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Abstract

Driver genes play a crucial role in the growth of cancer cells. Accurate identification of
cancer driver genes is helping to strengthen the understanding of cancer pathogenesis
and is conducive to the development of cancer treatment and drug-targe driver genes.
However, due to the diversity and complexity of the multi-omics data, it is still challenging
to identify cancer drivers.In this study, we propose Trans-Driver, a deep supervised
learning method with a novel transformer network, which integrates multi-omics data to
learn the differences and associations between different omics data for cancer drivers’
discovery. Compared with other state-of-the-art driver gene identification methods,
Trans-Driver has achieved excellent performance on TCGA and CGC data Machine
learning for multi-omics data integration in cancer. Among 20,000 protein-coding genes,
Trans-Driver reported 185 candidate driver genes, of which 103 genes (about 55%) were
included in the gold standard CGC data set. Finally, we analyzed the contribution
of each feature to the identification of driver genes. We found that the integration of
multi-omics data can improve the performance of our method compared with using only
somatic mutation data. Through detailed analysis, we found that the candidate drivers
are clinically meaningful, proving the practicability of Trans-Driver.

Author summary

Many methods have been developed to identify cancer driver genes. However, most of
these methods use single-omics data for cancer driver gene identification. Multi-omics-
based methods for cancer driver gene identification are rare. Trans-Driver uses deep
learning to process multi-omics data and learn the relationships between multi-omics
data for cancer driver gene prediction. We have predicted 185 candidate cancer driver
genes out of among 20,000 protein-coding genes. Also, we performed cancer driver gene
prediction on 33 cancer types, and we identified the cancer driver genes corresponding to
each cancer type. And, we observed that the predicted cancer driver genes were shown
to have a role in cancer progression in recent studies. Our proposed method for cancer
driver gene identification using multi-omics data has improved performance compared to
using mutation data alone.
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Introduction 1

Cancer is a genomic disease that poses a severe threat to human life and health [1]and 2

is a significant cause of disease-related morbidity and mortality worldwide [2]. It is an 3

abnormal and uncontrolled disease of cells caused by genetic mutations [3, 4]. Previous 4

studies have shown that cancer cells arise, develop, metastasize, and worsen due to 5

the accumulation of severe mutations in the genome of the body’s matching tissue 6

cells over time [5,6]. Driver mutations disrupt normal cell growth and promote cancer 7

development, while most passenger mutations do not contribute to cancer development. 8

Genes with the driver mutations are cancer driver genes [7]. The discovery of cancer driver 9

genes is critical for cancer diagnosis, prevention, clinical treatment, and development 10

of cancer-targeted drugs [8, 9]. With the development of next-generation sequencing 11

technologies, some international cancer research projects, such as The Cancer Genome 12

Atlas (TCGA) [10] and International Cancer Genome Consortium (ICGC) [11], have 13

produced many omics data (such as Somatic mutation, DNA methylation, copy number), 14

which contributed to the study of cancer driver genes [12]. 15

Over the past decade, numerous approaches have been developed to identify driver 16

genes. Most of these methods (such as MuSiC [13], ActiveDriver [14], OncodriverFML 17

[15], VEST [16]) are based on statistical models that use somatic mutation data to 18

estimate background mutation rates combined with mutation rates of genes to identify 19

driver genes. MuSiC used statistical methods to decide mutational salience in cancer, 20

distinguishing significant mutations as driver mutations among passenger mutations. 21

ActiveDriver identified the signaling regions of substantial mutations in proteins. This 22

method complemented the standard frequency-based mutation significance approach 23

and helped explain rare but site-specific mutations. OncodriverFML introduced a local 24

mutation background model to calculate the mutation bias of genomic for the analysis of 25

coding and non-coding somatic mutation patterns in genomic regions to identify driver 26

mutations. Researchers have used machine learning methods to improve cancer drivers’ 27

identification prediction accuracy. VEST was a machine learning-based supervised 28

classification method for classing missense mutations that alter protein to identify 29

possible missense mutations. Some methods integrate somatic mutations and other 30

biological knowledge to improve identification accuracy. Tokheim et al. proposed the 31

2020plus, a Random Forest-based machine learning prediction algorithm for predicting 32

oncogenes and tumor suppressor genes in somatic mutations, using features such as 33

capture mutation clustering, evolutionary conservation, prediction of variants, mutation, 34

gene network connectivity, and other covariates [17]. The e-Driver algorithm identified 35

cancer driver genes by the intrinsic distribution pattern of somatic missense mutations 36

among functional regions of proteins [13]. CHASM used conservation scores and protein 37

structure features to predict the driver mutations most likely to produce changes and 38

promote cancer cell spread [18]. Bailey et al. developed the CompositeDriver method, 39

which considered the effects of mutation recurrence and the computational mutation 40

method for identifying positive selection signals [7].The PNC algorithm identifies the 41

personalized driver genes by employing the structure-based network control principle on 42

the genetic data of individual patients [19]. For all mutations within the protein-coding 43

region of a gene, a composite score was calculated by multiplying mutation recurrence 44

by the impact score [20]. 45

Integrating multi-omics data is essential in cancer research [21–23]. Several recent 46

studies have shown that multi-omics data integration is more helpful in exploring cancer 47

driver genes compared to using only somatic mutation data [24–26]. Liu et al. developed 48

an online cancer driver gene database, DriverDBv3, using various published methods 49

through multi-omics data to improve the study of comprehensive cancer omics data by 50

identifying driver genes [27]. Singh et al.used simulations and benchmark multi-omics 51

to identify known and novel multi-component biomarkers between multiple phenotypic 52
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groups by selecting common features from multi-omics data sets [28]. deepDriver is a 53

proposed method for cancer driver gene identification by convolving mutation-based 54

features of genes and their neighbors in a similarity network [29].LOTUS is a machine- 55

learning-based approach that allows for the integration of various types of data versatile, 56

including information about gene mutations and protein-protein interactions [30]. Our 57

previous work developed a non-parametric Bayesian framework based on multivariate 58

statistical modeling: iDriver, which integrated somatic mutations, gene expression, DNA 59

copy number, DNA methylation, and protein plenty provided by The Cancer Genome 60

Atlas (TCGA) to identify cancer driver genes [31]. 61

Although many computational approaches have emerged to use the next-generation 62

gene sequencing technologies for cancer drivers’ discovery, the goal of achieving a 63

complete cancer drivers catalog remains challenging. Many methods have significant 64

gaps in prediction consistency and the number of predicted cancer driver genes [17]. 65

Significant challenges still go with this task. In recent years, with the booming field 66

of artificial intelligence (AI), deep learning has increasingly overlapped with cancer 67

medicine [32]. The vast amount of available biomedical data filtered through the 68

analytical power of AI promises to revolutionize cancer research, diagnosis, and care [33]. 69

Deep learning can predict genomic changes based on morphological features learned from 70

digital histopathology [34]. Deep learning has been used to characterize multi-omics 71

data, molecular subtyping of tumors, and predict patients’ survival rates [35–38]. 72

Since multi-omics data integration can effectively identify cancer driver genes and 73

deep learning has advantages for multi-layer abstract representation of many complex 74

data to explore novel cancer drivers better. This study proposes a deep supervised 75

learning approach, Transformer-Driver (Trans-Driver). We innovatively proposed a 76

multi-layer perceptron-Transformer network with multi-omics data integration to deal 77

with the imbalance of driver and passenger genes in the training set (Fig 1). We compared 78

Trans-Driver with other driver gene discovery methods such as MuSiC, ActiveDriver, 79

e-Driver, CompositeDriver, CHASM, and 2020plus. Our approach achieved outstanding 80

performance on the two benchmarks data sets (TCGA drivers set and COSMIC CGC 81

set). Among 20,000 protein-coding genes, Trans-Driver predicted 185 alternative driver 82

genes, of which 103 genes ( 55%) were included in the gold standard CGC data set. 83

Finally, we analyzed the contribution of each feature to identifying cancer driver genes, 84

and the results suggested that mutation data contribute most to the identification of 85

cancer driver genes. However, methylation data are also essential for identifying driver 86

genes in some cancers. 87

Materials and methods 88

Overview of Trans-Driver 89

The input of Trans-Driver is the multi-omics data across 33 TCGA tumor sets, and 90

the output of the approach is the probability that the gene is the cancer driver. The 91

framework can be divided into two parts. The first part extracts the features from the 92

multi-omics data. The second part, the multi-layer perceptron-Transformer network [39], 93

is developed to learn the features’ representations and calculate the driver gene scores 94

(see Supplementary Note 1 for details). 95

Data preprocessing and feature selection 96

This study’s cancer driver gene discovery is based on the TCGA data set [7]. We collected 97

the DNA methylation, Copy number variation (CNV) data, and somatic mutation data 98
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Fig 1. Overview of the Trans-Driver framework. Identification of cancer driver
genes by integration of multi-omics data using the transformer structure.We first
collected and processed multi-omics data, then used the Transformer model to learn
features, scored the model using Focal Loss, and obtained the final cancer driver genes
based on the constructed background distribution.

across 33 types of cancer from the TCGA Pan-cancer Atlas [40](See Supplementary Note 99

2 for a detailed description of the data ). 100

We selected the ’Variant Classification’ (’Frame Shift Del’, ’Frame Shift Ins’, 101

’In Frame Del’,’In Frame Ins’,’Missense Mutation’,’Nonsense Mutation’,’Silent’, ’Non- 102

stop Mutation’,’Splice Site’, ’Translation Start Site’) and ’Variant Type’(’DEL’, ’INS’, 103

’SNP’) columns from the somatic mutation spectrum to extract somatic mutation data 104

features. We counted the number of various somatic mutations corresponding to each 105

gene, defaulting to 0 when a particular type of mutation did not occur at all. Finally, 106

we generated mutation-related features (28 values) with our feature extraction module. 107

To extract the features of the CNV data, we obtained the matched data for all the 108

samples based on the ‘Tumor Sample Barcode’ column in the mutation profiles and 109

then calculated the mean value of the CNVs. Afterward, we obtained the corresponding 110

relationship between ‘Hugo Symbol’ and ‘Tumor Sample Barcode’ in somatic mutation 111

data. We got the corresponding relationship between protein-coding genes and copy 112

number variation intervals and then calculated the mean and variance of CNVs of each 113

gene. To consider both upregulation and downregulation of copy number variation, we 114

counted the mean and variance of the two cases separately as the copy number variation 115

features (6 values). Since the CNV-related features are continuous values, we fill in the 116

missing data by calculating the mean of the missing values. 117

We obtained DNA methylation data from the TCGA Pan-cancer Atlas. Similar 118

to the CNV data processing, the mean and variance of each gene were calculated (2 119

values), and the DNA methylation data were mapped to specific genes based on the 120

CpG sites (CG) islands and the linked genes. Finally, we also introduced some other 121

features, including the gene degree (the degree of the gene in a general protein-protein 122

interaction (PPI) network), the centrality between genes, the DNA replication time of 123

the genes, and the chromatin status of the genes. We produced the features (46 values) 124

based on multi-omics data as model inputs for Trans-Driver. 125

The deep learning model of Trans-Driver 126

The differences and associations between the omics data during the model’s training 127

process must be considered. The advantage of deep learning models is the accurate 128
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modeling of complex inputs and the ability to consider the differences and connections 129

between different types of omics data through the attention mechanism. The neural 130

network of Trans-Driver is divided into three modules (Fig 2): perceptron, transformer 131

with multi-headed attention block, and the classifier. The perceptron module extracts the 132

omics data features using a linear layer. The transformer module learns the relationships 133

between the features extracted by the perceptron module. The extracted low-dimensional 134

representations of the input are fed to the classifier module for gene classification. Let 135

xk be the input data of the perceptron network. The input signal is linearly transformed 136

to become the output signal of the perceptron model. To mitigate the occurrence of 137

overfitting, a dropout layer is added to the perceptron module, which first uses the 138

Bernoulli function to generate a vector with probability p randomly: 139

γ
(j)
i ∼ Bernoullin(p) (1)

where xki is the input of the first node of the first set of data, v is the output of the j th 140

node of the k th set of data, wij is the weight,bkj is the deviation value, and f() is the 141

activation function. We choose the Gaussian Error Linear Unit (GELU) function [41] as 142

the nonlinear activation function of the network: 143

GELU(x) = 0.5x

(
1 + tanh

[√
2

π

(
x+ 0.044715x3

)])
(2)

next, we introduce the self-attention mechanism, an attention method to improve the 144

accuracy of local feature representation by aligning internal and external information 145

observation. In this mechanism, the input signal is divided into query unit query (q), 146

key-value unit key (k), and representation unit value (v), and q and v are in one-to-one 147

correspondence. The attention calculation formula is as follows: 148

hi = att ((K,V ), qi) =
N∑
j=1

αijvj

=
N∑
j=1

softmax (s (kj , q)) vj

(3)

where att() is the attention distribution, s() is the attention scoring function, and 149

softmax() is the normalization function. We use the scaled dot product as the attention 150

scoring function: firstly, calculate the dot product of xi and q, secondly, divide by
√
d, 151

d is the dimensional value of xi. The weight distribution on v is obtained by softmax, 152

and finally, the weighted value of v is obtained by the dot product. In practice, a 153

parallel estimate is performed using batch processing, so the matrix representation of 154

the attention mechanism takes the following form: 155

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

where Q = W qy, K = W ky, V = W vy, dk is the number of columns of the Q,K matrix. 156

After getting QKT , the attention coefficients are obtained using the softmax function. 157

W q,W k, and W v, are the three different weight parameter matrices to be trained by the 158

model, and y is the output data of the previous perceptron module. Next, we stitched 159

the results of the self-attentive mechanism for h times and performed another linear 160

transformation yielded the results with the following equation: 161

MulitHead(Q,K, V ) = Concat(head1, ...headh)W
O

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (5)
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where WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk ,WV
i ∈ Rd×dv ,WO ∈ Rh×d×dv . d model means the 162

output dimension of the perceptron module, h = 2,dk = 4,dv = 8. The Multi-Head 163

Attention block contains multiple Self-Attention layers, firstly, the input y is passed to 164

each of the h different Self-Attentions, and the different outputs Zi are computed. Then 165

they are stitched together to get the final output. 166

The results obtained by the multi-headed attention block are transformed by the 167

linear layer and then by the activation function to get the results. We use the Focal loss 168

function [42] as the loss function to deal with the imbalance of positive and negative 169

samples in the training process: 170

pt =

{
p if y = 1
1− p if y = 0

Lfl =

{
−α (1− pt)

γ
log (pt) if y = 1

−(1− α)pt
γ log (1− pt) if y = 0

(6)

where γ and α are the model’s hyperparameters, and all network parameters are updated 171

synchronously to train the model until the gradient descent converges. γ reduced the loss 172

of easily classified samples, making the model focus on the problematic and misclassified 173

samples, and fully exploring the challenging examples. Since the number of drivers is 174

smaller than the number of passengers, α can be set to make the model focus more on 175

the driver genes. We explored the values of alpha and gamma parameters(Fig S1) and 176

finally selected α = 0.4 and γ = 1.5.(see Supplementary Note 3 for details, The loss 177

function of the model is shown in Fig S2). 178

Construction of the background distribution 179

We constructed the empirical background distribution with the Monte Carlo simula- 180

tion [17]. Specifically, single nucleotide variants (SNVs) are moved randomly to new 181

matched positions in the genome for each gene, keeping the total number of SNVs 182

fixed. The matched positions must have the same base context as the original positions, 183

such as C*pG, CpG*, TpC*, G*pA, A, C, G, and T. The number of SNVs remains 184

constant, but the mutation outcome may change. We put the gene feature data from 185

the simulation into the Trans-driver model for scoring and formed an empirical null 186

distribution based on the scoring. The number of simulations was set to 100,000. After 187

the above Monte Carlo simulations produced the empirical null distribution, the score 188

was obtained using real data in the Trans-driver model for each gene. To calculate the 189

p-value of the gene, we use the score of the simulated gene with a score greater than or 190

equal to the threshold. Finally, the Benjamini-Hochberg method was used to control for 191

error incidence to calculate the q-value of the gene, and we considered a gene to be a 192

driver if its q-value was less than 0.05. To estimate the background distribution of driver 193

gene scoring on the 33 types of tumors more accurately, we performed simulations of 194

mutations for each cancer type. 195

Data set and evaluation metrics 196

We selected the 71 oncogenes and 53 tumor suppressor genes [17]to train the neural 197

network as the positive samples. We resampled the same number of genes among the 198

remaining genes as the negative samples. The training samples were shuffled to generate 199

the model’s training set, which contained 248 genes. 200

We constructed a benchmark data set to confirm the model’s performance in dis- 201

covering cancer drivers. We used the 299 driver genes reported by TCGA [7]as the 202

positive samples, and negative samples were randomly selected from other coding re- 203

gions genes.We used different data sets for training and testing to avoid the potential 204
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Fig 2. The deep learning model of Trans-Driver. (A)The network of the model
contains data stitching, MLP feature extraction, and transformer and scaled dot product
attention is used in the transformer block. We first processed the multi-omics data, then
performed a linear transformation, and then processed the data using a multi-headed
attention block.(B)Concrete implementation of the multi-headed attention block.

over-fitting problem. We executed deduplication on the test set to remove the positive 205

and negative sample genes used in the training set and got the TCGA benchmark data 206

set with 380 genes. 207

We chose a more extensive data set to test the model. We downloaded the COSMIC 208

CGC data [43] (v94) and selected 680 cancer genes with somatic mutations. The negative 209

sample selection and deduplication were performed, and we finally got the CGC test set 210

with 1058 genes. 211

In this study, the Receiver Operating Characteristic (ROC) matric was used to 212

evaluate the method, and the ROC curves were used to compare the false positive 213

rate (FPR) to the true positive rate (TPR) at different thresholds. The false-positive 214

rate represents the ratio of false positives to false positives and true negatives, and 215

the true positive rate represents the ratio of true positives to true positives and false 216

negatives. True-positive shows that the model successfully identified the initially driver 217

gene, but false-positive shows that the model incorrectly identified the original passenger 218

gene. True negative shows that the model successfully identified the original passenger 219

gene as a passenger gene. False-negative shows that the model predicted the original 220

driver gene as a passenger gene. AUROC shows the area under the ROC curve. We 221

performed enrichment analysis on the CGC data set and TCGA data set using Fisher’s 222

test to better evaluate the truth of driver genes predicted by each method. 223

To analyze more deeply which omics data are most relevant to cancer driver genes, 224

we assessed the feature importance of the integrated multi-omics data using a Random 225

Forest (RF) approach by analyzing the contribution of each feature to each tree in the 226

Random Forest. Here we used the Gini index calculation by taking the average value 227

and then comparing the importance of the contribution between features: 228

Gini(p) =
K∑

k=1

pk (1− pk) = 1−
K∑

k=1

p2k (7)
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where K is the K categories and Pk is the sample weights of category .

Fig 3. The performance evaluation of different cancer driver gene prediction
methods. Trans-Driver and other methods include ActiveDriver, e-Driver, 2020plus,
CompositeDriver, CHASM and MuSiC. (A) ROC curves of various methods on TCGA
data set, (B) ROC curves of various methods on CGC gene set.

229

Results 230

Pan-cancer driver genes discovery with Trans-Driver 231

To confirm the effectiveness of the proposed Trans-Driver algorithm in identifying 232

cancer driver genes, we first evaluated the results of Trans-Driver on the Pan-cancer 233

data set. We constructed two benchmark data sets: the driver gene set published 234

by TCGA and the COSMIC CGC gene set. We used six state-of-the-art driver gene 235

identification methods: ActiveDriver, e-Driver, MuSiC, CompositeDriver, CHASM, and 236

2020plus for the performance comparison. The driver gene scores of the approaches 237

were obtained from the previous study [7]. We AUROC as a metric for performance 238

evaluation between the different algorithms on both benchmark data sets. We ob- 239

serve from (Fig 3A) the Trans-Driver algorithm achieves the best performance on 240

the TCGA data set (AUROC=0.911), followed by 2020plus (AUROC=0.900), Mu- 241

SiC (AUROC=0.874), CompositeDriver (AUROC=0.839), e-Driver (AUROC=0.753), 242

ActiveDriver (AUROC=0.641), and CHASM (AUROC=0.624). In Fig S3A, We also cal- 243

culated the AUPRC values of each methods Trans-Driver (AUPRC=0.904) and calculated 244

the Mann-Whitney significant difference check to obtain p-values (p-value= 2.540e-43), 245

followed by 2020plus (AUPRC=0.918, p-value=6.994e-41), MuSiC (AUPRC=0.852, 246

p-value=2.250e-36), CompositeDriver (AUPRC=0.852, p-value=2.51e-29), e-Driver 247

(AUPRC=0.767, p-value 7.707e-17), ActiveDriver (AUPRC=0.716, p-value=5.934e- 248

06), and CHASM (AUPRC=0.615, p-value=3.517e-05). 249

Next, we compared the performance of Trans-Driver and the other approaches on the 250

COSMIC CGC data set. Since the genes in CGC are from different cancer types than 251

the 33 cancers of interest in this analysis, we can see from Fig 3B and in Fig S3B that 252

most of the algorithms’ performances were decreased. Nevertheless, the Trans-Driver 253
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algorithm also outperforms the other methods on CGC (AUROC=0.750, AUPRC=0.751, 254

p-value=4.864e-45), followed by 2020plus (AUROC=0.738, AUPRC=0.740, p-value= 255

5.602e-41), MuSiC (AUROC=0.666, AUPRC=0.644, p-value=1.014e-20), Composit- 256

eDriver (AUROC=0.644, AUPRC=0.661, p-value=7.916e-16), e-Driver (AUROC=0.629, 257

AUPRC=0.625, p-value=1.677e-12), CHASM (AUROC=0.609, AUPRC=0.611, p- 258

value=7.585e-10), and ActiveDriver (AUROC=0.577, AUPRC=0.669, p-value=1.653e- 259

05). In general, Trans-Driver achieves a stable performance improvement on both gold 260

standards. 261

The AUROC metric reflects the overall performances of each method on all 20,000 262

coding region genes. Still, it is also important to assess the significance of enrichment of 263

top-ranked genes with the gold standard. For this purpose, after simulating the empirical 264

zero probability distribution through Monte Carlo, we use Fisher’s exact test to calculate 265

the empirical p-value. Simultaneously, we performed FDR correction for p-values of all 266

genes to get q-values. We considered Trans-Driver on the Pan-cancer data set with q- 267

value <0.05 as the driver genes (185 genes). For other methods, we use the q-value cutoff 268

in the previous study ( [7]) to select their top-ranked genes: CompositeDriver (78 genes, 269

q-value=0.05), ActiveDriver (140 genes, q-value=0.0001), OncodriveCLUST (145 genes, 270

q-value=0.05), 2020plus (164 genes, q-value=0.05),e-Driver (233 genes, q-value=0.1), 271

MuSiC (2923 genes, q-value=1e-10), CHASM (2933 genes, q-value=0.1).The 185 driver 272

genes reported by Trans-Driver on Pan-cancer are the most enriched with both the 273

TCGA gene set and the CGC gene set. In summary, the enrichment of Trans-Driver 274

both on TCGA and CGC data sets is better than other comparative algorithms, showing 275

the genes predicted by our Trans-Driver algorithm for Top N are equally reliable. 276

Genes identified by multiple methods are more likely to be actual cancer driver 277

genes [17]. We counted the over-lap rate of driver genes predicted by each method on 278

Pan-cancer and those pinpointed by other methods (Fig 4A) to show the consistency in 279

predicting driver genes. We divide the cancer driver genes predicted by each method 280

into four groups, the first group being cancer driver genes specific to each method 281

predicted, the second and third groups being cancer driver genes predicted by 2 and 3 282

methods, respectively, and the last category being driver genes predicted by at least four 283

methods. From Fig 4A, we found that the driver genes predicted by Trans-Driver have 284

a high agreement with other methods (The proportion of genes predicted that were also 285

predicted by other methods was at least 92.97%). We also found that Trans-Driver also 286

reported some novel driver genes (7.03%) due to deep learning methods. 287

We also compared the Trans-Driver with the traditional Multilayer Perceptron (MLP) 288

model. From Fig S4, we can see that our proposed model outperforms the MLP model 289

in both pr and roc on both the TCGA and CGC data sets. 290

Analysis of the performance of Trans-Driver and other identifica- 291

tion algorithms on 33 TCGA cancer data sets 292

Since we have observed that Trans-Driver has superior performance on the Pan-cancer 293

data set. To study the driver genes on each cancer type (especially some challenging 294

rare tumor types), we apply Trans-Driver on 33 cancers publicly available to the TCGA 295

data set for driver gene discovery. By integrating the matching four types of omics data 296

on different tumor types and modeling them with Trans-Driver, we finally succeed in 297

predicting a reasonable number of candidate driver genes on each tumor set. Trans- 298

Driver predicted the highest number of driver genes on UCEC tumors (147 genes) while 299

predicting the lowest number of driver genes on KICH tumors (6 genes). The candidate 300

drivers of Trans-Driver across each tumor type are reported in Table S1. 301

To justify the driver gene prediction results of Trans-Driver on each cancer type, we 302

compare the performance of Trans-Driver with other approaches on all cancer types. 303
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Since there are fewer data for each cancer type than the Pan-cancer set and few known 304

positive samples, we only focus on the enrichment of different algorithms with known 305

driver genes on each type of tumor (the Fisher test was used for the evaluation, and the 306

-log10 p-value was used as the performance metric). We measured the enrichment of 307

each method on the 33 cancer data sets with the TCGA gene set and compared the 308

performance between different algorithms. We reported the Fisher’s exact test -log10 309

p-value of enrichment analysis of all methods on 33 cancer data sets (Fig 4B). The 310

median of enrichment results of trans driver on 33 cancer types is the highest (median 311

Fisher’s exact test -log10 p-value = 27.95). The median of enrichment results of other 312

methods are 2020plus (27.85), followed by MuSiC (22.16), OncodriveCLUST (16.75), 313

CompositeDriver (15.35), CHASM (8.07), e-Driver (6.56), and ActiveDriver (1.90). We 314

also find that Trans-Driver achieves the best performance on 14 out of 33 cancer types. 315

The enrichment results for e-Driver, CHASM, and MuSiC were 0 on the CHOL, while 316

the enrichment result for Trans-Driver was 13.31 for the best result on the CHOL. The 317

performance of each method for enrichment analysis across all cancer types is shown 318

in Table S2. Due to the considerable variation of mutation rate in different cancer 319

types (10.27 mutations per capita in PCPG cancer and 986.71 mutations per capita in 320

UCEC cancer), it is difficult to obtain a reasonable number of driver genes in all cancer 321

types. We observed that ActiveDriver and e-Driver could not correctly predict the driver 322

genes in CHOL, KICH, and MESO (no intersection with the known driver gene set of 323

TCGA corresponding cancer types). At the same time, Trans-Driver can obtain stable 324

identification results in all 33 cancer data sets through the integration of multi-omics 325

data. Four drivers were successfully identified on CHOL, two on KICH, and five on 326

MESO. We also performed an enrichment analysis of two novel methods published in 327

2020 [44, 45]across 33 cancer types (see Table S3 for details), and the performance of 328

Trans-Driver is still better than the two novel methods. 329

Explore the potential driver genes predicted by Trans-Driver 330

We have elucidated that Trans-Driver successfully predicts a reasonable number of 331

potential driver genes on all 33 cancer types and achieves excellent performance on 332

TCGA gene sets for different cancer types. Next, we explored the candidate drivers 333

reported by Trans-Driver on the Pan-cancer data set and on 33 cancer types. In the 334

Pan-cancer data set, Trans-Driver identified 185 potential driver genes. Among them, 83 335

genes such as TP53, BRCA1, RB1, PTEN, and ATM (see Table S4 for details) are found 336

in the TCGA and CGC gene sets, which are highly reliable cancer drivers. Meanwhile, 337

LRP1B, FAT4, MUC16, CBFB, and other genes identified by Trans-Driver have been 338

reported in the CGC data set, but they are tough to be found by computational methods. 339

Moreover, a literature study found that the following genes reported by Trans-Driver 340

are likely to be potential driver genes. Among BLCA tumors, KMT2D exhibits the 341

highest mutation rate of 26.9% in bladder cancer, and KMT2D knockdown inhibited 342

bladder cancer cell viability, migration, and invasion in vitro. It may play a role in bladder 343

cancer development [46]. Deletions of FOXA1 resulted in sexually dimorphic changes in 344

uroepithelial differentiation, and loss of FOXA1 expression is associated with aggressive 345

uroepithelial carcinoma of the bladder and increased tumor proliferation and invasion [47]. 346

GPS2 is a multifunctional protein that plays an essential role in the inflammation 347

and metabolism of adipose, liver, and immune cells.GPS2 was recently identified as a 348

significantly mutated gene in breast cancer and other malignancies and proposed as 349

a putative tumor suppressor [48]. Mutations in KMT2D methyltransferase are highly 350

recurrent, and KMT2D mutations associated with diffuse large B-cell lymphoma impair 351

KMT2D enzyme activity, and overall H3K4 methylation is reduced in diffuse large 352

B-cell lymphoma cells. Early deletion of KMT2D, a tumor suppressor gene, acts by 353

remodeling the epigenetic landscape of cancer precursor cells to promote lymphoma 354
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development [49]. In LUAD, SETD2 is mutated or loss-of-function in solid cancers, 355

including renal, gastrointestinal, lung, pancreatic, and osteosarcoma. Mutation or 356

loss-of-function of the SETD2 gene leads to dysfunction of the corresponding tumor 357

tissue protein, resulting in tumorigenesis, progression, chemoresistance, and unfavorable 358

prognosis, suggesting that SETD2 may act as a tumor suppressor [50]. CUL3 is a 359

member of the ubiquitin ligase complex that functions in the oxidative stress response 360

pathway. Evidence suggests that CUL3 acts as a tumor suppressor in non-small cell 361

lung cancer [51]. 362

In particular, we explored the novel driver genes reported by Trans-Driver but not in 363

the CGC/TCGA data sets. On the Pan-cancer data set, Trans-Driver pinpointed 185 364

genes, of which 68 were not in TCGA and CGC gene sets. Among these, the SPTA1 365

gene was found to promote the development of GBM cancer [52]. CSMD1 prevents LIHC 366

by suppressing cell invasion [53]. Moreover, Trans-Driver identified 505 potential driver 367

genes across 33 cancers, of which a total of 413 genes are not in the CGC/TCGA data 368

sets.Some of these novel drivers play a critical role in cancer development on BRCA, 369

COAD, and other cancers. For example, On BRCA, Trans-Driver identified ELAVL1, 370

an emerging target for breast cancer therapy, especially in metastatic breast cancer. 371

ELAVL1 is a ubiquitously expressed post-transcriptional regulator, and cytoplasmic 372

ELAVL1 accumulation is associated with poor overall and disease-free survival in high- 373

grade malignancies. It can be an independent prognostic factor in poor clinical outcomes 374

in breast cancer [54]. On the COAD data set, Trans-Driver predicts the PMG5 gene, 375

which has been found to play an essential role in proliferation, invasion, and migration 376

in COAD by recent studies, and decreased PGM5 is associated with poor prognosis [55] 377

(See Supplementary Note 4 for details). 378

Analysis of the contribution of different omics data to the identi- 379

fication results of Trans-Driver 380

The input of Trans-Driver includes somatic mutations, methylation data, CNVs, and 381

other information such as gene length and conservation scores. To illustrate that the 382

integration of multi-omics data can indeed improve the performance of the method 383

(especially for algorithms based on supervised learning models such as Trans-Driver), 384

first, we compare the performance of Trans-Driver using the integration of multi-omics 385

data as features and using only mutation-related features under two test scenarios, 386

Pan-cancer, and each cancer. We used Fisher’s exact test (-log p-value) on Pan-cancer 387

and 33 cancer types, respectively, and the prediction performance (AUROC) on TCGA 388

and CGC. We obtained the pairwise performance comparison plots for the five scenarios 389

(Fig 5A). The performance of our approach with the multi-omics input on both test sets, 390

TCGA and CGC, has improved somewhat over the model using only mutation-related 391

features, with the value of AUROC improving by 1.33% on the TCGA gene set and 392

4.31% on the CGC test set. The enrichment performance of the model is also significantly 393

improved in the enrichment analysis, both on Pan-cancer and on each cancer. The 394

enrichment performance is enhanced by 6.02% using data from multi-omics data on 395

TCGA compared to mutation-only data, and the enrichment result is enhanced by 396

16.04% on CGC. The enrichment result was improved by 25.90% on each cancer median. 397

Under each test scenario, the performance of Trans-Driver has a stable and steady 398

performance improvement compared with just mutation features by supervised learning 399

of team multi-omics features, indicating the necessity of multi-omics integration. 400

To explore the importance of non-mutation data on the identification results of 401

Trans-Driver, we calculated the contribution of these distinct omics data to the results of 402

Trans-Driver. We introduced the Random Forest method to measure the input features’ 403

influence on Trans-Driver’s identification results. The input of RF was the original 404
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integrated features and the identification scores of the Trans-Driver. The output of 405

RF was the Gini importance scores of the features. Finally, we summed all the Gini 406

importance scores belonging to each platform and quantified the contribution of different 407

omics data to the final identification results. All the features are classified into five 408

categories: mutation data, copy number, DNA methylation, expression, and others. 409

Firstly, we calculated the Gini scores of each feature and averaged the scores of each 410

category. The importance percentage of each feature category is shown in Fig 5B. 411

We observed that mutation-related features contributed the most to identifying driver 412

genes (41.51%). Still, other omics features are also important: other (32.54%), CNV 413

(11.40%), gene expression (8.41%), and DNA methylation (6.14%). We also analyzed the 414

contribution of features on ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA, 415

GBM, and HNSC(Fig 5C) (the ten tumor sets contain 60% samples of the TCGA data 416

set) (we also analyzed the contribution of features on the remaining 23 cancer data 417

sets to the results, see Fig S5). It can be observed from Fig S5 that the importance of 418

mutation characteristics still accounts for a large proportion (from 25.16% to 66.90%). 419

Meanwhile, we rank the Gini scores of the multi-omics features on the Pan-cancer data 420

set and the 33 cancer types and select the ten most important features on each type of 421

tumor (see Table S5 for details). The contribution of different omics data to different 422

cancer types is different: the importance of DNA methylation data in UCEC, SKCM, 423

and PAAD is higher than that in other cancer types, reaching 8.44%, 8.91%, and 11.90%, 424

respectively. 425

Discussion 426

Driver gene discovery is one of the critical issues in cancer genomics, which is critical for 427

understanding cancer’s pathogenesis and advancing the development of targeted drugs. 428

Inspired by the success of the transformers network in various fields of biomedicine, 429

we propose a novel deep learning-based approach, Trans-Driver, which is the first 430

to apply the transformer network in identifying cancer drivers. Our approach has 431

significantly improved performance compared with other state-of-the-art driver gene 432

discovery approaches and pinpointed a reasonable number of candidate driver genes by 433

integrating four types of omics data across 33 TCGA tumor types. Also, Trans-Driver 434

identified 185 alternative driver genes on the Pan-cancer set, of which 103 genes ( 55%) 435

were included in the gold standard CGC data set, and 97 genes ( 51%) were included in 436

the latest released driver gene set of TCGA. Trans-Driver reported 563 novel drivers 437

across 33 cancer types based on the enrichment analysis. We found considerable evidence 438

on Pan-cancer and individual tumor sets to support the novel cancer drivers identified 439

by Trans-Driver through the literature search. For example, the candidate driver gene 440

TFPI-2 is associated with BLCA [56], the candidate driver gene ELAVL1 is associated 441

with BRCA cancer type [54], and the candidate driver gene PMG5 is associated with 442

COAD cancer type [55]. Finally, we explained the association between features and 443

model results and found that integrating multi-omics data could improve our approach’s 444

performance compared to using only mutation data. Moreover, we found that the 445

contribution of different omics data to the driver gene discovery varied on different tumor 446

types. 447

Trans-Driver can identify cancer drivers that are difficult to detect only using somatic 448

mutation data. For example, the ELF3 gene on BLCA is challenging to identify with 449

other methods. The BRCA1 gene on BRCA, which is also more challenging to pinpoint, is 450

successfully reported by our approach. The omics data analysis in these two cancer types 451

showed that the mutation data contribute to the final prediction and other omics data 452

(such as CNV, DNA methylation, somatic mutations, and RNA-seq data) play a crucial 453

role. Integrating multi-omics data can provide a more comprehensive understanding of 454
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the biological processes of cancer driver genes. The fact that multi-omics data can be 455

applied to predict driver genes further suggests connections across the omics data that 456

can lead to a deeper understanding of cancer occurrence and progression mechanisms. 457

The Transformer started to be applied to machine translation tasks. Due to its 458

superior network structural design has also achieved great success in computer vi- 459

sion and is comparable to convolutional neural networks. Just recently, Transformers 460

were introduced into the biomedical field with great success. Senior previously used 461

Transformer-based models to set a new height in protein 3D structure prediction at the 462

CASP14 competition [57]. Protein will form a three-dimensional structure by crimping 463

and folding, and the function of protein is determined by its structure. Understand- 464

ing protein structure can help understand the role of proteins in the body and help 465

develop drugs to treat diseases. Meanwhile, Avsec proposed Enformer, which uses an 466

attention mechanism to process a more extensive range of DNA contextual information, 467

dramatically improving predicting gene expression based on DNA sequences [58]. For 468

the cancer driver gene discovery task, since its input is utterly different from Protein 469

structure prediction and predicted gene expression, the introduction of Transformer 470

requires a unique design combined with the corresponding model input. The combination 471

of MLP, Transformer, and the imbalanced learning loss enables nonlinear modeling of 472

low-dimensional correlated multi-omics data. It focuses more on the essential features, 473

reducing the impact of unbalanced drivers and passengers on performance stability. The 474

improvement of Trans-Driver compared with the DNN model shows the reasonableness 475

of our novel framework. 476

Our framework has limitations. First, in the data preprocessing stage, Trans-Driver 477

uses the mean value of all samples’ omics data to fill in the missing values without 478

considering the correlation between different types of omics data. In the future work, 479

we plan to use the method based on the generative adversarial network to learn the 480

relationship between multi-omics data to improve the accuracy of Trans-Driver in cancer 481

types with severe data deletion. Second, Trans-Driver used Pan-cancer data for model 482

training, and due to the relative lack of samples on each cancer type, the model was not 483

retrained. The model trained on the Pan-cancer data set was directly used for driver 484

gene prediction on 33 cancer types. In the future, we expect to add the transfer learning 485

technique to improve the accuracy of driver gene prediction on 33 cancer types. Third, 486

the model architecture of Trans-Driver relies on deep learning, which requires higher 487

quality omics data and its annotation than traditional statistical models. In the future, 488

with the accumulation of more sample omics data on more cancer types, the trained 489

models using Trans-Driver will be more accurate in predicting driver genes. Meanwhile, 490

with the disclosure of genome-wide genomic data, we expect Trans-Driver to reveal the 491

pathogenic mechanism of non-coding region driver genes and thus provide a deeper 492

understanding of cancer occurrence and development. 493
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