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35 ABSTRACT

36  Background: Cuproptosis has recently been considered a novel form of
37 programmed cell death. To date, factors crucial to the regulation of this process
38 remain unelucidated. Here, we aimed to identify long-chain non-coding RNAs
39  (IncRNAs) associated with cuproptosis in order to predict the prognosis of patients
40  with hepatocellular carcinoma (HCC).

41  Methods: Using RNA sequence data from The Cancer Genome Atlas Live
42  Hepatocellular Carcinoma (TCGA-LIHC), a co-expression network of cuproptosis-
43 related mRNAs and IncRNAs was constructed. For HCC prognosis, we developed
44 a cuproptosis-related IncRNA signature (CupRLSig) using univariate Cox, lasso,
45 and multivariate Cox regression analyses. Kaplan-Meier analysis was used to
46 compare overall survival among high- and low-risk groups stratified by median
47  CupRLSig score. Furthermore, comparisons of functional annotation, immune
48 infiltration, somatic mutation, TMB (tumor mutation burden), and pharmacologic
49  options were made between high- and low-risk groups.

50 Results: Our prognostic risk model was constructed using the cuproptosis-related
51  PICSAR, FOXD2-AS1, and AP001065.1 IncRNAs. The CupRLSig high-risk group
52  was associated with poor overall survival (hazard ratio = 1.162, 95% Cl = 1.063-
53 1.270; p < 0.001). Model accuracy was further supported by receiver operating
54  characteristic and principal component analysis as well as internal validation
55  cohorts. A prognostic nomogram developed considering CupRLSig data and a

56  number of clinical characteristics were found to exhibit adequate performance in


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

57  survival risk stratification. Mutation analysis revealed that high-risk combinations
58  with high TMB carried worse prognoses. Finally, differences in immune checkpoint
59  expression and responses to chemotherapy as well as in targeted therapy among
60  CupRLSig stratified high- and low-risk groups were explored.

61  Conclusions: The IncRNA signature constructed in this study is valuable in
62  prognostic estimation in the setting of HCC.

63

64  KEYWORDS: hepatocellular carcinoma, cuproptosis, INcRNA, prognosis, tumor
65 microenvironment, immunotherapy

66

67 INTRODUCTION

68 With a 5-year survival rate of 18% and a median survival time of 1 year, liver
69  cancer is the second most lethal tumor after pancreatic cancer (1). Hepatocellular
70  carcinoma (HCC) accounts for about 80% of all primary liver tumors (2). Surgery,
71  ablation, and orthotopic liver transplantation remain the most popular
72 locoregional treatment options for HCC (3). However, as most HCC patients are
73 diagnosed late in the illness and often suffer metastases on diagnosis, surgical
74 resection is rarely a viable treatment option. Such patients can only be treated
75  with systemic therapies, such as targeted therapy (4). Despite the availability of
76  several tyrosine kinase inhibitors for first- and second-line treatment, overall
77  survival (OS) in advanced HCC remains poor due to drug resistance and has not
78  Iimproved over the last decade (5). Although the recent FDA approval of immune
79  checkpoint inhibitors (ICI) has transformed clinical management of HCC, only a
80 small proportion of patients are sensitive to this therapy due to a lack of relevant
81  selective biomarkers (6). As such, novel treatment modalities and prognostic
82  markers warrant investigation to urgently improve patient outcomes.

83 Levels of copper, including the complex form of ceruloplasmin, are known to

84  be significantly elevated in serum and tumors among cancer patients (7). Excess
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85 copper acts as a powerful oxidant, promoting the intracellular production of
86  reactive oxygen species (ROS) and apoptosis (8). Malignant cells naturally possess
87  higher basal ROS levels compared to normal cells (8) as they utilize mechanisms
88  such as compensatory upregulation of NRF2 genes to counter increases in ROS
89  resulting from copper accumulation (2). Thus, utilization of altered copper
90 distribution to generate an intolerable increase of ROS stress in malignant cells
91  warrants consideration as a potential anticancer strategy (7). Prior to the clinical
92 utilization of spatial copper distribution for cancer treatment, however, copper
93  metabolism genes and regulatory networks must first be known. For example,
94  alterations in copper bioavailability have been investigated in preclinical studies
95 of KRAS mutated tumors (9). Recently, researchers found that some cancer cells
96 die when carrier molecules, such as FDX1, import substantial levels of copper into
97  the cytoplasm (10). By blocking other alternative cell death pathways, this proved
98  to be a specific kind of cell death, and further research revealed cells more reliant
99  on mitochondria for energy production to be more sensitive to this copper-
100  induced death, namely cuproptosis (10). Subsequent genome-wide CRISPR-Cas9
101 loss-of-function screens identified 10 genes involved in copper ionophore—
102  induced death (10). The underlying regulatory roles and mechanisms of genes
103 involved in cuproptosis in the setting of HCC, however, remain unclear.
104 Long non-coding RNAs (IncRNAs) are involved in a variety of biological
105  processes. Several HCC-related IncRNAs were found to be abnormally expressed
106 in tumor tissues and play important roles in shaping the tumor microenvironment
107  via epigenetic regulation (11). Similarly, IncRNAs were reported to play crucial
108  roles in the regulation of metabolism of metal ion homeostasis. Some 2564
109  IncRNAs were found to be significantly up-regulated, and 1052 down-regulated,
110  in a recently constructed toxic milk mouse model of Wilson’s disease (WD), which
111 is characterized by a mutated ATP7B gene that affects copper transport (12). The

112 cytosolic IncRNA P53RRA was found to displace p53 from the G3BP1-p53
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113 complex, resulting in increased intranuclear p53 retention and manifestation of
114  ferroptosis, a similar ion-induced form of programmed cell death (13). Although
115 the mechanism characterizing the IncRNA-mediated epigenetic regulation of
116  ferroptosis has been widely investigated (14), the IncRNA regulatory network
117  associated with cuproptosis remains almost completely unknown. Given that
118  IncRNAs are involved in a wide range of biological processes including ferroptosis,
119  their involvement in the regulation of cuproptosis is highly likely. Thus,
120 identification of IncRNA transcriptional changes is critical in characterizing
121 cuproptosis and its relevance in the setting of malignancy.

122 Here, we developed a cuproptosis-related IncRNA signature (CupRLSIig) and
123 demonstrated its adequacy in predicting HCC patient prognosis. Furthermore, we
124 constructed a nomogram considering CupRLSig data as well as a number of
125 clinical features and compared gene enrichment, mutations, immune cell
126 infiltration, and potential responses to targeted therapy and immunotherapy
127 among CupRLSig-defined high- and low-risk groups. This study highlights the
128  cuproptosis regulatory network, the understanding of which is critical for
129  improving the efficacy of individualized HCC treatment.

130

131  MATERIALS AND METHODS

132  Dataset and sample extraction

133 RNA-sequencing data (RNA-seq), clinical characteristics, and mutation data
134  of HCC patients were obtained from The Cancer Genome Atlas - Live
135  Hepatocellular Carcinoma Database (TCGA-LIHC, https://portal.gdc.cancer.gov/).
136 Initially, data from 424 HCC patients were collected. Patients with incomplete
137 follow-up data, survival < 30 days or lacking complete clinicopathological data
138 were excluded from follow-up analysis; 343 patients were ultimately retained. The
139 19 cuproptosis-related genes, listed in Supplemental Table 1, were obtained from

140 available literature (2, 9, 10, 15-17) reporting findings of gene manipulation
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141 studies either inducing or inhibiting cuproptosis.

142

143  Identifying CupRLSig in predicting HCC patient prognosis

144 The absolute value of the Pearson correlation coefficient (> 0.4) and p < 0.05
145  were considered thresholds for the establishment of a cuproptosis-related
146 mRNA-IncRNA co-expression network to identify INcCRNAs relevant in cuproptosis.
147  The network was visualized using a Sankey diagram generated by the R software
148  package “ggalluvial.” The entire TCGA-LIHC sample was subsequently randomly
149  divided into a training group and a validation group (Table 1); univariate Cox
150  regression analysis was applied to determine whether these IncRNAs were
151  associated with training group patient prognosis. A lasso regression analysis was
152  additionally performed to avoid over-fitting and eliminate tightly correlated genes.
153  Ten-fold cross-validation was employed to select the minimal penalty term
154  (Lambda). These aforementioned IncRNAs were subsequently used to construct a
155  multivariate Cox regression model and determine correlation coefficients. The
156 model risk score formula obtained was as follows: risk score = expIncRNA1 xcoef
157  IncRNA1 + expIncRNA2xcoef IncRNA2 +..+ expIlncRNAixcoef IncRNAI. We
158  termed this predictive INcRNA signature as CupRLSig. The risk score of each
159  patient from the training, test and entire TCGA-LIHC groups was calculated, with
160 HCC samples from all three groups divided into high- and low-risk groups based
161  on training group median risk score value. Kaplan-Meier curves, risk curves,
162  survival status, and heatmap analyses were employed to investigate whether the
163  CupRLSig model effectively distinguishes patients of different risk levels. Model
164  accuracy was quantified utilizing progression free survival (PFS), the concordance
165 index (C-index), independent prognostic analysis, and the receiver operating
166  characteristic (ROC) curve. The R software package “pheatmap” was used to
167  visualize clinicopathological variables of high- and low-risk groups from the entire

168  TCGA-LIHC sample set; the distribution of patients with varying risk scores was
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169  evaluated using principal component analysis (PCA) and visualized using the R
170  software package “scatterplot3d.” Finally, stratified analysis was performed using
171 various pathological parameters to determine whether the model’s distinction
172 between high- and low-risk groups significantly correlated with other clinical
173 parameters.

174

175  Construction of the nomogram

176 A nomogram was constructed using the R software packages “rms” and
177 “regplot” for the prediction of HCC patient survival at 1-, 3-, and 5-years based
178  on acombination of risk scores with other clinicopathological data. The calibration
179  curve was used to evaluate whether predicted survival rate was consistent with
180  actual survival rate. A patient was randomly selected to confirm the predictive
181  utility of the nomogram.

182

183  Functional enrichment analysis of differentially expressed genes and IncRNAs
184  among high- and low-risk CupRLSig groups

185 Differentially expressed genes and IncRNAs among high- and low-risk
186 CupRLSig groups were identified using the R software package “limma” with a log.
187  fold change absolute value greater than 1 and a false discovery rate (FDR) of <
188  0.05. Functional enrichment analysis of the differentially expressed genes and
189  IncRNAs was then performed using the Gene Ontology (GO) and the Kyoto
190  Encyclopedia of Genes and Genomes (KEGG) databases.

191

192  Analysis of somatic mutation data and tumor mutation burden (TMB)

193 The number of somatic non-synonymous point mutations in each sample
194  was counted and visualized using the R software package “maftools” (18). The
195 TMB was calculated as the number of somatic, coding, base replacement, and

196  insert-deletion mutations discovered per megabase of genome using non-
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197  synonymous and code-shifting indels and a 5% detection limit. In addition, TMB
198  was compared between high- and low-risk groups, and survival curves for TMB
199  and risk score integration were plotted.

200

201  Estimation of immune infiltration

202 The CIBERSORT algorithm (19) was used to estimate infiltration
203  proportionality of 22 immune cell types in HCC samples. The Wilcoxon rank-sum
204  test was used to determine whether there was a significant difference in immune
205  cell proportions between low- and high-risk groups. Single-sample gene set
206  enrichment analysis (ssGSEA) was performed using the R software package “GSVA”
207 (20) to assess the activity of 13 immune-related functions and compare
208  differences between the two groups.

209

210 Potential relationship between CupRLSig and immunotherapy,
211  chemotherapy, and target therapy

212 First, differential expression of 47 immune checkpoint genes in CupRLSig
213 high- and low-risk groups was compared. The tumor immune dysfunction and
214 exclusion (TIDE, http://tide.dfci.harvard.edu/) module was used to distinguish
215  potential iImmunotherapy responses among groups. This module predicted anti-
216  PD1 and anti-CTLA4 treatment responses based on patient pre-treatment
217  genome transcriptional expression profiles. Further evaluation of the role of
218  CupRLSig in predicting the therapeutic response of HCC involved calculation of
219 the half-maximal inhibitory concentration (ICs) of commonly used
220  chemotherapeutic as well as of targeted therapeutic drugs. The Wilcoxon signed-
221  rank test and R software package “pRRophetic” were used to compare and
222 visualize ICsovalues in high- and low-risk groups.

223

224  Statistical Analysis
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225 The Kaplan-Meier method and log-rank test were used to compare OS and
226 PFS among high- and low-risk group patients. The R software “survivalROC”
227  package was used to construct ROC curves and calculate the area under the curve
228  (AUC). The Kruskal-Wallis test was used to compare differences between groups
229  and clinical data were analyzed using either chi-squared or the Fisher’s exact tests.
230  Relationships between IncRNA expression, immune infiltration and immune
231  checkpoint gene expression were assessed using Spearman or Pearson correlation
232 coefficients. All statistical analyses were performed using R software (Version
233  4.1.2); a p-value < 0.05 was considered to indicate statistical significance.

234

235  RESULTS

236 Construction of the CupRLSig model

237 Figure 1 depicts the flow chart of the present study. First, Pearson correlation
238 analysis identified 157 cuproptosis-related INcRNAs related to 14 cuproptosis
239  genes considering a correlation coefficient > 0.4 and p < 0.05 (Figure 2A and
240  Supplemental Table 2). The entire TCGA-LIHC sample was subsequently randomly
241  divided into a training group and a validation group (Table 1). Univariate Cox
242  regression analysis revealed a total of 27 IncRNAs to possess a prognostic
243  correlation with the training group (Figure 2B). Following lasso regression analysis
244 (Figure 2C and 2D), three IncRNAs were finally retained in the training group and
245  used to construct a multivariate Cox regression model. The correlation between
246  these three INcRNAs and 19 cuproptosis-related genes is shown in Figure 2E. We
247  termed this IncRNA prediction signature as CupRLSig. The CupRLSig risk score
248  formula was determined to be as follows: risk score = (0.2659xPICSAR expression)
249  + (0.4374xFOXD2-AS1 expression) + (-0.3467xAP001065.1 expression). This
250 formula was used to calculate the risk score for each patient and patients were
251  divided into two risk groups based on training group median risk score. Finally, of

252  the three training, test, and entire groups, 86, 80, and 166 patients, respectively,
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253  were assigned to the high-risk group; 86, 91, and 177 patients were assigned to
254  the low-risk group (Figure 3A-3C). Kaplan-Meier analysis revealed a significantly
255  shorter high-risk group OS as compared with the low-risk group among both
256  datasets (Figure 3A-3C). Individual patient risk scores and survival statistics are
257  detailed in Figure 3D-3I, with the number of deaths increasing as risk score
258 increases. The expression status of three INncRNAs from each group is detailed in
259  Figure 3J-3L.

260

261  Evaluate the accuracy of the CupRLSig model

262 We further evaluated the PFS of 343 HCC patients using data downloaded
263  from http://xena.ucsc.edu/ to assess prediction accuracy of our CupRLSig
264  prognostic model among HCC patients. High-risk patients were noted to have
265  significantly shorter PFS (p = 0.001; Figure 4A). The C-index revealed the model's
266  prognostic prediction performance to be comparable to disease stage (Figure 4B).
267  Univariate and multivariate Cox regression analyses revealed CupRLSig risk score
268 to be an independent prognostic factor (Figure 4C and 4D); its AUC of 0.741 was
269 found to be a better predictor of HCC prognosis as compared to other
270  clinicopathological variables (Figure 4E). 1-, 3-, and 5-year ROC AUCs were 0.741,
271 0.636,and 0.649, respectively, indicating that CupRLSig exhibited good prognostic
272  performance (Figure 4F).

273 Expression levels of the three INncRNAs from the CupRLSig model, as well as
274 clinicopathological factors, are detailed in Figure 5A. The PCA of whole genes,
275  cuproptosis genes, cuproptosis INcRNAs and risk IncRNAs from the CupRLSig
276  model was performed to distinguish between high- and low-risk patients (Figure
277  5B-5E). The CupRLSig (Figure 5E) model was found to effectively distinguish
278 among low- and high-risk groups, underscoring the accuracy of the model.

279 Whether CupRLSig had prognostic value in subgroups with different

280  clinicopathological parameters was also assessed (Figure 6A to 6J). Significant

10
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281  correlations between risk score and age (Figure 6A and 6B), sex (Figure 6C and
282  6D), tumor grade (Figure 6E and 6F), tumor stage (Figure 6G and 6H), and T stage
283  (Figure 61 and 6]) were noted when assessing correlations among risk score and
284  clinicopathological factors. The number of M and N stage subgroup cases was too
285 small for evaluation. As such, the CupRLSig risk score was found to be an
286  independent prognostic risk factor for HCC patients.

287

288  Construction of a predictive nomogram

289 The CupRLSIg risk score, in combination with other clinicopathological factors,
290  was used to develop a nomogram to guide clinical assessment of prognosis and
291  estimate HCC patient 1-, 3-, and 5-year survival probability (Figure 7A). The 53rd
292  patient was chosen for randomly evaluating the predictive utility of the nomogram.
293  Asshown in Figure 7A, the corresponding score of the 53rd patient was 175 points;
294  the 5-year survival rate was 0.642, the 3-year survival rate was 0.738, and the 1-
295  year survival rate was 0.875. The nomogram was found to accurately estimate
296  mortality rate (Figures 7B).

297

298 Identification of biological pathways linked to CupRLSig

299 The R software “enrichplot” package was used for gene set functional
300 annotation of differentially expressed genes and IncRNAs (n = 523, Supplemental
301 Table 3) among high- and low-risk HCC groups. The five biological processes
302 found considering GO to possess the highest enrichment were mitotic nuclear
303 division, mitotic sister chromatid segregation, nuclear division, chromosome
304  segregation, and sister chromatid segregation (Figure 8A). The five cellular
305 components found to possess the highest enrichment were condensed
306 chromosomes, kinetochores, spindle, chromosomes, and condensed
307  chromosomes (Figure 8A). Finally, the most enriched molecular functions were

308 found to be steroid hydroxylase activity, oxidoreductase activity, microtubule

11
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309 binding, aromatase activity, and tubulin binding (Figure 8A). The five most
310 enriched KEGG pathways were found to be retinol metabolism, cytochrome P450
311  drug metabolism, cytochrome P450 xenobiotic metabolism, the cell cycle, and
312  chemical carcinogenesis-DNA adducts (Figure 8B).

313

314  The relationship between CupRLSig risk scores and somatic mutation and
315 TMB

316 Somatic mutations in low- and high-risk subgroup patients were assessed
317  separately (Figure 9A and 9B); TP53 (36% vs. 17%) had a higher rate of somatic
318  mutation in the high-risk group, while CTNNB1 (30% vs. 20%) and TTN (25% vs.20%)
319 had a higher rate of somatic mutation in the low-risk group. Furthermore,
320 although no difference in TMB between the two groups (Figure 9C) was found,
321  survival time of patients with higher TMB was significantly reduced (Figure 9D).
322  High TMB among high-risk group patients led to an even worse prognosis (Figure
323  9E), highlighting a significant synergistic effect between these two indicators.

324

325  Immune infiltration in different risk subgroups

326 The CIBERSORT algorithm revealed that the infiltration ratio of M2
327  macrophages (p = 0.007), resting mast cells (p = 0.002), monocytes (p = 0.002),
328 and activated NK cells (p = 0.032) in the low-risk group was significantly greater
329 as compared to the high-risk group (Figure 10A). Ratios of resting NK cells (p =
330 0.018), regulatory T cells (Tregs; p = 0.021), CD4 memory activated T cells (p =
331  0.025), and MO macrophages (p = 0.007) exhibited the opposite pattern (Figure
332 10A). Scores of immune functions such as the C-C chemokine receptor (CCR),
333 check points, and major histocompatibility complex (MHC) class | were
334  significantly higher in high-risk group patients as compared to those in the low-
335  risk group, although response to interferon type Il exhibited an opposite pattern

336  (Figure 10B). These findings revealed differences in immune infiltration among the

12


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

337  two groups. As immunotherapy is understood to depend on the pre-existence of
338 a "hot” immune microenvironment (21), such differences highlight the potential
339  of immunotherapy.

340

341 Potential relationship between CupRLSig and immunotherapy,
342 chemotherapy, and targeted therapy in HCC

343 Some relevant 28 genes were found to differ in expression levels between
344  high- and low-risk groups out of a total of 47 immune checkpoints evaluated
345  (Figure 11A). Immunotherapy markers such as CD276, CTLA-4, and PDCD-1,
346  currently widely in clinical use, were found to be markedly elevated in the high-
347  risk group (Figure 11A), implying potential immunotherapeutic responses in high-
348  risk patients. Moreover, when the online software “TIDE” was used to predict the
349  outcome of cancer patients treated with anti-PD1 or anti-CTLA4, a higher TIDE
350  score was found in the low-risk group as compared to the high-risk group (Figure
351  11B). Importantly, a higher TIDE score suggests a greater likelihood of tumor
352 immune escape and a poorer response to immunotherapy. Considering immune
353 infiltration, checkpoint gene expression and the TIDE score, cuproptosis-related
354  high-risk HCC patients are likely to respond better to immunotherapy.

355 Finally, the relationship between CupRLSig risk score and efficacies of
356 chemotherapy and targeted therapy for HCC were evaluated. Most drugs
357  commonly used in preclinical and clinical systemic therapy for HCC, such as 5-
358  fluorouracil (Figure 11C), gemcitabine (Figure 11D), paclitaxel (Figure 11E),
359  imatinib (Figure 11F), sunitinib (Figure 11G), rapamycin (Figure 11H), and XL-184
360 (cabozantinib, Figure 121) were found to be more efficacious in the low-risk group;
361 erlotinib (Figure 12J), an exception, was more efficacious in the high-risk group.
362  Taken together, our findings underscore the potential that CupRLSIig possesses in
363  the future clinical development of personalized treatment strategies.

364

13
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365 DISCUSSION

366 Widespread hepatitis B vaccination in China has led to a gradual decline in
367 HCC incidence, from 29.2/100,000 in 1998 to 21.9/100,000 in 2012 (22). However,
368 HCC prognosis remains poor, in large part due to a lack of therapeutic and
369  prognostic biomarkers. Markers currently considered in clinical practice, such as
370  AFP, can be used as diagnostic markers or for monitoring recurrence, but they do
371 not provide treatment or prognostic data (23). The combination of several
372  biomarkers into a single model improves both therapeutic and prognostic
373  prediction accuracy as compared to a single biomarker (24).

374 Serum and tissue copper levels are known to be elevated in the setting of
375 various malignancies, with such elevation being directly related to cancer
376  progression (7). As such, we hypothesized that abnormal expression of genes
377 relevant to the copper metabolism pathway can serve as prognostic and
378  therapeutic markers in the setting of HCC. Cuproptosis, a form of programmed
379 cell death recently identified to result from the binding of accumulated
380 intracellular copper to aliphatic components of the tricarboxylic acid cycle, causes
381 lipoacylated protein aggregation and loss of iron-sulfur cluster proteins (10).
382  Although many genes pivotal in cuproptosis have been identified, the overall
383  regulatory landscape of this process in HCC remains unclear. Here, we
384 incorporated signatures of three cuproptosis-related INncRNAs to develop a
385  CupRLSig signature capable of addressing both cuproptosis and HCC prognosis.
386 Based on the ROC curve, CupRLSig was found to exhibit adequate predictive
387 utility in the evaluation of OS among HCC patients. In addition, our novel
388 nomogram improves clinical decision-making and has the potential to guide
389 development of treatment strategies. In the CupRLSig model, both FOXD2-AS1
390 and PICSAR were previously identified as oncogenes in HCC, where FOXD2-AS1
391  aggravates HCC tumorigenesis by regulating the miR-206/MAP3K1 axis (25) while

392 PICSAR accelerates disease progression by regulating the miR-
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393  588/PI3K/AKT/mTOR axis (26). However, there is a lack of research investigating
394  the prognostic value of AP001065.1 and the magnitude of its involvement in
395  cuproptosis and further study of this INcRNA is warranted.

396 This study also explored the important relationship between cuproptosis and
397 treatment decisions for managing HCC. Endogenous oxidative stress levels are
398 known to be elevated in a variety of tumors, likely due to a combination of active
399  metabolism, mitochondrial mutations, cytokine activity, and inflammation (7).
400 Under constant oxidative stress, cancer cells tend to make extensive use of
401  adaptive mechanisms and may deplete intracellular ROS buffer capacity (7). Thus,
402  increased copper levels in cancer cells, as well as the resulting increase in oxidative
403  stress, present a novel cancer-specific therapeutic strategy. The liver is the most
404  important organ for copper metabolism, with the biliary tract excreting 80% of
405  copper ions (27). The induction of cuproptosis in the setting of HCC thus offers a
406  basis for effective management of this illness. Application of such a concept to
407  preclinical studies first requires a detailed understanding of cuproptosis pathway
408  regulatory gene expression in HCC patients. Investigation of a WD mouse model
409 revealed that ATP7B-deficient hepatocytes, such as those found in WD patients,
410  activate autophagy in response to copper overload to prevent copper-induced
411  apoptosis (15). Inhibition of the autophagy pathway and consequent further
412  copper overload and elevated ROS thus likely activates the cuproptosis pathway
413  and leads to the death of such copper-rich tumor cells. Interestingly, efficacy of
414  chemotherapeutic agents designed to induce ROS, such as paclitaxel, differs
415  between patients in high- and low-risk groups as defined by the CupRLSig model.
416  The CupRLSig model was additionally shown to have a relationship with the HCC
417  immune microenvironment. According to CupRLSig stratification, expression of
418  most immune checkpoints, activation of immune pathways and infiltration of
419  immune cells were greater in the high-risk group as compared to the low-risk

420  group, while TIDE score was noted to exhibit an opposite pattern. These findings
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421  suggest that high-risk patients have more to benefit from immunotherapy. Taken
422  together, this study confirms CupRLSig to possess utility as an adjunctive selection
423  tool for pharmacotherapy.

424 There were several limitations to this study. First, only TCGA data sets were
425  utilized. Use of additional external data, such as from the Gene Expression
426  Omnibus (GEO), should be considered in future studies to further confirm
427  predictive utilities of CupRLSig. Second, owing to a lack of complete data,
428  prognostic factors such as surgical data were not considered for nomogram
429  construction. This may have affected the accuracy of the model. Third, functional
430  studies are required to better understand molecular mechanisms associated with
431  effects of cuproptosis-related INncRNAs.

432 In conclusion, this study describes a novel CupRLSig IncRNA signature, also
433 included in our nomogram, useful in predicting HCC prognosis. Importantly,
434 CupRLSig likely also predicts the level of immune infiltration and potential efficacy
435  of tumor immunotherapy, chemotherapy, and targeted therapy.
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543  Table 1. Clinical characteristics of TCGA-LIHC sample training and test groups

544 (n = 343).

Covariates Sub Type Entire TCGA-LIHC (%) Test Group (%) Training Group (%) p-value
Age <=65 216(62.97%) 103(60.23%) 113(65.7%) 0.3493
>65 127(37.03%) 68(39.77%) 59(34.3%)
Gender Female 110(32.07%) 59(34.5%) 51(29.65%) 0.3971
Male 233(67.93%) 112(65.5%) 121(70.35%)
Grade Gl 53(15.45%) 27(15.79%) 26(15.12%) 0.3
G2 161(46.94%) 85(49.71%) 76(44.19%)
G3 112(32.65%) 54(31.58%) 58(33.72%)
G4 12(3.5%) 3(1.75%) 9(5.23%)
Unknown 5(1.46%) 2(1.17%) 3(1.74%)
Stage Stage | 161(46.94%) 81(47.37%) 80(46.51%) 0.9079
Stage Il 77(22.45%) 39(22.81%) 38(22.09%)
Stage Il 80(23.32%) 38(22.22%) 42(24.42%)
Stage IV 3(0.87%) 2(1.17%) 1(0.58%)
Unknown 22(6.41%) 11(6.43%) 11(6.4%)
T Tl 168(48.98%) 86(50.29%) 82(47.67%) 0.5683
T2 84(24.49%) 42(24.56%) 42(24.42%)
T3 75(21.87%) 37(21.64%) 38(22.09%)
T4 13(3.79%) 4(2.34%) 9(5.23%)
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Unknown 3(0.87%) 2(1.17%) 1(0.58%)
M MO 245(71.43%) 118(69.01%) 127(73.84%) 0.9551
M1 3(0.87%) 2(1.17%) 1(0.58%)
Unknown 95(27.7%) 51(29.82%) 44(25.58%)
N NO 239(69.68%) 111(64.91%) 128(74.42%) 0.9081
N1 3(0.87%) 2(1.17%) 1(0.58%)
Unknown 101(29.45%) 58(33.92%) 43(25%)

545  The p-value is indicated for the one-way ANOVA test among the three groups.

546
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547  FIGURE LEGENDS

548  Figure 1. Study Flowchart. RNA-seq, RNA sequence; TCGA-LIHC, The Cancer
549  Genome Atlas-Live Hepatocellular Carcinoma; IncRNAs, long non-coding RNAs;
550 ROC, receiver operating characteristic.

551

552  Figure 2. Construction of the CupRLSig model. (A) The Sankey diagram shows
553  the associations between cuproptosis-related INcRNAs and mRNAs. (B) The Forest
554  plot shows 27 IncRNAs with hazard ratios (95% confidence intervals) and p-values
555  for their association with HCC prognosis based on univariate Cox proportional-
556  hazards analysis. (C) Lasso coefficient profiles. (D) Selection of the tuning
557  parameter (Lambda) in the lasso model by 10-fold cross-validation based on
558  minimum criteria for overall survival. (E) A heatmap shows the correlation between
559  the three IncRNAs incorporated into the CupRLSig model and 19 cuproptosis-
560 related genes.

561

562 Figure 3. Internal validation for CupRLSig model overall survival
563 determination for training, test, and entire TCGA-LIHC groups. Kaplan-Meier
564  survival curves in the high- and low-risk groups stratified by median training
565 group overall survival CupRLSig risk scores (A); test group data (B); and entire
566 TCGA-LIHC group data (C). P-values were determined using the log-rank test.
567  The risk curve is based on the risk score for each sample in training (D), test (E)
568 and entire TCGA-LIHC (F) groups, where red and blue dots indicate high- and
569 low-risk samples, respectively. The scatter plot is based on the survival status of
570  each sample from training (G), test (H) and entire TCGA-LIHC (I) groups, where
571  red and blue dots indicate death and survival, respectively. (J-L) Heatmaps detall
572  expression levels of the three CupRLSig IncRNAs in each group. TCGA-LIHC, The
573  Cancer Genome Atlas-Live Hepatocellular Carcinoma.

574
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575  Figure 4. Evaluation of CupRLSig model predictive accuracy using the entire
576  TCGA-LIHC group. (A) Kaplan—Meier curves for progression-free survival in
577  high- and low-risk groups stratified by median of CupRLSig risk scores. (B) The
578 concordance index curves depict CupRLSig risk scores and other clinical
579  parameters relevant to predicting HCC patient prognosis. Forest plots for
580 univariate (C) and multivariate (D) Cox proportional-hazard analysis for
581  determination of the independent prognostic value of the CupRLSig risk score. (E)
582  ROC curve of the CupRLSig risk score and other clinicopathological variables. (G)
583  Time-dependent ROC curves for 1-, 3-, and 5-year survival for the CupRLSig
584  signature. TCGA-LIHC, The Cancer Genome Atlas-Live Hepatocellular Carcinoma.
585  ROC, receiver operating characteristic. AUC, area under the curve.

586

587  Figure 5. Visualization of expression levels of the three CupRLSig model
588 component IncRNAs based on clinicopathological variable stratification and
589  principal component analysis (PCA) of different gene sets performed for
590 classification of patient risk. (A) A heatmap of the three IncRNAs and
591  clinicopathological variables was constructed for high- and low-risk groups. PCA
592  of low- and high-risk groups based on (B) whole-genome genes, (C) cuproptosis-
593 related genes, (D) cuproptosis-related IncRNAs, and (E) CupRLSig model risk
594  IncRNAs. Patients with high risk scores are denoted by red, while those with low
595  risk scores are denoted by blue. N, lymph node metastasis; M, distant metastasis;
596 T, tumor.

597

598  Figure 6. Kaplan-Meier survival curves for high- and low-risk patient groups
599  sorted by clinicopathological variables. (A-B) Age; (C-D) Sex; (E-F) Grade; (G-
600 H) Overall stage; (I-]) T stage. T, tumor.

601

602  Figure 7. Nomogram construction and verification. (A) A nomogram
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603 combining clinicopathological parameters and risk scores predicts 1-, 3-, and 5-
604  year survival probabilities of HCC patients. The multivariate Cox proportional
605 hazard analysis was used to determine each parameter’s independent prognostic
606  value. The red dots, diamonds, triangles, and dashed lines represent the 53rd
607  patient randomly selected for the nomogram illustration. Calibration curves assess
608 the consistency between observed actual and nomogram-predicted overall
609  survival at (B) 1-, (C) 3-, and (D) 5-years. OS, overall survival.

610

611  Figure 8. Gene set functional annotation of differentially expressed genes and
612  IncRNAs in high- and low-risk HCC groups. (A) In biological process GO terms,
613  differentially expressed genes and IncRNAs were found to be most enriched in
614  mitotic nuclear division, mitotic sister chromatid segregation, nuclear division,
615 chromosome segregation, and sister chromatid segregation; in the five cellular
616 components of condensed chromosomes, kinetochores, spindles, chromosomes,
617 and condensed chromosomes; and in the five molecular functions of steroid
618  hydroxylase activity, oxidoreductase activity, microtubule binding, aromatase
619  activity, and tubulin binding. (B) Differentially expressed genes and IncRNAs were
620 found to be most enriched in the five KEGG pathways of retinol metabolism,
621  cytochrome P450 drug metabolism, cytochrome P450 xenobiotic metabolism, cell
622  cycle, and chemical carcinogenesis-DNA adducts. GO, gene ontology; KEGG,
623  Kyoto encyclopedia of genes and genomes; BP, biological process; CC, cellular
624  component; MF, molecular function.

625

626  Figure 9. The relationship between CupRLSig risk scores and somatic
627 mutation and tumor mutation burden (TMB). The waterfall plots showing
628  somatic mutations of the most significant 15 genes among high-risk (A) and low-
629  risk (B) HCC patients. (C) TMB comparison between low- and high-risk subgroups.

630 (D) Kaplan-Meier curves for high- and low-TMB groups. (E) Subgroup analyses
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631  for Kaplan-Meier curves of patients stratified by TMB and risk scores. The p-value
632  is representative of the ANOVA test among subgroups.

633

634  Figure 10. Immune cell infiltration and immune-related functions in different
635  risk groups. (A) The violin plot shows whether there were significant differences
636 in immune infiltration among 22 types of cells between high- and low-risk
637  subgroups. (B) The heatmap shows whether there were significant differences in
638 13 immune-related functions between high- and low-risk subgroups. NK, natural
639  killer; CCR, C-C chemokine receptor; APC, antigen-presenting cell; HLA, human
640 leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon. *p <
641  0.05; »=*p < 0.001.

642

643  Figure 11. Comparison of Immune checkpoints, tumor immune dysfunction,
644  and exclusion module (TIDE) scores, and chemotherapy and targeted therapy
645 drug efficacy in high- and low-risk groups. (A) Expression of 28 immune
646  checkpoint genes differs between the high- and low-risk groups. Red and blue
647  boxes represent high- and low-risk patients, respectively. (B) Online software TIDE
648  predicts HCC subgroup outcomes treated with either anti-PD1 or anti-CTLA4. A
649  higher TIDE score suggests a greater likelihood of tumor immune escape and a
650  poorer response to immunotherapy. The IC50 values for (C) 5-Fluorouracil, (D)
651  Gemcitabine, (E) Paclitaxel, (F) Imatinib, (G) Sunitinib, (H) Rapamycin, (I) XL-184
652  (Cabozantinib), and (J) Erlotinib in high- and low-risk groups. IC50, half-maximal
653  inhibitory concentration. *p < 0.05; »*p < 0.01; **»*p < 0.001; ns, non-significant.
654

655 Supplemental Table 1. Cuproptosis-related genes.

656

657  Supplemental Table 2. Cuproptosis mRNA and IncRNA network.

658
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659 Supplemental Table 3. Differentially expressed genes and IncRNAs (n=523)

660 among high- and low-risk HCC groups.

27


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1

19 cuproptosis-related
genes

RNA-seq, somatic mutation, and
clinical data from TCGA-LIHC

patients

v

[

-

Identification of cuproptosis-related
IncRNAs based on mRNA-IncRNA co-
expression network

\

J

v

157 cuproptosis-related IncRNAs

v

A

TCGA-LIHC samples were
randomly divided into training
group and test group

{

Univariate Cox regression analysis was used on training 1

group to identify IncRNAs associated with prognosis

I

v

The cuproptosis-related IncRNA prognosis signature (CupRLSig)
was determined using lasso regression and multivariate Cox
regression

A 4

A 4

Internal validation
in the test group
of CupRLSig

Survival analysis,
ROC curve, and
Nomogram

A 4

o

Identification of
CupRLSig-
associated
biological
pathways

J

A 4

o

Analysis of
somatic
mutations and

tumor mutation

burden

)

A 4

Immune
infiltration and
functional analysis

A 4

-

(A

nalysis of potential
immunotherapy,
chemotherapy, and
targeted therapy
agents

~

)



https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

Cuproptosis

IncRNA

pvalue
AC010336.2  0.041
AC026356.2  0.008
MIR4435-2HG 0.003
AC125807.2  0.043
LINC00261 0.028
AC068338.2  0.008
AP001528.2  0.049
PICSAR <0.001
FAM111A-DT 0.042
LINC01018 0.026
FOXD2-AS1 <0.001
LINC01094  <0.001
AF131215.5  0.006
AC116351.1  0.009
AC002116.2  0.041
AL355388.2  0.034
AC115619.1 <0.001
LINCO1011 0.017
DDX11-AS1  0.035
AP001065.1 <0.001
AC120114.1  0.031
CDKN2A-DT  0.003
C100rf91 0.030
AC026401.3 <0.001
AC108463.2 0.014

TMEM220-AS10.004

AC023090.1

26 26 26

0.015

Hazard ratio
0.446(0.206-0.966)
6.465(1.642-25.458)
3.383(1.529-7.486)
1.887(1.021-3.486)
0.827(0.698-0.980)
0.466(0.265-0.818)
0.631(0.399-0.998)
1.662(1.302-2.121)
2.140(1.028-4.452)
0.853(0.742-0.981)
1.772(1.293-2.427)
3.817(1.897-7.682)
2.284(1.269-4.113)
1.481(1.104-1.987)
2.294(1.035-5.085)
3.417(1.094-10.670)
0.779(0.681-0.892)
2.210(1.153-4.235)
3.839(1.098-13.419)
0.647(0.505-0.828)
2.951(1.102-7.898)
7.904(2.054-30.408)
1.698(1.052-2.739)
1.721(1.272-2.329)
3.805(1.317-10.995)
0.468(0.278-0.787)
1.338(1.057-1.692)

s,

o
i

BN

“ X
7N

A

= N
N

(4

2N

~

FL
S

)

Coefficients

Hazard ratio

2523211918 18141211 95 4 0

13

Partial Likelihood Deviance
12

11
1

10

Log Lambda

SLC31A1
PDHB
PDHA1
NLRP3
NFE2L2
MTF1
LIPT2
LIPT1
LIAS
GLS
GCSH
FDX1
DLST
DLD
DLAT
DBT
CDKN2A
ATP7B
ATP7A

made available under aCC-BY-NC-ND 4.0 International license.

NN

V\.\\\‘\

25

Cuproptosis
related

genes

ATP7A
ATP7B
CDKN2A
DBT
DLD
FDX1
GCSH
GLS
LIAS
LIPT2
MTFA1
NFE2L2
NLRP3
SLC31A1

*** p<0.001

** p<0.01
* p<0.05

Correlation

0.4
0.2
0.0

[



https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3
A

biFPHINEA G G

y//doi.org/10.11

2022.06.07.4951F % @f%:! npested June 9, 2022CThe cofyfigtfirie® ITO (S (
e author/funder, ;fv%cgwtzs gran e?l;ioinv alicense tbcgisplay%e preprint in gﬁe‘e&mﬁé Group

(which"was not certified By peer review) is é 1
Risk = High risk mar Low risk made available under aCC:BYaNG-NR 4.0Q.nternational license. Risk == High risk = Low risk
1.00 1.00 1.00
3 075 g 7 g 07
2 s €
=1
2 050 3 o050 E 0.50
© T s
2 2 g
] l ] )
0.25 } 025
p=0.001 °%] 5<0.001 p<0.001
0.00 0.00 0.00
o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 9 10
Time(years) Time(years) Time(years)
% High nskI 86 61 30 21 11 5 4 2 2 1 1 ¥ Highrisk] 80 46 20 13 5 4 3 0 0 & High rwskI 166 107 50 34 16 9 7 2 2 1 1
o Lowrisk{ 86 73 41 32 27 18 12 5 3 2 0 i Lowrisk{ 91 74 35 23 20 13 6 1 1 i Lowrisk{177 147 76 55 47 31 18 6 4 2 0
o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 9 10
Time(years) Time(years) Time(years)
D Training Group E Test Group F  Entire TCGA-LIHC Group
o . 0 o 4 0
® High risk ! « - ® High risk ! @ High risk ! o
o - ® Low Risk ! ° ® Low Risk ! . o - ® Low Risk ! °
‘ : e - : ‘ : :
] | 5 < | ] 4 | .
x ¥ ) 4 ) z ¥ \
~ ! ™ N ! ‘/ N A ! ‘/
°© T L T T ° T T L T T e = T T T T L T T T T
0 50 100 150 0 50 100 150 0 50 100 150 200 250 300 350
Patients (increasing risk socre) Patients (increasing risk socre) Patients (increasing risk socre)
G Training Group H Test Group I Entire TCGA-LIHC Group
e | J © | e | °
= ® Dead® ® , ° _ ® - ® Dead X _ ® Dead® © , °
? o e Ale X 3 o Alive L . . ? o qeale °
g % g © o e, ! % £ o0 o, °
> | r) Kl e, . > ° o o | > ] S % e ., ° o S
o © 00 0® ] ° L] o 0ee © o o o © -I L] - Y L] Y
£ Ly ! £ ° ° ! ° £ 2% nbe o !
3 <o o 0%l eg °e® o s v ® e 1 ¢ e e oo = o] e °. g'.o.f\.n " o':' % o
H ¢ ° .’. °® r'o ) ¢ 0o ’ L ° H ~ ..a"s .. o o0 “'. e ..o‘.: E L .j .s." o r‘.. o° ’.0... S
3 Ve Le :no.' ‘.o.s..'o oo o g @ 1 o J" Ve ) ° ° °° a A L }' & $%g &
e sof o’ & CX Y ¥ Y10 ws..g )
- 4 PRSI C O el s o 4 e S07g o o hese e U "o, o e oy ¢ e o o0
1 1 1 T T T T T T T T T T
0 50 100 150 0 50 100 150 0 50 100 150 200 250 300 350

Patients (increasing risk socre)

Training Group

Patients (increasing risk socre)

K
Test Group

Patients (increasing risk socre)

Entire TCGA-LIHC Group

Risk Risk
low

high

Risk
5 5
PICSAR

o

PICSAR

i

0

-5

‘ H‘ “ FOXD2-AS1 I
‘“ ‘ “ “H o

H M“‘N

FOXD2-AS1

AP001085.1

r W 1l

s
FOXD2-AS1 I
‘ ‘ ‘ ‘ ‘“H ‘ o


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this

rsion posted June 9, 2022. The copyright holder for this preprint

A which was not certified by peer review) is the author/funder, who hasyrant&® hioRxiv a license to display the preprint in perpetyity. It is
g
1.00 made available under aCC-BY-NC-ND £0 Irfternational license. = Risk score
© : Risk== High risk == Low risk Age
; —— Gender
5 o075 L5 Grade
» o
[9) —— Stage
g £
Y= 0.50 0]
c 3]
o c ©
‘» s o
8 025 5
ful [&]
(@] c
e S u
o 000 2
o 1 2 3 4 5 6 7 8 9 10
Time(years)
<
o
j High "!Sk 166 67 29 21 8 5 4 2 2 1 1 I I I I
@Y Lowrisk{ 177 119 56 30 24 13 6 1 1 1 0 0 2 4 6 8 10
0 1 2 3 4 5 6 7 8 9 10
Time(years) )
Time (years)
Cc D
pvalue Hazard ratio ! pvalue Hazard ratio !
| |
age 0.499  1.005(0.990-1.020) L age 1.003(0.989-1.019) 'L
|
|
gender 0284 0.804(0.539-1.198) ._.:_. gender 0.894(0.592-1.350) —_—
| |
grade 0.446 1.108(0.851-1.442) |_'._| grade 1.113(0.836-1.484) I—'I—l
| |
stage  <0.001 1.802(1.455-2.232) ' [ — stage 1.729(1.384-2.158) |
| |
riskScore <0.001 1.226(1.132-1.329) , b riskScore <0.001  1.162(1.083-.270) . Lol .
OI'() 0!5 1!0 1!5 2!0 0.0 0.5 1.0 1.5 2.0
Hazard ratio Hazard ratio
E F
o
e -
[e0]
2 - S
©
> 9 2 S
s> ° 2
= )
@ c
S o <
A » S ]
— Risk, AUC=0.741
N | age, AUC=0.493 N
© —— gender, AUC=0.507 e ’ —— AUC at 1 years: 0.741
/ grade, AUC=0.488 AUC at 3 years: 0.636
o | —— stage, AUC=0.712 o —— AUC at 5 years: 0.649
_ P ]
e I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5

A bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint
PIgK in perpetuity. risk
[nade available under aCG-BY-NC- .0 International license. | N 10 high
| | | M low
IR IMEIERER NI NN eEmIE DN mmrmmsan B CHEn e r N
I DR INEANEER DI DRI AN W Rmn Al i HILLED DDIBMRIRNN DB0 stage 5 m
TN TN I AT inr e rerrrmanmn riminrimi PRI EET grade
[N 10 NN NIl N N IR DEEIEIEEI A gender 0
I NN TN W UNN TN DV T I T T W T I I T T T T age M
0
I INTERND EDOONI NI Imen men n I 10 o n [0 11 TINRT 1] fustat | §
0
-5 T
I4
— AP001065.1 3
-10 2
1
stage
4
3
2
1
— PICSAR
grade gender
4 B vale
3 Female
L 2
1 fustat
M
age 0
I <=65
— FOXD2-AS1 [ >65
B L c . D . E .
« Low risk « High risk « Low risk « High risk « Low risk « High risk « Low risk « High risk
‘8 ~ ‘.‘ © .
« 8 X 8 ~ : N o ¥
g o " N o 8 Q 3S
- o ’ 501l8 ° 8 s 3". o 1 2"
o 0 ~ a % 0
I -50 I 0 CRL LT _2_1
8 ~100 < 22 . 73
7400550050 100150500550 R e s 4202 46 81
PC1 PC1 PC1
Whole Genes Cuproptosis Cuproptosis Risk LncRNAs

Genes LncRNAs of the CupRLSig Model


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6

bioRxiv preprint doi: https://|
hich was not certified by

(EW
Patients with >85

Risk == high == low

Survival probability
& P
a 3

°
N
Bl

0.00

6
Time(years)

E

Patients with Grage |-

Risk == high == low

o o
@ 5
8 o

Survival probability

°
N
Bl

0.00

Time(years)

Patients with T I-II

Risk == high =~ low

Survival probability
13 °
@ 5
g a3

°
N
X

0.00

Time(years)

i.0rg/10.1101/2022.06.07.495148; this vegsion posted June 9, 2022. The copyright polder for this preprint
\ ﬁnted bioRxiv a license to display the pr
Patieriayléavailable under aCC-BY-NC-NDZe0etiteifidfional license.

r review) is the author/funder, who has

Risk == high == low

Survival probability
g

o
N
&

0.00

Time(years)

Patients with Grage II-IV

Risk == high == low

Survival probability
o o
3 3

o
N
&

p=0.006

0.00

0 1 2 3 4 5 6 7 8 9 10
Time(years)

Patients with T 1lI-1V

Risk == high =~ low

Survival probability
° °
@ 5
g B

o
N
X

0.00

Time(years)

Risk == high == low

Survival probability
o °
3 3

o
N
&

0.00

6
Time(years)

G

Patients with Stage I-I

Risk == high == low

Survival probability
o °
3 3

o
N
&

p<0.001

0.00

0 1 2 3 4 5 6 7 8 9 10
Time(years)

Survival probability
o o
3 o

o
N
3

0.00

int in perﬂetuity. Itis

Patients with Male

Risk == high == low

p<0.001

6
Time(years)

H

o o
@ 5
8 o

Survival probability

o
N
3

0.00

Patients with Stage IlI-IV

Risk == high =~ low

Time(years)


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7

A bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint
which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
hich ified b i isth hor/fund ho h d bioRxiv a i display th int i ity. Iti
made available under aCC-BY-NC-ND 4.0 International license.

Point
omts 610 *20 30 "4 5 6 70 80 90 700
age : . -
grade
gender
risk*** low
| B
high
stage*™* A oy N\
? 15 P 25 3 35 ]
Total points
N
120 120 160 180 200 220 520 260
. 0.642
Pr( futime > 5 g Y056 07 078 07 004
. 0.738
Pr( futime > 3y g5 088 084 Y07 05 03 01
. 0.875
Pr( futime > 19 g5 094 092 ¥ 055 075 085 055 045 035
B
o ror rr”,-”“mi ™ Ili
" / I
S I /r j
g M
((o}
(D .
o o
= I
: |
[ <t
8 o /
0
o
~
© 1-year
— 3-year
o — bS-year
o
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Nomograph-predicted OS (%)


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint

A (which was not certified by peer review) is the author/funde
mitoliGridelaadiRbS @ Tdley

mitotic sister chromatid segregation -

nuclear division -

chromosome segregation -

sister chromatid segregation -

organelle fission -

nuclear chromosome segregation -

mitotic spindle organization -

response to xenobiotic stimulus -

microtubule cytoskeleton organization involved in mitosis -

erpetyity. It is

condensed chromosome, centromeric region -
kinetochore -

spindle -

chromosome, centromeric region -
condensed chromosome -

chromosomal region -

microtubule -

basal plasma membrane -

basal part of cell -

outer kinetochore -

steroid hydroxylase activity -

oxidoreductase activity -

microtubule binding -

aromatase activity -

tubulin binding -

arachidonic acid monooxygenase activity -
monooxygenase activity -

heme binding -

carboxylic acid transmembrane transporter activity -

organic acid transmembrane transporter activity -

W |
o

O

10

QNN
o}
9 o
>
3
N
o

Retinol metabolism A

Drug metabolism - cytochrome P450 A
Metabolism of xenobiotics by cytochrome P450 -
Cell cycle

Chemical carcinogenesis — DNA adducts -
Tyrosine metabolism -

Bile secretion -

Glycolysis / Gluconeogenesis A
Biosynthesis of amino acids -

PPAR signaling pathway -

Steroid hormone biosynthesis -

Pyruvate metabolism -

Primary bile acid biosynthesis -

Nitrogen metabolism -

Linoleic acid metabolism -

Complement and coagulation cascades

Alanine, aspartate and glutamate metabolism -

oA

o
-
o
-
o

Count

v3)
T
qvalue
2.5e-05
8
5.0e-05
7.5e-05
=
M


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 9

A bi?]R)ﬂv preprint doti_: _https://doi.org/_lo.1]_.01/2022&(])6./?7.4’119514?]; tI;]is vergg né)%'std _Jun(l-:_ 9, 2022. The coqyright holder for this p_replrtirjt
which w i uthor/funder, who has grdnted bioRxiv a lice i r| _Itis
1130 ( RIS qw@tﬂ%éﬂ%ﬁﬁ g?lga'ble under aCC-BY-NCg-JND 45§%International ﬁggenpsé(g P10 tI?IPWB AT PSRRI,

o i I.|InI-..d.J-l|||.J-;.an...-n....-.ll-L..J.-I_..m..n.nu.JH-l..l,..n.n.,._l--... 0 No.ofsamples o oot _|Llll!l.!ﬁ.IJ-IuH!|hnu|.|i-|-l-|l|ﬂlnl.lli||h.l.. ® Nootsampes O
7753 | A mrss|| (] (I 170 (I
crnat || -] W gl 17111 30% |
gl ) WA 77 [ A 25% |
mucte ||l 0 1 mucte |l M 14% [
peco (il LI I [ peco |1l [ ll 10% [
Ac5 [N L A l A3 AT L o | o [
RYRz| | [ 000 AR Ty I
apos ||| N LIl apos [ |10 B A S |
aree2 (AN B xarez | I e o |
csm3 | csmp3 | ||| LN [ Nee |
Rl ] 111 A s 111110 T i O |
etz 1101 1 T 085G | EO |
ascarz | || |1l I I[ ascarz| | ||| 0 L7
ARDIA | I i Il ArRD1A | Il | I e |
Hment [ B I e |1 P I l7 Wl

= Missense_Mutation ® Nonsense_Mutation Risk = Missense_Mutation = In_Frame_Ins Risk
= Frame_Shift_Ins In_Frame_Del ® high = Frame_Shift_Del In_Frame_Del ® high
= Frame_Shift_Del ® Multi_Hit = Jow = Nonsense_Mutation ® Multi_Hit = Jow
= Frame_Shift_Ins
c B ow-risk [l High-risk
0.38 |
N
(o))
S 41
c
[}
B
3
c
kel
52
E
<]
IS
2
0.
Low-risk High-risk
1.001 1.001
== H-TMB-+high risk
== H-TMB+low risk
== |-TMB+high risk
0.751 0.75 =k | -TMB-+low risk
> >
= =
o a
® [33]
Qo QO
(@] (@] I
—_ —
& 0.50 8050] -------- Moo \1—1:.]_—,_1; —————— .
E (_U 1 1
> > 1 I
= = 1 1
— —_ 1 1
> > 1 |
N )] 1 ] e bl
0.251 0.251 : :
p<0.001 [
1 1 -
1 1
1 1
1 1
1 1
0.001 0.00 ! !
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Time(years) Time(years)


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 10
b|0Rxnv preprlnt d0| https //d0| org/10. 1101/2022 06 07 495148; thls ver5|on posted June 9, 2022 The copyrlght holder for th|s preprint

A
0.5
0.4
0.3
c
s
5
©
w
0.2
0.1
0.0
B

Inflammation—promoting

T_cell_co-inhibition

APC_co_inhibition

A

i

|| I

I

LA

eVvView O de WNOo ar ean RXIV e O d .
| _671693 avallable under aCC-BY-NC-ND 4.0 Internﬁﬂb‘??&l Ilcense 0,007 —— Low risk
p=0.403 _ —— High risk
p=0.002
p=0.404
p=0.021
p=0.798 —
p=0.175
p=0.002 —
p=0.032 _ ~
_ p=0.335
— p=0.303 -
- p=0.812P=0.018 p=0.485
=0.084 — - -
p= 0025p — p=0.346
p=0.699 —
N p=0.191 -
l p=0.964 A
- ! I
@ Q @ ) R . S o N\ @ . S o Q N QJ . S . S R 2
Rl RN R G e P P P & &
K N
c,é\ \\6@ \'2?6\ &oq} RS *'bc’ \gé & 6\6‘ »® 6@0 ®<§‘ ‘\q}) \Q@Q V\\@Q 5 e,bo 5 eq’o @0’9\ é@\»
Q & Q @ & ¢ & L & N K K K FFF S
& & & & §F & & & & & & & F & 9
S € e 8 S N A R
O > «oe’ S A & é\é N
09}\g @ «© <Q
A &
A
Type Type
4 Low risk
Type_ll_IFN_Reponse*** High risk
| | | | | | || | Parainflammation 0
| | || | | || APC_co_stimulation
-2
| | || | Check-point*
| ||| | | || | T_cell_co-stimulation -4
‘ | || | | Cytolytic_activity

MHC_class_I***

i)

II‘ Hl” |‘Il‘ll ‘

Type_|_IFN_Reponse



https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure Sldeiv preprint doi: https://doi.org/10.1101/2022.06.07.495148; this version posted June 9, 2022. The copyright holder for this preprint
A (which was not certified by peer re.vievm;s the author/funder, who has granted bioRxiv a license t@«lisplay the preprint in perpetuity. It is
Riskn !awai%l@ialmder aCC-BY-NC-ND 4.0 International licende.

8 dkk kk ok kkk ok kkk kk ok kkk kk Rk kkk kb kkk ok bk bk kk kk kkk kkk ko kkk kk kkk ok kkk
T L]

H Risk [l tow-risk [l High-risk

.
L i 1
0.1
0.0
w
Q9 -0.1
=
-0.2

L]

[ ]
(]
L3
L]

Gene expression

Low-risk High-risk

C D Risk B8 low B high E Risk B8 low B8 high F Risk B8 low B high

Risk B8 low B8 high
4.4e-08 [EE— Y- 2 4.2e-15 3.3e-06

N
S

.

-
.

.o
N

Paclitaxel senstivity (IC50
e oo

Imatinib senstivity (IC50)
N

o

5-Fluorouracil senstivity (IC50)
o IS ®
. +. .
Gemcitabine senstivity (IC50)
o 5
- o

high low high low high
Risk Risk Risk Risk

@
I

Risk B8 low B8 high Risk B8 low B8 high I Risk B8 low B8 high J Risk B8 low B8 high

5.3e-10 5.0 1.6e-05 2.6e-06 1.9e-06
 E—— | —]

1
* .
.
25 o
H 5
P | - |
S -25 0 :
.
-5.0 °

=)
IS

o
N

Erlotinib senstivity (IC50)

Sunitinib senstivity (IC50)
o
Rapamycin senstivity (IC50)

XL-184 senstivity (IC50)

o
s e seome

0
N

low high low high low high low high
Risk Risk Risk Risk


https://doi.org/10.1101/2022.06.07.495148
http://creativecommons.org/licenses/by-nc-nd/4.0/

