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Abstract

In this work, we provide a general method for inferring the stochastic behavior of
compositional systems. Our approach is guided by the principle of maximum entropy, a
data-driven modeling technique. In particular, we show that our method can accurately
capture stochastic, inter-species relationships with minimal model parameters. We
provide two proofs of principle. First, we measure the relative abundances of different
bacteria and infer how they interact. Second, we show that our method outperforms a
common alternative for the extraction of gene-gene interactions in triple-negative breast
cancer.

Author summary

Compositional systems, represented as proportions of some whole, are ubiquitous. They 1

encompass the abundances of proteins in a cell, the distribution of organisms in nature, 2

and the stoichiometry of the most basic chemical reactions. Thus, a central goal is to 3

understand how such processes emerge from the behaviors of their components and their 4

pairwise interactions. Such a study, however, is challenging for two key reasons. Firstly, 5

such systems are complex and depend, often stochastically, on their constituent parts. 6

Secondly, the data lie on a simplex which influences their correlations. We provide a 7

general and data-driven modeling tool for compositional systems to resolve both of these 8

issues. We achieve this through the principle of maximum entropy, which requires only 9

minimal assumptions and limited experimental data in contrast to current alternatives. 10

We show that our approach provides novel and biologically-intuitive insights and is 11

promising as a comprehensive quantitative framework for compositional data. 12

Introduction 13

Describing the compositions of physical systems, such as in mixtures of industrial 14

chemical reactions, across bacteria in the microbiome, or relative influences in cancer 15

networks is of significant practical importance. In the present work, these systems are 16

modeled as networks of components (or nodes) and their unknown node-node 17

interactions. However, the challenge of inferring these interactions lies in incorporating 18

the defining feature of such compositions: the total proportion across components must 19

always sum to one (or 100%). 20
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Much recent interest has been devoted to improving the statistical analysis of 21

compositional data [1]. The typical strategies that have been employed broadly fall into 22

two categories. First, many apply traditional statistics (such as correlational analyses). 23

Applied to compositional data, however, such tools are known to generate highly 24

inaccurate results [1–3]. The second approach is to consider the simplicial geometry of 25

compositional data more carefully. Here, a simplex describes the set of points that sum 26

to a fixed quantity. Such simplices (triangles, tetrahedrons, etc.) are common in 27

mathematics but less studied in statistics [4, 5]. Current methods for utilizing this 28

information first modify the data (such as through log ratio transformations), but this 29

can introduce unwarranted biases into downstream analysis [1, 6, 7]. What is needed is a 30

more general and principled approach for describing compositional data. 31

In contrast to previous approaches, we aim to infer a general model for 32

compositional data from first principles. The natural method for this is the principle of 33

maximum entropy or Max Ent [8–11]. Here, one provides constraints, such as means, 34

variances, and even the geometry of the data itself, and Max Ent provides the model. 35

The advantage of this approach is twofold. First, as opposed to other modeling 36

approaches, Max Ent makes minimal assumptions that are not warranted by the data 37

itself [12]. Second, Max Ent is a widely and successfully utilized modeling framework for 38

complex biological systems [13–18]. We provide theory and practical demonstrations of 39

our new approach in the present work. 40

The model 41

Suppose one is given several stochastic observations of the relative abundances of N 42

different components. Each of these observations may be represented as a vector 43

Γ = {s1, s2, . . . sN}. Our goal is to infer the most likely and least-biased 44

inter-component relationships that give rise to these observations (see Fig 1). The 45

unique model with this property is provided by the principle of maximum entropy, 46

which selects the model P that both maximizes the entropy S = −
∑

Γ PΓ logPΓ and 47

satisfies known constraints from the data. Here, the standard constraints are the 48

estimated first and second moments, Mi = ⟨si⟩ and χij = ⟨sisj⟩ [19], as well as the 49

special compositional constraint,
∑

i si = 1 (or 100%). The resulting solution P ∗, 50

obtained through the method of Lagrange multipliers, is given by: 51

P ∗
Γ = Z−1 exp

[∑
i

(
hi +

1

2

∑
j ̸=i

Kijsj

)
si

]
,

Z =

∫
∑N

i si=1

exp

[∑
i

(
hi +

1

2

∑
j ̸=i

Kijsj

)
si

]
ds⃗ (1)

Here hi and Kij enforce, respectively, the means Mi and the covariances 52

χij −MiMj . The normalizing constant Z is defined by an intractable integral over the 53

simplex. Thus, the model parameters are found using an adapted pseudolikelihood 54

approximation (see Methods: The simplex pseudolikelihood method). Finally, as 55∑
i si = 1, several constraints are redundant. Thus, we set hN = 0 and Kii 56

(i = 1, 2, . . . N) to 0 (see Methods: Refining the maximum entropy parameters). 57

In summary, Eq 1 provides the Compositional Maximum Entropy model (CME) 58

subject to known means and covariances. The CME method provides interpretable 59

influence weights hi for each component node i as well as the interaction strengths Kij 60

between each pair of components (i and j). Below, we provide two proofs of principle of 61

the method: in a model of the abundances of co-evolving species and the analysis of 62

gene expression data in cancer. 63
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Fig 1. The Compositional Maximum Entropy (CME) approach. (a). Through
maximum entropy, CME infers the unknown generative model of the observed
component abundances. (b). hi embodies the influence of each (i) component.
Components with large hi tend to have higher abundances than those with small hi.
Kij embodies the interaction between pairs of components. Pairs with Kij > 0 tend to
coexist, while pairs with Kij < 0 tend to be mutually exclusive.
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Quantifying competition among co-evolving species 64

The quantification of competition among bacteria in the gut, market forces in the 65

economy (or even among scientists) is of course of great interest. A simple and 66

widely-used mechanism is provided by the competitive Lotka-Volterra model (cLV), 67

which describes the population dynamics (i.e., the abundances) of different species 68

vying for a shared resource [20–22]. The population (s̃i) of each species i depends on its 69

growth rate ri and interaction αij with each other species j. Furthermore, the 70

population of each type stops growing as it nears its carrying capacity κi, representing 71

the complete exhaustion of resources. 72

ds̃i
dt

= ris̃i ×
(
1−

∑
j αij s̃j

κi

)
(2)

While cLV remains a powerful model for predicting population dynamics, several 73

challenges remain in calibrating it to experimental data. First, we are often only 74

provided with relative (normalized) species abundances. Tools handling both this 75

information loss and the resulting compositional data remain problematic [2, 23]. In 76

addition, we rarely have access to the full time series. Bacterial abundances, for 77

example, are typically measured sparsely but across many different conditions and 78

environments [2]. 79

Here we show that CME can provide accurate quantitative estimates of inter-species 80

interactions, as predicted by cLV, using only available experimental information. The 81
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simulated cLV abundances s̃i are first normalized to resemble experimental data: 82

si =
s̃i∑
j s̃j

, i = 1, 2, . . . N (3)

The time-evolving relative abundances si(t) are then randomly sampled to apply 83

CME. Compared to the cLV model, our proposed approach requires fewer parameters 84

that are thus more resolvable from the limited available data. 85

cLV models exhibit three broad classes of stable inter-species behaviors: mutualism 86

(they coexist), neutralism (they ignore each other), and competition (only one type can 87

exist at a time) [23]. To illustrate these behaviors, we consider a cLV model of three 88

different species with equal interactions αij = α. Figure 2 shows the dynamics and 89

abundance distributions for each of three different regimes: α = 0.6 (mutualism, Fig. 90

2a), α = 1.2 (neutralism, Fig. 2b), and α = 4.0 (competition, Fig. 2c). For simplicity, 91

ri, κi, and the self-interactions αii are fixed at 1. Gaussian noise was then added to the 92

simulated dynamics to introduce additional inter-sample variability. 93

The cLV model exhibits a sharp qualitative transformation in its abundance 94

distribution, from a unimodal (Fig. 2a) to a trimodal (Fig. 2c) behavior, as α is 95

increased above a critical value (α ≈ 1.2, Fig. 2b). Despite requiring fewer parameters 96

(h = 0 and K, compared to the original four of cLV), CME (right) captures the cLV 97

model behavior (center) across this transformation; K > 0 describes mutualism while 98

K < 0 describes competition. 99

Fig 2. Simulated abundances of three co-evolving species under mutualism
(a), neutralism (b), and competition (c). Left, the cLV simulated abundances of
each of the three interacting species over time. Center, the corresponding abundance
distribution (cLV). Right, the best fit maximum entropy distribution (CME).
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In summary, our model provides a simple, data-driven framework for modeling 100

inter-species relationships from limited experimental information. We next consider the 101

more complex case involving heterogeneous interactions from gene expression data in 102

cancer. 103

Revealing driving interactions in cancer networks 104

Cancer is a heterogeneous disease involving complex molecular interactions between 105

many genes. Despite the wealth of information provided by modern experimental tools, 106

the application of such molecular data, including gene expression, to identify effective 107

drug targets continues to face two significant obstacles. First, the accuracy of 108

experimental expression profiles differs between genes [24]. Thus influences from 109

biologically critical but more poorly resolved genes may be overlooked. Second, genes of 110

typical interest often interact, and their effects overlap [25]. 111

Novel network analysis techniques have been developed to refine the genetic 112

signatures of critical genes in cancer. These approaches have been utilized to discover 113

feedback structures in gene interaction networks, identify hubs and bridges, and define 114

measures of robustness and fragility [26–28]. The Wasserstein distance from optimal 115

transport lies as the basis for such methodologies, and in addition to the above 116

references has been directly applied to the stationary (normalized) measures of the 117

networks in question to derive biological information, e.g. showing that pediatric 118

sarcoma data forms a unique cluster [29]. We will now show that CME may provide an 119

important tool for such problems and help point to potential driver genes and their 120

most important interactions. 121

To test our method, we analyze whole-genome expression data of triple-negative 122

breast tumors, a highly aggressive and complex type of cancer. While many genes are 123

known to be dysregulated in this disease, the relative influence of individual genes is far 124

from established [30]. The data consist of expression profiles from 299 disease samples 125

in METABRIC (Methods: The METABRIC dataset) [31]. We obtained normalized 126

weights for each of N = 3147 genes using the Human Protein Reference Database 127

(HPRD) for each sample (Methods: Network identification) [32]. As most of these genes 128

provide no signal in the data, we renormalized these weights after considering only the 129

top 17 highest variabiliy genes with known relevance to cancer (according to OncoKB, 130

see [33] and Methods: Data preparation). Figure 3 illustrates the known connectivity of 131

these genes, but with node size and color proportional to their inferred maximum 132

entropy node weights (hi). We immediately notice two key details. First, our genes of 133

interest all form a tightly connected network. Second, despite being highly correlated 134

with each other (as the topology would suggest), these genes have unequal influences on 135

the data. The highest-ranked genes, SRC and TP53, are also known master regulators 136

of cancer [34,35]. 137

A major strength of maximum entropy methods is identifying key node-node 138

interactions underlying the more complex covariances measured from data. This is 139

illustrated in Figure 4, which compares the maximum entropy pairwise interactions Kij 140

to those inferred from a widely-used alternative statistical model, the logit-normal 141

distribution (Methods: Implementation of the logit-normal distribution); there is an 142

identifiable mapping between the strongest magnitude maximum entropy interactions 143

(Fig. 4a), in contrast to these obtained from the logit-normal (Fig. 4b), and their 144

corresponding gene-gene covariances (Fig. 4c). 145

We also note that the two top maximum entropy interactions alone (SRC/TP53 and 146

BRCA1/PTPN11) provide an intuitive explanation for some of the key features of the 147

data. SRC and TP53 maintain the critical balance between growth (SRC) and damage 148

repair (TP53): enhanced SRC (or repressed TP53) promotes cell survival, growth, and 149
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Fig 3. Maximum entropy ranking of key genes in triple-negative breast
cancer. Edges correspond to protein-protein interactions obtained from HPRD. Node
color and size correspond to their influence (hi).
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metastasis, while the reverse leads to accelerated aging [34–36]. This known and critical 150

negative interaction between SRC and TP53 separates most of the 17 genes into two 151

distinct (and negatively covarying) clusters. Thus, since BRCA1 and PTPN11 belong to 152

opposing clusters, their corrected interaction, as revealed by both maximum entropy 153

and logit-normal modeling, is much larger than expected from their weak, positive 154

covariance. Interestingly, both BRCA1 and PTPN11, along with SRC and TP53, are 155

involved in the JAK-STAT pathway [37,38]. Thus, these genes may have a general and 156

synergistic role in cancer that remains to be explored. 157

Yet, while the logit-normal model does appear to resolve some features (such as the 158

subtle covariance between AKT1 and EP300) that CME neglects, the interactions 159

predicted by this method generally appear difficult to interpret in the context of the 160

original covariance matrix: it predicts many interactions between uncorrelated genes 161

and fails to resolve, among others, the clear negative covariance between SRC and TP53. 162

Overall, the CME method provides a parsimonious biological mechanism, involving 163

known cancer drivers and only a few of their interactions, for the genetic variability in 164

this poorly understood disease. 165

Discussion 166

We have provided CME, a probabilistic framework for inferring the behaviors of 167

compositional systems from data. Typically, models are deduced bottom-up, starting 168

from mathematical relationships between individual components and combining them 169

often in a complex, nonlinear way. However, as we have described for the Lotka-Volterra 170

model, these interactions can rarely be resolved from the available experimental data. 171

CME, instead, takes a top-down approach – starting from the data and learning the 172

most parsimonious model for it. As evidenced by our breast cancer analysis, CME may 173

also provide more interpretable insights into the organization of compositional systems. 174

For simplicity, we have considered only small networks; however, our method can be 175

easily extended to much larger networks. First, the pseudolikelihood approach at the 176

core of our method has been successfully applied, with the proper regularization, to 177

networks consisting of thousands of nodes [39]. Second, the implementation of our 178

algorithm uses a scalable L-BFGS algorithm and is fully parallelized across multiple 179

CPU cores. 180

Similar to partial correlational analysis [40–42], maximum entropy computes direct 181

pairwise interactions by controlling for the confounding indirect effects of the other 182

nodes. Despite being widely used in data analysis and machine learning, partial 183

correlations are only appropriate for linear associations or Gaussian-like data [40]. 184

Maximum entropy methods, such as our application to compositional data [41], are, by 185

contrast, much more general. 186

Our approach can incorporate more general model constraints as well. The 187

compositional simplex constraint is enforced using the method of Lagrange multipliers. 188

Other geometries [43,44], even higher-order moments, can be included simply by 189

including new Lagrange multipliers. Finally, as a maximum entropy model, CME is 190

naturally compatible with constraints on other types of data as well [45]. 191

Conclusion 192

We proposed CME, a data-driven framework for modeling compositions in multi-species 193

networks. We utilize maximum entropy, a first-principles modeling approach, to learn 194

influential nodes and their network connections using only the available experimental 195

information. Our method requires minimal assumptions and no modifications of the 196
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Fig 4. Comparison between three breast cancer network analyses: CME (a),
logit-normal (b), and the data covariances (c). Maximum entropy and
logit-normal results are shown on a log-scale to reveal the most influential positive (red)
and negative (blue) interactions.

(a)

(b)

(c)
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experimental data. Furthermore, the method can be easily generalized to incorporate 197

new types of constraints and data that may emerge. 198

Methods 199

The simplex pseudolikelihood method 200

Fitting maximum entropy models to data is generally computationally intractable. 201

Thus, to fit CME, we will adapt the widely-used pseudolikelihood approximation [39]. 202

This method requires two pieces of information. First, we need a formula to compute 203

the conditional distribution P (si|s∼i), where s∼i represents all of the variables of 204

interest sj (j = 1, 2, . . . N − 1) excluding si and sN = 1−
∑N−1

i=1 si. For the simplex 205

model, we have: 206

P (si|s∼i) = Z̃i(s∼i)
−1 exp

[(
h̃i +

1

2
K̃iisi +

∑
j ̸=i

K̃ijsj

)
si

]
(4)

Z̃i(s∼i) =

∫ 1−
∑N−1

j ̸=i sj

0

exp

[(
h̃i +

1

2
K̃iisi +

∑
j ̸=i

K̃ijsj

)
si

]
dsi (5)

h̃i = hi +
1

2
(KiN +KNi), K̃ij = Kij −KiN −KNj (6)

Unlike that of Eq 1, Z̃i is a tractable Gaussian-like integral. However, its value is 207

sample dependent. Thus, the second required piece of information is the actual samples 208

of the agent proportions sdi (d = 1, 2, . . . D) rather than simply the summary means and 209

covariances. Together these enable the maximization of the pseudolikelihood functions 210

ℓiPL (see Methods: Model implementation): 211

ℓiPL = h̃iMi +
1

2
K̃iiχii +

N−1∑
j ̸=i

K̃ijχij −D−1
D∑

d=1

log Z̃i(s
d
∼i) (7)

Refining the maximum entropy parameters 212

One challenge in modeling compositional data is handling the parameter redundancies 213

induced by the compositional constraint
∑

i si = 1. Specifically, MN , χiN , and χNi are 214

entirely determined from the other data constraints. We could set the associated 215

Lagrange multipliers to 0, but this would hide information about node N (as all of its 216

connections would be forced to 0). 217

Instead, we recover interpretable model parameters with the following 218

transformations: 219

Kij =
1

2
(K̃ij + K̃ji − K̃ii − K̃jj), hi = h̃i −KiN (8)

By forcing Kii to be 0 in Eq 1, we can resolve the interaction strengths between all 220

pairs of nodes in the data. For simplicity, we have defined hN = 0. However, we can 221

increase or decrease all hi by any constant and still have an equally good fit. Thus we 222

introduce another transformation to facilitate intra-model comparison of these node 223

weights: 224

Qi =
ehi∑N
i=1 e

hi

(9)
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S1 Fig. Comparison of CME model covariances to the sample covariances of
the cLV model. We observe complete agreement between our model and the data (see
Figure 2), confirming the correctness of our maximum entropy fitting algorithm. The
means, not shown, were all equal to 1/3 as expected.

Conceptually, the quotient Qi compares the relative probability of observing a 225

network configuration with influence dominated (P ∗(si = 1)) by node i. We posit this 226

as a useful comparison metric for future studies of compositional systems modeled under 227

different conditions. 228

Model implementation 229

To provide a high-accuracy, low overhead approximate maximum of the CME log 230

pseudolikelihood functions, we performed convex optimization using L-BFGS [46] 231

augmented by automatic differentiation. To validate our method, we also designed a 232

custom Monte-Carlo scheme to simulate from CME models. This scheme considers the 233

fitted hi and Kij parameters and numerically estimates the corresponding means Mi 234

and covariances Σij = χij −MiMj . In contrast to CME, such simulation is 235

prohibitively expensive for even moderately-sized, strongly-interacting networks. 236

However, it enabled us to confirm the high accuracy of our model on our Lotka-Volterra 237

simulations (see S1 Figure). 238

The METABRIC dataset 239

Microarray gene expression data for METABRIC were downloaded from the cBioPortal 240

database [47, 48]. The METABRIC dataset, containing 1904 samples, is one of the most 241

extensive publicly-available breast cancer studies [31]. We utilized microarray gene 242

expression data containing 24368 genes from the 299 triple-negative samples. 243

Network identification 244

To quantify the (normalized) influence of genes relevant to triple-negative breast cancer, 245

we utilized the method of network Markov chains [26–28]. The Human Protein 246

Reference Database (HPRD) provides a curated interaction network of most human 247

proteins [32]. Thus, to perform our analysis, we utilized the largest connected 248

component, consisting of 3147 genes, obtained from the intersection of HPRD with the 249

METABRIC gene list. We then performed network analysis as in [28] using the subset 250

of 288 genes annotated in OncoKB, a curated database of prominent cancer genes [33]. 251
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Data preparation 252

For each sample, we obtain a measure of the relative influence of each of 288 genes. To 253

identify potential drivers of the variability of these influences across the data, we 254

computed their inter-sample Pearson correlations. We identified two distinct clusters of 255

highly correlated genes: one containing a small number of immune-adjacent genes and 256

the other, a much larger component, containing prominent breast cancer genes such as 257

TP53 and BRCA1. Thus, we utilized only this second component for our analysis. 258

Our primary goal is to identify genes and their interactions that potentially drive the 259

variability in treatment responses observed in triple-negative breast cancer [30]. Likely 260

genes include only those with large influence and inter-subject variability. Upon 261

computing the variance in the influence of each gene, we found 17 candidates with 262

markedly higher variance than the remaining bulk. We thus renormalized node influence 263

across these 17 prime candidates before performing our maximum entropy analysis. 264

Implementation of the logit-normal distribution 265

An alternative to CME, the logit-normal distribution is given by [1]: 266

PΓ = Z−1
LN

1∏N
i=1 si

e
− 1

2

{
log

(
s
Ñ

sN

)
−MLN

}⊤

Σ−1
LN

{
log

(
s
Ñ

sN

)
−MLN

}
(10)

where MLN and ΣLN are the means and covariances of the transformed data: 267

y =
[
log( s1

sN
), . . . , log( sN−1

sN
)
]
. Here, the feature of interest is the precision matrix 268

K∗
LN = −Σ−1

LN which, under fairly general circumstances, has been shown to 269

approximate maximum entropy interactions [13]. As with CME, we then utilized Eq 8 270

to define symmetric interactions between all pairs of nodes rather than simply the first 271

N − 1. 272
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