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Abstract

In this work, we provide a general method for inferring the stochastic behavior of
compositional systems. Our approach is guided by the principle of maximum entropy, a
data-driven modeling technique. In particular, we show that our method can accurately
capture stochastic, inter-species relationships with minimal model parameters. We
provide two proofs of principle. First, we measure the relative abundances of different
bacteria and infer how they interact. Second, we show that our method outperforms a
common alternative for the extraction of gene-gene interactions in triple-negative breast
cancer.

Author summary

Compositional systems, represented as proportions of some whole, are ubiquitous. They
encompass the abundances of proteins in a cell, the distribution of organisms in nature,
and the stoichiometry of the most basic chemical reactions. Thus, a central goal is to
understand how such processes emerge from the behaviors of their components and their
pairwise interactions. Such a study, however, is challenging for two key reasons. Firstly,
such systems are complex and depend, often stochastically, on their constituent parts.
Secondly, the data lie on a simplex which influences their correlations. We provide a
general and data-driven modeling tool for compositional systems to resolve both of these
issues. We achieve this through the principle of maximum entropy, which requires only
minimal assumptions and limited experimental data in contrast to current alternatives.
We show that our approach provides novel and biologically-intuitive insights and is
promising as a comprehensive quantitative framework for compositional data.

Introduction

Describing the compositions of physical systems, such as in mixtures of industrial
chemical reactions, across bacteria in the microbiome, or relative influences in cancer
networks is of significant practical importance. In the present work, these systems are
modeled as networks of components (or nodes) and their unknown node-node
interactions. However, the challenge of inferring these interactions lies in incorporating
the defining feature of such compositions: the total proportion across components must
always sum to one (or 100%).
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Much recent interest has been devoted to improving the statistical analysis of
compositional data |1]. The typical strategies that have been employed broadly fall into

two categories. First, many apply traditional statistics (such as correlational analyses).

Applied to compositional data, however, such tools are known to generate highly
inaccurate results [1H3]. The second approach is to consider the simplicial geometry of
compositional data more carefully. Here, a simplex describes the set of points that sum
to a fixed quantity. Such simplices (triangles, tetrahedrons, etc.) are common in
mathematics but less studied in statistics [4L/5]. Current methods for utilizing this
information first modify the data (such as through log ratio transformations), but this
can introduce unwarranted biases into downstream analysis [1,/6L(7]. What is needed is a
more general and principled approach for describing compositional data.

In contrast to previous approaches, we aim to infer a general model for
compositional data from first principles. The natural method for this is the principle of
maximum entropy or Max Ent [8-11]. Here, one provides constraints, such as means,
variances, and even the geometry of the data itself, and Max Ent provides the model.
The advantage of this approach is twofold. First, as opposed to other modeling
approaches, Max Ent makes minimal assumptions that are not warranted by the data
itself [12]. Second, Max Ent is a widely and successfully utilized modeling framework for
complex biological systems [13H18|. We provide theory and practical demonstrations of
our new approach in the present work.

The model

Suppose one is given several stochastic observations of the relative abundances of N
different components. Each of these observations may be represented as a vector

I ={s1,s92,...5n}. Our goal is to infer the most likely and least-biased
inter-component relationships that give rise to these observations (see Fig 1). The
unique model with this property is provided by the principle of maximum entropy,
which selects the model P that both maximizes the entropy S = — " Prlog Pr and
satisfies known constraints from the data. Here, the standard constraints are the
estimated first and second moments, M; = (s;) and x;; = (s;s;) |19], as well as the
special compositional constraint, ), s; = 1 (or 100%). The resulting solution P*,
obtained through the method of Lagrange multipliers, is given by:

Pr=Ztexp lz (hz + ;ZKH!S])SZ‘]’

i J#i

1
X si=1 i 2

Here h; and K;; enforce, respectively, the means M; and the covariances
Xij — M;M;. The normalizing constant Z is defined by an intractable integral over the
simplex. Thus, the model parameters are found using an adapted pseudolikelihood
approximation (see Methods: The simplex pseudolikelihood method). Finally, as
>, 8i =1, several constraints are redundant. Thus, we set hy = 0 and Kj;
(i=1,2,...N) to 0 (see Methods: Refining the maximum entropy parameters).

In summary, Eq (1| provides the Compositional Maximum Entropy model (CME)
subject to known means and covariances. The CME method provides interpretable
influence weights h; for each component node 7 as well as the interaction strengths Kj;
between each pair of components (i and j). Below, we provide two proofs of principle of
the method: in a model of the abundances of co-evolving species and the analysis of
gene expression data in cancer.
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Fig 1. The Compositional Maximum Entropy (CME) approach. (a). Through
maximum entropy, CME infers the unknown generative model of the observed
component abundances. (b). h; embodies the influence of each (¢) component.
Components with large h; tend to have higher abundances than those with small h;.
K;; embodies the interaction between pairs of components. Pairs with K;; > 0 tend to

coexist, while pairs with K;; < 0 tend to be mutually exclusive.
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Quantifying competition among co-evolving species

The quantification of competition among bacteria in the gut, market forces in the
economy (or even among scientists) is of course of great interest. A simple and
widely-used mechanism is provided by the competitive Lotka-Volterra model (cLV),
which describes the population dynamics (i.e., the abundances) of different species
vying for a shared resource [2022]. The population (3;) of each species 7 depends on its
growth rate r; and interaction «;; with each other species j. Furthermore, the
population of each type stops growing as it nears its carrying capacity k;, representing
the complete exhaustion of resources.

ds; .
E =17;8; X

225 ij8j
-

K

(2)

While cLV remains a powerful model for predicting population dynamics, several
challenges remain in calibrating it to experimental data. First, we are often only
provided with relative (normalized) species abundances. Tools handling both this
information loss and the resulting compositional data remain problematic [2,/23]. In
addition, we rarely have access to the full time series. Bacterial abundances, for
example, are typically measured sparsely but across many different conditions and

environments [2].

Here we show that CME can provide accurate quantitative estimates of inter-species
interactions, as predicted by cLV, using only available experimental information. The
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simulated cLV abundances §; are first normalized to resemble experimental data:

5 .
$i=—=——, 1=12,...N
' ngj

(3)

The time-evolving relative abundances s;(t) are then randomly sampled to apply
CME. Compared to the cLV model, our proposed approach requires fewer parameters

that are thus more resolvable from the limited available data.

cLV models exhibit three broad classes of stable inter-species behaviors: mutualism
(they coexist), neutralism (they ignore each other), and competition (only one type can
exist at a time) . To illustrate these behaviors, we consider a cLV model of three
different species with equal interactions c;; = «. Figure 2 shows the dynamics and
abundance distributions for each of three different regimes: « = 0.6 (mutualism, Fig.
2a), a = 1.2 (neutralism, Fig. 2b), and a = 4.0 (competition, Fig. 2c). For simplicity,
ri, ki, and the self-interactions «ay; are fixed at 1. Gaussian noise was then added to the

simulated dynamics to introduce additional inter-sample variability.
The cLV model exhibits a sharp qualitative transformation in its abundance
distribution, from a unimodal (Fig. 2a) to a trimodal (Fig. 2c) behavior, as « is

increased above a critical value (a = 1.2, Fig. 2b). Despite requiring fewer parameters
(h =0 and K, compared to the original four of cLV), CME (right) captures the cLV
model behavior (center) across this transformation; K > 0 describes mutualism while

K < 0 describes competition.

Fig 2. Simulated abundances of three co-evolving species under mutualism
(a), neutralism (b), and competition (c). Left, the cLV simulated abundances of
each of the three interacting species over time. Center, the corresponding abundance

distribution (cLV). Right, the best fit maximum entropy distribution (CME).
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In summary, our model provides a simple, data-driven framework for modeling
inter-species relationships from limited experimental information. We next consider the
more complex case involving heterogeneous interactions from gene expression data in
cancer.

Revealing driving interactions in cancer networks

Cancer is a heterogeneous disease involving complex molecular interactions between
many genes. Despite the wealth of information provided by modern experimental tools,
the application of such molecular data, including gene expression, to identify effective
drug targets continues to face two significant obstacles. First, the accuracy of
experimental expression profiles differs between genes [24]. Thus influences from
biologically critical but more poorly resolved genes may be overlooked. Second, genes of
typical interest often interact, and their effects overlap [25].

Novel network analysis techniques have been developed to refine the genetic
signatures of critical genes in cancer. These approaches have been utilized to discover
feedback structures in gene interaction networks, identify hubs and bridges, and define
measures of robustness and fragility [2628]. The Wasserstein distance from optimal
transport lies as the basis for such methodologies, and in addition to the above
references has been directly applied to the stationary (normalized) measures of the
networks in question to derive biological information, e.g. showing that pediatric
sarcoma data forms a unique cluster [29]. We will now show that CME may provide an
important tool for such problems and help point to potential driver genes and their
most important interactions.

To test our method, we analyze whole-genome expression data of triple-negative
breast tumors, a highly aggressive and complex type of cancer. While many genes are
known to be dysregulated in this disease, the relative influence of individual genes is far
from established [30]. The data consist of expression profiles from 299 disease samples
in METABRIC (Methods: The METABRIC dataset) [31]. We obtained normalized
weights for each of N = 3147 genes using the Human Protein Reference Database
(HPRD) for each sample (Methods: Network identification) [32]. As most of these genes
provide no signal in the data, we renormalized these weights after considering only the
top 17 highest variabiliy genes with known relevance to cancer (according to OncoKB,
see [33] and Methods: Data preparation). Figure 3 illustrates the known connectivity of
these genes, but with node size and color proportional to their inferred maximum
entropy node weights (h;). We immediately notice two key details. First, our genes of
interest all form a tightly connected network. Second, despite being highly correlated
with each other (as the topology would suggest), these genes have unequal influences on
the data. The highest-ranked genes, SRC and TP53, are also known master regulators
of cancer [34,/35].

A major strength of maximum entropy methods is identifying key node-node
interactions underlying the more complex covariances measured from data. This is
illustrated in Figure 4, which compares the maximum entropy pairwise interactions K,
to those inferred from a widely-used alternative statistical model, the logit-normal
distribution (Methods: Implementation of the logit-normal distribution); there is an
identifiable mapping between the strongest magnitude maximum entropy interactions
(Fig. 4a), in contrast to these obtained from the logit-normal (Fig. 4b), and their
corresponding gene-gene covariances (Fig. 4c).

We also note that the two top maximum entropy interactions alone (SRC/TP53 and
BRCA1/PTPN11) provide an intuitive explanation for some of the key features of the
data. SRC and TP53 maintain the critical balance between growth (SRC) and damage
repair (TP53): enhanced SRC (or repressed TP53) promotes cell survival, growth, and
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Fig 3. Maximum entropy ranking of key genes in triple-negative breast
cancer. Edges correspond to protein-protein interactions obtained from HPRD. Node
color and size correspond to their influence (h;).
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metastasis, while the reverse leads to accelerated aging [34H36]. This known and critical
negative interaction between SRC and TP53 separates most of the 17 genes into two
distinct (and negatively covarying) clusters. Thus, since BRCA1 and PTPN11 belong to
opposing clusters, their corrected interaction, as revealed by both maximum entropy
and logit-normal modeling, is much larger than expected from their weak, positive
covariance. Interestingly, both BRCA1 and PTPN11, along with SRC and TP53, are
involved in the JAK-STAT pathway [37./38]. Thus, these genes may have a general and
synergistic role in cancer that remains to be explored.

Yet, while the logit-normal model does appear to resolve some features (such as the
subtle covariance between AKT1 and EP300) that CME neglects, the interactions
predicted by this method generally appear difficult to interpret in the context of the
original covariance matrix: it predicts many interactions between uncorrelated genes

and fails to resolve, among others, the clear negative covariance between SRC and TP53.

Overall, the CME method provides a parsimonious biological mechanism, involving
known cancer drivers and only a few of their interactions, for the genetic variability in
this poorly understood disease.

Discussion

We have provided CME, a probabilistic framework for inferring the behaviors of
compositional systems from data. Typically, models are deduced bottom-up, starting
from mathematical relationships between individual components and combining them
often in a complex, nonlinear way. However, as we have described for the Lotka-Volterra
model, these interactions can rarely be resolved from the available experimental data.
CME, instead, takes a top-down approach — starting from the data and learning the
most parsimonious model for it. As evidenced by our breast cancer analysis, CME may

also provide more interpretable insights into the organization of compositional systems.

For simplicity, we have considered only small networks; however, our method can be
easily extended to much larger networks. First, the pseudolikelihood approach at the
core of our method has been successfully applied, with the proper regularization, to
networks consisting of thousands of nodes [39]. Second, the implementation of our
algorithm uses a scalable L-BFGS algorithm and is fully parallelized across multiple
CPU cores.

Similar to partial correlational analysis [40H42], maximum entropy computes direct
pairwise interactions by controlling for the confounding indirect effects of the other
nodes. Despite being widely used in data analysis and machine learning, partial
correlations are only appropriate for linear associations or Gaussian-like data [40].
Maximum entropy methods, such as our application to compositional data [41], are, by
contrast, much more general.

Our approach can incorporate more general model constraints as well. The
compositional simplex constraint is enforced using the method of Lagrange multipliers.
Other geometries [43]44], even higher-order moments, can be included simply by
including new Lagrange multipliers. Finally, as a maximum entropy model, CME is
naturally compatible with constraints on other types of data as well [45].

Conclusion

We proposed CME, a data-driven framework for modeling compositions in multi-species
networks. We utilize maximum entropy, a first-principles modeling approach, to learn

influential nodes and their network connections using only the available experimental

information. Our method requires minimal assumptions and no modifications of the
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Fig 4. Comparison between three breast cancer network analyses: CME (a),
logit-normal (b), and the data covariances (c). Maximum entropy and
logit-normal results are shown on a log-scale to reveal the most influential positive (red)
and negative (blue) interactions.
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experimental data. Furthermore, the method can be easily generalized to incorporate
new types of constraints and data that may emerge.

Methods

The simplex pseudolikelihood method

Fitting maximum entropy models to data is generally computationally intractable.
Thus, to fit CME, we will adapt the widely-used pseudolikelihood approximation [39].
This method requires two pieces of information. First, we need a formula to compute
the conditional distribution P(s;|s~;), where s.; represents all of the variables of
interest s; (j =1,2,...N —1) excluding s, and sy =1 — Zf\:l s;. For the simplex
model, we have:

P(s;|si) = Zi(sw-)*l exp

~ 1 -~ ~

J#i
N 1=3235" 5 -1 N
Zi(swi) = / exp (hz + §Kii5i + Z Kij5j> SZ‘| dSZ (5)
0 j#i
. 1 .
h; = h; + i(KiN + Kyi), Kij=K;j — Kin — Kn; (6)

Unlike that of Eq Z; is a tractable Gaussian-like integral. However, its value is
sample dependent. Thus, the second required piece of information is the actual samples
of the agent proportions s¢ (d = 1,2,... D) rather than simply the summary means and
covariances. Together these enable the maximization of the pseudolikelihood functions
%, (see Methods: Model implementation):

N1 D

, . 1~ _ - _

o = hiM; + §Kiixz‘i + E Kijxij — D! E log Z;(s%,) (7)
i d=1

Refining the maximum entropy parameters

One challenge in modeling compositional data is handling the parameter redundancies
induced by the compositional constraint ). s; = 1. Specifically, My, xin, and xn; are
entirely determined from the other data constraints. We could set the associated
Lagrange multipliers to 0, but this would hide information about node N (as all of its
connections would be forced to 0).

Instead, we recover interpretable model parameters with the following
transformations:

1 - 5 5 _ _
Kijzi(Kij+Kji_Kii_ij); hi = h; — Kin (8)

By forcing K;; to be 0 in Eq[l] we can resolve the interaction strengths between all
pairs of nodes in the data. For simplicity, we have defined hy = 0. However, we can
increase or decrease all h; by any constant and still have an equally good fit. Thus we
introduce another transformation to facilitate intra-model comparison of these node
weights:

h;
Q= v
' Zi\;ehi
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Sample Covariances
S1 Fig. Comparison of CME model covariances to the sample covariances of
the cLV model. We observe complete agreement between our model and the data (see
Figure 2), confirming the correctness of our maximum entropy fitting algorithm. The
means, not shown, were all equal to 1/3 as expected.

Conceptually, the quotient @; compares the relative probability of observing a
network configuration with influence dominated (P*(s; = 1)) by node 4. We posit this
as a useful comparison metric for future studies of compositional systems modeled under
different conditions.

Model implementation

To provide a high-accuracy, low overhead approximate maximum of the CME log
pseudolikelihood functions, we performed convex optimization using L-BFGS [46]
augmented by automatic differentiation. To validate our method, we also designed a
custom Monte-Carlo scheme to simulate from CME models. This scheme considers the
fitted h; and K;; parameters and numerically estimates the corresponding means M;
and covariances X;; = x;; — M;M;. In contrast to CME, such simulation is
prohibitively expensive for even moderately-sized, strongly-interacting networks.
However, it enabled us to confirm the high accuracy of our model on our Lotka-Volterra
simulations (see S1 Figure).

The METABRIC dataset

Microarray gene expression data for METABRIC were downloaded from the cBioPortal
database [47,/48]. The METABRIC dataset, containing 1904 samples, is one of the most
extensive publicly-available breast cancer studies [31]. We utilized microarray gene
expression data containing 24368 genes from the 299 triple-negative samples.

Network identification

To quantify the (normalized) influence of genes relevant to triple-negative breast cancer,
we utilized the method of network Markov chains [26H28|. The Human Protein
Reference Database (HPRD) provides a curated interaction network of most human
proteins [32]. Thus, to perform our analysis, we utilized the largest connected
component, consisting of 3147 genes, obtained from the intersection of HPRD with the
METABRIC gene list. We then performed network analysis as in [28] using the subset
of 288 genes annotated in OncoKB, a curated database of prominent cancer genes [33].
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Data preparation

For each sample, we obtain a measure of the relative influence of each of 288 genes. To
identify potential drivers of the variability of these influences across the data, we
computed their inter-sample Pearson correlations. We identified two distinct clusters of
highly correlated genes: one containing a small number of immune-adjacent genes and
the other, a much larger component, containing prominent breast cancer genes such as
TP53 and BRCA1. Thus, we utilized only this second component for our analysis.
Our primary goal is to identify genes and their interactions that potentially drive the
variability in treatment responses observed in triple-negative breast cancer [30]. Likely
genes include only those with large influence and inter-subject variability. Upon
computing the variance in the influence of each gene, we found 17 candidates with
markedly higher variance than the remaining bulk. We thus renormalized node influence
across these 17 prime candidates before performing our maximum entropy analysis.

Implementation of the logit-normal distribution
An alternative to CME, the logit-normal distribution is given by [1]:
_ T
Pzl e*%{l‘)g (:x)’M”} ZZ}V{ 1°g<

LN T=N
i=195i

SRy
SN

)’MLN} (10)

where My and Xy are the means and covariances of the transformed data:
y = [log(;—;), ..., log(
K;n = —X[ N which, under fairly general circumstances, has been shown to

approximate maximum entropy interactions [13]. As with CME, we then utilized Eq

to define symmetric interactions between all pairs of nodes rather than simply the first
N —1.

SN—1

?)} Here, the feature of interest is the precision matrix
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