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SUMMARY

3D EM connectomics image volumes are now surpassing sizes of 1 mm3, and are therefore
beginning to contain multiple meaningful spatial scales of brain circuitry simultaneously.
However, the sheer density of information in such datasets makes the development of unbiased,
scalable machine learning techniques a necessity for extracting novel insights without extremely
time-consuming, intensive labor. In this paper, we present SynapseCLR, a self-supervised
contrastive representation learning method for 3D electron microscopy (EM) data, and use the
method to extract feature representations of synapses from a 3D EM dataset from mouse visual
cortex. We show that our representations separate synapses according to both their overall
physical appearance and structural annotations of known functional importance. We further
demonstrate the utility of our methodology for several valuable downstream tasks for the
growing field of 3D EM connectomics. These include one-shot identification of defective
synapse segmentations, dataset-wide similarity-based querying, and accurate imputation of
annotations for unlabeled synapses, using only manual annotation of 0.2% of synapses in the
dataset. In particular, we show that excitatory vs. inhibitory neuronal cell types can be assigned
to individual synapses and highly truncated neurites with accuracy exceeding 99.8%, making
this population accessible to connectomics analysis. Finally, we present a data-driven and
unsupervised study of the manifold of synaptic structural variation, revealing its intrinsic axes of
variation and showing that synapse structure is also strongly correlated with inhibitory neuronal
subtypes.
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INTRODUCTION

Digital reconstructions of brain tissue produced using 3D electron microscopy (3D EM) are
proving to be rich resources for learning about properties of neural circuitry1. 3D EM labels the
lipid membranes and some proteins in biological tissue, producing digital image volumes in
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which all cells and organelles and some cytoarchitectural elements--including, importantly,
components of chemical synapses--are resolved (Fig. 1A)2,3. The combined presence of these
features allows for highly contextualized analysis of cellular-level neuronal connectivity, and for
various organisms, this approach has led to new insights into topics like cell-type-specific
nervous system connectivity3–30; development- or learning-mediated changes in neural
circuitry31–34; and the fine structure of neuronal and non-neuronal cells35–40.

Although substantial progress has been made in the annotation and analysis of 3D EM data
recently, significant bottlenecks to extracting information from these datasets still exist. For
perspective, although most existing datasets span physical scales of only 100s of μm to 1 mm
per dimension (1/1000th of a mouse brain and 1/1,000,000th of a human brain)41, they are of
such high resolutions (~5-10 nm/px per section) that tera- to petabytes of memory are required
to store raw images alone3,42. Furthermore, the numbers of biological objects in mid-sized
datasets are large: there are typically 102 to 104 cell bodies; 106 “neurites” (i.e. parts of the cells
in neural tissue, typically assumed to be pieces of neurons); 106 to 108 of each type of organelle;
and 106 to 108 of synapses2. These many objects and the many subtle structural variations
among objects of each type7 make fully human-based analysis of 3D EM datasets infeasible.
For this reason, machine learning approaches for analysis are becoming indispensable in the
3D EM community. Supervised learning approaches have typically been used to detect
biological objects in 3D EM data, generating segmentation layers consisting of cells; nuclei;
synaptic active zones or clefts; or mitochondria2,43,44. To extract neuroscientific insight from these
segmentations, however, the main approach has been to measure human-designed features
that have been previously identified as structural correlates of function. For example, synaptic
cleft size, which is thought to correlate with stronger signal transmission36,45, is often a primary
measure used to determine the “strength” of connectivity between neurons. Although this
approach has led to insights about neuronal connectivity patterns31,32,35, it is unclear whether
other important structural features are being suboptimally accounted for or missed altogether by
relying on human interpretation of past work, which is typically based on highly focused labeling
or electrophysiological recordings of particular cells. Furthermore, there is an undetermined
correlation or independence between structural measures typically used to characterize
synaptic strength such as synaptic cleft size, or the presence of mitochondria46.

In this work, we take a step toward building a framework for unbiased, data-driven, and scalable
analysis of structural neuronal connectivity patterns using recently developed self-supervised
learning (SSL) techniques. Our primary goal here is to learn low-dimensional feature
representations of chemical synapses (a fundamental component of neural circuitry) without
human supervision, and to evaluate the utility of the obtained representations for key tasks such
as identification of parent cell types and prediction of previously noted anatomical
measurements. Rather than manually identifying presumably-important and handcrafted
features for downstream tasks, or using manual labels to drive the feature learning task, we
instead define a collection of structural transformations under which synapse identity should
remain “invariant”. Our approach follows the SimCLR framework47 that was originally introduced
for learning representations of natural images. For this type of task, we employ a convolutional
neural network (CNN), which is a flexible artificial neural network for visual feature extraction.
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We train our CNN to remove redundant visual features while retaining the most robust
discriminating visual features using a mix-and-match pretext task (Fig. 1B). Specifically, each
input image, in a large batch of randomly selected images, is transformed (“augmented”) twice;
all images are then passed forward through the CNN (the “backbone”), followed by an additional
shallow multi-layer perceptron (MLP) (the “projector”) for further feature processing, and the
resulting representations are used to evaluate and minimize a contrastive loss function. The
loss function is designed such that similarity between representations from the same source
image, and dissimilarity between representations from different source images, both lead to
lower loss (Methods). In practice, SSL frameworks have been shown to produce powerful
low-dimensional visual representations that match and even surpass those obtained using other
machine learning paradigms, such as supervised learning48. The SSL representations have
been shown to be applicable for a wide range of visual tasks such as classification and
segmentation47,49–52 and few-shot transfer learning53,54. The success of the SSL paradigm largely
relies on judicious choice of augmentation transformations (e.g. rotation, random cropping, or
color histogram distortions), which can be highly domain-specific, as well as on the implicit
inductive bias of the backbone artificial neural network. A natural artificial neural network
architecture for visual data processing is the CNN, owing to its desirable translational
equivariance and hierarchical feature extraction properties.

We adapted the SimCLR framework to work on 3D volumetric data rather than 2D images,
along with a set of augmentation transformations specifically designed for segmented 3D EM
data (Fig. 1C; Methods). We used the resulting package, called “SynapseCLR”, to train a
3D-ResNet18 CNN55 on 97658 synapses selected from a recently released 3D EM
reconstruction of mouse primary visual cortex2. These representations reveal that synapses are
partitioned into several highly distinct regions in the feature space, with smooth variation of
representations within each region (see Results). Importantly, by comparing these
representations with annotated anatomical measurements for 5664 of these synapses that were
verified previously2, we find that the structures that synapses occupy in feature space
correspond to changes in structural correlates of function. Excitatory-to-excitatory synapses;
synapses involving inhibitory neurons; and synapses with segmentations contaminated by
breaks or other artifacts each occupy distinct regions of the representation space. Within each
connected component of the representational manifold, we observe smooth and correlated
changes in synapse size, the presence of pre- and postsynaptic mitochondria, and the distance
between a synapse and its postsynaptic neuron. This emergent low-dimensional manifold
structure allows us to map out relationships between the various structural annotations we have
at our disposal for this study. The strong correlation between these annotations and the
representations allows us to use them for a variety of downstream tasks (Fig. 1D), including
one-shot detection of synapses with defective 3D reconstructions in a dataset; imputation of
structural measures for unlabeled synapses by regressing against available annotations;
accurate cell type assignment for small neurites that form synapses but otherwise lack the
morphological context needed for typing--this application allows those neurites to be included in
neural connectivity analysis; and querying of synapses across a dataset based on their visual
similarity.
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The SynapseCLR package is publicly available at
https://github.com/broadinstitute/SynapseCLR, and can be readily used for learning
representations from other 3D EM datasets.

Figure 1. The SynapseCLR workflow.
(A) Dataset specification and overview of the pre-processing pipeline; (left) cross-sectional images

showing the composition of the 3D EM dataset2 used to train SynapseCLR; (middle) a view of this
dataset in the same orientation, showing only excitatory neurons (pyramidal cells) with somas in the
volume: the left half shows all excitatory somas, and the right half shows 4 examples in color to
illustrate the morphologies of these neurons; (middle inset) an example of the synapses in this data
from which we drew our training image chunks, in this case involving an excitatory neuron dendrite
(orange) that is receiving a synapse from an axon (green); (right) the two raw image chunk layers we
used to construct our input image tensors. The top panel shows the segmentation layer, showing only
the segmentations of the presynaptic neuron, postsynaptic neuron, and the synaptic active zone
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(cleft) that they form. The bottom panel shows the EM data from the same region; (far right) we used
the segmentation layer to mask the EM, creating an image chunk with the isolated EM image of the
synapse only. Our input image tensors were composed of this masked EM chunk.

(B) Contrastive learning workflow. Each input image in the tensor is subjected to 2 different, stochastically
constructed augmentations (Methods), then passed through a 3D CNN (we used a 3D-ResNet18),
and a multi-layer perceptron (MLP) head. The NT-Xent loss used to train the network is built such that
the difference between outputs for augmentations of the same image is decreased, and that the
difference for augmentations of different images is increased.

(C) Augmentations used in SynapseCLR: these include mask distortions, intensity distortions, and affine
transformations (Methods).

(D) Application areas of SynapseCLR representations explored in the present paper.

RESULTS

We pulled synapse images from an EM dataset2 consisting of ~2250 40-nm-thick tissue sections
(resolution 3.58 x 3.58 nm2/px2) stacked into a total volume of 240 x 140 x 90 μm3 (Fig. 1A). This
dataset has multiple segmentation layers, three of which we used: first, a cellular segmentation
containing 451 neurons with somas in the volume and ~8 million neurites; second, a
segmentation of ~3.2 million automatically detected synaptic clefts; and third, a segmentation
containing ~2 million automatically detected mitochondria. Of the synaptic clefts, 5664 had been
previously verified by experts as representing real synapses, because they were formed
between neurons with somas in the volume (398 total) and were used for previous analysis of
connectivity between those cells. Biological annotations had also been made and verified for
these synapses, including pre- and postsynaptic cell type (i.e. excitatory vs. inhibitory); distance
of the synapse from the pre- and postsynaptic somas; synaptic cleft size; and number and size
of pre- and postsynaptic mitochondria, i.e. mitochondria located within ~1-5 μm of the synaptic
cleft.

To maximize our ability to evaluate and interpret our learned representations, we included all
5664 of these synapses (called “annotated synapses”) in our training, along with 91994
additional synapses we randomly selected from the remaining clefts (“unannotated synapses”;
Methods). These ~104 unannotated examples were located throughout the volume, thus
providing a spatially uniform sampling of the synapses across different cell types and different
regions within this piece of cortex (layer 2/3 of area V1).

SynapseCLR learns meaningful low-dimensional representations of synapses

We structured each input image beginning from a two-channel 3D image tensor centered at the
synaptic cleft centroid. The first channel was an integer encoding of the presynaptic process,
synaptic cleft, and postsynaptic process segmentation layers (Fig. 1A). The second channel
was the volumetric EM image chunk from the same region. After augmentation and
preprocessing, each image that was ultimately used for training was a 3D image chunk
containing only the EM of the presynaptic process, synaptic cleft, and postsynaptic process (Fig.
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1A,C, Methods). We masked our EM images in this way because we wanted to learn
representations of chemical synapses in isolation. Although the dense neuropil that surrounds
each synapse may impact the physiology of that synapse to varying degrees--microglia can
modulate synaptic function56, whereas many axons pass closely to synapses without forming
any apparent functional interfaces5,57--the entropy of this external material is so high that it
would be challenging to learn a meaningful representation of the synapse itself if it were
included. Studying potential interactions between synapses and the surrounding processes can
be done as a secondary task, which requires having meaningful representations of isolated
synapses in the first place (the focus of the present work).

We developed a set of augmentation transformations specific to synapses that included both
spatial/geometric and intensity transformations, since combinations of both types lead to the
most effective representations47 (Fig. 1C; Methods). Each augmentation was a stochastic
composition of global and per-section brightness adjustment; additive and multiplicative
pixel-level noise; Gaussian blur; corner and shell masking cutouts in order to encourage
learning part-whole relationships; dilations of the segmentation mask applied to the EM image
channel; single-section masking; affine transformations (translations and arbitrary 3D rotations,
without shearing or scaling since such deformations would mask known identifying properties of
synapses); x-axis flip; y-axis flip; and x-y swap. Some of these transformations involve
hyperparameters, which were stochastically selected from ranges chosen within reason for each
augmentation (Methods).

We trained the 3D-ResNet18 backbone and the 2-layer MLP projection head (see Fig. S1A) on
all 97658 synapse image tensors across 4 NVIDIA Ampere A100 GPUs, each with 96GB GPU
RAM. We used a batch size of 192 and trained the network for 200 epochs over two weeks, with
a learning rate restart after 100 epochs. The loss function decreased steadily and reached a
stable minimum (Fig. S1B; Methods).

Following successful training, one can take activations from any layer of the SynapseCLR
network as a potentially useful representation, with the general expectation that deeper layers
contain further processed and aggregated information. Here, we explored the 512-dimensional
feature maps from the last layer of the 3D-ResNet18 backbone, as well as the 512-dimensional
middle layer, and the 128-dimensional last layer of the projection head. In each case, we
generated UMAP58 embeddings from all representations, and found that the embeddings were
structurally consistent (Fig. S2). Further quantitative benchmarks revealed that the
512-dimensional backbone features provided the highest utility for predicting biological
properties of unannotated synapses (see below). As such, we primarily base our main
discussion on backbone features, and briefly comment on the utility of other features later
(Discussion). We explored both 2D (Fig. 2A) and 3D (Fig. S3) UMAP embeddings of these
representations and found in both cases, these representations occupied several highly
separable regions in feature space. A detailed analysis of synapses in each region will be
provided later; examples from each region are shown in Fig. 2B-C.
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As a first visual assessment for the meaningfulness of the learned representations, we selected
a few typical synapses from the dataset as “prompts”, and “queried” similar synapses based on
Euclidean distance in the representation space (Fig. 2D-F, Fig. S4). We noticed that the queried
neighbors shared staggeringly similar structural features to the prompt synapses, providing a
first demonstration that SynapseCLR representations highlighted features that capture structural
variability across synapses in the dataset.

Figure 2. Relationships between SynapseCLR representations and structural properties.
(A) 2D UMAP embedding of representations obtained from the trained 3D-ResNet18 backbone features,

clustered by building a k-nearest-neighbor graph (k=100) according to cosine similarity and clustering
using the Leiden algorithm. Circles around e, f, and g are guides for the eye.

(B) Example images of synapses from clusters that contain primarily high-quality reconstructions (a-d).
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(C) Example images of synapses from clusters that contain defective reconstructions (e-g).
(D) Segmentation-masked EM for 3 arbitrary synapses used as “prompts” to query structurally similar

synapses in the representation space.
(E) The 7 nearest neighbors in representation space for each prompt synapse in (D), showing

remarkable visual similarities to the corresponding prompt synapse.
(F) Representational Euclidean distances between each synapse and the corresponding prompt synapse

shown in (D). Distances for the 7 nearest neighbors shown in (E) are colored black in the histogram.
(G) 2D UMAP of representations for only non-defective synapses (94874 in total). Purple points: the 5623

high-quality synapses for which we had annotations. Gray points: the 89251 high-quality synapses
without annotations.

(H) Each structural property measured for annotated synapses, superimposed on the 2D UMAP.
Points representing the locations of annotated synapses formed between neurons of various valence
(dark purple) in the UMAP, showing substantial separation of synapses in representation space as a
function of pre- and postsynaptic neuron type.

SynapseCLR representations allow one-shot identification of contaminated synapse
segmentations

In our inspection of regions in these UMAP projections, we discovered that one in particular
contained primarily synapses with segmentations that were contaminated by artificial breaks or
other imperfections (Fig. 2B,C). Crucially, several types of contaminated synapses formed a
single cluster in the representation space, allowing us to remove them from the dataset in a
single operation, along with 5 nearest neighbors as a conservative quality control measure
(Methods). The number of annotated and unannotated synapses passing QC amounted to 5623
and 89251, respectively. The removed contamination amounted to 0.7% of proofread and
manually annotated synapses, compared to 3% of the remaining synapses, demonstrating the
specificity of this quality control measure. We did not find synapses exhibiting similar issues in
other regions of the representation space.

SynapseCLR representations correlate with meaningful anatomical features

To assess the relationship between these learned representations and anatomical measures
that are conventionally used as structural correlates of function, we overlaid each property
measured for the 5623 high-quality annotated synapses (Fig. 2G) on our 2D UMAP embedding
(Figs. 2H, I).

We found that synapses formed between different neuron types (excitatory/E or inhibitory/I;
Methods) occupy largely distinct regions of representation space (Fig. 2I). Specifically, E-to-E
synapses dominate the larger, upper manifold, and synapses involving inhibitory neurons
(I-to-E, E-to-I, and I-to-I) dominate the lower manifold as well as much of the thin bridge
connecting the two. Among the domains inhabited by synapses involving inhibitory neurons, we
observe some additional type-specific representation partitioning: I-to-E synapses appear to
concentrate in the lower part of the bottom manifold, whereas E-to-I and I-to-I synapses appear
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to be mostly excluded from this subregion. This representational organization implies that
synapses have inherently distinct structures depending upon whether they are formed by an
excitatory or inhibitory neuron and upon whether the synaptic target is an excitatory or inhibitory
neuron (see Discussion).

Within each of the two largely separate representation manifolds, we also observed structured
variation of other annotated measures. Notably, synaptic cleft size varied smoothly along the
longest dimension of the upper (E-to-E) manifold. We observed a similar but less dramatic
change in cleft size in the primarily-I manifold, again along the longest dimension. The sizes of
presynaptic and postsynaptic partners also co-varied somewhat with cleft size in both manifolds
(Fig. 2H, left column), but, notably, we see that large presynaptic and postsynaptic interfaces do
not always correspond with a large cleft size (e.g. at the bottom of the lower manifold).

We also observed orchestrated variation in whether mitochondria were present in pre- and
postsynaptic partners, and in the volume of those mitochondria that was captured in our image
chunks (which is a rough proxy measure of how close mitochondria are to the synaptic cleft). In
particular, presynaptic mitochondria generally co-occurred with large presynaptic processes in
synapses of any type (Fig. 2H top-middle, left-middle).

In contrast, the learned synapse representations captured limited information related to synaptic
distance from the presynaptic soma (Fig. 2H, middle). Distance from the postsynaptic soma also
varied little except at the bottom of the I manifold, where distances were minimal compared to
those for other synapses (Fig. 2H, bottom middle).

To further ascertain the value of our SynapseCLR representation learning strategy, we also
obtained baseline representations using two other CNNs: a random (untrained) 3D-ResNet18
CNN, and MedicalNet59, a general-purpose pretrained 3D-ResNet18 CNN for 3D segmentation
of MRI and CT datasets in any of a diverse set of organs (including brain). Our inclusion of
MedicalNet as a baseline is motivated by the success of “transfer learning” approaches, i.e. the
empirical observation that CNNs trained on images from one domain, e.g. the ImageNet natural
image dataset60, exhibit strong generalization to other imaging data domains, such as
histopathology slides61 and cell morphology images62.

The resulting UMAP embeddings of SynapseCLR representations and the two baselines, along
with several overlaid annotations, are given in Fig. S2. We notice significantly stronger
correlation and structure in SynapseCLR representations compared to the two baselines. A
quantitative benchmark of these representations for imputing anatomical annotations will be
presented in the next section.

Given that our SynapseCLR representations are robust descriptors of variation amongst
synapses in the dataset (by design), we conclude that annotations that vary smoothly across
representation space (like synapse size and mitochondrial presence) are indeed important
factors in establishing the structural identity of a synapse.
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SynapseCLR representations accurately impute properties of unannotated synapses

The strong correlations we observe between SynapseCLR features and anatomical annotations
suggest the possibility of using these features to predict (“impute”) annotations for unannotated
synapses (which comprise the vast majority of synapses in our dataset). Endowing synapses
with anatomical data is useful for bypassing the need for manual annotation and for increasing
the number of synapses that can be used to assess connectivity in the 3D EM dataset. Although
our set of annotated synapses is biased (it is composed of only synapses between neurons with
somas in the EM volume, i.e. synapses between local neurons), we see that representations of
annotated and unannotated synapses occupy all of the same domains and rather uniformly in
feature space (see purple and gray points in Fig. 2G). Thus, although other synapses in the
volume may be formed by physically more distal cells of differing subtypes, there are no
systematic structural features they possess that are not also represented in the annotated
synapse population. For this reason, annotated synapses can be used to impute properties for
these other synapses.

To generate imputed values of each type of annotation for our unannotated synapses, we
trained Gaussian process (GP) regression models using the SynapseCLR representations as
covariates and the annotations from our subset of 5623 annotated synapses as targets. We
optimally regularized each model, including the choice of GP kernel, using a cross-validation
strategy (Methods). For comparison, we also trained regression models using representations
from the two other baseline CNNs. We found that the backbone-level representations from the
trained SynapseCLR CNN generated the best predictions overall (Fig. 3A; Table S1; Methods).
In the best models, the area under the ROC curves (AUC) for predicting pre- and postsynaptic
cell types were 0.975 +/- 0.004 and 0.940 +/- 0.004 AUC, respectively (Methods). The presence
of pre- and postsynaptic mitochondria could also be predicted with high accuracy (0.939 +/-
0.015 and 0.857 +/- 0.001 AUC, respectively). Another annotation which could be predicted well
was synaptic cleft size (70.0 +/- 2.7% explained variance). On the other hand, our models for a
synapse’s distance from its pre- and postsynaptic neuron somas explained only 15.9 +/- 1.4%
and 53.9 +/- 1.6% of the variance in those measures, respectively. Looking at the scatter plots
of predicted vs. actual pre- and postsynaptic soma distances (Fig. 3C), it seems that both
regression models are similarly limited in their ability to impute distances except for the subset
of synapses that have small distances to the postsynaptic soma (the blue regions in the third
column of Fig. 3B). Overall, the diminished predictability of synaptic distances to somas from
their structure suggests that the correlation between these two features is subtle. Our models
for predicting pre- and postsynaptic mitochondria volumes explained 56.9 +/- 3.1% and 10.0 +/-
2.4% of the variance in those measures, respectively. The limited predictive power of these
models likely stems from our use of small synaptic image chunks. We will discuss potential
future improvements in the Discussion section.
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Figure 3. Predicting structural properties of unannotated synapses using SynapseCLR
representations as covariates and Gaussian process regression.
(A) Annotation prediction accuracy for the best Gaussian process regression models trained on synapse

representations using (top row) a random 3D-ResNet18, (middle row) a general-purpose pretrained
3D-ResNet18 CNN for 3D segmentation of MRI and CT datasets (MedicalNet), and (bottom row)
SynapseCLR 3D-ResNet18 backbone representations. Light gray columns: explained variance (EV)
for continuous measures. Dark gray: area under the receiver operating characteristic curve (AUC) for
categorical measures. Bold: the best-accuracy model for each annotation.

(B) UMAP embedding of SynapseCLR 3D-ResNet18 backbone representations with structural properties
on the subset of annotated synapses (top), and imputed structural properties for all synapses
(bottom).

(C) Imputed vs. measured structural values for annotated synapses. Blue markers show the Gaussian
process posterior mean and the black error bars show the 90% credible intervals. The right-most four
panels correspond to binary measures. The histograms show the predicted probabilities stratified by
true class labels; the inset plot shows the binary classification confusion matrix.

Consensus calls of imputed cell types from multiple synapses increases the population
of analyzable neurites in 3D EM datasets

Of these imputed annotation values, the ones that are most important for growing a
connectomics dataset are the pre- and postsynaptic cell types: E and I neurons are generally
understood to have very different functional roles in neuronal circuitry, so any neurite that cannot
be typed is excluded from analysis because its role in the circuit cannot be ascertained.
However, this conservative approach leads to a severely reduced picture of neuronal circuitry.
Many of the synapses in this EM dataset (all ~3.2 million of them, besides the 5623 annotated
synapses between cells with somas, that is, less than 0.2% of all synapses) are formed
between neurites that cannot be assigned a valence from morphology, precisely because their
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somas are not inside the imaged volume. The result is that >99.8% of synapses in the dataset
are not being used to describe circuitry characteristics.

In the previous section, we showed that for individual synapses, SynapseCLR representations
can be used to reliably predict pre- and postsynaptic cell types (0.975 and 0.940 AUC,
respectively). Here, we exploit the fact that a typical synapse-forming neurite in this dataset that
is not connected to a soma contains tens of synapses (for neurites connected to a soma, this
figure reaches thousands of synapses; Fig. 4C). Therefore, even with imperfect cell typing for
individual synapses, our ability to confidently assign a cell type to each neurite will be
dramatically enhanced (with errors decreasing exponentially with the number of synapses per
neurite) by taking a “consensus” of all participating synapses in a maximum likelihood
estimation fashion. The consensus cell type of each neurite can then be propagated back to the
participating synapses (Fig. 4A; Methods).

We validated the accuracy of our consensus cell typing algorithm by randomly censoring the set
of annotated synapses we used for training regression models and subsequent consensus
calling and then by comparing the inferred consensus pre- and postsynaptic cell types for the
held out annotated synapses with their actual values (Methods). We stratified the validation
accuracies of consensus calls by actual pre- and postsynaptic cell types, and by several bins of
the number of synapses per neurite (“SpN”) to study how many synapses might be required for
significant consensus-based improvement in cell typing accuracy compared to cell typing on the
basis of individual synapses (Fig. 4B). Furthermore, we repeated this process for multiple levels
of censorship to see how much manual annotation is required to train accurate predictive
models for the rest of the synapses in the dataset.

We found that excitatory neurites could be typed with virtually 100% accuracy using consensus
calling, even at 1% annotation completeness (the lowest level we tested), and with SpN ≤ 20
(Fig. 4B, top panels). We found consensus cell type accuracy to be similar for inhibitory
presynaptic neurites (Fig. 4B, bottom left panel), but the accuracies were somewhat lower for
inhibitory postsynaptic neurites. We attributed these lower accuracies to the lower prevalence of
inhibitory neurons with somas in this EM dataset (14, compared with 364 excitatory neurons
with somas). This lower prevalence translates to a relative scarcity of annotated synapses
formed onto inhibitory neurons (1108 out of 5623, compared with 4515 synapses onto excitatory
neurons; see Fig. 4D, left) and thus, a relatively smaller slice of the training dataset that
represents this postsynaptic cell type. Nevertheless, virtually 100% consensus cell typing
accuracy was achieved for ≥ 4% annotation completeness.

By studying the distribution of SpN in the full EM dataset (Fig. 4C), we estimated a lower bound
for the mean consensus cell typing accuracy over the full ~3.2 million detected synapses. To this
end, we took our least accurate category of single-synapse prediction (postsynaptic inhibitory, p
≃ 0.846 at 5% annotation completeness; see Fig. 4B, bottom right), and assumed all
single-synapse predictions to exhibit a similar accuracy. The probability of successful consensus
cell typing per neurite for a given SpN can be calculated analytically from the binomial
distribution. Explicitly, we take SpN as the number of trials, successful classification probability p
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= 0.846, and calculate the total probability of having at least (SpN/2) + 1 correct trials. We
calculate the mean value of the resulting probability over the empirical distribution of SpN in our
dataset (Fig. 4C), and find a mean lower-bound consensus call accuracy of 0.998.

Finally, as a consistency check, we trained the regression models on all of the available
annotated synapses and ran the consensus calling algorithm on those same synapses. The
resulting consensus cell types were reassuringly in perfect agreement with the actual
annotations (see Fig. 4D, middle). Finally, we ran the consensus calling algorithm over the entire
set of synapses in order to learn what kind of neurites they were connecting and by extension,
to learn about the distribution of synapse types in the dataset. We found that E-to-E synapses
dominated the dataset, forming 82% of our sampled synapses (77622/94874). Overall,
excitatory synapses (E-to-E plus E-to-I) formed 88% (83133/94874) of synapses in the volume,
consistent with previous estimates of the balance of excitatory vs. inhibitory synapses in
cerebral cortex5; Fig. 4D, right).
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Figure 4. Accurate consensus-based pre- and postsynaptic cell type determination at
single-synapse resolution.
(A) Left: a schematic illustration of how pre- and postsynaptic cell type probabilities, inferred from

single-synapse EM data, can exist for several synapses that involve a single neurite (here, formed
onto the same dendrite). Right: the two-step consensus cell-typing algorithm: first, we determine the
cell type of each neurite with high accuracy by treating each synapse as a weak classification and
ensembling them; next, we propagate the neurite cell type back to the participating synapses
(Methods).

(B) Consensus-based synapse cell typing cross-validation accuracy, stratified by neurite polarity (pre- or
postsynaptic) and actual neuron type (shown in as four separate panels); the number of synapses per
neurite (SpN) (shown as differently colored bars); and for different fractions of manually annotated
synapses in the dataset, i.e. training data size (x-axis values). The error bars indicate the interquartile
range of each accuracy, as obtained by 10-fold train/test partitioning of the annotated synapses.
Individual cross-validation runs are shown as dots. Note the dramatic increase in accuracy of
consensus calls overall (orange, yellow, and green bars) compared to single-synapse cell type calls
(red bars).

(C) The cumulative distributions of SpN for all neurites (gray) and for the neurites associated with
annotated synapses (blue) in our dataset. The latter group of neurites are distinguished by the fact
that their somas are inside the EM imaging volume; as such they are generally more completely
reconstructed compared with other neurites and have significantly more synapses.

(D) The distribution of pre- and postsynaptic cell types for (left) manually annotated synapses, (middle)
consensus cell type calls restricted to manually annotated synapses, and (right) consensus cell type
calls over all 94874 randomly chosen synapses from our dataset (L2/3 mouse primary visual cortex).
Note the bias in the manual annotations (they are significantly enriched in inhibitory synapses), the
perfect agreement between manual annotations and our consensus cell type calls, and the unbiased
cell type calls when synapses are chosen randomly from L2/3 primary visual cortex, in good
agreement with previous reports of the excitatory to inhibitory synapse ratio.

SynapseCLR representations reveal the inherent dimensionality of synaptic structural
variation and neuronal subtypes

The accuracy with which our representation regression models can predict complex and fairly
abstracted synapse annotations, such as neuronal type, hints at the biologically informed nature
of these representations, and encourages us to study the manifold structure of these
representations per se. In particular, we are interested to learn about the inherent dimensionality
and independent axes of synaptic structural variation, to the degree and granularity that is
allowed by the EM data. These data-driven axes of variation will provide a clearer picture of the
“isolated synapse”, without dependence on human-derived annotations (many of which strongly
co-vary and are not independent, while others might involve information that is not contained in
the isolated synapse).

As noted earlier, our UMAP embeddings form two smooth manifolds, one roughly corresponding
to E-to-E synapses, and the other corresponding to I-to-E/E-to-I/I-to-I synapses. We used a
two-step strategy to learn and interpret the structure of each of these smooth manifolds: (1) We
learned directions of variation for each connected component of the UMAP manifold by
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performing principal component analysis (PCA) on the UMAP coordinates. This procedure
provides us with a data-driven set of axes (which we call UMAP-PCs) that describe synaptic
structural variation. (2) We study the correlations between the loadings of UMAP-PCs and the
annotations in order to interpret these axes of variation in terms of known anatomical
measurements. Even though UMAP manifold learning is typically performed in two dimensions,
and we have used 2D UMAP as well for visualization purposes, the UMAP algorithm is in fact
general and allows learning n-dimensional manifold parameterizations. This allows us to repeat
the UMAP-PCA analysis for different values of n in order to learn higher-order UMAP-PCs. This
is a valuable exercise, because it allows us to test whether allowing variation in higher
dimensions is necessary for explaining the structure of the representation space. We quantified
the relevance of each UMAP-PC in these higher-dimensional spaces according to the amount of
variance of UMAP parameterization it explains.

Figure 5. Inhibitory and excitatory synapses form disjoint, low-dimensional, smooth manifolds in
the SynapseCLR representation space.
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(A) UMAP embedding highlighting the excitatory (upper left) sub-manifold, colored by the coordinates of
our 2D UMAP-PCA analysis (Methods). The directions of UMAP-PC 1 and UMAP-PC 2 are marked
by colored gradients of white-to-red and white-to-blue, respectively. The white circles correspond to
the synapses shown in (B). The black arrows are guides for the eye.

(B) Synapses along the 2D UMAP-PCA grid of the excitatory sub-manifold, showing visible feature
changes including increasing synaptic cleft size along UMAP-PC 1 and presynaptic mitochondria
presence along UMAP-PC 2.

(C) Spearman correlation of various annotations vs. UMAP-PCs in the excitatory sub-manifold. The
legend shows the ratio of explained variance (EV) of the UMAP manifold parameterization by each
UMAP-PC.

(D) Summary statistics of continuous annotations (left) and discrete annotations (right) for all synapses
belonging to the excitatory sub-manifold. Boxes correspond to the inter-quartile range; red markers
and numerical values denote the mean.

(E) Similar to panel (A) but for the inhibitory (lower right) sub-manifold.
(F) Similar to panel (B) but for the inhibitory sub-manifold; note increasing synaptic cleft size and

postsynaptic partner volume along UMAP-PC 1, and increasing postsynaptic mitochondria presence
along UMAP-PC 2.

(G) Similar to panel (C) but for the inhibitory sub-manifold.
(H) Similar to panel (D) but for the inhibitory sub-manifold.
(I) Pre- and postsynaptic neuronal subtypes shown over a subset of annotated synapses, showing that

synapses formed by different neuronal subtypes appear in different parts of the representation space.

The result of the 2D UMAP-PCA analysis is shown in Fig. 5 (top row: excitatory manifold,
bottom row: inhibitory manifold). To guide the eye, the manifolds have been color-coded such
that the UMAP-PC 1 axis has a white-to-red gradient and the UMAP-PC 2 axis has a
white-to-blue gradient (Figs. 5A,E). Examples from a uniformly sampled 2D UMAP-PC grid
(Figs. 5B, F) suggest smooth changes of multiple anatomical features along each direction (see
also Fig. S12). The Spearman correlation between the UMAP-PC loadings and the annotations
are shown in Figs. 5C and G, together with the ratio of explained variance (EV) by each axis. As
Fig. 5C shows, UMAP-PC 1 explained more than 96% of the variance of E-to-E synapses,
suggesting that the structural variation of these synapses, by and large, can be explained by a
single variable. Moving along this axis is positively correlated with increasing pre- and
postsynaptic partner volume; synaptic cleft size (which is limited, but not determined, by pre-
and postsynaptic partner volume); and presynaptic mitochondrion presence and volume. The
remaining 4% of variation is largely explained by UMAP-PC 2, and extending the analysis to
higher dimensions does not change this finding (see Fig. S11A). This second PC correlates with
increased presynaptic partner volume; presynaptic mitochondrion presence and volume; and
notably, the probability that the presynaptic partner is inhibitory. Indeed, Fig. 3B shows that
UMAP-PC 2 is directed toward the region of this manifold where I-to-E synapses are
concentrated.

In the lower manifold, which contains mostly synapses involving inhibitory neurons, we find that
again a large fraction of the variation (80.4%) in representations is explained by UMAP-PC 1.
Compared with the excitatory manifold, this reduced amount of variance explained by a single
axis indicates that this population of synapses is structurally more diverse. As with the excitatory
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manifold, repeating this analysis in higher dimensions does not reduce the relevance of the top
two UMAP-PCs, suggesting that the inhibitory synapses are largely described by two variables
(Fig. S11). In UMAP-PC 1, we observed two relationships of note: first, the probability of the
presynaptic partner being inhibitory increases along UMAP-PC 1, whereas the probability of the
postsynaptic partner being inhibitory decreases along this axis. Second, the distance to the
postsynaptic soma decreases along UMAP-PC 1. The switching of synapse type from E-to-I to
I-to-E along this axis, combined with a systematic movement of synapses formed closer to the
postsynaptic soma suggested that maybe this axis captured partitioning of synapses formed
between different cell subtypes. UMAP-PC 2 correlated with several annotations, but the
mixture did not afford us a clear interpretation on the basis of the anatomical properties that
might be varying along this axis. However, the variation along UMAP-PC 1 led us to wonder
whether UMAP-PC 2 also might be capturing cell-subtype-specific variation in synapse
structure. To test this, we highlighted cell subtypes for the subset of annotated synapses that
had them (Fig. 5I). All excitatory neurons were labeled “pyramidal” (because no structural
subtypes could be easily identified); inhibitory neurons with substantial axons (20) were
classified previously as basket, chandelier, Martinotti, or bipolar neurons, or were otherwise
labeled as having an unknown subtype2. We found that the lower manifold stratified discernibly
according to these subtypes. Along UMAP-PC 1, synapses went from being formed by
pyramidals onto a mix of inhibitory subtypes (largely basket neurons) to being
basket-to-pyramidal synapses (Fig. 5I, top row). Notably, basket neurons form synapses directly
onto pyramidal neuron somas, which is consistent with our finding of decreasing distances to
the postsynaptic soma in this region (Fig. 3B). Along UMAP-PC 2, inhibitory neurons that
formed synapses onto other cell types were remarkably separated according to cell subtype,
stratifying into synapses formed by basket, then chandelier, then Martinotti presynaptic neurons.
Synapses with bipolar presynaptic neurons also appeared to occupy multiple but specific
regions of this manifold; this observation may reflect the fact that there are different structural
subtypes of bipolar neuron in this part of the visual cortex63. By contrast, the representations of
synapses formed onto inhibitory neurons of different subtypes overlap substantially (Fig. 5I,
bottom row), indicating that inhibitory dendrites may not differ as much for different inhibitory
subtypes at the spatial scale of the synapse.

DISCUSSION

Summary

In this work, we have presented a self-supervised contrastive representation learning method
called SynapseCLR, an adaption of the SimCLR framework to 3D EM data, and used the
method to learn feature representations of synapses in a 3D EM dataset from mouse visual
cortex. We established that our representations separated synapses according to both their
overall physical appearance and structural annotations of known functional importance. We
demonstrated the utility of our methodology for several valuable downstream tasks for the
growing field of 3D EM connectomics. These include one-shot identification of defective
synapse segmentations, dataset-wide similarity-based querying, and accurate imputation of
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annotations for unlabeled synapses, using only manual annotation of 0.2% of synapses in the
dataset. In particular, we show that neuronal cell types (excitatory vs. inhibitory) can be
assigned to individual synapses and highly truncated neurites with accuracy exceeding 99.8%,
making this population accessible to connectomics analysis. Finally, we presented a data-driven
and unsupervised classification of synaptic structural variation, revealing its intrinsic
dimensionality and showing that synapse structure is also strongly correlated with inhibitory
neuronal subtypes.

SynapseCLR representations solve multiple outstanding issues with large-scale 3D EM
connectomics data analysis

Our proposed approach to studying synapses is useful for several reasons. First, it is a more
scalable, less biased way of making sense of neural circuitry components compared with
manual annotation and the conventional supervised machine learning approaches. To learn
representations with SynapseCLR, only cell-level segmentations for synapses of interest are
needed, as is an understanding of technical sources of variation among images (e.g. variation in
pixel intensity, rotation, sectioning artifacts, etc.). This approach reduces the dimensionality of
raw synapse images (which can be millions of voxels worth of information) to a
few-hundred-dimensional feature space that is, by design, optimally discriminating.

Working with low-dimensional feature representations has two key practical advantages. One is
that having a relatively small number of annotated synapses (several thousands) is sufficient to
train accurate predictive models without overfitting. We recall that the dimensionality of
backbone features (512) is an order of magnitude smaller than the number of annotated
synapses (5623), allowing training regression models without overfitting. By contrast, the
dimensionality of raw EM image chunks (96 x 96 x 96 ≈ 106) is nearly two orders of magnitude
larger than the number of annotated synapses, posing a fundamental challenge for supervised
learning. Liberation from intensive manual data labeling has been extensively studied in the
context of classifying natural images and is the main motivation behind the development of
various self-supervised pre-training regimens47. The other advantage of working with
low-dimensional feature representations is the possibility of using unsupervised machine
learning methods to explore and interpret these representations per se. For example,
unsupervised manifold learning using UMAP showed us that representations may split
according to neuronal subtype, suggesting that synapses have inherently different structures
when formed between different neuron subtypes. Future directions include highlighting
additional organelles of interest in explaining synaptic structural variation and linking this to
neuronal microcircuits. More broadly, application of unsupervised methods and de-emphasis of
human-designed features as afforded by SynapseCLR will be essential for circuit property
discovery as EM image volumes continue to grow in size3,22,42,64.

Second, our representations highlight not only biologically important variations in synaptic
structure, but also non-specific, technically important variations in structure that we did not factor
into our augmentations, i.e. segmentation artifacts. Defective synapses can be identified and

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495207doi: bioRxiv preprint 

https://paperpile.com/c/NMSkun/dVa5
https://paperpile.com/c/NMSkun/IKFN+yAtt+lTlJ+8dbG
https://doi.org/10.1101/2022.06.07.495207
http://creativecommons.org/licenses/by-nc-nd/4.0/


removed in one shot using only a handful of examples, as shown in Figs. 2 A-F. This
characteristic of SynapseCLR representations is reminiscent of few-shot learning approaches in
computer vision53,65, and is of great value for quality controlling and analyzing large
connectomics datasets, where otherwise full, manual inspection of synapses would be required
to ensure that the synapses being studied are not contaminated.

Third, SynapseCLR representations capture features that in particular define pre- and
postsynaptic cell type (E vs. I; Fig. 2I) with high accuracy. By ensembling single-synapse
predictions over individual neurites, we were able to to assign highly accurate cell types for the
many highly truncated neurites in this EM dataset that formed most of our unannotated
synapses (Fig. 4). This capability provides huge value to the field of connectomics, because
usually cell types can only be assigned to mostly complete neurons (or glia) in a dataset which
comprise a small minority of neurites (here, 400 of 8 million, or 5x10-3%, of objects) and the
majority of objects are left out of the analysis. By running imputations and making consensus
calls on neurites that form 2 or more synapses, we estimate that we are able to put ~378000 of
them back into our analysis with ~100%-accurate cell types (roughly 30% of the 1.27 million
neurites that form putative synapses in the volume, and 4.7% of the 8 million neurites in the
volume), significantly enhancing future studies of cell-type-specific connectivity patterns.

Appropriate augmentation design is critical for finding meaningful self-supervised
representations

The learning paradigm used in SynapseCLR is designed to retain the most robust discriminating
visual features that remain invariant under a specified set of augmentations, while distilling out
non-invariant visual data. Thus, in order for SynapseCLR to generate biologically meaningful
synapse representations, augmentation choice is critical: augmentations should be designed to
capture as much technically-sourced image variation as possible, and to avoid capturing
biological variations. We motivate our augmentation choices in great detail in the Methods
section. As a concrete example of the way insufficient augmentation can degrade
representations, we trained SynapseCLR a second time with a modified type of rotation. With
our original approach, where full SO(3) rotations were allowed (giving the results in Figs. 2-5),
we see that the representation space is indeed invariant to synapse orientation angle (Fig. S7A,
C) while successfully capturing variation in other structural properties (see Results). (One
exception is the subset of E-to-E synapses that occupy the upper right region of the upper
manifold; this may be indicative that synapse orientation is highly conserved for synapses
formed by some excitatory cell subtypes; see below). In contrast, when we restricted
augmentations to discrete octahedral rotations only, the resulting representations were
dominated by synapse orientation (Fig. S7B). As a control demonstrating that our augmentation
procedure is functioning properly, the number of blanked sections was varied in augmentations
for both runs, and in both the resulting representations had no dependence on the number of
missing sections.
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SynapseCLR representations suggest new directions for future studies of neuronal
circuit connectivity

The representations generated by SynapseCLR show that structural variations among synapses
correspond to notable annotation properties that should be further investigated. First, by
studying the axis of greatest variation for E-to-E synapses (the long axis of the upper manifold;
Fig. 5C, UMAP-PC1) we see that the primary way in which synapses differ along this axis is by
cleft size, and it appears that synapses with larger clefts have more presynaptic mitochondrial
presence and less postsynaptic mitochondrial presence than smaller synapses. These
relationships could be a marker for E-to-E synapses that are being potentiated: when a pre- and
postsynaptic cell repeatedly fire in a fixed temporal pattern, with presynaptic firing followed tens
to hundreds of ms later by postsynaptic firing (this is also called “synchronous” firing), synapses
are thought to undergo changes that mediate more efficient signal transmission66,67. One such
change for excitatory neurons over longer times (roughly hours or longer) is addition of AMPA
receptors67; this would correspond to a larger synaptic cleft in an EM image, since cleft size is
typically measured as the volume of the postsynaptic density (the net of architectural proteins
and receptors positioned on the postsynaptic side of the synapse31). Mitochondria may also
have a role in promoting synaptic potentiation: in addition to providing cells with energy (via
oxidative phosphorylation that produces ATP), mitochondria buffer Ca2+ out of surrounding
cytosol46. Ca2+ is essential for the release of vesicles containing neurotransmitters from the
presynaptic cell, and one consequence of reduced levels of presynaptic Ca2+ is reduced
spontaneous vesicle release. Mitochondria-mediated removal of presynaptic Ca2+ suppresses
such “asynchronous” activity and promotes synchronous firing leading to potentiation68. In the
postsynaptic region, mitochondria are the primary energy source responsible for local
translation of mRNA into proteins46. It has been proposed that enhanced postsynaptic
mitochondrial presence may be a signature of synaptic downscaling, which is in turn a
consequence of synaptic potentiation: broad postsynaptic downscaling allows potentiated
synapses to take larger weights in signal transmission without triggering runaway activity
(epileptic events)69,70. Future work could focus on determining whether these distinctions do in
fact indicate a subpopulation of potentiated E-to-E synapses.

Second, as highlighted by our UMAP-PC analysis, representations appear to separate
synapses not only by pre- and postsynaptic cell type, but also by cell subtype (as we see from
our synapses involving inhibitory neurons; Fig. 5I). This finding is important because it indicates
that neurites can be assigned cell subtypes based on the structure of the synapses they form. In
the future, annotations of these synapses could be used to impute cell subtypes for neurites in
EM datasets and thus add a layer of specificity to connectivity analyses. This type of information
could further build out the picture of cortical connectivity, by highlighting the frequency of various
cell connection types and describing the synapse properties of those connections.

The finding that inhibitory neurons can be subtyped based on their synapses begs the question
of whether the same can be said about excitatory neurons. As shown in Fig. S7, the E-to-E
manifold does possess a region where synapse orientation is important (the upper-right region).
This region could either correspond to synapses involving a specific compartment of an
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excitatory neuron (pyramidal cells have highly stereotyped dendritic morphologies, including
apical dendrites that point radially and basal dendrites directed 45 degrees away from the apical
axis), or it could correspond to a specific subtype of excitatory neuron. Further work to identify
annotations that might identify excitatory cell subtypes (like compartment labels or cortical layer
labels, e.g. L2/3 vs. L5/6) would be useful for learning more about excitatory subtypes.

Additionally, the finding that E-to-E synapses may separate based on potentiation state begs the
question of whether this is true for inhibitory neurons. Indeed, this and many other facets of the
synapses in this dataset can be investigated by identifying additional structural correlates of
function. For example, synaptic vesicles (both docked and free71) and endoplasmic reticulum39

are two organelles already known to be essential for synaptic function that could be annotated
to help interpret SynapseCLR representations. One of the salient characteristics of contrastive
learning is the implicit inversion of the data generating process (here, meaning aspects of
cellular function) by learning disentangled representations at the projection head72,73. Here, a
disentangled feature means one that controls a specific aspect of the synapse structure while
remaining inside the data manifold and leaving other aspects intact (i.e. being an independent
knob). We have empirically demonstrated this emergent property for SynapseCLR
representations in Fig. S8A, where projection head features are found to be largely independent
of one another. One may speculate that disentangled visual features of synapses may
correspond to biological function. Indeed, we find that projection head PCs 1 and 8 control cleft
size and mitochondrial presence (though not independently), both features being of known
functional significance. Projection head PC 3, on the other hand, while being largely
uncorrelated with our available manual annotations, seems to be responding to synaptic
vesicles upon visual inspection. More generally, we speculate that relating SynapseCLR
representations to structural correlates of function, paired with visual assessment of synapses
showing high and low activation of these features, may reveal novel anatomical properties of
synapses tied to their function.

SynapseCLR representations themselves can be enhanced by several future endeavors. First,
training on larger input image chunks could allow for more relevant information over larger
spatial scales to be encoded. Such information could include how synapses may vary with
distance from cell somas (in this work we trained on images spanning a few μm, whereas
dendrites and axons extend for 100s of μm and up to 400 μm in this dataset4). It could also
allow for more informative encoding of mitochondrial features by capturing more of the
mitochondria near synapses: in our image chunks, mitochondria were often truncated because
they were either much larger than the volume (true for most postsynaptic mitochondria), or
because they were slightly farther from the synaptic cleft than the image chunk boundaries (a
source of noise for both pre- and postsynaptic mitochondria). Similarly, training with a larger
network to produce SynapseCLR representations could lead to more detailed representations,
as has been shown by past work47,49.

SynapseCLR can be readily used for learning representations from other objects in an EM
dataset besides synapses. Correlating synapse representations with the representation of the
surrounding neuropil is an attractive future direction for revealing potential modulation of
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synapse structure by nearby processes (e.g. microglia and other glial cell types are known to
modulate synaptic function37,56).

Looking farther into the future, generation and interpretation of unsupervised representations in
EM could be further enhanced by adding multimodal information, such as focused,
higher-resolution EM; molecular image labels through immunohistochemistry or by other means;
or activity-based images using techniques such as Ca2+ imaging. Specific targets for either input
labels or annotations could include electrical synapses74 or more subtle synaptic organelles like
multivesicular-endoplasmic reticulum bodies75. Given that transcriptional states are strongly
correlated with morphological features in cells and tissues76–79, we believe that informative
morphological representations such as those produced with SynapseCLR may help form a more
complete picture about the connection between structural connectivity and the underlying
molecular mechanisms.
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METHODS

EM Source Dataset
Our 3D EM image volume was a reconstruction from layer 2/3 (L2/3) of primary visual cortex in
a young-adult (postnatal day 36), male mouse (from the IARPA MICrONS project; see
https://www.microns-explorer.org/phase1). This volume was built from ~2250 EM images, each
40 nm thick and with resolution 3.58 x 3.58 nm2, and measured 240 x 140 x 90 μm3 in total. We
made use of 3 segmentation layers that were also released with this dataset: one layer
segmenting the EM images into its constituent cells; one identifying the active regions of
chemical synapses (called “synaptic clefts”) in the volume; and one showing all the mitochondria
present in the volume. We also used skeletons for 397 excitatory and inhibitory neurons with
their somas in the volume. These skeletons had been proofread and smoothed to allow for
calculations involving distances along the dendrites or axons of these neurons.

EM and Segmentation Mask Image Chunk Generation
To generate image tensors for training, we pulled the list of synaptic clefts published with the
MICrONS L2/3 mouse primary visual cortex dataset80. This list contains 3.2 million rows of
putative synapses and a subset of 6761 synapses that had been previously proofread by
multiple experts. These synapses were formed between excitatory and inhibitory neurons that
had their somas contained inside the dataset and were used for multiple analyses4,35,81.
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We then sampled additional synapses to generate a targeted training dataset of 100000
synapses, by randomly sampling from the rest of the synapse list (which contained synapses
scattered effectively uniformly throughout the EM dataset). For every synapse we chose, we
downloaded a 256 x 256 x 256-voxel EM image chunk at MIP 1 (7.16 x 7.16 x 40 nm3/vx) from
the public data repository, and only added it to our input image if <10% of the image chunk was
missing (i.e. masked out to zeros in order to prevent section collection or imaging artifacts from
affecting image volume post-processing). If a chunk had more than 10% of its volume masked
out, it was discarded from the input set and a different synapse was selected and checked for
suitability.

If the synapse met our criteria for EM masking, we also downloaded chunks of the same size
and centered at the same location from the segmentation, synaptic cleft, and mitochondrial
layers, to be used for input tensor generation and, for synapses connecting neurons with somas
in the volume, annotation population. Input image data was downloaded for all synapses using
CloudVolume.

For the segmentation layer, we restricted our download to only the pre- and postsynaptic
neurons forming the current synapse, using the synapse table provided with this dataset. If this
process failed for any of the synapses for which annotations were possible, we discarded it from
our training set. Because we also used mitochondrial segmentations for our annotation-based
analysis, we also discarded synapses where the mitochondrial segmentation was not available.
This process resulted in a training dataset consisting of 5664 annotated and 91994 unannotated
synapses.

Keeping in mind that we ultimately wanted to work with isotropic images, we kept only the 52
central z-sections that covered roughly the same physical linear dimension as x and y (i.e. 52
sections at 40 nm/px = 2080 nm,  256 pixels at 7.16 nm/px = 1832 nm). During data
augmentations, we then upsampled our z pixels to roughly our match x-,y-resolution (see
below).

Volumetric Data Augmentation
We constructed a set of intensity-, masking-, and affine-transform-based augmentations to use
for training our network on synapse image data (Fig 1C). Each transformation is defined, first, by
a probability parameter, which fixes the probability at which it will be included in an instance of
an augmentation, and second, by hyperparameters that define the exact orientation, shape, or
magnitude of the transform.

We implement augmentation transformations in PyTorch to leverage GPU acceleration.
Transforming volumetric data is considerably more time consuming than 2D images and the
conventional CPU-based approach to data augmentation results in considerable slowdown and
wasted GPU time. The overall data flow for augmenting a batch of n volumetric image chunks is
as follows:
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1. The volumetric intensity data is transformed to [0, 1] value range and is represented as a
batch of 3D tensor of size 256 x 256 x 52, and the binary segmentation masks
(presynaptic process, synaptic cleft, postsynaptic process) are represented as a batch of
3-channel 3D binary tensor of size 256 x 256 x 52. We note that at this stage, the
representation is anisotropic: each voxel corresponds to a physical volume of 7.16 x 7.16
x 40 nm3.

2. A first series of intensity-based and mask-based transformations are randomly sampled
and applied to the intensity and the mask tensors, respectively. These transformations
are described below.

3. An affine transformation composed of a random 3D rotation, random center
displacement, central cropping, and a fixed anisotropic scaling is applied to both
intensity and mask tensors. Central cropping and anisotropic scaling transformation
plays three roles: (1) reverting the unequal sectional and in-plane tissue imaging
resolution and ensuring that the final voxels are isotropic at 7.16 nm/px a side; (2)
shrinking the field of view from ~2 μm3 (256 px) to ~1.5 μm3 (192 px) in order to reduce
the external context; (3) downsampling the resolution to the final desired output
resolution of 96 x 96 x 96 voxels, with each voxel corresponding to a physical volume of
14.3 x 14.3 x 14.3 nm3. We implement this series of transformations efficiently by
leveraging PyTorch’s Spatial Transformer Network (SPN) capabilities as a single
operation82.

4. A second series of intensity-based and mask-based transformations are randomly
sampled and applied to the isotropic intensity and the mask tensors, respectively. These
transformations are described below.

5. Finally, the 3-channel mask tensor is merged to a single binary mask via a voxel- and bit-
wise OR operation. Peripheral voxels that may be disconnected from the synaptic cleft
are identified and removed using cc3d package83 by traversing the 26 nearest neighbors
of each voxel. The intensity channel is multiplied with the resulting “active zone” binary
mask, z-scored using dataset-wide mean and standard deviation, and returned.

We will describe each transformation and our choice of hyperparameters below.

Intensity-based Transformations

Sectional cutout: A common technical artifact of 3D EM datasets generated via serial sectioning
is the random missingness of parts of many scanned sections due to tissue sectioning or
scanning issues (e.g. thin tissue deformation, warping, folding). A typically employed quality
control measure is to identify and blank out affected regions along the fold line. Since the
blanked out regions can be tens of microns in width, these partially missing regions appear as
completely missing sections when sampling micron-sized 3D volumes (e.g. a synapse) from the
reconstructed dataset. Such a prominent technical artifact may be easily exploited by the
representation learner to trivially solve the contrastive objective without learning a deeper
structural feature representation. We estimated a typical synapse to have 1-2 missing sections
in our dataset. To disincentivize the model from incorporating such artifacts into the
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representation space, we randomly select sections and blank them out.𝑛
𝑐𝑢𝑡𝑜𝑢𝑡

~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(10)

This transformation is applied before the affine transformation and with probability 0.5.

Sectional intensity distortion: The EM dataset is normalized appropriately to minimize sectional
intensity variations. The normalization strategy implemented by the original authors, however, is
not locally adaptive and thus, we estimated approximately 10% sectional intensity variation. To
desensitize the representations to such such technical variations, we apply following transform
stochastically to every local z-section:

,𝐼
𝑜𝑢𝑡

= α + β 𝐼
𝑖𝑛 

γ

where and denote the input and output z-sections, respectively. The transformation is𝐼
𝑖𝑛 

𝐼
𝑜𝑢𝑡 

applied pixel-wise, and for each z-section, , , and are independent and identically distributedα β γ
(i.i.d.) random variables sampled as follows:

,α ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(− 0. 05,  0. 05)
,β ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0. 9,  1. 1)
.γ ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0. 9,  1. 1)

The output intensities are clipped to range [0, 1] to prevent under- and overflows. This𝐼
𝑜𝑢𝑡 

transformation is applied before the affine transformation and with probability 1 (always).

Global intensity distortion: A similar reasoning applies to technical intensity variations at the
volumetric level, i.e. presence of intensity variations at the scale of tens of microns due to
varying tissue quality, scanning batch, etc. As a remedy, we apply the same transformation as
above to the entire 3D volume:

,𝑉
𝑜𝑢𝑡

= α + β 𝑉
𝑖𝑛 

γ

where and denote the input and output volumes, respectively. The transformation is𝑉
𝑖𝑛 

𝑉
𝑜𝑢𝑡 

applied pixel-wise, , , and are sampled like before. In contrast to sectional distortion, , ,α β γ α β
and are not independent across z-sections and are sampled once for the entire volume. Theγ
output intensities are clipped to range [0, 1] to prevent under- and overflows. This𝑉

𝑜𝑢𝑡 

transformation is applied before the affine transformation and with probability 1 (always).

Pixel noise: Independent pixel noise is a ubiquitous source of noise in any imaging. We apply
both normal additive and log-normal multiplicative independent noise to every voxel:

,𝑉
𝑜𝑢𝑡

= 𝐴 + 𝑀 𝑉
𝑖𝑛
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where and (positive) are 3D additive and multiplicative i.i.d. noise tensors with the same𝐴 𝑀
dimensionality as . We estimated the pixel noise level to be approximately 1% to 5% by 𝑉

𝑖𝑛

comparing the intensity of adjacent pixels. Moreover, we observed variation in the level of noise
at the scale of tens of microns (likely due to varying tissue condition). We model this using a
simple two-hierarchy noise sampling procedure:

,σ
𝐴

 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,  0. 05)

,σ
𝑀

 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,  0. 05)

,𝐴 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  σ
𝐴

)

.𝑀 ~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0,  σ
𝑀

)

The output intensities are clipped to range [0, 1] to prevent under- and overflows. This𝑉
𝑜𝑢𝑡 

transformation is applied before the affine transformation and with probability 1 (always).

Gaussian blur:  Another source of imaging variation is blurring, which in EM datasets, stems
from variation in tissue quality and dye diffusion. While blurring is not considered a significant
issue for the scanning EM imaging modality (as opposed to e.g. fluorescence microscopy), we
reasoned that its inclusion as an augmentation may help decrease the reliance of the model on
high-resolution features. We apply Gaussian blur to each volume with probability 0.5 after the
affine transformation. If blurring is to be applied, we randomly select a blurring radius fromσ

𝑏𝑙𝑢𝑟

3 options with equal chance: 0.25, 0.5, or 0.75 (in the final units of 14.3 nm), generate a
normalize 3 x 3 x 3 Gaussian 3D convolution kernel , and apply the 3D convolution to the𝐾
intensity tensor:

,σ
𝑏𝑙𝑢𝑟

 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙([0. 25,  0. 5,  0. 75])

),𝐾 = 𝑁(0,  σ
𝑏𝑙𝑢𝑟

.𝑉
𝑜𝑢𝑡

= 𝐾 * 𝑉
𝑖𝑛

Mask-based Transformations

Peripheral cutout: We encourage the model to attend to synapse “active zone” by
disincentivizing it to use peripheral intensity data using three different transformations:

1. Corner cubic cutout: We subdivide the synaptic volume in thirds along each axis,
randomly select one of the 26 cubes neighboring the central region, and blank it out with
probability 0.5.

2. Random cubic cutout: We randomly select and blank out 2 cubic regions, each ranging
in dimensions from 12 x 12 x 12 voxels to 36 x 36 x 36 voxels, with probability 0.25. We
protect the synaptic cleft region from being selected and cropped.

3. Center crop: We select a cubic region around the synaptic cleft with linear dimensions
ranging from 50% to 70% of the entire box, with a maximum center displacement of
20%, and we blank out the exterior region with a probability of 0.25.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495207doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495207
http://creativecommons.org/licenses/by-nc-nd/4.0/


These transformations are applied after the affine transformation in the final 96 x 96 x 96 voxels
space.

Segmentation mask inflation: We disincentivize the model from exploiting potential imperfections
of the segmentation masks by inflating (dilating) the segmentation masks with randomly chosen
inflation radii. We implement the operation by convolving the binary masks with a cubic dilation
structure as follows:

,𝑟
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(1,  ...,  9)

,𝐾 = 𝑅𝑒𝑐𝑡(𝑟
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

) 

,𝑀
𝑜𝑢𝑡

= 𝐾 *
𝐵

 𝑀
𝑖𝑛

where is the inflation radius, is the cubic dilation structure, i.e. a 3D𝑟
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑐𝑡(𝑟
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

)

kernel with shape with 1 everywhere, and are the input and output(2𝑟
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

+ 1)3 𝑀
𝑖𝑛

𝑀
𝑜𝑢𝑡

binary segmentation masks, and is the binary convolution operator.*
𝐵

Data Augmentation in Batch Mode

When augmenting a batch of images, we implement two modes of operation: (1) the “coupled”
mode, where the same randomly composed augmentation transformation is applied to every
image in the batch, and (2) the “decoupled” mode, where a different randomly composed
transformation is generated and applied to each image. In theory, the “coupled” mode leads to
both harder positive and negative examples: for any given image in a batch of n images, the
same transformation is applied to n - 1 other images, while also the matching image (second in
pair) shares the same augmentation transformation with n - 1 negative images. As a result, the
contrastive loss cannot be trivially minimized by learning the signature of augmentation
transformations and exploiting those signatures to rule out potential positives or negatives. In
our preliminary experiments, we observed evidence supporting improved representations when
training the model using coupled augmentations (e.g. a more structured UMAP embedding) in
agreement with our theoretical reasoning. The results shown in this paper are all generated
using models trained using coupled augmentations, a choice that deviates from the original
SimCLR paper47. A systematic empirical study of the impact of different augmentation strategies
on the quality of representations is a valuable future research direction.

Feature Extraction Mode

A critical part of our raw data preprocessing, namely bilinear upsampling of the axial resolution
to match the in-plane resolution, and downsampling to the final 96 x 96 x 96 resolution (which is
an allowed input dimension for 3D-ResNet-18 CNN architecture), is done on the fly and as a
part of our fast GPU-based data augmentation. Following successful model training, we wish to
process each synapse with the trained CNN and extract representations from different layers
(backbone, projection middle, projection head). To this end, we simply disable all
intensity-based, mask-based, and affine transformations except for the anisotropic scaling
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component of the affine transformation step. In this mode, the augmentation module operates in
a fully deterministic mode and simply acts as a fast data resolution transformer.

SynapseCLR Loss Function and Training Schedule

We closely follow the SimCLR methodology developed for natural images47, with two
modifications: (1) We use a 3D-ResNet18 CNN as the backbone instead of 2D-ResNets; (2) We
replace the SimCLR data augmentation transformations (relevant to 2D natural images) with the
3D EM-specific transformations discussed in the previous section. In this section, we will provide
a brief description of our adapted framework (“SynapseCLR”), including the neural network
architectures, loss function, and training schedule.

The SynapseCLR Framework: Network Architecture and Loss Function

Each iteration of SynapseCLR training starts with a minibatch of N randomly selected images, 𝑥
𝑖

for . Next, we generate two random views (“augmentations”) of each image by𝑖 = 1,  ...,  𝑁
composing a series of randomly selected transformations, for , from a predefined𝑡

𝑖
𝑖 = 1,  ...,  2𝑁

set of transformations. These transformations are applied to the images in the minibatch and the
results are interleaved in even and odd pairs:

𝑥
~

2𝑘−1
=  𝑡

2𝑘−1
(𝑥

𝑘
),

𝑥
~

2𝑘
=  𝑡

2𝑘
(𝑥

𝑘
),

for . The augmented images are first processed by the CNN backbone ,𝑘 = 1,  ...,  𝑁 𝑓(.)
followed by the projection head , in order to generate a final representation for contrasting𝑔(.)
and matching:

ℎ
2𝑘−1

=  𝑓(𝑥
~

2𝑘−1
),      𝑧

2𝑘−1
 =  𝑔(ℎ

2𝑘−1
),

ℎ
2𝑘

=  𝑓(𝑥
~

2𝑘
),              𝑧

2𝑘
 =  𝑔(ℎ

2𝑘
),

for . The role of the projection head is to further process the CNN features and𝑘 = 1,  ...,  𝑁
embed them in a space amenable to contrasting and matching using one’s similarity metric of
choice (see below).  The architecture of the 3D-ResNet18 and projection head we have used in
our implementation is shown in Fig. S1A. Our ResNet backbone is largely a 3D adaptation of
the original 2D ResNet55 with a minor modification of the network stem: given that our input
images are already downsampled to 96 x 96 x 96, with each voxel corresponding to ~14.3 nm in
physical space, we reasoned that a max pooling operation commonly in the network stem would
result in loss of high frequency visual information and therefore bypassed it.
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The SimCLR contrastive training objective is to encourage two views of the same image to be
as similar as possible, i.e. , while maintaining dissimilarity to both views of everyℎ

2𝑘−1
 ≈ ℎ

2𝑘

other image in the minibatch. This is achieved by calculating and summing a normalized
temperature-scaled cross entropy (“NT-Xent”) loss function for each image in the augmented
minibatch:

𝐿 = 1
2𝑁

𝑘=1

𝑁

∑ 𝑙
2𝑘−1, 2𝑘

 +  𝑙
2𝑘, 2𝑘−1( ),

where:

.𝑙
𝑖, 𝑗

=  − 𝑧
𝑖
𝑇𝑧

𝑗
 / τ +  log

𝑘 =1

2𝑁

∑ 1
𝑘 ≠ 𝑖

 exp(𝑧
𝑖
𝑇𝑧

𝑘
/τ)( )

Here, is the temperature hyperparameter that sets the typical range of repulsive and attractiveτ
forces in the representation space. It has been empirically shown that is a robust choiceτ = 0. 5
independent of the learning rate and minibatch size47.

Prior to model training, the projection head representations are largely uninformative. As𝑧
𝑖

such, the cosine similarity values appearing are drawn from the same distribution for𝑧
𝑖
𝑇𝑧

𝑗
𝑙

𝑖, 𝑗

both positive and negative pairs. As a result, independently of and and𝑙
𝑖, 𝑗

 ≈ log  (2𝑁 −  1) 𝑖 𝑗

the initial value of the loss function is expected to be . As model training𝐿
𝑖𝑛𝑖𝑡

≈ log  (2𝑁 − 1)

proceeds, we expect the appearance of a separation in cosine similarity between positive and

negative pairs, i.e. , for and being two views of the same image and𝑧
𝑖
𝑇𝑧

𝑗
 −  𝑧

𝑖
𝑇𝑧

𝑘
 ≈ ∆ >  0 𝑖 𝑗

being a different image. Consequently, we find𝑘 𝑙
2𝑘−1, 2𝑘

 ≈  𝑙
2𝑘, 2𝑘−1

 ≈  log  (2𝑁 −  1) −  ∆ / τ

. Therefore, a drop in the loss function from its initial value by an amount implies the𝐿 δ𝐿
emergence of a separation in the cosine similarity between positive and negative∆ ≈ τ δ𝐿
pairs.

Initialization and Training Schedule

We initialized the convolutional layers using Glorot-scaled Gaussian weights84 truncated to [-2,
2]. Weights and biases of the linear layers were initialized to i.i.d. draws from N(0, 0.01). The
3D-ResNet18 and projection head contain ~ 33.4M and ~ 329K trainable parameters,
respectively. We used the Adam optimizer with an initial learning rate of 2e-4 with a cosine
decay to 2e-5 during 100 training epochs. After 100 epochs, we reset the learning rate back to
2e-4 and perform another 100 epochs of contrastive training. We used 4x NVIDIA A100 GPUs
each with 40 GB of HBM2 RAM. With 160 GB of GPU RAM, we could upload, augment, and
perform a complete forward and backward pass on a minibatch size of 192 synapses (48
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synapses/GPU). Training for 200 epochs took approximately two weeks. The NT-Xent loss
function is shown in Fig. S1B and is largely stationary after restart, suggesting convergence.

Annotations for Verified Synapses

For EM image chunks of verified synapses, we also annotated several properties that previous
studies indicate may be related to synaptic function and thus potentially also of structure:

● Presynaptic cell type: Assigned as excitatory or inhibitory from the soma valence table
provided in https://www.microns-explorer.org/phase1.

● Postsynaptic cell type: Also assigned as excitatory or inhibitory from the soma valence
table.

● Synaptic cleft size: The number of voxels forming the synaptic cleft, as reported in the
synapse table from the dataset.

● Distance from synaptic cleft to the soma of the presynaptic neuron: Computed by
finding 1) the node in the presynaptic neuron skeleton closest to the synaptic cleft
centroid, and 2) the node of the presynaptic skeleton corresponding to the soma
centroid. We then used the networkx package in Python to convert the presynaptic
skeleton to a graph, and used the shortest_path_length algorithm to estimate the
distance between these two locations.

● Distance from synaptic cleft to the soma of the postsynaptic neuron: Computed
using the same process as above with the postsynaptic neuron.

● Presence of presynaptic mitochondria: Mitochondrial segmentations within 5 μm of
annotated synapse centroids were manually proofread. If mitochondrial segmentations
overlapped with the presynaptic segment in an annotated synapse image chunk, this
value was set to 1; otherwise it was set to 0.

● Presence of postsynaptic mitochondria: Same as above but mitochondria
overlapping with the postsynaptic segment were used.

● Volume of presynaptic mitochondria: The number of voxels of mitochondrial
segments overlapping with the presynaptic segment in the synapse image chunk.

● Volume of postsynaptic mitochondria: Same as above, but for mitochondrial
segments overlapping the postsynaptic segment.

Gaussian Process (GP) Regression for Annotation Imputation

In this section, we describe our methodology for probabilistic imputation of annotation for
unlabeled synapses. Conceptually, we wish to use SynapseCLR representations as covariates
(“input space”) and predict the annotations (“target space”) using available manually annotated
synapses. Previous authors have used linear classifiers and regressors for this task47. Here, we
propose to use Gaussian process (GP) models instead. GP has two key advantages compared
to linear models: (1) linear models can be thought GPs with linear kernels; using appropriate
nonlinear kernels may prove to be an effective way to improve the accuracy of predictions; (2)
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GP models are naturally endowed with a Bayesian posterior probability distribution, allowing us
to additionally model of the credibility of our predictions.

Annotation Preprocessing and Class Balancing

To facilitate GP training, we log-transformed and z-scored all continuous annotations to
compress and standardize their dynamic ranges. This transformation is invertible, allowing us to
revert to the original scale after performing imputation. In light of the presence of significant
sampling bias in our available annotations (e.g. there are more inhibitory synapses than
excitatory synapses in the annotation set; see Fig. 4D), it is crucial to perform class balancing
on the GP training dataset. To this end, we randomly resampled an equal number of synapses
from each binary class 5 times and trained separate GP models on each rebalanced dataset.
We observed reassuringly negligible differences in predictions and reported ensemble average
of the GP posterior predictions.

Cross Validation and Accuracy Metrics

For an unbiased assessment of the accuracy of the GP fits, we split the annotated dataset into
90% training and 10% testing sets, fit the GP on the training set and reported accuracy figures
on the testing set. We repeated this procedure 5 times with different random splits to estimate
the confidence level of the reported accuracy figures. We report the prediction accuracy of
continuous variables in terms of explained variance (EV) percentage over the test set defined as
follows:

𝐸𝑉 𝑥
𝑝𝑟𝑒𝑑

,  𝑥
𝑡𝑒𝑠𝑡( ) = 100 × 1 − 𝑖=1

𝑁
𝑡𝑒𝑠𝑡

∑ 𝑥
𝑡𝑒𝑠𝑡

(𝑖)−𝑥
𝑝𝑟𝑒𝑑

(𝑖)( )2

𝑖=1

𝑁
𝑡𝑒𝑠𝑡

∑ 𝑥
𝑡𝑒𝑠𝑡

(𝑖)( )2
⎛

⎝

⎞

⎠

,

where and the denotes expected and predicted value of a specific annotation for𝑥
𝑡𝑒𝑠𝑡

(𝑖) 𝑥
𝑝𝑟𝑒𝑑

(𝑖)

the ’th synapse in the test set. For binary traits, we report the area under the receiver operating𝑖
characteristic (precision-recall) curve (AUC), calculated using sklearn.metrics.auc function
implemented in scikit-learn (Ref).

GP Fitting and Hyperparameter Optimization

We leveraged the GP functionality available in the Pyro probabilistic programming language85. In
particular, we used the variational sparse Gaussian process (VSGP) flavor using a mean-field
posterior for speed and scalability.

We trained separate GP regressors and categorical classifiers for each continuous and discrete
annotation. In principle, better fits might be achieved via multi-task training (co-kriging),
however, we did not attempt that here. We trained separate GP models on 512-dimensional
CNN backbone, 512-dimensional projection middle, and 128-dimensional projection head
features as covariates. In each case, we initialized the VSGP inducing points using k-means.
We used the Adam optimizer with an initial learning rate of 1e-3 with cosine annealing to 0
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during 20,000 training epochs. We considered performing PCA dimensionality reduction on the
covariates before fitting, however, we found inferior performance in every case (see below).

We used the previously described cross-validation strategy and accuracy metrics to optimize:
(1) the number of VSGP inducing points, and (2) the choice of GP kernel. A summary of the
experiments are shown in Table S1, pointing to the following general conclusions:

1. Using the 512-dimensional CNN backbone features as covariates provided the highest
prediction accuracy for all of the annotations (see the first group of rows in Table S1)

2. PCA dimensionality reduction of covariates, regardless of number of kept PCs, degraded
the accuracy of predictions (see the second group of rows in Table S1).

3. We considered the following kernels:

a. linear kernel with wihte noise:

𝑘
𝐿𝑖𝑛𝑒𝑎𝑟

(𝑧,  𝑧') = σ2 (𝑧 · 𝑧') +  θ + σ2
𝑤ℎ𝑖𝑡𝑒

 δ(𝑧,  𝑧')

b. Laplace kernel with white noise:

𝑘
𝐿𝑎𝑝𝑙𝑎𝑐𝑒

(𝑧,  𝑧') = σ2 𝑒−|𝑧−𝑧'|/𝑙 + σ2
𝑤ℎ𝑖𝑡𝑒

 δ(𝑧,  𝑧')

c. Radial basis function (RBF) kernel with with noise:

𝑘
𝑅𝐵𝐹

(𝑧,  𝑧') = σ2 𝑒−|𝑧−𝑧'|2/(2𝑙2) + σ2
𝑤ℎ𝑖𝑡𝑒

 δ(𝑧,  𝑧')

The best fits were obtained using the RBF kernel with white noise and with a fine-tuned
number of inducing points. The latter effectively acts as a regularization by controlling
the model complexity, allowing us to prevent overfitting which is made possible using the
more flexible class of functions reproduced by the RBF kernel (see the third group of
rows in Table S1).

Finally, Fig. 3A shows the accuracy of best GP fits obtained by following the same
comprehensive hyperparameter optimization strategy using features extracted from a random
CNN baseline and MedicalNet, a general-purpose pretrained 3D-ResNet18 CNN. We found that
SynapseCLR features lead to significantly higher GP imputation accuracy figures.

Ensembling and Consensus-Based Cell Typing

We showed that SynapseCLR representation learning followed by fitting GP classifiers can
reliably predict pre- and postsynaptic cell types for individual synapses (0.975 and 0.940 AUC,
respectively; see Fig. 3A). As mentioned in the main text, we may further exploit the fact that a
typical synapse-forming neurite in our dataset contains typically tens of synapses. This figure
reaches thousands of synapses for unfragmented neurites. A highly effective way to boost the
accuracy of several weak classifiers is by ensembling, i.e. by taking the consensus of all weak
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classifiers. In the present context, single-synapse cell type predictions can be thought of as
weak classifications. By appropriately chaining weak predictions over synapses sharing the
same neurite, the neurite-level cell type prediction error decreases rapidly and reaches
practically noiseless limits. The consensus cell type of each neurite can then be propagated
back to the participating synapses (see Fig. 4A). We carry out this procedure in two steps:

Step 1 (Neurite Cell Typing) — We use the 3D segmentation and skeletonization information
available to us to compile a list of synapses formed onto each neurite. We proceed to calculate
a “consensus” cell type probability for each neurite. To this end, we use a minimal Bayesian
model in which the identity of a given neurite determines the pre- and postsynaptic cell type
probabilities of individual synapses form onto it:𝑝

𝑛

,𝑝
𝑛
 | α,  β ~ 𝐵𝑒𝑡𝑎(α,  β)

where enumerate the synapses formed onto the neurite. We assume𝑛 =  1,  ...,  𝑁
𝑠𝑦𝑛

𝑝
𝑛

= 0

and for excitatory and inhibitory cell types, respectively. We assume are i.i.d.𝑝
𝑛

= 1 𝑝
𝑛

conditioned on and , the concentration parameters of a Beta distribution that determines theα β
cell type of the neurite. The maximum likelihood procedure for estimating and yields theα β
following set of coupled equations:

− 𝑁
𝑠𝑦𝑛

 [ψ(α) − ψ(α + β)] +  
𝑛=1

𝑁
𝑠𝑦𝑛

∑ log 𝑝
𝑛

= 0,  

− 𝑁
𝑠𝑦𝑛

 [ψ(β) − ψ(α + β)] +  
𝑛=1

𝑁
𝑠𝑦𝑛

∑ log (1 − 𝑝
𝑛
) = 0,  

where is the digamma function. We can easily establish the following identity for theψ(.)
expected log odds of the excitatory class, ,  using the basic properties of Betalog 𝑝

1−𝑝( )
distribution:

,𝐿𝑂
𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

= 𝐸 log 𝑝
1−𝑝( )⎡⎣ ⎤⎦ =  ψ(α) − ψ(β) = 1

𝑁  
𝑛=1

𝑁
𝑠𝑦𝑛

∑ log 𝑝
𝑛
 −  

𝑛=1

𝑁
𝑠𝑦𝑛

∑ log (1 − 𝑝
𝑛
)

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

where the last equality results from maximum likelihood equations given earlier. According to
this simple model, the consensus procedure amounts to summing up the log probabilities of
excitatory class predictions and subtracting the log probabilities of inhibitory class predictions.
We make a consensus cell type call for a neurite depending on the expected log odds: inhibitory
if > 0, and excitatory if < 0.𝐿𝑂

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
𝐿𝑂

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

Step 2 (Synapse Consensus Cell Typing) — We simply assign the consensus cell type of a
neurite to the participating synapses according to the polarity of the synapse: if the neurite is the
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presynaptic partner of synapse, the neurite consensus cell type is thought of as the consensus
presynaptic cell type of the synapse, and similarly for postsynaptic neurites.

Software used
CloudVolume
https://github.com/seung-lab/cloud-volume

Software referenced
MicronsBinder
https://github.com/AllenInstitute/MicronsBinder

Original software
SynapseCLR and SynapseAugmenter Python packages
Jupyter notebooks for recreating all of the figures in the paper
Code for visualizing image chunks and segmentation layers in Python
Code for assigning consensus cell types to neurites and synapses
Code for imputation and prediction cross-validation of synapse annotations using SynapseCLR
representations
https://github.com/broadinstitute/SynapseCLR
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SUPPLEMENTARY FIGURES

Figure S1. SynapseCLR network architecture and training loss.
(A) The architecture of the 3D-ResNet18 with CIFAR stem and four convolutional blocks with residual

connection. The CIFAR stem is a 7x7x7 3D convolution with stride 2, followed by batch normalization
and ReLU activation (shown below the main network). Dotted shortcut lines correspond to
downsampling via stride-2 convolutions before element-wise residual addition prior to activation (also
shown below the main network). Black shortcut lines are similar to dotted shortcuts, though, without
the downsampling operation. The projection block we use is a 2-layer perceptron with batch
normalization and ReLU activation. Backbone (h), projection middle, and projection head (z) features
are indicated.

(B) The SynapseCLR NT-Xent training loss per minibatch is shown in gray (the smoothed loss is shown
in black). We train the network for 200 epochs with cosine learning rate decay and a restart after 100
epochs (Methods).
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Figure S2. UMAP embeddings of different representations of synapse 3D EM data.
The first three rows correspond to representations extracted from the 3D-ResNet18 backbone, projection
middle, and projection head of SynapseCLR network (see Fig. S1A). The last two rows correspond to
features extracted from a pre-trained general-purpose 3D-ResNet18 (MedicalNet), and an untrained
3D-ResNet18 (random convolutional features). The columns show the UMAP embedding density,
followed by several colorations according to the annotations available for a subset of synapses. Note the
structural similarity of all three SynapseCLR representations, and the relative absence of structure in the
two shown baselines.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.07.495207doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3. 3D UMAP embedding of SynapseCLR backbone representations colored by three
different annotations. The shown annotations are imputed using Gaussian process (GP) regression
(Methods). Each column corresponds to a different annotation. For each annotation, the top and bottom
rows show viewpoints aimed at UMAP1-UMAP3 and UMAP2-UMAP3 planes, respectively.
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Figure S4. Additional examples of distance-based similarity queries from the SynapseCLR
representation space (see Fig. 2D-F).
(A) The “prompt” synapses for our queries.
(B) Top-7 queried synapses, corresponding to the top-7 nearest synapses according to Euclidean

distance in the SynapseCLR representation space.
(C) The histogram of Euclidean distances between the prompt synapse and all other synapses in our

dataset. The top-7 synapses shown in (B) are highlighted in black in the histogram.
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Figure S5. Synapse illustrations over a finer two-dimensional UMAP-PC grid over the excitatory
sub-manifold (see Fig. 5B).
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Figure S5 (continued). Synapse illustrations over a finer two-dimensional UMAP-PC grid over the
inhibitory sub-manifold (see Fig. 5F).
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Figure S6. Five-dimensional UMAP-PCA analysis of the excitatory and inhibitory UMAP
sub-manifolds of SynapseCLR backbone representations.
Explained variance (EV) ratio of each of the UMAP-PCs is shown in the legend, along with the Spearman
correlation with each of the available annotations. UMAP-PCs in the 3rd and higher dimensions explain a
negligible amount of variance.
(A) UMAP-PCA analysis of the excitatory sub-manifold.
(B) UMAP-PCA analysis of the inhibitory sub-manifold.
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Figure S7. The effect of insufficient data augmentation on SynapseCLR representations. Panels (A)
and (B) show the UMAP embeddings of SynapseCLR backbone features colored by the cosine of the
angle between the synaptic cleft plane normal vector and the z-axis, as illustrated in panel (C).
Representations obtained by allowing arbitrary SO(3) rotations are shown in (A) and are largely
insensitive to the orientation of the synaptic cleft. In contrast, (B) shows representations obtained by
allowing only discrete octahedral rotations and reflections. The short axis of variation in each
sub-manifold is entirely driven by the synaptic orientation, which is an undesirable and, in general, a
biologically irrelevant feature. Panels (D) and (E) demonstrate the efficacy of augmentation as a strategy
in general in both training runs: they show the same UMAPs as (A) and (B), but colored based on the
number of missing axial planes in each synapse image, as illustrated in panel (F). In both runs, we
included a data augmentation mimicking this artifact and as a result, both representations are insensitive
to the number of blank (missing) z-sections.
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Figure S8. The correlation structure of various SynapseCLR features and the interpretability of
projection head features.
(A) Clustered correlation heatmaps for the SynapseCLR backbone (left), projection middle (middle), and

projection head (right) features (see Fig. S1). Note that features are progressively disentangled as
they are processed through the projector, with the projection head showing nearly completely
independent features.

(B) PCA of SynapseCLR backbone, projection middle, and projection head features, showing that
approximately 60 out of 128 projection head features are linearly independent.
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(C) Many projection head PCs have emergent structural interpretations: lower values of PC 1 in a
synapse correspond to larger synapses and containment of mitochondria; higher values of PC 3
seemingly correspond to the presence of presynaptic vesicles, a measurement that is not part of our
manual annotations; finally, lower values of PC 8 correspond to presence of pre- and postsynaptic
mitochondria and their volumes, with significantly reduced dependence on synaptic cleft and partner
volumes compared to PC 1.
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SUPPLEMENTARY TABLES

Table S1. The effect of hyperparameters and choice of SynapseCLR features on the
cross-validation accuracy of Gaussian process (GP) regression for the imputation of synapse
annotations. The first group of rows (3 in total) corresponds to using different SynapseCLR features. The
next group of rows (3 in total) shows the effect of PCA dimensionality reduction of features prior to
performing regression. Finally, the last group of rows (22 in total) shows the effect of different kernel
functions and different numbers of inducing points. The top-performing model for each synaptic
annotation is highlighted in bold within each of the three row groupings.
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