
1 
 

Cortical activity during naturalistic 
music listening reflects short-range 
predictions based on long-term 
experience 
 

Pius Kern, Micha Heilbron, Floris P. de Lange, & Eelke Spaak1 
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands 

 

 

 

 

Acknowledgments 

We thank David Temperley for providing the code for his model and Marcus Pearce for discussions on 
the IDyOM model. This work was supported by The Netherlands Organisation for Scientific Research 
(NWO Veni grant 016.Veni.198.065 awarded to ES) and the European Research Council (ERC 
Consolidator grant SURPRISE # 101000942 awarded to FPdL).  

 
1 Corresponding author, eelke.spaak@donders.ru.nl. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495241doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495241
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 
 

Expectations shape our experience of music. However, the internal model upon which listeners form 
melodic expectations is still debated. Do expectations stem from Gestalt-like principles or statistical 
learning? If the latter, does long-term experience play an important role, or are short-term regularities 
sufficient? And finally, what length of context informs contextual expectations? To answer these 
questions, we presented human listeners with diverse naturalistic compositions from Western classical 
music, while recording neural activity using MEG. We quantified note-level melodic surprise and 
uncertainty using various computational models of music, including a state-of-the-art transformer neural 
network. A time-resolved regression analysis revealed that neural activity over fronto-temporal areas 
tracked melodic surprise particularly around 200 ms and 300–500 ms after note onset. This neural 
surprise response was dissociated from sensory-acoustic and adaptation effects. Neural surprise was best 
predicted by computational models that incorporated long-term statistical learning – rather than by 
simple, Gestalt-like principles. Yet, intriguingly, the surprise reflected primarily short-range musical 
contexts of less than ten notes. We present a full replication of our novel MEG results in an openly 
available EEG dataset. Together, these results elucidate the internal model that shapes melodic 
predictions during naturalistic music listening.  
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Introduction 
 

The second movement of Haydn’s symphony No. 94 begins with a string section creating the expectation 
of a gentle and soft piece, which is suddenly interrupted by a tutti fortissimo chord. This startling motif 
earned the composition the nickname “Surprise symphony”. All music, in fact, plays with listeners’ 
expectations to evoke musical enjoyment and emotions, albeit often in more subtle ways (Huron, 2006; 
Juslin & Västfjäll, 2008; Meyer, 1957; Salimpoor et al., 2015). A central element of music which 
induces musical expectations is melody, the linear sequence of notes alternating in pitch. Within a 
musical piece and style, such as Western classical music, certain melodic patterns appear more 
frequently than others, establishing a musical syntax (Krumhansl, 2015; Patel, 2003; Rohrmeier et al., 
2011). Human listeners have been proposed to continuously form predictions on how the melody will 
continue based on these regularities (Koelsch et al., 2019; Meyer, 1957; Tillmann et al., 2014; Vuust et 
al., 2022). 

In support of prediction-based processing of music, it has been shown that listeners are sensitive to 
melodic surprise. Behaviourally, higher-surprise notes are rated as more unexpected (Krumhansl & 
Kessler, 1982; Marmel et al., 2008, 2010; Pearce et al., 2010; Schmuckler, 1989) and impair 
performance, e.g. in dissonance detection tasks (Pearce et al., 2010; Sears et al., 2019). Listeners 
continue melodic primes with low-surprise notes in musical cloze tasks (Carlsen, 1981; Morgan et al., 
2019; Schmuckler, 1989). Neural activity tracks melodic surprise (Di Liberto et al., 2020) and high-
surprise notes elicit electrophysiological signatures indicative of surprise processing, in particular the 
mismatch negativity (Brattico et al., 2006; Mencke et al., 2021; Näätänen et al., 2007; Quiroga-Martinez 
et al., 2020) and P3 component (Quiroga-Martinez et al., 2020) (for a review see Koelsch et al., 2019), 
but also the P2 component (Omigie et al., 2013), a late negative activity around 400 ms (Miranda & 
Ullman, 2007; Pearce et al., 2010), and oscillatory activity (Omigie et al., 2019; Pearce et al., 2010).   
Despite this extensive body of neural and behavioural evidence on the effects of melodic expectations 
in music perception, the form and content of the internal model generating these expectations remain 
unclear. Furthermore, the evidence stems primarily from studying the processing of relatively artificial 
stimuli, and how these findings extend to a more naturalistic setting is unknown. 

We set out to answer three related open questions regarding the nature of melodic expectations, as 
reflected in neural activity. First, are expectations best explained by a small set of Gestalt-like principles 
(Krumhansl, 2015; Temperley, 2008, 2014), or are they better captured by statistical learning (Pearce, 
2005; Pearce & Wiggins, 2012; Rohrmeier & Koelsch, 2012)? Overall, statistical learning models have 
proven slightly better fits for musical data (Temperley, 2014) and for human listeners’ expectations 
assessed behaviourally (Morgan et al., 2019; Pearce & Wiggins, 2006; Temperley, 2014), but the two 
types of models have rarely been directly compared. Second, if statistical learning drives melodic 
expectations, does this rely on long-term exposure to music, or might it better reflect the local statistical 
structure of a given musical piece? Finally, independent of whether melodic expectations are informed 
by short or long-term experience, we ask how much temporal context is taken into account by melodic 
expectations; i.e. whether these are based on a short- or a longer-range context. On the one hand, the 
brain might use as much temporal context as possible in order to predict optimally. On the other hand, 
the range of echoic memory is limited and temporal integration windows are relatively short, especially 
in sensory areas (Hasson et al., 2008; Honey et al., 2012; Himberger et al., 2018). Therefore, melodic 
expectations could be based on shorter-range context than would be statistically optimal. To address this 
question, we derived model-based probabilistic estimates of expectations using the Music Transformer 
(Huang et al., 2018). This is a state-of-the-art neural network model that can take long-range (and 
variable) context into account much more effectively than the n-gram models previously used to model 
melodic expectations. 
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In the current project we approached this set of questions as follows. First, we operationalized different 
sources of melodic expectations by simulating different predictive architectures: the Probabilistic Model 
of Melody Perception (Temperley, 2008, 2014), which is a Gestalt-like model; the Information 
Dynamics of Music (IDyOM) model, an n-gram based statistical learning model (Pearce, 2005; Pearce 
& Wiggins, 2012); and the aforementioned Music Transformer. We compared the different 
computational models’ predictive performance on music data to establish them as different hypotheses 
about the sources of melodic expectations. We then analyzed a newly acquired MEG dataset obtained 
while participants (n = 35) were listening to diverse, naturalistic, musical stimuli using time-resolved 
regression analysis. This allowed us to disentangle the contributions of different sources of expectations, 
as well as different lengths of contextual information, to the neural signature of surprise processing that 
is so central to our experience of music. To preview our results: we found that melodic surprise strongly 
modulates the evoked response, and that this effect goes beyond basic acoustic features and simple 
repetition effects, confirming that also in naturalistic music listening, brain responses are shaped by 
melodic expectations. Critically, we found that neural melodic surprise is best captured by long-term 
statistical learning; yet, intriguingly, depends primarily on short-range musical context. In particular, we 
observed a striking dissociation at a context window of about ten notes: models taking longer-range 
context into account become better at predicting music, but worse at predicting neural activity. Fronto-
temporal cortical sources most strongly contributed to the surprise signature, primarily around 200 ms 
and 300-500 ms after note onset. Finally, we present a full replication of our findings in an independent 
openly available EEG dataset (Di Liberto et al., 2020). 
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Results 

 
Fig. 1: Overview of the research paradigm. Listeners undergoing EEG (data from Di Liberto et al., 2020) or MEG 
measurement (novel data acquired for the current study) were presented with naturalistic music synthesized from 
MIDI files. To model melodic expectations, we calculated note-level surprise and uncertainty estimates via three 
computational models reflecting different internal models of expectations. We estimated the regression evoked 
response or temporal response function (TRF) for different features using time-resolved linear regression on the 
M|EEG data, while controlling for low-level acoustic factors. 

Music analysis 
We quantified the note-level surprise and uncertainty using different computational models of music, 
which were hypothesized to capture different sources of melodic expectation (see Methods for details). 
The Probabilistic Model of Melody Perception (Temperley) (Temperley, 2008, 2014) rests on a few 
principles derived from musicology and thus represents Gestalt-like perception (Morgan et al., 2019). 
The Information Dynamics of Music (IDyOM) model (Pearce & Wiggins, 2012) captures expectations 
from statistical learning, either based on short-term regularities in the current musical piece (IDyOM 
stm), long-term exposure to music (IDyOM ltm), or a combination of the former two (IDyOM both). 
The Music Transformer (MT) (Huang et al., 2018) is a state-of-the-art neural network model, which also 
reflects long-term statistical learning but is more sensitive to longer-range structure. In a first step, we 
aimed to establish the different models as distinct hypotheses about the sources of melodic expectations. 
We examined how well the models predicted music data and to what extent their predictions improved 
when the amount of available context increased. 

IDyOM stm and Music Transformer show superior melodic prediction 

First, we tested how well the different computational models predicted the musical stimuli presented in 
the MEG study (Fig. 2). Specifically, we quantified the accuracy with which the models predicted 
upcoming notes, given a certain number of previous notes as context information. While all models 
performed well above chance level accuracy (1/128 = 0.8%), the IDyOM stm (median accuracy across 
compositions: 57.9%), IDyOM both (53.5%), and Music Transformer (54.8%) models performed 
considerably better than the Temperley (19.3%) and IDyOM ltm (27.3%) models, in terms of median 
accuracy across compositions (Fig. 2A left). This pattern was confirmed in terms of the models’ note-
level surprise, which is a continuous measure of predictive performance. Here lower values indicate a 
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better ability to predict the next note given the context 2  (median surprise across compositions: 
Temperley = 2.18, IDyOM stm = 1.12, IDyOM ltm = 2.23, IDyOM both = 1.46, MT = 1.15, Fig. 2A 
middle). Furthermore, the uncertainty, defined as the entropy of the probability distribution at each time 
point, characterizes each model’s confidence (inverse) in its predictions (maximum uncertainty = 4.85 
given a uniform probability distribution). The Music Transformer model formed predictions more 
confidently than the other models, whereas the Temperley model displayed the highest uncertainty 
(median uncertainty across compositions: Temperley = 2.65, IDyOM stm = 2.23, ltm = 2.49, both = 
2.28, MT = 1.69, Fig. 2A right). Within the IDyOM class, the stm model consistently showed lower 
uncertainty compared to the ltm model, presumably reflecting a greater consistency of melodic patterns 
within versus across compositions. As a result, the both model was driven by the stm model, since it 
combines the ltm and stm components weighted by their uncertainty (mean stm weight = 0.72, mean 
ltm weight = 0.18). 

 

 

Fig. 2: Model performance on the musical stimuli used in the MEG study. (A) Comparison of music model 
performance in predicting upcoming note pitch, as composition-level accuracy (left; higher is better), median 
surprise across notes (middle; lower is better), and median uncertainty across notes (right). Context length for each 
model is the best performing one across the range shown in (B). Vertical bars: single compositions, circle: median, 
thick line: quartiles, thin line: quartiles ± 1.5 × interquartile range. (B) Accuracy of note pitch predictions (median 
across 19 compositions) as a function of context length and model class (same color code as (A)). Dots represent 
maximum for each model class. (C) Correlations between the surprise estimates from the best models. (For similar 
results for the musical stimuli used in the EEG study, see Appendix A3).  

Music Transformer utilizes long-range musical structure 

Next, we examined to what extent the different models utilize long-range structure in musical 
compositions or rely on short-range regularities by systematically varying the context length k (above 
we considered each model at its optimal context length, defined by the maximum accuracy). The Music 
Transformer model proved to be the only model for which the predictive accuracy increased 
considerably as the context length increased, from about 9.17% (k = 1) up to 54.82% (k = 350) (Fig. 
2B). The IDyOM models’ performance, in contrast, plateaued early at context lengths between three 

 
2 The median surprise is closely related to the cross-entropy loss, which can be defined as the mean surprise across 
all notes (Temperley = 2.7, IDyOM stm = 2, ltm = 2.47, both = 1.86, Music Transformer = 1.81). 
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and five notes (optimal k: stm: 25, ltm: 4, both: 3), reflecting the well-known sparsity issue of n-gram 
models (Jurafsky & Martin, 2000). Although the Temperley model benefited from additional musical 
context slightly, the increment was small and the accuracy was lower compared to the other models 
across all context lengths (5.58% at k = 1 to 19.25% at k = 25). 

Computational models capture distinct sources of musical expectation 

To further evaluate the differences between models, we tested how strongly their surprise estimates were 
correlated across all notes in the stimulus set (Fig. 2C). Since the IDyOM stm model dominated the both 
model, the two were correlated most strongly (r = .87). The lowest correlations occurred between the 
IDyOM stm on the one hand and the IDyOM ltm (r = 0.24) and Temperley model (r = 0.22) on the other 
hand. Given that all estimates quantified surprise, positive correlations of medium to large size were 
expected. More importantly, the models appeared to pick up substantial unique variance, in line with 
the differences in predictive performance explored above. 

Taken together, these results established that the computational models of music capture different 
sources of melodic expectation. Only the Music Transformer model was able to exploit long-range 
structure in music to facilitate predictions of note pitch. Yet, short-range regularities in the current 
musical piece alone enabled accurate melodic predictions already: the IDyOM stm model performed 
remarkably well, even compared to the much more sophisticated Music Transformer. We confirmed 
these results on the musical stimuli from the EEG study (Appendix, Figure A3).  

M|EEG analysis 
We used a time-resolved linear regression approach (see Methods for details) to analyse listeners’ 
M|EEG data. By comparing different regression models, we asked (1) whether there is evidence for the 
neural processing of melodic surprise and uncertainty during naturalistic music listening and (2) which 
sources of melodic expectations, represented by the different computational models, best capture that. 
We quantified the performance of each regression model in explaining the MEG data by computing the 
correlation r between predicted and observed neural data. Importantly, we estimated r using 5-fold cross-
validation, thereby ruling out any trivial increase in predictive performance due to increases in number 
of regressors (i.e., free parameters). 

The simplest model, the Onset model, contained a single regressor coding note onsets in binary fashion. 
Unsurprisingly, this model significantly explained variance in the recorded MEG data (mean r across 
participants = 0.12, SD = 0.03; one-sample t-test versus zero, t34 = 25.42, p = 1.06e-23, d = 4.36, Fig. 
3A top left), confirming that our regression approach worked properly. The Baseline model included 
the note onset regressor, and additionally a set of regressors to account for sensory-acoustic features, 
such as loudness or sound type, as well as note repetitions to account for sensory adaptation 
(Auksztulewicz & Friston, 2016; Todorovic & Lange, 2012). The Baseline model explained additional 
variance beyond the Onset model (ΔrBaseline-Onset = 0.013, SD = 0.006; paired-sample t-test, t34 = 12.07, p 
= 7.58e-14, d = 2.07, Fig. 3A bottom left), showing that differences in acoustic features and repetition 
further modulated neural activity elicited by notes. 

Long-term statistical learning best explains listeners’ melodic surprise 

We next investigated to which degree the surprise estimates from the different computational models of 
music could explain unique variance in the neural data. All models performed significantly better than 
the Baseline model, providing evidence for tracking of neural surprise during naturalistic music listening 
(Temperley:  ΔrSurprise-Baseline = 0.002, SD = 0.001, paired-sample t-test, t34 = 8.76  p = 2.42e-09, d = 1.5; 
IDyOM stm: ΔrSurprise-Baseline = 0.001, SD = 0.001, t34 = 5.66  p = 9.39e-06, d = 0.97; IDyOM ltm: ΔrSurprise-

Baseline = 0.003, SD = 0.002, t34 = 12.74  p = 2.51e-13, d = 2.19; IDyOM both: ΔrSurprise-Baseline = 0.002, SD 
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= 0.001, t34 = 8.77,  p = 2.42e-09, d = 1.5; and Music Transformer: ΔrSurprise-Baseline = 0.004, SD = 0.002, 
t34 = 10.82,  p = 1.79e-11, d = 1.86, corrected for multiple comparisons using the Bonferroni-Holm 
method) (Fig. 3A right). Importantly, the Music Transformer and IDyOM ltm model significantly 
outperformed the other models (paired-sample t-test, MT-Temperley: t34 = 7.56, p = 5.33e-08, d = 1.30; 
MT-IDyOM stm: t34 = 9.51, p = 4.12e-10, d = 1.63, MT-IDyOM both: t34 = 8.87, p = 2.07e-09, d = 1.52), 
with no statistically significant difference between the two (paired-sample t-test, t34 = 1.634, p = 0.225), 
whereas the IDyOM stm model performed worst. This contrasts with the music analysis, where the 
IDyOM stm model performed considerably better than the IDyOM ltm model. These observations 
suggest that listeners’ melodic surprise is better explained by musical enculturation (i.e., exposure to 
large amounts of music across the lifetime), modelled as statistical learning on a large corpus of music 
(IDyOM ltm and MT), rather than by statistical regularities within the current musical piece alone 
(IDyOM stm) or Gestalt-like rules (Temperley). 

Short-range musical context shapes listeners’ melodic surprise 

We again systematically varied the context length k to probe which context length captures listeners’ 
melodic surprise best (above we again considered each model at its optimal context length, defined by 
the maximum ΔrSurprise-Baseline averaged across participants). The Temperley and IDyOM models’ 
incremental predictive contribution were marginally influenced by context length, with early peaks for 
the IDyOM stm (k = 1) and ltm (k = 2) and later peaks for the both (k = 75) and Temperley models (k = 
10) (Fig. 3B). The roughly constant level of performance was expected based on the music analysis, 
since these models mainly relied on short-range context and their estimates of surprise were almost 
constant. In contrast, we reported above that the Music Transformer model extracts long-range structure 
in music, with music-predictive performance increasing up to context lengths of 350 notes. Strikingly, 
however, surprise estimates from the MT predicted MEG data best at a context length of nine notes and 
decreased for larger context lengths, even below the level of shorter ones (<10) (Fig. 3C).  

Together, these findings suggest that long-term experience of listeners (IDyOM ltm and MT) better 
captures neural correlates of melodic surprise than short-term statistical regularities (IDyOM stm). Yet, 
melodic expectations based on statistical learning might not necessarily rest on long-range temporal 
structure but rather shorter time scales between 5 and 10 notes. These results were replicated on the EEG 
data (Fig. 4). 
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Fig. 3: Model performance on MEG data from 35 listeners. (A) Cross-validated r for the Onset only model (top 
left). Difference in cross-validated r between the Baseline model including acoustic regressors and the Onset model 
(bottom left). Difference in cross-validated r between models including surprise estimates from different model 
classes (color-coded) and the Baseline model (right). Vertical bars: participants; box plot as in Fig. 2. (B) 
Comparison between the best surprise models from each model class as a function of context length. Lines: mean 
across participants, shaded area: 95% CI. (C) Predictive performance of the Music Transformer (MT) on the MEG 
data (left y-axis, dark, mean across participants) and the music data from the MEG study (right y-axis, light, median 
across compositions). 
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Fig. 4: Model performance on EEG data from 20 listeners. All panels as in Fig 3, but applied to the EEG data and 
its musical stimuli. 

Spatiotemporal neural characteristics of melodic surprise 

To elucidate the spatiotemporal neural characteristics of naturalistic music listening, we further 
examined the temporal response functions (TRFs; or ‘regression evoked responses’) from the best model 
(MEG: MT at k = 8, Fig. 5; EEG: MT at k = 7, Fig. 6). Each TRF combines the time-lagged coefficients 
for one regressor. The resulting time course describes how the feature of interest modulates neural 
activity over time. Here, we focused on note onset, the repetition of notes, and melodic surprise. The 
TRFs were roughly constant around zero in the baseline period (-0.2–0 s before note onset) and showed 
a clear modulation time-locked to note onset (Fig. 5, 6). This confirmed that the deconvolution of 
different features and the temporal alignment in the time-resolved regression worked well. Note that the 
MEG data were transformed to combined planar gradients to yield interpretable topographies 
(Bastiaansen & Knösche, 2000), and therefore did not contain information about the polarity. 
Interpretations regarding the sign of modulations in the TRFs were based on inspection of the axial 
gradiometer MEG results (not shown) and confirmed on the EEG data (Fig. 6). 

The TRF for the note onset regressor reflects the average neural response evoked by a note. The effect 
was temporally extended from note onset up to 0.8 s (MEG) and 1 s (EEG) and clustered around bilateral 
fronto-temporal MEG sensors (MEG: cluster-based permutation test p = 0.035, Fig. 5A; EEG: p = 5e-
04, Fig. 6A). The time course resembled a P1-N1-P2 complex, typically found in ERP studies on 
auditory processing (Picton, 2013; Pratt, 2011), with a first positive peak at about 75 ms (P1) and a 
second positive peak at about 200 ms (P2). This was followed by a more sustained negative deflection 
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between 300–600 ms. We inspected the note repetition regressors to account for the repetition 
suppression effect, as a potential confound of melodic expectations (Todorovic et al., 2011; Todorovic 
& Lange, 2012). We observed a negative deflection at temporal sensors peaking at about 200 ms, 
reflecting lower neural activity for repeated versus non-repeated notes (MEG: p = 5e-04, Fig. 5B; EEG: 
p = 0.008, Fig. 6B). This extends the well-known auditory repetition suppression effect (Grill-Spector 
et al., 2006; Todorovic & Lange, 2012) to the setting of naturalistic music listening. Finally, the TRF of 
the surprise regressor indicates how the level of model-based surprise modulates neural activity over 
and above simple repetition. A fronto-temporal cluster of MEG sensors exhibited a positive peak at 
about 200 ms and a sustained negative deflection between 300–600 ms (MEG: p = 5e-04, Fig. 5C; EEG: 
p = 0.004, Fig. 6C). The increased activity for more surprising notes is consistent with expectation 
suppression effects (Todorovic & Lange, 2012). We ruled out that the late negativity effect was an 
artifact arising from a negative correlation between surprise estimates of subsequent notes, since these 
temporal autocorrelations were consistently found to be positive. The surprise estimates from the 
Temperley and IDyOM models yielded similar, though slightly weaker, spatiotemporal patterns in the 
MEG and EEG data (Fig. A4 and Fig. A5), indicating that they all captured melodic surprise given the 
cross-model correlations. 

 

Fig. 5: Temporal response functions (TRFs, left column) and spatial topographies at four time periods (right 
column) for the best model on the MEG data. (A): Note onset regressor. (B): Note repetition regressor. (C): 
Surprise regressor from the Music Transformer with a context length of eight notes. TRF plots: Grey horizontal 
bars: time points at which at least one channel in the ROI was significant. Lines: mean across participants and 
channels. Shaded area: 95% CI across participants. 
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Fig. 6: All panels as in Fig. 5, but applied to the EEG data and its musical stimuli. 

 

Melodic processing is associated with the inferior frontal gyrus 

To further shed light on the spatial profile of melody and surprise processing, we estimated the dominant 
neural sources corresponding to the peak TRF deflection (180–240 ms post note onset) using equivalent 
current dipole (ECD) modelling of the MEG data, assuming one dipole per hemisphere. This simple 
model provided a good fit to the sensor-level TRF maps, indicated by the substantial amount of variance 
explained (mean r2 across participants = 0.88 / 0.88 / 0.85 for Onset / Repetition / Surprise regressors, 
SD = 0.06 / 0.06 / 0.10). We show the density of fit dipole locations in Fig. 7. The TRF peak deflection 
for all three regressors was best explained by bilateral sources in the opercular part of the inferior frontal 
gyrus (IFG), roughly corresponding to Broca’s area, with a maximum in the left hemisphere for note 
onset and note repetition and the right hemisphere for melodic surprise (see Fig. 7 for exact MNI 
coordinates of density peaks). 
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Fig. 7: Source-level results for the MEG TRF data. Volumetric density of estimated dipole locations across 
participants in the time window of interest identified in Fig. 5 (180–240 ms), projected on the average Montreal 
Neurological Institute (MNI) template brain. MNI coordinates are given for the density maxima with anatomical 
labels from the Automated Anatomical Labeling atlas. 

No evidence for neural tracking of melodic uncertainty 

Besides surprise, melodic expectations can be characterized by their note-level uncertainty. Estimates 
of surprise and uncertainty were positively correlated across different computational models (e.g., MT 
with a context of eight notes: r = 0.21) (Fig. 8A). Surprisingly, the addition of uncertainty and its 
interaction with surprise did not further improve but rather reduce models’ cross-validated predictive 
performance on listeners’ MEG data compared to surprise alone (MT Surprise: ΔrSurpise-Baseline = 0.004, 
SD = 0.002; + Uncertainty: ΔrUncertainty-Baseline = 0.003, SD = 0.002, paired-sample t-test compared to 
Surprise, t34 = -9.57, p = 1.42e-10, d = -1.64; + Interaction S×U: ΔrSxU-Baseline = 0.002, SD = 0.002, t34 = 
-13.81, p = 1.66e-14, d = -2.37) (Fig. 8B). This result holds true for other computational models of music 
and for the EEG data. Therefore, we do not further examine the TRFs here. 
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Fig. 7: (A) Relationship between and distribution of surprise and uncertainty estimates from the Music 
Transformer (context length of eight notes). (B) Cross-validated predictive performance for the Baseline + surprise 
model (top), and for models with added uncertainty regressor (middle) and the interaction between surprise and 
uncertainty (SxU, bottom). Adding uncertainty and/or the interaction between surprise and uncertainty (SxU) did 
not improve but worsen the predictive performance on the MEG data. 

Discussion 
 

In the present study we investigated the nature of melodic expectations during naturalistic music 
listening. We used a range of computational models to calculate melodic surprise and uncertainty under 
different internal models. Through time-resolved regression on human listeners’ M|EEG activity, we 
gauged which model could most accurately predict neural indices of melodic surprise. In general, 
melodic surprise enhanced neural responses, particularly around 200 ms and between 300–500 ms after 
note onset. This was dissociated from sensory-acoustic and repetition suppression effects, supporting 
expectation-based models of music perception. In a comparison between computational models of 
musical expectation, melodic surprise estimates that were generated by an internal model that used long-
term statistical learning best captured neural surprise responses, highlighting extensive experience with 
music as a key source of melodic expectations. Strikingly, this effect appeared to be driven by short-
range musical context of up to ten notes instead of longer-range structure. This provides an important 
window into the nature and content of melodic expectations during naturalistic music listening.  

Expectations are widely considered a hallmark of music listening (Huron, 2006; Koelsch et al., 2019; 
Krumhansl, 2015; Meyer, 1957; Tillmann et al., 2014; Vuust et al., 2022), which resonates with the 
predictive coding framework of perception and cognition (Clark, 2013; de Lange et al., 2018; Friston, 
2010). Here, we tested the role of melodic expectations during naturalistic music listening, for which 
neural evidence has been scarce. We quantified note-level surprise and uncertainty as markers of 
melodic expectations and examined their effect on neural music processing using time-resolved 
regression. Importantly, our analyses focused on disentangling different sources of melodic 
expectations, as well as elucidating the length of temporal context that the brain is taking into account 
when predicting which note will follow. This represents a critical innovation over earlier related work 
(Di Liberto et al., 2020), from which conclusions were necessarily limited to establishing that the brain 
predicts something during music listening, whereas we begin to unravel what it is that is being predicted. 
Furthermore, our use of diverse naturalistic musical stimuli and MEG allows for a broader generalization 
of our conclusions than was previously possible. 

A key signature of predictive auditory processing is the neural response to unexpected events, also called 
the prediction error response (Clark, 2013; Friston, 2010; Heilbron & Chait, 2018). The degree to which 
notes violate melodic expectations can be quantified as the melodic surprise. Across different 
computational models of music, we found that melodic surprise explained M|EEG data from human 
listeners beyond sensory-acoustic factors and beyond simple repetition effects. We thereby generalize 
previous behavioural and neural evidence for listeners’ sensitivity to unexpected notes to a naturalistic 
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setting (for reviews see Koelsch et al., 2019; Rohrmeier & Koelsch, 2012; Tillmann et al., 2014; Zatorre 
& Salimpoor, 2013).  

While the role of expectations in music processing is well established, there is an ongoing debate about 
the nature of these musical expectations (Bigand et al., 2014; Collins et al., 2014; Rohrmeier & Koelsch, 
2012). It has been claimed that these stem from a small set of general, Gestalt-like, principles  
(Krumhansl, 2015; Temperley, 2008, 2014). Alternatively, they may reflect the outcome of a statistical 
learning process (Pearce, 2005; Pearce & Wiggins, 2012; Rohrmeier & Koelsch, 2012), which, in turn, 
could reflect either short- or long-range regularities. For the first time, we present neural evidence that 
weighs in on these questions. We simulated note-level expectations from different predictive 
architectures of music, which reflected distinct sources of melodic expectations: Gestalt-like principles 
(Temperley model), short-term statistical learning during the present composition (IDyOM stm) or 
statistical learning through long-term exposure to music (IDyOM ltm, Music Transformer). 

As a first core result, we found that long-term statistical learning (Music Transformer and IDyOM ltm) 
captured neural surprise processing better than short-term regularities or Gestalt principles. Our results 
thus stress the role of long-term exposure to music as a central source of neural melodic expectations. 
The human auditory system exhibits a remarkable sensitivity to detect and learn statistical regularities 
in sound (Saffran et al., 1999; Skerritt-Davis & Elhilali, 2018). This capacity has been corroborated in 
statistical learning paradigms using behavioural (Barascud et al., 2016; Bianco et al., 2020), eye-tracking 
(Milne et al., 2021; Zhao et al., 2019), and neuroimaging techniques (Barascud et al., 2016; Moldwin et 
al., 2017; Pesnot Lerousseau & Schön, 2021). Furthermore, humans have extraordinary implicit memory 
for auditory patterns (Agres et al., 2018; Bianco et al., 2020). It has therefore been proposed that listeners 
learn the statistical regularities embedded in music through mere exposure (Pearce, 2018; Rohrmeier et 
al., 2011; Rohrmeier & Rebuschat, 2012). The inferior frontal gyrus (IFG) fulfils a key role during such 
sequence processing in general (Uddén & Bahlmann, 2012), including during music listening (Fadiga 
et al., 2009), possibly by parsing nested hierarchies common to music (Cheung et al., 2018). The IFG’s 
involvement dovetails well with our source modelling results. 

Short-term regularities and Gestalt principles also significantly predicted neural variance and might 
constitute concurrent, though weaker, sources of melodic expectations (Rohrmeier & Koelsch, 2012). 
Gestalt principles, specifically, have been shown to adequately model listeners’ melodic expectations in 
behavioural studies (Cuddy & Lunney, 1995; Morgan et al., 2019; Pearce & Wiggins, 2006; Temperley, 
2014). One shortcoming of Gestalt-like models, however, is that they leave unresolved how Gestalt rules 
emerge, assuming either innate principles (Narmour, 1990) or being agnostic to this question 
(Temperley, 2008). We propose that the well-established statistical learning framework can account for 
Gestalt-like principles. If the latter, for example pitch proximity, indeed fit a certain musical style, they 
have to be reflected in the statistical regularities. Music theoretical research has indeed shown that 
statistical learning based on bigrams can recover music theoretical Gestalt principles (Zivic et al., 2013), 
even across different (musical) cultures (Savage et al., 2015). This further backs up the role of statistical 
learning for musical expectations. 

As a second core result, strikingly, we found that neural activity was best explained by those surprise 
estimates taking into account only relatively short-range musical context. Even though extracting the 
patterns upon which expectations are based requires long-term exposure (previous paragraph), the 
relevant context length of these patterns for predicting upcoming notes turned out to be short, around 7 
to 8 notes. In contrast, for modelling music itself (i.e., independently of neural activity), the music 
transformer performed monotonically better with increasing context length, up to hundreds of notes. 
This pattern of results is very unlike similar studies in language processing, where models that perform 
best at next word prediction and can take the most context into account (i.e., transformers) also perform 
best at predicting behavioural and brain responses, and predictions demonstrably take long-term context 
into account (Goodkind & Bicknell, 2018; Heilbron et al., 2021; Schmitt et al., 2021; Schrimpf et al., 
2021). A cautious hypothesis is that musical motifs, groups of about 2-10 notes, are highly generalizable 
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within a musical style compared to longer-range structure (Krumhansl, 2015). Motifs might thus drive 
statistical learning and melodic predictions, while other temporal scales contribute concurrently (Maheu 
et al., 2019). However, several alternative explanations are possible, between which we cannot 
adjudicate, based on our data. First, the length of ten notes roughly corresponds to the limit of auditory 
short-term memory at about 2-4 s (Thaut, 2014), which might constrain predictive sequence processing. 
Second, our analysis is only sensitive to time-locked note-level responses and those signals measured 
by M|EEG, whereas long-range musical structure might have different effects on neural processing 
(Krumhansl, 2015; Rohrmeier & Koelsch, 2012), in particular slower effects that are less precisely 
linked to note onsets. A third and final caveat is that the modelling of long-range structure by the music 
transformer model might be different from how human listeners process temporally extended or 
hierarchical structure. 

Our approach of using  temporal response function (TRF, or ‘regression evoked response’, rERP) 
analysis allowed us to investigate the spatiotemporal characteristics of continuously unfolding neural 
surprise processing. Melodic surprise modulated neural activity evoked by notes over fronto-temporal 
areas with a positive peak at about 200 ms, corresponding to a modulation of the P2 component (Picton, 
2013; Pratt, 2011). Source modelling suggests the inferior frontal gyrus as a likely source of this neural 
response. Surprising notes elicited stronger neural responses, in line with previous reports by Di Liberto 
et al. (2020). This finding is furthermore consistent with the more general effect of expectation 
suppression, the phenomenon that expected stimuli evoke weaker neural responses (Auksztulewicz & 
Friston, 2016; Garrido et al., 2009; Todorovic & Lange, 2012; Wacongne et al., 2011) through gain 
modulation (Quiroga-Martinez et al., 2021). In line with predictive coding, the brain might hence be 
predicting upcoming notes in order to explain away predicted sensory input, thereby leading to enhanced 
responses to surprising (i.e., not yet fully explainable) input. 

Additionally, we found a sustained late negativity correlating with melodic surprise, which some studies 
have labelled a musical N400 or N500 (Calma-Roddin & Drury, 2020; Koelsch et al., 2000; Miranda & 
Ullman, 2007; Painter & Koelsch, 2011; Pearce et al., 2010). Similar to its linguistic counterpart (Kutas 
& Federmeier, 2011), the N400 has been interpreted as an index of predictive music processing. The 
literature has furthermore frequently emphasised the mismatch negativity (MMN) (Näätänen et al., 
2007) and P3 component in predictive music processing (Koelsch et al., 2019), neither of which we 
observe for melodic surprise here. However, the MMN is typically found for deviants occurring in a 
stream of standard tones, such as in oddball paradigms, while the P3 is usually observed in the context 
of an explicit behavioural task (Koelsch et al., 2019). In our study, listeners were listening passively to 
maximize the naturalistic setting, which could account for the absence of these components. Importantly, 
our results go beyond previous research by analysing the influence of melodic surprise in a continuous 
fashion, instead of focusing on deviants. 

As a final novel contribution, we demonstrate the usefulness of a state-of-the-art deep learning model, 
the Music Transformer (MT) (Huang et al., 2018), for the study of music cognition. The network 
predicted music and neural data at least on par with the IDyOM model, an n-gram model which is 
currently a highly popular model of musical expectations (Pearce & Wiggins, 2012). We are likely 
severely underestimating the relative predictive power of the MT, since we constrained our stimuli to 
monophonic music in the present study. Monophonic music is the only type of music the other models 
(IDyOM, Temperley) are able to process, so this restriction was a technical necessity. The MT, in 
contrast, supports fully polyphonic music. This opens up new avenues for future work to study neural 
music processing in even more naturalistic settings. 

To conclude, by using computational models to capture different hypotheses about the nature and source 
of melodic expectations and linking these to neural data recorded during naturalistic listening, we found 
that these expectations have their origin in long-term exposure to the statistical structure of music. Yet, 
strikingly, as listeners continuously exploit this long-term knowledge during listening, they do so 
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primarily on the basis of short-range context. Our findings thereby elucidate the individual voices 
making up the ‘surprise symphony’ of music perception.  

Materials and Methods 

Data and code availability 

The MEG and music data are available from the Donders Repository (https://data.donders.ru.nl/) under 
persistent identifier ([link available to peer reviewers]). The analysis code is available from the Donders 
Repository ([link available to peer reviewers]) and GitHub ([link to be published after peer review]). 

Participants 

We recruited 35 healthy participants (19 female; 32 right-handed; age: 18–30 years, mean = 23.8, SD = 
3.05) via the research participation system at Radboud University. The sample size was chosen to 
achieve a power of ≥ 80% for detecting a medium effect size (d = 0.5) with a two-sided paired t-test at 
an α level of 0.05. All participants reported normal hearing. The study was approved under the general 
ethical approval for the Donders Centre for Cognitive Neuroimaging (Imaging Human Cognition, 
CMO2014/288) by the local ethics committee (CMO Arnhem-Nijmegen, Radboud University Medical 
Centre). Participants provided written informed consent before the experiment and received monetary 
compensation. 

Procedure 

Participants listened to music, while their neural activity was recorded using magnetoencephalography 
(MEG) (Fig. 1). Participants started each musical stimulus with a button press and could take short 
breaks in between stimuli. Participants were instructed to fixate a dot displayed at the centre of a screen 
(~85 cm viewing distance) in order to reduce head and eye movements. Besides that, participants were 
only asked to listen attentively to the music and remain still. These minimal instructions were intended 
to maximize the naturalistic character of the study. Initially, three test runs (~10 s each) were completed, 
in which three short audio snippets from different compositions (not used in the main experiment) were 
presented. This was intended to make listeners familiar with the procedure and the different sounds, as 
well as to adjust the volume to a comfortable level. 

Musical stimuli 

We selected 19 original compositions (duration: total = 43 min, median across stimuli = 134 s, median 
absolute deviation (MAD, Leys et al., 2013) = 39 s; note events: total = 9824, median = 448, MAD = 
204) from Western classical music (see Appendix Table A1). We chose this genre, since (a) participants 
recruited from the Nijmegen area were assumed to be somewhat familiar with it, (b) it entails relatively 
complex melodies and long-term structure allowing us to sample a broad range of surprise and 
uncertainty estimates, (c) many digital music files and corpora in MIDI format are publicly available, 
and (d) these included monophonic pieces. Monophonic refers to one note being played at a time, i.e., 
only containing a melody, compared to polyphonic music, which further includes chords and/or parallel 
voices. The constraint to monophonic compositions was necessary to enable the application of the 
Temperley and IDyOM model, which cannot parse polyphonic music. Based on the available databases, 
the selection aimed to cover various musical periods (1711–1951), composers, tempi (60–176 bpm), and 
key signatures, roughly matching the statistics of the training corpus for the music models (see below). 
The median note duration was about 161 ms (MAD across all notes = 35 ms, min = 20 ms, max = 4498 
ms), with a median inter-note onset interval of 200 ms (MAD across all notes = 50 ms, min = 22 ms, 
max = 2550 ms). 
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We used the Musescore 3 software to synthesize and export the digital MIDI files as wav audio files 
(sampling rate = 44.1 kHz). This ensured accurate control over the note timing compared to live or 
studio recordings, facilitating time-locked analyses. The synthesisation via one of three virtual 
instruments from fluidsynth (piano, oboe, flute) ensured the natural character of the music. The MIDI 
velocity, corresponding to loudness (termed ‘velocity’ in MIDI terms because it refers to the velocity 
with which one could strike a piano key), was set to 100 for all notes, since most files were missing 
velocity information and the volume was thus held roughly constant across notes. 

Stimulus presentation 

The experiment was run on a Windows computer using Matlab 2018b (The MathWorks) and the 
Psychophysics Toolbox (Brainard, 1997). The music was presented binaurally via ear tubes at a 
sampling rate of 44.1 kHz. The volume was adjusted to a comfortable level for each participant during 
the initial three test runs. To ensure equivalent acoustic input in both ears, the right audio channel from 
potentially stereo recordings was duplicated, resulting in mono audio presentation. After participants 
initiated a run by a button press, the wav file was first loaded into the sound card buffer to ensure accurate 
timing. Once the file was fully loaded, the visual fixation cross appeared at the centre of the screen and 
after 1.5–2.5 s (random uniform distribution) the music started. The order of compositions was 
randomized across participants. 

MEG data acquisition 

Neural activity was recorded on a 275-channel axial gradiometer MEG system (VSM/CTF Systems) in 
a magnetically shielded room, while the participant was seated. Eight malfunctioning channels were 
disabled during the recording or removed during preprocessing, leaving 267 MEG channels in the 
recorded data. We monitored the head position via three fiducial coils (left and right ear, nasion). When 
the head movement exceeded 5 mm, in between listening periods, the head position was shown to the 
participant, and they were instructed to reposition themselves (Stolk et al., 2013). All data were low-
pass filtered online at 300 Hz and digitized at a sampling rate of 1200 Hz. 

Further data acquisition 

For source analysis, the head shape and the location of the three fiducial coils were measured using a 
Polhemus 3D tracking device. T1-weighted anatomical MRI scans were acquired on a 3T MRI system 
(Siemens) after the MEG session if these were not already available from the local database (MP-RAGE 
sequence with a GRAPPA acceleration factor of 2, TR = 2.3 s, TE = 3.03 ms, voxel size 1 mm isotropic, 
192 transversal slices, 8 ° flip angle). Additionally, during the MEG session, eye position, pupil diameter 
and blinks were recorded using an Eyelink 1000 eye tracker (SR Research) and digitized at a sampling 
rate of 1200 Hz. After the experiment, participants completed a questionnaire including a validated 
measure of musicality, the Goldsmith Musical Sophistication Index (Müllensiefen et al., 2014). The eye 
tracking and questionnaire data were not analysed here. 

EEG dataset 

In addition, we analysed an open data set from a recently published study (Di Liberto et al., 2020) 
including EEG recordings from 20 participants (10 musicians, 10 non-musicians) listening to music. 
The musical stimuli were 10 violin compositions by J. S. Bach synthesized using a piano sound 
(duration: total = 27 min, median = 161.5 s, MAD = 18.5 s; note events: total = 7839, median = 631, 
MAD = 276.5; see Appendix Table A1), that were each presented three times in pseudo-randomized 
order (total listening time = 80 min). The median note duration was 145 ms (MAD across all notes = 32 
ms, min = 70 ms, max = 2571 ms), with a median inter-note onset interval of 150 ms (MAD across all 
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notes = 30 ms, min = 74 ms, max = 2571 ms). EEG was acquired using a 64-electrode BioSemi Active 
Two system and digitized at a sampling rate of 512 Hz. 

Music analysis 
We used three types of computational models of music to investigate human listeners’ melodic 
expectations: the Temperley model (Temperley, 2008, 2014), the IDyOM model (Pearce & Wiggins, 
2012), and the Music Transformer (Huang et al., 2018). Based on their differences in computational 
architecture, we used these models to operationalize different sources of melodic expectations. All 
models take as input MIDI data, specifically note pitch values X ranging discretely from 0 to 127 (8.18 
– 12543.85 Hz, middle C = 60, ~264 Hz). The models output a probability distribution for the next note 
pitch at time point t, Xt, given a musical context of k preceding consecutive note pitches: 

𝑃𝑃(𝑋𝑋𝑡𝑡|𝑥𝑥𝑡𝑡−𝑘𝑘𝑡𝑡−1), where 𝑋𝑋 ∈ {0 . . 127}, 𝑘𝑘 > 0, 𝑡𝑡 ≥ 0. 

For the first note in each composition, we assumed a uniform distribution across pitches (𝑃𝑃(𝑋𝑋0 = 𝑥𝑥) =
1/128). Based on these probability distributions, we computed the surprise S of an observed note pitch 
xt given the musical context as 

𝑆𝑆(𝑥𝑥𝑡𝑡) = − log𝑒𝑒 𝑃𝑃(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−𝑘𝑘𝑡𝑡−1). 

Likewise, the uncertainty U associated with predicting the next note pitch was defined as the entropy of 
the probability distribution across all notes in the alphabet: 

𝑈𝑈𝑡𝑡 = −∑ 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥)127
𝑥𝑥=0 log𝑒𝑒 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥|𝑥𝑥𝑡𝑡−𝑘𝑘𝑡𝑡−1). 

Training corpora 

All models were trained on the Monophonic Corpus of Complete Compositions (MCCC) 
(https://osf.io/dg7ms/), which consists of 623 monophonic pieces (Note events: total = 500,000, median 
= 654, MAD = 309). The corpus spans multiple musical periods and composers and matches the statistics 
of the musical stimuli used in the MEG and EEG study regarding the distribution of note pitch and pitch 
interval (Appendix Fig. A2) as well as the proportion of major key pieces (MCCC: ~81%, MusicMEG: 
~74%, but MusicEEG: 20%). Furthermore, the Maestro corpus V3 (Hawthorne et al., 2019, 
https://magenta.tensorflow.org/datasets/maestro), which comprises 1276 polyphonic compositions 
collected from human piano performances (Duration: total = 200 h, note events: total = 7 million), was 
used for the initial training of the Music Transformer (see below).  

Probabilistic Model of Melody Perception | Temperley 

The Probabilistic Model of Melody Perception (Temperley, 2008, 2014) is a Bayesian model based on 
three interpretable principles established in musicology. Therefore, it has been coined a Gestalt-model 
(Morgan et al., 2019). The three principles are modelled by probability distributions (discretized for 
integer pitch values), whose free parameters were estimated, in line with previous literature, based on 
the MCCC: 

(1) Pitches xt cluster in a narrow range around a central pitch c (central pitch tendency): 

𝑥𝑥𝑡𝑡~𝒩𝒩(𝑐𝑐, 𝑣𝑣𝑟𝑟), where 𝑐𝑐~𝒩𝒩(𝑐𝑐0,𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐0). 

The parameters c0 and varc0: were set to the mean and variance of compositions’ mean pitch in 
the training corpus (c0 = 72, varc0 = 34.4). The variance of the central pitch profile vr was set to 
the variance of each melody’s first note around its mean (vr = 83.2). 
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(2) Pitches tend to be close to the previous pitch xt−1, in other words pitch intervals tend to be small 
(pitch proximity): 

𝑥𝑥𝑡𝑡~𝒩𝒩(𝑥𝑥𝑡𝑡−1,𝑣𝑣𝑥𝑥) 

The variance of the pitch proximity profile vx was estimated as the variance of pitches around 
xt−1 considering only notes where xt−1 = c (vx = 18.2). 

(3) Depending on the key, certain pitches occur more frequently given their scale degree (the 
position of a pitch relative to the tonic of the key). This key profile is modelled as the probability 
of a scale degree conditioned on the key (12 major and 12 minor keys) spread out across several 
octaves, weighted by the probability of major and minor keys (pmaj = .81).  

The final model multiplicatively combines these distributions to give the probability of the next note 
pitch given the context. The C code was provided by David Temperley in personal communication and 
adapted to output probabilities for all possible pitch values X. 

Information Dynamics of Music model | IDyOM 

The Information Dynamics of Music (IDyOM) model is an unsupervised statistical learning model, 
specifically a variable order Markov model (Pearce, 2005; Pearce & Wiggins, 2012). Based on n-grams 
and the alphabet X, the probability of a note pitch x at time point t, xt, given a context sequence of length 
k, 𝑥𝑥𝑡𝑡−𝑘𝑘𝑡𝑡−1, is defined as the relative n-gram frequency of the continuation compared to the context: 

𝑃𝑃�𝑥𝑥𝑡𝑡�𝑥𝑥𝑡𝑡−𝑘𝑘𝑡𝑡−1� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑡𝑡−𝑘𝑘
𝑡𝑡 �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑡𝑡−𝑘𝑘
𝑡𝑡−1�

 . 

The probabilities are computed for every possible n-gram length up to a bound k and combined through 
interpolated smoothing. The context length was, therefore, manipulated via the n-gram order bound. The 
model can operate on multiple musical features, called viewpoints. Here we use pitch (in IDyOM 
terminology cpitch) to predict pitch, in line with the other models. 

The IDyOM model class entails three different subtypes: a short-term model (stm), a long-term model 
(ltm), and a combination of the former two (both). The IDyOM stm model rests solely on the recent 
context in the current composition. As such, it approximates online statistical learning of short-term 
regularities in the present piece. The IDyOM ltm model, on the other hand, is trained on a corpus, 
reflecting musical enculturation, that is (implicit) statistical learning through long-term exposure to 
music. The IDyOM both model combines the stm and ltm model weighted by their entropy at each note. 

Music Transformer 

The Music Transformer (MT) (Huang et al., 2018) is a state-of-the-art neural network model that was 
developed to generate music with improved long-range coherence. To this end, it takes advantage of a 
Transformer architecture (Vaswani et al., 2017) and relative self-attention (Shaw et al., 2018), which 
better capture long-range structure in sequences than e.g. n-gram models. The MT is the only model 
used here that can process polyphonic music. This is possible due to a representation scheme that 
comprises four event types (note onset, note offset, velocity, and time-shift events) for encoding and 
decoding MIDI data. The note onset values are equivalent to pitch values and were used to derive 
probability distributions. Our custom scripts were based on an open adaptation for PyTorch 
(https://github.com/gwinndr/MusicTransformer-Pytorch).  

The Music Transformer was initially trained on the polyphonic Maestro corpus for 300 epochs using the 
training parameters from the original paper (learning rate = 0.1, batch size = 2, number of layers = 6, 
number of attention heads = 6, dropout rate = 0.1, (Huang et al., 2018)). The training progress was 
monitored based on the cross-entropy loss on the training data (80%) and test data (20%) (Fig. 8A). The 
cross-entropy loss is defined as the average surprise across all notes. The model is, thus, trained to 
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minimize the surprise for upcoming notes. The minimal loss we achieved (1.97) was comparable to the 
original paper (1.835). The divergence between the loss curve for training and test set indicated some 
overfitting starting from about epoch 50, however, without a noticeable decrease in test performance. 
Therefore, we selected the weights at epoch 150 to sure stable weights without severe overfitting. 

In order to adjust the model to monophonic music, we finetuned the pretrained Music Transformer on 
the MCCC for 100 epochs using the same training parameters (Fig. 8B). Again, the training progress 
was evaluated based on the cross-entropy loss and the weights were selected based on the minimal loss. 
While the loss started at a considerably lower level on this monophonic dataset (0.78), it continued to 
decrease until epoch 21 (0.59), but quickly started to increase, indicating overfitting on the training data. 
Therefore, the weights from epoch 21 were selected for further analyses. 

Fig. 8: Training (A) and fine-tuning (B) of the Music Transformer on the Maestro corpus and MCCC, respectively. 
Cross-entropy loss (average surprise across all notes) on the test (dark) and training (light) data as a function of 
training epoch. 

Music model comparison 

We compared the models’ predictive performance on music data as a function of model class and context 
length. Thereby, we aimed to scrutinize the hypothesis that the models reflect different sources of 
melodic expectations. We used the musical stimuli from the MEG and EEG study as test sets and 
assessed the accuracy, median surprise and uncertainty across compositions. 

M|EEG analysis 

Preprocessing 

The MEG data were preprocessed in Matlab 2018b using FieldTrip (Oostenveld et al., 2011). We loaded 
the raw data separately for each composition including about 3 s pre- and post-stimulus periods. Based 
on the reference sensors of the CTF MEG system, we denoised the recorded MEG data using 3rd order 
gradient correction, after which the per-channel mean across time was subtracted. We then segmented 
the continuous data in 1 s segments. Using the semi-automatic routines in FieldTrip, we marked noisy 
segments according to outlying variance, such as MEG squid jumps, eye blinks or eye movements 
(based on the unfiltered data) or muscle artifacts (based on the data filtered between 110 and 130 Hz). 
After removal of noisy segments, the data were downsampled to 400 Hz. Independent component 
analysis (ICA) was then performed on the combined data from all compositions for each participant to 
identify components that reflected artifacts from cardiac activity, residual eye movements or blinks. 
Finally, we reloaded the data without segmentation, removed bad ICA components and downsampled 
the data to 60 Hz for subsequent analyses.  
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A similar preprocessing pipeline was used for the EEG data. Here, the data were re-referenced using the 
linked mastoids. Bad channels were identified via visual inspection and replaced through interpolation 
after removal of bad ICA components. 

TRF Analysis 

We performed time-resolved linear regression on the M|EEG data to investigate the neural signatures of 
melodic surprise and uncertainty (Fig. 1), using the regression evoked response technique (‘rERP’,(N. 
J. Smith & Kutas, 2015)).This approach allowed us to deconvolve the responses to different features 
and subsequent notes and correct for their temporal overlap. The preprocessed M|EEG data were loaded 
and band-pass filtered between 0.5–8 Hz (bidirectional FIR filter). All features of interest were modelled 
as impulse regressors with one value per note, either binary (x = {0,1}) or continuous (𝑥𝑥 ∈ ℝ). The 
M|EEG channel data and continuous regressors were z-scored. We constructed a time-expanded 
regression matrix M, which contained time-shifted versions of each regressor column-wise (tmin = -0.2 
s, tmax = 1 s relative to note onsets, 73 columns per regressor given the sampling rate of 60 Hz). After 
removal of bad time points identified during M|EEG preprocessing, we estimated the regression weights 
𝛽̂𝛽 using ordinary least squares regression: 

𝛽̂𝛽 = (𝑀𝑀𝑇𝑇𝑀𝑀)−1𝑀𝑀𝑇𝑇𝑦𝑦. 

Collectively, the weights form a response function known as the regression evoked response or temporal 
response function (TRF; (Crosse et al., 2016; Ding & Simon, 2012). The TRF depicts how a feature 
modulates neural activity across time. Here, the units are arbitrary, since both binary and z-scored 
continuous regressors were included. Model estimation was performed using custom Python code built 
on the MNE rERP implementation (Gramfort et al., 2013; N. J. Smith & Kutas, 2015). 

Models and regressors 

The Onset model contained a binary regressor, which coded for note onsets and was included in all other 
models too. The Baseline model added a set of regressors to control for acoustic properties of the music 
and other potential confounds. Binary regressors were added to code for (1) very high pitch notes (> 
90% quantile), (2) very low pitch notes (< 10% quantile), since extreme pitch values go along with 
differences in perceived loudness, timbre, and other acoustic features; (3) the first note in each 
composition (i.e. composition onset); (4) repeated notes, to account for the repetition suppression effect 
and separate it from the surprise response. Since the MEG experiment used stimuli generated by 
different musical instruments, we additionally controlled for the type of sound, by including binary 
regressors for oboe and flute sounds. This was done since the different sounds have different acoustic 
properties, such as a lower attack time for piano sounds and longer sustain for oboe or flute sounds. For 
computing continuous acoustic regressors, we downsampled the audio signal to 22.05 kHz. We 
computed the mean for each variable of interest across the note duration to derive a single value for each 
note and create impulse regressors. The root-mean-square value (RMS) of the audio signal captures 
differences in (perceived) loudness. Flatness, defined as the ratio between the geometric and the 
arithmetic mean of the acoustic signal, controlled for differences in timbre. The variance of the broad-
band envelope represented acoustic edges (McDermott & Simoncelli, 2011). The broad-band envelope 
was derived by (a) filtering the downsampled audio signal through a gammatone filter bank (64 
logarithmically spaced filter bands ranging between 50–8000 Hz), which simulates human auditory 
processing; (b) taking the absolute value of the Hilbert transform of the 64 band signals; (c) averaging 
across bands (Zuk et al., 2021). The baseline regressors were also included in all of the following models. 
The main models of interest added note-level surprise, uncertainty, and/or their interaction from the 
different computational models of music, varying the model class and context length.  
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Model comparison 

We applied a 5-fold cross-validation scheme (train: 80%, test: 20%, time window: 0–0.6 s) (Varoquaux 
et al., 2017) to compare the regression models’ predictive performance on the M|EEG data. We 
computed the correlation between the predicted and recorded neural signal across time for each fold and 
channel on the hold out data. To increase the sensitivity of subsequent analyses, we selected the channels 
most responsive to musical notes for each participant according to the cross-validated performance for 
the Onset model (> 2/3 quantile). The threshold was determined through visual inspection of the spatial 
topographies, but did not affect the main results. The overall model performance was then determined 
as the median across folds and the mean across selected channels. Since the predictive performance was 
assessed on unseen hold out data, the approach controlled for overfitting the neural data and for 
differences in the number of regressors and free model parameters. For statistical inference, we 
computed one-sample or paired t-tests using multiple comparison correction (Bonferroni-Holm 
method).  

Cluster-based statistics 

For visualizations and cluster-based statistics, we transformed the regression coefficients from the axial 
MEG data to a planar representation using FieldTrip (Bastiaansen & Knösche, 2000). For the planar-
transformed coefficients, we selected the most responsive channels according to the coefficients of the 
note onset regressor in the Onset model (> 5/6 quantile, time window: 0–0.6 s). The threshold was 
determined through visual inspection of the spatial topographies, but did not affect the main results. We 
then used cluster-based permutation tests (Maris & Oostenveld, 2007) to identify significant spatio-
temporally clustered effects compared to the baseline time window (-0.2–0 s, 2,000 permutations). 
Using threshold free cluster enhancement (TFCE, Smith & Nichols, 2009), we further determined 
significant time points, where at least one selected channel showed a significant effect. Mass-univariate 
testing was done via one-sample t-tests on the baseline-corrected M|EEG data with ’hat’ variance 
adjustment (σ = 1e−3) (Ridgway et al., 2012). 

Source analysis 

To localize the neural sources associated with the different regressors, we used equivalent current dipole 
modelling (ECD). Individuals’ anatomical MRI scans were realigned to CTF space based on the 
headshape data and the fiducial coil locations, using a semi-automatic procedure in Fieldtrip. The lead 
field was computed using a single-shell volume conduction model (Nolte, 2003). Based on individuals’ 
time-averaged axial gradient TRF data in the main time window of interest (180–240 ms), we used a 
non-linear fitting algorithm to estimate the two-dipole configuration that best explained the observed 
sensor maps (FieldTrip’s ft_dipolefitting). As starting point for the search, we roughly specified bilateral 
primary auditory cortex (MNI coordinates x/y/z [40, -28, 10] mm (R), [-40, -28, 6] mm; Anderson et 
al., 2011; Kiviniemi et al., 2009). Note that the initial dipole location has a negligible effect on the final 
solution if the data are well explained by the final fit model. This was the case for our data, see Results. 
For visualization, we estimated the (volumetric) density of best-fit dipole locations across participants 
and projected this onto the average MNI brain template, separately for each regressor. 
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Appendix 
 

A1: Overview of the musical stimuli presented in the MEG (top) and EEG study (bottom). 
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A2: Comparison of the pitch (left) and pitch interval distributions (right) for the music data from the MEG study 
(top), EEG study (middle), and MCCC corpus (bottom). 
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A3: Model performance on the musical stimuli used in the EEG study. (A) Comparison of music model 
performance in predicting upcoming note pitch, as composition-level accuracy (left; higher is better), median 
surprise across notes (middle; lower is better), and median uncertainty across notes (right). Context length for each 
model is the best performing one across the range shown in (B). Vertical bars: single compositions, circle: median, 
thick line: quartiles, thin line: quartiles ± 1.5 × interquartile range. (B) Accuracy of note pitch predictions (median 
across 10 compositions) as a function of context length and model class (same color code as (A)). Dots represent 
maximum for each model class. (C) Correlations between the surprise estimates from the best models. 
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A4: Comparison of the MEG TRFs and spatial topographies for the surprise estimates from the best models of 
each model class. 
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A5: Comparison of the EEG TRFs and spatial topographies for the surprise estimates from the best models of each 
model class. 
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