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In this paper, we propose a collection of curated and easily
accessible sequence classification datasets in the field of ge-
nomics. The proposed collection is based on a combination of
novel datasets constructed from the mining of publicly available
databases and existing datasets obtained from published arti-
cles. The main aim of this effort is to create a repository for
shared datasets that will make machine learning for genomics
more comparable and reproducible while reducing the over-
head of researchers that want to enter the field. The collec-
tion currently contains eight datasets that focus on regulatory
elements (promoters, enhancers, open chromatin region) from
three model organisms: human, mouse, and roundworm. A
simple convolution neural network is also included in a repos-
itory and can be used as a baseline model. Benchmarks and the
baseline model are distributed as the Python package ’genomic-
benchmarks’, and the code is available at https://github.
com/ML-Bioinfo-CEITEC/genomic_benchmarks.
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Introduction
Recently, deep neural networks have been successfully ap-
plied to identify functional elements in the genomes of hu-
mans and other organisms, such as promoters Oubounyt et al.
(2019), enhancers Le et al. (2021), transcription factor bind-
ing sites Quang and Xie (2019), and others. Neural net-
work models have been shown to be capable of predicting
histone accessibility Yin et al. (2019), RNA-protein binding
Shen et al. (2020), and accurately identify short non-coding
RNA loci within the genomic background Georgakilas et al.
(2020).
However, deep neural network models are highly dependent
on large amounts of high-quality training data Sun et al.
(2017). Comparing the quality of various deep learning mod-
els can be challenging, as the authors often use different
datasets for evaluation, and quality metrics can be heavily
influenced by data preprocessing techniques and other tech-
nical differences Nawi et al. (2013).
Many computational fields have developed established
benchmarks, for example, SQuAD for question answering
Rajpurkar et al. (2016), IMDB Sentiment for text classifica-
tion Maas et al. (2011), and ImageNet for image recognition
Deng et al. (2009). Benchmarks are crucial in driving inno-
vation. The annual competition for object identification Rus-
sakovsky et al. (2015) catalyzed the boom in AI, leading in
just seven years to models that exceed human capabilities.

In biology, a great challenge over the past 50 years has been
the protein folding problem. To compare different protein
folding algorithms, the community introduced the Critical
Assessment of protein Structure Prediction (CASP) Moult
et al. (1995) challenge benchmark that provides research
groups with the opportunity to objectively test their methods.
In 2021, AlphaFold Jumper et al. (2021) won this competi-
tion producing predicted structures within the error tolerance
of experimental methods. This carefully curated benchmark
led to the solution of the most prominent bioinformatic chal-
lenge of the past 50 years.

In Genomics, we have similar challenges like annotation of
genomes and identification and classification of functional el-
ements, but currently we lack benchmarks similar to CASP.
Practically, machine learning tasks in Genomics commonly
involve the classification of genomic sequences into several
categories and/or contrasting them to a genomic background
(a negative set). For example, a well-studied question in
Genomics is the prediction of enhancer loci on a genome.
For this question, the benchmark situation is highly frag-
mented. As an example, Liu et al. (2016) proposed a bench-
mark dataset based on the chromatin state from multiple cell
lines. Both enhancer and non-enhancer sequences were re-
trieved from experimental chromatin information. The CD-
HIT software Li and Godzik (2006) was used to filter similar
sequences, and the benchmark dataset was made available as
a pdf file. However, information stored in a pdf file is suit-
able for human communication, but computers cannot easily
extract data from these files. Despite not being easily ma-
chine readable, it was used by many subsequent publications
(Liu et al. (2018), Le et al. (2019), Tahir et al. (2017), Jia and
He (2016), He and Jia (2017), Nguyen et al. (2019), Khanal
et al. (2020), Le et al. (2021), Zhang et al. (2021), Inayat
et al. (2021), Mu et al. (2021) or Yang et al. (2021)) as a gold
standard for enhancer prediction, highlighting the need for
benchmark datasets in this field. Other common sources of
enhancer data are the VISTA Enhancer Browser Visel et al.
(2007), the FANTOM5 Andersson et al. (2014), the EN-
CODE project ENCODE Project Consortium et al. (2012),
and the Roadmap Epigenomics Project Kundaje et al. (2015)
which provide a wealth of positive samples but no negatives.
A researcher would need to implement their own method of
negative selection, thus introducing individual selection bi-
ases to the samples.

Another highly studied question in Genomics is the predic-
tion of promoters. Benchmark situation in this field has its
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own problems. For example, Lin and Li (2011) extracted
positive samples from EPD Schmid et al. (2006) and the non-
promoter sequences were randomly extracted from coding re-
gions and non-coding regions, and used as two negative sets.
This method for creating a negative set is not an established
one. Other authors used only coding sequences or only non-
coding sequences as a negative set Gordon et al. (2003) or
combined coding and non-coding sequences as a one nega-
tive set Ohler (2006), Yang et al. (2008), Rani et al. (2007).
Even Lin and Li (2011) are already pointing to the problem
of missing benchmarks and reproducibility, saying that it is
difficult to compare their results with other published results
due to differences in data and experimental protocol. Several
years later, Lai et al. (2019) created their own dataset and re-
ported similar problems. They were unable to compare the
results with other published tools because the datasets were
derived from different sources, used different proprocessing
procedures, or were not made available at all.
In this paper, we propose a collection of benchmark datasets
for the classification of genomic sequences, focusing on ease
of use for machine learning purposes. The datasets are dis-
tributed as a Python package ’genomic-benchmarks’ that is
available on GitHub1 and distributed through The Python
Package Index (PyPI)2. The package provides an interface
that allows the user to easily work with the benchmarks us-
ing Python. Included are utilities for data processing, clean-
ing procedures, and summary reporting. Additionally, it con-
tains functions that make training a neural network classifier
easier, such as PyTorch Paszke et al. (2019) and TensorFlow
Abadi et al. (2016) data loaders and notebooks containing ba-
sic deep learning architectures that can be used as templates
for prototyping new methods. Importantly, every dataset pre-
sented here comes with an associated notebook that fully
reproduces the dataset generation process, to ensure trans-
parency and reproducibility of benchmark generation in the
future.

Results and Methods
Overview of Datasets. The currently selected datasets are
divided into three categories. There is a group of datasets
focused on human regulatory functional elements, either pro-
duced from mining the Ensembl database, or from published
datasets used in multiple articles. For promoters, we have
imported human non-TATA promoters Umarov and Solovyev
(2017). For enhancers, we used human enhancers from Cohn
et al. (2018) paper and Ensembl human enhancers from the
FANTOM5 Project Andersson et al. (2014). We have also
included open chromatin regions and multiclass dataset com-
posed of three regulatory elements (enhancers, promoters,
and open chromatin regions), both constructed from the En-
sembl regulatory build Zerbino et al. (2015). The second cat-
egory consists of ’demo’ datasets that were computationally
generated for this project, and focus on classification of ge-
nomic sequences between different species or types of tran-

1https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks

2https://pypi.org/project/genomic-benchmarks/

scripts (protein coding vs non-coding). Finally, the third cat-
egory ’dummy’ has a single small dataset which can be used
for quick prototyping of methods due to its small size. From
the point of view of model organism, our datasets include
primarily human data, but also mouse (Mus musculus), and
roundworm (Caenorhabditis elegans). An overview of avail-
able datasets is given in Table 1 and simple code for listing
all currently available datasets in Figure 1.
The Human enhancers Cohn dataset was adapted from Cohn
et al. (2018). Enhancers are genomic regulatory functional
elements that can be bound by specific DNA binding proteins
so as to regulate the transcription of a particular gene. Unlike
promoters, enhancers do not need to be in a close proximity
to the affected gene, and may be up to several million bases
away, making their detection a difficult task.
The Human enhancers Ensembl dataset eas constructed from
Human enhancers from The FANTOM5 project Andersson
et al. (2014) accessed through the Ensembl database Howe
et al. (2021). Negative sequences have been randomly gener-
ated from the Human genome GRCh38 to match the lengths
of positive sequences and not overlap them.
The Human non-TATA promoters dataset was adapted from

Umarov and Solovyev (2017). These sequences are of length
251bp: from -200 to +50bp around transcription start site
(TSS). To create non-promoters sequences of length 251bp,
the authors of the original paper used random fragments of
human genes located after first exons.
The Human ocr Ensembl dataset was constructed from the

Ensembl database Howe et al. (2021). Positive sequences
are Human Open Chromatin Regions (OCRs) from The En-
sembl Regulatory Build Zerbino et al. (2015). Open chro-
matin regions are regions of the genome that can be pref-
erentially accessed by DNA regulatory elements because of
their open chromatin structure. In the Ensembl Regulatory
Build, this label is assigned to open chromatin regions, which
were experimentally observed through DNase-seq, but cov-
ered by none of the other annotations (enhancer, promoter,
gene, TSS, CTCF, etc.). Negative sequences were generated
from the Human genome GRCh38 to match the lengths of
positive sequences and not overlap them.
The Human regulatory Ensembl dataset was constructed

from Ensembl database Howe et al. (2021). This dataset has
three classes: enhancer, promoter and open chromatin region
from The Ensembl Regulatory Build Zerbino et al. (2015).
Open chromatin region sequences are the same as the posi-
tive sequences in the Human ocr Ensembl dataset.

Reproducibility The pre-processing and data cleaning pro-
cess we followed is fully reproducible. We provide a Jupyter
notebook that can be used to recreate each given dataset, and
can be found in the docs folder of the GitHub repository3.
All dependencies are provided, and a fixed random seed is set
so that the notebook will always produce the same data splits.
Each dataset is divided into training and testing subsets.
For some datasets, which contain only positive samples, we

3https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks/tree/main/docs
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Name # of sequences # of classes Class ratio Median length Standard deviation
dummy_mouse_enhancers_ensembl 1210 2 1.0 2381 984.4
demo_coding_vs_intergenomic_seqs 100000 2 1.0 200 0.0
demo_human_or_worm 100000 2 1.0 200 0.0
human_enhancers_cohn 27791 2 1.0 500 0.0
human_enhancers_ensembl 154842 2 1.0 269 122.6
human_ensembl_regulatory 289061 3 1.2 401 184.3
human_nontata_promoters 36131 2 1.2 251 0.0
human_ocr_ensembl 174756 2 1.0 315 108.1

Table 1. Description of datasets in genomic benchmark package. Several pieces of information are provided about each dataset: a) Name is unique identification of dataset
in genomic benchmark package b) # of sequences is combined count of all sequences from all classes c) # of classes is count of all classes in a dataset d) Class ratio is
a ratio between number of sequences in a biggest class and number of sequences in a smallest class e) Median length is computed for all sequences from all classes in a
dataset f) Standard deviation is also computed for all sequences from all classes in a dataset.

>>> from genomic_benchmarks.data_check import list_datasets
>>> from genomic_benchmarks.dataset_getters.pytorch_datasets import get_dataset

>>> list_datasets()
[’dummy_mouse_enhancers_ensembl’, ’demo_coding_vs_intergenomic_seqs’, ’demo_human_or_worm’,
’human_enhancers_cohn’, ’human_enhancers_ensembl’, ’human_ensembl_regulatory’,
’human_nontata_promoters’, ’human_ocr_ensembl’]

>>> dset = get_dataset(’human_nontata_promoters’, split=’train’, version=0)
>>> dset[0]
(’CAATCTCACAGGCTCCTGGTTGTCTACCCATGGACCCAGAGGTTCTTTGACAGCTTTGGCAACCTGTCCTCTGCCTCTGCCA...TCCAGGAGATGT’, 0)

Fig. 1. Listing all available datasets and getting PyTorch Dataset for one of them.

had to generate appropriate negative samples (dummy mouse
enhancers Ensembl, human enhancers Ensembl and human
open chromatin region Ensembl dataset). These negatives
were randomly selected from the same genome as the posi-
tive samples. The length distribution of positive samples was
matched when selecting the negatives, and regions overlap-
ping with the positive samples were excluded from the selec-
tion.

Data format. All samples were stored as genomic coordi-
nates, and datasets originally provided as sequences (human
enhancers Cohn, human nonTATA promoters) were mapped
to the reference using the ‘seq2loc‘ tool included in the pack-
age. Data were stored as compressed (gzipped) CSV tables
of genomic coordinates, containing all information typically
found in a BED format table. Column names are id, region,
start, end, and strand. Each dataset has train and test sub-
folders and a separate table for each class. Furthermore, each
dataset contains a YAML information file with metadate such
as its version, the names of included classes, and links to
sequence files of the reference genome. The stored coordi-
nates and linked sequence files were used to produce the fi-
nal datasets, ensuring the reproducibility of our method. For
more information, visit the datasets folder of the GitHub
repository4. To speed up this conversion from a list of ge-
nomic coordinates to a locally stored folder of nucleotide
sequences, we provide a cloud based cache of the full se-
quence datasets which can be used simply by setting the
use_cloud_cache=True option.

4https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks/tree/main/datasets

Easy data access tools. We provide ready-to-use data
loaders for the two most commonly used deep learning
frameworks, TensorFlow and PyTorch. These data loaders
allow the user to load any of the provided datasets using a
single line of code (for example Figure 1). This feature is im-
portant for reproducibility and for adoption of the package,
particularly by people with limited knowledge of genomics.
Moreover, an example of usage for a simple convolutional
neural network (adapted from Klimentova et al. (2020)) is
provided in the notebooks folder of the GitHub reposi-
tory5. The neural network consists of three convolutional lay-
ers with 16, 8, and 4 filters, with a kernel size of 8. The output
of each convolutional layer goes through the batch normal-
ization layer and the max-pooling layer. The output of the
last set of layers is flattened and goes through two dense lay-
ers. The last layer is designed to predict probabilities that the
input sample belongs to any of the given classes. The archi-
tecture of the model is shown in Figure 2. To get a baseline
estimate for researchers using these benchmarks, we fit the
convolutional neural network model described above to each
dataset included in our collection. Training notebooks are
provided in an experiments folder of the GitHub reposi-
tory6. The models were trained for 10 epochs with batch size
64. The accuracy and F1 score for PyTorch and Tensorflow
CNN models on all genomic benchmark datasets are shown
in Table 2.

5https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks/tree/main/notebooks

6https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks/tree/main/experiments
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Pytorch Tensorflow
Dataset Accuracy F1 score Accuracy F1 score
dummy_mouse_enhancers_ensembl 69.0 70.4 50.0 66.9
demo_coding_vs_intergenomic_seqs 87.6 86.8 89.6 89.4
demo_human_or_worm 93.0 92.8 94.2 93.2
human_enhancers_cohn 69.5 67.1 68.9 71.3
human_enhancers_ensembl 68.9 56.5 81.1 74.6
human_ensembl_regulatory 93.3 93.3 79.3 79.3
human_nontata_promoters 84.6 83.7 86.5 84.4
human_ocr_ensembl 68.0 66.1 68.8 72.0

Table 2. Performance of baseline models on benchmark datasets.

Embedding

Conv1D (16 filters - kernel 8)

Batch Normalization

Pooling

Conv1D (8 filters - kernel 8)

Batch Normalization

Pooling

Conv1D (4 filters - kernel 8)

Batch Normalization

Pooling

Flatten
Dense
Dense

Fig. 2. CNN architecture. The neural network consists of three convolutional layers
with16, 8, and 4 filters, with a kernel size of 8. The output of each convolutional layer
goes through the batch normalization layer and the max-pooling layer. The output
is then flattened and passes through two dense layers. The last layer is designed to
predict the probabilities that the input sample belongs to any of the given classes.

Discussion

Machine learning, and especially deep learning, techniques
have recently started revolutionizing the field of genomics.
Deep learning methods are highly dependent on large
amounts of high-quality data to train and benchmark data are
needed to accurately compare performance of different mod-
els. Here, we propose a collection of Genomic Benchmarks,
produced with the aim of being easily accessible and repro-
ducible. Our intention is to lower the difficulty of entry into
the machine learning for Genomics field for researchers that
may not have extensive knowledge of Genomics but want
to apply their knowledge of machine learning in this field.
Such an approach worked well for the field of protein fold-
ing, where benchmark-based competitions helped revolution-
ize the field.
The eight genomics datasets that have been currently added
are a first step towards the direction of a large repository
of Genomic Benchmarks. Beyond making access to these
datasets easy for users, we have ensured that adding more
datasets in a reproducible way is an easy task for further de-
velopment of the repository. We encourage users to propose
datasets or subfields of interest that would be useful in future
releases. We have provided guidelines and tools to unify ac-
cess to any genomic data and we will happily host submitted
genomic datasets of sufficient quality and interest.
We are aware of the limitations of the current repository.
While we strive to include diverse data, still most of our
benchmark datasets are balanced, or close to balanced, hav-
ing similar length of sequences and a limited number of
classes. Our main datasets all come from the human genome,
and all deal with regulatory features. In the future, we would
like to increase the diversity of our datasets to be able to diag-
nose the model’s sensitivity to those factors. Many machine
learning tasks in Genomics consist of binary classification
of a class of Genomic functional elements against a back-
ground. However, it can be beneficial to start expanding the
field into multi-class classification problems, especially for
functional elements that have similar characteristics to each
other against the background. We will expand our bench-
mark collection to include more imbalanced datasets, and
more multi-class datasets.
In this manuscript, we have implemented a simple convolu-
tional neural network as a baseline model trained and eval-
uated on all of our datasets. Improvement on this baseline
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will be certainly achieved by using different architectures and
training schemes. We have an open call for users that out-
perform the baseline to submit their solution via our Github
repository, and be added to a ’Leaderboard’ of methods for
each dataset. We hope that this will create a healthy compe-
tition on this set of reproducible datasets, and promote ma-
chine learning research in Genomics.
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