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Abstract

Expectations shape our experience of music. However, the internal model upon which listeners form
melodic expectations is still debated. Do expectations stem from Gestalt-like principles or statistical
learning? If the latter, does long-term experience play an important role, or are short-term regularities
sufficient? And finally, what length of context informs contextual expectations? To answer these
questions, we presented human listeners with diverse naturalistic compositions from Western classical
music, while recording neural activity using MEG. We quantified note-level melodic surprise and
uncertainty using various computational models of music, including a state-of-the-art transformer neural
network. A time-resolved regression analysis revealed that neural activity over fronto-temporal areas
tracked melodic surprise particularly around 200 ms and 300-500 ms after note onset. This neural
surprise response was dissociated from sensory-acoustic and adaptation effects. Neural surprise was best
predicted by computational models that incorporated long-term statistical learning — rather than by
simple, Gestalt-like principles. Yet, intriguingly, the surprise reflected primarily short-range musical
contexts of less than ten notes. We present a full replication of our novel MEG results in an openly
available EEG dataset. Together, these results elucidate the internal model that shapes melodic
predictions during naturalistic music listening.
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Introduction

The second movement of Haydn’s symphony No. 94 begins with a string section creating the expectation
of a gentle and soft piece, which is suddenly interrupted by a tutti fortissimo chord. This startling motif
earned the composition the nickname “Surprise symphony”. All music, in fact, plays with listeners’
expectations to evoke musical enjoyment and emotions, albeit often in more subtle ways (Huron, 2006;
Juslin & Vistfjall, 2008; Meyer, 1957; Salimpoor et al., 2015). A central element of music which
induces musical expectations is melody, the linear sequence of notes alternating in pitch. Within a
musical piece and style, such as Western classical music, certain melodic patterns appear more
frequently than others, establishing a musical syntax (Krumhansl, 2015; Patel, 2003; Rohrmeier et al.,
2011). Human listeners have been proposed to continuously form predictions on how the melody will
continue based on these regularities (Koelsch et al., 2019; Meyer, 1957; Tillmann et al., 2014; Vuust et
al., 2022).

In support of prediction-based processing of music, it has been shown that listeners are sensitive to
melodic surprise. Behaviourally, higher-surprise notes are rated as more unexpected (Krumhansl &
Kessler, 1982; Marmel et al., 2008, 2010; Pearce et al., 2010; Schmuckler, 1989) and impair
performance, e.g. in dissonance detection tasks (Pearce et al., 2010; Sears et al., 2019). Listeners
continue melodic primes with low-surprise notes in musical cloze tasks (Carlsen, 1981; Morgan et al.,
2019; Schmuckler, 1989). Neural activity tracks melodic surprise (Di Liberto et al., 2020) and high-
surprise notes elicit electrophysiological signatures indicative of surprise processing, in particular the
mismatch negativity (Brattico et al., 2006; Mencke et al., 2021; Néatanen et al., 2007; Quiroga-Martinez
et al., 2020) and P3 component (Quiroga-Martinez et al., 2020) (for a review see Koelsch et al., 2019),
but also the P2 component (Omigie et al., 2013), a late negative activity around 400 ms (Miranda &
Ullman, 2007; Pearce et al., 2010), and oscillatory activity (Omigie et al., 2019; Pearce et al., 2010).
Despite this extensive body of neural and behavioural evidence on the effects of melodic expectations
in music perception, the form and content of the internal model generating these expectations remain
unclear. Furthermore, the evidence stems primarily from studying the processing of relatively artificial
stimuli, and how these findings extend to a more naturalistic setting is unknown.

We set out to answer three related open questions regarding the nature of melodic expectations, as
reflected in neural activity. First, are expectations best explained by a small set of Gestalt-like principles
(Krumbhansl, 2015; Temperley, 2008, 2014), or are they better captured by statistical learning (Pearce,
2005; Pearce & Wiggins, 2012; Rohrmeier & Koelsch, 2012)? Overall, statistical learning models have
proven slightly better fits for musical data (Temperley, 2014) and for human listeners’ expectations
assessed behaviourally (Morgan et al., 2019; Pearce & Wiggins, 2006; Temperley, 2014), but the two
types of models have rarely been directly compared. Second, if statistical learning drives melodic
expectations, does this rely on long-term exposure to music, or might it better reflect the local statistical
structure of a given musical piece? Finally, independent of whether melodic expectations are informed
by short or long-term experience, we ask how much temporal context is taken into account by melodic
expectations; i.e. whether these are based on a short- or a longer-range context. On the one hand, the
brain might use as much temporal context as possible in order to predict optimally. On the other hand,
the range of echoic memory is limited and temporal integration windows are relatively short, especially
in sensory areas (Hasson et al., 2008; Honey et al., 2012; Himberger et al., 2018). Therefore, melodic
expectations could be based on shorter-range context than would be statistically optimal. To address this
question, we derived model-based probabilistic estimates of expectations using the Music Transformer
(Huang et al., 2018). This is a state-of-the-art neural network model that can take long-range (and
variable) context into account much more effectively than the n-gram models previously used to model
melodic expectations.
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In the current project we approached this set of questions as follows. First, we operationalized different
sources of melodic expectations by simulating different predictive architectures: the Probabilistic Model
of Melody Perception (Temperley, 2008, 2014), which is a Gestalt-like model; the Information
Dynamics of Music (IDyOM) model, an n-gram based statistical learning model (Pearce, 2005; Pearce
& Wiggins, 2012); and the aforementioned Music Transformer. We compared the different
computational models’ predictive performance on music data to establish them as different hypotheses
about the sources of melodic expectations. We then analyzed a newly acquired MEG dataset obtained
while participants (n = 35) were listening to diverse, naturalistic, musical stimuli using time-resolved
regression analysis. This allowed us to disentangle the contributions of different sources of expectations,
as well as different lengths of contextual information, to the neural signature of surprise processing that
is so central to our experience of music. To preview our results: we found that melodic surprise strongly
modulates the evoked response, and that this effect goes beyond basic acoustic features and simple
repetition effects, confirming that also in naturalistic music listening, brain responses are shaped by
melodic expectations. Critically, we found that neural melodic surprise is best captured by long-term
statistical learning; yet, intriguingly, depends primarily on short-range musical context. In particular, we
observed a striking dissociation at a context window of about ten notes: models taking longer-range
context into account become better at predicting music, but worse at predicting neural activity. Fronto-
temporal cortical sources most strongly contributed to the surprise signature, primarily around 200 ms
and 300-500 ms after note onset. Finally, we present a full replication of our findings in an independent
openly available EEG dataset (Di Liberto et al., 2020).
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Fig. 1: Overview of the research paradigm. Listeners undergoing EEG (data from Di Liberto et al., 2020) or MEG
measurement (novel data acquired for the current study) were presented with naturalistic music synthesized from
MIDI files. To model melodic expectations, we calculated note-level surprise and uncertainty estimates via three
computational models reflecting different internal models of expectations. We estimated the regression evoked
response or temporal response function (TRF) for different features using time-resolved linear regression on the
M|EEG data, while controlling for low-level acoustic factors.

Music analysis

We quantified the note-level surprise and uncertainty using different computational models of music,
which were hypothesized to capture different sources of melodic expectation (see Methods for details).
The Probabilistic Model of Melody Perception (Temperley) (Temperley, 2008, 2014) rests on a few
principles derived from musicology and thus represents Gestalt-like perception (Morgan et al., 2019).
The Information Dynamics of Music (IDyOM) model (Pearce & Wiggins, 2012) captures expectations
from statistical learning, either based on short-term regularities in the current musical piece (IDyOM
stm), long-term exposure to music (IDyOM Itm), or a combination of the former two (IDyOM both).
The Music Transformer (MT) (Huang et al., 2018) is a state-of-the-art neural network model, which also
reflects long-term statistical learning but is more sensitive to longer-range structure. In a first step, we
aimed to establish the different models as distinct hypotheses about the sources of melodic expectations.
We examined how well the models predicted music data and to what extent their predictions improved
when the amount of available context increased.

IDyOM stm and Music Transformer show superior melodic prediction

First, we tested how well the different computational models predicted the musical stimuli presented in
the MEG study (Fig. 2). Specifically, we quantified the accuracy with which the models predicted
upcoming notes, given a certain number of previous notes as context information. While all models
performed well above chance level accuracy (1/128 = 0.8%), the IDyOM stm (median accuracy across
compositions: 57.9%), IDyOM both (53.5%), and Music Transformer (54.8%) models performed
considerably better than the Temperley (19.3%) and IDyOM Itm (27.3%) models, in terms of median
accuracy across compositions (Fig. 2A left). This pattern was confirmed in terms of the models’ note-
level surprise, which is a continuous measure of predictive performance. Here lower values indicate a
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better ability to predict the next note given the context? (median surprise across compositions:
Temperley = 2.18, IDyOM stm = 1.12, IDyOM Itm = 2.23, IDyOM both = 1.46, MT = 1.15, Fig. 2A
middle). Furthermore, the uncertainty, defined as the entropy of the probability distribution at each time
point, characterizes each model’s confidence (inverse) in its predictions (maximum uncertainty = 4.85
given a uniform probability distribution). The Music Transformer model formed predictions more
confidently than the other models, whereas the Temperley model displayed the highest uncertainty
(median uncertainty across compositions: Temperley = 2.65, IDyOM stm = 2.23, Itm = 2.49, both =
2.28, MT = 1.69, Fig. 2A right). Within the IDyOM class, the stm model consistently showed lower
uncertainty compared to the Itm model, presumably reflecting a greater consistency of melodic patterns
within versus across compositions. As a result, the both model was driven by the stm model, since it
combines the Itm and stm components weighted by their uncertainty (mean stm weight = 0.72, mean
Itm weight = 0.18).
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Fig. 2: Model performance on the musical stimuli used in the MEG study. (A) Comparison of music model
performance in predicting upcoming note pitch, as composition-level accuracy (left; higher is better), median
surprise across notes (middle; lower is better), and median uncertainty across notes (right). Context length for each
model is the best performing one across the range shown in (B). Vertical bars: single compositions, circle: median,
thick line: quartiles, thin line: quartiles + 1.5 x interquartile range. (B) Accuracy of note pitch predictions (median
across 19 compositions) as a function of context length and model class (same color code as (A)). Dots represent
maximum for each model class. (C) Correlations between the surprise estimates from the best models. (For similar
results for the musical stimuli used in the EEG study, see Appendix A3).

Music Transformer utilizes long-range musical structure

Next, we examined to what extent the different models utilize long-range structure in musical
compositions or rely on short-range regularities by systematically varying the context length k£ (above
we considered each model at its optimal context length, defined by the maximum accuracy). The Music
Transformer model proved to be the only model for which the predictive accuracy increased
considerably as the context length increased, from about 9.17% (k= 1) up to 54.82% (k = 350) (Fig.
2B). The IDyOM models’ performance, in contrast, plateaued early at context lengths between three

2 The median surprise is closely related to the cross-entropy loss, which can be defined as the mean surprise across
all notes (Temperley = 2.7, IDyOM stm = 2, Itm = 2.47, both = 1.86, Music Transformer = 1.81).
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and five notes (optimal £: stm: 25, Itm: 4, both: 3), reflecting the well-known sparsity issue of n-gram
models (Jurafsky & Martin, 2000). Although the Temperley model benefited from additional musical
context slightly, the increment was small and the accuracy was lower compared to the other models
across all context lengths (5.58% at k=1 to 19.25% at k = 25).

Computational models capture distinct sources of musical expectation

To further evaluate the differences between models, we tested how strongly their surprise estimates were
correlated across all notes in the stimulus set (Fig. 2C). Since the IDyOM stm model dominated the both
model, the two were correlated most strongly (r = .87). The lowest correlations occurred between the
IDyOM stm on the one hand and the IDyOM Itm (r = 0.24) and Temperley model (r = 0.22) on the other
hand. Given that all estimates quantified surprise, positive correlations of medium to large size were
expected. More importantly, the models appeared to pick up substantial unique variance, in line with
the differences in predictive performance explored above.

Taken together, these results established that the computational models of music capture different
sources of melodic expectation. Only the Music Transformer model was able to exploit long-range
structure in music to facilitate predictions of note pitch. Yet, short-range regularities in the current
musical piece alone enabled accurate melodic predictions already: the IDyOM stm model performed
remarkably well, even compared to the much more sophisticated Music Transformer. We confirmed
these results on the musical stimuli from the EEG study (Appendix, Figure A3).

M|EEG analysis

We used a time-resolved linear regression approach (see Methods for details) to analyse listeners’
MIEEG data. By comparing different regression models, we asked (1) whether there is evidence for the
neural processing of melodic surprise and uncertainty during naturalistic music listening and (2) which
sources of melodic expectations, represented by the different computational models, best capture that.
We quantified the performance of each regression model in explaining the MEG data by computing the
correlation r between predicted and observed neural data. Importantly, we estimated r using 5-fold cross-
validation, thereby ruling out any trivial increase in predictive performance due to increases in number
of regressors (i.e., free parameters).

The simplest model, the Onset model, contained a single regressor coding note onsets in binary fashion.
Unsurprisingly, this model significantly explained variance in the recorded MEG data (mean r across
participants = 0.12, SD = 0.03; one-sample t-test versus zero, tzs = 25.42, p = 1.06e-23, d = 4.36, Fig.
3A top left), confirming that our regression approach worked properly. The Baseline model included
the note onset regressor, and additionally a set of regressors to account for sensory-acoustic features,
such as loudness or sound type, as well as note repetitions to account for sensory adaptation
(Auksztulewicz & Friston, 2016; Todorovic & Lange, 2012). The Baseline model explained additional
variance beyond the Onset model (Arpaseline-onset = 0.013, SD = 0.006; paired-sample t-test, t3s = 12.07, p
=7.58e-14, d = 2.07, Fig. 3A bottom left), showing that differences in acoustic features and repetition
further modulated neural activity elicited by notes.

Long-term statistical learning best explains listeners’ melodic surprise

We next investigated to which degree the surprise estimates from the different computational models of
music could explain unique variance in the neural data. All models performed significantly better than
the Baseline model, providing evidence for tracking of neural surprise during naturalistic music listening
(Temperley: Arsumprise-Basetine = 0.002, SD = 0.001, paired-sample t-test, t;4 = 8.76 p =2.42¢-09, d = 1.5;
IDyOM stm: Arsurprise-Bascline = 0.001, SD = 0.001, t34 = 5.66 p=9.39¢-06, d =0.97; IDyOM Itm: Arsurprise-
Baseline = 0.003, SD = 0.002, t34=12.74 p=2.51e-13,d=2.19; IDyOM both: Arsurprise-Baseline = 0.002, SD
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=0.001, t34 = 8.77, p =2.42¢-09, d = 1.5; and Music Transformer: Arsurprise-Bascline = 0.004, SD = 0.002,
tss = 10.82, p = 1.79¢-11, d = 1.86, corrected for multiple comparisons using the Bonferroni-Holm
method) (Fig. 3A right). Importantly, the Music Transformer and IDyOM Itm model significantly
outperformed the other models (paired-sample t-test, MT-Temperley: tzs = 7.56, p = 5.33¢-08, d = 1.30;
MT-IDyOM stm: t34=9.51, p=4.12e-10, d = 1.63, MT-IDyOM both: t34=8.87, p=2.07¢-09, d = 1.52),
with no statistically significant difference between the two (paired-sample t-test, t34 = 1.634, p = 0.225),
whereas the IDyOM stm model performed worst. This contrasts with the music analysis, where the
IDyOM stm model performed considerably better than the IDyOM Itm model. These observations
suggest that listeners’ melodic surprise is better explained by musical enculturation (i.e., exposure to
large amounts of music across the lifetime), modelled as statistical learning on a large corpus of music
(IDyOM Itm and MT), rather than by statistical regularities within the current musical piece alone
(IDyOM stm) or Gestalt-like rules (Temperley).

Short-range musical context shapes listeners’ melodic surprise

We again systematically varied the context length k to probe which context length captures listeners’
melodic surprise best (above we again considered each model at its optimal context length, defined by
the maximum Afsumprise-Bascline averaged across participants). The Temperley and IDyOM models’
incremental predictive contribution were marginally influenced by context length, with early peaks for
the IDyOM stm (k= 1) and Itm (k = 2) and later peaks for the both (k= 75) and Temperley models (k =
10) (Fig. 3B). The roughly constant level of performance was expected based on the music analysis,
since these models mainly relied on short-range context and their estimates of surprise were almost
constant. In contrast, we reported above that the Music Transformer model extracts long-range structure
in music, with music-predictive performance increasing up to context lengths of 350 notes. Strikingly,
however, surprise estimates from the MT predicted MEG data best at a context length of nine notes and
decreased for larger context lengths, even below the level of shorter ones (<10) (Fig. 3C).

Together, these findings suggest that long-term experience of listeners (IDyOM Itm and MT) better
captures neural correlates of melodic surprise than short-term statistical regularities (IDyOM stm). Yet,
melodic expectations based on statistical learning might not necessarily rest on long-range temporal
structure but rather shorter time scales between 5 and 10 notes. These results were replicated on the EEG
data (Fig. 4).
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Fig. 3: Model performance on MEG data from 35 listeners. (A) Cross-validated r for the Onset only model (top
left). Difference in cross-validated r between the Baseline model including acoustic regressors and the Onset model
(bottom left). Difference in cross-validated r between models including surprise estimates from different model
classes (color-coded) and the Baseline model (right). Vertical bars: participants; box plot as in Fig. 2. (B)
Comparison between the best surprise models from each model class as a function of context length. Lines: mean
across participants, shaded area: 95% CI. (C) Predictive performance of the Music Transformer (MT) on the MEG
data (left y-axis, dark, mean across participants) and the music data from the MEG study (right y-axis, light, median

across compositions).
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Fig. 4: Model performance on EEG data from 20 listeners. All panels as in Fig 3, but applied to the EEG data and
its musical stimuli.

Spatiotemporal neural characteristics of melodic surprise

To elucidate the spatiotemporal neural characteristics of naturalistic music listening, we further
examined the temporal response functions (TRFs; or ‘regression evoked responses’) from the best model
(MEG: MT at k=8, Fig. 5; EEG: MT at k=7, Fig. 6). Each TRF combines the time-lagged coefficients
for one regressor. The resulting time course describes how the feature of interest modulates neural
activity over time. Here, we focused on note onset, the repetition of notes, and melodic surprise. The
TRFs were roughly constant around zero in the baseline period (-0.2—0 s before note onset) and showed
a clear modulation time-locked to note onset (Fig. 5, 6). This confirmed that the deconvolution of
different features and the temporal alignment in the time-resolved regression worked well. Note that the
MEG data were transformed to combined planar gradients to yield interpretable topographies
(Bastiaansen & Kndsche, 2000), and therefore did not contain information about the polarity.
Interpretations regarding the sign of modulations in the TRFs were based on inspection of the axial
gradiometer MEG results (not shown) and confirmed on the EEG data (Fig. 6).

The TRF for the note onset regressor reflects the average neural response evoked by a note. The effect
was temporally extended from note onset up to 0.8 s (MEG) and 1 s (EEG) and clustered around bilateral
fronto-temporal MEG sensors (MEG: cluster-based permutation test p = 0.035, Fig. 5A; EEG: p = 5Se-
04, Fig. 6A). The time course resembled a P1-N1-P2 complex, typically found in ERP studies on
auditory processing (Picton, 2013; Pratt, 2011), with a first positive peak at about 75 ms (P1) and a
second positive peak at about 200 ms (P2). This was followed by a more sustained negative deflection
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between 300-600 ms. We inspected the note repetition regressors to account for the repetition
suppression effect, as a potential confound of melodic expectations (Todorovic et al., 2011; Todorovic
& Lange, 2012). We observed a negative deflection at temporal sensors peaking at about 200 ms,
reflecting lower neural activity for repeated versus non-repeated notes (MEG: p = 5e-04, Fig. 5B; EEG:
p = 0.008, Fig. 6B). This extends the well-known auditory repetition suppression effect (Grill-Spector
et al., 2006; Todorovic & Lange, 2012) to the setting of naturalistic music listening. Finally, the TRF of
the surprise regressor indicates how the level of model-based surprise modulates neural activity over
and above simple repetition. A fronto-temporal cluster of MEG sensors exhibited a positive peak at
about 200 ms and a sustained negative deflection between 300—-600 ms (MEG: p = 5e-04, Fig. 5C; EEG:
p = 0.004, Fig. 6C). The increased activity for more surprising notes is consistent with expectation
suppression effects (Todorovic & Lange, 2012). We ruled out that the late negativity effect was an
artifact arising from a negative correlation between surprise estimates of subsequent notes, since these
temporal autocorrelations were consistently found to be positive. The surprise estimates from the
Temperley and IDyOM models yielded similar, though slightly weaker, spatiotemporal patterns in the
MEG and EEG data (Fig. A4 and Fig. A5), indicating that they all captured melodic surprise given the
cross-model correlations.
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Fig. 5: Temporal response functions (TRFs, left column) and spatial topographies at four time periods (right
column) for the best model on the MEG data. (A): Note onset regressor. (B): Note repetition regressor. (C):
Surprise regressor from the Music Transformer with a context length of eight notes. TRF plots: Grey horizontal
bars: time points at which at least one channel in the ROI was significant. Lines: mean across participants and
channels. Shaded area: 95% CI across participants.
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Fig. 6: All panels as in Fig. 5, but applied to the EEG data and its musical stimuli.

Melodic processing is associated with the inferior frontal gyrus

To further shed light on the spatial profile of melody and surprise processing, we estimated the dominant
neural sources corresponding to the peak TRF deflection (180-240 ms post note onset) using equivalent
current dipole (ECD) modelling of the MEG data, assuming one dipole per hemisphere. This simple
model provided a good fit to the sensor-level TRF maps, indicated by the substantial amount of variance
explained (mean 7 across participants = 0.88 / 0.88 / 0.85 for Onset / Repetition / Surprise regressors,
SD =0.06/0.06/0.10). We show the density of fit dipole locations in Fig. 7. The TRF peak deflection
for all three regressors was best explained by bilateral sources in the opercular part of the inferior frontal
gyrus (IFG), roughly corresponding to Broca’s area, with a maximum in the left hemisphere for note
onset and note repetition and the right hemisphere for melodic surprise (see Fig. 7 for exact MNI
coordinates of density peaks).
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Fig. 7: Source-level results for the MEG TRF data. Volumetric density of estimated dipole locations across
participants in the time window of interest identified in Fig. 5 (180-240 ms), projected on the average Montreal
Neurological Institute (MNI) template brain. MNI coordinates are given for the density maxima with anatomical
labels from the Automated Anatomical Labeling atlas.

No evidence for neural tracking of melodic uncertainty

Besides surprise, melodic expectations can be characterized by their note-level uncertainty. Estimates
of surprise and uncertainty were positively correlated across different computational models (e.g., MT
with a context of eight notes: r = 0.21) (Fig. 8A). Surprisingly, the addition of uncertainty and its
interaction with surprise did not further improve but rather reduce models’ cross-validated predictive
performance on listeners’ MEG data compared to surprise alone (MT Surprise: Arsurmpise-Bascline = 0.004,
SD = 0.002; + Uncertainty: Aruscertainty-Basetine = 0.003, SD = 0.002, paired-sample t-test compared to
Surprise, t3s =-9.57, p = 1.42¢-10, d = -1.64; + Interaction SxU: Arsxu-Baseline = 0.002, SD = 0.002, t34 =
-13.81, p=1.66e-14, d=-2.37) (Fig. 8B). This result holds true for other computational models of music
and for the EEG data. Therefore, we do not further examine the TRFs here.
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Fig. 7: (A) Relationship between and distribution of surprise and uncertainty estimates from the Music
Transformer (context length of eight notes). (B) Cross-validated predictive performance for the Baseline + surprise
model (top), and for models with added uncertainty regressor (middle) and the interaction between surprise and
uncertainty (SxU, bottom). Adding uncertainty and/or the interaction between surprise and uncertainty (SxU) did
not improve but worsen the predictive performance on the MEG data.

Discussion

In the present study we investigated the nature of melodic expectations during naturalistic music
listening. We used a range of computational models to calculate melodic surprise and uncertainty under
different internal models. Through time-resolved regression on human listeners” M|EEG activity, we
gauged which model could most accurately predict neural indices of melodic surprise. In general,
melodic surprise enhanced neural responses, particularly around 200 ms and between 300-500 ms after
note onset. This was dissociated from sensory-acoustic and repetition suppression effects, supporting
expectation-based models of music perception. In a comparison between computational models of
musical expectation, melodic surprise estimates that were generated by an internal model that used long-
term statistical learning best captured neural surprise responses, highlighting extensive experience with
music as a key source of melodic expectations. Strikingly, this effect appeared to be driven by short-
range musical context of up to ten notes instead of longer-range structure. This provides an important
window into the nature and content of melodic expectations during naturalistic music listening.

Expectations are widely considered a hallmark of music listening (Huron, 2006; Koelsch et al., 2019;
Krumhansl, 2015; Meyer, 1957; Tillmann et al., 2014; Vuust et al., 2022), which resonates with the
predictive coding framework of perception and cognition (Clark, 2013; de Lange et al., 2018; Friston,
2010). Here, we tested the role of melodic expectations during naturalistic music listening, for which
neural evidence has been scarce. We quantified note-level surprise and uncertainty as markers of
melodic expectations and examined their effect on neural music processing using time-resolved
regression. Importantly, our analyses focused on disentangling different sources of melodic
expectations, as well as elucidating the length of temporal context that the brain is taking into account
when predicting which note will follow. This represents a critical innovation over earlier related work
(Di Liberto et al., 2020), from which conclusions were necessarily limited to establishing that the brain
predicts something during music listening, whereas we begin to unravel what it is that is being predicted.
Furthermore, our use of diverse naturalistic musical stimuli and MEG allows for a broader generalization
of our conclusions than was previously possible.

A key signature of predictive auditory processing is the neural response to unexpected events, also called
the prediction error response (Clark, 2013; Friston, 2010; Heilbron & Chait, 2018). The degree to which
notes violate melodic expectations can be quantified as the melodic surprise. Across different
computational models of music, we found that melodic surprise explained M|EEG data from human
listeners beyond sensory-acoustic factors and beyond simple repetition effects. We thereby generalize
previous behavioural and neural evidence for listeners’ sensitivity to unexpected notes to a naturalistic
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setting (for reviews see Koelsch et al., 2019; Rohrmeier & Koelsch, 2012; Tillmann et al., 2014; Zatorre
& Salimpoor, 2013).

While the role of expectations in music processing is well established, there is an ongoing debate about
the nature of these musical expectations (Bigand et al., 2014; Collins et al., 2014; Rohrmeier & Koelsch,
2012). It has been claimed that these stem from a small set of general, Gestalt-like, principles
(Krumbhansl, 2015; Temperley, 2008, 2014). Alternatively, they may reflect the outcome of a statistical
learning process (Pearce, 2005; Pearce & Wiggins, 2012; Rohrmeier & Koelsch, 2012), which, in turn,
could reflect either short- or long-range regularities. For the first time, we present neural evidence that
weighs in on these questions. We simulated note-level expectations from different predictive
architectures of music, which reflected distinct sources of melodic expectations: Gestalt-like principles
(Temperley model), short-term statistical learning during the present composition (IDyOM stm) or
statistical learning through long-term exposure to music (IDyOM ltm, Music Transformer).

As a first core result, we found that long-term statistical learning (Music Transformer and IDyOM Itm)
captured neural surprise processing better than short-term regularities or Gestalt principles. Our results
thus stress the role of long-term exposure to music as a central source of neural melodic expectations.
The human auditory system exhibits a remarkable sensitivity to detect and learn statistical regularities
in sound (Saffran et al., 1999; Skerritt-Davis & Elhilali, 2018). This capacity has been corroborated in
statistical learning paradigms using behavioural (Barascud et al., 2016; Bianco et al., 2020), eye-tracking
(Milne et al., 2021; Zhao et al., 2019), and neuroimaging techniques (Barascud et al., 2016; Moldwin et
al.,2017; Pesnot Lerousseau & Schon, 2021). Furthermore, humans have extraordinary implicit memory
for auditory patterns (Agres et al., 2018; Bianco et al., 2020). It has therefore been proposed that listeners
learn the statistical regularities embedded in music through mere exposure (Pearce, 2018; Rohrmeier et
al., 2011; Rohrmeier & Rebuschat, 2012). The inferior frontal gyrus (IFG) fulfils a key role during such
sequence processing in general (Uddén & Bahlmann, 2012), including during music listening (Fadiga
et al., 2009), possibly by parsing nested hierarchies common to music (Cheung et al., 2018). The IFG’s
involvement dovetails well with our source modelling results.

Short-term regularities and Gestalt principles also significantly predicted neural variance and might
constitute concurrent, though weaker, sources of melodic expectations (Rohrmeier & Koelsch, 2012).
Gestalt principles, specifically, have been shown to adequately model listeners’ melodic expectations in
behavioural studies (Cuddy & Lunney, 1995; Morgan et al., 2019; Pearce & Wiggins, 2006; Temperley,
2014). One shortcoming of Gestalt-like models, however, is that they leave unresolved how Gestalt rules
emerge, assuming either innate principles (Narmour, 1990) or being agnostic to this question
(Temperley, 2008). We propose that the well-established statistical learning framework can account for
Gestalt-like principles. If the latter, for example pitch proximity, indeed fit a certain musical style, they
have to be reflected in the statistical regularities. Music theoretical research has indeed shown that
statistical learning based on bigrams can recover music theoretical Gestalt principles (Zivic et al., 2013),
even across different (musical) cultures (Savage et al., 2015). This further backs up the role of statistical
learning for musical expectations.

As a second core result, strikingly, we found that neural activity was best explained by those surprise
estimates taking into account only relatively short-range musical context. Even though extracting the
patterns upon which expectations are based requires long-term exposure (previous paragraph), the
relevant context length of these patterns for predicting upcoming notes turned out to be short, around 7
to 8 notes. In contrast, for modelling music itself (i.e., independently of neural activity), the music
transformer performed monotonically better with increasing context length, up to hundreds of notes.
This pattern of results is very unlike similar studies in language processing, where models that perform
best at next word prediction and can take the most context into account (i.e., transformers) also perform
best at predicting behavioural and brain responses, and predictions demonstrably take long-term context
into account (Goodkind & Bicknell, 2018; Heilbron et al., 2021; Schmitt et al., 2021; Schrimpf et al.,
2021). A cautious hypothesis is that musical motifs, groups of about 2-10 notes, are highly generalizable
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within a musical style compared to longer-range structure (Krumhansl, 2015). Motifs might thus drive
statistical learning and melodic predictions, while other temporal scales contribute concurrently (Maheu
et al., 2019). However, several alternative explanations are possible, between which we cannot
adjudicate, based on our data. First, the length of ten notes roughly corresponds to the limit of auditory
short-term memory at about 2-4 s (Thaut, 2014), which might constrain predictive sequence processing.
Second, our analysis is only sensitive to time-locked note-level responses and those signals measured
by M|EEG, whereas long-range musical structure might have different effects on neural processing
(Krumhansl, 2015; Rohrmeier & Koelsch, 2012), in particular slower effects that are less precisely
linked to note onsets. A third and final caveat is that the modelling of long-range structure by the music
transformer model might be different from how human listeners process temporally extended or
hierarchical structure.

Our approach of using temporal response function (TRF, or ‘regression evoked response’, TERP)
analysis allowed us to investigate the spatiotemporal characteristics of continuously unfolding neural
surprise processing. Melodic surprise modulated neural activity evoked by notes over fronto-temporal
areas with a positive peak at about 200 ms, corresponding to a modulation of the P2 component (Picton,
2013; Pratt, 2011). Source modelling suggests the inferior frontal gyrus as a likely source of this neural
response. Surprising notes elicited stronger neural responses, in line with previous reports by Di Liberto
et al. (2020). This finding is furthermore consistent with the more general effect of expectation
suppression, the phenomenon that expected stimuli evoke weaker neural responses (Auksztulewicz &
Friston, 2016; Garrido et al., 2009; Todorovic & Lange, 2012; Wacongne et al., 2011) through gain
modulation (Quiroga-Martinez et al., 2021). In line with predictive coding, the brain might hence be
predicting upcoming notes in order to explain away predicted sensory input, thereby leading to enhanced
responses to surprising (i.e., not yet fully explainable) input.

Additionally, we found a sustained late negativity correlating with melodic surprise, which some studies
have labelled a musical N400 or N500 (Calma-Roddin & Drury, 2020; Koelsch et al., 2000; Miranda &
Ullman, 2007; Painter & Koelsch, 2011; Pearce et al., 2010). Similar to its linguistic counterpart (Kutas
& Federmeier, 2011), the N400 has been interpreted as an index of predictive music processing. The
literature has furthermore frequently emphasised the mismatch negativity (MMN) (Néétinen et al.,
2007) and P3 component in predictive music processing (Koelsch et al., 2019), neither of which we
observe for melodic surprise here. However, the MMN is typically found for deviants occurring in a
stream of standard tones, such as in oddball paradigms, while the P3 is usually observed in the context
of an explicit behavioural task (Koelsch et al., 2019). In our study, listeners were listening passively to
maximize the naturalistic setting, which could account for the absence of these components. Importantly,
our results go beyond previous research by analysing the influence of melodic surprise in a continuous
fashion, instead of focusing on deviants.

As a final novel contribution, we demonstrate the usefulness of a state-of-the-art deep learning model,
the Music Transformer (MT) (Huang et al., 2018), for the study of music cognition. The network
predicted music and neural data at least on par with the IDyOM model, an n-gram model which is
currently a highly popular model of musical expectations (Pearce & Wiggins, 2012). We are likely
severely underestimating the relative predictive power of the MT, since we constrained our stimuli to
monophonic music in the present study. Monophonic music is the only type of music the other models
(IDyOM, Temperley) are able to process, so this restriction was a technical necessity. The MT, in
contrast, supports fully polyphonic music. This opens up new avenues for future work to study neural
music processing in even more naturalistic settings.

To conclude, by using computational models to capture different hypotheses about the nature and source
of melodic expectations and linking these to neural data recorded during naturalistic listening, we found
that these expectations have their origin in long-term exposure to the statistical structure of music. Yet,
strikingly, as listeners continuously exploit this long-term knowledge during listening, they do so
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primarily on the basis of short-range context. Our findings thereby elucidate the individual voices
making up the ‘surprise symphony’ of music perception.

Materials and Methods

Data and code availability

The MEG and music data are available from the Donders Repository (https://data.donders.ru.nl/) under
persistent identifier ([link available to peer reviewers]). The analysis code is available from the Donders
Repository ([link available to peer reviewers]) and GitHub ([link to be published after peer review]).

Participants

We recruited 35 healthy participants (19 female; 32 right-handed; age: 18-30 years, mean = 23.8, SD =
3.05) via the research participation system at Radboud University. The sample size was chosen to
achieve a power of > 80% for detecting a medium effect size (d = 0.5) with a two-sided paired t-test at
an o level of 0.05. All participants reported normal hearing. The study was approved under the general
ethical approval for the Donders Centre for Cognitive Neuroimaging (Imaging Human Cognition,
CMO2014/288) by the local ethics committee (CMO Arnhem-Nijmegen, Radboud University Medical
Centre). Participants provided written informed consent before the experiment and received monetary
compensation.

Procedure

Participants listened to music, while their neural activity was recorded using magnetoencephalography
(MEG) (Fig. 1). Participants started each musical stimulus with a button press and could take short
breaks in between stimuli. Participants were instructed to fixate a dot displayed at the centre of a screen
(~85 cm viewing distance) in order to reduce head and eye movements. Besides that, participants were
only asked to listen attentively to the music and remain still. These minimal instructions were intended
to maximize the naturalistic character of the study. Initially, three test runs (~10 s each) were completed,
in which three short audio snippets from different compositions (not used in the main experiment) were
presented. This was intended to make listeners familiar with the procedure and the different sounds, as
well as to adjust the volume to a comfortable level.

Musical stimuli

We selected 19 original compositions (duration: total = 43 min, median across stimuli = 134 s, median
absolute deviation (MAD, Leys et al., 2013) = 39 s; note events: total = 9824, median = 448, MAD =
204) from Western classical music (see Appendix Table A1). We chose this genre, since (a) participants
recruited from the Nijmegen area were assumed to be somewhat familiar with it, (b) it entails relatively
complex melodies and long-term structure allowing us to sample a broad range of surprise and
uncertainty estimates, (¢) many digital music files and corpora in MIDI format are publicly available,
and (d) these included monophonic pieces. Monophonic refers to one note being played at a time, i.e.,
only containing a melody, compared to polyphonic music, which further includes chords and/or parallel
voices. The constraint to monophonic compositions was necessary to enable the application of the
Temperley and IDyOM model, which cannot parse polyphonic music. Based on the available databases,
the selection aimed to cover various musical periods (1711-1951), composers, tempi (60—176 bpm), and
key signatures, roughly matching the statistics of the training corpus for the music models (see below).
The median note duration was about 161 ms (MAD across all notes = 35 ms, min = 20 ms, max = 4498
ms), with a median inter-note onset interval of 200 ms (MAD across all notes = 50 ms, min = 22 ms,
max = 2550 ms).
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We used the Musescore 3 software to synthesize and export the digital MIDI files as wav audio files
(sampling rate = 44.1 kHz). This ensured accurate control over the note timing compared to live or
studio recordings, facilitating time-locked analyses. The synthesisation via one of three virtual
instruments from fluidsynth (piano, oboe, flute) ensured the natural character of the music. The MIDI
velocity, corresponding to loudness (termed ‘velocity’ in MIDI terms because it refers to the velocity
with which one could strike a piano key), was set to 100 for all notes, since most files were missing
velocity information and the volume was thus held roughly constant across notes.

Stimulus presentation

The experiment was run on a Windows computer using Matlab 2018b (The MathWorks) and the
Psychophysics Toolbox (Brainard, 1997). The music was presented binaurally via ear tubes at a
sampling rate of 44.1 kHz. The volume was adjusted to a comfortable level for each participant during
the initial three test runs. To ensure equivalent acoustic input in both ears, the right audio channel from
potentially stereo recordings was duplicated, resulting in mono audio presentation. After participants
initiated a run by a button press, the wav file was first loaded into the sound card buffer to ensure accurate
timing. Once the file was fully loaded, the visual fixation cross appeared at the centre of the screen and
after 1.5-2.5 s (random uniform distribution) the music started. The order of compositions was
randomized across participants.

MEG data acquisition

Neural activity was recorded on a 275-channel axial gradiometer MEG system (VSM/CTF Systems) in
a magnetically shielded room, while the participant was seated. Eight malfunctioning channels were
disabled during the recording or removed during preprocessing, leaving 267 MEG channels in the
recorded data. We monitored the head position via three fiducial coils (left and right ear, nasion). When
the head movement exceeded 5 mm, in between listening periods, the head position was shown to the
participant, and they were instructed to reposition themselves (Stolk et al., 2013). All data were low-
pass filtered online at 300 Hz and digitized at a sampling rate of 1200 Hz.

Further data acquisition

For source analysis, the head shape and the location of the three fiducial coils were measured using a
Polhemus 3D tracking device. T1-weighted anatomical MRI scans were acquired on a 3T MRI system
(Siemens) after the MEG session if these were not already available from the local database (MP-RAGE
sequence with a GRAPPA acceleration factor of 2, TR =2.3 s, TE = 3.03 ms, voxel size 1 mm isotropic,
192 transversal slices, 8 © flip angle). Additionally, during the MEG session, eye position, pupil diameter
and blinks were recorded using an Eyelink 1000 eye tracker (SR Research) and digitized at a sampling
rate of 1200 Hz. After the experiment, participants completed a questionnaire including a validated
measure of musicality, the Goldsmith Musical Sophistication Index (Miillensiefen et al., 2014). The eye
tracking and questionnaire data were not analysed here.

EEG dataset

In addition, we analysed an open data set from a recently published study (Di Liberto et al., 2020)
including EEG recordings from 20 participants (10 musicians, 10 non-musicians) listening to music.
The musical stimuli were 10 violin compositions by J. S. Bach synthesized using a piano sound
(duration: total = 27 min, median = 161.5 s, MAD = 18.5 s; note events: total = 7839, median = 631,
MAD = 276.5; see Appendix Table A1), that were each presented three times in pseudo-randomized
order (total listening time = 80 min). The median note duration was 145 ms (MAD across all notes = 32
ms, min = 70 ms, max = 2571 ms), with a median inter-note onset interval of 150 ms (MAD across all
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notes = 30 ms, min = 74 ms, max = 2571 ms). EEG was acquired using a 64-electrode BioSemi Active
Two system and digitized at a sampling rate of 512 Hz.

Music analysis

We used three types of computational models of music to investigate human listeners’ melodic
expectations: the Temperley model (Temperley, 2008, 2014), the IDyOM model (Pearce & Wiggins,
2012), and the Music Transformer (Huang et al., 2018). Based on their differences in computational
architecture, we used these models to operationalize different sources of melodic expectations. All
models take as input MIDI data, specifically note pitch values X ranging discretely from 0 to 127 (8.18
—12543.85 Hz, middle C = 60, ~264 Hz). The models output a probability distribution for the next note
pitch at time point ¢, X;, given a musical context of & preceding consecutive note pitches:

P(X¢|xiZh), where X € {0..127}, k > 0,t > 0.

For the first note in each composition, we assumed a uniform distribution across pitches (P(X, = x) =
1/128). Based on these probability distributions, we computed the surprise S of an observed note pitch
X; given the musical context as

S(xe) = —loge P(x¢|x{7g)-

Likewise, the uncertainty U associated with predicting the next note pitch was defined as the entropy of
the probability distribution across all notes in the alphabet:

U = —Y27P(X, = x) log, P(X, = x|xt2}).

Training corpora

All models were trained on the Monophonic Corpus of Complete Compositions (MCCC)
(https://osf.io/dg7ms/), which consists of 623 monophonic pieces (Note events: total = 500,000, median
=654, MAD =309). The corpus spans multiple musical periods and composers and matches the statistics
of the musical stimuli used in the MEG and EEG study regarding the distribution of note pitch and pitch
interval (Appendix Fig. A2) as well as the proportion of major key pieces (MCCC: ~81%, Musicuea:
~74%, but Musiceeg: 20%). Furthermore, the Maestro corpus V3 (Hawthorne et al., 2019,
https://magenta.tensorflow.org/datasets/maestro), which comprises 1276 polyphonic compositions
collected from human piano performances (Duration: total = 200 h, note events: total = 7 million), was
used for the initial training of the Music Transformer (see below).

Probabilistic Model of Melody Perception | Temperley

The Probabilistic Model of Melody Perception (Temperley, 2008, 2014) is a Bayesian model based on
three interpretable principles established in musicology. Therefore, it has been coined a Gestalt-model
(Morgan et al., 2019). The three principles are modelled by probability distributions (discretized for
integer pitch values), whose free parameters were estimated, in line with previous literature, based on
the MCCC:

(1) Pitches x; cluster in a narrow range around a central pitch ¢ (central pitch tendency):
x¢~N (¢, v,.), where c~N (¢, varg).

The parameters ¢y and var.p. were set to the mean and variance of compositions’ mean pitch in
the training corpus (co= 72, var.o= 34.4). The variance of the central pitch profile v: was set to
the variance of each melody’s first note around its mean (v, = 83.2).
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(2) Pitches tend to be close to the previous pitch x;-;, in other words pitch intervals tend to be small
(pitch proximity):
Xe~N (Xp—1, V)

The variance of the pitch proximity profile v, was estimated as the variance of pitches around
x:-; considering only notes where x;,—; = ¢ (v = 18.2).

(3) Depending on the key, certain pitches occur more frequently given their scale degree (the
position of a pitch relative to the tonic of the key). This key profile is modelled as the probability
of a scale degree conditioned on the key (12 major and 12 minor keys) spread out across several
octaves, weighted by the probability of major and minor keys (pmaj = .81).

The final model multiplicatively combines these distributions to give the probability of the next note
pitch given the context. The C code was provided by David Temperley in personal communication and
adapted to output probabilities for all possible pitch values X.

Information Dynamics of Music model | IDyOM

The Information Dynamics of Music (IDyOM) model is an unsupervised statistical learning model,
specifically a variable order Markov model (Pearce, 2005; Pearce & Wiggins, 2012). Based on n-grams
and the alphabet X, the probability of a note pitch x at time point #, x;, given a context sequence of length
k, xtZ}, is defined as the relative n-gram frequency of the continuation compared to the context:

Plaeit) = G

The probabilities are computed for every possible n-gram length up to a bound £ and combined through
interpolated smoothing. The context length was, therefore, manipulated via the n-gram order bound. The
model can operate on multiple musical features, called viewpoints. Here we use pitch (in IDyOM
terminology cpitch) to predict pitch, in line with the other models.

The IDyOM model class entails three different subtypes: a short-term model (stm), a long-term model
(Itm), and a combination of the former two (both). The IDyOM stm model rests solely on the recent
context in the current composition. As such, it approximates online statistical learning of short-term
regularities in the present piece. The IDyOM ltm model, on the other hand, is trained on a corpus,
reflecting musical enculturation, that is (implicit) statistical learning through long-term exposure to
music. The IDyOM both model combines the stm and I1tm model weighted by their entropy at each note.

Music Transformer

The Music Transformer (MT) (Huang et al., 2018) is a state-of-the-art neural network model that was
developed to generate music with improved long-range coherence. To this end, it takes advantage of a
Transformer architecture (Vaswani et al., 2017) and relative self-attention (Shaw et al., 2018), which
better capture long-range structure in sequences than e.g. n-gram models. The MT is the only model
used here that can process polyphonic music. This is possible due to a representation scheme that
comprises four event types (note onset, note offset, velocity, and time-shift events) for encoding and
decoding MIDI data. The note onset values are equivalent to pitch values and were used to derive
probability distributions. Our custom scripts were based on an open adaptation for PyTorch
(https://github.com/gwinndr/Music Transformer-Pytorch).

The Music Transformer was initially trained on the polyphonic Maestro corpus for 300 epochs using the
training parameters from the original paper (learning rate = 0.1, batch size = 2, number of layers = 6,
number of attention heads = 6, dropout rate = 0.1, (Huang et al., 2018)). The training progress was
monitored based on the cross-entropy loss on the training data (80%) and test data (20%) (Fig. 8A). The
cross-entropy loss is defined as the average surprise across all notes. The model is, thus, trained to
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minimize the surprise for upcoming notes. The minimal loss we achieved (1.97) was comparable to the
original paper (1.835). The divergence between the loss curve for training and test set indicated some
overfitting starting from about epoch 50, however, without a noticeable decrease in test performance.
Therefore, we selected the weights at epoch 150 to sure stable weights without severe overfitting.

In order to adjust the model to monophonic music, we finetuned the pretrained Music Transformer on
the MCCC for 100 epochs using the same training parameters (Fig. 8B). Again, the training progress
was evaluated based on the cross-entropy loss and the weights were selected based on the minimal loss.
While the loss started at a considerably lower level on this monophonic dataset (0.78), it continued to
decrease until epoch 21 (0.59), but quickly started to increase, indicating overfitting on the training data.
Therefore, the weights from epoch 21 were selected for further analyses.

A - B . ,
Training on Maestro corpus Fine-tuning on MCCC
6 5
5| 08 Test
@ a4t g 06r
S S
sl 0.4
2| 0.2 Train
S —
0 50 100 150 200 250 300 0 20 40 60 80 100
Epoch Epoch

Fig. 8: Training (A) and fine-tuning (B) of the Music Transformer on the Maestro corpus and MCCC, respectively.
Cross-entropy loss (average surprise across all notes) on the test (dark) and training (light) data as a function of
training epoch.

Music model comparison

We compared the models’ predictive performance on music data as a function of model class and context
length. Thereby, we aimed to scrutinize the hypothesis that the models reflect different sources of
melodic expectations. We used the musical stimuli from the MEG and EEG study as test sets and
assessed the accuracy, median surprise and uncertainty across compositions.

M|EEG analysis

Preprocessing

The MEG data were preprocessed in Matlab 2018b using FieldTrip (Oostenveld et al., 2011). We loaded
the raw data separately for each composition including about 3 s pre- and post-stimulus periods. Based
on the reference sensors of the CTF MEG system, we denoised the recorded MEG data using 3™ order
gradient correction, after which the per-channel mean across time was subtracted. We then segmented
the continuous data in 1 s segments. Using the semi-automatic routines in FieldTrip, we marked noisy
segments according to outlying variance, such as MEG squid jumps, eye blinks or eye movements
(based on the unfiltered data) or muscle artifacts (based on the data filtered between 110 and 130 Hz).
After removal of noisy segments, the data were downsampled to 400 Hz. Independent component
analysis (ICA) was then performed on the combined data from all compositions for each participant to
identify components that reflected artifacts from cardiac activity, residual eye movements or blinks.
Finally, we reloaded the data without segmentation, removed bad ICA components and downsampled
the data to 60 Hz for subsequent analyses.
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A similar preprocessing pipeline was used for the EEG data. Here, the data were re-referenced using the
linked mastoids. Bad channels were identified via visual inspection and replaced through interpolation
after removal of bad ICA components.

TRF Analysis

We performed time-resolved linear regression on the M|[EEG data to investigate the neural signatures of
melodic surprise and uncertainty (Fig. 1), using the regression evoked response technique (‘TERP’,(N.
J. Smith & Kutas, 2015)).This approach allowed us to deconvolve the responses to different features
and subsequent notes and correct for their temporal overlap. The preprocessed M|[EEG data were loaded
and band-pass filtered between 0.5-8 Hz (bidirectional FIR filter). All features of interest were modelled
as impulse regressors with one value per note, either binary (x = {0,1}) or continuous (x € R). The
M|EEG channel data and continuous regressors were z-scored. We constructed a time-expanded
regression matrix M, which contained time-shifted versions of each regressor column-wise (#i» = -0.2
S, tmax = 1 s relative to note onsets, 73 columns per regressor given the sampling rate of 60 Hz). After
removal of bad time points identified during M|EEG preprocessing, we estimated the regression weights
f using ordinary least squares regression:

B=M"TM)"1MTy.

Collectively, the weights form a response function known as the regression evoked response or temporal
response function (TRF; (Crosse et al., 2016; Ding & Simon, 2012). The TRF depicts how a feature
modulates neural activity across time. Here, the units are arbitrary, since both binary and z-scored
continuous regressors were included. Model estimation was performed using custom Python code built
on the MNE rERP implementation (Gramfort et al., 2013; N. J. Smith & Kutas, 2015).

Models and regressors

The Onset model contained a binary regressor, which coded for note onsets and was included in all other
models too. The Baseline model added a set of regressors to control for acoustic properties of the music
and other potential confounds. Binary regressors were added to code for (1) very high pitch notes (>
90% quantile), (2) very low pitch notes (< 10% quantile), since extreme pitch values go along with
differences in perceived loudness, timbre, and other acoustic features; (3) the first note in each
composition (i.e. composition onset); (4) repeated notes, to account for the repetition suppression effect
and separate it from the surprise response. Since the MEG experiment used stimuli generated by
different musical instruments, we additionally controlled for the type of sound, by including binary
regressors for oboe and flute sounds. This was done since the different sounds have different acoustic
properties, such as a lower attack time for piano sounds and longer sustain for oboe or flute sounds. For
computing continuous acoustic regressors, we downsampled the audio signal to 22.05 kHz. We
computed the mean for each variable of interest across the note duration to derive a single value for each
note and create impulse regressors. The root-mean-square value (RMS) of the audio signal captures
differences in (perceived) loudness. Flatness, defined as the ratio between the geometric and the
arithmetic mean of the acoustic signal, controlled for differences in timbre. The variance of the broad-
band envelope represented acoustic edges (McDermott & Simoncelli, 2011). The broad-band envelope
was derived by (a) filtering the downsampled audio signal through a gammatone filter bank (64
logarithmically spaced filter bands ranging between 50-8000 Hz), which simulates human auditory
processing; (b) taking the absolute value of the Hilbert transform of the 64 band signals; (c) averaging
across bands (Zuk et al., 2021). The baseline regressors were also included in all of the following models.
The main models of interest added note-level surprise, uncertainty, and/or their interaction from the
different computational models of music, varying the model class and context length.
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Model comparison

We applied a 5-fold cross-validation scheme (train: 80%, test: 20%, time window: 0—0.6 s) (Varoquaux
et al., 2017) to compare the regression models’ predictive performance on the M|EEG data. We
computed the correlation between the predicted and recorded neural signal across time for each fold and
channel on the hold out data. To increase the sensitivity of subsequent analyses, we selected the channels
most responsive to musical notes for each participant according to the cross-validated performance for
the Onset model (> 2/3 quantile). The threshold was determined through visual inspection of the spatial
topographies, but did not affect the main results. The overall model performance was then determined
as the median across folds and the mean across selected channels. Since the predictive performance was
assessed on unseen hold out data, the approach controlled for overfitting the neural data and for
differences in the number of regressors and free model parameters. For statistical inference, we
computed one-sample or paired t-tests using multiple comparison correction (Bonferroni-Holm
method).

Cluster-based statistics

For visualizations and cluster-based statistics, we transformed the regression coefficients from the axial
MEG data to a planar representation using FieldTrip (Bastiaansen & Kndsche, 2000). For the planar-
transformed coefficients, we selected the most responsive channels according to the coefficients of the
note onset regressor in the Onset model (> 5/6 quantile, time window: 0-0.6 s). The threshold was
determined through visual inspection of the spatial topographies, but did not affect the main results. We
then used cluster-based permutation tests (Maris & Oostenveld, 2007) to identify significant spatio-
temporally clustered effects compared to the baseline time window (-0.2-0 s, 2,000 permutations).
Using threshold free cluster enhancement (TFCE, Smith & Nichols, 2009), we further determined
significant time points, where at least one selected channel showed a significant effect. Mass-univariate
testing was done via one-sample t-tests on the baseline-corrected M|EEG data with “hat’ variance
adjustment (c = 1e—3) (Ridgway et al., 2012).

Source analysis

To localize the neural sources associated with the different regressors, we used equivalent current dipole
modelling (ECD). Individuals’ anatomical MRI scans were realigned to CTF space based on the
headshape data and the fiducial coil locations, using a semi-automatic procedure in Fieldtrip. The lead
field was computed using a single-shell volume conduction model (Nolte, 2003). Based on individuals’
time-averaged axial gradient TRF data in the main time window of interest (180-240 ms), we used a
non-linear fitting algorithm to estimate the two-dipole configuration that best explained the observed
sensor maps (FieldTrip’s ft_dipolefitting). As starting point for the search, we roughly specified bilateral
primary auditory cortex (MNI coordinates x/y/z [40, -28, 10] mm (R), [-40, -28, 6] mm; Anderson et
al., 2011; Kiviniemi et al., 2009). Note that the initial dipole location has a negligible effect on the final
solution if the data are well explained by the final fit model. This was the case for our data, see Results.
For visualization, we estimated the (volumetric) density of best-fit dipole locations across participants
and projected this onto the average MNI brain template, separately for each regressor.
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Appendix

Al: Overview of the musical stimuli presented in the MEG (top) and EEG study (bottom).

MUSiCMEG
Time Tempo Duration
Composer Composition Year Key signature (bpm) (sec) Notes Sound
Benjamin Britten Metamorphoses Op. 49, Il. Phaeton 1951 C maj 4/4 110 95 384 Oboe
Benjamin Britten Metamorphoses Op. 49, IIl. Niobe 1951 Db maj 4/4 60 101 m Oboe
Benjamin Britten Metamorphoses Op. 49, [V. Bacchus 1951 F maj 4/4 100 114 448 Oboe
César Franck Violin Sonata IV. Allegretto poco mosso 1886 A maj 4/4 150 175 458 Flute
Carl Philipp Emanuel Bach Sonata for Solo Flute, Wq.132 / H.564 I1I. 1763 A min 3/8 98 275 1358 Flute
Ernesto Kohler Flute Exercises Op. 33a, V. Allegretto 1880 G maj 4/4 124 140 443 Flute
Ernesto Kohler Flute Exercises Op. 33b, VI. Presto 1880 D min 6/8 176 134 664 Piano
Georg Friedrich Handel Flute Sonata Op. 1 No. 5, HWV 363b, IV. Bourrée 171 G maj 4/4 132 84 244 Oboe
Georg Friedrich Handel Flute Sonata Op. T No. 3, HWV 379, IV. Allegro 171 E min 3/8 96 143 736 Piano
Joseph Haydn Little Serenade 1785 F maj 3/4 92 81 160 Oboe
Johann Sebastian Bach Flute Partita BWV 1013, Il. Courante 1723 A min 3/4 64 176 669 Flute
Johann Sebastian Bach Flute Partita BWV 1013, IV. Bourrée angloise 1723 A min 2/4 62 138 412 Oboe
Johann Sebastian Bach Violin Concerto BWV 1042, |. Allegro 1718 Emaj 2/2 100 122 698 Piano
Johann Sebastian Bach Violin Concerto BWV 1042, I11. Allegro Assai 1718 Emaj 3/8 92 80 413 Piano
Ludwig van Beethoven Sonatina (Anh. 5 No. 1) 1807 G maj 4/4 128 210 624 Flute
Muzio Clementi Sonatina Op. 36 No. 5, lll. Rondo 1797 G maj 2/4 112 187 915 Piano
Modest Mussorgsky Pictures at an Exhibition - Promenade 1874 Bb maj 5/4 80 106 179 Oboe
Pyotr llyich Tchaikovsky The Nutcracker Suite - Russian Dance Trepak 1892 G maj 2/4 120 78 396 Piano
Wolfgang Amadeus Mozart The Magic Flute K620, Papageno’s Aria 1791 F maj 2/4 72 150 452 Flute
2589 9824
MUSiCEEG
Time Tempo Duration
Composer Composition Year Key signature (bpm) (sec) Notes Sound
Johann Sebastian Bach Flute Partita BWV 1013, |. Allemande 1723 A min 4/4 100 158 1022 Piano
Johann Sebastian Bach Flute Partita BWV 1013, II. Corrente 1723 A min 3/4 100 154 891 Piano
Johann Sebastian Bach Flute Partita BWV 1013, Ill. Sarabande 1723 A min 3/4 70 120 301 Piano
Johann Sebastian Bach Flute Partita BWV 1013, IV. Bourree 1723 A min 2/4 80 135 529 Piano
Johann Sebastian Bach Violin Partita BWV 1004, |. Allemande 1723 D min 4/4 47 165 540 Piano
Johann Sebastian Bach Violin Sonata BWV 1001, IV. Presto 1720 G min 3/8 125 199 1604 Piano
Johann Sebastian Bach Violin Partita BWV 1002, |. Allemande 1720 Bb min 4/4 50 173 620 Piano
Johann Sebastian Bach Violin Partita BWV 1004, V. Gigue 1723 D min 12/8 120 182 1352 Piano
Johann Sebastian Bach Violin Partita BWV 1006, II. Loure 1720 E maj 6/4 80 134 338 Piano
Johann Sebastian Bach Violin Partita BWV 1006, IIl. Gavotte 1720 E maj 4/4 140 178 642 Piano
1598 7839
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A2: Comparison of the pitch (left) and pitch interval distributions (right) for the music data from the MEG study
(top), EEG study (middle), and MCCC corpus (bottom).
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A3: Model performance on the musical stimuli used in the EEG study. (A) Comparison of music model
performance in predicting upcoming note pitch, as composition-level accuracy (left; higher is better), median
surprise across notes (middle; lower is better), and median uncertainty across notes (right). Context length for each
model is the best performing one across the range shown in (B). Vertical bars: single compositions, circle: median,
thick line: quartiles, thin line: quartiles + 1.5 x interquartile range. (B) Accuracy of note pitch predictions (median
across 10 compositions) as a function of context length and model class (same color code as (A)). Dots represent
maximum for each model class. (C) Correlations between the surprise estimates from the best models.
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A4: Comparison of the MEG TRFs and spatial topographies for the surprise estimates from the best models of
each model class.
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AS5: Comparison of the EEG TRFs and spatial topographies for the surprise estimates from the best models of each
model class.
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