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ABSTRACT18

Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural
settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions
exists both within and between plant species. Here we quantified variation in the metabolic, physiological,
and morphological responses of a sorghum association panel assembled to represent global genetic
diversity to long term, moderate, nitrogen deficit stress and the relationship of these responses to
grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction
while many other morphological and physiological traits exhibited consistent responses to nitrogen
stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both
conditions identified a range of metabolic responses to long term nitrogen deficit stress as well as
several metabolites associated with variation in the degree of yield plasticity specific sorghum genotypes
exhibited in response to nitrogen deficit stress.

19

Introduction20

Malthus predicted that exponential population growth would always surpass linear increases in food21

production resulting on constant famine (Malthus, 1798). Both dramatic increases in total agricultural land22

and technological innovations have staved off Malthusian catastrophy in the 20th and early 21st century.23

One of the key technological innovations was invention and widespread adoption of the Haber–Bosch24

process, which reduces atmospheric nitrogen gas (N2) to reactive forms of N, to provide an abundance and25

reliable source of nitrogen fertilizer for agriculture (Erisman et al., 2008). The widespread adoption of26

synthetic nitrogen fertilizers have dramatically increased crop yields but these increases have not come27

without some negative externalities, including increased greenhouse gas emissions and decreases in rural28

water quality (Zhang et al., 2015). In addition, for many non-irrigated agricultural systems the cost of29
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fertilizer is the either single biggest variable input cost of production, or the second biggest after the cost30

of seed (Rothstein, 2007). As the human population continues to grow and populations around the world31

shift to more calorie intensive diets, incentives and pressure to agricultural productivity will increase as32

well (Foley et al., 2011; Ramankutty et al., 2018). It has been estimated that only 30-40% of nitrogen33

fertilizer is taken up and utilized by crops (Raun and Johnson, 1999). Increasing the nitrogen use efficiency34

of major agricultural crops would enable farmers to meet these growing requirements for food production35

with stable or decreasing applications of nitrogen fertilizer, increasing farmer profitability will decrease36

the environmental and energy footprint of agriculture (Hakeem et al., 2011).37

Substantial genetic variation in nitrogen use efficiency exists within crop plants (Cañas et al., 2012;38

Liu et al., 2021). Between 1969 and 2010 European wheat breeders increased the nitrogen use efficiency39

of wheat by an estimated one third of one percent per year (Cormier et al., 2013). The global impact40

of a 1% increase in nitrogen use efficiency is estimated to be $1 billion dollars per year (Kant et al.,41

2011). Understanding the genes controlling variation in nitrogen use efficiency and the other phenotypes42

associated with these differences would aid in both evaluating the feasibility of increasing nitrogen use43

efficiency in different crops – while sustaining the high yields necessary to meet global demand for food44

– and, where feasible, designing breeding strategies to achieve such an increase. However, nitrogen use45

efficiency is a complex trait and multiple morpho-physiological and metabolic mechanisms likely play46

roles in determining how well or poorly a given plant genotype can compensate for limited N availability in47

different environments and at different life stages. Understanding the morpho-physiological and metabolic48

mechanisms associated with differences in tolerance for nitrogen deficit stress in agriculturally relevant49

environments represents a stepping stone to the subsequent identification of genetic loci and finally to crop50

improvement via breeding or engineering. To date the majority of research on the morpho-physiological51

and metabolic responses of plants to nitrogen deficit stress has been conducted in controlled environment52

conditions, particularly emphasizing severe stress applied early in development (Amiour et al., 2012;53

Banerjee et al., 2020; Gao et al., 2015). The nitrogen deficit stress experienced by crops in agricultural54

settings is typically less extreme and may not produce obvious visual effects, but is sufficient to result in55

substantial grain or biomass decrease over the course of a growing season. Collecting phenotypic and56

metabolic data from large sets of genotypes experiencing agriculturally relevant degrees of stress under57

field conditions can provide substantial insight into natural variations in stress response and tolerance58

within individual crop species (Obata et al., 2015).59

Here we quantified crop yield and eight morpho-physiological traits from a large and diverse sorghum60

population (Sorghum bicolor L.) grown to maturity in field conditions under both nitrogen limiting and61

non nitrogen limiting conditions. For a subset of 24 replicated genotypes, large scale metabolic profiling62

was conducted from leaf tissue collected at the flowering stage. Significant plasticity and genotype x63

environment interactions were observed for both yield and a subset of metabolic traits, while substantially64

less genotype x environment interaction was observed for morpho-physiological traits. The abundance of65

several metabolites at flowering exhibited significant correlations with plant performance (e.g. yield) at66

maturity.67

Material and methods68

Field experiment, and phenotypic data and tissue collection69

A replicated field trial was planted at the University of Nebraska-Lincoln’s Havelock Farm Location (N70

40.861, W 96.598) on June 08, 2020. The experiment was laid out in a RBCD design, initially with three71

blocks each under sufficient nitrogen (80 lbs/acre) and low nitrogen (no supplemental nitrogen) treatment72

conditions and 416 plots per block, including 347 genotypes from the sorghum association panel (Casa73
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et al., 2008), and BTx623 as a repeated check. Each plot consisted of a single 2.3 meter row of plants74

from a single genotype, with 0.76 meter spacing between parallel and sequential rows.75

A mixture of hand measured traits and traits predicted from hyperspectral data (see below) were76

employed to assess the response of sorghum to nitrogen deficit stress. The date of flowering for each plot77

was scored when 50% of surviving plants had reached anthesis. Plant height was measured from the soil78

surface to the flag leaf collar after flowering. Panicles per plot were hand-counted. One to three panicles79

per plot were hand harvested from each plot, dried, and threshed and the resulting grain weighed. Grain80

weight per panicle was multiplied by panicles per plot to estimate yield per plot.81

Between 5 and 12 August 2020, hyperspectral reflectance data was collected from the second leaf82

from top of the plant from single plant per block using a FieldSpec4 (Malvern Panalytical Ltd., formerly83

Analytical Spectral Devices), following the protocol outlined in Ge et al. (2019). A set of 265 leaf84

samples (130 from HN and 135 from LN) were selected for ground truth measurements. Leaf chlorophyll85

concentration (CHL) was measured with a handheld chlorophyll concentration meter (MC-100, Apogee86

Instruments, Inc., Logan, UT), and leaf area (LA) was measured with a leaf area meter (LI-3100, LI-COR87

Biosciences, Lincoln, NE). Next, samples were placed in a oven set to 50°C and dried over 72 h. Dry88

weight (DW) of the leaves was then recorded with digital balance. Specific Leaf Area (SLA, m2/kg) was89

calculated as LA/DW. Finally, dried plant leaves were sent to commercial lab (Ward Laboratories, Inc.,90

Kearney, NE) where the samples were ground, homogenized, and analyzed for analysis of nutrient content:91

nitrogen, potassium and phosphorus.92

For 96 plots representing 24 genotypes replicated in two blocks each under sufficient and low nitrogen93

treatments, leaf tissue was collected for metabolomics analysis. For each plot, a single plant was selected,94

avoiding edge plants where possible. From this plant eight leaf punches of 0.33 cm2 in area were collected95

from the middle section of the leaf below the flag leaf (e.g the penultimate leaf) and immediately frozen in96

liquid nitrogen. Samples were collected between 9:00 AM and 1:00 PM on August 12 2020.97

Modeling traits based on hyperspectral data98

Five models were developed to predict chlorophyll, nitrogen, phosphorus, and potassium concentration as99

well as specific leaf area from hyperspectral reflectance data, following the approach described in Ge et al.100

(2019). Measured intensity values for each wavelength were zero centered and scaled to unit variance.101

Wavelengths below 450 nm and above 2400 nm were discarded. Predictive models were built separately102

for each trait using partial least squares regression implemented in the pls v.2.8.0 (Liland et al., 2021)103

and caret (Kuhn, 2008). Prior to the modeling, data were split into training (n=185) and validation set104

(n=80). This was done to avoid the risk of misleadingly high prediction accuracy resulting from over fitting.105

Decisions regarding model tuning and performance evaluation were made based on root mean squared106

error (RMSE) of five-fold cross validation using training set (n=185). After final models were trained,107

their performance was evaluated using the validation set (n=80). Final models were applied to equivalently108

zero centered and scaled hyperspectral reflectance measurements collected from the remaining sorghum109

plots.110

Untargeted metabolomics using LC-MS/MS111

Samples were extracted using cold methanol:acetonitrile (50:50, v/v) spiked with 100 M of CUDA (12-112

[(cyclohexylcarbamoyl)amino]dodecanoic acid). The tissue samples were disrupted and homogenized113

by adding 2 stainless steel beads (SSB 32) using the TissueLyserII (Qiagen) at 20 Hz for 5 mins. After114

centrifugation at 16,000 g, the supernatants were collected and the same extraction was repeated on the115

pellet one more time. The supernatants were pooled and vacuum dried down using a SAVANT speed-vac.116

The pellets were re-dissolved in 100 µL of 30% methanol. Blank tubes were extracted alongside the117
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samples to remove contaminant background from the data analysis. In addition, an aliquot of the samples118

was pooled to make a quality control (QC) sample which was run between every 10 samples in order119

to correct for batch effect. Two separate LC-MS/MS workflows running on a Thermo Vanquish LC120

system interfaced with a Thermo QE-HF mass spectrometer were used to profile the metabolites. For the121

hydrophobic compounds, a ACCQ-TAG ULTRA C18 column (1.7 µm , 2.1 mm × 100 mm, Waters) was122

used flowing at 0.3 mL/min at 40 °C. The gradient of the mobile phases A (0.1% formic acid in water) and123

B (0.1% formic acid in acetonitrile) was as follow: 2% B for 2 min, to 50% B in 11 min, to 90% B in 2 min,124

hold at 90% B for 1 min, to 2% B in 0.5 min. The QE-HF was run in a data-dependent acquisition mode125

triggering on single charge peaks using a mass range of 67 to 1000 m/z at 60,000 resolution, with an AGC126

target of 3e6 and a maximum ion time of 100 ms for both positive and negative ion scans. The isolated127

ions were further fragmented by HCD using isolation window of 1.6 m/z and scanned at a resolution of128

15,000. For the polar compounds, a XBridge Amide 3.5(4.6 x 100 mm, Waters) was used flowing at 0.4129

mL/min at 45 °C. The gradient of the mobile phases A (10 mM ammonium formate/0.125% formic acid130

in water) and B (10 mM ammonium formate/0.125 formic acid in 95% acetonitrile) was as follow: 100%131

B for 2 min, to 70% B in 5.7 min, to 40% B in 1.8 min, to 30% in 0.75 min, to 100% B in 2.5 min. The132

QE-HF was run in a data-dependent acquisition mode triggering on single charge peaks using a mass133

range of 60 to 900 m/z at 60,000 resolution, with an AGC target of 1e6 and a maximum ion time of 100134

ms for both positive and negative ion scans. The isolated ions were further fragmented by HCD using135

isolation window of 1.6 m/z and scanned at a resolution of 15,000.136

LC-MS/MS data analysis137

Data from LC-MS/MS analysis were process with MS-Dial software v4.70 for peak detection, deconvolu-138

tion, alignment, quantification, normalization, and identification (Tsugawa et al., 2015). Background peaks139

detected in blank extracts were filtered out. Intensity drift was corrected using the local regression (LOESS)140

for QC batch normalization, and zero intensities were replaced by 10% of the minimum peak height. The141

identification was done using the curated mass spectral public libraries (http://prime.psc.riken.jp/compms/142

msdial) for MS/MS positive (290,915 entries, April 2021) and MS/MS negative (36,848 entries, April143

2021). Metabolites missing in more than 80% of the total samples were removed. The remaining 3,496144

metabolites from all four analytical conditions were manually checked for Gaussian chromatographic145

peak and, peak alignment and MS/MS profile. Identified metabolites were classified either as level I when146

peak matched to m/z and retention from an in-house library prepared from authentic standards, or as level147

II based on their spectral similarities with public/commercial spectral libraries in accordance with the148

Metabolomics Standards Initiative guidelines (Sumner et al., 2007).149

Phenotypic data analysis150

All statistical analyses were conducted in R v.4.1.2 (R Core Team, 2021). The meta-package tidyverse151

v.1.3.1 was employed for data processing and visualization (Wickham et al., 2019). In order to analyze152

the impact of the treatment effect on morpho-physiological traits and metabolites, mix-models were fit to153

each trait – after being transformed using the Box-Cox method – using the lmer function provided by the154

lme4 package (Bates et al., 2015). The full model fit contained the treatment as fix effect and genotype155

as random effect, wheres reduced model only genotype. The difference between this two models were156

evaluated using the likelihood ratio test (LRT) to obtain p-values for the significance of treatment effects.157

P-values from metabolite data analysis were corrected for multiple tests using false discovery rate (FDR)158

(Benjamini and Hochberg, 1995), and values below 0.05 were considered to be statistically significant.159

A more complex model which, in addition to treatment (nitrogen) as a fixed effect and genotype as a160

random effect, also included genotype by environment (GxE) interaction as random effects was fit for161
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each metabolite in order to estimate total variance potentially explainable by each of these three factors162

(Brommer, 2013; de Jong et al., 2019). Metabolites for which variance estimated from the model for one163

or more parameters were zero, or close to zero, and therefore singular fit of the model was obtain, were164

excluded for analysis.165

Broad-sense heritabilities were estimated from the following equation:

H2 =
σ2

g

σ2
g +

σ2
e

n

where σ2
g is genetic variance, σ2

e is residual variance, and n is the number of replicates. Variances were166

obtain from mixed model fitted separately to values from each experimental conditions with genotypes167

treated as random effect.168

Principle component analysis for metabolite values across the 96 samples were calculated using the169

PCA function provided by the FactoMineR package (Lê et al., 2008). Pearson correlation analysis between170

yield and metabolites were done with cor.test function in R.171

Yield predictions were done based on three metabolite data sets: all identified metabolites (n=3,496),172

metabolites with confident annotation (n=145), and the same number of metabolites with unknown173

annotation (n=145). Analysis were done with caret framework (Kuhn, 2008). Random forest were fitted174

with ranger package (Wright and Ziegler, 2017) and elastic-net regression with glmnet package (Friedman175

et al., 2010). Prior to the analysis, yield and metabolites values were Box-Cox transformed and scaled176

with preProcess function. Repeated 100x times five-fold cross validation were used to determinate optimal177

parameters for each model based on minimization root mean square error (RMSE). Importance value were178

calculated with varImp function from caret package based on permutation. The mean squared error is179

computed on the out-of-bag data for each model, and then the same computed after permuting a single180

variable. The differences are averaged and normalized by the standard error and scaled to values between181

0 and 100.182

Results183

Genetic variability of sorghum’s response to differential nitrogen application184

A population of 347 sorghum genotypes drawn from the Sorghum Association Panel (SAP) (Casa et al.,185

2008) were grown under two nitrogen treatments with replication in Lincoln, Nebraska: low nitrogen (LN;186

no supplemental nitrogen) and high nitrogen (HN; 90 kg/ha, following local agronomic recommendations187

to avoid nitrogen limitations on yield in sorghum). A mixture of manually scored – leaf number, flag188

leaf length, flag leaf width, plant height, days to flowering– and phenotypes estimated from hyperspectral189

reflectance data – specific leaf area (SLA), chlorophyll content (CHL) and nitrogen (N), phosphorus (P)190

and potassium (K) content following previous workflow (Ge et al., 2019) – were collected from plants191

grown under both conditions (Table S1).The overall hyperspectral reflectance profile of sorghum leaves192

collected from plants grown in HN and LN treatments was similar (Fig. S1a), and neither of the first two193

principle components clearly separated the two treatments (Fig. S1b). Ground truth data were obtained194

for five traits: CHL, SLA, N, P, and K content from 265 samples, and partial least squares regression195

(PLSR) were used to predict values for scored six traits for whole panel based on hyperspectral data.196

Raw spectral data used for PLSR model building, as well as prediction traits were provided in Table197

S2. Employing five-fold cross validation with ground truth samples the accuracy (R2) of phenotypes198

estimated from hyperspectral reflectance data varied from 0.18 for P to 0.82 for CHL (Table S3). Similar199

performance was observed in the validation set (n=80, Table S3 and Fig. S2) indicating models were not200
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overfit. Prediction accuracy for K and P were low (R2 in validation set 0.22 and 0.25; Table S3), and these201

traits were excluded from downstream analyses.202

The effect of N treatment was statistically significant for all traits evaluated, except for plant height203

(p < 0.05; likelihood ratio test (LRT); Fig. 1). Flag leaf width and flag leaf length were reduced by204

approximately 3.5% and 6.5% respectively under LN treatment. Plants grown under LN took 4% more205

time to flower. Larger differences were observed in chlorophyll and nitrogen content, with reductions of206

15.3% and 13.8% respectively under LN treatment. However, the single largest impact of low nitrogen207

stress was observed on grain product, with a 48% reduction in grain yield under LN treatment.208

Figure 1. Phenotypic difference of morpho-physiological traits across two treatment conditions.
Statistical significance of N treatment were determined by likelihood ratio test (LRT) on mix model with
treatment denote as fix effect and genotype as random. Asterisks indicate p-value < 0.05. Red dots
indicated values for genotypes selected for metabolomics analysis. HN - high nitrogen, LN - low nitrogen.

While overall population level responses to nitrogen deficit treatment were statistically robust, indi-209

vidual genotypes often exhibited different degrees of response to nitrogen treatment. A mixed model,210

considering genotype, treatment, and the interaction between genotype and treatment (genotype-by-211

environment, GxE) effects, was fit to each individual phenotypic dataset. A majority of the total variation212

in plant height and flowering time was explained by differences between genotypes (∼91% and ∼85%213

respectively together on HN and LN; Fig. 2a). In the case of plant height none of variance was attributed214

to treatment or genotype by environment interaction. For flowering time, only ∼4% of variance were215

explain by treatment effect and ∼3% by GxE. The high degree of genetic control and low GxE effect is216

reflected in the high degree genetic correlation across treatment conditions for these traits: 0.86 for plant217
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height and 0.8 for flowering time (Fig. S3). Variance in traits related to leaf (leaf number, leaf width, and218

leaf length) were also mostly explained by genetic factors (> 60% for each of these three traits). However,219

proportion of variance not explained by any of the factors in the model (e.g. the residual) was substantially220

greater for each of the three leaf related traits compared to plant height and flowering time, leading to221

lower correlations across treatment (∼0.6; Fig. S3). Traits estimated from hyperspectral data (CHL, N,222

SLA) were comparatively much more plastic across environments (Fig. 2a), but only modest amounts of223

variance was attributed to GxE for each of these traits. One explanation for this, is fact, that although our224

PLSR models were accurate (R2 > 0.6), it might be still not sufficient to precisely capture GxE.225

Extensive plasticity of grain yield in response to nitrogen deficit stress was observed across the226

study population. Among analyzed traits, grain yield exhibited by far the largest proportion of variance227

attributable to GxE (Fig. 2a), resulting in only moderate genetic correlation between treatment (0.42, Fig.228

S2). Genotypes with high grain yield in the HN treatment tended to be somewhat more sensitive to low229

nitrogen stress than genotypes with low grain yield, even under the HN treatment (Fig. S4). However,230

the correlation between the responses of grain yield to nitrogen deficit stress and grain yield under HN231

was modest (∼-0.3; Fig. S4). This reflects the relatively large GxE effect of nitrogen treatment on yield.232

Although highly yielding genotypes on HN are more sensitive to LN stress, this reaction is not consistent233

and yield of some genotypes are less affected by LN stress.234

Coefficients of variation were calculated for each variance component for each trait, following the235

approach described in de Jong et al. (2019). Plant height exhibited the largest relative variation, particularly236

variation attributed to genetic factors (Fig. 2b), likely reflecting the effects of multiple large effect dwarfing237

genes segregating for functionally distinct alleles among the lines of the sorghum association panel238

(Thurber et al., 2013). The second largest relative variance was observed for grain yield, in particular for239

genetic factor under HN. However, relative variance from treatment conditions and GxE were also large,240

and in fact larger than the variance for any component among the remaining traits.241

Metabolomic changes in sorghum leaves under long-term low nitrogen stress242

As morpho-physiological traits scored in this study did not appear to explain the plasticity of sorghum243

grain yield across different nitrogen availability treatments, we next sought to characterize the responses244

of a large suite of metabolic phenotypes to differential nitrogen availability in the adult leaves across a245

subset of sorghum genotypes of the SAP. A set of 24 genotypes were selected to represent the phenotypic246

and genetic diversity of the SAP (Fig. 1, S5; (Miao et al., 2020)). Sampling was timed to coincide247

with anthesis, with a total of 96 leaf samples collected from two independent plots per genotype per248

treatment. Each sample was quantified via liquid chromatography - high-resolution mass spectrometry249

(LC-HRMS) analysis. In order to maximize the number of metabolites detected and quantified each sample250

was analyzed using both RP (reverse phase) and HILIC (hydrophilic interaction liquid chromatography)251

separations in both positive and negative ion mode, resulting in the detection and quantification of 115,782252

mass spectral features. After filtering out features that were detected in less than 80% of samples, and253

further manual quality control (as described in the methods section), the number of features was reduced254

to 3,496, of which 145 could be assigned high confidence annotations (Table S4).255

No obvious differences were observed in the distribution of estimated abundance values for high256

confidence metabolites (n = 145) between HN and LN conditions (Fig. 3a). Samples collected from plants257

grown in HN or LN were not clearly separated by either of the first two principal components of variation258

for the abundance of this set of high confidence annotated metabolites although samples collected from259

plants grown in LN exhibited a tighter distribution of PC1 values than did samples collected from plants260

grown in HN (Fig. 3b). After correcting for multiple testing via false discovery rate (FDR, (Benjamini and261

Hochberg, 1995)), the abundance of 62 metabolites changed significantly between samples collected from262
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Figure 2. Components of traits variation. a shows the proportion of variance attributed to each
component for each trait. b shows the magnitude of this variance relative to each trait’s mean, using the
coefficient of variation (CV; the estimated variance divided by the squared mean of the respective trait).
HN - high nitrogen, LN - low nitrogen.

plants grown in HN or LN (FDR < 0.05). Thirty-four metabolites were more abundant in samples collected263

from plants grown under HN and 28 more abundant in samples collected from plants grown under LN (Fig.264

3c). Although the vast majority of these changes, despite being statistically significant, were relatively265

modest with less than a two fold change in abundance between treatments. The majority of observed266

amino acids (17/33) were significantly more abundant in samples collected from plants grown under HN267

but the amino acids acetylcarnitine and L-carnitine were significantly more abundant in samples collected268

from plants grown under LN (Fig. 3d). In contrast, half of the phenolic compounds confidently identified269

in this dataset, such as the eight flavonoids, were significantly more abundant in samples collected from270

plants grown under LN (Table S4).271

Similar results to those observed with the set of annotated metabolites were observed when analysed all272

3,496 identified mass features. Overall abundance of those compounds was similar across treatment (Fig.273

S6a-b). Although 337 compounds were significantly different across two treatment condition (FDR < 0.05;274

Fig. S6c), those changes were rather small, with only 28 compounds being changed larger than two fold275

between treatments. Finally, PCA based on 3,496 mass features didn’t separate two treatment conditions276

(Fig. S6d). Interestingly, many of these unidentified metabolites showed relatively high heritability,277

with mean value 0.6 under HN and 0.68 under LN (Fig. S7). This suggests that natural variation in278

the contents of these compounds is genetically controlled, which makes a good prospect for furthering279

their identification and uncovering their biological meaning through genetic studies. In case of known280

metabolites, variation in the abundance of individual flavonoid and flavonoid glycosides compounds281

tended to be the most heritable across independent field plots of the same genotype grown in the same282
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environment (Fig. S8).283

Figure 3. Metabolomics profiling in 24 sorghum genotypes across two nitrogen conditions based on 145
confidently annotated metabolites. a Distribution of the 145 confidently annotated metabolites across two
treatment conditions. b First two principle component (PC) from PCA. Values in bracket indicate amount
of variance explained by each component. c Volcano plot showing the down regulated (yellow) and up
regulated (green) metabolites under low nitrogen (LN) conditions compare to high nitrogen (HN). d
Proportions of the metabolites with know structures more abundant in samples collected from plants
grown under HN (green), more abundant in samples collected from plants grown under LN (yellow), and
unchanged (gray).

A similar variance partitioning strategy to that employed for morpho-physiological traits was used to284

partition variance for each annotated metabolite. For each metabolite a mixed model was fit, including285

terms for genotypes (genetic effects), differences between N treatments (environmental effects), and286

genetic differences in the degree of response to N supply (genotype-by-environment, GxE). Likely as a287

result of the much smaller overall number of datapoints for each metabolic trait relative to each morpho-288

physiological traits, this model could only be successfully fit for 46 of 145 metabolites. Differences289

between genotypes typically explained around half of the variance for different metabolites (∼28% on290

HN and ∼31% on LN), while the variance explained by environmental factor was much lower ∼2% (Fig.291

4). The GxE effect explained on average of ∼7% of variance across the 46 metabolites where a mixed292

model was successfully fit. Despite the fact, that this value was not very high, it was higher than the293

average variance explained by the GxE effect for morpho-physiological traits (∼1%). The coefficient of294

variation for each variable for each metabolite vary, but no clear pattern can be observed across different295

classes of metabolites (Fig. S9). A wide range of different patterns are exhibited by individual metabolites296

in response to LN stress across different genotypes. Glucose and sucrose both belong to the set of 83297

metabolites which did not show any statistically significant differences in abundance between samples298
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collected from plants grown in high nitrogen and plants grown in low nitrogen but which do exhibit299

consistent patterns of difference in abundance between genotypes across treatments (Fig. 5a-b). Serine,300

one the amino acids with a statistically significant difference in abundance between samples collected from301

plants grown in HN and LN exhibits a consistent decreased in abundance across genotypes with ∼15% of302

variance explained by the environmental factor (Fig. 5c). Glutamic acid and allantonin both exhibited303

large GxE effects of ∼15% and ∼30% variance for these two metabolites explained by GxE respectively304

(Fig. 5d-e). Genotypes with comparatively high glutamic acid content in HN saw larger reductions in305

glutamic acid content in LN. Genotypes with comparatively lower high glutamic acid content in HN saw306

smaller reductions in LN. Previous study found a decrease in salicylic acid content under low nitrogen307

stress in sorghum root (Sheflin et al., 2019). Here we found increase in salicylic acid content of sorghum308

leaves under LN (Fig. 5f). This response is consistent across majority of genotypes, although strength of309

this reaction slightly vary, with genotypes with low salicylic acid content under HN indicating a higher310

increase under LN.311

Figure 4. Proportion of variance attributed to each component for each metabolite. HN - high nitrogen,
LN - low nitrogen.
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Figure 5. Examples of unchanged a-b, changed but non-plastic c and plastic d-f metabolites. Each dot
indicate genotypic mean and lines connect the same genotype across two treatment conditions. HN - high
nitrogen, LN - low nitrogen.

Correlation between metabolites and yield312

The abundance of metabolites was correlated to some degree with observed grain yield values from the313

same plots (Fig. 6; Table S5). The correlation coefficients between metabolite abundance and grain yield314

in individual environments (HN or LN) were positively correlated with each other (r = 0.36, p < 0.05;315

Fig. 6). However, in only a modest number of cases where the correlations between the abundance of316

individual metabolites and grain yield statistically significant including six metabolites in HN and eleven317

in LN. Five metabolites were statistically significantly correlated with grain yield in both environments:318

4-hydroxymandelonitrile, aconitic acid, ascorbic acid, benzamide and glucose. The strength of the319

correlations between grain yield and metabolite abundance where relatively modest (r < 0.6) even for320

those metabolites where statistically significant relationships were observed.321

Two machine learning approaches, elastic-net regression (GLMNET) and random forest (RF), were322

evaluated for their potential to predict variation in plot level grain yield from combined metabolite323

abundance data. Three sets of input data were evaluated with each of the two machine learning approaches.324

First, the set of all detected metabolites (n=3,496). Second, the set of 145 metabolites with confident325

annotations. Finally, a set of 145 metabolites selected randomly from the complete set of 3,496 detected326

metabolites. Both algorithms achieved moderate prediction accuracy however, the accuracy of their327

predictions was either equivalent to or only modestly exceeded, the prediction accuracy of a simple linear328

model fit to only the treatment effect, which was able to predict 29% of the total variance in sorghum grain329

yield data (Fig. S10). Ascorbic acid showed the greatest contribution to the accuracy of the GLMNET330

model (Fig. S10b) and the third largest contribution with RF (Fig. S10c) in permutation based estimates331

of feature importance, consistent with the significant correlation between the abundance of this metabolite332

11/26

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495271doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495271
http://creativecommons.org/licenses/by-nd/4.0/


and grain yield in both conditions (Fig. 6).333

Figure 6. Scatter plot of correlation values of each metabolite and yield in given conditions. Marked
metabolites indicate significantly correlated metabolites from Pearson analysis (p < 0.05). HN - high
nitrogen, LN - low nitrogen.

Discussion334

Natural variation in tolerance to nitrogen deficient growing conditions has been widely studied in both335

crops and other plant species. However, the majority of these studies occurred in controlled environments336

and imposed substantial nutrient deficits that produced visible phenotypic responses even at seedling337

stages. Here we examined natural variation in both the morpho-physiological and metabolomic impact of338

long term low intensity nitrogen deficit at a level sufficient to alter grain yield and fitness in sorghum but339

which does not produce obvious visible stress symptoms.340

Grain yield is a complex phenotype that is determined by a number of different component phenotypes341

(e.g. yield component traits). In arabidopis branching number is correlated with yield and previous study342

found large plasticity of this trait in response to low nitrogen stress (de Jong et al., 2019). In case of rice,343

various traits such as tiller number, grain number per penile, or 1,000 - grain weight are associated with344

yield. Interestingly, only tiller number were affected by low nitrogen stress (Liu et al., 2021). Finally, in345
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case of maize 1,000 - kernel weight were also not affected by low nitrogen, but substantial decreases in346

kernel number per cob were observed (Amiour et al., 2012). This observation highlights the complexity of347

how plant yield can be affected by low nitrogen stress. In this study grain weight per panicle was used to348

represent sorghum yield, and consistently with research done on arabidopsis (de Jong et al., 2019), large349

plasticity in response to low nitrogen stress was observed in this trait.350

While grain yield decreased substantially under nitrogen limited conditions for the vast majority of351

sorghum genotypes, rank order grain yield under high nitrogen conditions was only modestly correlated352

with rank order grain yield under low nitrogen conditions (Spearman correlation = 0.44; Fig. S3). This353

suggests efforts to increase grain yield under nitrogen limited conditions will require separate field354

trials, evaluations and selections from breeding efforts to increase grain yield under non-nitrogen limited355

conditions. Yield under non-nitrogen limited conditions was negatively correlated with the size of the356

decrease in yield observed when nitrogen was limited (∼-0.3; Fig. S4). However, because of large GxE357

effect, this reduction is not consistent across highly yielding genotypes. Some of the reductions are358

characterized by relatively low loss in yield under low nitrogen conditions. This indicates that it should be359

possible to produce varieties not only with high yield under high nitrogen condition but also more robust360

to low nitrogen stress. In contrast to grain yield, the morpho-physiological traits did not exhibit significant361

degrees of change in response to the degree of nitrogen limitation applied in this study, and of the traits362

which did exhibit significant effects – such as leaf nitrogen content and specific leaf area – the effects of363

treatment and genotype were largely independent of each other (Figure 2). While changes in chlorophyll364

concentration were quantifiable using both handheld chlorophyll concentration meter and hyperspectral365

reflectance data, plants in the nitrogen limited field were not visibly chlorotic (personal observation).366

Metabolite abundance was characterized for a subset of sorghum genotypes in both conditions in an367

attempt to identify other phenotypes with potential value to predict how the grain yield of different368

sorghum varieties will respond to nitrogen limitation. The overall pattern of metabolite abundances did not369

exhibit substantial differences between nitrogen limited and non-nitrogen limited conditions (Fig. 3a-c).370

This is consistent with both the limited degree of change observed for morpho-physiological traits and the371

goal of imposing a degree of nitrogen limitation sufficient to alter fitness/grain yield but not so severe that372

it dramatically altered plant growth.373

While overall differences in metabolite abundance between conditions were modest, the metabolites374

that did exhibit significant differences between treatments were consistent with expectations for nitrogen375

limited grown plants. Decreases in the abundance of many amino acids were observed (Fig. 3d; Table S4).376

Consistent with reports from studies of nitrogen deficit experiments in seedlings and adult maize leaves377

(Amiour et al., 2012), sorghum roots (Sheflin et al., 2019), and maize, sorghum, and Paspalum vaginatum378

seedlings (Sun et al., 2021). Disturbance in serine metabolism was previously found to play key role379

in limiting maize yield under low nitrogen conditions (Cañas et al., 2012). In addition, serine plays an380

important role in photorespiration (Maurino and Peterhansel, 2010), although in plants utilizing the C4381

photosynthetic pathway, including both maize and sorghum this pathway is much less active than in plants382

utilizing the C3 photosynthetic pathway. Unfortunately, we did not observe significant variation in the383

degree of decreased serine abundance observed among sorghum genotypes (Fig. 5c) suggesting that, while384

genetically controlled diversity for this trait may still be discovered in profiling of a larger panel of diverse385

sorghum lines under nitrogen limited and non nitrogen limited conditions, if no such diversity is found386

may prove impossible to reduce this response to nitrogen constrained growth via conventional breeding387

and selection strategies. In contrast, while the abundance of glutamic acid also declined in nitrogen limited388

conditions, the degree of decline varied significantly among sorghum genotypes (Fig. 5d). In previous389

field studies of maize, the abundance of glutamic acid was negatively correlated with yield under heat390

and water stress but not under control conditions (Obata et al., 2015). We observed a similar negative391
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correlation between glutamic acid abundance and yield under both control and nitrogen limited conditions392

(Fig. 6). This result highlight potential importance of glutamic acid metabolism on yield in C4 crops under393

stress conditions. Genes involved in glutamic acid metabolism were enriched among those exhibiting394

differential mRNA expression between older maize inbreds (pre-1960s) and maize inbreds developed and395

selected by breeders in the modern era (Xu et al., 2022). These observations suggest that glutamic acid396

metabolism may already have been an indirect target of selection during crop improvement in maize. If397

so, the data presented here suggest that glutamic acid may also represent an interesting metabolic marker398

when selecting for better performing sorghum genotypes although further validation is certainly needed.399

Overall, our results highlight that grain yield in sorghum, unlike many morpho-physiological traits,400

exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit401

stress. Differences in the eight morpho-physiological traits scored in this study explained only ∼9% of402

variance in yield. Metabolic responses to long term low severity nitrogen deficit stress exhibited a higher403

proportion of variability explained by genotype specific responses than did morpho-pysiological traits404

and a number of individual metabolites were associated with yield variation under one or both nitrogen405

treatments. It may be possible to build predictive models using metabolite abundance to estimate which406

sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however407

data from a larger number of genotypes grown across multiple sites will be necessary to train and evaluate408

such models. Large scale metabolic profiling will likely require targeted metabolomics using feature409

selection approaches to identify an informative subset of the metabolites profiled in this study.410
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Table S1. Plot-level values of morpho-physiological traits. Provided as Excel file.

Table S2. Raw ground truth and spectral data used to build PLSR models and predict three
traits. Provided as csv file.

Table S3. Summary of the PLSR results

Training Validation

Trait nLV R2 RMSE R2 RMSE

CHL 19 0.82 48.73 0.83 46.22
SLA 10 0.62 6.47 0.76 5.97
N 16 0.66 0.29 0.46 0.34
P 10 0.18 0.06 0.25 0.07
K 10 0.34 0.34 0.22 0.37

Table S4. Summary statistics for 145 annotated metabolites.

Table S5. Correlation values between yield and 145 metabolites.
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Figure S1. a The mean leaf hyperspectral of the sorghum plants from high nitrogen(HN; green) and low
nitrogen(LN; yellow). The bounding envelopes are the standard deviation. b Principal component score
for individual plat (PC1 vs. PC2).
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Figure S2. Scatter plots of ground truth and predicted values for training set sorghum leaves. Statistics
for prediction can be found in Table S3. HN - high nitrogen, LN - low nitrogen.
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Figure S3. Scatter plot of genotype mean of morpho-physiological traits between two nitrogen
conditions. r indicates Pearson correlation value. HN - high nitrogen, LN - low nitrogen.
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Figure S4. Plasticity in yield under low nitrogen (LN) stress versus yield at control (HN - high nitrogen)
conditions. The dotted line indicates zero difference (no low nitrogen effect), while the solid blue line is
the fitted regression. Each dot represents a genotype mean.

Figure S5. First two principle component from PCA based on SNPs from Miao et al. (2020). Each dot
represent single genotype and red dots marked genotypes selected to metabolomic analysis.
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Figure S6. Metabolomics profiling in 24 sorghum genotypes across two nitrogen conditions based 3,496
identified compounds. a Scatter plot of abundance of 3,496 identified compounds across two treatment
conditions. b Distribution of 3,496 identified compounds treatment conditions c. Volcano plot showing
the downregulated (yellow) and upregulated (green) metabolites under low nitrogen (LN) conditions
compare to high nitrogen (HN). d First two principle components (PC) from PCA based on 3,496
identified compounds. Values in bracket indicate amount of variance explained by each component. HN -
high nitrogen, LN - low nitrogen.
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Figure S7. Distribution of broad-sense heritability (H2) values for 3,496 identified compounds in two
treatment condition. HN - high nitrogen, LN - low nitrogen.
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Figure S8. Broad-sense heritability (H2) values for 145 annotated metabolites across 11 classes. Each
dot indicate a single metabolite. HN - high nitrogen, LN - low nitrogen.

Figure S9. Coefficient of variation for 45 metabolites (CV; the estimated variance divided by the
squared mean of the respective trait).
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Figure S10. a Yield accuracy prediction based on three metabolites sets: all identified metabolites
(n=3,496), metabolites with confident annotation (n=145) and the same number of metabolites with
unknown annotation (n=145). R2 were obtained from 100x repeated five-fold cross-validation. Dashed
lines indicated R2 values from regression based on treatment conditions. GLMNET - elastic-net
regression, RF - random forest. Imporance values based on permutation for GLMNET(b) and RF(c).
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