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ABSTRACT

Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural
settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions
exists both within and between plant species. Here we quantified variation in the metabolic, physiological,
and morphological responses of a sorghum association panel assembled to represent global genetic
diversity to long term, moderate, nitrogen deficit stress and the relationship of these responses to
grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction
while many other morphological and physiological traits exhibited consistent responses to nitrogen
stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both
conditions identified a range of metabolic responses to long term nitrogen deficit stress as well as
several metabolites associated with variation in the degree of yield plasticity specific sorghum genotypes
exhibited in response to nitrogen deficit stress.

Introduction

Malthus predicted that exponential population growth would always surpass linear increases in food
production resulting on constant famine (Malthus, 1798). Both dramatic increases in total agricultural land
and technological innovations have staved off Malthusian catastrophy in the 20th and early 21st century.
One of the key technological innovations was invention and widespread adoption of the Haber—Bosch
process, which reduces atmospheric nitrogen gas (N») to reactive forms of N, to provide an abundance and
reliable source of nitrogen fertilizer for agriculture (Erisman et al., 2008). The widespread adoption of
synthetic nitrogen fertilizers have dramatically increased crop yields but these increases have not come
without some negative externalities, including increased greenhouse gas emissions and decreases in rural
water quality (Zhang et al., 2015). In addition, for many non-irrigated agricultural systems the cost of
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fertilizer is the either single biggest variable input cost of production, or the second biggest after the cost
of seed (Rothstein, 2007). As the human population continues to grow and populations around the world
shift to more calorie intensive diets, incentives and pressure to agricultural productivity will increase as
well (Foley et al., 2011; Ramankutty ez al., 2018). It has been estimated that only 30-40% of nitrogen
fertilizer is taken up and utilized by crops (Raun and Johnson, 1999). Increasing the nitrogen use efficiency
of major agricultural crops would enable farmers to meet these growing requirements for food production
with stable or decreasing applications of nitrogen fertilizer, increasing farmer profitability will decrease
the environmental and energy footprint of agriculture (Hakeem et al., 2011).

Substantial genetic variation in nitrogen use efficiency exists within crop plants (Cafas et al., 2012;
Liu et al., 2021). Between 1969 and 2010 European wheat breeders increased the nitrogen use efficiency
of wheat by an estimated one third of one percent per year (Cormier et al., 2013). The global impact
of a 1% increase in nitrogen use efficiency is estimated to be $1 billion dollars per year (Kant et al.,
2011). Understanding the genes controlling variation in nitrogen use efficiency and the other phenotypes
associated with these differences would aid in both evaluating the feasibility of increasing nitrogen use
efficiency in different crops — while sustaining the high yields necessary to meet global demand for food
— and, where feasible, designing breeding strategies to achieve such an increase. However, nitrogen use
efficiency is a complex trait and multiple morpho-physiological and metabolic mechanisms likely play
roles in determining how well or poorly a given plant genotype can compensate for limited N availability in
different environments and at different life stages. Understanding the morpho-physiological and metabolic
mechanisms associated with differences in tolerance for nitrogen deficit stress in agriculturally relevant
environments represents a stepping stone to the subsequent identification of genetic loci and finally to crop
improvement via breeding or engineering. To date the majority of research on the morpho-physiological
and metabolic responses of plants to nitrogen deficit stress has been conducted in controlled environment
conditions, particularly emphasizing severe stress applied early in development (Amiour et al., 2012;
Banerjee et al., 2020; Gao et al., 2015). The nitrogen deficit stress experienced by crops in agricultural
settings is typically less extreme and may not produce obvious visual effects, but is sufficient to result in
substantial grain or biomass decrease over the course of a growing season. Collecting phenotypic and
metabolic data from large sets of genotypes experiencing agriculturally relevant degrees of stress under
field conditions can provide substantial insight into natural variations in stress response and tolerance
within individual crop species (Obata ef al., 2015).

Here we quantified crop yield and eight morpho-physiological traits from a large and diverse sorghum
population (Sorghum bicolor L.) grown to maturity in field conditions under both nitrogen limiting and
non nitrogen limiting conditions. For a subset of 24 replicated genotypes, large scale metabolic profiling
was conducted from leaf tissue collected at the flowering stage. Significant plasticity and genotype x
environment interactions were observed for both yield and a subset of metabolic traits, while substantially
less genotype x environment interaction was observed for morpho-physiological traits. The abundance of
several metabolites at flowering exhibited significant correlations with plant performance (e.g. yield) at
maturity.

Material and methods

Field experiment, and phenotypic data and tissue collection

A replicated field trial was planted at the University of Nebraska-Lincoln’s Havelock Farm Location (N
40.861, W 96.598) on June 08, 2020. The experiment was laid out in a RBCD design, initially with three
blocks each under sufficient nitrogen (80 lbs/acre) and low nitrogen (no supplemental nitrogen) treatment
conditions and 416 plots per block, including 347 genotypes from the sorghum association panel (Casa
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et al., 2008), and BTx623 as a repeated check. Each plot consisted of a single 2.3 meter row of plants
from a single genotype, with 0.76 meter spacing between parallel and sequential rows.

A mixture of hand measured traits and traits predicted from hyperspectral data (see below) were
employed to assess the response of sorghum to nitrogen deficit stress. The date of flowering for each plot
was scored when 50% of surviving plants had reached anthesis. Plant height was measured from the soil
surface to the flag leaf collar after flowering. Panicles per plot were hand-counted. One to three panicles
per plot were hand harvested from each plot, dried, and threshed and the resulting grain weighed. Grain
weight per panicle was multiplied by panicles per plot to estimate yield per plot.

Between 5 and 12 August 2020, hyperspectral reflectance data was collected from the second leaf
from top of the plant from single plant per block using a FieldSpec4 (Malvern Panalytical Ltd., formerly
Analytical Spectral Devices), following the protocol outlined in Ge et al. (2019). A set of 265 leaf
samples (130 from HN and 135 from LN) were selected for ground truth measurements. Leaf chlorophyll
concentration (CHL) was measured with a handheld chlorophyll concentration meter (MC-100, Apogee
Instruments, Inc., Logan, UT), and leaf area (LA) was measured with a leaf area meter (LI-3100, LI-COR
Biosciences, Lincoln, NE). Next, samples were placed in a oven set to 50°C and dried over 72 h. Dry
weight (DW) of the leaves was then recorded with digital balance. Specific Leaf Area (SLA, m?/kg) was
calculated as LA/DW. Finally, dried plant leaves were sent to commercial lab (Ward Laboratories, Inc.,
Kearney, NE) where the samples were ground, homogenized, and analyzed for analysis of nutrient content:
nitrogen, potassium and phosphorus.

For 96 plots representing 24 genotypes replicated in two blocks each under sufficient and low nitrogen
treatments, leaf tissue was collected for metabolomics analysis. For each plot, a single plant was selected,
avoiding edge plants where possible. From this plant eight leaf punches of 0.33 cm? in area were collected
from the middle section of the leaf below the flag leaf (e.g the penultimate leaf) and immediately frozen in
liquid nitrogen. Samples were collected between 9:00 AM and 1:00 PM on August 12 2020.

Modeling traits based on hyperspectral data

Five models were developed to predict chlorophyll, nitrogen, phosphorus, and potassium concentration as
well as specific leaf area from hyperspectral reflectance data, following the approach described in Ge et al.
(2019). Measured intensity values for each wavelength were zero centered and scaled to unit variance.
Wavelengths below 450 nm and above 2400 nm were discarded. Predictive models were built separately
for each trait using partial least squares regression implemented in the pls v.2.8.0 (Liland et al., 2021)
and caret (Kuhn, 2008). Prior to the modeling, data were split into training (n=185) and validation set
(n=80). This was done to avoid the risk of misleadingly high prediction accuracy resulting from over fitting.
Decisions regarding model tuning and performance evaluation were made based on root mean squared
error (RMSE) of five-fold cross validation using training set (n=185). After final models were trained,
their performance was evaluated using the validation set (n=80). Final models were applied to equivalently
zero centered and scaled hyperspectral reflectance measurements collected from the remaining sorghum
plots.

Untargeted metabolomics using LC-MS/MS

Samples were extracted using cold methanol:acetonitrile (50:50, v/v) spiked with 100 M of CUDA (12-
[(cyclohexylcarbamoyl)amino]dodecanoic acid). The tissue samples were disrupted and homogenized
by adding 2 stainless steel beads (SSB 32) using the TissueLyserll (Qiagen) at 20 Hz for 5 mins. After
centrifugation at 16,000 g, the supernatants were collected and the same extraction was repeated on the
pellet one more time. The supernatants were pooled and vacuum dried down using a SAVANT speed-vac.
The pellets were re-dissolved in 100 uL. of 30% methanol. Blank tubes were extracted alongside the
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samples to remove contaminant background from the data analysis. In addition, an aliquot of the samples
was pooled to make a quality control (QC) sample which was run between every 10 samples in order
to correct for batch effect. Two separate LC-MS/MS workflows running on a Thermo Vanquish LC
system interfaced with a Thermo QE-HF mass spectrometer were used to profile the metabolites. For the
hydrophobic compounds, a ACCQ-TAG ULTRA C18 column (1.7 ym , 2.1 mm x 100 mm, Waters) was
used flowing at 0.3 mL/min at 40 °C. The gradient of the mobile phases A (0.1% formic acid in water) and
B (0.1% formic acid in acetonitrile) was as follow: 2% B for 2 min, to 50% B in 11 min, to 90% B in 2 min,
hold at 90% B for 1 min, to 2% B in 0.5 min. The QE-HF was run in a data-dependent acquisition mode
triggering on single charge peaks using a mass range of 67 to 1000 m/z at 60,000 resolution, with an AGC
target of 3e6 and a maximum ion time of 100 ms for both positive and negative ion scans. The isolated
ions were further fragmented by HCD using isolation window of 1.6 m/z and scanned at a resolution of
15,000. For the polar compounds, a XBridge Amide 3.5(4.6 x 100 mm, Waters) was used flowing at 0.4
mL/min at 45 °C. The gradient of the mobile phases A (10 mM ammonium formate/0.125% formic acid
in water) and B (10 mM ammonium formate/0.125 formic acid in 95% acetonitrile) was as follow: 100%
B for 2 min, to 70% B in 5.7 min, to 40% B in 1.8 min, to 30% in 0.75 min, to 100% B in 2.5 min. The
QE-HF was run in a data-dependent acquisition mode triggering on single charge peaks using a mass
range of 60 to 900 m/z at 60,000 resolution, with an AGC target of 1e6 and a maximum ion time of 100
ms for both positive and negative ion scans. The isolated ions were further fragmented by HCD using
isolation window of 1.6 m/z and scanned at a resolution of 15,000.

LC-MS/MS data analysis

Data from LC-MS/MS analysis were process with MS-Dial software v4.70 for peak detection, deconvolu-
tion, alignment, quantification, normalization, and identification (Tsugawa et al., 2015). Background peaks
detected in blank extracts were filtered out. Intensity drift was corrected using the local regression (LOESS)
for QC batch normalization, and zero intensities were replaced by 10% of the minimum peak height. The
identification was done using the curated mass spectral public libraries (http://prime.psc.riken.jp/compms/
msdial) for MS/MS positive (290,915 entries, April 2021) and MS/MS negative (36,848 entries, April
2021). Metabolites missing in more than 80% of the total samples were removed. The remaining 3,496
metabolites from all four analytical conditions were manually checked for Gaussian chromatographic
peak and, peak alignment and MS/MS profile. Identified metabolites were classified either as level I when
peak matched to m/z and retention from an in-house library prepared from authentic standards, or as level
II based on their spectral similarities with public/commercial spectral libraries in accordance with the
Metabolomics Standards Initiative guidelines (Sumner ef al., 2007).

Phenotypic data analysis
All statistical analyses were conducted in R v.4.1.2 (R Core Team, 2021). The meta-package tidyverse
v.1.3.1 was employed for data processing and visualization (Wickham ez al., 2019). In order to analyze
the impact of the treatment effect on morpho-physiological traits and metabolites, mix-models were fit to
each trait — after being transformed using the Box-Cox method — using the /mer function provided by the
Ime4 package (Bates et al., 2015). The full model fit contained the treatment as fix effect and genotype
as random effect, wheres reduced model only genotype. The difference between this two models were
evaluated using the likelihood ratio test (LRT) to obtain p-values for the significance of treatment effects.
P-values from metabolite data analysis were corrected for multiple tests using false discovery rate (FDR)
(Benjamini and Hochberg, 1995), and values below 0.05 were considered to be statistically significant.
A more complex model which, in addition to treatment (nitrogen) as a fixed effect and genotype as a
random effect, also included genotype by environment (GXE) interaction as random effects was fit for
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each metabolite in order to estimate total variance potentially explainable by each of these three factors
(Brommer, 2013; de Jong et al., 2019). Metabolites for which variance estimated from the model for one
or more parameters were zero, or close to zero, and therefore singular fit of the model was obtain, were
excluded for analysis.

Broad-sense heritabilities were estimated from the following equation:

2

P08
2

o7 +

o

n

where ng is genetic variance, 02, is residual variance, and n is the number of replicates. Variances were
obtain from mixed model fitted separately to values from each experimental conditions with genotypes
treated as random effect.

Principle component analysis for metabolite values across the 96 samples were calculated using the
PCA function provided by the FactoMineR package (L€ et al., 2008). Pearson correlation analysis between
yield and metabolites were done with cor.test function in R.

Yield predictions were done based on three metabolite data sets: all identified metabolites (n=3,496),
metabolites with confident annotation (n=145), and the same number of metabolites with unknown
annotation (n=145). Analysis were done with caret framework (Kuhn, 2008). Random forest were fitted
with ranger package (Wright and Ziegler, 2017) and elastic-net regression with glmnet package (Friedman
et al., 2010). Prior to the analysis, yield and metabolites values were Box-Cox transformed and scaled
with preProcess function. Repeated 100x times five-fold cross validation were used to determinate optimal
parameters for each model based on minimization root mean square error (RMSE). Importance value were
calculated with varlmp function from caret package based on permutation. The mean squared error is
computed on the out-of-bag data for each model, and then the same computed after permuting a single
variable. The differences are averaged and normalized by the standard error and scaled to values between
0 and 100.

Results

Genetic variability of sorghum’s response to differential nitrogen application

A population of 347 sorghum genotypes drawn from the Sorghum Association Panel (SAP) (Casa et al.,
2008) were grown under two nitrogen treatments with replication in Lincoln, Nebraska: low nitrogen (LN;
no supplemental nitrogen) and high nitrogen (HN; 90 kg/ha, following local agronomic recommendations
to avoid nitrogen limitations on yield in sorghum). A mixture of manually scored — leaf number, flag
leaf length, flag leaf width, plant height, days to flowering— and phenotypes estimated from hyperspectral
reflectance data — specific leaf area (SLA), chlorophyll content (CHL) and nitrogen (N), phosphorus (P)
and potassium (K) content following previous workflow (Ge et al., 2019) — were collected from plants
grown under both conditions (Table S1).The overall hyperspectral reflectance profile of sorghum leaves
collected from plants grown in HN and LN treatments was similar (Fig. S1a), and neither of the first two
principle components clearly separated the two treatments (Fig. S1b). Ground truth data were obtained
for five traits: CHL, SLA, N, P, and K content from 265 samples, and partial least squares regression
(PLSR) were used to predict values for scored six traits for whole panel based on hyperspectral data.
Raw spectral data used for PLSR model building, as well as prediction traits were provided in Table
S2. Employing five-fold cross validation with ground truth samples the accuracy (R?) of phenotypes
estimated from hyperspectral reflectance data varied from 0.18 for P to 0.82 for CHL (Table S3). Similar
performance was observed in the validation set (n=80, Table S3 and Fig. S2) indicating models were not

5/26


https://doi.org/10.1101/2022.06.08.495271
http://creativecommons.org/licenses/by-nd/4.0/

201

202

203

204

205

209

210

211

212

213

214

215

216

217

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495271; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

overfit. Prediction accuracy for K and P were low (R2 in validation set 0.22 and 0.25; Table S3), and these
traits were excluded from downstream analyses.

The effect of N treatment was statistically significant for all traits evaluated, except for plant height
(p < 0.05; likelihood ratio test (LRT); Fig. 1). Flag leaf width and flag leaf length were reduced by
approximately 3.5% and 6.5% respectively under LN treatment. Plants grown under LN took 4% more
time to flower. Larger differences were observed in chlorophyll and nitrogen content, with reductions of
15.3% and 13.8% respectively under LN treatment. However, the single largest impact of low nitrogen
stress was observed on grain product, with a 48% reduction in grain yield under LN treatment.
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Figure 1. Phenotypic difference of morpho-physiological traits across two treatment conditions.
Statistical significance of N treatment were determined by likelihood ratio test (LRT) on mix model with
treatment denote as fix effect and genotype as random. Asterisks indicate p-value < 0.05. Red dots
indicated values for genotypes selected for metabolomics analysis. HN - high nitrogen, LN - low nitrogen.

While overall population level responses to nitrogen deficit treatment were statistically robust, indi-
vidual genotypes often exhibited different degrees of response to nitrogen treatment. A mixed model,
considering genotype, treatment, and the interaction between genotype and treatment (genotype-by-
environment, GXE) effects, was fit to each individual phenotypic dataset. A majority of the total variation
in plant height and flowering time was explained by differences between genotypes (~91% and ~85%
respectively together on HN and LN; Fig. 2a). In the case of plant height none of variance was attributed
to treatment or genotype by environment interaction. For flowering time, only ~4% of variance were
explain by treatment effect and ~3% by GxE. The high degree of genetic control and low GxE effect is
reflected in the high degree genetic correlation across treatment conditions for these traits: 0.86 for plant
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height and 0.8 for flowering time (Fig. S3). Variance in traits related to leaf (Ileaf number, leaf width, and
leaf length) were also mostly explained by genetic factors (> 60% for each of these three traits). However,
proportion of variance not explained by any of the factors in the model (e.g. the residual) was substantially
greater for each of the three leaf related traits compared to plant height and flowering time, leading to
lower correlations across treatment (~0.6; Fig. S3). Traits estimated from hyperspectral data (CHL, N,
SLA) were comparatively much more plastic across environments (Fig. 2a), but only modest amounts of
variance was attributed to GxE for each of these traits. One explanation for this, is fact, that although our
PLSR models were accurate (R > 0.6), it might be still not sufficient to precisely capture GxE.

Extensive plasticity of grain yield in response to nitrogen deficit stress was observed across the
study population. Among analyzed traits, grain yield exhibited by far the largest proportion of variance
attributable to GxE (Fig. 2a), resulting in only moderate genetic correlation between treatment (0.42, Fig.
S2). Genotypes with high grain yield in the HN treatment tended to be somewhat more sensitive to low
nitrogen stress than genotypes with low grain yield, even under the HN treatment (Fig. S4). However,
the correlation between the responses of grain yield to nitrogen deficit stress and grain yield under HN
was modest (~-0.3; Fig. S4). This reflects the relatively large GXE effect of nitrogen treatment on yield.
Although highly yielding genotypes on HN are more sensitive to LN stress, this reaction is not consistent
and yield of some genotypes are less affected by LN stress.

Coefficients of variation were calculated for each variance component for each trait, following the
approach described in de Jong et al. (2019). Plant height exhibited the largest relative variation, particularly
variation attributed to genetic factors (Fig. 2b), likely reflecting the effects of multiple large effect dwarfing
genes segregating for functionally distinct alleles among the lines of the sorghum association panel
(Thurber et al., 2013). The second largest relative variance was observed for grain yield, in particular for
genetic factor under HN. However, relative variance from treatment conditions and GXE were also large,
and in fact larger than the variance for any component among the remaining traits.

Metabolomic changes in sorghum leaves under long-term low nitrogen stress

As morpho-physiological traits scored in this study did not appear to explain the plasticity of sorghum
grain yield across different nitrogen availability treatments, we next sought to characterize the responses
of a large suite of metabolic phenotypes to differential nitrogen availability in the adult leaves across a
subset of sorghum genotypes of the SAP. A set of 24 genotypes were selected to represent the phenotypic
and genetic diversity of the SAP (Fig. 1, S5; (Miao et al., 2020)). Sampling was timed to coincide
with anthesis, with a total of 96 leaf samples collected from two independent plots per genotype per
treatment. Each sample was quantified via liquid chromatography - high-resolution mass spectrometry
(LC-HRMS) analysis. In order to maximize the number of metabolites detected and quantified each sample
was analyzed using both RP (reverse phase) and HILIC (hydrophilic interaction liquid chromatography)
separations in both positive and negative ion mode, resulting in the detection and quantification of 115,782
mass spectral features. After filtering out features that were detected in less than 80% of samples, and
further manual quality control (as described in the methods section), the number of features was reduced
to 3,496, of which 145 could be assigned high confidence annotations (Table S4).

No obvious differences were observed in the distribution of estimated abundance values for high
confidence metabolites (n = 145) between HN and LN conditions (Fig. 3a). Samples collected from plants
grown in HN or LN were not clearly separated by either of the first two principal components of variation
for the abundance of this set of high confidence annotated metabolites although samples collected from
plants grown in LN exhibited a tighter distribution of PC1 values than did samples collected from plants
grown in HN (Fig. 3b). After correcting for multiple testing via false discovery rate (FDR, (Benjamini and
Hochberg, 1995)), the abundance of 62 metabolites changed significantly between samples collected from
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Figure 2. Components of traits variation. a shows the proportion of variance attributed to each
component for each trait. b shows the magnitude of this variance relative to each trait’s mean, using the
coefficient of variation (CV; the estimated variance divided by the squared mean of the respective trait).
HN - high nitrogen, LN - low nitrogen.

plants grown in HN or LN (FDR < 0.05). Thirty-four metabolites were more abundant in samples collected
from plants grown under HN and 28 more abundant in samples collected from plants grown under LN (Fig.
3c). Although the vast majority of these changes, despite being statistically significant, were relatively
modest with less than a two fold change in abundance between treatments. The majority of observed
amino acids (17/33) were significantly more abundant in samples collected from plants grown under HN
but the amino acids acetylcarnitine and L-carnitine were significantly more abundant in samples collected
from plants grown under LN (Fig. 3d). In contrast, half of the phenolic compounds confidently identified
in this dataset, such as the eight flavonoids, were significantly more abundant in samples collected from
plants grown under LN (Table S4).

Similar results to those observed with the set of annotated metabolites were observed when analysed all
3,496 identified mass features. Overall abundance of those compounds was similar across treatment (Fig.
S6a-b). Although 337 compounds were significantly different across two treatment condition (FDR < 0.05;
Fig. S6c¢), those changes were rather small, with only 28 compounds being changed larger than two fold
between treatments. Finally, PCA based on 3,496 mass features didn’t separate two treatment conditions
(Fig. S6d). Interestingly, many of these unidentified metabolites showed relatively high heritability,
with mean value 0.6 under HN and 0.68 under LN (Fig. S7). This suggests that natural variation in
the contents of these compounds is genetically controlled, which makes a good prospect for furthering
their identification and uncovering their biological meaning through genetic studies. In case of known
metabolites, variation in the abundance of individual flavonoid and flavonoid glycosides compounds
tended to be the most heritable across independent field plots of the same genotype grown in the same
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environment (Fig. S8).
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Figure 3. Metabolomics profiling in 24 sorghum genotypes across two nitrogen conditions based on 145
confidently annotated metabolites. a Distribution of the 145 confidently annotated metabolites across two
treatment conditions. b First two principle component (PC) from PCA. Values in bracket indicate amount
of variance explained by each component. ¢ Volcano plot showing the down regulated (yellow) and up
regulated (green) metabolites under low nitrogen (LN) conditions compare to high nitrogen (HN). d
Proportions of the metabolites with know structures more abundant in samples collected from plants
grown under HN (green), more abundant in samples collected from plants grown under LN (yellow), and
unchanged (gray).

A similar variance partitioning strategy to that employed for morpho-physiological traits was used to
partition variance for each annotated metabolite. For each metabolite a mixed model was fit, including
terms for genotypes (genetic effects), differences between N treatments (environmental effects), and
genetic differences in the degree of response to N supply (genotype-by-environment, GXE). Likely as a
result of the much smaller overall number of datapoints for each metabolic trait relative to each morpho-
physiological traits, this model could only be successfully fit for 46 of 145 metabolites. Differences
between genotypes typically explained around half of the variance for different metabolites (~28% on
HN and ~31% on LN), while the variance explained by environmental factor was much lower ~2% (Fig.
4). The GxE effect explained on average of ~7% of variance across the 46 metabolites where a mixed
model was successfully fit. Despite the fact, that this value was not very high, it was higher than the
average variance explained by the GxE effect for morpho-physiological traits (~1%). The coefficient of
variation for each variable for each metabolite vary, but no clear pattern can be observed across different
classes of metabolites (Fig. S9). A wide range of different patterns are exhibited by individual metabolites
in response to LN stress across different genotypes. Glucose and sucrose both belong to the set of 83
metabolites which did not show any statistically significant differences in abundance between samples
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collected from plants grown in high nitrogen and plants grown in low nitrogen but which do exhibit
consistent patterns of difference in abundance between genotypes across treatments (Fig. 5a-b). Serine,
one the amino acids with a statistically significant difference in abundance between samples collected from
plants grown in HN and LN exhibits a consistent decreased in abundance across genotypes with ~15% of
variance explained by the environmental factor (Fig. 5c). Glutamic acid and allantonin both exhibited
large GXE effects of ~15% and ~30% variance for these two metabolites explained by GxE respectively
(Fig. 5d-e). Genotypes with comparatively high glutamic acid content in HN saw larger reductions in
glutamic acid content in LN. Genotypes with comparatively lower high glutamic acid content in HN saw
smaller reductions in LN. Previous study found a decrease in salicylic acid content under low nitrogen
stress in sorghum root (Sheflin et al., 2019). Here we found increase in salicylic acid content of sorghum
leaves under LN (Fig. 5f). This response is consistent across majority of genotypes, although strength of
this reaction slightly vary, with genotypes with low salicylic acid content under HN indicating a higher
increase under LN.
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Figure 4. Proportion of variance attributed to each component for each metabolite. HN - high nitrogen,
LN - low nitrogen.
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Figure 5. Examples of unchanged a-b, changed but non-plastic ¢ and plastic d-f metabolites. Each dot
indicate genotypic mean and lines connect the same genotype across two treatment conditions. HN - high
nitrogen, LN - low nitrogen.

Correlation between metabolites and yield

The abundance of metabolites was correlated to some degree with observed grain yield values from the
same plots (Fig. 6; Table S5). The correlation coefficients between metabolite abundance and grain yield
in individual environments (HN or LN) were positively correlated with each other (r = 0.36, p < 0.05;
Fig. 6). However, in only a modest number of cases where the correlations between the abundance of
individual metabolites and grain yield statistically significant including six metabolites in HN and eleven
in LN. Five metabolites were statistically significantly correlated with grain yield in both environments:
4-hydroxymandelonitrile, aconitic acid, ascorbic acid, benzamide and glucose. The strength of the
correlations between grain yield and metabolite abundance where relatively modest (r < 0.6) even for
those metabolites where statistically significant relationships were observed.

Two machine learning approaches, elastic-net regression (GLMNET) and random forest (RF), were
evaluated for their potential to predict variation in plot level grain yield from combined metabolite
abundance data. Three sets of input data were evaluated with each of the two machine learning approaches.
First, the set of all detected metabolites (n=3,496). Second, the set of 145 metabolites with confident
annotations. Finally, a set of 145 metabolites selected randomly from the complete set of 3,496 detected
metabolites. Both algorithms achieved moderate prediction accuracy however, the accuracy of their
predictions was either equivalent to or only modestly exceeded, the prediction accuracy of a simple linear
model fit to only the treatment effect, which was able to predict 29% of the total variance in sorghum grain
yield data (Fig. S10). Ascorbic acid showed the greatest contribution to the accuracy of the GLMNET
model (Fig. S10b) and the third largest contribution with RF (Fig. S10c) in permutation based estimates
of feature importance, consistent with the significant correlation between the abundance of this metabolite
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and grain yield in both conditions (Fig. 6).
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Figure 6. Scatter plot of correlation values of each metabolite and yield in given conditions. Marked
metabolites indicate significantly correlated metabolites from Pearson analysis (p < 0.05). HN - high
nitrogen, LN - low nitrogen.

Discussion

Natural variation in tolerance to nitrogen deficient growing conditions has been widely studied in both
crops and other plant species. However, the majority of these studies occurred in controlled environments
and imposed substantial nutrient deficits that produced visible phenotypic responses even at seedling
stages. Here we examined natural variation in both the morpho-physiological and metabolomic impact of
long term low intensity nitrogen deficit at a level sufficient to alter grain yield and fitness in sorghum but
which does not produce obvious visible stress symptoms.

Grain yield is a complex phenotype that is determined by a number of different component phenotypes
(e.g. yield component traits). In arabidopis branching number is correlated with yield and previous study
found large plasticity of this trait in response to low nitrogen stress (de Jong et al., 2019). In case of rice,
various traits such as tiller number, grain number per penile, or 1,000 - grain weight are associated with
yield. Interestingly, only tiller number were affected by low nitrogen stress (Liu ef al., 2021). Finally, in
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case of maize 1,000 - kernel weight were also not affected by low nitrogen, but substantial decreases in
kernel number per cob were observed (Amiour ef al., 2012). This observation highlights the complexity of
how plant yield can be affected by low nitrogen stress. In this study grain weight per panicle was used to
represent sorghum yield, and consistently with research done on arabidopsis (de Jong et al., 2019), large
plasticity in response to low nitrogen stress was observed in this trait.

While grain yield decreased substantially under nitrogen limited conditions for the vast majority of
sorghum genotypes, rank order grain yield under high nitrogen conditions was only modestly correlated
with rank order grain yield under low nitrogen conditions (Spearman correlation = 0.44; Fig. S3). This
suggests efforts to increase grain yield under nitrogen limited conditions will require separate field
trials, evaluations and selections from breeding efforts to increase grain yield under non-nitrogen limited
conditions. Yield under non-nitrogen limited conditions was negatively correlated with the size of the
decrease in yield observed when nitrogen was limited (~-0.3; Fig. S4). However, because of large GXE
effect, this reduction is not consistent across highly yielding genotypes. Some of the reductions are
characterized by relatively low loss in yield under low nitrogen conditions. This indicates that it should be
possible to produce varieties not only with high yield under high nitrogen condition but also more robust
to low nitrogen stress. In contrast to grain yield, the morpho-physiological traits did not exhibit significant
degrees of change in response to the degree of nitrogen limitation applied in this study, and of the traits
which did exhibit significant effects — such as leaf nitrogen content and specific leaf area — the effects of
treatment and genotype were largely independent of each other (Figure 2). While changes in chlorophyll
concentration were quantifiable using both handheld chlorophyll concentration meter and hyperspectral
reflectance data, plants in the nitrogen limited field were not visibly chlorotic (personal observation).
Metabolite abundance was characterized for a subset of sorghum genotypes in both conditions in an
attempt to identify other phenotypes with potential value to predict how the grain yield of different
sorghum varieties will respond to nitrogen limitation. The overall pattern of metabolite abundances did not
exhibit substantial differences between nitrogen limited and non-nitrogen limited conditions (Fig. 3a-c).
This is consistent with both the limited degree of change observed for morpho-physiological traits and the
goal of imposing a degree of nitrogen limitation sufficient to alter fitness/grain yield but not so severe that
it dramatically altered plant growth.

While overall differences in metabolite abundance between conditions were modest, the metabolites
that did exhibit significant differences between treatments were consistent with expectations for nitrogen
limited grown plants. Decreases in the abundance of many amino acids were observed (Fig. 3d; Table S4).
Consistent with reports from studies of nitrogen deficit experiments in seedlings and adult maize leaves
(Amiour et al., 2012), sorghum roots (Sheflin et al., 2019), and maize, sorghum, and Paspalum vaginatum
seedlings (Sun et al., 2021). Disturbance in serine metabolism was previously found to play key role
in limiting maize yield under low nitrogen conditions (Caiias et al., 2012). In addition, serine plays an
important role in photorespiration (Maurino and Peterhansel, 2010), although in plants utilizing the C4
photosynthetic pathway, including both maize and sorghum this pathway is much less active than in plants
utilizing the C3 photosynthetic pathway. Unfortunately, we did not observe significant variation in the
degree of decreased serine abundance observed among sorghum genotypes (Fig. 5c) suggesting that, while
genetically controlled diversity for this trait may still be discovered in profiling of a larger panel of diverse
sorghum lines under nitrogen limited and non nitrogen limited conditions, if no such diversity is found
may prove impossible to reduce this response to nitrogen constrained growth via conventional breeding
and selection strategies. In contrast, while the abundance of glutamic acid also declined in nitrogen limited
conditions, the degree of decline varied significantly among sorghum genotypes (Fig. 5d). In previous
field studies of maize, the abundance of glutamic acid was negatively correlated with yield under heat
and water stress but not under control conditions (Obata et al., 2015). We observed a similar negative
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correlation between glutamic acid abundance and yield under both control and nitrogen limited conditions
(Fig. 6). This result highlight potential importance of glutamic acid metabolism on yield in C4 crops under
stress conditions. Genes involved in glutamic acid metabolism were enriched among those exhibiting
differential mMRINA expression between older maize inbreds (pre-1960s) and maize inbreds developed and
selected by breeders in the modern era (Xu et al., 2022). These observations suggest that glutamic acid
metabolism may already have been an indirect target of selection during crop improvement in maize. If
so, the data presented here suggest that glutamic acid may also represent an interesting metabolic marker
when selecting for better performing sorghum genotypes although further validation is certainly needed.

Overall, our results highlight that grain yield in sorghum, unlike many morpho-physiological traits,
exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit
stress. Differences in the eight morpho-physiological traits scored in this study explained only ~9% of
variance in yield. Metabolic responses to long term low severity nitrogen deficit stress exhibited a higher
proportion of variability explained by genotype specific responses than did morpho-pysiological traits
and a number of individual metabolites were associated with yield variation under one or both nitrogen
treatments. It may be possible to build predictive models using metabolite abundance to estimate which
sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however
data from a larger number of genotypes grown across multiple sites will be necessary to train and evaluate
such models. Large scale metabolic profiling will likely require targeted metabolomics using feature
selection approaches to identify an informative subset of the metabolites profiled in this study.
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Table S1. Plot-level values of morpho-physiological traits. Provided as Excel file.

Table S2. Raw ground truth and spectral data used to build PLSR models and predict three
traits. Provided as csv file.

Table S3. Summary of the PLSR results

Training Validation
Trait n;y R?> RMSE R?> RMSE

CHL 19 0.82 4873 0.83 46.22
SLA 10 0.62 6.47 0.76 5.97
N 16 0.66 0.29 0.46 0.34
P 10 0.18 0.06 0.25 0.07
K 10 0.34 0.34 0.22 0.37

Table S4. Summary statistics for 145 annotated metabolites.

Table S5. Correlation values between yield and 145 metabolites.
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Figure S1. a The mean leaf hyperspectral of the sorghum plants from high nitrogen(HN; green) and low
nitrogen(LN; yellow). The bounding envelopes are the standard deviation. b Principal component score
for individual plat (PC1 vs. PC2).
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Figure S2. Scatter plots of ground truth and predicted values for training set sorghum leaves. Statistics
for prediction can be found in Table S3. HN - high nitrogen, LN - low nitrogen.
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Figure S3. Scatter plot of genotype mean of morpho-physiological traits between two nitrogen
conditions. r indicates Pearson correlation value. HN - high nitrogen, LN - low nitrogen.
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Figure S4. Plasticity in yield under low nitrogen (LN) stress versus yield at control (HN - high nitrogen)
conditions. The dotted line indicates zero difference (no low nitrogen effect), while the solid blue line is
the fitted regression. Each dot represents a genotype mean.
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Figure S5. First two principle component from PCA based on SNPs from Miao et al. (2020). Each dot
represent single genotype and red dots marked genotypes selected to metabolomic analysis.
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Figure S6. Metabolomics profiling in 24 sorghum genotypes across two nitrogen conditions based 3,496
identified compounds. a Scatter plot of abundance of 3,496 identified compounds across two treatment
conditions. b Distribution of 3,496 identified compounds treatment conditions ¢. Volcano plot showing
the downregulated (yellow) and upregulated (green) metabolites under low nitrogen (LN) conditions

compare to high nitrogen (HN). d First two principle components (PC) from PCA based on 3,496

identified compounds. Values in bracket indicate amount of variance explained by each component. HN -
high nitrogen, LN - low nitrogen.
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Figure S7. Distribution of broad-sense heritability (H?) values for 3,496 identified compounds in two
treatment condition. HN - high nitrogen, LN - low nitrogen.

24/26


https://doi.org/10.1101/2022.06.08.495271
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495271; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Broad-sense heritability

0.00 A

Treatment @ HN LN

[ ]
0.75 1 )
Fs b
~ 0.50
T

%

®

Organic Acids

Pyrimidines, Nucleosides, Nucleotides

Amino Acids and derivatives
Purines, Nucleosides, Nucleotides

Sugars

Others
Phenolics

Amines

Vitamins

Flavonoid Glycosides

Flavonoids
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Figure S9. Coefficient of variation for 45 metabolites (CV; the estimated variance divided by the
squared mean of the respective trait).
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Figure S10. a Yield accuracy prediction based on three metabolites sets: all identified metabolites
(n=3,496), metabolites with confident annotation (n=145) and the same number of metabolites with
unknown annotation (n=145). R? were obtained from 100x repeated five-fold cross-validation. Dashed
lines indicated R? values from regression based on treatment conditions. GLMNET - elastic-net
regression, RF - random forest. Imporance values based on permutation for GLMNET(b) and RF(c).

26/26


https://doi.org/10.1101/2022.06.08.495271
http://creativecommons.org/licenses/by-nd/4.0/

	References

