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ABSTRACT 35 

Background: Cuproptosis has recently been considered a novel form of 36 

programmed cell death. To date, factors crucial to the regulation of this process 37 

remain unelucidated. Here, we aimed to identify long-chain non-coding RNAs 38 

(lncRNAs) associated with cuproptosis in order to predict the prognosis of patients 39 

with hepatocellular carcinoma (HCC). 40 

Methods: Using RNA sequence data from The Cancer Genome Atlas Live 41 

Hepatocellular Carcinoma (TCGA-LIHC), a co-expression network of cuproptosis-42 

related mRNAs and lncRNAs was constructed. For HCC prognosis, we developed 43 

a cuproptosis-related lncRNA signature (CupRLSig) using univariate Cox, lasso, 44 

and multivariate Cox regression analyses. Kaplan-Meier analysis was used to 45 

compare overall survival among high- and low-risk groups stratified by median 46 

CupRLSig score. Furthermore, comparisons of functional annotation, immune 47 

infiltration, somatic mutation, TMB (tumor mutation burden), and pharmacologic 48 

options were made between high- and low-risk groups. 49 

Results: Our prognostic risk model was constructed using the cuproptosis-related 50 

PICSAR, FOXD2-AS1, and AP001065.1 lncRNAs. The CupRLSig high-risk group 51 

was associated with poor overall survival (hazard ratio = 1.162, 95% CI = 1.063–52 

1.270; p < 0.001). Model accuracy was further supported by receiver operating 53 

characteristic and principal component analysis as well as internal validation 54 

cohorts. A prognostic nomogram developed considering CupRLSig data and a 55 

number of clinical characteristics were found to exhibit adequate performance in 56 
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survival risk stratification. Mutation analysis revealed that high-risk combinations 57 

with high TMB carried worse prognoses. Finally, differences in immune checkpoint 58 

expression and responses to chemotherapy as well as in targeted therapy among 59 

CupRLSig stratified high- and low-risk groups were explored. 60 

Conclusions: The lncRNA signature constructed in this study is valuable in 61 

prognostic estimation in the setting of HCC.  62 

 63 

KEYWORDS: hepatocellular carcinoma, cuproptosis, lncRNA, prognosis, tumor 64 

microenvironment, immunotherapy 65 

 66 

INTRODUCTION 67 

With a 5-year survival rate of 18% and a median survival time of 1 year, liver 68 

cancer is the second most lethal tumor after pancreatic cancer (1). Hepatocellular 69 

carcinoma (HCC) accounts for about 80% of all primary liver tumors (2). Surgery, 70 

ablation, and orthotopic liver transplantation remain the most popular 71 

locoregional treatment options for HCC (3). However, as most HCC patients are 72 

diagnosed late in the illness and often suffer metastases on diagnosis, surgical 73 

resection is rarely a viable treatment option. Such patients can only be treated 74 

with systemic therapies, such as targeted therapy (4). Despite the availability of 75 

several tyrosine kinase inhibitors for first- and second-line treatment, overall 76 

survival (OS) in advanced HCC remains poor due to drug resistance and has not 77 

improved over the last decade (5). Although the recent FDA approval of immune 78 

checkpoint inhibitors (ICI) has transformed clinical management of HCC, only a 79 

small proportion of patients are sensitive to this therapy due to a lack of relevant 80 

selective biomarkers (6). As such, novel treatment modalities and prognostic 81 

markers warrant investigation to urgently improve patient outcomes. 82 

Levels of copper, including the complex form of ceruloplasmin, are known to 83 

be significantly elevated in serum and tumors among cancer patients (7). Excess 84 
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copper acts as a powerful oxidant, promoting the intracellular production of 85 

reactive oxygen species (ROS) and apoptosis (8). Malignant cells naturally possess 86 

higher basal ROS levels compared to normal cells (8) as they utilize mechanisms 87 

such as compensatory upregulation of NRF2 genes to counter increases in ROS 88 

resulting from copper accumulation (2). Thus, utilization of altered copper 89 

distribution to generate an intolerable increase of ROS stress in malignant cells 90 

warrants consideration as a potential anticancer strategy (7). Prior to the clinical 91 

utilization of spatial copper distribution for cancer treatment, however, copper 92 

metabolism genes and regulatory networks must first be known. For example, 93 

alterations in copper bioavailability have been investigated in preclinical studies 94 

of KRAS mutated tumors (9). Recently, researchers found that some cancer cells 95 

die when carrier molecules, such as FDX1, import substantial levels of copper into 96 

the cytoplasm (10). By blocking other alternative cell death pathways, this proved 97 

to be a specific kind of cell death, and further research revealed cells more reliant 98 

on mitochondria for energy production to be more sensitive to this copper-99 

induced death, namely cuproptosis (10). Subsequent genome-wide CRISPR-Cas9 100 

loss-of-function screens identified 10 genes involved in copper ionophore–101 

induced death (10). The underlying regulatory roles and mechanisms of genes 102 

involved in cuproptosis in the setting of HCC, however, remain unclear. 103 

Long non-coding RNAs (lncRNAs) are involved in a variety of biological 104 

processes. Several HCC-related lncRNAs were found to be abnormally expressed 105 

in tumor tissues and play important roles in shaping the tumor microenvironment 106 

via epigenetic regulation (11). Similarly, lncRNAs were reported to play crucial 107 

roles in the regulation of metabolism of metal ion homeostasis. Some 2564 108 

lncRNAs were found to be significantly up-regulated, and 1052 down-regulated, 109 

in a recently constructed toxic milk mouse model of Wilson’s disease (WD), which 110 

is characterized by a mutated ATP7B gene that affects copper transport (12). The 111 

cytosolic lncRNA P53RRA was found to displace p53 from the G3BP1-p53 112 
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complex, resulting in increased intranuclear p53 retention and manifestation of 113 

ferroptosis, a similar ion-induced form of programmed cell death (13). Although 114 

the mechanism characterizing the lncRNA-mediated epigenetic regulation of 115 

ferroptosis has been widely investigated (14), the lncRNA regulatory network 116 

associated with cuproptosis remains almost completely unknown. Given that 117 

lncRNAs are involved in a wide range of biological processes including ferroptosis, 118 

their involvement in the regulation of cuproptosis is highly likely. Thus, 119 

identification of lncRNA transcriptional changes is critical in characterizing 120 

cuproptosis and its relevance in the setting of malignancy. 121 

Here, we developed a cuproptosis-related lncRNA signature (CupRLSig) and 122 

demonstrated its adequacy in predicting HCC patient prognosis. Furthermore, we 123 

constructed a nomogram considering CupRLSig data as well as a number of 124 

clinical features and compared gene enrichment, mutations, immune cell 125 

infiltration, and potential responses to targeted therapy and immunotherapy 126 

among CupRLSig-defined high- and low-risk groups. This study highlights the 127 

cuproptosis regulatory network, the understanding of which is critical for 128 

improving the efficacy of individualized HCC treatment. 129 

 130 

MATERIALS AND METHODS 131 

Dataset and sample extraction 132 

RNA-sequencing data (RNA-seq), clinical characteristics, and mutation data 133 

of HCC patients were obtained from The Cancer Genome Atlas - Live 134 

Hepatocellular Carcinoma Database (TCGA-LIHC, https://portal.gdc.cancer.gov/). 135 

Initially, data from 424 HCC patients were collected. Patients with incomplete 136 

follow-up data, survival < 30 days or lacking complete clinicopathological data 137 

were excluded from follow-up analysis; 343 patients were ultimately retained. The 138 

19 cuproptosis-related genes, listed in Supplemental Table 1, were obtained from 139 

available literature (2, 9, 10, 15-17) reporting findings of gene manipulation 140 
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studies either inducing or inhibiting cuproptosis. 141 

 142 

Identifying CupRLSig in predicting HCC patient prognosis 143 

The absolute value of the Pearson correlation coefficient (> 0.4) and p < 0.05 144 

were considered thresholds for the establishment of a cuproptosis-related 145 

mRNA-lncRNA co-expression network to identify lncRNAs relevant in cuproptosis. 146 

The network was visualized using a Sankey diagram generated by the R software 147 

package “ggalluvial.” The entire TCGA-LIHC sample was subsequently randomly 148 

divided into a training group and a validation group (Table 1); univariate Cox 149 

regression analysis was applied to determine whether these lncRNAs were 150 

associated with training group patient prognosis. A lasso regression analysis was 151 

additionally performed to avoid over-fitting and eliminate tightly correlated genes. 152 

Ten-fold cross-validation was employed to select the minimal penalty term 153 

(Lambda). These aforementioned lncRNAs were subsequently used to construct a 154 

multivariate Cox regression model and determine correlation coefficients. The 155 

model risk score formula obtained was as follows: risk score = explncRNA1×coef 156 

lncRNA1 + explncRNA2×coef lncRNA2 +...+ explncRNAi×coef lncRNAi. We 157 

termed this predictive lncRNA signature as CupRLSig. The risk score of each 158 

patient from the training, test and entire TCGA-LIHC groups was calculated, with 159 

HCC samples from all three groups divided into high- and low-risk groups based 160 

on training group median risk score value. Kaplan-Meier curves, risk curves, 161 

survival status, and heatmap analyses were employed to investigate whether the 162 

CupRLSig model effectively distinguishes patients of different risk levels. Model 163 

accuracy was quantified utilizing progression free survival (PFS), the concordance 164 

index (C-index), independent prognostic analysis, and the receiver operating 165 

characteristic (ROC) curve. The R software package “pheatmap” was used to 166 

visualize clinicopathological variables of high- and low-risk groups from the entire 167 

TCGA-LIHC sample set; the distribution of patients with varying risk scores was 168 
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evaluated using principal component analysis (PCA) and visualized using the R 169 

software package “scatterplot3d.” Finally, stratified analysis was performed using 170 

various pathological parameters to determine whether the model’s distinction 171 

between high- and low-risk groups significantly correlated with other clinical 172 

parameters. 173 

 174 

Construction of the nomogram 175 

A nomogram was constructed using the R software packages “rms” and 176 

“regplot” for the prediction of HCC patient survival at 1-, 3-, and 5-years based 177 

on a combination of risk scores with other clinicopathological data. The calibration 178 

curve was used to evaluate whether predicted survival rate was consistent with 179 

actual survival rate. A patient was randomly selected to confirm the predictive 180 

utility of the nomogram. 181 

 182 

Functional enrichment analysis of differentially expressed genes and lncRNAs 183 

among high- and low-risk CupRLSig groups 184 

Differentially expressed genes and lncRNAs among high- and low-risk 185 

CupRLSig groups were identified using the R software package “limma” with a log2 186 

fold change absolute value greater than 1 and a false discovery rate (FDR) of < 187 

0.05. Functional enrichment analysis of the differentially expressed genes and 188 

lncRNAs was then performed using the Gene Ontology (GO) and the Kyoto 189 

Encyclopedia of Genes and Genomes (KEGG) databases. 190 

 191 

Analysis of somatic mutation data and tumor mutation burden (TMB) 192 

The number of somatic non-synonymous point mutations in each sample 193 

was counted and visualized using the R software package “maftools” (18). The 194 

TMB was calculated as the number of somatic, coding, base replacement, and 195 

insert-deletion mutations discovered per megabase of genome using non-196 
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synonymous and code-shifting indels and a 5% detection limit. In addition, TMB 197 

was compared between high- and low-risk groups, and survival curves for TMB 198 

and risk score integration were plotted. 199 

 200 

Estimation of immune infiltration 201 

The CIBERSORT algorithm (19) was used to estimate infiltration 202 

proportionality of 22 immune cell types in HCC samples. The Wilcoxon rank-sum 203 

test was used to determine whether there was a significant difference in immune 204 

cell proportions between low- and high-risk groups. Single-sample gene set 205 

enrichment analysis (ssGSEA) was performed using the R software package “GSVA” 206 

(20) to assess the activity of 13 immune-related functions and compare 207 

differences between the two groups. 208 

 209 

Potential relationship between CupRLSig and immunotherapy, 210 

chemotherapy, and target therapy 211 

First, differential expression of 47 immune checkpoint genes in CupRLSig 212 

high- and low-risk groups was compared. The tumor immune dysfunction and 213 

exclusion (TIDE, http://tide.dfci.harvard.edu/) module was used to distinguish 214 

potential immunotherapy responses among groups. This module predicted anti-215 

PD1 and anti-CTLA4 treatment responses based on patient pre-treatment 216 

genome transcriptional expression profiles. Further evaluation of the role of 217 

CupRLSig in predicting the therapeutic response of HCC involved calculation of 218 

the half-maximal inhibitory concentration (IC50) of commonly used 219 

chemotherapeutic as well as of targeted therapeutic drugs. The Wilcoxon signed-220 

rank test and R software package “pRRophetic” were used to compare and 221 

visualize IC50 values in high- and low-risk groups. 222 

 223 

Statistical Analysis 224 
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The Kaplan-Meier method and log-rank test were used to compare OS and 225 

PFS among high- and low-risk group patients. The R software “survivalROC” 226 

package was used to construct ROC curves and calculate the area under the curve 227 

(AUC). The Kruskal–Wallis test was used to compare differences between groups 228 

and clinical data were analyzed using either chi-squared or the Fisher’s exact tests. 229 

Relationships between lncRNA expression, immune infiltration and immune 230 

checkpoint gene expression were assessed using Spearman or Pearson correlation 231 

coefficients. All statistical analyses were performed using R software (Version 232 

4.1.2); a p-value < 0.05 was considered to indicate statistical significance. 233 

 234 

RESULTS 235 

Construction of the CupRLSig model 236 

Figure 1 depicts the flow chart of the present study. First, Pearson correlation 237 

analysis identified 157 cuproptosis-related lncRNAs related to 14 cuproptosis 238 

genes considering a correlation coefficient > 0.4 and p < 0.05 (Figure 2A and 239 

Supplemental Table 2). The entire TCGA-LIHC sample was subsequently randomly 240 

divided into a training group and a validation group (Table 1). Univariate Cox 241 

regression analysis revealed a total of 27 lncRNAs to possess a prognostic 242 

correlation with the training group (Figure 2B). Following lasso regression analysis 243 

(Figure 2C and 2D), three lncRNAs were finally retained in the training group and 244 

used to construct a multivariate Cox regression model. The correlation between 245 

these three lncRNAs and 19 cuproptosis-related genes is shown in Figure 2E. We 246 

termed this lncRNA prediction signature as CupRLSig. The CupRLSig risk score 247 

formula was determined to be as follows: risk score = (0.2659×PICSAR expression) 248 

+ (0.4374×FOXD2-AS1 expression) + (-0.3467×AP001065.1 expression). This 249 

formula was used to calculate the risk score for each patient and patients were 250 

divided into two risk groups based on training group median risk score. Finally, of 251 

the three training, test, and entire groups, 86, 80, and 166 patients, respectively, 252 
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were assigned to the high-risk group; 86, 91, and 177 patients were assigned to 253 

the low-risk group (Figure 3A-3C). Kaplan-Meier analysis revealed a significantly 254 

shorter high-risk group OS as compared with the low-risk group among both 255 

datasets (Figure 3A-3C). Individual patient risk scores and survival statistics are 256 

detailed in Figure 3D-3I, with the number of deaths increasing as risk score 257 

increases. The expression status of three lncRNAs from each group is detailed in 258 

Figure 3J-3L. 259 

 260 

Evaluate the accuracy of the CupRLSig model 261 

We further evaluated the PFS of 343 HCC patients using data downloaded 262 

from http://xena.ucsc.edu/ to assess prediction accuracy of our CupRLSig 263 

prognostic model among HCC patients. High-risk patients were noted to have 264 

significantly shorter PFS (p = 0.001; Figure 4A). The C-index revealed the model's 265 

prognostic prediction performance to be comparable to disease stage (Figure 4B). 266 

Univariate and multivariate Cox regression analyses revealed CupRLSig risk score 267 

to be an independent prognostic factor (Figure 4C and 4D); its AUC of 0.741 was 268 

found to be a better predictor of HCC prognosis as compared to other 269 

clinicopathological variables (Figure 4E). 1-, 3-, and 5-year ROC AUCs were 0.741, 270 

0.636, and 0.649, respectively, indicating that CupRLSig exhibited good prognostic 271 

performance (Figure 4F). 272 

Expression levels of the three lncRNAs from the CupRLSig model, as well as 273 

clinicopathological factors, are detailed in Figure 5A. The PCA of whole genes, 274 

cuproptosis genes, cuproptosis lncRNAs and risk lncRNAs from the CupRLSig 275 

model was performed to distinguish between high- and low-risk patients (Figure 276 

5B-5E). The CupRLSig (Figure 5E) model was found to effectively distinguish 277 

among low- and high-risk groups, underscoring the accuracy of the model. 278 

Whether CupRLSig had prognostic value in subgroups with different 279 

clinicopathological parameters was also assessed (Figure 6A to 6J). Significant 280 
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correlations between risk score and age (Figure 6A and 6B), sex (Figure 6C and 281 

6D), tumor grade (Figure 6E and 6F), tumor stage (Figure 6G and 6H), and T stage 282 

(Figure 6I and 6J) were noted when assessing correlations among risk score and 283 

clinicopathological factors. The number of M and N stage subgroup cases was too 284 

small for evaluation. As such, the CupRLSig risk score was found to be an 285 

independent prognostic risk factor for HCC patients. 286 

 287 

Construction of a predictive nomogram 288 

The CupRLSig risk score, in combination with other clinicopathological factors, 289 

was used to develop a nomogram to guide clinical assessment of prognosis and 290 

estimate HCC patient 1-, 3-, and 5-year survival probability (Figure 7A). The 53rd 291 

patient was chosen for randomly evaluating the predictive utility of the nomogram. 292 

As shown in Figure 7A, the corresponding score of the 53rd patient was 175 points; 293 

the 5-year survival rate was 0.642, the 3-year survival rate was 0.738, and the 1-294 

year survival rate was 0.875. The nomogram was found to accurately estimate 295 

mortality rate (Figures 7B). 296 

 297 

Identification of biological pathways linked to CupRLSig 298 

The R software “enrichplot” package was used for gene set functional 299 

annotation of differentially expressed genes and lncRNAs (n = 523, Supplemental 300 

Table 3) among high- and low-risk HCC groups. The five biological processes 301 

found considering GO to possess the highest enrichment were mitotic nuclear 302 

division, mitotic sister chromatid segregation, nuclear division, chromosome 303 

segregation, and sister chromatid segregation (Figure 8A). The five cellular 304 

components found to possess the highest enrichment were condensed 305 

chromosomes, kinetochores, spindle, chromosomes, and condensed 306 

chromosomes (Figure 8A). Finally, the most enriched molecular functions were 307 

found to be steroid hydroxylase activity, oxidoreductase activity, microtubule 308 
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binding, aromatase activity, and tubulin binding (Figure 8A). The five most 309 

enriched KEGG pathways were found to be retinol metabolism, cytochrome P450 310 

drug metabolism, cytochrome P450 xenobiotic metabolism, the cell cycle, and 311 

chemical carcinogenesis-DNA adducts (Figure 8B). 312 

 313 

The relationship between CupRLSig risk scores and somatic mutation and 314 

TMB 315 

Somatic mutations in low- and high-risk subgroup patients were assessed 316 

separately (Figure 9A and 9B); TP53 (36% vs. 17%) had a higher rate of somatic 317 

mutation in the high-risk group, while CTNNB1 (30% vs. 20%) and TTN (25% vs.20%) 318 

had a higher rate of somatic mutation in the low-risk group. Furthermore, 319 

although no difference in TMB between the two groups (Figure 9C) was found, 320 

survival time of patients with higher TMB was significantly reduced (Figure 9D). 321 

High TMB among high-risk group patients led to an even worse prognosis (Figure 322 

9E), highlighting a significant synergistic effect between these two indicators. 323 

 324 

Immune infiltration in different risk subgroups 325 

The CIBERSORT algorithm revealed that the infiltration ratio of M2 326 

macrophages (p = 0.007), resting mast cells (p = 0.002), monocytes (p = 0.002), 327 

and activated NK cells (p = 0.032) in the low-risk group was significantly greater 328 

as compared to the high-risk group (Figure 10A). Ratios of resting NK cells (p = 329 

0.018), regulatory T cells (Tregs; p = 0.021), CD4 memory activated T cells (p = 330 

0.025), and M0 macrophages (p = 0.007) exhibited the opposite pattern (Figure 331 

10A). Scores of immune functions such as the C-C chemokine receptor (CCR), 332 

check points, and major histocompatibility complex (MHC) class I were 333 

significantly higher in high-risk group patients as compared to those in the low-334 

risk group, although response to interferon type II exhibited an opposite pattern 335 

(Figure 10B). These findings revealed differences in immune infiltration among the 336 
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two groups. As immunotherapy is understood to depend on the pre-existence of 337 

a “hot” immune microenvironment (21), such differences highlight the potential 338 

of immunotherapy. 339 

 340 

Potential relationship between CupRLSig and immunotherapy, 341 

chemotherapy, and targeted therapy in HCC 342 

Some relevant 28 genes were found to differ in expression levels between 343 

high- and low-risk groups out of a total of 47 immune checkpoints evaluated 344 

(Figure 11A). Immunotherapy markers such as CD276, CTLA-4, and PDCD-1, 345 

currently widely in clinical use, were found to be markedly elevated in the high-346 

risk group (Figure 11A), implying potential immunotherapeutic responses in high-347 

risk patients. Moreover, when the online software “TIDE” was used to predict the 348 

outcome of cancer patients treated with anti-PD1 or anti-CTLA4, a higher TIDE 349 

score was found in the low-risk group as compared to the high-risk group (Figure 350 

11B). Importantly, a higher TIDE score suggests a greater likelihood of tumor 351 

immune escape and a poorer response to immunotherapy. Considering immune 352 

infiltration, checkpoint gene expression and the TIDE score, cuproptosis-related 353 

high-risk HCC patients are likely to respond better to immunotherapy. 354 

Finally, the relationship between CupRLSig risk score and efficacies of 355 

chemotherapy and targeted therapy for HCC were evaluated. Most drugs 356 

commonly used in preclinical and clinical systemic therapy for HCC, such as 5-357 

fluorouracil (Figure 11C), gemcitabine (Figure 11D), paclitaxel (Figure 11E), 358 

imatinib (Figure 11F), sunitinib (Figure 11G), rapamycin (Figure 11H), and XL-184 359 

(cabozantinib, Figure 12I) were found to be more efficacious in the low-risk group; 360 

erlotinib (Figure 12J), an exception, was more efficacious in the high-risk group. 361 

Taken together, our findings underscore the potential that CupRLSig possesses in 362 

the future clinical development of personalized treatment strategies. 363 

 364 
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DISCUSSION 365 

Widespread hepatitis B vaccination in China has led to a gradual decline in 366 

HCC incidence, from 29.2/100,000 in 1998 to 21.9/100,000 in 2012 (22). However, 367 

HCC prognosis remains poor, in large part due to a lack of therapeutic and 368 

prognostic biomarkers. Markers currently considered in clinical practice, such as 369 

AFP, can be used as diagnostic markers or for monitoring recurrence, but they do 370 

not provide treatment or prognostic data (23). The combination of several 371 

biomarkers into a single model improves both therapeutic and prognostic 372 

prediction accuracy as compared to a single biomarker (24).  373 

Serum and tissue copper levels are known to be elevated in the setting of 374 

various malignancies, with such elevation being directly related to cancer 375 

progression (7). As such, we hypothesized that abnormal expression of genes 376 

relevant to the copper metabolism pathway can serve as prognostic and 377 

therapeutic markers in the setting of HCC. Cuproptosis, a form of programmed 378 

cell death recently identified to result from the binding of accumulated 379 

intracellular copper to aliphatic components of the tricarboxylic acid cycle, causes 380 

lipoacylated protein aggregation and loss of iron-sulfur cluster proteins (10). 381 

Although many genes pivotal in cuproptosis have been identified, the overall 382 

regulatory landscape of this process in HCC remains unclear. Here, we 383 

incorporated signatures of three cuproptosis-related lncRNAs to develop a 384 

CupRLSig signature capable of addressing both cuproptosis and HCC prognosis. 385 

Based on the ROC curve, CupRLSig was found to exhibit adequate predictive 386 

utility in the evaluation of OS among HCC patients. In addition, our novel 387 

nomogram improves clinical decision-making and has the potential to guide 388 

development of treatment strategies. In the CupRLSig model, both FOXD2-AS1 389 

and PICSAR were previously identified as oncogenes in HCC, where FOXD2-AS1 390 

aggravates HCC tumorigenesis by regulating the miR-206/MAP3K1 axis (25) while 391 

PICSAR accelerates disease progression by regulating the miR-392 
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588/PI3K/AKT/mTOR axis (26). However, there is a lack of research investigating 393 

the prognostic value of AP001065.1 and the magnitude of its involvement in 394 

cuproptosis and further study of this lncRNA is warranted. 395 

This study also explored the important relationship between cuproptosis and 396 

treatment decisions for managing HCC. Endogenous oxidative stress levels are 397 

known to be elevated in a variety of tumors, likely due to a combination of active 398 

metabolism, mitochondrial mutations, cytokine activity, and inflammation (7). 399 

Under constant oxidative stress, cancer cells tend to make extensive use of 400 

adaptive mechanisms and may deplete intracellular ROS buffer capacity (7). Thus, 401 

increased copper levels in cancer cells, as well as the resulting increase in oxidative 402 

stress, present a novel cancer-specific therapeutic strategy. The liver is the most 403 

important organ for copper metabolism, with the biliary tract excreting 80% of 404 

copper ions (27). The induction of cuproptosis in the setting of HCC thus offers a 405 

basis for effective management of this illness. Application of such a concept to 406 

preclinical studies first requires a detailed understanding of cuproptosis pathway 407 

regulatory gene expression in HCC patients. Investigation of a WD mouse model 408 

revealed that ATP7B-deficient hepatocytes, such as those found in WD patients, 409 

activate autophagy in response to copper overload to prevent copper-induced 410 

apoptosis (15). Inhibition of the autophagy pathway and consequent further 411 

copper overload and elevated ROS thus likely activates the cuproptosis pathway 412 

and leads to the death of such copper-rich tumor cells. Interestingly, efficacy of 413 

chemotherapeutic agents designed to induce ROS, such as paclitaxel, differs 414 

between patients in high- and low-risk groups as defined by the CupRLSig model. 415 

The CupRLSig model was additionally shown to have a relationship with the HCC 416 

immune microenvironment. According to CupRLSig stratification, expression of 417 

most immune checkpoints, activation of immune pathways and infiltration of 418 

immune cells were greater in the high-risk group as compared to the low-risk 419 

group, while TIDE score was noted to exhibit an opposite pattern. These findings 420 
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suggest that high-risk patients have more to benefit from immunotherapy. Taken 421 

together, this study confirms CupRLSig to possess utility as an adjunctive selection 422 

tool for pharmacotherapy. 423 

There were several limitations to this study. First, only TCGA data sets were 424 

utilized. Use of additional external data, such as from the Gene Expression 425 

Omnibus (GEO), should be considered in future studies to further confirm 426 

predictive utilities of CupRLSig. Second, owing to a lack of complete data, 427 

prognostic factors such as surgical data were not considered for nomogram 428 

construction. This may have affected the accuracy of the model. Third, functional 429 

studies are required to better understand molecular mechanisms associated with 430 

effects of cuproptosis-related lncRNAs. 431 

In conclusion, this study describes a novel CupRLSig lncRNA signature, also 432 

included in our nomogram, useful in predicting HCC prognosis. Importantly, 433 

CupRLSig likely also predicts the level of immune infiltration and potential efficacy 434 

of tumor immunotherapy, chemotherapy, and targeted therapy. 435 
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TABLE 542 

Table 1. Clinical characteristics of TCGA-LIHC sample training and test groups 543 

(n = 343). 544 

Covariates Sub Type Entire TCGA-LIHC (%) Test Group (%) Training Group (%) p-value 

Age <=65 216(62.97%) 103(60.23%) 113(65.7%) 0.3493 

 >65 127(37.03%) 68(39.77%) 59(34.3%)  

Gender Female 110(32.07%) 59(34.5%) 51(29.65%) 0.3971 

 Male 233(67.93%) 112(65.5%) 121(70.35%)  

Grade G1 53(15.45%) 27(15.79%) 26(15.12%) 0.3 

 G2 161(46.94%) 85(49.71%) 76(44.19%)  

 G3 112(32.65%) 54(31.58%) 58(33.72%)  

 G4 12(3.5%) 3(1.75%) 9(5.23%)  

 Unknown 5(1.46%) 2(1.17%) 3(1.74%)  

Stage Stage I 161(46.94%) 81(47.37%) 80(46.51%) 0.9079 

 Stage II 77(22.45%) 39(22.81%) 38(22.09%)  

 Stage III 80(23.32%) 38(22.22%) 42(24.42%)  

 Stage IV 3(0.87%) 2(1.17%) 1(0.58%)  

 Unknown 22(6.41%) 11(6.43%) 11(6.4%)  

T T1 168(48.98%) 86(50.29%) 82(47.67%) 0.5683 

 T2 84(24.49%) 42(24.56%) 42(24.42%)  

 T3 75(21.87%) 37(21.64%) 38(22.09%)  

 T4 13(3.79%) 4(2.34%) 9(5.23%)  
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 Unknown 3(0.87%) 2(1.17%) 1(0.58%)  

M M0 245(71.43%) 118(69.01%) 127(73.84%) 0.9551 

 M1 3(0.87%) 2(1.17%) 1(0.58%)  

 Unknown 95(27.7%) 51(29.82%) 44(25.58%)  

N N0 239(69.68%) 111(64.91%) 128(74.42%) 0.9081 

 N1 3(0.87%) 2(1.17%) 1(0.58%)  

 Unknown 101(29.45%) 58(33.92%) 43(25%)  

The p-value is indicated for the one-way ANOVA test among the three groups. 545 

546 
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FIGURE LEGENDS 547 

Figure 1. Study Flowchart. RNA-seq, RNA sequence; TCGA-LIHC, The Cancer 548 

Genome Atlas-Live Hepatocellular Carcinoma; lncRNAs, long non-coding RNAs; 549 

ROC, receiver operating characteristic. 550 

 551 

Figure 2. Construction of the CupRLSig model. (A) The Sankey diagram shows 552 

the associations between cuproptosis-related lncRNAs and mRNAs. (B) The Forest 553 

plot shows 27 lncRNAs with hazard ratios (95% confidence intervals) and p-values 554 

for their association with HCC prognosis based on univariate Cox proportional-555 

hazards analysis. (C) Lasso coefficient profiles. (D) Selection of the tuning 556 

parameter (Lambda) in the lasso model by 10-fold cross-validation based on 557 

minimum criteria for overall survival. (E) A heatmap shows the correlation between 558 

the three lncRNAs incorporated into the CupRLSig model and 19 cuproptosis-559 

related genes. 560 

 561 

Figure 3. Internal validation for CupRLSig model overall survival 562 

determination for training, test, and entire TCGA-LIHC groups. Kaplan-Meier 563 

survival curves in the high- and low-risk groups stratified by median training 564 

group overall survival CupRLSig risk scores (A); test group data (B); and entire 565 

TCGA-LIHC group data (C). P-values were determined using the log-rank test. 566 

The risk curve is based on the risk score for each sample in training (D), test (E) 567 

and entire TCGA-LIHC (F) groups, where red and blue dots indicate high- and 568 

low-risk samples, respectively. The scatter plot is based on the survival status of 569 

each sample from training (G), test (H) and entire TCGA-LIHC (I) groups, where 570 

red and blue dots indicate death and survival, respectively. (J-L) Heatmaps detail 571 

expression levels of the three CupRLSig lncRNAs in each group. TCGA-LIHC, The 572 

Cancer Genome Atlas-Live Hepatocellular Carcinoma. 573 

 574 
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Figure 4. Evaluation of CupRLSig model predictive accuracy using the entire 575 

TCGA-LIHC group. (A) Kaplan–Meier curves for progression-free survival in 576 

high- and low-risk groups stratified by median of CupRLSig risk scores. (B) The 577 

concordance index curves depict CupRLSig risk scores and other clinical 578 

parameters relevant to predicting HCC patient prognosis. Forest plots for 579 

univariate (C) and multivariate (D) Cox proportional-hazard analysis for 580 

determination of the independent prognostic value of the CupRLSig risk score. (E) 581 

ROC curve of the CupRLSig risk score and other clinicopathological variables. (G) 582 

Time-dependent ROC curves for 1-, 3-, and 5-year survival for the CupRLSig 583 

signature. TCGA-LIHC, The Cancer Genome Atlas-Live Hepatocellular Carcinoma. 584 

ROC, receiver operating characteristic. AUC, area under the curve. 585 

 586 

Figure 5. Visualization of expression levels of the three CupRLSig model 587 

component lncRNAs based on clinicopathological variable stratification and 588 

principal component analysis (PCA) of different gene sets performed for 589 

classification of patient risk. (A) A heatmap of the three lncRNAs and 590 

clinicopathological variables was constructed for high- and low-risk groups. PCA 591 

of low- and high-risk groups based on (B) whole-genome genes, (C) cuproptosis-592 

related genes, (D) cuproptosis-related lncRNAs, and (E) CupRLSig model risk 593 

lncRNAs. Patients with high risk scores are denoted by red, while those with low 594 

risk scores are denoted by blue. N, lymph node metastasis; M, distant metastasis; 595 

T, tumor. 596 

 597 

Figure 6. Kaplan-Meier survival curves for high- and low-risk patient groups 598 

sorted by clinicopathological variables. (A-B) Age; (C-D) Sex; (E-F) Grade; (G-599 

H) Overall stage; (I-J) T stage. T, tumor. 600 

 601 

Figure 7. Nomogram construction and verification. (A) A nomogram 602 
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combining clinicopathological parameters and risk scores predicts 1-, 3-, and 5-603 

year survival probabilities of HCC patients. The multivariate Cox proportional 604 

hazard analysis was used to determine each parameter’s independent prognostic 605 

value. The red dots, diamonds, triangles, and dashed lines represent the 53rd 606 

patient randomly selected for the nomogram illustration. Calibration curves assess 607 

the consistency between observed actual and nomogram-predicted overall 608 

survival at (B) 1-, (C) 3-, and (D) 5-years. OS, overall survival. 609 

 610 

Figure 8. Gene set functional annotation of differentially expressed genes and 611 

lncRNAs in high- and low-risk HCC groups. (A) In biological process GO terms, 612 

differentially expressed genes and lncRNAs were found to be most enriched in 613 

mitotic nuclear division, mitotic sister chromatid segregation, nuclear division, 614 

chromosome segregation, and sister chromatid segregation; in the five cellular 615 

components of condensed chromosomes, kinetochores, spindles, chromosomes, 616 

and condensed chromosomes; and in the five molecular functions of steroid 617 

hydroxylase activity, oxidoreductase activity, microtubule binding, aromatase 618 

activity, and tubulin binding. (B) Differentially expressed genes and lncRNAs were 619 

found to be most enriched in the five KEGG pathways of retinol metabolism, 620 

cytochrome P450 drug metabolism, cytochrome P450 xenobiotic metabolism, cell 621 

cycle, and chemical carcinogenesis-DNA adducts. GO, gene ontology; KEGG, 622 

Kyoto encyclopedia of genes and genomes; BP, biological process; CC, cellular 623 

component; MF, molecular function. 624 

 625 

Figure 9. The relationship between CupRLSig risk scores and somatic 626 

mutation and tumor mutation burden (TMB). The waterfall plots showing 627 

somatic mutations of the most significant 15 genes among high-risk (A) and low-628 

risk (B) HCC patients. (C) TMB comparison between low- and high-risk subgroups. 629 

(D) Kaplan-Meier curves for high- and low-TMB groups. (E) Subgroup analyses 630 
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for Kaplan-Meier curves of patients stratified by TMB and risk scores. The p-value 631 

is representative of the ANOVA test among subgroups. 632 

 633 

Figure 10. Immune cell infiltration and immune-related functions in different 634 

risk groups. (A) The violin plot shows whether there were significant differences 635 

in immune infiltration among 22 types of cells between high- and low-risk 636 

subgroups. (B) The heatmap shows whether there were significant differences in 637 

13 immune-related functions between high- and low-risk subgroups. NK, natural 638 

killer; CCR, C-C chemokine receptor; APC, antigen-presenting cell; HLA, human 639 

leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon. *p < 640 

0.05; ***p < 0.001. 641 

 642 

Figure 11. Comparison of Immune checkpoints, tumor immune dysfunction, 643 

and exclusion module (TIDE) scores, and chemotherapy and targeted therapy 644 

drug efficacy in high- and low-risk groups. (A) Expression of 28 immune 645 

checkpoint genes differs between the high- and low-risk groups. Red and blue 646 

boxes represent high- and low-risk patients, respectively. (B) Online software TIDE 647 

predicts HCC subgroup outcomes treated with either anti-PD1 or anti-CTLA4. A 648 

higher TIDE score suggests a greater likelihood of tumor immune escape and a 649 

poorer response to immunotherapy. The IC50 values for (C) 5-Fluorouracil, (D) 650 

Gemcitabine, (E) Paclitaxel, (F) Imatinib, (G) Sunitinib, (H) Rapamycin, (I) XL-184 651 

(Cabozantinib), and (J) Erlotinib in high- and low-risk groups. IC50, half-maximal 652 

inhibitory concentration. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant. 653 

 654 

Supplemental Table 1. Cuproptosis-related genes. 655 

 656 

Supplemental Table 2. Cuproptosis mRNA and lncRNA network. 657 

 658 
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Supplemental Table 3. Differentially expressed genes and lncRNAs (n=523) 659 
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