

1 **Lymphoma cells are circulating in blood of Enzootic Bovine Leukosis**
2 **and clonality value of virus-infected cells is a useful information for the**
3 **diagnostic test**

4
5
6 Md Belal Hossain^{a,b}, Tomoko Kobayashi^{c#}, Sakurako Makimoto^c, Misaki Matsuo^a, Kohei
7 Nishikaku^c, Benjy Jek Yang Tan^a, Akhinur Rahman^a, Samiul Alam Rajib^a, Kenji Sugata^a, Nagaki
8 Ohnuki^c, Masumichi Saito^{d, e}, Toshiaki Inenaga^f, Kazuhiko Imakawa^f and Yorifumi Satou^{a#}

9
10
11
12 ^a*Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus*
13 *Infection, Kumamoto University, Kumamoto, 860-8556, Japan*

14 ^b*Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science*
15 *and Technology University, Dumki, Patuakhali-8602, Bangladesh*

16 ^c*Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo*
17 *University of Agriculture, Atsugi, Kanagawa 243-0034, Japan*

18 ^d*Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.*

19 ^e*Center for Emergency Preparedness and Response, National Institute of Infectious Diseases,*
20 *Tokyo, 162-8640, Japan*

21 ^f*Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University,*
22 *Kumamoto 862-8652, Japan*

23
24
25 [#]*Correspondence to Y.S. (y-satou@kumamoto-u.ac.jp) and T.K. (tk205370@nodai.ac.jp)*

28 **ABSTRACT**

29 Bovine leukemia virus (BLV), a retrovirus, causes Enzootic Bovine Leukosis (EBL) in cattle
30 following a latent infection period. The BLV infection results in polyclonal expansion of infected
31 B-lymphocytes and ~5% of infected cattle develop monoclonal leukemia. Since the clonal
32 expansion of virus-infected cell is a key in the pathogenesis of EBL, assessing the clonality of
33 malignant cells is crucial for both understanding viral pathogenesis, which might be useful for
34 EBL diagnosis.

35 For the investigation of clonality of BLV-infected cells in non-EBL and EBL cattle, two
36 methods were used to evaluate the status of EBL; BLV-DNA-capture-seq method with high
37 sensitivity and specificity and simple and cost-effective Rapid Amplification of Integration Site
38 for BLV (BLV-RAIS) method. We found that the RAIS method efficiently detect expanded clone
39 in EBL tissue sample as BLV-DNA-capture-seq method. Taking advantage of high frequency of
40 BLV-infected cells in blood, we simplified RAIS method and showed that similar to BLV-DNA-
41 capture-seq, this method could reliably provide quantitative value about clonal abundance of
42 BLV-infected cells.

43 Next, we aimed to establish a diagnostic blood test for EBL by using the clonality
44 information. First, we compared clonality of BLV-infected cells in blood with that in tumor tissue
45 in EBL cattle. There was a remarkably similar clonality between blood and tissue in each
46 animal. Furthermore, BLV integration site information clearly showed that the same clone was
47 the most expanded in both blood and tumor tissue, indicating that tumor cells were circulating in
48 blood in the disease cattle. We also analyzed tumor tissue at two independent anatomical
49 regions and found the same clones was most expanded in both regions, supporting the idea
50 that tumor cells are systemically circulating in the diseased cattle. Finally, we compared
51 clonality value between non-EBL and EBL cattle by using BLV-RAIS method and found that
52 there was clear difference between non-EBL and EBL. More importantly, we found that clonality
53 value was low in asymptomatic phase but high in EBL phase in the longitudinal cohort study.

54 These findings have demonstrated that BLV integration site and clonality value are is a
55 useful information to establish diagnostic blood test for EBL. That would contribute to reduction
56 of economic damage caused by EBL and improvement of productivity in cattle industry.

57
58

59 **Introduction**
60

61 Bovine leukemia virus (BLV) is a retrovirus that induces a life-long infection in a subset of
62 B lymphocytes in cattle and causes Enzootic bovine leukosis (EBL) in some of the infected
63 cattle after a long period of latency (1, 2). The integrated provirus provokes polyclonal
64 expansion of the infected B lymphocytes and ~5% of infected cattle develop monoclonal
65 leukemia (3). Excluding Western Europe, worldwide approximately 50 million dairy cattle are
66 BLV infected (4, 5). Due to the easy transmissibility of the virus, the infection is increasing
67 hence increasing the risk of EBL onset in endemic countries. A high prevalence of BLV infection
68 is reported in Japan, ~40.9% and ~28.7% in dairy and beef breeding cattle respectively (6). BLV
69 infection leads to significant economic losses in the dairy farms in various countries (4, 7, 8).

70 BLV infection is confirmed by the presence of anti-BLV antibody in the blood. When an
71 animal is in the leukosis stage, the disease is diagnosed by the presence of the tumors and/or
72 general lymph node enlargement. The diagnosis of EBL generally depends on physical
73 examination by a veterinarian. To reduce the variation among examiners, new objective and
74 quantitative diagnostic tests are required. Since BLV is a retrovirus, the viral genome is
75 integrated into the host genomic DNA. Considering that the huge size of the host genome, the
76 viral integration sites are distributed to various location in the host genome and therefore be
77 unique for each individual BLV-infected clone. One can use the viral integration site to
78 distinguish individual infected cell. In asymptomatic phase of infection, there is a wide variation
79 of infected clones observed in each individual cattle. During disease progression, certain clones
80 are preferentially selected and expand clonally due to the host genome mutations which
81 improves cell survival and/or cell proliferation. Finally, a certain clone becomes remarkably
82 expanded and leads to EBL onset. A similar phenomenon is observed in the case of human T-
83 cell leukemia virus type 1 (HTLV-1) infection where in the later stages, a single, monoclonal
84 clone becomes the dominant clone and causes adult T-cell leukemia/lymphoma (ATL), a cancer
85 of HTLV-1-infected T cell.

86 The application of next-generation sequencing (NGS) for clonality analysis is currently well
87 established and provides an objective method to quantify the clonality of retrovirus-infected cells
88 (9). Previous reports have showed that NGS is useful for the clonality analysis of BLV-infected
89 cells (10-12); however, the NGS method is not feasible for practical use, especially for non-
90 human retroviral infection like BLV. Several other molecular techniques which are mostly PCR-
91 based have been reported to evaluate B-cell clonality or proviral load (13). However, these
92 conventional methods are also not feasible for practical use to use as diagnose EBL.

93 Recently, a novel approach termed Rapid amplification of integration site (RAIS), has
94 been developed to amplify HTLV integration sites, and followed by Sanger sequencing to
95 assess the clonality of virus-infected cells (14). This method provides equivalent information as
96 NGS-based methods at cheaper costs and shorter time frame. That motivated us to apply this

97 method to the diagnosis of EBL. In this study, we modified the RAIS method to amplify BLV
98 integration sites to develop a blood test for the diagnosis of EBL. We evaluated this method by
99 analyzing non-EBL and EBL cattle including longitudinal samples collected from 2 to 3 years
100 prior to the diagnosis of tumor onset.

101
102 **Result**
103

104 **Establishment of “RAIS-Sanger sequencing approach” to assess the BLV clonality**

105 The concept of rapid amplification of integration site (RAIS) method for BLV, termed BLV-
106 RAIS, is shown in Fig. S1. There are various infected clones in asymptomatic (AS) cattle (12)
107 and some cattle develop EBL after a long latency period. Genomic DNA was extracted from
108 blood or tissue samples and analyzed by BLV-RAIS. As there are various clones in blood from
109 AS cattle, the sequence next to the 3'LTR would be heterogenous. In contrast, the sequence
110 would be homogenous in tumor from EBL cattle due to monoclonal expansion of the same
111 clones. (Fig. 1A).

112 The BLV-RAIS method was designed by modifying the original RAIS method for HTLV-1
113 (Fig. 1S)(14). First, the genomic regions containing the virus and the flanking host genome were
114 amplified by ssDNA synthesis with biotinylated primer located just upstream of the 3'-LTR.
115 Second, a polyA sequence was added to the 3' end of ssDNAs containing virus-host junction
116 followed by dsDNA synthesis with oligo dT primers. Next, we perform a nested PCR to further
117 amplify the virus-host junction after Streptavidin purification. Finally, the PCR products were
118 analyzed by Sanger sequencing. In order to establish a method which is applicable to a wide
119 range of BLV genotypes, the primers for BLV-LTR should be designed at conserved regions
120 among various cattle samples. We analyzed the LTR sequence by using DNA-capture-seq data
121 obtained previously (15) and LTR sequences available in public database. We then designed
122 primers in the BLV-LTR that match various genotypes of BLV (Fig. S2).

123 To provide proof of concept for the BLV-RAIS method, we first analyzed eight BLV-
124 infected cattle in which BLV clonality was determined by viral DNA-capture-seq analysis (15)
125 (Fig. 2A). Summary of the characteristics of eight cattle are shown in the Table S1. We
126 analyzed the BLV-RAIS products by agarose gel electrophoresis and found there was smear in
127 each sample, suggesting we were able to amplify the BLV integration sites using our designed
128 primers (Fig. 2B). To confirm that, we performed Sanger sequencing analysis using the primer
129 located in the BLV-LTR to obtain DNA sequence containing the virus-host junction. The
130 obtained sequences were aligned against the reference BLV-LTR sequence (GenBank:
131 EF600696.1) for identification of the virus-host junction. The DNA sequence of virus region was
132 clear; however, the flanking host genome sequence next to the end of BLV-LTR were
133 heterogenous (Fig. 2C), suggesting that there was no significantly expanded clone. The DNA
134 sequence of the flanking host genome were heterogenous but contained some dominant
135 fluorescent peaks in PL2 and PL3 samples (Fig. 2C), suggesting the presence of some

136 expanded clones. In contrast, the sequencing results from EBL cattle were homogenous both in
137 viral and the flanking host region, suggesting the presence of a single dominant clone (Fig. 2D).
138 These observations were consistent with the clonal distribution pattern obtained by the NGS
139 analysis (Fig. 2A).

140 To quantify the clonality of BLV infected cells, the CLOVA software was used (16). Based
141 on the Sanger sequence spectra, CLOVA generates a signal-noise chromatogram and
142 automatically performs an analysis to express the clonality as the Clonality value (Cv) (Fig. 2E
143 and 2F). The Cv ranges between 0 and 1 where 0 indicates that infected clones in the sample
144 are completely polyclonal whereas 1 indicates monoclonal. We compared the Cv and the
145 proportion of the most dominant clone obtained from NGS analysis and observed a strong
146 correlation between the two values (Fig. 2G). These findings demonstrated that the BLV-RAIS
147 can quantify the clonality of BLV-infected cells at similar accuracy as the NGS-based assay.
148

149 **Modification of BLV-RAIS to simplify the protocol and its representativeness**

150 To increase the feasibility of the method so that it can be used as a routine diagnostic method
151 for EBL, we performed some modifications to simplify the BLV-RAIS protocol. The original RAIS
152 method was developed for clonality analysis of HTLV-infected cells, in which the proviral load
153 (PVL) is generally low in asymptomatic carriers. The PVL of BLV is higher than that of HTLV-1
154 (Fig. 3A), which suggests that we would be able to skip the Streptavidin bead purification step
155 (Fig. 3B), thus simplifying the protocol and making it much more time and cost-effective. We
156 then analyzed six BLV infected cattle with various clonality using both the conventional and the
157 modified BLV-RAIS method. There was a strong correlation between the Cv obtained from
158 conventional and modified BLV-RAIS method (Fig. 3C) suggesting that skip of the Streptavidin
159 bead purification step does not change the robustness of the BLV-RAIS method to quantify
160 clonality of BLV-infected cells. Next, we analyzed how reproducible the BLV-RAIS method is
161 within technical replicates and found little to no difference (Fig. 3D). We further tested the
162 variation of the Cv when we analyzed the same samples at different institutes and examiners.
163 We found a strong linear correlation between the Cv of the independent analysis (Fig. 3E).
164 These data showed that BLV-RAIS method could provide reproducible value even when the
165 analysis was performed at different institutes by different examiners.
166

167 **Clonality of BLV-infected cells in the blood is well correlated with that in tumor tissue in 168 EBL cattle**

169 In Fig. 2 and Fig. 3, we analyzed tumor tissues from EBL cattle and blood samples from
170 non-EBL cattle. To apply the BLV-RAIS method for EBL diagnosis even before slaughtering the
171 cattle, it is vital to ascertain if we can use peripheral blood samples to predict the presence of
172 tumor tissue in the cattle. To achieve this, we compared the clonality of BLV-infected cells
173 between blood and tumor tissue from the same EBL cattle. First, we quantify the clonality of

174 BLV-infected cell in the DNA samples from 11 EBL cattle (Table S2) by using viral DNA-
175 capture-seq method. The clonal distribution in the tumor tissue and the peripheral blood were
176 quite similar and the identical dominant clone was found in both the tissue and peripheral blood
177 at almost identical abundance obtained by NGS-based method (Fig. 4A). These data have
178 indicated that tumor cells are systemically circulating in EBL cattle by blood flow. Consistent
179 with the idea, the same dominant clone was detected in two independent tumor tissues at
180 different anatomical locations (Table S3, Fig. 4B). Next, we evaluated efficiency of BLV-RAIS
181 by analyzing blood samples. As shown in Fig. 2G, we found that Cv were consistent with the
182 clonal abundance of the most expanded clone in peripheral blood (Fig. 4C). There was also a
183 strong linear correlation between the Cv of blood and tissue (Fig. 4D). These findings
184 demonstrated that the BLV-RAIS method can be a useful blood test for diagnosis of EBL.
185

186 **Analysis of longitudinal samples to test the possibility of identifying pre-EBL cattle**

187 We further investigated whether the BLV-RAIS can distinguish non-EBL and EBL status in
188 the cattle in a longitudinal cohort study. We analyzed five BLV infected cattle that develop EBL
189 and had longitudinal samples at two different time-point and at the time of EBL diagnosis (Table
190 1). The time gap between the second and initial sampling time was over two years in all five
191 cases and between these two-time points, the PVL increased in three cattle while decreased in
192 the other two cattle (Table 1). We performed viral BLV-DNA-capture-seq using all the
193 longitudinal samples to characterize when the dominant clone in tumor was detected and how
194 the clone expanded in longitudinal samples (Fig. 5A). There were two expanded clones in C1
195 sample while the other 4 cases contained a single expanded clone. Among the five EBL cases,
196 the dominant BLV-infected clones in the tumor were undetectable in the longitudinal blood
197 samples of two cattle, C2 and C5. In cattle C2, the EBL clone was detected at 71 days before
198 the diagnosis of tumor onset with approximately 44% occupancy. The EBL clone was
199 detectable even at 869 days before tumor onset. In cattle C5, the dominant integration site in
200 tumor was detected in the blood at 245 days before tumor diagnosis but the frequency was low
201 (2.7%). The Cv of each sample were well correlated with the degree of the most expanded
202 clone in EBV-DNA-capture-seq. We also performed BLV-RAIS and found Cv was high in all
203 EBL cattle but low in non-EBL cattle, including blood sample obtained at 71 days before the
204 diagnosis of tumor in cattle C2.

205 In this study, we've analyzed 78 blood and tumor samples from 42 BLV-infected cattle. The
206 Cv obtained from PBMC and tumor samples of the EBL cattle ranged from 0.45 to 1.0 which
207 was significantly higher than the Cv range of asymptomatic cattle (p-value <0.01) (Fig. 5B). We
208 plotted the PVL and the Cv obtained from PBMC and found there was no significant correlation
209 (Fig. 5C). Similar to the Cv, we didn't find a significant correlation between the NGS-based
210 oligo clonality index (OCI) and the PVL in the PBMC (Fig. 5D), indicating that PVL is partially
211 but not perfectly reflect the status of EBL progression.

212

213

214

Discussion

215 The incidence of EBL is increasing in some endemic country such as Japan. This induce a
216 serious problem for the farm to maintain cattle. Current diagnosis of EBL heavily depends on
217 physical examination by a veterinarian. Once there are abnormal findings of obvious
218 enlargement of superficial lymph nodes, or organs palpable by rectal examination, the EBL-
219 suspected cattle is subjected to further examination of blood smear test to detect atypical
220 lymphocyte and/or histological test. There is a risk of underdiagnosis especially when the EBL-
221 related tumor is still not at the advanced stage. Therefore, we need to develop some objective,
222 quantitative and highly-sensitive diagnostic test for tumor of EBL. Several candidate markers
223 detected using blood tests has been reported to be useful to diagnose EBL. Serum total lactate
224 dehydrogenase (LDH) and thymidine kinase (TK) tends to be elevated in EBL cattle (17). Since
225 EBL is a B-cell-lymphoma, immunophenotypic analysis of peripheral blood is also reported as a
226 candidate blood test (18). These markers might be helpful to diagnose EBL; however, they still
227 have limited specificity as LDH and TK levels may be elevated in other type of cancers.
228 Immunophenotypic analysis can be affected by some inflammatory diseases. EBL is a cancer
229 caused by BLV; therefore, the analysis of BLV would be the most specific and sensitive way to
230 evaluate the status of EBL. PVL is a value obtained by quantification of viral and the host
231 genomic DNA copy. PVL has been used to evaluate the proportion of infected cells in blood or
232 tumor tissue. We and others have showed that PVL is not specifically elevated in EBL.
233 Asymptomatic and non-EBL cattle showed high proviral load as EBL cattle (Fig. 3A)(17). Thus,
234 it is not so useful to know the quantity of infected cells but the clonality of infected cells is critical
235 to know the disease status of EBL (Fig. 5B). This seems logical because clonal expansion of
236 BLV-infected cells is directly associated with oncogenesis of EBL. Thus, the diagnostic test
237 based on oncogenesis of BLV-infected cells, namely extent of clonal expansion, will provide the
238 highest specificity.

239 Clonality analysis of retrovirus-infected cells was drastically changed by application of
240 NGS in HTLV-1 infection (9). The method is applied for other retroviruses, such as HIV-1 (19,
241 20) and BLV (10-12), resulting in better understanding of *in vivo* dynamics of retrovirus-infected
242 cells with high resolution and accuracy. However, these methods are not suitable for practical
243 use because of its cost and technical requirement to perform. The protocol to use rapid
244 amplification of integration site followed by Sanger sequencing was reported by Saito et al to
245 quantify clonality of HTLV-1-infected cells (14). That led us to apply the method for BLV
246 infection.

247 EBL is evident in tumor tissue, but we need to confirm if tumor cells are also present in
248 peripheral blood when we apply the RAIS method as a blood test for EBL. To answer the
249 question, we analyzed 11 paired DNA samples, blood and tumor tissue, obtained from each the
250 same EBL cattle. The result clearly demonstrated that the same expanded EBV-infected clone

251 was detected in blood as well as in the tumor tissue with equivalent dominance in all 11 EBL
252 cattle we analyzed (Fig. 4A). To our knowledge, this is the first report to provide concrete
253 evidence that the same tumor cells in lymphoma tissues are circulating in peripheral blood in
254 EBL cattle. This key evidence further suggested the possibility to apply RAIS method as a blood
255 test for EBL. Consistent with a recent study which also demonstrated that biotin-streptavidin
256 purification step can be skipped both in HTLV-1 and BLV samples (16), we simplified the RAIS
257 protocol to increase the feasibility for practical use by removing the biotin-streptavidin
258 purification step (Fig. 2B and 2C). In this study, we obtained the evidence that BLV-RAIS
259 method would be a potent blood test to diagnose EBL. It has been proposed that early detection
260 of ATL might be possible as the tumor dominant integration site started to evolve years before
261 the onset of symptoms (5). We also showed that the same EBL clone was detectable before the
262 onset of the disease in two of five EBL cattle in longitudinal study (Fig. 5A). However, there are
263 no detectable EBL clone even just 2 to 6 months before the disease onset in three of five cattle.
264 Further study with large number of cases is required to know whether BLV-RAIS is useful for
265 the early diagnosis of EBL.

266

267 In summary, we provided the evidence that BLV-RAIS can be a quantitative and
268 reproducible blood test useful for the diagnosis of EBL. Further investigation would be required
269 to maximize the advantage of BLV-RAIS method to monitor the EBL, improve productivity of
270 cattle industry and contribute to establishment of Sustainable Development Goals.

271

272 MATERIALS AND METHODS

273 Regulatory Approvals

274 This study was approved by the animal research committee at Tokyo University of Agriculture
275 for sample collection at farms. We confirm that all experiments were performed in accordance
276 with the committee's guidelines and regulations. The farm leaders gave verbal consent for the
277 blood sample collection, serological test of BLV antibodies, and PVL measurements. All data or
278 information excludes personally identifiable information such as farmers' names.

279

280 Collection and storage of the peripheral blood and tissue biopsies

281 We utilized excess blood and the serum samples collected by Kanagawa Shonan Livestock
282 Hygiene Service Center from 2015 to 2019 for national whole herd test surveillance targeting
283 Johne's disease. The blood samples were stored at -20°C until analysis. The visually identifiable
284 lymphoma tissues for the cohort study (Fig. 5) were collected from the carcasses after the
285 postmortem inspections at Meat Inspection Station, Kanagawa Prefectural Government.
286 The peripheral blood and visually identifiable lymphoma tissues for comparative study (Fig. 4)
287 were collected from the carcasses after the postmortem inspections at Kumamoto Prefectural
288 Meat Safety Inspection Office from December 2021 until March 2022. The blood samples were

289 stored at 4°C and lymphoma tissues were kept at -20°C until analysis.

290

291 **Separation of peripheral blood mononuclear cells (PBMCs) and extraction of genomic**
292 **DNA from PBMC and tissue biopsies**

293 Peripheral blood was processed by density-gradient centrifugation using Ficoll-Paque (GE
294 Healthcare) for the separation of PBMCs and cryopreserved at -80 °C in Cell Banker (Juji Field
295 Inc.) until use. For the extraction of genomic DNA from whole blood, PBMCs, and tissue
296 biopsies, the DNeasy Blood and Tissue kit (Qiagen) was used according to the manufacturer's
297 protocol.

298

299 **Quantification of proviral load (PVL) in PBMC and tissue biopsies**

300 The PVLs in PBMC and tissue biopsies were estimated by quantifying the number of copies of
301 the BLV pro gene and bovine beta-actin gene using the digital droplet PCR as described
302 previously (21). The PVL was expressed in copy per 100 cells as follows, PVL (%) = [(copy
303 number of BLV pro)/ (copy number of bovine beta-actin)/2] × 100. Primer sequences are listed
304 in Table S4.

305

306 **DNA capture seq. for mapping and quantification of BLV integration sites (IS)**

307 BLV DNA-capture-seq and mapping of viral integration sites were performed as previously
308 described (15, 21, 22) with minor modifications. Briefly, 2 µg genomic DNA was sonicated using
309 a Picoruptor (Diagenode s.a., Liège, Belgium) to produce 300–500-bp fragments. DNA libraries
310 were prepared using a NEBNext Ultra II DNA Library Prep Kit and NEBNext multiplex Oligos for
311 Illumina (New England Biolabs). BLV-specific probes were used for the enrichment of DNA
312 libraries with BLV sequence and the enriched libraries were PCR amplified using the primer set
313 P5-P7. The enriched DNA libraries were quantified by the TapeStation instrument (Agilent
314 Technologies) before sequencing via Illumina MiSeq or NextSeq.

315 The three FASTQ files (Read 1, Read 2, and Index Read) obtained from the Illumina
316 sequencing went through a data-cleaning step and the cleaned sequences were aligned to *Bos*
317 *taurus* reference genome sequence (ARS-UCD1.2/bosTau9) with BLV (GenBank: EF600696)
318 as a separate chromosome or integrated provirus using the BWA-MEM algorithm (23). The
319 aligned reads were visualized by Integrative Genomics Viewer (IGV) (24) after some additional
320 processing and clean-up using Samtools (25) and Picard (<http://broadinstitute.github.io/picard/>).
321 For IS analysis, we aligned the cleaned FASTQ files to the reference genome containing bovine
322 chromosomes (Chr 1–29 and X) and BLV as 2 separate chromosomes: the whole viral
323 sequence excluding the LTRs (BLV_noLTR) and viral LTR sequence as a separate
324 chromosome (BLV_LTR). The chimeric reads containing both the BLV and host genome were
325 extracted to identify the locations of BLV IS in the host genome using the method described
326 previously(15, 21). The number of final virus-host reads in a certain genomic region reflects the

327 initial cell number for each infected clone that enabled us to estimate the clonal abundance for
328 each infected clone (9).

329

330 **Amplification of BLV-host chimeric region by RAIS method**

331 Amplification of the BLV-host chimeric region was performed via the conventional and modified
332 RAIS method using the BLV specific forward primers: BLV_F1- TCTCCCGCCTTTTGAGG for
333 the single-strand DNA synthesis, BLV_F2-CAGACCTTCTGGTCGGCTATC, and BLV_F3-
334 CGAGCTCTATCTCCGGTCCT for the final nested PCR amplification. The BLV_F1 primer
335 binding site is at a position slightly upstream of the 3' LTR and the binding sites for BLV_F2 and
336 BLV_F3 are at the 3'LTR (Fig. S2). The detailed protocol is provided as supplemental method.
337 The persistently BLV-infected fetal lamb kidney cell line (FLK-BLV) DNA was used to optimize
338 the RAIS method for the BLV study. FLK-BLV cell line was established by Van Der Maaten and
339 Mille (26) and was kindly provided by Dr. Yoko Aida, Institute of Physical and Chemical Research
340 (RIKEN), Japan.

341 The RAIS amplified BLV-host chimeric regions were then purified using the QIAquick^R PCR
342 purification kit (QIAGEN) and Sanger sequenced by a commercial DNA sequencing service
343 (FASMAC Co., Ltd.).

344 **Quantification of BLV clonality using the CLOVA software**

345 The Sanger sequence data of the virus-host chimeric region were analyzed using CLOVA
346 (<https://fasmac.co.jp/en/rais>) providing 20 nucleotide sequences of the 3' end of BLV LTR as the
347 transgene sequence (16). CLOVA is a dedicated R program-based software that utilizes the
348 "Sanger ab1 file" to analyze transgene sequences. Compared with the transgene, CLOVA
349 generates a signal-noise chromatogram for the whole sequence and automatically calculates the
350 clonality value (Cv) taking into consideration the value of signal peak area (intensity) of the host
351 side and the virus side. In this study, signal peak areas up to 20 nucleotide positions upstream
352 and downstream from the virus-host integration site were considered to calculate the Cv using
353 CLOVA.

354 The Cv ranges between 0 and 1; 0 indicates host genome sequence is a contribution of multiple
355 clones with an equal proportion of the load, and 1 indicates the host genome sequence is
356 attributed by a single clone that dominates completely.

357

358 **Statistical analysis**

359 All data analyses were performed using GraphPad Prism 7 software (GraphPad Software, San
360 Diego, CA) and R (v4.0.3). Correlation analysis and the scatter plots were generated in R using
361 the Pearson correlation test. The oligoclonality index (OCI) based on the Gini coefficient was
362 computed using the Ineq R package (<http://CRAN.R-project.org/> package5ineq) in R. The OCI is
363 used to measure the non-uniformity of the clonal distribution which ranges between 0 and 1, with
364 0 indicating perfect polyclonal and 1 indicating perfect monoclonal. Because of the variable clone

365 population, a type 1 correction was considered as described previously (9).

366

367 **Figure legends**

368 **Figure 1: Schematic figure showing the identification of provirus clonality in BLV-infected
369 B cells**

370 Bovine leukemia virus (BLV) establishes latent infection by integrating the virus genome into host
371 chromosomes of B cells and causes enzootic bovine leukosis (EBL) with monoclonal expansion
372 of the infected cells. The different clinical stages of BLV infection are characterized by clonal
373 distribution patterns of the provirus in the infected B cells. Rapid Amplification of Integration Site
374 (RAIS) method has been utilized to amplify the 3' end of the provirus-host junction. Due to
375 variation in clone distribution of the infected B cells, Sanger sequencing chromatogram of the host
376 side in the virus-host junction indicates a noisy and high background pattern in asymptomatic
377 infection (AS) having polyclonal infected B cells. But in the case of EBL, the host and virus sides
378 are equally clear and readable because of the monoclonal proliferation of the B cells.

379

380 **Figure 2: BLV-RAIS method with sanger sequencing reveals BLV clonality in cattle having
381 different clinical features.**

382 (A) Clonal abundance pattern of eight BLV-infected cattle. PBMCs of one asymptotically
383 infected (AS) and three persistent lymphocytosis (PL) cattle and tumors of four EBL cattle were
384 analyzed by conventional RAIS method and next generation sequencing (NGS) to compare the
385 clonality of BLV-infected cells. Each pie chart represents the clonal distribution for an individual
386 sample and each slice represents an individual clone. (B) Gel image of BLV-RAIS-amplified
387 products of 3' end of the virus-host junction from 500 ng of sample DNA. DNA from BLV-
388 uninfected cattle was used as negative control. NC: negative control. (C and D) Sanger
389 sequencing chromatograms of RAIS-amplified products from virus-host junction of AS and PL (C)
390 and EBL (D) cattle. IS: Integration Site. (E and F) CLOVA analysis of Sanger sequencing data for
391 comparison of signal-noise chromatograms which also automatically calculated the clonality value
392 (Cv). (G) Correlation analysis between the Sanger sequencing-based Cv and the proportion of
393 the most dominant clone obtained from NGS analysis (Pearson correlation test) for samples of
394 the eight BLV-infected cattle.

395

396 **Fig. 3. New RAIS method with simplified protocol and its feasibility**

397 (A) Comparison of proviral loads (PVLs) of HTLV-1-infected patients and BLV-infected cattle.
398 PVLs indicate the number of virus-infected cells per 100 PBMCs. The PVL of HTLV-1 was referred
399 from our previous study (21). The bars indicate median values with a 95% confidence interval.
400 Statistical significance was obtained by the Mann-Whitney U test and Kruskal-Wallis test. *:
401 p<0.0001; n.s., not significant. (B) Schematic figure of modified RAIS method for detection of BLV
402 clonality. The conventional RAIS method has an avidin-bead purification step to enrich virus-host

403 chimeric double-stranded DNAs linked with dT-adaptor (Fig. S1). Considering the characteristic
404 high PVL in BLV infection, we developed a modified-RAIS method without the purification process.
405 (C-E) Correlation analysis (Pearson correlation test) of the Cv to compare modified and
406 conventional BLV-RAIS methods (C), representative analysis (D), and same samples analyzed
407 in two independent institutes (E).

408

409 **Fig. 4. Comparison of BLV clonality in PBMCs and tumor tissues in EBL cattle by using
410 modified RAIS method**

411 (A and B) Clonal abundance distribution of BLV in PBMCs/tissues with lymphoid tumors (A) and
412 paired two different tissues (B) from EBL cattle. BLV-host junction in infected cells was amplified
413 by modified RAIS methods. PMLN: Posterior mediastinal lymph node, IILN: Internal iliac lymph
414 node, JLN: Jejunal lymph node, SCLN: Superficial cervical lymph node. (C) The proportion of
415 dominant BLV clones was plotted against the BLV-RAIS Sanger sequencing-based clonality
416 value. (D) Correlation analysis (Pearson correlation test) between the BLV-RAIS Sanger
417 sequencing-based Cv obtained from the PBMCs and tissues of EBL cattle. The proportion and
418 Cv of PBMCs in Fig. 4C and D were derived from eleven cattle shown in Fig. 4A.

419

420 **Figure 5. Tracking of tumor-dominant BLV integration sites before diagnosis of EBL onset**

421 (A) BLV integration sites in PBMCs and tumor biopsies (EBL onset) from five cattle were
422 quantitatively mapped by high throughput sequencing. The line graph depicts the Cv obtained
423 from modified BLV-RAIS method at selected time points (data plotted on the left Y-axis). The
424 number of BLV integration sites is shown as bar graph (data plotted on the right Y-axis). Gray
425 and red sub-bars represent unique and tumor-dominant BLV integration sites as shown NGS
426 clonal distribution, respectively. (B) Comparison between the Cv range of asymptomatic (AS) and
427 EBL cattle. Statistical significance was obtained by the Mann-Whitney U test and One-way
428 ANOVA, 95% confidence interval; *:p<0.0001, n.s., not significant. (C) Cv obtained from PBMCs
429 of BLV-infected cattle were plotted against the PVLs in PBMCs. (D) Correlation analysis (Pearson
430 correlation test) between the PVLs in the PBMCs of BLV-infected cattle and NGS based
431 Oligoclonality Index (OCI).

432

433 **Fig S1: Schematic illustration of the different steps of BLV-RAIS method before
434 modification**

435

436 **Figure S2. Location of RAIS primers in conserved regions of Bovine leukemia virus (BLV).**

437 Identity with BLV strain EF600696 is indicated by a dot. The F1, F2, and F3 primer regions are
438 indicated on top of the alignment. There are no available LTR sequences of Genotypes 5,7 and
439 8.

440

441 **Acknowledgements**

442 We would like to express our gratitude to the staff of the Kumamoto Prefectural Meat Inspection
443 Office and Meat Inspection Station, Kanagawa Prefectural Government for providing tumor
444 samples of EBL cattle. We thank the staff of Kanagawa Shonan Livestock Hygiene Service
445 Center for blood sample collection of BLV infected cattle. This work was supported in part by
446 JSPS KAKENHI Grants-in-Aid for Scientific Research C 21K05943 (to T.K.) and Livestock
447 Promotional Funds of Japan Racing Association (JRA).

448

449 **Authors' contributions**

450 T.K. and Y.S. conceived and coordinated the project; H.B., S.M., A.R., S.A.R. and N.O. performed
451 experiments. H.B. and N.O. performed the bioinformatics analyses. B.H., T.K., S.M., M.M., K.N.,
452 B.J.Y.T., K.S. and Y.S. analyzed the data. B.H., T.K., K.I. and Y.S. wrote the manuscript. T.I. and
453 K.I. contributed to the materials and results interpretation. M. S. provides analytic tools. All authors
454 read and approved the final manuscript.

455

456 **Additional Information**

457 Competing financial interests: The authors declare no competing financial interests.

458

459 **References**

- 460 1. P. Y. Barez *et al.*, Recent Advances in BLV Research. *Viruses* **7**, 6080-6088 (2015).
- 461 2. Y. Aida, H. Murakami, M. Takahashi, S. N. Takeshima, Mechanisms of pathogenesis
462 induced by bovine leukemia virus as a model for human T-cell leukemia virus. *Front
463 Microbiol* **4**, 328 (2013).
- 464 3. A. Burny *et al.*, Bovine leukemia virus, a versatile agent with various pathogenic effects
465 in various animal species. *Cancer Res* **45**, 4578s-4582s (1985).
- 466 4. P. C. Bartlett *et al.*, Options for the control of bovine leukemia virus in dairy cattle. *J Am
467 Vet Med Assoc* **244**, 914-922 (2014).
- 468 5. A. Kuczewski *et al.*, Economic evaluation of 4 bovine leukemia virus control strategies for
469 Alberta dairy farms. *J Dairy Sci* **102**, 2578-2592 (2019).
- 470 6. K. Murakami, S. Kobayashi, M. Konishi, K. Kameyama, T. Tsutsui, Nationwide survey of
471 bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009-
472 2011. *J Vet Med Sci* **75**, 1123-1126 (2013).
- 473 7. S. L. Ott, R. Johnson, S. J. Wells, Association between bovine-leukosis virus
474 seroprevalence and herd-level productivity on US dairy farms. *Prev Vet Med* **61**, 249-262
475 (2003).
- 476 8. Y. Yang *et al.*, Bovine leukemia virus infection in cattle of China: Association with reduced
477 milk production and increased somatic cell score. *J Dairy Sci* **99**, 3688-3697 (2016).
- 478 9. N. A. Gillet *et al.*, The host genomic environment of the provirus determines the
479 abundance of HTLV-1-infected T-cell clones. *Blood* **117**, 3113-3122 (2011).
- 480 10. M. Artesi *et al.*, PCIP-seq: simultaneous sequencing of integrated viral genomes and their
481 insertion sites with long reads. *Genome Biol* **22**, 97 (2021).
- 482 11. N. Rosewick *et al.*, Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is
483 an early determinant of leukemogenesis. *Nat Commun* **8**, 15264 (2017).
- 484 12. N. A. Gillet *et al.*, Massive depletion of bovine leukemia virus proviral clones located in
485 genomic transcriptionally active sites during primary infection. *PLoS Pathog* **9**, e1003687
486 (2013).
- 487 13. A. Nishimori, K. Andoh, Y. Matsuura, A. Kumagai, S. Hatama, Establishment of a

488 simplified inverse polymerase chain reaction method for diagnosis of enzootic bovine
489 leukosis. *Arch Virol* **166**, 841-851 (2021).

490 14. M. Saito *et al.*, A high-throughput detection method for the clonality of Human T-cell
491 leukemia virus type-1-infected cells in vivo. *Int J Hematol* **112**, 300-306 (2020).

492 15. N. Ohnuki *et al.*, A target enrichment high throughput sequencing system for
493 characterization of BLV whole genome sequence, integration sites, clonality and host
494 SNP. *Sci Rep* **11**, 4521 (2021).

495 16. S. T. Wada Y, Hasegawa H, Matsudaira T, Nao N, Coler-Reilly A, Tasaka T, Yamauchi
496 S, Okagawa T, Momose H, Tanio M, Kuramitsu M, Sasaki D, Matsumoto N, Yagishita N,
497 Yamauchi J, Araya N, Tanabe K, Yamagishi M, Nakashima M, Nakahata S, Iha H, Ogata
498 M, Muramatsu M, Imaizumi Y, Uchimaru K, Miyazaki Y, Konnai S, Yanagihara K,
499 Morishita K, Watanabe T, Yamano Y, Saito M, RAISING is a high-performance method
500 for identifying random transgene integration sites. *Commun Biol* **5**, 535 (2022).

501 17. M. Konishi *et al.*, Simultaneous evaluation of diagnostic marker utility for enzootic bovine
502 leukosis. *BMC Vet Res* **15**, 406 (2019).

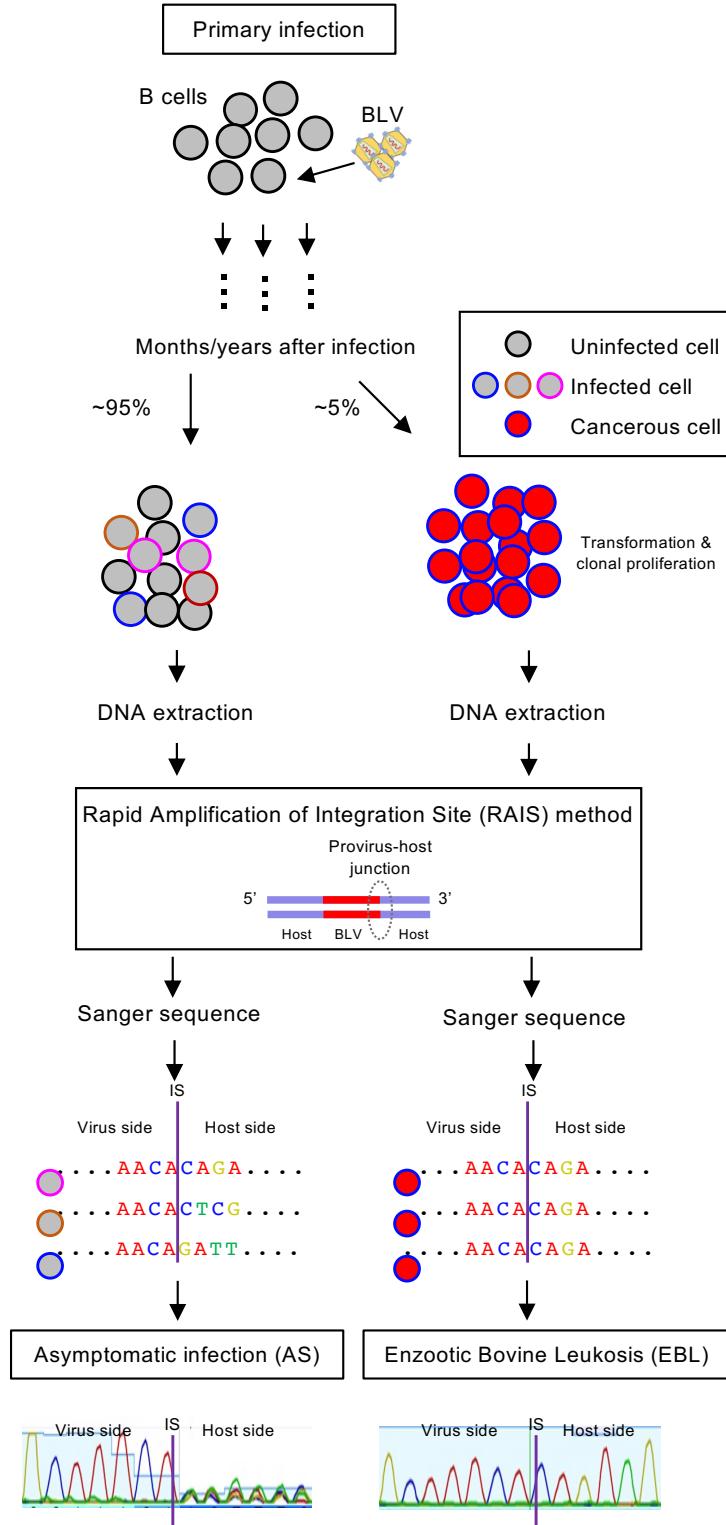
503 18. A. Nishimori *et al.*, Identification of an Atypical Enzootic Bovine Leukosis in Japan by
504 Using a Novel Classification of Bovine Leukemia Based on Immunophenotypic Analysis.
505 *Clin Vaccine Immunol* **24** (2017).

506 19. F. Maldarelli *et al.*, HIV latency. Specific HIV integration sites are linked to clonal
507 expansion and persistence of infected cells. *Science* **345**, 179-183 (2014).

508 20. T. A. Wagner *et al.*, HIV latency. Proliferation of cells with HIV integrated into cancer
509 genes contributes to persistent infection. *Science* **345**, 570-573 (2014).

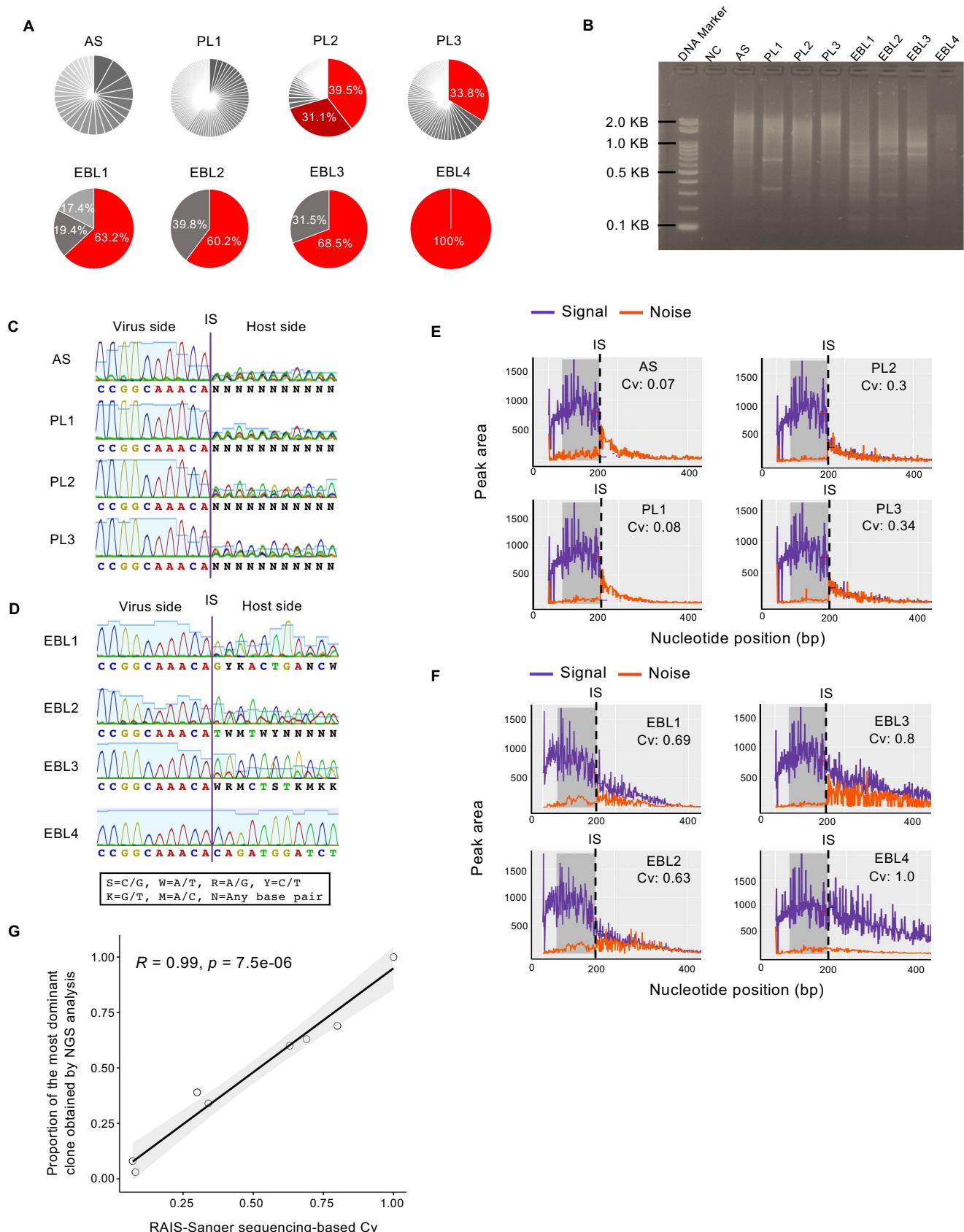
510 21. H. Katsuya *et al.*, The Nature of the HTLV-1 Provirus in Naturally Infected Individuals
511 Analyzed by the Viral DNA-Capture-Seq Approach. *Cell Rep* **29**, 724-735 e724 (2019).

512 22. S. C. Iwase *et al.*, HIV-1 DNA-capture-seq is a useful tool for the comprehensive
513 characterization of HIV-1 provirus. *Sci Rep* **9**, 12326 (2019).


514 23. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform.
515 *Bioinformatics* **26**, 589-595 (2010).

516 24. J. T. Robinson *et al.*, Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26 (2011).

517 25. H. Li *et al.*, The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-
518 2079 (2009).


519 26. M. J. Van Der Maaten, J. M. Miller, Replication of bovine leukemia virus in monolayer cell
520 cultures. *Bibl Haematol* 10.1159/000399166, 360-362 (1975).

521

Figure 1: Schematic figure showing the identification of provirus clonality in BLV-infected B cells

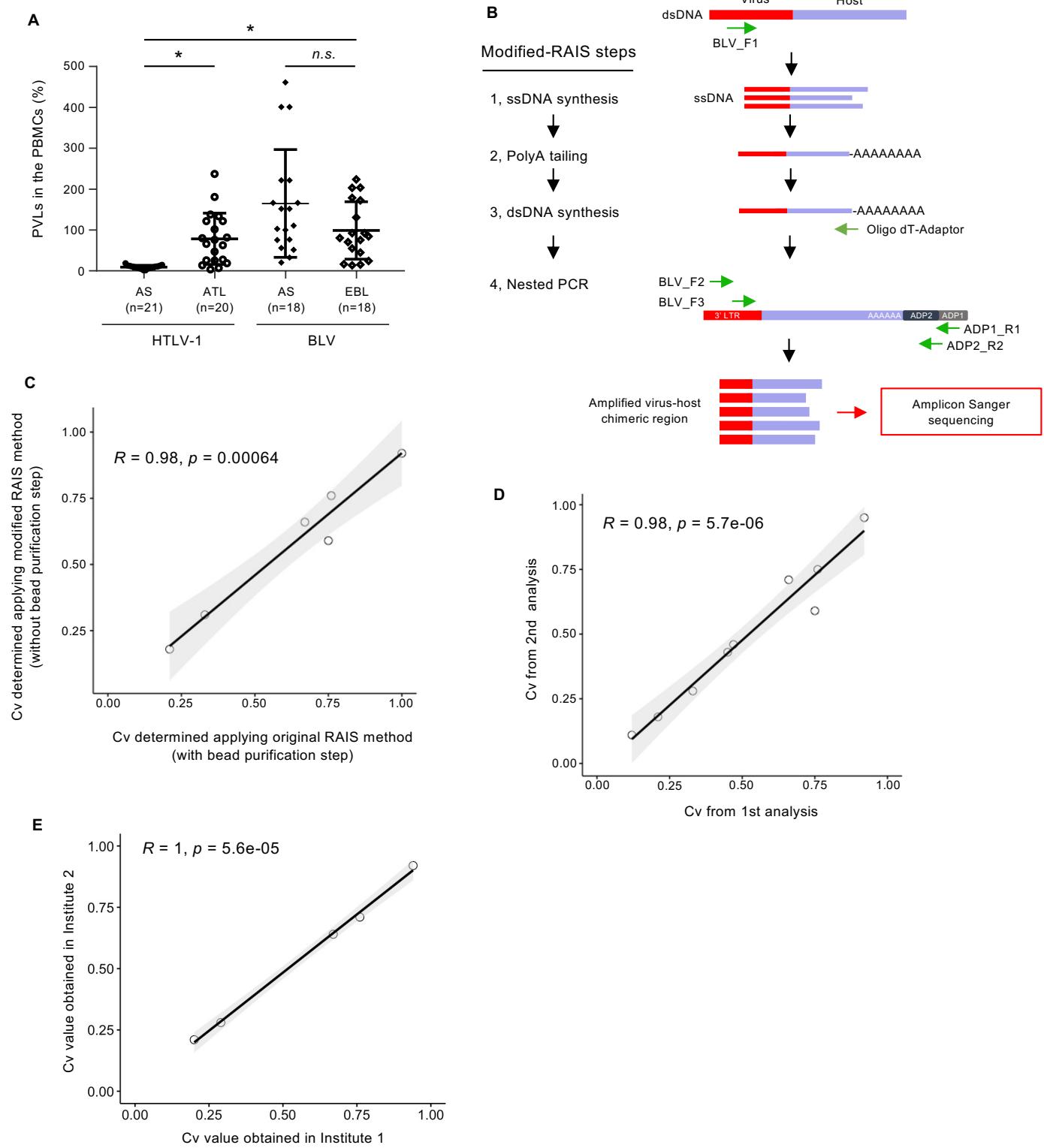

Bovine leukemia virus (BLV) establishes latent infection by integrating the virus genome into host chromosomes of B cells and causes enzootic bovine leukosis (EBL) with monoclonal expansion of the infected cells. The different clinical stages of BLV infection are characterized by clonal distribution patterns of the provirus in the infected B cells. Rapid Amplification of Integration Site (RAIS) method has been utilized to amplify the 3' end of the provirus-host junction. Due to variation in clone distribution of the infected B cells, Sanger sequencing chromatogram of the host side in the virus-host junction indicates a noisy and high background pattern in asymptomatic infection (AS) having polyclonal infected B cells. But in the case of EBL, the host and virus sides are equally clear and readable because of the monoclonal proliferation of the B cells.

Figure 2: BLV-RAIS method with sanger sequencing reveals BLV clonality in cattle having different clinical features.

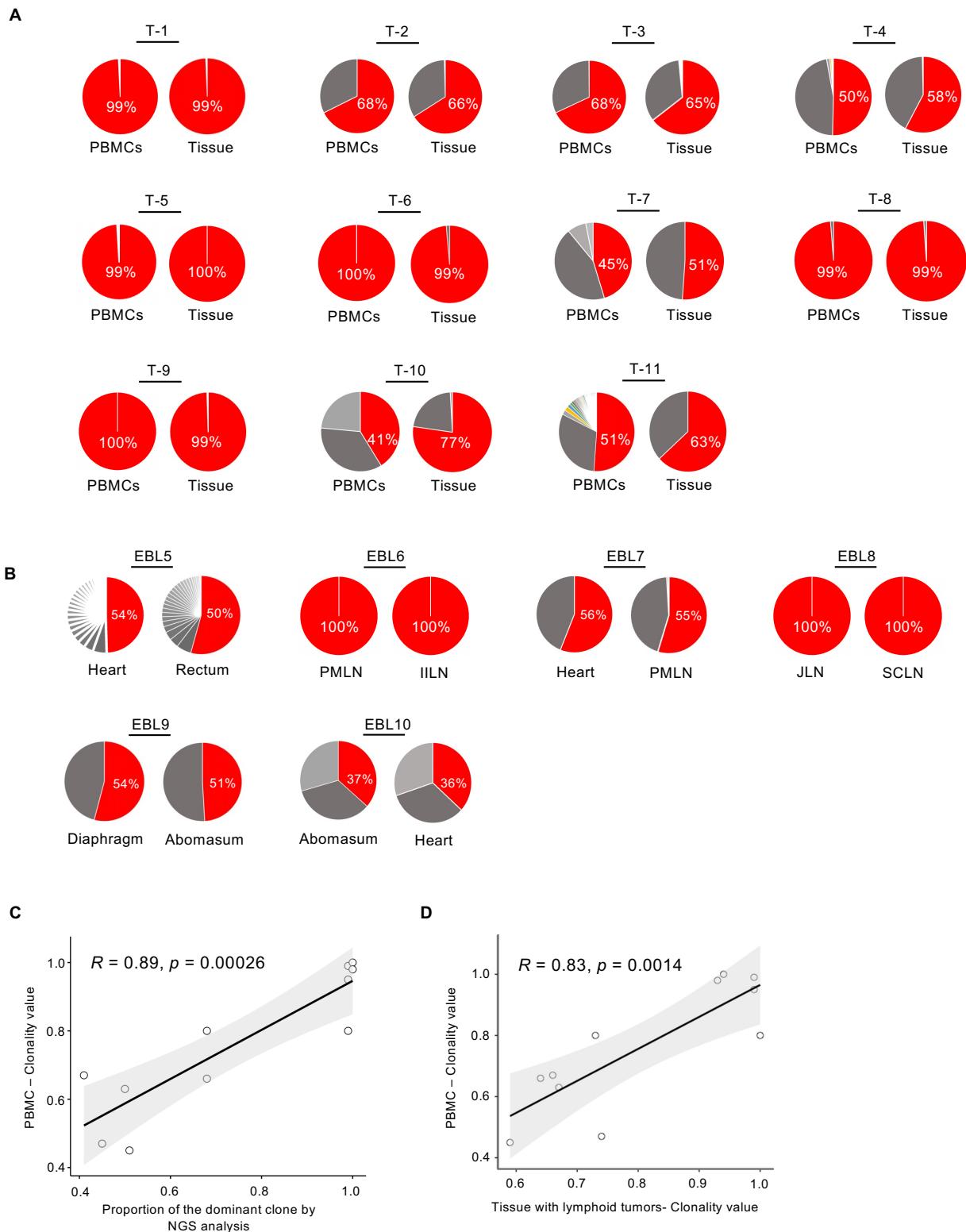
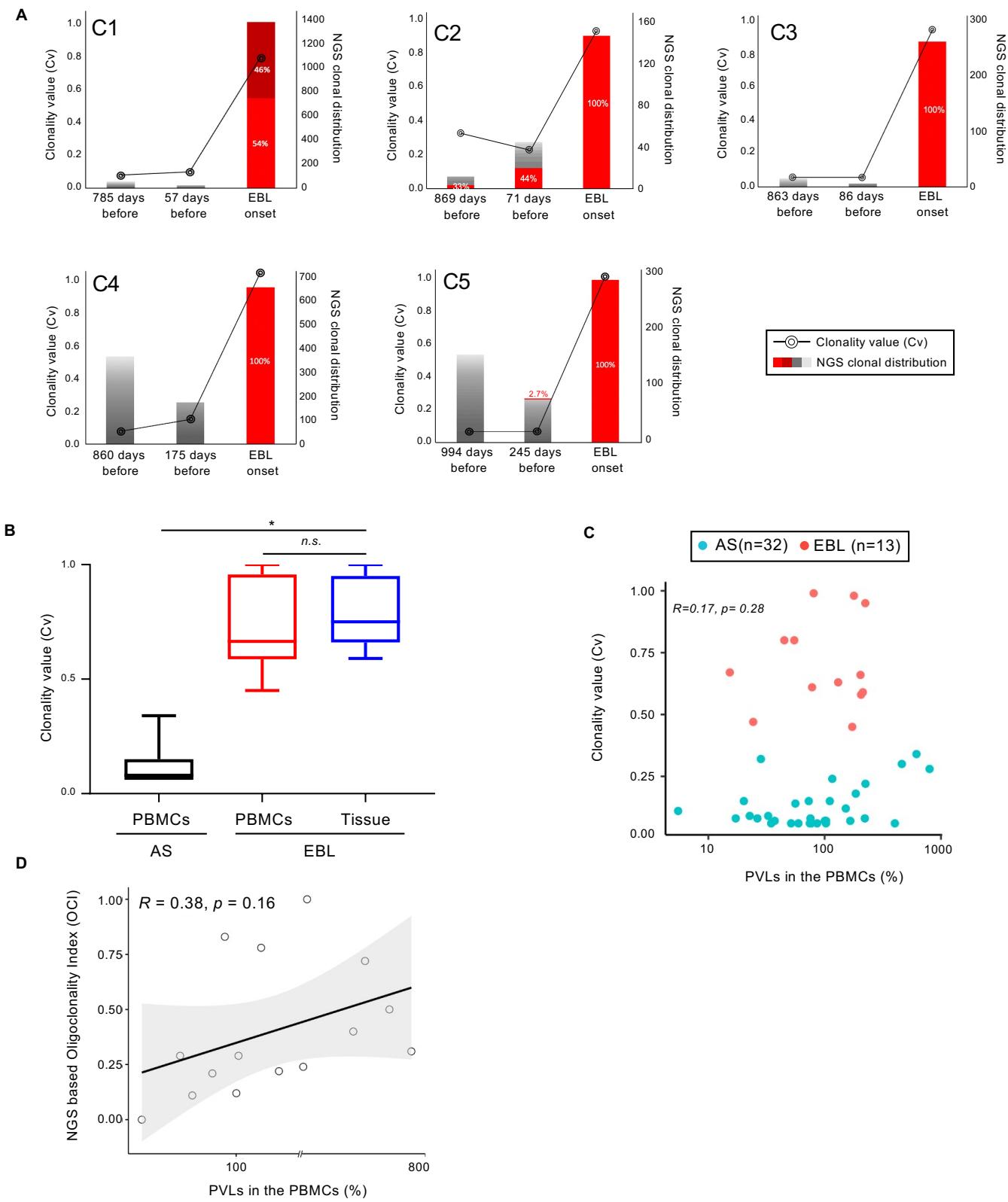

(A) Clonal abundance pattern of eight BLV-infected cattle. PBMCs of one asymptotically infected (AS) and three persistent lymphocytosis (PL) cattle and tumors of four EBL cattle were analyzed by conventional RAIS method and next generation sequencing (NGS) to compare the clonality of BLV-infected cells. Each pie chart represents the clonal distribution for an individual sample and each slice represents an individual clone. (B) Gel image of BLV-RAIS-amplified products of 3' end of the virus-host junction from 500 ng of sample DNA. DNA from BLV-uninfected cattle was used as negative control. NC: negative control. (C and D) Sanger sequencing chromatograms of RAIS-amplified products from virus-host junction of AS and PL (C) and EBL (D) cattle. IS: Integration Site. (E and F) CLOVA analysis of Sanger sequencing data for comparison of signal-noise chromatograms which also automatically calculated the clonality value (Cv). (G) Correlation analysis between the Sanger sequencing-based Cv and the proportion of the most dominant clone obtained from NGS analysis (Pearson correlation test) for samples of the eight BLV-infected cattle.

Fig.3


Fig. 3. New RAIS method with simplified protocol and its feasibility

(A) Comparison of proviral loads (PVLs) of HTLV-1-infected patients and BLV-infected cattle. PVLs indicate the number of virus-infected cells per 100 PBMCs. The PVL of HTLV-1 was referred from our previous study (21). The bars indicate median values with a 95% confidence interval. Statistical significance was obtained by the Mann-Whitney U test and Kruskal-Wallis test. *: $p < 0.0001$; n.s., not significant. (B) Schematic figure of modified RAIS method for detection of BLV clonality. The conventional RAIS method has an avidin-bead purification step to enrich virus-host chimeric double-stranded DNAs linked with dT-adaptor (Supplemental fig.1). Considering the characteristic high PVL in BLV infection, we developed a modified-RAIS method without the purification process. (C-E) Correlation analysis (Pearson correlation test) of the Cv values to compare modified and conventional BLV-RAIS methods (C), representative analysis (D), and same samples analyzed in two independent institutes (E).

Fig. 4. Comparison of BLV clonality in PBMCs and tumor tissues in EBL cattle by using modified RAIS method

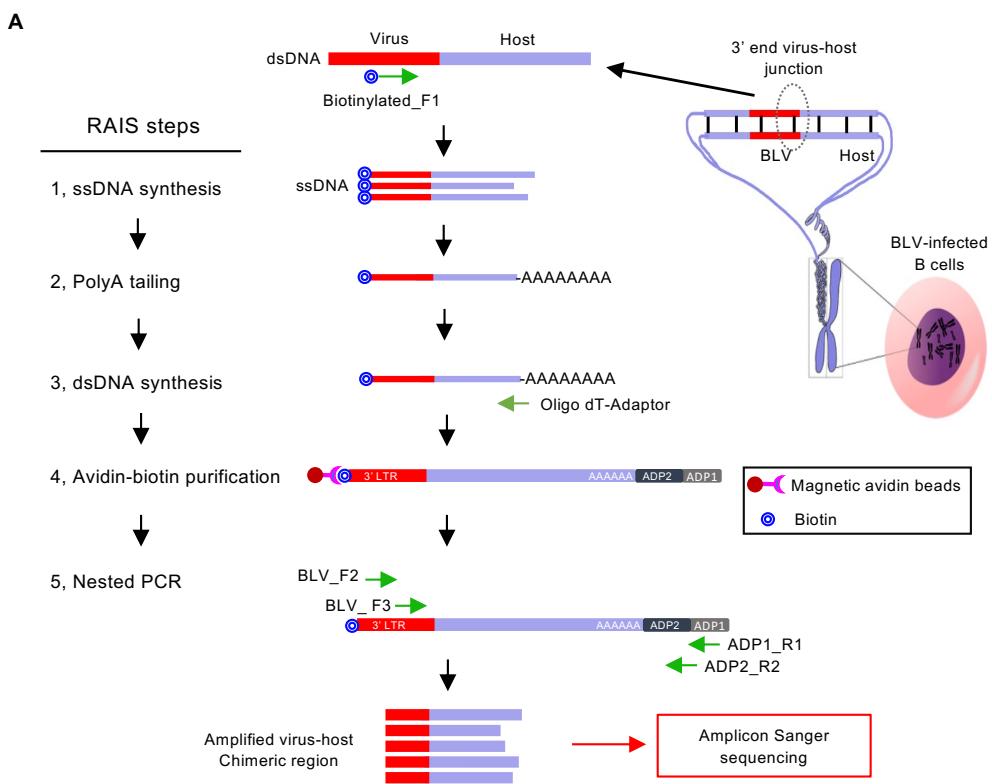
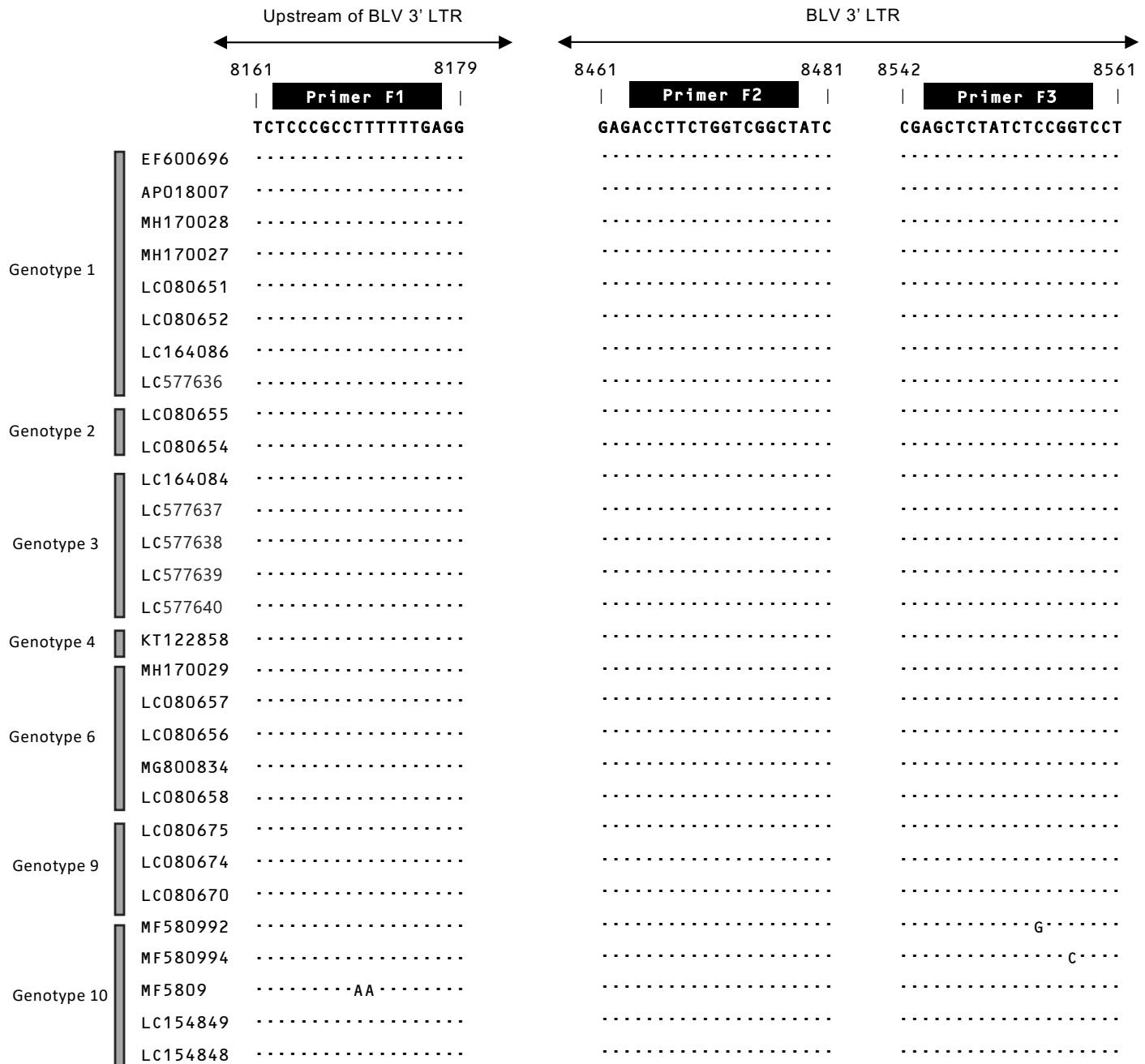

(A and B) Clonal abundance distribution of BLV in PBMCs/tissues with lymphoid tumors (A) and paired two different tissues (B) from EBL cattle. BLV-host junction in infected cells was amplified by modified RAIS methods. PMLN: Posterior mediastinal lymph node, IILN: Internal iliac lymph node, JLN: Jejunal lymph node, SCLN: Superficial cervical lymph node. (C) The proportion of dominant BLV clones was plotted against the BLV-RAIS Sanger sequencing-based clonality value. (D) Correlation analysis (Pearson correlation test) between the BLV-RAIS Sanger sequencing-based Cv obtained from the PBMCs and tissues of EBL cattle. The proportion and Cv of PBMCs in Fig. 4C and D were derived from eleven cattle shown in Fig. 4A.

Figure 5. Tracking of tumor-dominant BLV integration sites before diagnosis of EBL onset


(A) BLV integration sites in PBMCs and tumor biopsies (EBL onset) from five cattle were quantitatively mapped by high throughput sequencing. The line graph depicts the Cv obtained from modified BLV-RAIS method at selected time points (data plotted on the left Y-axis). The number of BLV integration sites is shown as bar graph (data plotted on the right Y-axis). Gray and red sub-bars represent unique and tumor-dominant BLV integration sites as shown NGS clonal distribution, respectively. (B) Comparison between the Cv range of asymptomatic (AS) and EBL cattle. Statistical significance was obtained by the Mann-Whitney U test and One-way ANOVA, 95% confidence interval; * $p<0.0001$, n.s., not significant. (C) Cv obtained from PBMCs of BLV-infected cattle were plotted against the PVLs in PBMCs. (D) Correlation analysis (Pearson correlation test) between the PVLs in the PBMCs of BLV-infected cattle and NGS based Oligoclonality Index (OCI).

Supplemental fig.1

Fig S1: Schematic illustration of the different steps of BLV-RAIS method before modification

Supplemental fig.2

Figure S2. Location of RAIS primers in conserved regions of Bovine leukemia virus (BLV). Identity with BLV strain EF600696 is indicated by a dot. The F1, F2, and F3 primer regions are indicated on top of the alignment. There are no available LTR sequences of Genotypes 5, 7 and 8.

Table1: Summary of EBL cohort used in this study

Cattle ID.	Time point 1		Time point 2		EBL Name of tissue tumor site used in this study
	Days before EBL diagnosis	PVL in PBMC (%)	Days before EBL diagnosis	PVL in PBMC(%)	
C1	785	100.27	57	32.68	Diaphragm
C2	869	28.26	71	224.35	Heart
C3	863	74.6	86	102.6	Abomasum
C4	860	102.9	175	56	Lymph node
C5	994	66.6	245	86.1	Heart

Table S1: Summary of characteristics of cattle analyzed by conventional BLV-RAIS method

Disease group	Cattle ID.	Clinical status	PBMCs($\times 10^3/\mu\text{l}$)	Tissues with lymphoid tumors
Asymptomatic	AS	Asymptomatic	6.5	-
	PL1	Persistent lymphocytosis	12.8	-
	PL2	Persistent lymphocytosis	10.6	-
	PL3	Persistent lymphocytosis	13.4	-
Enzootic Bovine Leukosis (EBL)	EBL1	Enzootic bovine leukosis	NA	<u>heart</u> , kidneys, lung, rumen, uterus, intestine, lymph nodes
	EBL2	Enzootic bovine leukosis	NA	<u>heart</u> , lung, rumen, uterus, lymph nodes
	EBL3	Enzootic bovine leukosis	NA	<u>heart</u> , kidneys, lung, rumen, uterus, intestine, lymph nodes
	EBL4	Enzootic bovine leukosis	NA	<u>heart</u> , kidneys, rumen, uterus, intestine, lymph nodes

underlined tumor samples were analyzed in this study; NA: not available; -: not applicable

Table S2: EBL cattle for which both the PBMC and tumor samples were analyzed

Cattle ID.	Clinical status	Liquid biopsy	Solid biopsy	Cattle ID.	Clinical status	Liquid biopsy	Solid biopsy
T-1	EBL	PBMC	Uterus	T-7	EBL	PBMC	Heart
T-2	EBL	PBMC	3 rd stomach	T-8	EBL	PBMC	4 th stomach
T-3	EBL	PBMC	Mesenchymal lymph node	T-9	EBL	PBMC	Thymus region
T-4	EBL	PBMC	Iliac lymph nodes	T-10	EBL	PBMC	Kidney lymph node
T-5	EBL	PBMC	Heart	T-11	EBL	PBMC	Kidney
T-6	EBL	PBMC	Mediastinal lymph node				

Table S3: EBL cattle for which two different tissue tumor sites were analyzed

Cattle ID.	Clinical status	Tissues with lymphoid tumors	
		Tissue site-1	Tissue site-2
EBL5	EBL	Rectum	Heart
EBL6	EBL	Internal iliac lymph node (IILN)	Posterior mediastinal lymph node (PMLN)
EBL7	EBL	Heart	Posterior mediastinal lymph node (PMLN)
EBL8	EBL	Jejunal lymph node (JLN)	Superficial cervical lymph node (SCLN)
EBL9	EBL	Diaphragm	Abomasum
EBL10	EBL	Heart	Abomasum

Table S4. Primer name and their sequences used in BLV-RAIS

Primer name	Sequence
Biotinylated_F1	5'-5Biosg/TCTCCCGCCTTTTGAGG -3'
BLV_F1	5'- TCTCCCGCCTTTTGAGG -3'
BLV_F2	5'- CAGACC TTC TGGTCGGCTATC -3'
BLV_F3	5'- CGAGCTCTATCTCCGGTCCT -3'
ADP1_R1	5'- ACAGCAGGTCAAGCAGTA -3'
ADP2_R2	5'- AGCAGTAGCAGCAGTCGATAA -3'
Oligo-dT (23) Adaptor	5'- ACAGCAGGTCAAGCAGTAGCAGCAGTTGATAACATTTTTTTTTTTTTTV N -3'

Primer & probe sequences used in ddPCR for BLV PVL quantification

BLV_pro-F	5'-CCTTTAAACTAGAACGCCTCCA-3'
BLV_pro-R	5'-CCCAGGGGGAGATATAACCT-3'
BLV-pro_probe #FAM	5'-/56-FAM/CCTTCAAGA/ZEN/CCTGGTCCATC/3IABkFQ/-3'
Bovine-B-actin_cow_F	5'-TCCCTGGAGAAGAGCTACGA-3'
Bovine-B-actin_cow_R	5'-GGCAGACTTAGCCTCCAGTG-3'
Bovine-B-actin probe#Cy5	5'-/5cy5/CTCTTCCAG/TAO/CCTTCCTTCCT/3IAbRQsP/-3'

Supplemental Method

BLV RAIS Protocol

(1) Synthesize ssDNA (Critical step)

Amount of template- 500 ng: vortex mix and spin down well before adding to the reaction mix.
Imp. Point: Try to adjust DNA conc. below 200 ng/uL. Poor quality DNA templates might interfere with the PCR reaction. We do not recommend using a DNA template with an A260/A230 value lower than 1.5 (optimum is 2 to 2.20).

Composition	Used(µL)	Final concentration
10x PCR Buffer for KOD-plus-Neo	5	1x
2mM dNTPs (each)	5	200µM
25mM MgSO4	3	1.5mM
10µM BLV-F1	1.5	0.3µM
KOD-plus-Neo (1U/µL) polymerase	1	
Template + H2O	34.5	
Total	50	

	Temperature	Time	Cycle
Pre-denaturation	94°C	2min	1
Desaturation	98°C	10sec	25
Extension	68°C	43sec	

(2) Column purification

1. Transfer 50 µL of PCR product to each of the Eppendorf tubes.
2. Add 250 µL (x 5) of **Buffer PB** and mix well by pipetting.
3. Transfer the total 300 µL to 2 mL QIAquick column.
4. Centrifuge at 12000 RPM for 1 min.
5. Discard the flow-through.
6. Add 730 µL **Buffer PE**.
7. Centrifuge at 12000 RPM for 1 min.
8. Discard the flow-through.
9. Centrifuge at 12000 RPM for 1 min.

10. Discard the collection tube with flow-through.
11. Place the column on 1.5 mL Lo-Bind Eppendorf tube.
12. Add 30 μ L **Buffer EB**.
13. Centrifuge at 12000 RPM for 1 min.
14. Stored at -20 $^{\circ}$ C.

(3) PolyA-tailing

Composition	Used(μ L)	Final concentration
10x TdT buffer	1	1x
2,5mM CoCL2	1	0.25mM
10mM dATP	0.35	0.35mM
Terminal Transferase	0.25	
ssDNA	7.4	
Total	10	

Incubation: Temp. 37 $^{\circ}$ C. for 30 minutes. => quickly proceed to dsDNA synthesis step

(4) Synthesize dsDNA

Composition	(μ L)	Final concentration
5x Q5 Reaction Buffer	10	1x
2.5mM dNTPs (each)	1	0.05mM
10 μ M Oligo-dT (23) adaptor	3	0.6 μ M
Q5 High-Fidelity DNA polymerase	0.5	
H2O	25.5	
Poly A tailed ssDNA	10	
Total	50	

	Temperature	Time	Cycle
Pre-denaturation	94 $^{\circ}$ C	2min	1
Desaturation	98 $^{\circ}$ C	10sec	1
Annealing	52 $^{\circ}$ C	1min	
Extension	72 $^{\circ}$ C	1min	

(5) First PCR

Composition	(μ L)
10x PCR Buffer for KOD-plus-Neo	5
2mM dNTPs (each)	5
25mM MgSO ₄	3
10 μ M BLV F2	1.5
10 μ M ADP1	1.5
KOD-plus-Neo (1U/ μ L) Polymerase	1
H ₂ O	28
dsDNA	5
Total	50

	Temperature	Time	Cycle
Pre-denaturation	94°C	2min	1
Denaturation	98°C	10sec	20
Extension	68°C	43sec	

(6) Second PCR

Composition	(μ L)
10x PCR Buffer for KOD-plus-Neo	5
2mM dNTPs (each)	5
25mM MgSO ₄	3
10 μ M BLV F3	1.5
10 μ M ADP2	1.5
KOD-plus-Neo (1U/ μ L) Polymerase	1
H ₂ O	32
First PCR product	1 (1/100 diluted)
Total	50

	Temperature	Time	Cycle
Pre-denaturation	94°C	2min	1

Denaturation	98°C	10sec	20
Annealing	64°C	30sec	
Extension	68°C	43sec	