

1 **Multiplexed transcriptome discovery of RNA binding protein binding sites by antibody-
2 barcode eCLIP**

3
4 Daniel A. Lorenz¹, Kylie A. Shen^{1,†}, Hsuan-Lin Her^{2,3,4,†}, Katie Rothamel^{2,3,4}, Kasey R. Hutt¹, Allan
5 C. Nojadera¹, Stephanie C. Bruns¹, Sergei A. Manakov¹, Karen B. Chapman^{1,*}, Gene W. Yeo^{2,3,4,*}

6
7 ¹Eclipse Bioinnovations, San Diego, CA

8 ²Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA

9 ³Institute for Genomic Medicine, University of California San Diego, La Jolla, CA

10 ⁴Stem Cell Program, University of California San Diego, La Jolla, CA

11
12 [†]These authors contributed equally

13 *Correspondence: geneyeo@ucsd.edu and karen.chapman@eclipsebio.com

14
15 **Abstract**

16 UV cross-linking and immunoprecipitation (CLIP) methodologies enable the identification of RNA
17 binding sites of RNA-binding proteins (RBPs). Despite improvements in the library preparation of
18 RNA fragments, the current enhanced CLIP (eCLIP) protocol requires 4 days of hands-on time
19 and lacks the ability to process many RBPs in parallel. We present a new method termed
20 antibody-barcode eCLIP (ABC) that utilizes DNA-barcoded antibodies and proximity ligation of
21 the DNA oligonucleotides to RBP-protected RNA fragments to interrogate multiple RBPs
22 simultaneously. We observe performance comparable to eCLIP with the advantage of a reduced
23 hands-on time of 2 days and dramatically increased scaling while minimizing sample-to-sample
24 variation and maintaining the same material requirement of a single eCLIP experiment.

25
26 **Main Text**

27 RNA-binding proteins (RBPs) are critical regulators of gene expression, controlling the rate,
28 location, and timing of RNA maturation^{1–4}. As such, dysregulation of RBP function is associated
29 with diverse genetic and somatic disorders, such as neurodegeneration and cancer^{5,6}. To uncover
30 the molecular mechanisms by which RBPs affect RNA processing, technologies such as RNA
31 immunoprecipitation (RIP) and CLIP coupled with high-throughput sequencing enable the
32 transcriptome-wide identification of RNA binding sites^{7–10}. Recent improvements to CLIP library
33 preparation have led to more reproducible and robust CLIP datasets with a higher recovery rate
34 of successful libraries^{11–14}. For instance, enhanced CLIP (eCLIP) improvements enabled the
35 generation of 223 eCLIP datasets profiling targets for 150 RBPs in K562 and HepG2 cell lines via
36 a standardized protocol¹⁵. As part of the ENCODE III phase, these target maps expanded the
37 catalog of functional RNA regulatory elements encoded in the human genome and revealed
38 unexpected principles of RNA processing^{14–16}. However, the number of protein-coding genes with
39 experimental or computational evidence for RNA binding properties have continued to increase,
40 accounting for at least ~15% of the human genome^{17–20}, and our ENCODE pilot still represents
41 less than 10% of annotated RBPs.

42
43 We opine that reducing the technical complexity of the eCLIP protocol is pivotal to accelerate our
44 progress toward an exhaustive characterization of RBPs. While eCLIP has improved library
45 generation efficiency, two major limitations to scaling remain. First, all current CLIP-based
46 methods feature SDS-PAGE and nitrocellulose membrane transfer step to size-select for the
47 immunoprecipitated protein-RNA complex^{21–23}. The nitrocellulose membrane captures and
48 separates RNA fragments cross-linked to the protein of interest from free, unbound RNA.
49 However, this manual excision of estimated protein-RNA bands is tedious, requires an additional
50 1.5–2 days, and is vulnerable to a large degree of user-to-user variation. Second, each individual

51 RBP requires a separate immunoprecipitation (IP) step, which places a burden on the quantity of
52 input material required for studying many RBPs.
53

54 Here, we develop antibody-barcode eCLIP (ABC) based on modifications to the eCLIP protocol.
55 Our optimizations address both of eCLIP's constraints through the incorporation of DNA-barcoded
56 antibodies that allow on-bead proximity-based ligations to replace the SDS-PAGE and membrane
57 transfer steps. DNA-barcoded antibodies have been utilized to adapt protein detection into
58 sequenceable readouts²⁴. Here, we utilize the barcodes to distinguish the identity of different
59 RBPs within the same sample, mitigating the input quantity limitation. These modifications shorten
60 the hands-on time by ~1.5 to 2 days (**Fig.1a**). We evaluated ABC using two well-characterized
61 RBPs, RNA Binding Fox-1 Homolog 2 (RBFOX2), which recognizes GCAUG motifs, and the
62 Stem-Loop Binding Protein (SLBP), which interacts specifically with histone mRNAs. Replicate
63 ABC experiments for both RBPs were performed in HEK293T and K562 cells, respectively, and
64 reads were mapped and processed as previously described^{13,15}. We compared the library
65 complexity as a surrogate measure of library efficiency by enumerating the number of 'usable'
66 reads, defined as reads that map uniquely to the genome and remain after discarding PCR
67 duplicates, as a function of sequencing depth and observed similar library complexity for RBFOX2
68 eCLIP and ABC (Supplemental Fig.1). Examination of individual binding sites revealed
69 comparable read density between ABC and eCLIP at RBFOX2 (e.g., intronic region of NDEL1)
70 and SLBP (e.g., 3'UTR of H1-2) binding sites (**Fig.1b**)¹⁴.
71

72 To evaluate ABC with a transcriptome-wide view, we initially focused on RBFOX2 and observed
73 that peaks from ABC showed similar enrichments to downsampled eCLIP data in proximal and
74 distal introns (Supplemental Fig.2a) and were significantly enriched for the RBFOX2 motif
75 (Supplemental Fig.2b). Reproducible peaks obtained from irreproducible discovery rate (IDR)
76 analysis of RBFOX2 eCLIP data serve as empirically defined, highly ranked RBFOX2 sites. We
77 observed that the proportion of ABC reads present within reproducible RBFOX2 also mirrors
78 eCLIP (**Fig.1c**), a measure of the specificity of the ABC method. We also compared the fraction
79 of reads that contained the conserved GCAUG sequence, as evolutionarily sequence conserved
80 RBFOX2 motifs are more likely to be authentic sites²⁵ (Supplemental Note1). We observed that
81 the fraction of reads that contain the conserved motif is similar (~0.38% for eCLIP, and ~0.4% for
82 ABC; **Fig.1c**). As RBFOX2 exhibits positional dependencies in its regulation of alternative splicing
83²⁵, we demonstrated that ABC-derived peaks reproduced the eCLIP enrichment for RBFOX2
84 binding upstream and within exons that are included in the mature mRNA exons; as well as
85 binding downstream to enhance exon recognition and exclusion from mature mRNA (**Fig.1d**).
86 Next, we shifted our focus to SLBP. Both ABC and eCLIP displayed a similar fraction of reads
87 that map to histone RNAs (**Fig.1e**). Metagene analysis also revealed a sharp peak at the well-
88 characterized stem-loop within the 3'UTR of histone mRNAs (**Fig.1f**). To compare the gene level
89 enrichment of both ABC and eCLIP, we ranked genes by the most enriched peaks after
90 normalization and identified the top 100 genes in each dataset. Both technologies exhibited
91 similar enrichment of histone genes (**Fig.1g**). Our comparison of ABC and eCLIP analyses for the
92 RBPs RBFOX2 and SLBP suggests that ABC performs with comparable sensitivity and specificity
93 to eCLIP at both read and peak-level features.
94

95 A defining advantage of ABC over current CLIP-based methodologies is that multiple RBPs can
96 be interrogated simultaneously from a single sample (**Fig.2a**). To demonstrate this key
97 functionality, in addition to RBFOX2, we selected nine other RBPs previously characterized by
98 ENCODE III in K562 cells that exhibit a diversity of binding preferences within genic regions:
99 DDX3 and EIF3G in the 5' UTR; IGF2BP2, FAM120A, PUM2, and ZC3H11A in the 3'UTR; LIN28B
100 in the CDS; SF3B4 involved in branch point recognition at the 3' splice site; and PRPF8 which is
101 downstream of the 5' splice site. We performed replicate, multiplexed ABC experiments after

102 conjugating barcoded oligonucleotides to each antibody raised against a specific RBP. These
103 antibodies were previously validated and utilized in eCLIP analyses of these RBPs. After
104 computational deconvolution of the barcodes, we processed each RBP within each ABC sample
105 separately. For each RBP, we removed ABC reads that map to repetitive elements, only retaining
106 reads that mapped uniquely to the human genome and performed peak-calling. We
107 computationally downsampled the uniquely mapping eCLIP reads to the same sequencing depth
108 as the ABC libraries (Supplemental Table1). We then performed peak-calling on the eCLIP
109 samples. The numbers of initial peaks were similar between ABC and eCLIP (Supplemental
110 Fig.3).

111
112 We then prioritized enriched peaks from ABC using total RNA-seq as background and compared
113 them to ENCODE eCLIP datasets using the RBP's size-matched input (SMI) control
114 (Supplemental Note2). ABC produces comparable peak distributions across coding RNA features
115 when compared to eCLIP (**Fig.2b**) as well as when analyzing all RNA features (Supplemental
116 Fig.4). The eCLIP protocol incorporates a SMI to capture non-specific, background RNAs that are
117 sequenced in a CLIP experiment. SMI allows for a measure of the experimental background in
118 the CLIP experiment rather than providing an enrichment score relative to total RNA. As ABC
119 removed the gel and membrane transfer steps, we reasoned that using the nine other RBPs in
120 the multiplex may serve as an alternative approach to prioritize sites that are specific for each
121 RBP. For a given binding site for a specific RBP, we computed the chi-square statistic from a 2x2
122 contingency table using the observed number of on-target reads in the given RBP peak and the
123 total number of reads for that RBP versus the background of the number of off-target reads from
124 the other nine RBPs and the total number of reads for those respective RBPs. Peaks with a *P*
125 value of less than or equal to 0.001 were deemed statistically significantly enriched. Our
126 enrichment strategy produced a similar peak profile to eCLIP analysis using SMI to prioritize
127 binding sites (**Fig.2b**) with a similar number of total peaks (Supplemental Fig.3). Additionally, for
128 the two RBPs, RBFOX2 and PUM2, both of which have well-characterized motifs, HOMER was
129 able to *de novo* detect their respective motifs in the ABC samples (Supplemental Fig.5).
130 Therefore, we conclude that a single ABC library (from 1 tube) generates similar overall results to
131 10 separate eCLIP experiments (from 20 tubes).

132
133 To further compare peak locations between ABC and eCLIP, we first plotted the metagene profiles
134 of the enriched peaks for the spliceosomal proteins SF3B4 and PRPF8. Both RBPs displayed
135 strong positional preferences proximal to their respective splice sites (**Fig.2c**). We observed that
136 the ABC-derived peaks for PRPF8 were closer to the annotated 5' splice sites than the eCLIP-
137 derived peaks, resulting in changes to peak annotation (**Fig.2b**). All ten RBPs also displayed
138 similar binding distributions in the metagene profiles (spliced mRNA) for both ABC and eCLIP
139 (**Fig.2d**). Finally, to confirm that ABC and ENCODE were recovering the same binding sites, we
140 computed the overlap coefficient between ABC and eCLIP replicates. There is a notable overlap
141 between identified and enriched peaks in ABC and eCLIP (**Fig.2e**). In addition to intra-RBP
142 reproducibility, there was overlap between RBPs known to bind similar features, like the 5'UTR
143 binding proteins DDX3 and EIF3G. Average coverage of eCLIP peaks was also found to be
144 correlated for all RBPs (Supplemental Fig.6). Finally, we wanted to evaluate if multiplexing RBPs
145 had any appreciable effect on the quality of the data. No differences in peak distributions or
146 quantity were observed when accounting for differences in read depth and peak coverage
147 correlated between single and 10-plex ABC experiments (Supplemental Fig.7).

148
149 We conclude that ABC can effectively characterize the transcriptome-wide RBP binding sites for
150 multiple RBPs from the same input amount as a single eCLIP experiment. This new protocol does
151 not require an SDS-PAGE gel and generates data of comparable quality to eCLIP. Additionally,
152 using a computational strategy to identify peaks that were enriched for specific RBPs within the

153 pool, ABC obviated the separate SMI library requirement. These advantages result in at least a
154 20-fold reduction in the number of libraries generated for a single ABC 10-plex experiment. By
155 simply increasing the number of barcodes, this advantage will grow. This unprecedented
156 scalability will facilitate the broad annotation of RBPs in clinically relevant samples, like disease
157 tissues, where source materials are rare and often input-limited.

158

159 **Acknowledgements**

160 G.W.Y. is supported by NIH grants (HG004659, HG009889) and by an Allen Distinguished
161 Investigator Award, a Paul G. Allen Frontiers Group advised grant of the Paul G. Allen Foundation.
162 The authors would like to thank Julianne Dessert for creating the schematic artwork.

163

164 **Contributions:**

165 ABC was invented and initial proof-of-concept experiments and analysis were performed by D.A.L
166 and K.B.C. Subsequent experiments were performed by D.A.L. and A.C.N. with bioinformatic
167 analysis by D.A.L., K.A.S., H.H., K.R.H., S.C.B., and S.A.M. The manuscript was written by D.A.L.,
168 H.H., K.R., and G.W.Y with input from all authors.

169

170 **Competing Interests:**

171 The authors declare the following competing interests. D.A.L and K.B.C are listed as authors on
172 a patent application related to this work. D.A.L., K.A.S., K.R.H., S.C.B., S.A.M., A.C.N., and K.B.C
173 are paid employees of Eclipse BioInnovations. G.W.Y. is a co-founder, member of the Board of
174 Directors, on the SAB, equity holder, and paid consultant for Locanabio and Eclipse
175 BioInnovations. G.W.Y. is a visiting professor at the National University of Singapore. G.W.Y.'s
176 interest(s) have been reviewed and approved by the University of California, San Diego in
177 accordance with its conflict-of-interest policies. The authors declare no other competing interests.

178

179 **References**

1. Gerstberger, S., Hafner, M., Ascano, M. & Tuschl, T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. *Adv. Exp. Med. Biol.* **825**, 1–55 (2014).
2. Keene, J. D. RNA regulons: coordination of post-transcriptional events. *Nat. Rev. Genet.* **8**, 533–543 (2007).
3. Dreyfuss, G., Kim, V. N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. *Nat. Rev. Mol. Cell Biol.* **3**, 195–205 (2002).
4. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. *Nat. Rev. Mol. Cell Biol.* **8**, 479–490 (2007).
5. Nussbacher, J. K., Batra, R., Lagier-Tourenne, C. & Yeo, G. W. RNA-binding proteins in neurodegeneration: Seq and you shall receive. *Trends Neurosci.* **38**, 226–236 (2015).
6. Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. *Nat. Rev. Genet.* **22**, 185–198 (2021).
7. Sundaram, B. *et al.* Resources for the Comprehensive Discovery of Functional RNA Elements. *Mol. Cell* **61**, 903–913 (2016).
8. Ule, J. *et al.* CLIP identifies Nova-regulated RNA networks in the brain. *Science* **302**, 1212–1215 (2003).
9. Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M. A. Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. *Methods* **26**, 182–190 (2002).
10. Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 14085–14090 (2000).

203 11. Buchbender, A. *et al.* Improved library preparation with the new iCLIP2 protocol. *Methods*
204 **178**, 33–48 (2020).

205 12. Zarnegar, B. J. *et al.* irCLIP platform for efficient characterization of protein-RNA interactions.
206 *Nat. Methods* **13**, 489–492 (2016).

207 13. Blue, S. M. *et al.* Transcriptome-wide identification of RNA-binding protein binding sites using
208 seCLIP-seq. *Nat. Protoc.* **17**, 1223–1265 (2022).

209 14. Van Nostrand, E. L. *et al.* Robust transcriptome-wide discovery of RNA-binding protein
210 binding sites with enhanced CLIP (eCLIP). *Nat. Methods* **13**, 508–514 (2016).

211 15. Van Nostrand, E. L. *et al.* Principles of RNA processing from analysis of enhanced CLIP
212 maps for 150 RNA binding proteins. *Genome Biol.* **21**, 90 (2020).

213 16. Van Nostrand, E. L. *et al.* A large-scale binding and functional map of human RNA-binding
214 proteins. *Nature* **583**, 711–719 (2020).

215 17. Brannan, K. W. *et al.* SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale
216 Protein-Protein Interactomes. *Mol. Cell* **64**, 282–293 (2016).

217 18. Perez-Perri, J. I. *et al.* Discovery of RNA-binding proteins and characterization of their
218 dynamic responses by enhanced RNA interactome capture. *Nat. Commun.* **9**, 4408 (2018).

219 19. Queiroz, R. M. L. *et al.* Unbiased dynamic characterization of RNA-protein interactions by
220 OOPS. *bioRxiv* (2018) doi:10.1101/333336.

221 20. Kwon, S. C. *et al.* The RNA-binding protein repertoire of embryonic stem cells. *Nat. Struct.
222 Mol. Biol.* **20**, 1122–1130 (2013).

223 21. Ule, J., Jensen, K., Mele, A. & Darnell, R. B. CLIP: a method for identifying protein-RNA
224 interaction sites in living cells. *Methods* **37**, 376–386 (2005).

225 22. Wheeler, E. C., Van Nostrand, E. L. & Yeo, G. W. Advances and challenges in the detection
226 of transcriptome-wide protein-RNA interactions. *Wiley Interdiscip. Rev. RNA* **9**, (2018).

227 23. Hafner, M. *et al.* CLIP and complementary methods. *Nat Rev Methods Primers* **1**, (2021).

228 24. Stoeckius, M. *et al.* Simultaneous epitope and transcriptome measurement in single cells.
229 *Nat. Methods* **14**, 865–868 (2017).

230 25. Yeo, G. W. *et al.* An RNA code for the FOX2 splicing regulator revealed by mapping RNA-
231 protein interactions in stem cells. *Nat. Struct. Mol. Biol.* **16**, 130–137 (2009).

232 26. Wiener, J., Kokotek, D., Rosowski, S., Lickert, H. & Meier, M. Preparation of single- and
233 double-oligonucleotide antibody conjugates and their application for protein analytics. *Sci.
234 Rep.* **10**, 1457 (2020).

235 27. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular
236 Identifiers to improve quantification accuracy. *Genome Res.* **27**, 491–499 (2017).

237 28. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
238 *EMBnet J.* **17**, 10 (2011).

239 29. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral
240 substitution rates on mammalian phylogenies. *Genome Res.* **20**, 110–121 (2010).

241
242
243
244
245
246
247
248
249
250
251
252
253

254 **Figure Legends**

255 **Figure 1**

256 a) Schematic of ABC and eCLIP workflow. Yellow blocks highlight the difference between
257 the two protocols. Barcoded oligos (30 nucleotides) are conjugated to IP-grade antibodies
258 using click-chemistry prior to immunoprecipitation. The oligo then acts as the 3' adapter
259 and undergoes proximity-based ligation to RNA targets bound to the IPed RBP allowing
260 for bioinformatic separation post-sequencing.

261 b) Genome browser tracks showing binding sites of RBFOX2 and SLBP. Each panel is group
262 normalized by RPM value.

263 c) Percentage of uniquely mapped reads that are within eCLIP IDR peaks (top). Percent of
264 reads aligning to conserved GCAUG sites (bottom).

265 d) Peak enrichment ($-\log_{10}P > 3$, $\text{Ig}_2\text{FC} > 3$) in RBFOX2-dependent skipped exon events,
266 defined as exons alternatively included/excluded upon RBFOX2 shRNA KD (Nature
267 Methods 2016) (* indicate $P < 0.05$, ** $P < 10\text{e-}3$; *** $P < 10\text{e-}4$).

268 e) Fraction of uniquely mapped reads that map to histone mRNA.

269 f) Metadensity profile of reads from ABC or eCLIP that map to histone mRNA.

270 g) Cumulative count of histone genes across the top 100 ranked genes based on enrichment.
271 Highly abundant background RNAs (mitochondrial and snoRNAs) were filtered out of all
272 datasets.

273

274 **Figure 2**

275 a) Genome browser tracks of select RBP binding sites depicting similar coverage between
276 ABC (teal) and ENCODE eCLIP (orange). Each binding site was group normalized to all
277 RBPs using RPM.

278 b) Stacked bar plots of the fraction of peaks localized to each coding RNA feature in K562
279 cells. RBPs are color-coded with their annotated binding feature. ABC input normalization
280 was compared to total RNA-seq. ABC internal normalization was a chi squared test
281 between the other 9 RBPs. ENCODE input normalization was compared to its respective
282 SMI. ENCODE IDR peaks were not downsampled.

283 c) Splicing metagene profile of the two splicing factors SF3B4 and PRPF8 with density
284 representing peak calls based on internal normalization (ABC) and input normalization
285 (ENCODE). Peak intensity was normalized such that the total density for each sample
286 was equal to 1.

287 d) Internal normalized peaks (ABC) and input normalized peaks (ENCODE) were mapped
288 across a normalized mRNA transcript for each RBP. Peak intensity was normalized such
289 that the total density for each sample was equal to 1.

290 e) Internal normalized peaks (ABC) and input normalized peaks (ENCODE) were intersected
291 to find the number of overlapping peaks. The overlap coefficient is defined as (#
292 overlapping peaks / total number of peaks in the smaller of the two datasets). The total
293 number of peaks are displayed as a bar chart outside of the heatmap.

294

295 **Methods:**

296 **Cell Culture:**

297 K562 and HEK293 cells were cultured in DMEM media supplemented with 10% FBS following
298 the standard tissue culture technique. Cell pellets were generated by washing 10 cm plates (~15
299 million cells) once with cold 1X phosphate-buffered saline (PBS) and overlaid or resuspended
300 with minimal (3 mL per 10 cm plate) cold 1X PBS and UV cross-linked (254 nm, 400 mJ/cm²) on
301 ice. After cross-linking, cells were scraped and spun down, the supernatant removed, and washed
302 with cold 1X PBS. Cell pellets (10 million each) were flash-frozen on dry ice and stored at -80°C.

303

304 **Antibody barcoding:**

305 100 μ l of 100 μ M oligo barcode (IDT) in PBS and 10 μ l of 10 mM azide-NHS (Click Chemistry
306 Tools cat# 1251-5) in DMSO were mixed at room temperature for two hours. Unreacted azide
307 was removed by buffer exchanging into PBS using Zeba desalting columns (Thermo cat# 89883)
308 following the manufacturer's protocol. Azide labeled barcodes were stored at -20°C.
309

310 20 μ g of antibodies were diluted to 70 μ L in PBS, and the buffer was exchanged into PBS using
311 Zeba desalting columns. 10 μ L of 10 mM DBCO-NHS (Click Chemistry Tools cat# A134-10) was
312 then added to the antibodies and allowed to rotate at room temperature for one hour²⁶. Unreacted
313 DBCO-NHS was removed by buffer exchanging into PBS using Zeba desalting columns and
314 stored at 4°C.

315 6.65 μ L azide containing barcodes were then reacted with all the DBCO labeled antibodies (~70
316 μ L). The mixture was allowed to rotate overnight at room temperature. Labeled antibodies were
317 stored at 4°C and assumed to be 20 μ g and used as is.
318

319 320 Antibodies used in this study:

Antibody	Company	Catalog#
RBFOX2	Bethyl	A300-864A
PUM2	Bethyl	A300-202A
DDX3	Bethyl	A300-474A
FAM120A	Bethyl	A300-899A
ACH11A	Bethyl	A300-524A
LIN28B	Bethyl	A300-588A
SF3B4	Bethyl	A300-950A
EIF3G	Bethyl	A300-755A
PRPF8	Bethyl	A300-921A
IGF2BP2	MBL	RN008P
SLBP	Bethyl	A300-968A

321 322 Oligos used in this study:

Oligos	Sequence
ABC RT Primer	ACACGACGCTCTTCC
ABCi7 Primer	/5Phos/AGATCGGAAGAGCACACGTCTG/3SpC3/

323

Barcoded Sequences
/5Phos/NNNNNATCACAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNCATGAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNTAGGAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNTGACCAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNACAGTAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNGCCAAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNCAGATAGATCGGAAGAGCGTCGTGT/3AmMO/
/5Phos/NNNNNACTGAGATCGGAAGAGCGTCGTGT/3AmMO/

/5Phos/NNNNNGATCAAGATCGGAAGAGCGTCGTGT/3AmMO/

/5Phos/NNNNNTAGATCGGAAGAGCGTCGTGT/3AmMO/

324

325 Antibody conjugation CLIP:

326 IP bead conjugation:

327 200 μ L of lysis buffer (50mM Tris pH 7.4, 100mM NaCl, 1% Igepal, 0.1% SDS, 0.5% Sodium
328 Deoxycholate) was added to 25 μ L anti-rabbit Dynabeads (Thermo Fisher cat# 11204D). Beads
329 were washed twice with 500 μ L lysis buffer before being resuspended in 50 μ L lysis buffer. 5 μ g
330 of antibody was added and rotated at room temperature for one hour. Beads were again washed
331 twice with 500 μ L lysis buffer and resuspended in 50 μ L lysis buffer. Repeat for each barcode and
332 antibody combination.

333

334 Immunoprecipitation:

335 Frozen HEK293 or K562 cell pellets were lysed in 1 mL lysis buffer supplemented with 5 μ L
336 protease inhibitor cocktail (Thermo Fisher cat# 87786) and 10 μ L RNase inhibitor (NEB cat#
337 M0314B) and sonicated for 5 min with 30 second on/off cycles. The lysate was then treated with
338 10 μ L diluted (1:25) RNase I (Thermo Fisher cat# AM2295) and 5 μ L TurboDNase (Thermo Fisher
339 cat# AM2239B001) and incubated at 37°C for 5 min. Cellular debris was removed by
340 centrifugation at 12,000 x g for 3 min. The supernatant was then transferred to a new tube along
341 with 50 μ L of each preconjugated antibody for each barcode (50 μ L each from 10 different
342 barcoded antibodies, 500 μ L total for 10plex) coated magnetic beads and immunoprecipitated
343 overnight at 4°C. Beads were subsequently washed with 500 μ L high salt wash buffer (50mM Tris
344 pH 7.4, 1M NaCl, 500 mM EDTA, 0.5% Igepal, 1% SDS, 0.5% sodium deoxycholate) (3x), high
345 salt wash buffer + 80 mM LiCl (1x), and low salt wash buffer (500 mM Tris pH 7.4, 250 mM MgCl₂,
346 5% Tween 20, 125 mM NaCl) (3x).

347

348 Proximity Ligation:

349 Beads were resuspended in 80 μ L T4 PNK reaction mix (3 μ L T4 PNK (NEB cat# M0201B), 97.2
350 mM Tris pH 7, 13.9 mM MgCl₂, 1mM ATP) and incubated at 37°C for 20 min with interval mixing.
351 After PNK treatment, samples were washed with 500 μ L high salt buffer (1x) followed by low salt
352 buffer (3x). Proximity barcode ligations were carried out in 150 μ L T4 ligation reaction mix (11 μ L
353 T4 ligase (NEB cat# M0437B-BM), 75 mM Tris pH 7.5, 16.7 mM MgCl₂, 5% DMSO, 0.00067%
354 Tween 20, 1.67 mM ATP, 25.7% PEG8000) at room temperature for 45 min with interval mixing.
355 Samples were again washed with high salt buffer (1x) and low salt buffer (2x). Chimeric RNA
356 barcode molecules were eluted from the bead by incubating with 127 μ L ProK digestion solution
357 (11 μ L ProK (NEB cat # P8107B), 100 mM Tris pH 7.5, 50 mM NaCl, 10 mM EDTA, 0.2% SDS)
358 at 37°C for 20 min followed by 50°C for 20 min with interval mixing. Samples were placed on the
359 Dynamagnet and supernatants were transferred to a clean tube. Samples were cleaned up with
360 Zymogen RNA clean and concentrator following manufacturers protocol and eluted in 10 μ L.
361

362

363 RT & Library Prep:

364 RNA was reverse transcribed for 20 min at 54°C with 1.5 μ L RT primer and 10 μ L RT mix (0.6 μ L
365 Superscript III (Thermo Fisher cat# EP1756B012), 2.17x SuperScript III RT buffer, 10 mM DTT).
366 After RT, excess primers and nucleotides were removed with 2.5 μ L ExoSAP-IT (Thermo Fisher
367 75001.10.ML) and RNA was degraded with the addition of 1 μ L 0.5 M EDTA and 3 μ L 1M NaOH
368 and heated at 70°C for 10 min, and pH neutralized with 3 μ L 1M HCl. Samples were cleaned up
369 using 5 μ L MyOne Silane beads and eluted in 2.5 μ L ssDNA ligation adapter (50 μ L 100 μ M
370 ABCi7primer, 60 μ L DMSO, 140 μ L Bead Elution Buffer). Without removing the beads, 6.5 μ L T4
371 ligase solution (76.9 mM Tris pH 7.5, 15.4 mM MgCl₂, 3% DMSO, 30.8 mM DTT, 0.06% Tween
372 20, 1.5 mM ATP, 27.7% PEG8000), 1 μ L T4 ligase, and 0.3 μ L deadenylase (NEB cat# M0331B)

372 was added and rotated overnight at room temperature. 45 μ l bead binding buffer (0.001% Tween
373 20, 10 mM Tris pH 7.5, 0.1 mM EDTA) and 45 μ l ethanol were added to the ligation mixture to
374 rebind the cDNA to the silane beads. After washing with 80% ethanol the cDNA was eluted in 25
375 μ l bead elution buffer and quantified by qPCR. Final libraries were amplified with dual index
376 Illumina primers and sequenced on an Illumina Nextseq 2000.
377

378 Data preprocessing:

379 Data was processed similarly to the standard eCLIP pipeline¹⁴, except for a few adjustments to
380 ABC's multiplex design and library structure. For ABC data, UMLs were extracted using umitools
381 1.0.0²⁷, and adaptors were removed using cutadapt 2.8²⁸. Fastqs files were demultiplexed based
382 on the 5' nucleotide barcode sequence using fastx toolkit
383 (http://hannonlab.cshl.edu/fastx_toolkit/). ABC libraries were sequenced on the reverse strand.
384 Therefore, reads were reverse complemented before alignment to repetitive regions, removal of
385 multi-mapped reads, and alignment to the genomic sequences using STAR 2.7.6. The pipeline is
386 available at <https://github.com/algaebrown/oligoCLIP.git>.
387

388 Calculating enrichment of peaks across different background inputs:

389 After genome alignment of the ABC libraries, we used CLIPper
390 (<https://github.com/YeoLab/clipper>) to call peaks using the immunoprecipitated library. Briefly,
391 CLIPper uses nearby regions (+/- 500 b.p.) to estimate the background in the immunoprecipitated
392 library, followed by a Poisson distribution to assess the significance of a peak. We then ranked
393 the enrichment of peaks across several different types of backgrounds, including: SMI (eCLIP),
394 RNA-seq (ABC), or to other multiplex libraries (internal normalization). In the eCLIP protocol, the
395 SMI library was prepared the same way as the IP library and captures the background cross-
396 linking rate of other RBPs with similar size ranges as well as the RNA expression level and all
397 other bias in library preparation. Since ABC does not have a SMI, we reasoned that a total RNA-
398 seq library can capture part of the bias. Furthermore, internal prioritization to other RBPs within
399 the multiplexed library can estimate not only the expression level, but also other biases introduced
400 within the protocol. Ideally, as the number of RBP approaches infinity, the summation of "other
401 RBPs in the multiplexed library" should approach the SMI-input. To estimate the significance of
402 the peaks based on backgrounds, we used a chi-square test (or Fisher Exact test, if the number
403 of reads < 5) to compare the number of reads in the IP library and the background library within
404 and outside of the peak region. The pipeline is available at
405 <https://github.com/algaebrown/oligoCLIP.git>.
406

407 Evaluating the authenticity of peaks called:

408 Since there exists no large-scale gold-standard standard datasets of binding sites, we made
409 assumptions based on previous knowledge of certain RBPs. RBFOX2 has a strong binding to the
410 GCAUG motif and its sites exhibit high sequence conservation across vertebrate evolution (which
411 we operationally define as GCAUG sequences with phyloP > 3, in intronic and UTR regions)²⁹.
412 RBFOX2 is also known to be enriched proximal to its regulated exons which exhibit positional
413 dependent alternative splicing. We utilized the splicing microarray-defined (n=150) differentially
414 included and skipped cassette exon events upon loss of RBFOX2¹⁴.
415

416 SLBP has been characterized to primarily bind stem loops within histone-encoding mRNAs.
417 Based on these observations, we curated a set of "true positive regions" and assessed the
418 sensitivity and specificity of our methods using AUROC and AUPRC. In addition, we compared
419 our dataset of published eCLIP datasets in ENCODE. We calculated distribution of peaks in
420 various transcriptomic features (UTR, CDS, intron, noncoding regions) and showed that the two
421 methods capture a similar distribution for each RBP.
422

423 Estimating library complexity:
424 Library complexity (e.g. the number of unique molecules captured in the experiment) is a function
425 of efficiency of every step within the library preparation as well as the sequencing depth. To
426 ensure ABC has the same efficiency in capturing uniquely bound RNAs, we estimated at various
427 sequencing depth of uniquely mapped reads, how many UMIs can be captured (Supplementary
428 Fig.1a). Uniquely mapped reads were downsampled to various depths, then followed the
429 preprocessing pipeline to deduplicate the reads.

430
431 Exon Exclusion/Inclusion:
432 The upstream exon is defined as the exon 5' to the cassette exon. The up-flanking intron is defined
433 as the intron between the upstream exon and the cassette exon. Whereas, the downstream exon
434 is defined as the exon 3' to the cassette, and the downstream flanking intron is the intron between
435 the cassette and downstream exon. We then defined the background exons by randomly
436 sampling 1500 exons with no change upon RBFOX2 KD. The odds ratio was calculated as: [(the
437 number of skipped exons that overlapped with significant peak)/(the number of skipped exons
438 that do not overlap with significant peak)]/[(the number of exons that overlap with background
439 exons)/(the number of exons that do not overlap with background exons)]. “Overlap” is defined
440 as at least 50% of peak length falling into the designated region. A Chi-square test is performed
441 to test for significance in enrichment.

442
443 **Data Availability**
444 All code for analysis is accessible here <https://github.com/algaebrown/oligoCLIP.git>. Data
445 available at GEO accession: GSE205536.

446
447 **Supplemental Note 1. Calculation of the conserved motif**
448 Conserved motifs within 3'UTR or intronic regions contained a score phyloP score > 3.

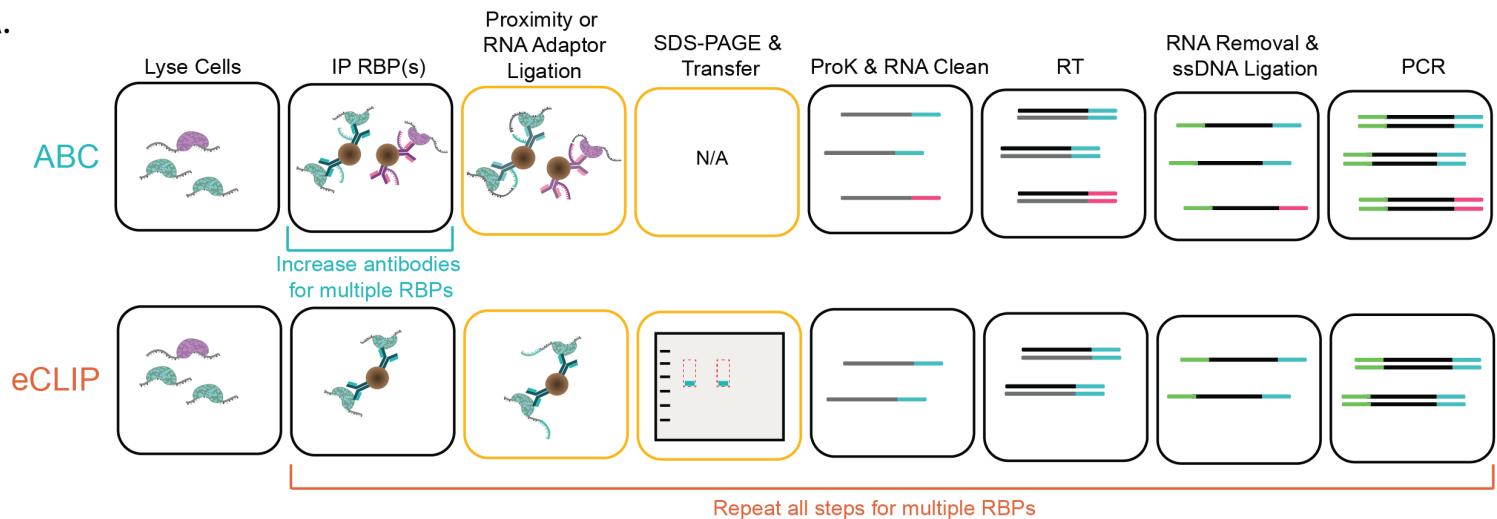
449
450 **Supplemental Note 2. Normalization of background and use of inputs in ABC/eCLIP
451 comparison**

452 We then focused on comparing RBFOX2 in both ABC and eCLIP peaks transcriptome-wide. As
453 the number of peaks detected is a function of the number of reads, we downsampled to match
454 the number of unique molecules for each library. First, we asked whether we need to control for
455 transcriptomic background, as the SMI in eCLIP protocol, and if so, what is an appropriate
456 background for ABC? Since ABC does not have an INPUT library, we utilized public HEK293T
457 rRNA depleted RNA-seq to normalize the peaks. Motif analysis showed canonical GCAUG motifs
458 in all regions in both the normalized and unnormalized peaks, albeit the normalized peaks have
459 a cleaner motif with a lower P value. When ranking the peaks with $-\log_{10}P$ value from either
460 unnormalized peaks or normalized peaks, in CDS regions, the normalized peaks have AUPRC in
461 classifying peaks containing the canonical GCAUG motif. We concluded that for high noise
462 regions such as the CDS and UTR region, the peak calling procedure benefits from having INPUT
463 background control to distinguish bona fide binding site from random highly expressed regions.
464 Therefore, for subsequent analysis, all ABC peaks are normalized to cell-line matched RNA-seq.

465
466 **Extended Data Figure Legends:**
467 Supplemental Fig.1: The number of unique molecules was estimated as a function of sequencing
468 depth. After randomly sampling uniquely mapped reads from ABC, eCLIP, and iCLIP, we plot the
469 number of uniquely mapped reads vs the number of usable reads.

470
471 Supplemental Fig.2: a) Stacked bar plots of the total number of peaks localized to each RNA
472 feature from HEK293 cells. b) HOMER motif analysis of the significant peaks ($-\log_{10}P$ value > 3,
473 log₂FC > 3). Peaks were stratified by region (CDS, 3'UTR, proximal intron, or distal intron).

474
475 Supplemental Fig.3: Stacked bar plots of the total number of peaks localized to each RNA feature
476 in K562 cells. RBPs are color coded with their annotated binding feature. ABC input normalization
477 was compared to total RNA seq. ABC internal normalization was a chi squared test between the
478 other 9 RBPs. ENCODE input normalization was compared to its respective SMI. IDR peaks were
479 not downsampled and used as is from ENCODE.
480
481 Supplemental Fig.4: Stacked bar plots of the fraction of peaks localized to each RNA feature in
482 K562 cells. RBPs are color coded with their annotated binding feature. ABC input normalization
483 was compared to total RNA seq. ABC internal normalization was a chi squared test between the
484 other 9 RBPs. ENCODE input normalization was compared to its respective SMI. IDR peaks were
485 not downsampled and used as is from ENCODE.
486
487 Supplemental Fig.5: De novo motifs detected for PUM2 and RBFOX2 call from ABC internal
488 normalized peaks. *P* values are listed for each RBP and sample. Reference PUM2 motif is
489 provided from Jarmoskaite et al 2019.
490
491 Supplemental Fig.6: a) Table of Pearson correlation R^2 values calculated from the coverage within
492 ABC peaks (teal) and eCLIP peaks (orange and purple) between ABC, ENCODE, and RNA-eq
493 experiments for each RBP. b) Example correlation plot of FAM120.
494
495 Supplemental Fig.7: a) Stacked bar plots of the fraction of peaks localized to each RNA feature
496 comparing single plex and multiplex ABC in HEK239 cells. b) Total number of peaks detected in
497 single plex and multiplex ABC in HEK239 cells with total uniquely mapped reads listed on the
498 right. c) Correlation of peak coverage between replicate 1 of simplex ABC vs multiplex ABC for
499 RBFOX2. d) Correlation of peak coverage between replicate 2 of simplex ABC vs multiplex ABC
500 for RBFOX2.
501
502 Supplemental Table1: Number of reads for each RBP in each 10-plex ABC experiment in K562
503 cells.
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524


525 **Supplemental Table1**

RBP	Rep	Repetitive Element Reoved, Unique Genome Aligned Deduplicated Reads
DDX3	rep1	460,353
DDX3	rep2	147,436
EIF3G	rep1	146,496
EIF3G	rep2	46,398
FAM120A	rep1	1,636,905
FAM120A	rep2	475,895
IGF2BP2	rep1	1,113,410
IGF2BP2	rep2	272,137
LIN28B	rep1	347,579
LIN28B	rep2	109,403
PRPF8	rep1	1,256,893
PRPF8	rep2	312,864
PUM2	rep1	67,591
PUM2	rep2	23,872
RBFOX2	rep1	916,888
RBFOX2	rep2	258,790
SF3B4	rep1	379,674
SF3B4	rep2	109,931
ZC3H11A	rep1	205,252
ZC3H11A	rep2	66,089

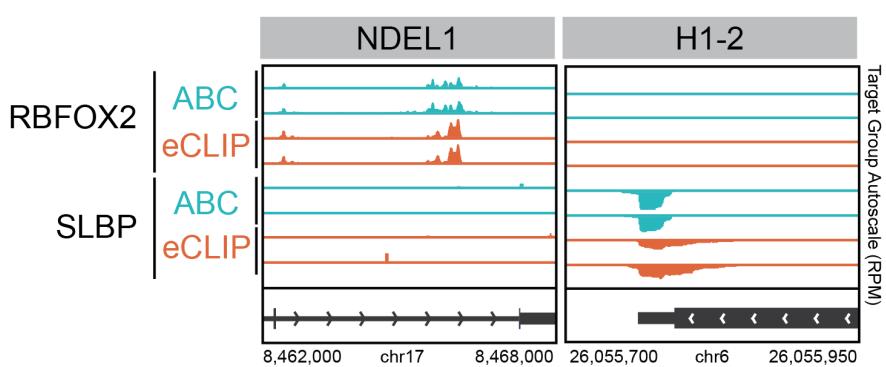
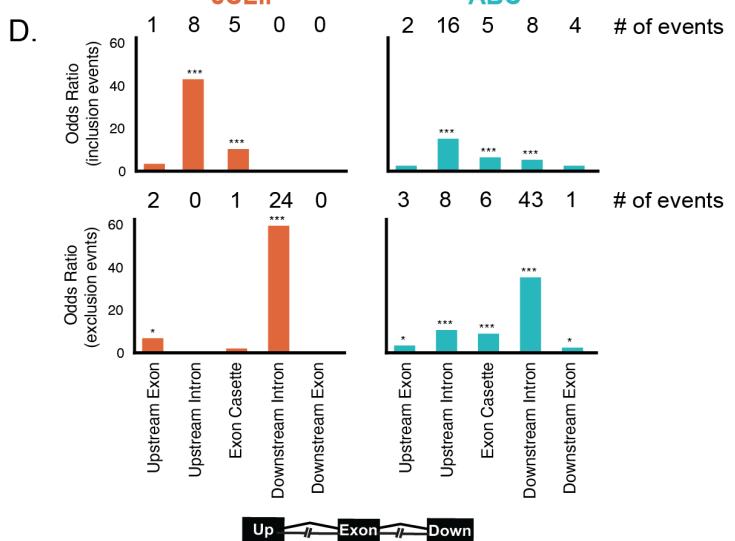
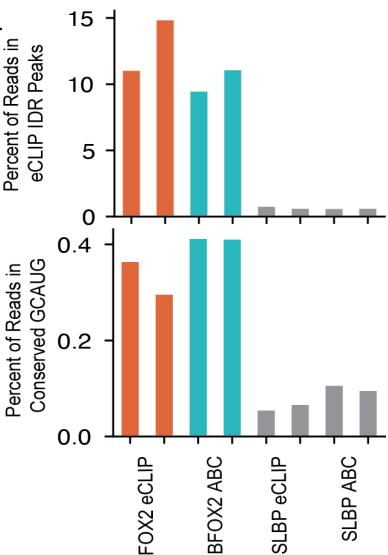
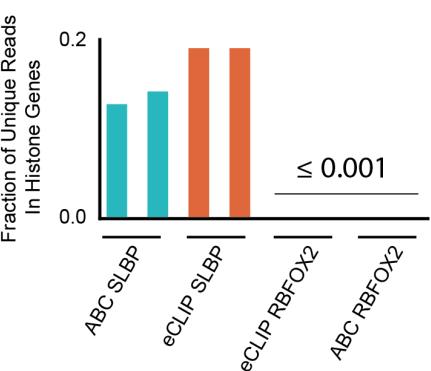
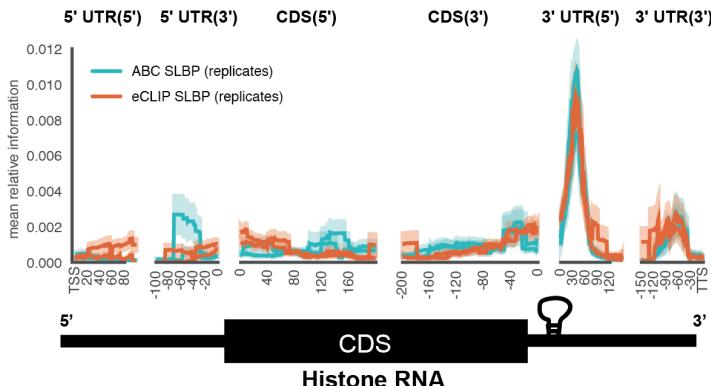

526

Figure 1.



A.


B.


C.

D.

E.

F.

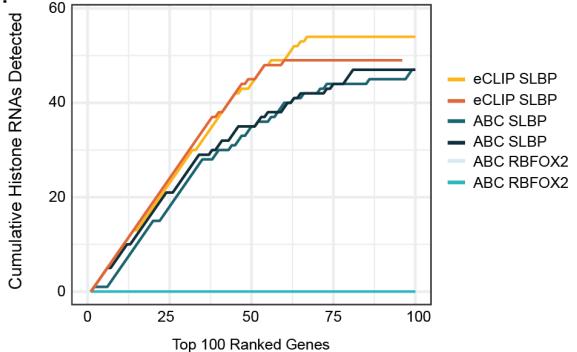
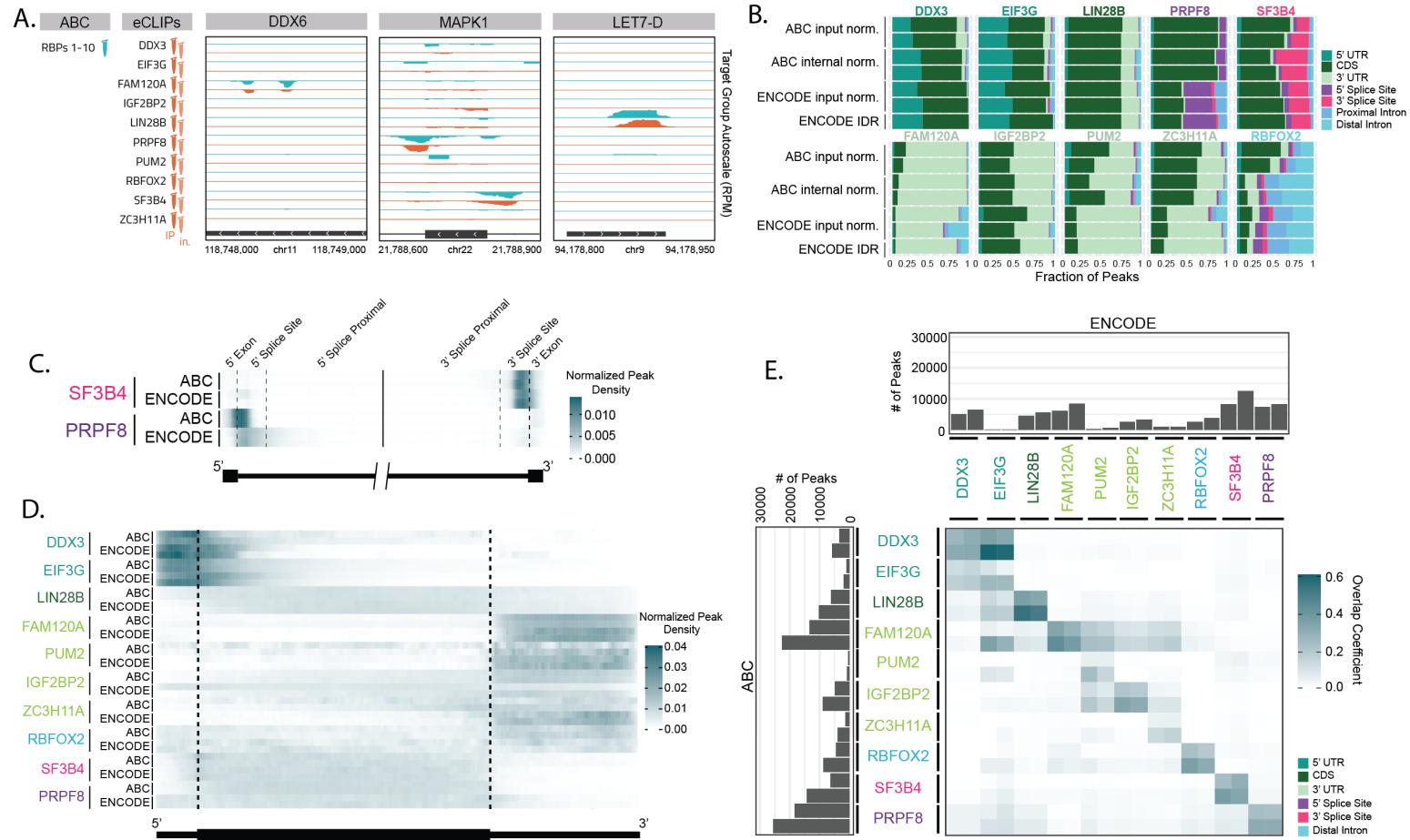
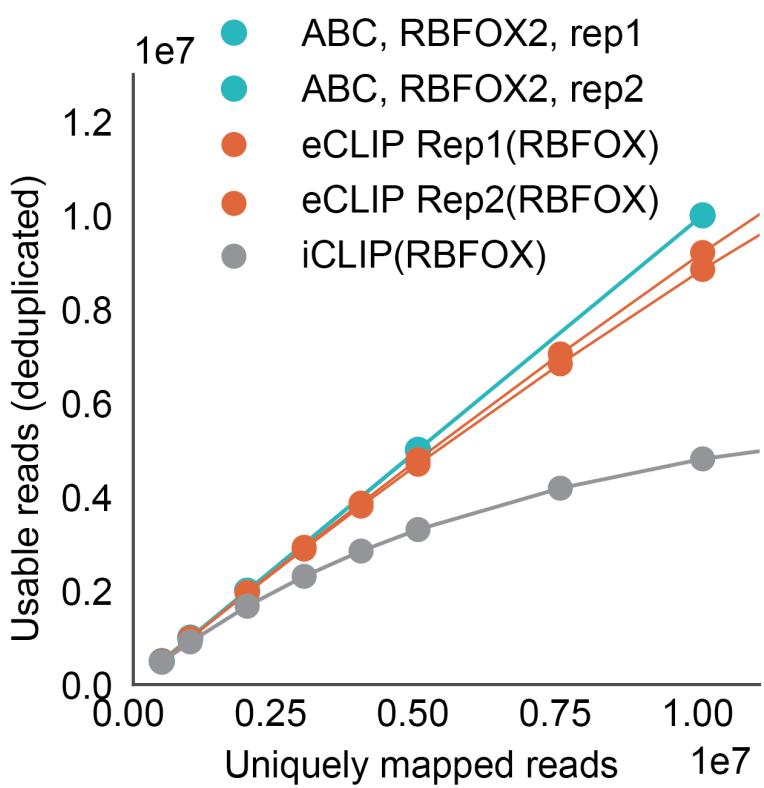
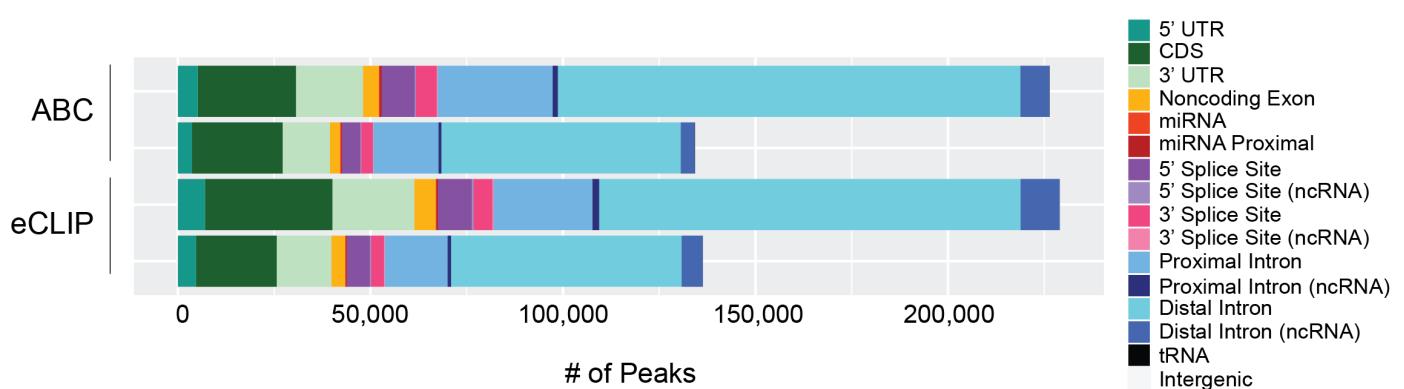
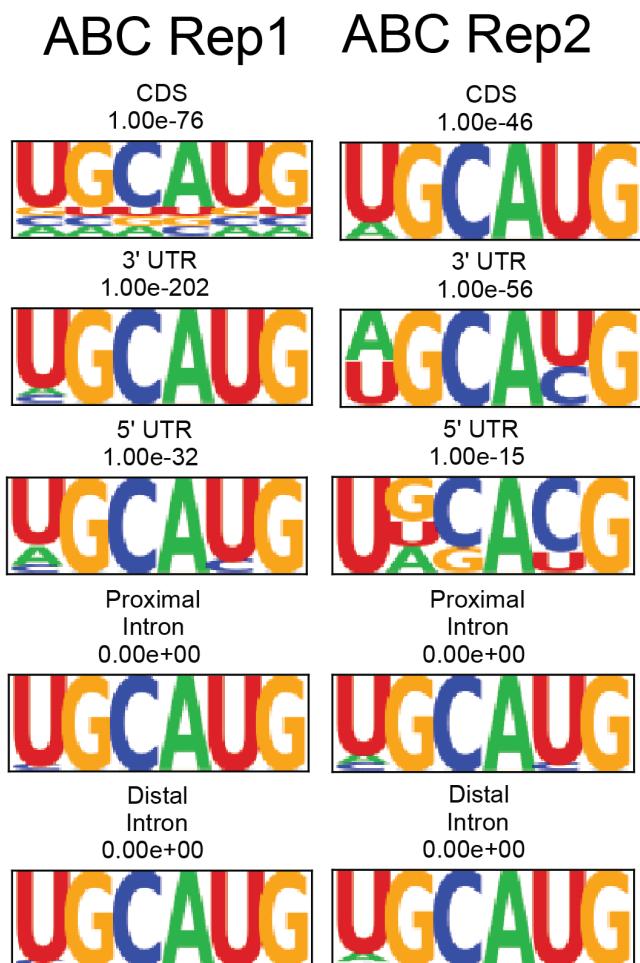




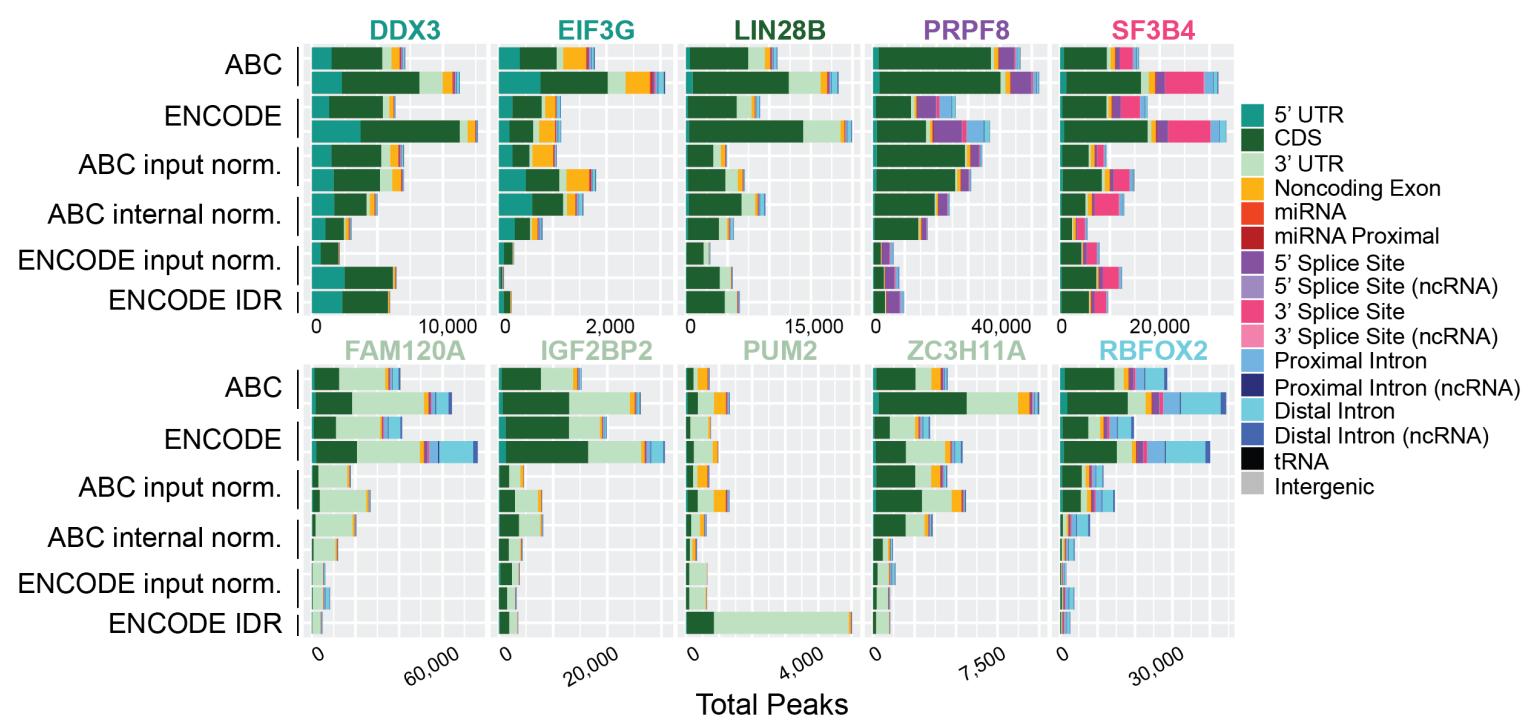
Figure 2.

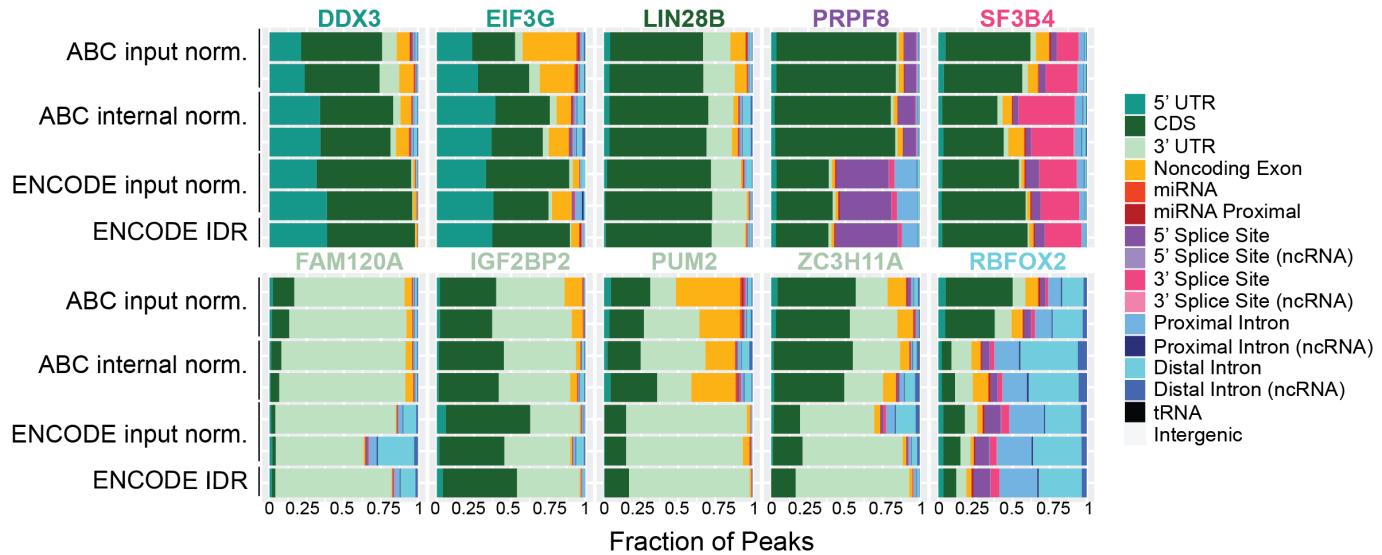


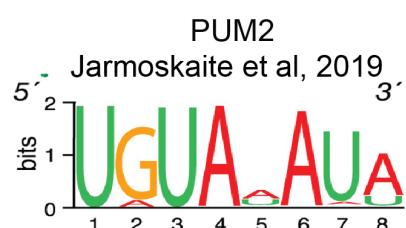
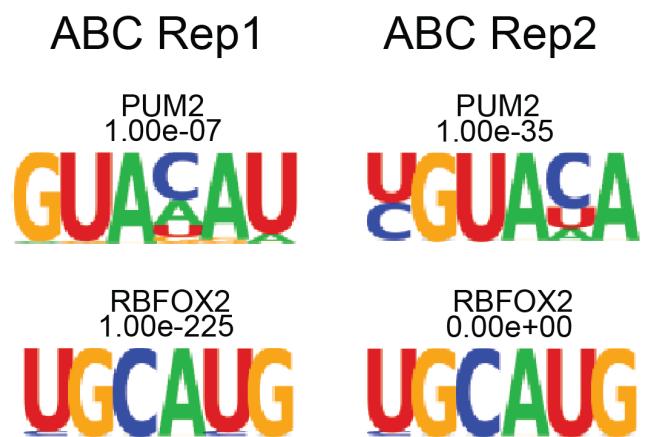
Supplemental Figure 1.



Supplemental Figure 2.

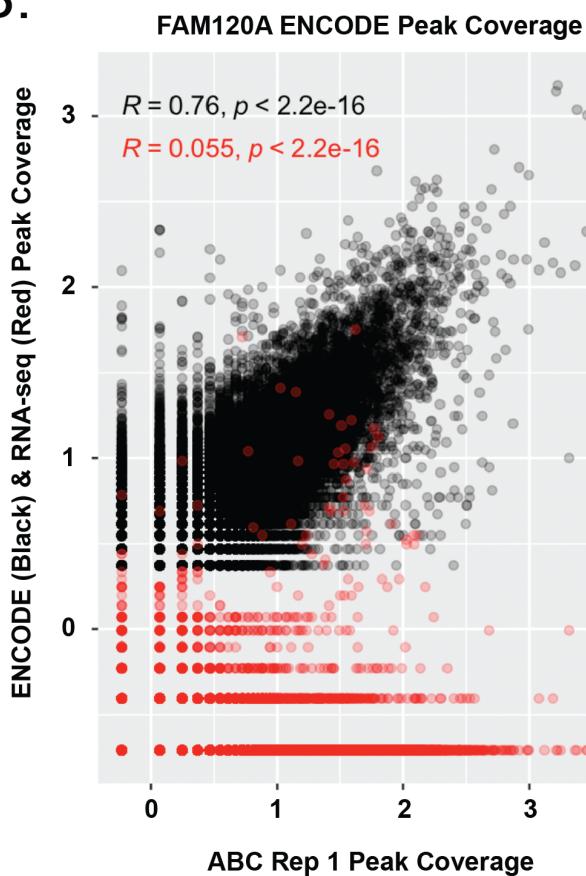

A.


B.



Supplemental Figure 3.

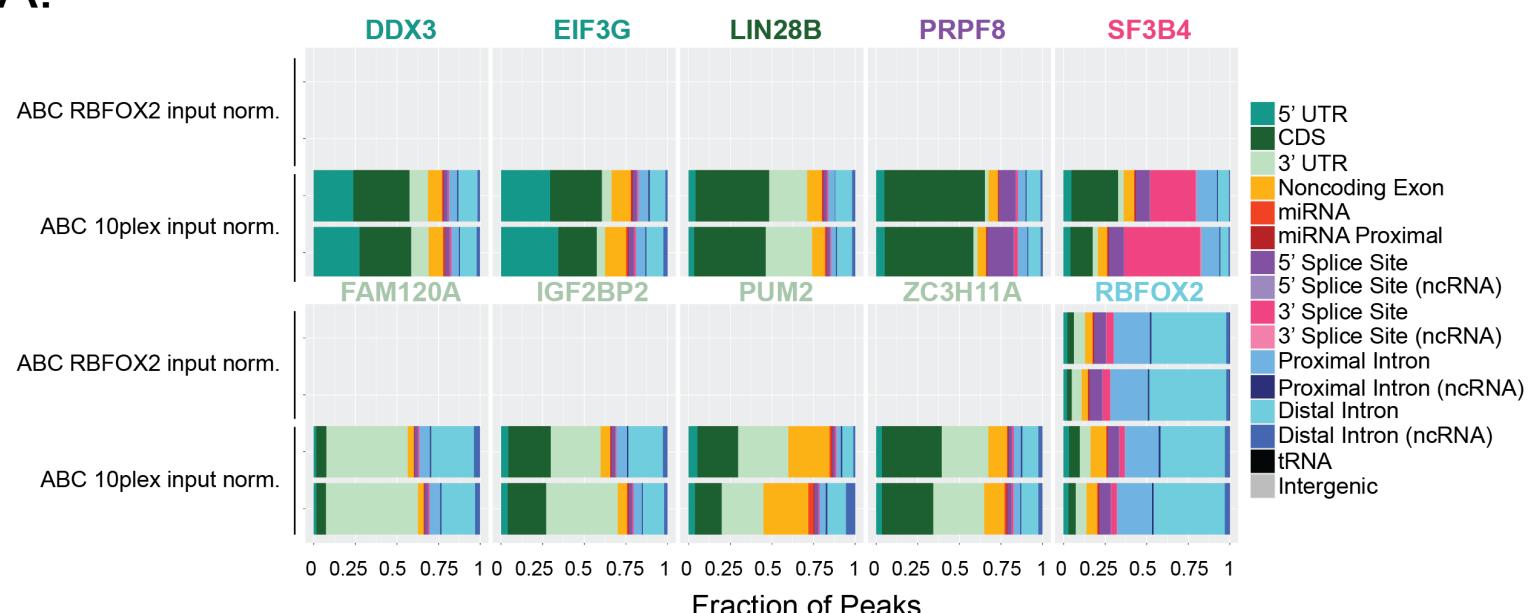
Supplemental Figure 4.

Supplemental Figure 5.

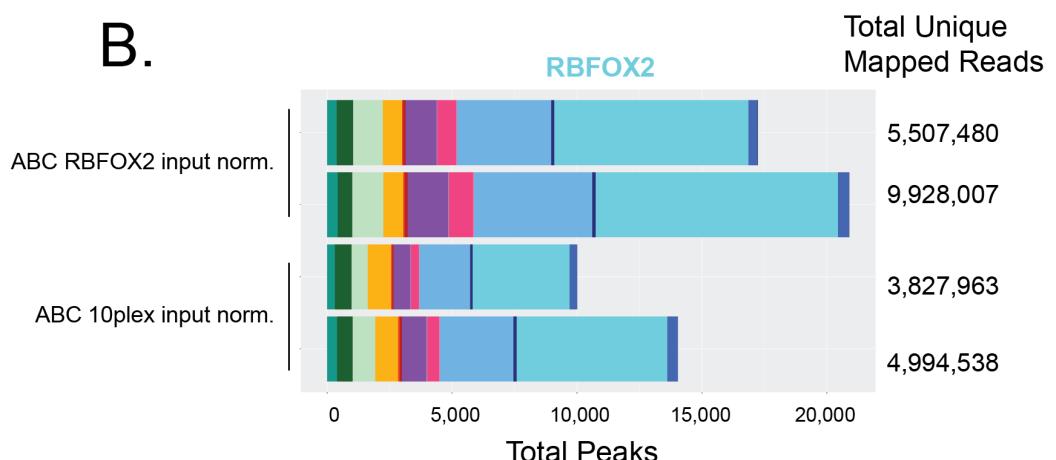


Supplemental Figure 6.

A.

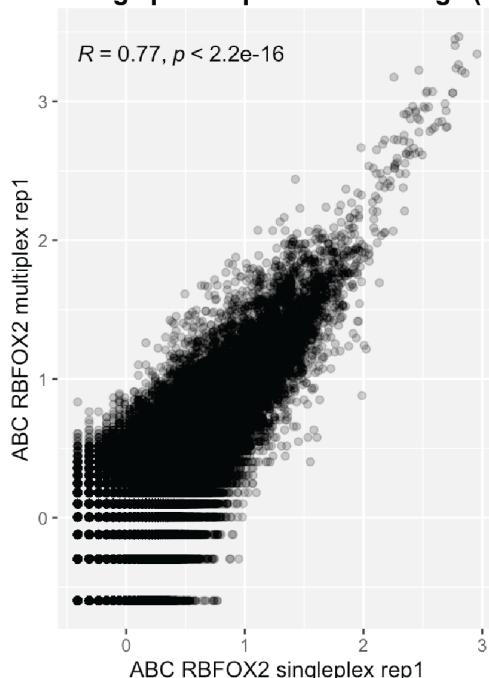

Target RBP	ABC rep	ABC- other rep (R2)	ENCODE (R2)	RNAseq (R2)	ENCODE rep	ENCODE-other rep (R2)
DDX3	1	0.84	0.56	0.16	1	0.78
DDX3	2	0.85	0.64	0.15	2	0.82
EIF3G	1	0.87	0.56	0.071	1	0.83
EIF3G	2	0.88	0.66	0.11	2	0.83
LIN28B	1	0.82	0.63	0.065	1	0.8
LIN28B	2	0.82	0.68	0.069	2	0.8
PRPF8	1	0.76	0.52	0.096	1	0.72
PRPF8	2	0.75	0.68	0.069	2	0.72
SF3B4	1	0.82	0.68	0.1	1	0.78
SF3B4	2	0.8	0.72	0.091	2	0.78
FAM120A	1	0.89	0.76	0.055	1	0.84
FAM120A	2	0.9	0.75	0.04	2	0.85
IGF2BP2	1	0.79	0.59	0.085	1	0.75
IGF2BP2	2	0.81	0.67	0.076	2	0.75
PUM2	1	0.87	0.39	0.21	1	0.68
PUM2	2	0.88	0.63	0.13	2	0.67
ZC3H11A	1	0.83	0.71	0.32	1	0.79
ZC3H11A	2	0.83	0.68	0.24	2	0.79
RBFOX2	1	0.82	0.66	0.12	1	0.75
RBFOX2	2	0.81	0.69	0.098	2	0.75

B.

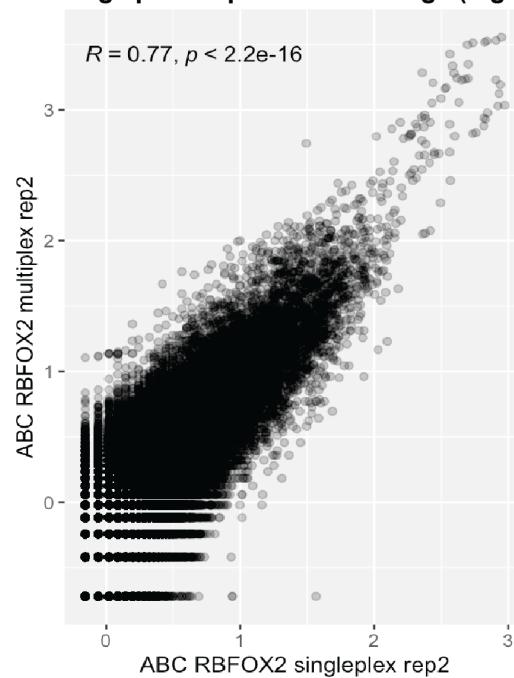


Supplemental Figure 7.

A.



B.


C.

ABC Singleplex Rep1 Peak Coverage (log2(RPM))

D.

ABC Singleplex Rep2 Peak Coverage (log2(RPM))

