced by co-culture with irradiated, CD8-depleted allogeneic PBMC
134 feeder cells plus anti-CD3 and IL-2. The induced cells were co-cultured with anti-CD3
135 stimulated, CD8-depleted PBMC target cells for 14 days at which time infectious units
136 per million cells (IUPM) were estimated by limiting dilution statistics on p24+ cultures.

137 The QVOA documented production of infectious virus by induced ACH-2 cells, albeit
138 at 28 to 81 percent of the expected number of virus-producing cells in samples with 1,
139 10 and 100 infectious units per million (IUPM) cells (Table 1). We attribute the lower
140 estimates to the well-documented underestimates of the frequency of latently infected
141 cells harboring replication competent intact proviruses [21,22] because of the inability at

142 least in part to amplify infection from small numbers of cells to detect all the cells with a
143 replication competent provirus in QVOA assays.

144

145 **Table 1. QVOA assay of ACH-2 cells.**

Sample ACH-2/Jurkat	Frequency of infected cells	Frequency of infected cells per million	Measured frequency	Lower 95%	Upper 95%	IUPM
5 per 20x10 ⁶	0.00000025	0.25	0.0000004	0.0000001	0.0000034	0.4
5 per 20x10 ⁶	0.00000025	0.25	0.0000005	0.0000001	0.0000035	0.5
20 per 20x10 ⁶	0.000001	1	0.0000005	0.0000001	0.0000035	0.5
20 per 20x10 ⁶	0.000001	1	0.0000005	0.0000001	0.0000035	0.5
200 per 20x10 ⁶	0.00001	10	0.0000032	0.0000008	0.0000126	3.2
200 per 20x10 ⁶	0.00001	10	0.0000057	0.0000014	0.000023	5.7
2000 per 20x10 ⁶	0.0001	100	0.0000283	0.000007	0.0001152	28.3
2000 per 20x10 ⁶	0.0001	100	0.0000817	0.0000209	0.0003192	81.7

146 Cells producing replication-competent virus estimated in IUPM.

147 **EDITS assay**

148 The EDITS assay measures spliced env mRNA by next generation sequencing of
149 the major HIV-1 env RNA splice junction to detect the late spliced viral transcript as a
150 measure that like the intact proviral DNA assay [23], can distinguish between replication
151 competent and defective proviruses. We evaluated concordance between the EDITS
152 assay and virus producing cells in induced ACH-2 cells diluted with HIV-negative CEM
153 cells to cover a range of 2.5 to 2500 ACH-2 cell equivalents in 1.25 x 10⁶ cells in the
154 typical format for this assay. Total RNA isolated from un-stimulated or ACH-2 cells
155 induced with PMA was converted to cDNA for PCR amplification of a PCR product with
156 the major env splice junction for ion torrent sequencing. Reads mapping to a
157 synthetically spliced HXB2 sequence were scored and expressed as an equivalent
158 number of cells harboring HIV-1 per 10⁶ cells, using a standard curve determined for

159 activated primary memory CD4 T cells infected with replication-competent HIV-1
160 carrying a GFP reporter. In the linear range of the assay [11] in samples with 2.5 to 160
161 induced ACH-2 cells, the EDITS assay results were highly correlated but consistently
162 slightly higher compared to the number of virus-producing ACH-2 cells expected after
163 stimulation (Table 2 and Fig 2), an overestimate consistent with induction of env mRNA
164 without virion production in ~ 15 to 30% of the cells. In the samples with 320 and 2500
165 ACH-2 cells outside the linear range, the EDITS assay underestimated the number of
166 virus-producing cells respectively by about 15 and 80 percent.

167 **Table 2. EDITS assay in triplicate of ACH-2 cells induced with CD3/CD28 T cell
168 activator in the numbers shown.**

Induced ACH-2 per 1.25 x10 ⁶ CEM Cells	EDITS Estimated Stimulated Cell Equivalents		
2.5	2.54	3.35	2.95
5	5.64	6.45	6.04
10	11.5	10.6	11.1
20	24.9	28.5	26.7
40	53.0	53.6	53.3
80	83.4	91.4	87.4
160	183	189	186
320	273	278	276
2500	456	446	451

169
170 **HIV-Flow Assay**
171 The HIV-Flow Assay measures the frequency of cells with translation-competent HIV
172 proviruses that produce detectable levels of p24 [34]. In this flow cytometry-based
173 assay, p24+ cells are identified by combining two monoclonal antibodies to p24 (KC57
174 and 28B7) coupled to two different fluorochromes, thereby improving the specificity of
175 the measurement. We determined the relative efficiency of the HIV-Flow assay for HIV-

176 producing/p24+ cells in a dilution series of 1, 10, 100 and 1000 induced ACH-2 cells in a
177 million CEM. As shown in Table 3 and Fig 3, HIV-Flow gave frequencies highly
178 correlated with but consistently slightly higher than the expected values, possibly
179 reflecting detection of uninfected cells to which released virions had attached.

180 **Table 3. HIV-flow assay dilution series.**

Expected Frequency HIV positive cells/ 10^6 cells	Measured Frequency p24+ cells/ 10^6 cells
1000	1068
128	152
64	83
32	47
16	18
8	9
4	6
2	5
1	2

181 Expected versus determined frequency of induced ACH-2 cells per 10^6 cells.

182 **HIV RNA Flow-FISH assay**

183 The HIV^{RNA/Gag} assay is a RNA-flow cytometric fluorescent *in situ* hybridization (RNA
184 Flow-FISH) technique that combines detection of HIV mRNAs and Gag protein (p24)
185 staining [35] with a sensitivity of detection of 0.5-1 double positive CD4+ T cells per
186 million uninfected CD4+ T cells. Concurrent detection of HIV transcription and
187 translation products enables distinction between translation-competent cells and
188 translation-incompetent cells. To assess the specificity and linearity of the HIV^{RNA/Gag}
189 assay, we spiked reactivated latently infected ACH2 cells into uninfected CEMx174
190 cells. In the absence of reactivation, HIV⁺ events, defined as cells co-expressing gag
191 mRNA and Gag protein (HIV^{RNA+/Gag+}) were detected in 5.9% of ACH2 cells (Fig 4A), in
192 good agreement with the RNAscope ISH analysis cited above for un-induced ACH-2
193 cells. Time-course experiments showed that a 24-hour stimulation with PMA/Ionomycin

194 induced high expression of Gag products in ACH-2 cells (95.2% HIV^{RNA+/Gag+} cells) (Fig
195 4A), and this condition was therefore selected for the spiking experiments. The input
196 corresponding to the highest frequency of reactivated ACH2 into the CEMx174 line was
197 measured by flow cytometry at 1500 HIV+ events per million cells (Fig 4B), consistent
198 with the initial input planned (see Methods), while the false positive event rate in pure
199 CEMx174 cells was low (1 HIV^{RNA+/Gag+} cell detected in 700,000 cells) (Fig 4C). Spiking
200 dilutions ranged from a theoretical expected frequency of 1.5 to 1500 events per million
201 cells (Fig 4D). The experimental frequencies of HIV+ events experimentally identified by
202 HIV mRNA/protein co-staining showed excellent linearity and consistency down to the
203 lowest dilution tested, except at the two lowest spiking dilutions (<6 expected
204 events/million), for which the variability noted between the observed and expected
205 numbers of HIV+ events can be reduced by analyzing larger numbers of cells [24].

206 **HIV ultrasensitive p24 immunoassay**

207 Digitized immunoassays using single-molecule array (SIMOA[®]) technology have
208 extended the sensitivity of detection of HIV p24 into the femtomolar range and we and
209 others have reported further enhancement of the technology to achieve sensitivity limits
210 of detecting sub-femtomolar levels of HIV p24+ protein [14,25-28]. Here we investigated
211 the sensitivity of detecting p24+ induced ACH-2 cells in a matrix of a million uninfected
212 PBMCs with our ultrasensitive assay, and show that the ultrasensitive p24 assay
213 detects a single p24+ cell in a million PBMCs (Table 4). Because of the variability
214 between triplicate samples that we attribute to clumping of the induced ACH-2 cells, we
215 tested lysates of induced ACH-2 cells diluted into PBMCs corresponding to samples
216 containing 1 or 10 induced ACH-2 cells, and again detect a single positive cell per

217 million. There was good agreement between samples with a CV <10%, and the
218 expected 10-fold higher levels of p24 in the samples with 10 induced ACH-2 cells per
219 million PBMCs.

220 **Table 4. Detection of p24 in triplicate samples of induced ACH-2 cells diluted into**
221 **10⁶ uninfected PBMCs.**

Induced ACH-2 Cells per Million PBMCs	p24 #1	p24 #2	p24 #3	Average p24 Concentration pg/mL	Std.	CV (%)
0	0.031	0.012	0.027	0.023	0.01	
1	2.928	0.222	0.291	1.147	1.54	
10	24.984	12.166	13.585	16.192	7.03	
100	106.574	121.748		114.161	10.73	
1	1.49	1.36	1.59	1.478	0.12	7.8
10	14.45	14.74	15.36	14.853	0.46	3.1

222 Because of the variability between triplicate samples above the heavier line, attributed to clumping of
223 cells, the samples below the line are direct lysates containing 1 or 10 induced ACH-2 cells diluted in a
224 million PBMCs.

225 **Discussion**

226 We describe and compare here a suite of tools to detect env and gag mRNA or p24-
227 expressing cells in high throughput scans of rare cells in a background of a million or
228 more uninfected cells. These technologies provide validated standards and approaches
229 to quantifying HIV reservoirs that are highly relevant to identifying sources of virus
230 before, during and off ART as well as drivers of IA that can guide the design of
231 strategies to potentially prolong remissions off ART, and mitigate IA for longer healthier
232 lifespans for PLWH.

233 The EDITS, HIV-Flow, HIV-FISH-Flow and ultrasensitive p24 assays proved to be
234 facile, rapid, sensitive, and accurate in detecting respectively single cells with env or
235 gag mRNA and p24 in a million uninfected cells. These high throughput approaches

236 thus can provide a quick read on the likelihood that peripheral blood or tissue samples
237 harbor cells with respectively sufficiently intact proviruses that can be reactivated to
238 produce env mRNA or translationally competent proviruses that generate p24.

239 The EDITS assay primers and amplicons to detect late spliced env mRNA overlap
240 the packaging site amplicon in the IPDA assay [23], and both assays generate
241 sequences from the 3' end of proviral genomes (Fig 5). Moreover, generating env
242 mRNA requires functional Tat and Rev, consistent with the possibility that the EDITS
243 assay env transcript might score for largely intact functional genomes as in the IPDA
244 assay. We show six examples of deleted proviruses (Fig5B) to demonstrate how the
245 EDITS and IPDA assays might score each virus and found that both assays correctly
246 score proviruses a, c-e as proviruses with deletions. The EDITS assay misses the small
247 deletion in gag-pol in provirus b detected in the IPDA assay, and both assays incorrectly
248 score provirus f as intact, based solely on the sequences in the amplicons. However,
249 provirus f would likely lack Tat and Rev, and would therefore be correctly scored as
250 impaired in the EDITS assay. We think this comparison suggests that the two assays
251 should generally be in good agreement, and this expectation has been satisfied
252 experimentally in data on the impact of the IL-15 superagonist N-803 on the frequency
253 of inducible HIV provirus in peripheral blood mononuclear cells [29].

254 The relationship of HIV-p24+ cells detected in the p24 assays to HIV virus producing
255 cells is indeterminate. However, we can conclude that detection of p24+ cells at the
256 least is potentially relevant to sustaining IA and identifying cells that could be targeted
257 by HIV-specific CD8+ T cells. Collectively, the high throughput approaches described
258 here provide well-characterized tools to explore mechanisms of HIV persistence and IA

259 during ART and to devise rational strategies to sustain remissions off ART and mitigate
260 IA.

261 **Materials and Methods**

262 **ACH-2 cells**

263 ACH-2 cells, and uninfected CEM or Jurkat cells were grown in RPMI with 10% heat
264 inactivated FCS, glutamine, and 1X antibiotic-antimycotic (FISHER). ACH-2 cells were
265 activated in some experiments by growth with 50 ng/ml PMA for 24 hrs. Cells were
266 collected by centrifugation at 450g x 7min. and at least two washes in PBS, 0.5% BSA,
267 2mM EDTA. Cell mixtures were created by suspending uninfected cell lines in 1/10
268 culture volume of buffer, ACH-2 cells in their culture volume, and counting cells with
269 trypan blue staining in a Countess II automated cell counter in duplicates. CEM or
270 Jurkat cells were then adjusted to 10^7 cells/ml with buffer, and ACH2 cells (induced or
271 uninduced) to 10^5 or 10^6 cells/ml. An initial cell mixture of 10^3 ACH-2 cells in 10^7
272 uninfected cells/ml was created and diluted serially 2X or 10X with 10^7 uninfected
273 cells/ml. Cell mixtures were frozen, extracted or fixed as required by the specific assay,
274 per published assay protocols.

275 **Detection and characterization of HIV producing cells by RNAscope ISH**

276 **combined with IFA**

277 We varied conditions in our previously published RNAscope ISH method [18] to be
278 able to not only detect HIV intracellular RNA but also clearly reveal virions associated
279 with the cells. The critical changes in the published protocol were: 1) reduced time
280 sections were boiled in RNAscope Pretreat citrate buffer to 10 minutes; 2) sections
281 incubated for 20 minutes at 40° C in a more dilute (1:10) Pretreat 3 reagent 3 (protease

282 digestion solution, 2.5 µg/ml); and 3) following AMPs 1-6 applied from the RNAscope
283 2.5 HD Detection Reagent Red kit (Advanced Cell Diagnostics), ten to thirty minute
284 room temperature incubation with ELF 97 Phosphatase substrate. For the images of
285 HIV-1 production by induced ACH-2 cells shown in Fig 1, nuclei were stained with To-
286 Pro-3 (Thermo Fisher Scientific).

287 **Confocal plus deconvolution imaging**

288 Fluorescent confocal images of ELF 97 and To-Pro 3 labeled cells were acquired in
289 a Nikon Ti-E inverted microscope equipped with a CFI SR Apo 100X TIRF Oil
290 Immersion Objective Lens NA 1.49 and a Nikon A1R confocal scan head controlled by
291 Nikon Elements software (5.11). ELF97 excitation was provided by a 403nm laser and
292 emission collected between 500-550 nm. To-Pro 3 excitation was provided by a 640nm
293 laser and emission collected between 663-738 nm. The confocal aperture was set to
294 the minimum value of 14 µm (0.2AU). The images were oversampled in X, Y (41 nm
295 pixel). A 200 nm Z step was used in three-dimensional acquisitions and images were
296 subjected to automatic iterative deconvolution with Nikon Elements 5.20. Analysis was
297 done in Elements ver. 5.20 using the GA3 pipeline including 3D object measurement
298 and FIJI software using find maxima after making maximum intensity projections of
299 rolling ball background corrected imaging for particle counting. Channels were pseudo-
300 colored and merged. EDF projections of the z-stacks are presented. University of
301 Minnesota- University Imaging Centers, <http://uic.umn.edu/>.

302 **QVOA**

303 Quantitative viral outgrowth assays were performed as previously described [20].
304 Briefly, six 5-fold serial dilutions of mixed ACH-2 cells and Jurkat T cell samples were

305 plated in duplicate starting at 1×10^6 cells per well. These samples were co-cultured with
306 irradiated, CD8-depleted PBMC feeder cells, and stimulated with anti-CD3 (OKT3, 1
307 $\mu\text{g/mL}$) and IL-2 (50 IU/mL) overnight. On day 1 and day 7 post stimulation, 1×10^6 anti-
308 CD3 stimulated, CD8-depleted PBMC target cells were added to each well. Supernatant
309 p24 was measured on day 14 by ELISA (Zeptometrix) per manufacturer's protocol.
310 Individual wells were determined to be positive or negative for p24 based on
311 manufacturer determined cut-off values. Infectious units per million were estimated by
312 limiting dilution statistics using L-Calc™ Limiting Dilution Software (STEMCELL
313 Technologies).

314 **EDITS assay**

315 The frequency of env mRNA+ induced ACH-2 cells was determined by the EDITS
316 assay, as described by Das et al [11]. In brief, ACH-2 cells were induced with 50 ng/ml
317 PMA for 24 hrs. Total RNA was isolated using the Qiagen RNeasy purification system
318 (Qiagen, 74134) following the manufacturer's protocol. The entire sample was used as
319 template in a one-step RT-PCR reaction (Thermo Scientific, AB-4104A). After cDNA
320 synthesis and PCR, 2 μl of the reaction was used as template for a subsequent round of
321 nested PCR using a high fidelity Phusion Flash polymerase (Thermo Scientific, F548).
322 Primers were designed to bind to either side of the HIV Env RNA splice junction using
323 highly conserved regions of HIV. For the first-round PCR, the forward primer was
324 located at position 570-591 and the reverse primer was at positions c6442 and c6426.
325 In addition to the priming sequence, the reverse primer has a synthetic GEX R-
326 AATGATACGGCGACCACC sequence placed directly after the priming region to allow
327 for further amplification using nested PCR. The RT-PCR product was further amplified

328 by nested PCR with a nested forward primer at position 610-631 and a nested reverse
329 primer at c6324-6345. To allow for NGS sequencing, Ion torrent A forward and Trp
330 reverse adapters were added to the nested primer sets, as well as a unique barcode in
331 the forward primer, to allow for multiplexing of samples. Samples were then pooled and
332 primers were removed using GeneJET NGS cleanup kit (Fisher Scientific, FERK0852).
333 DNA concentrations were measured by a Qubit fluorescent reader and 300 pg of the
334 pooled sample was then sequenced using an Ion Torrent Sequencing system following
335 the manufacture's protocol. Barcodes were separated by sample using the Ion Torrent
336 Browser and all reads were filtered to remove short products (under 80 bp) and only
337 reads that contained the GEX reverse sequence were retained. The filtered reads were
338 then mapped to a synthetically spliced HXB2 sequence, and total mapped reads were
339 scored. The number of mapped reads was then converted into the equivalent number of
340 cells harboring HIV-1 per 10^6 cells using a standard curve generated from activated
341 memory cells infected with replication-competent HIV-1-GFP virus, and sorted by flow
342 cytometry into single wells of a 96-well plate. Samples for the standard curve contained
343 between 1 and 300 infected cells per well and 1.25×10^6 uninfected cells.

344 **HIV-Flow assay**

345 The frequency of p24+ cells was determined as previously described [12]. Briefly,
346 nine serial dilutions of ACH2 cells in CEM cells were stimulated with 162nM PMA
347 (Sigma, P8139) and with 1 μ g/mL ionomycin (Sigma, I9657). After 24h of stimulation,
348 cells were collected, resuspended in PBS and stained with the Aqua Live/Dead staining
349 kit for 30min at 4°C. Cells were stained in PBS +4% human serum for 30min at 4°C
350 (CD3 A700, CD4 BUV496, CD8 BUV395). The fixation/permeabilization step was

351 performed with the FoxP3 Transcription Factor Staining Buffer Set (eBioscience, 00-
352 5523-00) following the manufacturer's instructions. Cells were then stained with anti-p24
353 KC57 (R&D) and anti-p24 28B7 (MediMabs) antibodies for an additional 45min at RT
354 and analyzed by flow cytometry on a BD LSRII. In all experiments, uninfected CEM cells
355 were included to set the threshold of positivity. The detailed protocol of the HIV-Flow
356 procedure can be found here: [dx.doi.org/10.17504/protocols.io.w4efgte](https://doi.org/10.17504/protocols.io.w4efgte).

357 **HIV-RNA-FLOW-FISH**

358 HIV latently infected ACH2 cells and uninfected CEMx174 cells were grown in
359 separate flasks at a concentration of 0.5 million cells per mL in RPMI 1640 medium
360 (Gibco, Life Technologies) supplemented with penicillin/streptomycin (Gibco, Life
361 Technologies and 10% FBS (Seradigm). ACH2 cells were stimulated for 24 hours with
362 PMA (50ng/mL, Sigma-Aldrich) and ionomycin (0.5 µg/mL, Sigma-Aldrich) prior to
363 spiking into uninfected CEMx174 cells at different ratios obtained by serial dilution,
364 starting with a highest frequency of 1,500 reactivated ACH2 cells per million CEMx174
365 cells. HIV+ events were identified using the HIVRNA/Gag assay as previously described
366 [13,24]. Briefly, cells were stained with Fixable Viability Dye (eBioscience), anti-Gag
367 KC57 (Beckman Coulter) by intracellular staining and labelled for HIV gag mRNA using
368 the PrimeFlow RNA assay (ThermoFisher) before acquisition on a flow cytometer
369 (FACS Fortessa, BD). Analysis was performed using FlowJo version 10 for Mac
370 (Treestar). HIV+ cells were identified as cells co-expressing both HIV Gag protein and
371 gag mRNA.

372 **Ultrasensitive p24 immunoassay**

373 p24 in cell lysates was measured according to the method described previously [14]
374 with some modification. In brief, prior to the p24 SIMOA, cell pellets were lysed at 4×10^6
375 cells/ml with a cell lysis buffer containing 1% Triton x-100 in 0.5% casein (in PBS) and
376 50% Hi-FBS for 15min at room temperature, then frozen at -80°C until analysis. 35 μ L
377 aliquots of M-280 beads (Invitrogen/Life technologies, Cat#11206D) in microcentrifuge
378 tubes were washed once with 1ml 1%BSA/PBS, then 3.5 μ L of 1 mg/ml normal mouse
379 IgG (mlgG) (GenScript, Cat# A01007) was added. The frozen cell lysate was thawed in
380 the 37°C water bath and centrifuged for 10min at 14,000 rpm at 4°C, and 0.3ml cell
381 lysate supernatant was collected after spinning and added into the microcentrifuge
382 tubes containing the washed beads and mlgG. Diluted samples using the cell lysis
383 buffer were treated similarly. The tubes were incubated at 4°C for 3h with 360° rotation
384 using a HulaMixer. The samples were subsequently centrifuged for 10min at 14,000
385 rpm at 4°C and the supernatant was collected and run on a HD-1 Quanterix Analyzer.
386

387 **Acknowledgments**

388 The authors thank the US National Institutes of Health and the Canadian Institutes of
389 Health Research for support (NIH R01 AI110173, R01 AI120698, R21 AI136731, R01
390 AI134406, R56 AI145407; CIHR 152977 and 364408) and Colleen O'Neill for
391 assistance with preparation of the manuscript. D.E.K is a FRQS Merit Research
392 Scholar. NC is supported by Research Scholar Career Awards of the Quebec Health
393 Research Fund (FRQS, #253292)

394
395

396 **References**

397 1. Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. 2014.
398 Eradicating HIV-1 infection: seeking to clear a persistent pathogen. *Nat Rev
399 Microbiol* 12:750-64. doi: 10.1038/nrmicro3352. PubMed PMID: 25402363;
400 PMCID: PMC4383747.

401 2. Siliciano RF, Greene WC. HIV latency. *Cold Spring Harb Perspect Med*. 2011;
402 Sep;1(1):a007096. doi: 10.1101/csh perspect.a007096. PMID: 22229121
403 PMCID:PMC3234450

404 3. Neuhaus J, Jacobs DR, Jr., Baker JV, Calmy A, Duprez D, La Rosa A, Kuller LH,
405 Pett SL, Ristola M, Ross MJ, Shlipak MG, Tracy R, Neaton JD. 2010. Markers of
406 inflammation, coagulation, and renal function are elevated in adults with HIV
407 infection. *J Infectious Dis* 201(12):1788-95. Epub 2010/05/08. doi:
408 10.1086/652749. PubMed PMID: 20446848; PMCID: 2872049.

409 4. Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV
410 persistence: implications for curative approaches to HIV infection. 2013. *Immunol
411 Rev* 254:326-342. doi: 10.1111/imr.12065. PubMed PMID: 23772629; PMCID:
412 3694608.

413 5. Longenecker CT, Sullivan C, Baker JV. 2016. Immune activation and
414 cardiovascular disease in chronic HIV infection. *Curr Opin HIV AIDS* 11:216-225.
415 doi: 10.1097/COH.0000000000000227. PubMed PMID: 26599166; PMCID:
416 PMCID: PMC4745252.

417 6. Hunt PW. 2012. HIV and inflammation: mechanisms and consequences. *Curr*
418 *HIV/AIDS Rep* 9:139-147. doi: 10.1007/s11904-012-0118-8. PubMed PMID:
419 22528766.

420 7. Giorgi JV, Liu Z, Hultin LE, Cumberland WG, Hennessey K, Detels R. 1993.
421 Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value
422 of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center,
423 Multicenter AIDS Cohort Study. *J AIDS* 6:904-912. Epub 1993/08/01. PubMed
424 PMID: 7686224.

425 8. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, Shih R,
426 Lewis J, Wiley DJ, Phair JP, Wolinsky SM, Detels R. 1999. Shorter survival in
427 advanced human immunodeficiency virus type 1 infection is more closely
428 associated with T lymphocyte activation than with plasma virus burden or virus
429 chemokine coreceptor usage. *J Infect Dis* 179:859-870. Epub 1999/03/09. doi:
430 10.1086/314660. PubMed PMID: 10068581.

431 9. Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, Xue X, Hunt
432 P, Karim R, Kern DM, Hodis HN, Deeks SG. 2011. T cell activation and
433 senescence predict subclinical carotid artery disease in HIV-infected women. *J*
434 *Infect Dis* 203:452-463. Epub 2011/01/12. doi: 10.1093/infdis/jiq071. PubMed
435 PMID: 21220772; PMCID: PMC3071219.

436 10. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F,
437 Lane HC, Ledergerber B, Lundgren J, Nixon D, Paton NI, Prineas RJ, Neaton JD.
438 2012. Inflammation, coagulation and cardiovascular disease in HIV-infected

439 individuals. PLoS ONE 7(9):e44454. Epub 2012/09/13. doi:
440 10.1371/journal.pone.0044454. PubMed PMID: 22970224; PMCID: 3438173.

441 11. Das B, Dobrowolski C, Luttge B, Valadkhan S, Chomont N, Johnston R, Bacchetti
442 P, Hoh R, Gandhi M, Deeks SG, Scully E, Karn J. 2018. Estrogen receptor-1 is a
443 key regulator of HIV-1 latency that imparts gender-specific restrictions on the
444 latent reservoir. Proc Natl Acad Sci U S A 115:E7795-E7804. Epub 2018/08/01.
445 doi: 10.1073/pnas.1803468115. PubMed PMID: 30061382; PMCID: PMC6099847.

446 12. Pardons M, Baxter AE, Massanella M, Pagliuzza A, Fromentin R, Dufour C, Leyre
447 L, Routy JP, Kaufmann DE, Chomont N. 2019. Single-cell characterization and
448 quantification of translation-competent viral reservoirs in treated and untreated HIV
449 infection. PLoS Pathog 15(2):e1007619
450 <https://doi.org/10.1371/journal.ppat.1007619>

451 13. Baxter AE, Niessi J, Fromentin R, Richard J, Porichis F, Charlesbois R,
452 Massanella M, Brassard N, Alsahafi N, Delgado GG, Routy JP, Walker BD, Finzi
453 A, Chomont N, Kaufmann DE. 2016. Single-cell characterization of viral
454 translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe
455 20:368–380. doi: 10.1016/j.chom.2016.07.015

456 14. Wu, G, Hazuda DJ, Howell BJ. 2017. HDAC inhibition induces HIV-1 protein and
457 enables immune-based clearance following latency reversal. JCI Insight
458 2(16):e92901. <https://doi.org/10.1172/jci.insight.92901>.

459 15. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS. 1989.
460 Tumor necrosis factor alpha induces expression of human immunodeficiency virus

461 in a chronically infected T-cell clone. *Proc Natl Acad Sci U S A* 86(7):2365-2368.

462 PubMed PMID: 2784570; PMCID: PMC286913.

463 16. Peng H, Reinhart TA, Retzel EF, Staskus KA, Zupancic M, Haase AT. 1995.

464 Single cell transcript analysis of human immunodeficiency virus gene expression

465 in the transition from latent to productive infection. *Virology* 206:16–27.

466 17. Zhang ZQ, Wietgrefe SW, Li Q, Shore MD, Duan L, Reilly C, Lifson JD, Haase AT.

467 2004. Roles of substrate availability and infection of resting and activated CD4+ T

468 cells in transmission and acute simian immunodeficiency virus infection. *Proc Natl*

469 *Acad Sci USA* 101(15):5640-5645. doi: 10.1073/pnas.0308425101. PubMed

470 PMID: 15064398; PMCID: PMC397458.

471 18. Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M Jr, Bess

472 J, Anderson JL, Perkey KE, Reilly C, McCune JM, Haase AT, Lifson JD, Schacker

473 TW, Estes JD. 2016. Defining HIV and SIV reservoirs in lymphoid tissues. *Pathog.*

474 *Immun* 1(1):68-106.

475 19. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Chaisson

476 RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M,

477 Ho DD, Richman DD, Siliciano RF. 1997. Identification of a reservoir for HIV-1 in

478 patients on highly active antiretroviral therapy. *Science* 278:1295–1300.

479 20. Lum JJ, Pilon AA, Sanchez-Dardon J, Phenix BN, Kim JE, Mihowich J, Jamison K,

480 Hawley-Foss N, Lynch DH, Badley AD. 2001. Induction of cell death in human

481 immunodeficiency virus-infected macrophages and resting memory CD4 T cells by

482 TRAIL/Apo2L. *J Virol* 75(22):11128–11136. doi: 10.1128/JVI.75.22.11128-

483 11136.2001 PMCID:PMC114692 PMID: 11602752

484 21. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DIS, Lai J,
485 Blankson JN, Siliciano JD, Siliciano RF. 2013. Replication-competent noninduced
486 proviruses in the latent reservoir increase barrier to HIV-1 cure. *Cell* 155: 540–551.

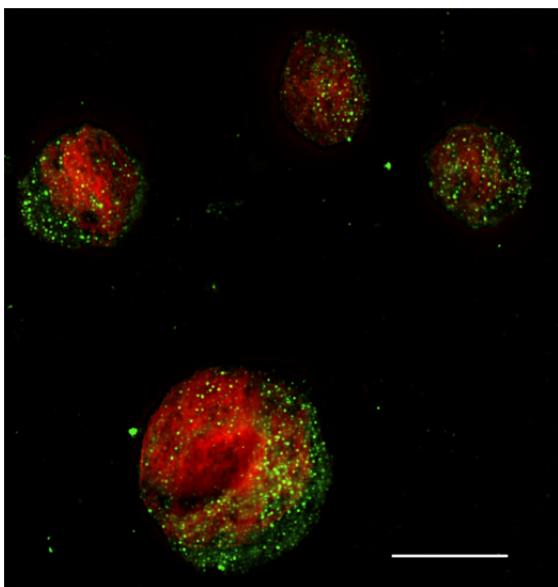
487 22. Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA, Lai J,
488 Strain MC, Lada SM, Hoh R, Ho YC, Richman DD, Deeks SG, Siliciano JD,
489 Siliciano RF. 2016. Defective proviruses rapidly accumulate during acute HIV-1
490 infection. *Nat Med* 22:1043–1049.

491 23. Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, Fray EJ,
492 Beg SA, Antar AAR, Jenike KM, Bertagnolli LN, Capoferri AA, Kufera JT, Timmons
493 A, Nobles C, Gregg J, Wada N, Ho YC, Zhang H, Margolick JB, Blankson JN,
494 Deeks SG, Bushman FD, Siliciano JD, Laird GM, Siliciano RF. 2019. A
495 quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
496 *Nature* 566: 120–125.

497 24. Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Massanella M, Brassard
498 N, Alsahafi N, Routy JP, Finzi A, Chomont N, Kaufmann DE. 2017.
499 Multiparametric characterization of rare HIV-infected cells using an RNA-flow FISH
500 technique. *Nat Protoc* 12(10):2029-2049. doi: 10.1038/nprot.2017.079.
501 PMID:28880280 PMCID:PMC5697908

502 25. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T,
503 Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR,
504 Duffy DC. 2010. Single-molecule enzyme-linked immunosorbent assay detects
505 serum proteins at subfemtomolar concentrations. *Nat Biotechnol* 28:595–599.
506 <https://doi.org/10.1038/nbt.1641>.

507 26. Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG, Meyer RE,
508 Fishburn MW, Cabrera C, Patel PP, Frew E, Chen Y, Chang L, Ferrell EP, von
509 Einem V, McGuigan W, Reinhardt M, Sayer H, Vielsack C, Duffy DC. 2016. The
510 Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with
511 single-molecule sensitivity and multiplexing. *J Lab Autom* 21:533–547.
512 <https://doi.org/10.1177/2211068215589580>.


513 27. Cabrera C, Chang L, Stone M, Busch M, Wilson DH. 2015. Rapid, fully automated
514 digital immunoassay for p24 Protein with the sensitivity of nucleic acid
515 amplification for detecting acute HIV infection. *Clin Chem* 61:1372–1380.
516 <https://doi.org/10.1373/clinchem.2015.243287>.

517 28. Passaes CPB, Bruel T, Decalf J, David A, Angin M, Monceaux V, Muller-Trutwin
518 M, Noel N, Bourdic K, Lambotte O, Albert ML, Duffy D, Schwartz O, Sáez-Cirión A.
519 2017. Ultrasensitive HIV-1 p24 assay detects single infected cells and differences
520 in reservoir induction by latency reversal agents. *J Virol* 91(6):e02296–16.

521 29. Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, Lima NS,
522 Jorstad S, Hart GT, Lee JH, Safrit JT, Wong H, Cooley S, Gharu L, Chung H,
523 Soon-Shiong P, Dobrowolski C, Fletcher CV, Karn J, Douek D, Schacker TW.
524 2022. Safety and virologic impact of the IL-15 superagonist N-803 in people living
525 with HIV: a phase 1 trial. *Nat Med* 28:392-400.
526 <https://www.nature.com/articles/s41591-021-01651-9>

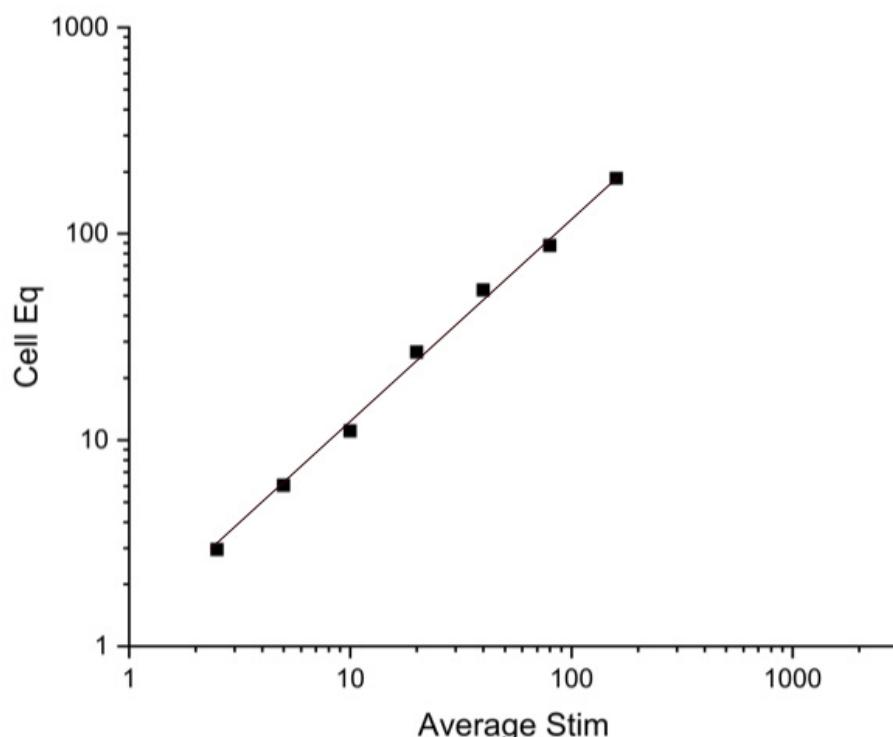
527
528

529 **Figures and Captions**

530

531 **Fig 1. RNAscope ISH/ELF 97 detection of HIV producing cells in 5- μ m sections of**
532 **fixed and embedded induced ACH-2 cells.**

533 HIV virions appear green in the image. Nuclei counter-stained red with TOTO 3. In this
534 2D image, the largest number of virions are associated with a whole cell in the focal
535 plane of the z-series. Scale bar= 10 μ m.

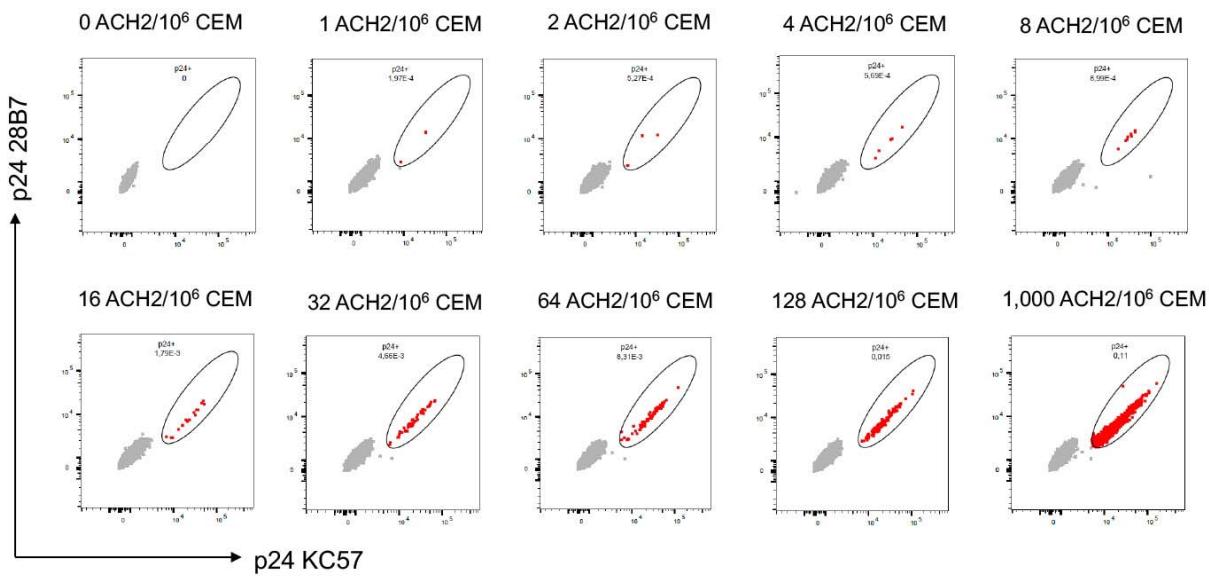

536

537

538

539

540
541

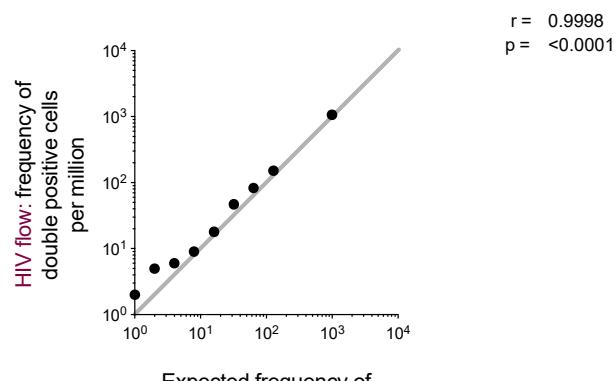

542

543 **Fig 2. Logarithmic plot of average of replicates of induced ACH-2 cell equivalents (Eq) and EDITS assay results in Table 2.**

544

545 Linear relationship to 160 cells. Pearson's r=0.99734.

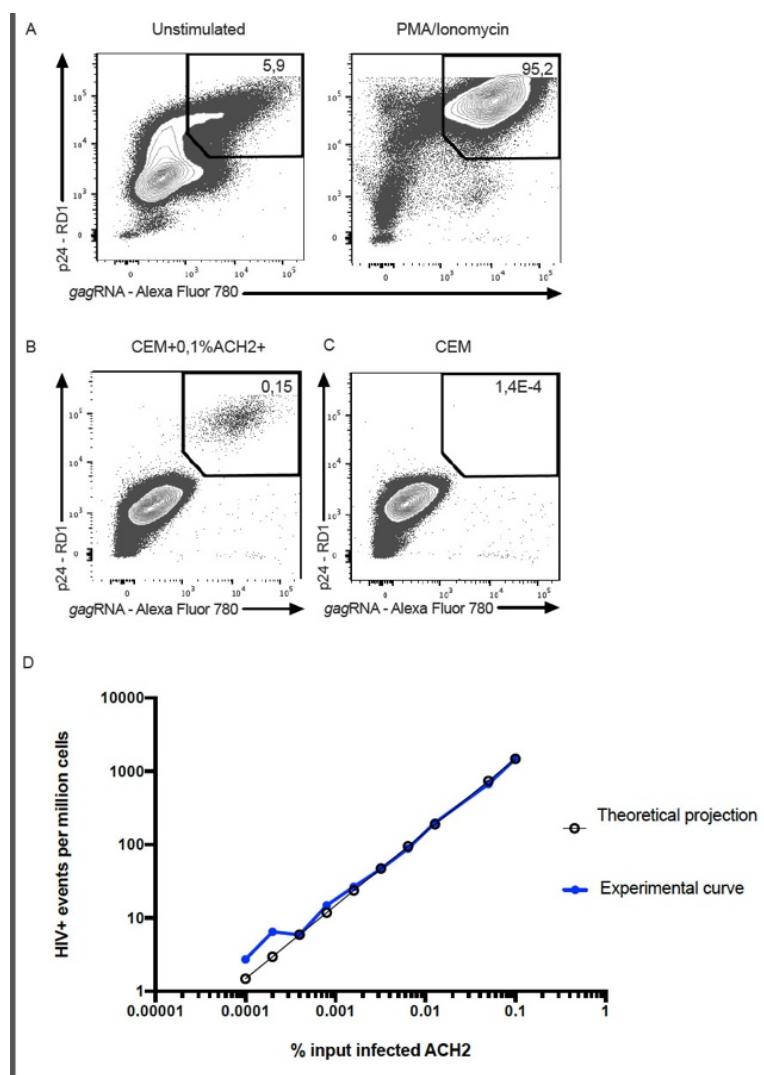
546


547

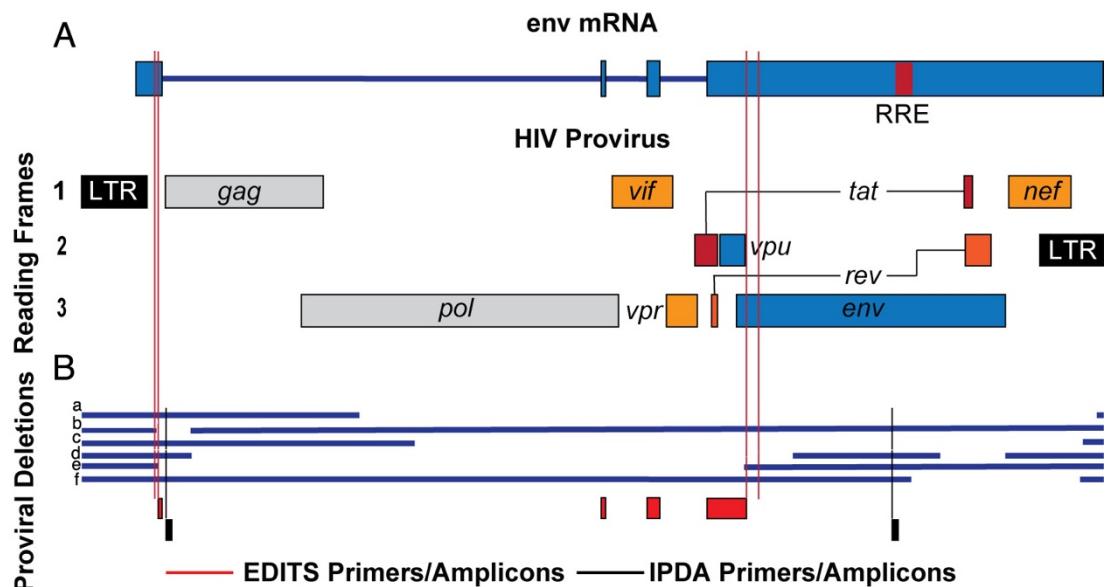
548 **Fig 3. (A) Flow cytometry dot plots showing the frequency of induced ACH2 cells
549 serially diluted in CEM cells measured by HIV-Flow.**

550 The expected frequencies are indicated at the top of each dot plot. p24+ cells are
551 depicted in red, p24- cells in grey.

552


553

554


555 **Fig 3. (B) Correlation between HIV-flow estimates of p24+ cells per million cells
556 and the expected frequency in the serial dilution series.**

557

559 **Fig 4. Flow cytometry example plots of the HIV RNA Flow-FISH assay and**
560 **correlation between measured and expected frequencies of infected cells in**
561 **spiking experiments.**

562 (A) p24+ gag mRNA+ ACH-2 cells before and after induction with PMA/Ionomycin. (B)
563 Highest frequency of reactivated ACH2 spiked into the CEMx174 line. (C) False positive
564 event rate in pure CEMx174 cells. (D) Theoretical expected frequency of 1,5 to 1,500
565 events per million cells and experimental frequencies of HIV+ events experimentally
566 identified by HIV mRNA/protein co-staining.

567

568 **Fig. 5. Comparison of EDITS and IPDA assays for identifying HIV proviruses with**
569 **deletions.**

570 (A) Schematic of HIV provirus and env mRNA. Red lines indicate positions of the EDITS
571 assay primers. (B). Comparison of the assays to detect deletions in proviruses a-f.
572 EDITS primers and amplicons, red; IPDA primers and amplicons, black.

573