

1 Superinfection exclusion creates spatially distinct influenza virus populations

2 Short title: Superinfection exclusion patterns influenza virus infections

3 Anna Sims^{1*}, Laura Burgess Tornaletti¹, Seema Jasim¹, Chiara Pirillo², Ryan Devlin², Jack Hirst¹, Colin

4 Loney¹, Joanna Wojtus¹, Elizabeth Sloan¹, Luke Thorley¹, Chris Boutell¹, Edward Roberts², Edward

5 Hutchinson^{1**}.

6 * A.Sims.1@research.gla.ac.uk

7 ** Edward.Hutchinson@glasgow.ac.uk

8 ¹ MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom

9 ² Beatson Institute for Cancer Research, Glasgow, United Kingdom

10

11 Abstract

12 Influenza viruses can interact during coinfections, allowing viral fitness to be altered by genome
13 complementation and competition, and increasing population diversity through reassortment.
14 However, opportunities for these interactions are limited, as coinfection is blocked shortly after
15 primary infection by a process known as superinfection exclusion (SIE). We asked whether SIE, which
16 occurs at the level of individual cells, could limit within-host interactions between populations of
17 influenza viruses as they spread across regions of cells. We first created a simplified model of within-
18 host spread by infecting monolayers of cells with two isogenic influenza A viruses, each encoding a
19 different fluorophore, and measuring the proportion of coinfected cells. In this system SIE begins
20 within 2-4 hours of primary infection, with the kinetics of onset defined by the dose of primary virus.
21 We then asked how SIE controls opportunities for coinfection as viruses spread across a monolayer of
22 cells. We observed that viruses spreading from a single coininfected focus continued to coinfect cells as
23 they spread, as all new infections were of cells that had not yet established SIE. In contrast, viruses
24 spreading towards each other from separately infected foci could only establish minimal regions of
25 coinfection before SIE blocked further coinfection. This patterning was recapitulated in the lungs of
26 infected mice and is likely to apply to other viruses that exhibit SIE. It suggests that the kinetics of SIE
27 onset separate a spreading infection into discrete regions, within which interactions between virus
28 populations can occur freely, and between which they are blocked.

29 Importance

30 Viral fitness and diversity are altered by genome interactions, which occur when multiple viruses
31 coinfect a cell. This has been extensively studied for influenza A viruses (IAV), which use genome
32 reassortment to adapt to new hosts and create pandemic strains, and whose replication can be
33 compromised by the acquisition of defective-interfering RNAs. Coinfection of an individual cell by IAV
34 is restricted by the gradual onset of superinfection exclusion (SIE). Replication of IAVs within host
35 organisms involve the asynchronous replication of viruses as they spread to infect multiple cells. We

36 found that under these circumstances, SIE creates spatially separated sub-populations of IAV,
37 between which there are limited opportunities for genome interactions. Our work suggests SIE will
38 cause many viruses to segregate into distinct subpopulations within their hosts, constraining the
39 effects of genome interactions on their fitness and evolution.

40 Introduction

41 Influenza viruses are a major cause of morbidity and mortality from respiratory disease, and are
42 associated with an estimated 300,000 - 500,000 deaths globally in a typical year (1). Influenza A viruses
43 (IAVs) are an important public health risk due both to their ability to spread as seasonal epidemics and
44 also because they cause occasional influenza pandemics through the generation of novel influenza A
45 virus strains (2). Influenza is able to generate new pandemic strains through reassortment, which
46 occurs when the influenza genome segments of two or more differing influenza strains are exchanged
47 and packaged into new virions (3). For this to occur, the two parental viruses must infect the same cell
48 at the same time in a process known as coinfection.

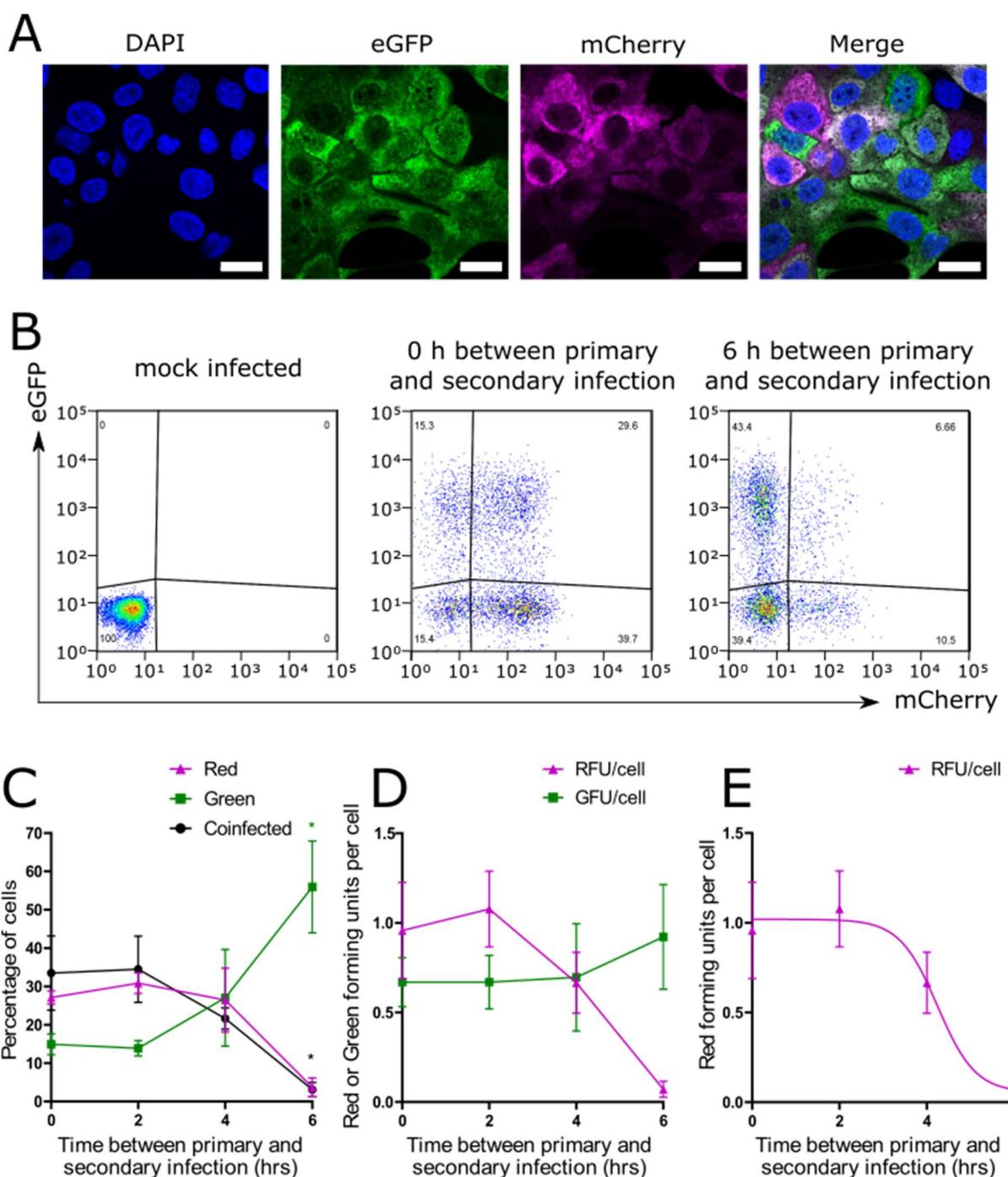
49 Coinfection allows genome interactions to occur between viruses, which can either increase or
50 decrease viral population fitness and diversity (4–6). An example of a genome interaction that reduces
51 viral fitness is interference mediated by defective interfering RNAs (DI-RNAs). DI-RNAs are viral
52 genome segments that carry a large internal deletion but which retain sequences necessary for
53 replication and packaging into new virus particles. They replicate faster than full-length segments as
54 they are shorter, and compete with them for incorporation into virus particles. Over multiple rounds
55 of infection, this competition reduces the amount of infectious material within the viral population
56 (7,8). Conversely, genome interactions can also increase viral fitness, as would occur if a virus
57 population gains a genome segment conferring a fitness advantage (for example an antiviral escape
58 mutation) through reassortment. Interactions between coinfecting virus genomes can also allow so
59 called “non-infectious” influenza particles to participate in productive infection (9). A subset of these
60 “non-infectious” particles are semi-infectious particles (SIPs), which do not contain a full set of
61 functional viral genome segments and make up the majority of IAV populations (10). SIPs must
62 coinfect with another particle to obtain the complete viral genome needed for a cell to produce new
63 virus particles. Therefore, genome interactions between SIPs can result in productive infections due
64 to ‘multiplicity reactivation’ (9–11). Therefore, coinfection allows genome interactions to occur
65 between viruses, which is an important modulator of viral population fitness and diversity.

66 There are multiple lines of evidence for IAV coinfections. Viral genomics demonstrates that
67 reassortment must occur to some degree during natural infections, implying the coinfection of cells.
68 Most obviously, influenza pandemics have arisen repeatedly by reassortment (12), and we can also
69 detect reassortant viruses when monitoring the viruses circulating in populations of host organisms
70 over a period of time (13–15). In an animal model of infection, a virus that was dependent on
71 coinfection for replication could be recovered from the guinea pig nasal passage following intranasal
72 inoculation, indicating that coinfection can occur within this host under sufficiently strong selection
73 (16). In carefully-controlled cell culture models of infection, reassortment can be frequent, and the
74 proportion of reassortants increases exponentially with the frequency of co-infection (17). However,
75 although coinfection of cells within a host organism is clearly possible, it is not been straightforward
76 to study this directly, and the spatial context of IAV coinfections within a host is not well understood
77 (18). Observations of discrete infectious foci have been made in the lungs of human patients and
78 animal models infected with IAV, indicating that the viruses can spread to directly adjacent cells during
79 infections (19–21). However, we have little information about how these foci spread and interact.
80 Outside of an experimental setting it is unlikely that two unrelated virus particles would reach the
81 same cell at exactly the same moment. Instead, one would expect unrelated viruses to replicate locally
82 within a host organism before eventually encountering the same cell. For this reason, we assume that
83 coinfection most commonly occurs by superinfection: the infection of a previously infected cell. With
84 many viruses the potential for superinfection is strongly limited, as following the initial infection
85 changes occur within a cell that progressively reduce its permissivity to secondary infection. This
86 phenomenon is known as superinfection exclusion (SIE) and has been described for numerous viruses
87 of bacteria, animals and plants (22–27). SIE occurs within a single cell between closely genetically
88 related viruses, and is distinct from viral interference, where the replication of one type of virus in a
89 host suppresses the replication of another (28). For SIE, the amount of time required for a cell to
90 become resistant to secondary infection varies depending on virus and cell type. For laboratory-
91 adapted influenza A viruses grown in monolayers of transformed cells, the time required between

92 primary and secondary infection for robust SIE is typically reported as around 6 hours (17,29). SIE is
93 known to limit the potential for genome interactions between viruses in a single cell, but its impact
94 on genome interactions as infections spread locally across multiple cells, as within a host organism, is
95 not clear.

96 We wished to ask how the onset of SIE, during IAV infections of individual cells, could constrain
97 interactions between populations of IAV spreading locally through multiple cells. To do this we needed
98 a model system for studying genome interactions within and between locally spreading populations
99 of IAV. Although the most striking evidence of IAV coinfections is genome reassortment, the
100 reassortment of unrelated viral genomes as a proxy measure of coinfection is likely to underpredict
101 the potential for coinfection between viruses, as many factors impact the ability of reassortant viruses
102 to reassort successfully, such as the compatibility of packaging signals and the synchronicity of the
103 viral lifecycle (30,31). We wished to use a system in which we could discount these incompatibility
104 effects, and in which we could also model the effects of SIE on interactions between the progeny of a
105 single infecting virus which, aside from random mutation, will be genetically identical. We therefore
106 chose to monitor coinfection using 'ColorFlu,' a system of isogenic reporter viruses that differ only in
107 the nature of a fluorophore tag fused to the NS1 protein. This approach has been previously developed
108 for influenza viruses for use both *in vitro*, and has been used to identify coinfecting cells *in vivo*
109 following high dose intranasal inoculation of mice (32,33).

110 In this study we used isogenic reporter viruses to examine how the onset of SIE constrains the sites of
111 coinfection between locally spreading populations of IAV. We observed that SIE begins early in
112 infection and is already partially established at 2-4 hours post primary infection, therefore providing
113 only a narrow window in which secondary infecting viruses can productively infect cells. This is a
114 robust barrier to superinfection – we show the rate of SIE onset is mainly determined by the number
115 of viral genomes delivered to the cell by primary infection, and that increasing the amount of
116 secondary infecting virus has little effect on the kinetics of SIE. Using a cell culture model, we found


117 that the kinetics of SIE onset leads to two distinct effects as viruses spread across multiple cells. Within
118 a single coinfecting focus of infection, SIE does not restrict coinfection between progeny viruses as the
119 plaque expands. However, when two separate and growing infected regions meet, SIE restricts
120 coinfection between their virus populations. This creates a pattern of discrete virus subpopulations,
121 which was recapitulated in lesions in the lungs of infected mice. Therefore, our data show that SIE
122 defines the regions where coinfection between IAVs can occur within a host, and hence controls the
123 ability of genome interactions to shape viral fitness and evolution.

124 **Results**

125 **Superinfection exclusion onset begins rapidly after primary influenza virus infection**

126 In order to measure the degree to which SIE affects coinfection between influenza viruses, we needed
127 to be able to distinguish non-infected, singly infected and coinfecting cells. In order to do this, we used
128 fluorescent reporter viruses (ColorFlu) (32). These viruses are derivatives of the laboratory-adapted
129 A/Puerto Rico/8/34 (PR8; H1N1) virus, which encode a fluorophore (in this study, either mCherry or
130 eGFP) in segment 8, which is expressed as a C-terminal fusion to the NS1 protein. As shown in figure
131 1A, when we used these viruses to infect Madin-Darby Canine Kidney carcinoma (MDCK) cells, the
132 cells appeared green (eGFP only; green in figures), red (mCherry only; magenta in figures) or yellow (if
133 coinfecting; white in figures, figure 1A). The isogenic ColorFlu viruses we used should have comparable
134 fitness. Indeed, when we monitored single cycle (Supplementary figure 1A) and multicycle
135 (Supplementary figure 1B) growth kinetics of the ColorFlu viruses we found no significant growth
136 advantage between eGFP and mCherry expressing viruses (Mann Whitney U Test, $p>0.05$). We
137 concluded that ColorFlu viruses would be a suitable tool for modelling the onset of SIE between closely
138 related viruses.

139

140
141 **Figure 1: IAV induces SIE between 2-4 hours following primary infection** (A) Confocal micrographs of
142 cells infected with ColorFlu viruses tagged with eGFP (green) or mCherry (magenta). Coexpression of
143 both fluorophores is coloured white. MDCK cells were grown on glass coverslips, infected with
144 ColorFlu viruses at MOI 0.5 for each virus, and fixed at 8 hpi. Images were obtained using a 64x
145 objective. (B) Flow cytometry of cells infected with tagged viruses. MDCK cells were infected with
146 Colorflu-eGFP before secondary infection at the time points indicated with ColorFlu-mCherry, with

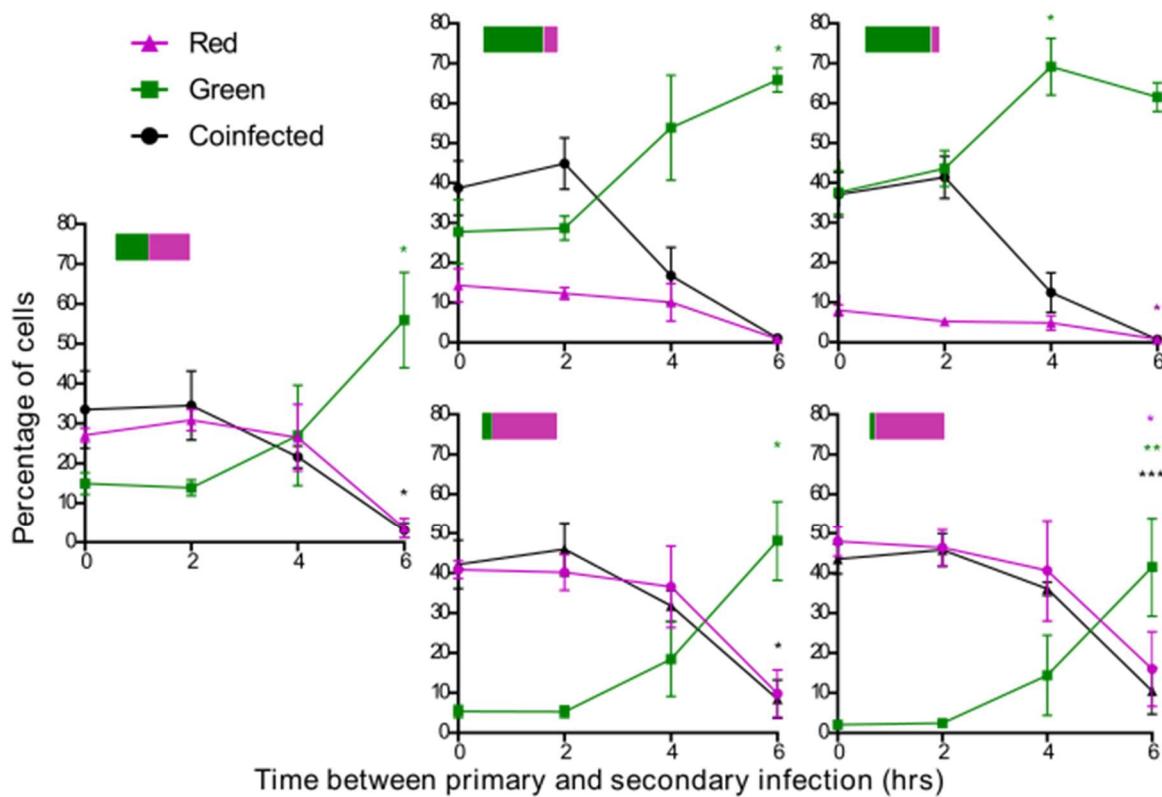
147 both viruses at MOI 1. Representative plots are shown. **(C)** Kinetics of onset of SIE, determined from
148 flow cytometry analysis. The means and s.d. of 4 independent experiments are shown. The
149 significance of differences from simultaneous infection were determined by Kruskal-Wallis test (*
150 p<0.05) **(D)** The amount of red and green forming units per cell (RFU, GFU), calculated from the
151 percentage of red, green and coinfecting cells under the assumption that infection follows a Poisson
152 distribution. The means and s.d. of 4 independent experiments are shown **(E)** A model describing an
153 exponential reduction in RFU, fitted to data shown in part B. Total sum of squares (SST) = 0.48.

154

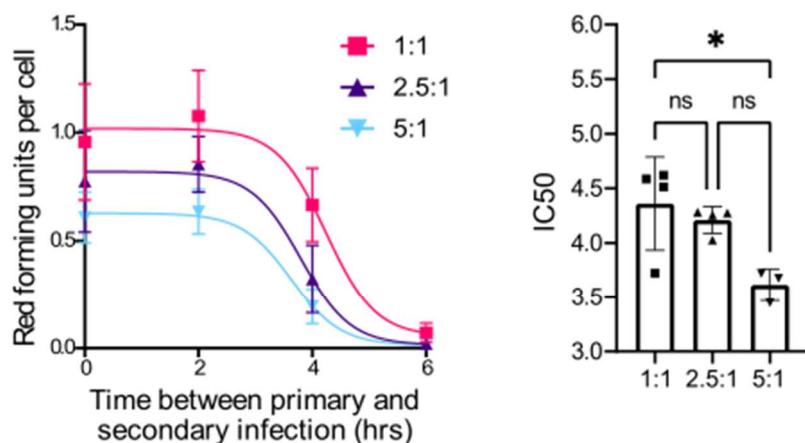
155 Once established, SIE blocks productive secondary infection, while prior to SIE onset cells are
156 permissive to coinfection. In previous studies complete exclusion of secondary IAV infection has been
157 detected by 6 hours post primary infection (34,35). We first wished to measure the onset of SIE in our
158 model, between the time points of 0-6 hours post primary infection, and to observe the kinetics of the
159 shift from permissivity to exclusion. To do this, we infected MDCK cells with eGFP-tagged (green) virus
160 and then infected with mCherry-tagged (red) virus, both at an MOI of 1 FFU/cell, varying the time
161 interval between the two infections. We then harvested the cells at 16 h after secondary infection and
162 measured fluorophore expression by flow cytometry (figure 1B). Initially, coinfection between the
163 viruses was unrestricted, but as the time between infection events was increased, the cells became
164 less permissive to secondary infection, meaning that a smaller proportion could express mCherry
165 (figure 1C). Exclusion onset in this system occurred when superinfection was between 2-4 h after
166 primary infection, and a significant reduction in the proportion of coinfecting cells (p=0.045, Kruskal-
167 Wallis test) was detectable by 6 hpi (figure 1C). Our data are consistent with previous studies in which
168 exclusion of the first virus was detectable if superinfection occurred 6 hours post primary infection,
169 and we additionally show a progressive shift from a permissive to exclusionary state beginning around
170 2h post primary infection.

171 To further investigate the kinetics of SIE onset, we wanted to consider how SIE affected the ability of
172 the primary (green) and secondary (red) viruses to infect cells. By measuring the proportion of
173 fluorescent cells and inferring what proportion had lost the expression of the red fluorophore, we
174 were able to quantify the extent of SIE. To do this we calculated the concentrations of viruses capable
175 of causing cells to become red or green ('red forming units' (RFU) per cell and 'green forming units'
176 (GFU) per cell, respectively), by assuming that simultaneously-administered viruses were able to infect
177 cells independently of each other and that infection could therefore be modelled by a Poisson
178 distribution. We found the GFU per cell remained stable as the interval between primary (green) and
179 secondary (red) infection was increased. However, the RFU per cell decreased rapidly after 2 hours,
180 showing that the red virus was excluded from the cells (figure 1D).

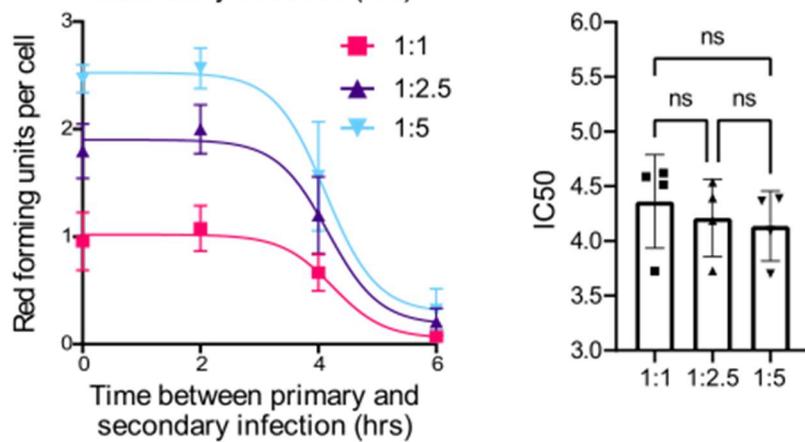
181 The mechanism for SIE in IAVs is not yet known, though it has previously been suggested that it may
182 require an actively replicating influenza polymerase (35). We reasoned that, as the products of viral
183 transcription and replication appear to accumulate exponentially in a newly infected cell (36,37), the
184 inhibitory factor that drives SIE might also increase exponentially following primary infection. If this
185 were the case, we would expect the changes in SIE to be a close fit to a model describing an
186 exponential reduction in the RFU per cell. To test this hypothesis, we fitted a log(inhibitor) model to
187 the RFU per cell over time (figure 1E). The model was a good fit to the data (total sum of squares (SST)
188 =0.48), making an exponentially increasing inhibitory factor a plausible explanation for the kinetics of
189 SIE in IAV (38).


190 The main viral determinant of superinfection exclusion kinetics is the amount of primary
191 infecting influenza virus

192 Once we could model the kinetics of SIE onset, we were able to examine the kinetics of SIE by asking
193 how changing the conditions of infection affected the model parameters. Under our model, the rate
194 of SIE onset could be assessed by the time between infections required for the maximum RFU per cell
195 to reduce by half (the time to IC50), which in our initial experiments was 4.24 (\pm 0.43) hours.


196 We first asked if we could speed up the onset of SIE by increasing the dose of primary virus. Therefore,
197 we repeated our measurements of SIE kinetics, increasing the input of the primary (green) virus from
198 a baseline MOI of 1 by either 2.5 or 5 fold (figure 2A) and determining the time to IC50 of SIE (figures
199 3 B, C). The exponential model was a good fit to the data under all conditions tested (SST \leq 1). When
200 the amount of primary infecting virus (ColorFlu-eGFP) was increased, the time to IC50 of SIE decreased
201 (figure 2B). For a 5-fold increase of the primary virus over the secondary infecting virus (ColorFlu-
202 mCherry) this difference was statistically significant ($p < 0.05$, Kruskal-Wallis test; figure 3B), indicating
203 that SIE kinetics are sensitive to the amount of primary input virus.

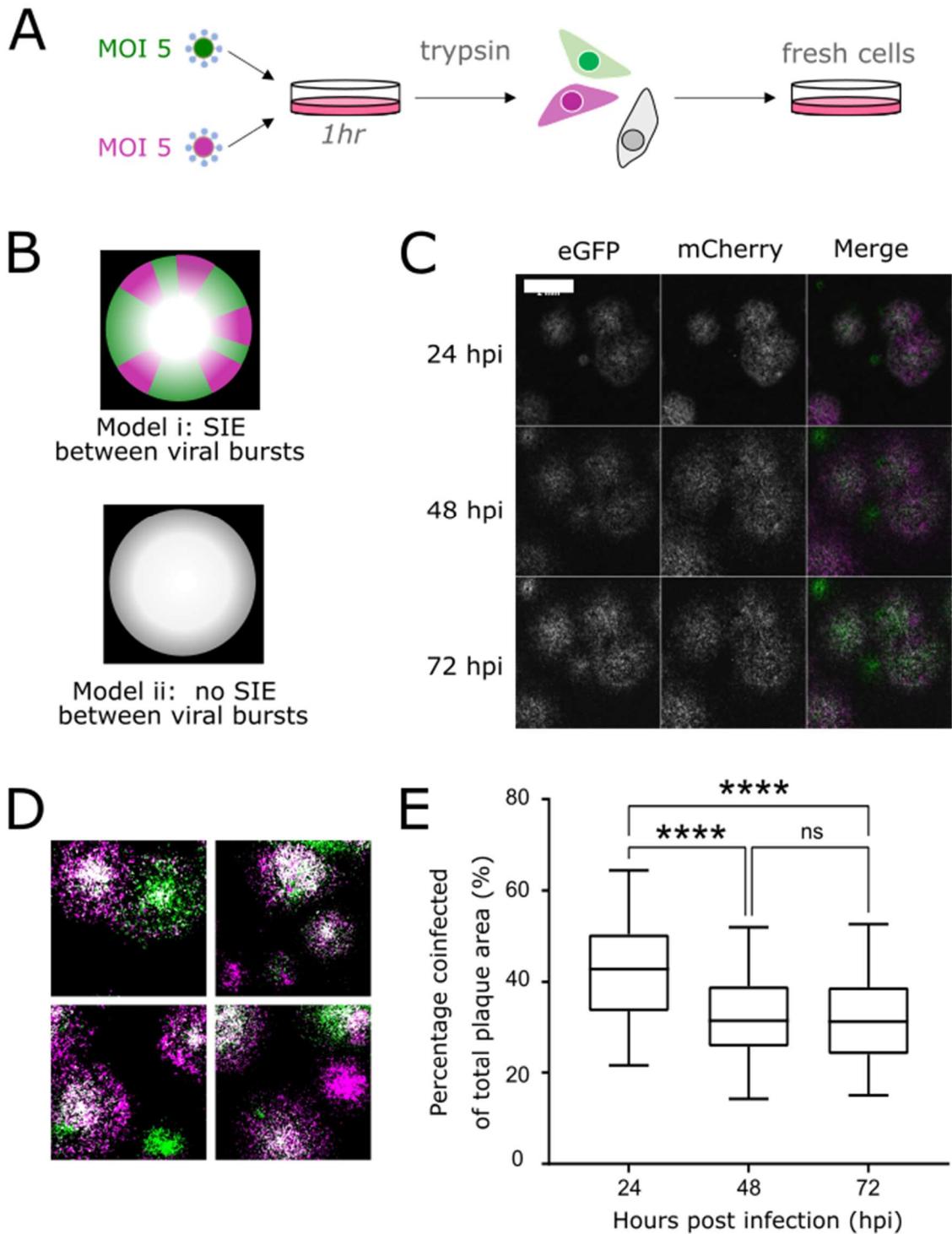
204


A

B

C

206 **Figure 2: SIE kinetics are sensitive to the amount of primary infecting genomes but not the amount**
207 **of secondary infecting genomes (A)** The effect of altering the ratios of primary (ColorFlu-eGFP, green)
208 or secondary (ColorFlu-mCherry, magenta) viruses on coinfection. MDCK cells were infected and
209 analysed by flow cytometry as in Figure 1, the ratios of viruses in each case are indicated as bars. The
210 means and s.d. of 4 independent experiments are shown. The significance of differences from
211 simultaneous infection was assessed using the Kruskal-Wallis test (*p<0.05, **P<0.01, ***p< 0.001)
212 **(B, C)** The effect of altering the ratios of primary **(B)** and secondary **(C)** viruses on SIE. The expression
213 of secondary virus (RFU) at the ratios shown was inferred from the data in A and fitted to an
214 exponential reduction model as in Figure 1. (Total sum of squares (SST) for 1:1, 2.5:1, 5:1 are 0.48,
215 0.31 and 0.064 respectively; and for 1:1, 1:2.5 and 1:5 are 0.48, 0.88 and 1.00 respectively.) For each
216 experiment the time between primary and secondary infection required for 50% inhibition was
217 calculated (IC50). RFU and inhibition times are shown, with the means and s.d. of 4 independent
218 experiments; for inhibition times the significance of differences from a 1:1 ratio were determined by
219 Kruskal-Wallis test (*p<0.05).


220
221 We reasoned that the primary infecting virus might exclude a superinfecting virus through direct
222 competition, for example by binding to cellular factors or occupying a subcellular niche (36,37). This
223 would be consistent with observations that within 2-4 hours of primary infection the amount of viral
224 RNA within an infected cell rises dramatically (39). If SIE is a form of competitive inhibition, we
225 reasoned that we might be able to partially overcome SIE by increasing the amount of secondary
226 infecting viral genomes entering the cell. When we increased the secondary (red) virus by 2.5 or 5-
227 fold, our exponential model remained a good fit to the data (SST \leq 1). However, we did not detect any
228 significant shift in IC50 value at the ratios we examined (p<0.05, Kruskal-Wallis test, figure 2C). This
229 shows that, within the range of MOIs tested, SIE kinetics are fairly insensitive to the amount of
230 secondary infecting virus.

231 When taken together, our data suggest that the amount of primary infecting virus sets the kinetics for
232 the onset of SIE and the secondary infecting virus has limited ability to overcome this. This suggests
233 that, once established, the switch from a permissive to exclusionary state in the cells is extremely hard
234 to overcome.

235 Superinfection exclusion does not restrict interactions between influenza viruses within a
236 spreading infection

237 After we defined the time frame for SIE onset, we wanted to investigate whether SIE prevents the
238 progeny viruses produced from an initial infection from interacting with each other as an infected
239 focus expands. To examine this we set up plaque assays, allowing viruses to propagate through MDCK
240 cells under agarose, as a simplified model of the foci of infection observed in infected patients (21).
241 To study interactions between the progeny of a single infected cell, we first infected MDCK cells with
242 a mixture of green and red viruses, both at an MOI of 5, to create a population of coinfected cells. At
243 1 h post-infection, before new virus particles were produced, we dispersed these infected cells using
244 trypsin, diluted them, and then applied them to a fresh MDCK monolayer and overlaid with agarose,
245 so that each coinfecting cell would be an individual plaque forming unit shedding both red and green
246 virus (experimental procedure in figure 3A).

247

248

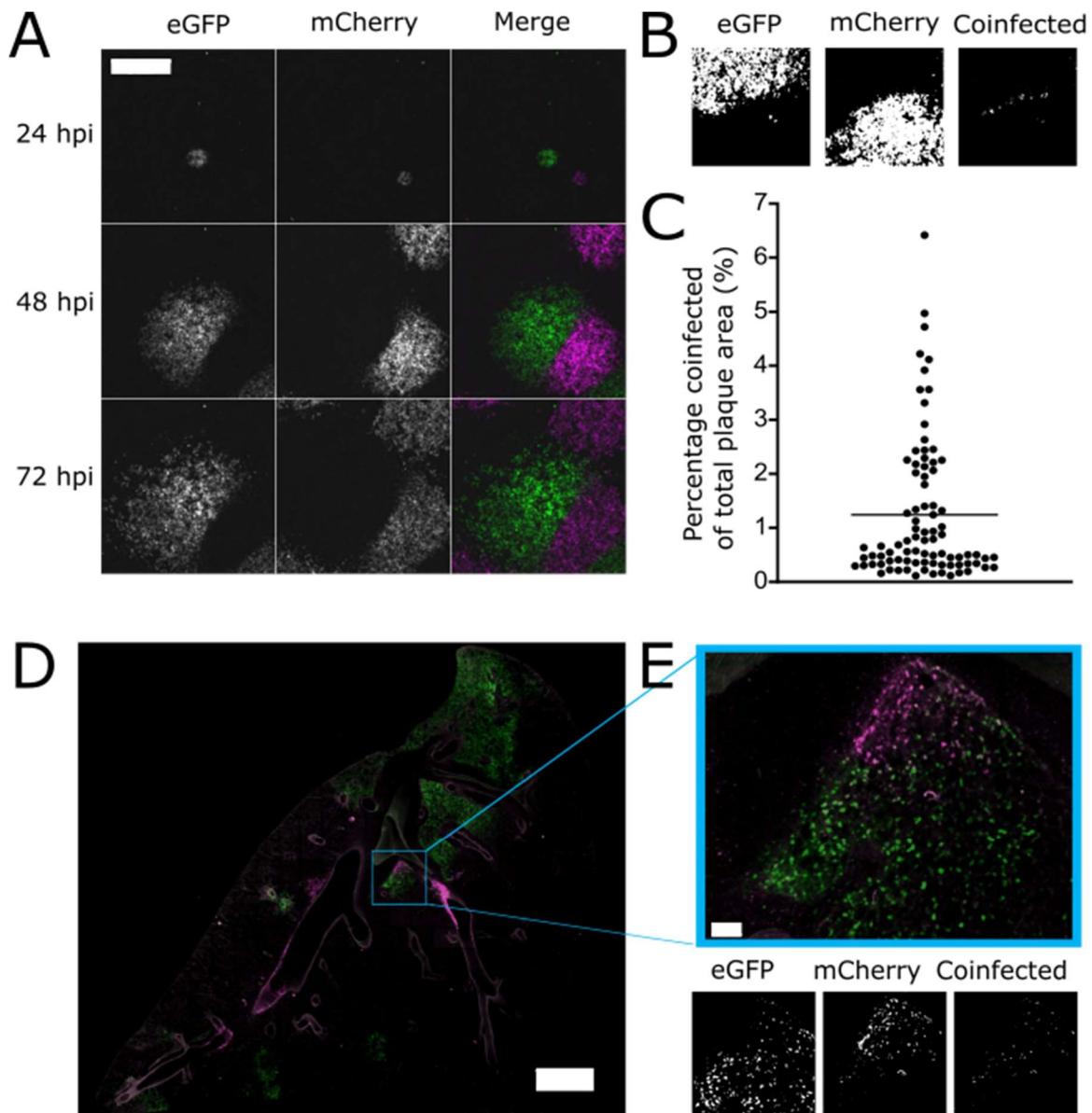
249 **Figure 3: SIE does not inhibit coinfection between IAVs from a single focus of infection (A)**

250 Experimental design for investigating the role of SIE in the spread of coinfected foci. **(B)** Proposed

251 models for the spread of coinfected foci. **(C)** Representative image of coinfected plaque spread.

252 Viruses were seeded onto monolayers of MDCK cells, overlayed with agarose and imaged every 24 h.
253 Images were taken on Celigo fluorescent microscope. Scale bar = 2mm **(D)** Representative images at
254 48 hpi with applied binary threshold to distinguish coinfected cells (white) from singly infected cells
255 (magenta or green) **(E)** Percentage of coinfecting areas in comparison to total infected area, calculated
256 from images taken at each time point. Box and whisker plots show the percentage areas from
257 individual fields of view (n=71) from one experiment. The significance of differences between
258 timepoints was tested by One-Way ANOVA (**** P<0.0001).

259
260 We hypothesised two possibilities for how the viral progeny of these cells would interact to produce
261 plaques, either (i) rapid SIE onset would inhibit coinfection, resulting in the initial yellow focus
262 segregating into discrete regions where one fluorophore would dominate, or (ii) SIE would not develop
263 quickly enough to prevent coinfections at the plaque edge, and so the plaque would remain coinfecting
264 as it expands (figure 3B). We observed that as coinfecting plaques expanded, both fluorophores were
265 expressed across the entire plaque area (figure 3C). Therefore, we concluded that the cells at the
266 leading edge of the plaque were receiving multiple viruses quickly enough for coinfection to occur
267 before the effective onset of SIE.


268 Although both mCherry and eGFP expression could be detected across the plaques, we did notice that
269 coinfecting cells were concentrated towards the middle of the plaque area (figure 3D). To quantify this,
270 we measured the areas of individual plaques that were coinfecting compared to their total area. We
271 found the coinfecting portion of plaques is at its highest at 24hpi and is significantly reduced in the
272 larger plaques that form by both 48hpi and 72hpi (figure 3E, p<0.0001 in both cases). This change in
273 the distribution of fluorescent cells may not be due to changes in SIE however, as live-cell imaging
274 showed infected cells migrating to the centre of plaques, presumably as they began to die
275 (Supplementary Movie 1). Taking our data together, we concluded that the kinetics of SIE allow
276 coinfection to occur freely between the progeny viruses from a focus of infection.

277

278 Superinfection exclusion strongly inhibits coinfection between established regions of influenza
279 virus infection

280 Next, we wanted to assess whether coinfection was restricted when viruses from two separate foci of
281 infection expand and interact with each other. Previous studies have shown that IAV reassortment
282 can be readily detected both *in vivo* and *in vitro* (17,40). This indicates that coinfection between
283 different strains is possible despite the restrictions of SIE but it does not give us information as to how
284 this occurs in the spatial context of influenza viruses as they spread. In a natural infection we assume
285 that it is unlikely that multiple ‘incoming’ viruses would reach the same cell within a short space of
286 time. Instead, we assume that coinfection of cells with different strains of virus typically occurs
287 through interactions between the progeny of separate foci of infection. To model the interactions
288 between spreading foci of infection, we infected MDCK monolayers at a low MOI with green and red
289 viruses, overlaid with agarose and imaged the spread of plaques every 24 h for 72 h. We observed
290 that, as adjacent plaques expressing different fluorophores grew towards each other, regions of cells
291 expressing different fluorophores remained almost entirely distinct (figure 4A, further examples in
292 supplementary data 2). On close examination, we observed a very thin boundary region of cells in
293 which both fluorophores were expressed (figure 4B). Image analysis showed that the coinfecting
294 region at 72hpi was around 1% of the total plaque area (figure 4C). This indicates that only a small
295 region of coinfection was possible before further interactions were blocked by the onset of SIE.

296

298 **Figure 4: SIE allows only a small region of coinfection when two established regions of IAV infection**
299 **meet (A)** Representative image of plaque interaction. Viruses were seeded onto monolayers of MDCK
300 cells, overlayed with agarose and imaged every 24 hours. Images taken on Celigo fluorescent
301 microscope. Scale bar = 2mm **(B)** Representative plaque with coinfected region highlighted. Images
302 were applied with a binary threshold and the pixels where both red and green fluorescence were
303 generated into a separate image displaying coinfection **(C)** Percentage of coinfected areas in
304 comparison to total plaque area was calculated from images taken at 72hpi. Each point represents
305 the percentage area from a single field of view (n=86) from one experiment and the line represent the
306 mean. **(D)** Images of lung sections from infected mice 6dpi. B57BL/6 mice were intranasally inoculated

307 with mixtures of mCherry and eGFP expressing viruses (500 pfu of each virus). Lung sections at 6 days
308 post infection were imaged using [confocal microscope] using 20x objective lens. Whole lung image,
309 scale bar = 1500 μ m, for enlarged image of indicated area, scale bar = 100 μ m. **(E)** Image of
310 representative lesion with coinfected region highlighted. Images were processed as described in (B).

311

312 To investigate whether this exclusion phenotype was relevant to infections *in vivo*, we performed a
313 version of this experiment in which IAV spreads through the lung of a mouse. To do this, we infected
314 C57BL/6 mice intranasally with a mixture of Colorflu-eGFP and ColorFlu-mCherry (500 PFU of each
315 virus), took sections of lungs from mice at day 3 or 6 post-infection, and looked for regions where red
316 and green foci of infection were interacting. Images of lungs harvested at day 3 suggested that the
317 initial sites of infection were mainly in the bronchi (supplementary data 3). Consistent with previous
318 reports (32), coinfection was visible at many of these sites, which presumably received a high dose of
319 both viruses simultaneously. However, by day 6 infection had spread into the alveoli and established
320 distinct red and green lesions. At this time point we observed multiple instances where red and green
321 lesions were adjacent to each other but maintained a distinct boundary, despite a lack of obvious
322 anatomical compartmentalisation (figure 4D, additional examples in supplementary data 4). This
323 recapitulates the phenotype we observed in cell culture, and indicates that the spatial segregation of
324 viral subpopulations we observed in that reductionist model also occurs during the propagation of
325 viruses within a host organism. We therefore concluded that, when two initially separate regions of
326 influenza virus infection spread and contact each other, the kinetics of SIE ensure that the potential
327 for coinfection between these viral populations is severely inhibited.

328

329 **Discussion**

330 SIE has been observed for many different viruses, whose hosts include plants, bacteria and animals
331 (22–27). Although SIE is a widespread property of viruses it can be achieved through many different
332 mechanisms, and its implications for the evolution of medically important viruses, such as the
333 influenza viruses, is not well understood. SIE constrains the ability of related viruses to coinfect cells,
334 as can occur when viruses replicate and spread locally through cells within a host organism. The
335 context of this stage in viral replication – between an initiating infection of an individual cell and the
336 transmission of replicated virus to new host organisms – is usually sequestered inside the host
337 organism and is challenging to study directly (18). Here, we used a simplified cell culture model of
338 infection using isogenic, fluorescently tagged IAV to derive a model for how the kinetics of SIE onset
339 limit coinfection during spreading IAV infections, and then showed that the patterns of infection this
340 predicts are recapitulated in experimental infection of the mouse respiratory tract. We show that that
341 during the local spread of IAV infection from cell to cell, SIE defines the regions where coinfection can
342 and cannot occur. Our data show that the kinetics of SIE onset in a spreading infection allow ongoing
343 genetic interactions between the viral progeny of a single infected focus, but strongly inhibit genetic
344 interactions between viruses from distinct foci of infection.

345 IAVs have come to be seen as particularly capable of coinfection, in part because of the importance of
346 reassortment in generating new pandemic strains of IAV through ‘antigenic shift.’ In addition to
347 inferences from the natural evolution of IAV, reassortment of IAV during coinfection can be
348 demonstrated experimentally both *in vivo* and *in vitro* (17,40). These observations contrast strikingly
349 with our own data, which show that SIE should impose severe restrictions on coinfection between
350 viruses that propagate locally within a host. There could be several plausible explanations for why
351 reassortant IAVs are regularly detected despite the effects of within-host SIE. Firstly, when considering
352 epidemiological evidence for reassortment, the number of host organisms infected by IAVs is
353 extremely large (38,41), providing ample opportunities even for rare interactions between viral
354 strains within a host. Secondly, when considering experimental studies of reassortment and

355 coinfection within animals, the studies are often designed using high concentrations of viruses
356 administered by artificial routes such as intranasal inoculation of mammals or injection into
357 embryonated chicken eggs (32,42,43). The delivery of a high concentration of viruses in a small
358 window of time to the same anatomical site would be expected to increase the likelihood of
359 coinfection of cells during an initial infection, when compared to natural infections. Our data are
360 compatible with coinfection occurring naturally as a rare event, but indicate that the interaction of SIE
361 with the spatial dynamics of virus spread will establish previously unstudied barriers to reassortment
362 in natural infections.

363

364 Although we found that interactions between viruses from separate established infections were
365 strongly inhibited by SIE, we also found that the progeny of a single parental virus infection were free
366 to interact with each other through coinfections, unhindered by the onset of SIE. While this does not
367 allow the reassortment of genomes from different viral strains, it could still have implications for the
368 fitness of the population. Namely, it allows the semi-infectious progeny virions which make up the
369 majority of the viral population (10) to complement each other. Coinfection allows these otherwise
370 “non-infectious” virus particles to contribute to productive infections (44,45). Stochastic simulations
371 in bacteriophage have demonstrated that viral populations that are incapable of initiating SIE are more
372 able to fix beneficial mutations (46). Therefore, unrestricted coinfection between the progeny of a
373 virus could help to maintain viral population fitness. However, it would also leave the viral population
374 vulnerable to interference mediated by DI-RNAs. This is especially true as the surrounding cells receive
375 many hundreds of virions as the plaque expands, and high MOI infections increase the likelihood of
376 DI-RNA generation (5,47). Although this could lead to an individual lesion being overtaken by DI-RNAs,
377 our model suggests that DI-RNAs generated in one lesion would not be able to overtake the viruses in
378 a separate adjoining lesion due to established SIE preventing coinfection.

379 The results from our model confirm previous findings that SIE restricts coinfections of influenza viruses
380 that occur after 6 h of primary infection (29,35,48). Furthermore, they show that SIE becomes
381 detectable between 2 and 4 h after primary infection and then becomes increasingly effective. A
382 number of models could be consistent with these data, but a model that proposes an exponentially
383 increasing inhibitory factor is consistent with the exponential accumulation of viral products from the
384 primary infecting virus (39), and is therefore consistent with previous observations indicating a
385 connection between SIE and the presence of replicating influenza polymerase complexes (35). This
386 exponential inhibition model is also consistent with previous work showing that more coinfecting cells
387 could be detected if fewer replication-competent genome segments were delivered during primary
388 infection (35), and with our data showing that the amount of primary infecting genomes determines
389 the kinetics of SIE onset, as exponential relationships are sensitive to their starting parameters. More
390 work is required to determine if the mechanism of IAV SIE is due directly to the accumulation of
391 products of replicating polymerases (either RNA transcripts or, indirectly, viral proteins), to a host-
392 encoded factor that is produced in response to polymerase activity, or to a combination of effects.

393 Importantly, our model of the effects of SIE in a locally spreading IAV infection relies on the kinetics
394 of SIE onset, rather than on a specific mechanism. It should therefore be generalisable to the large
395 number of other viruses that establish SIE gradually during the infection of a cell, propagate locally
396 within a host, and whose fitness and evolution are shaped by genetic exchange between viruses during
397 coinfection. Our data imply that within a host's tissues, at a scale between the well-studied extremes
398 of an individual cell and a population of host organisms, viruses will naturally segregate out into a
399 complex microscopic landscape of subpopulations, whose genetic interactions are controlled by SIE.

400 Materials and Methods

401 Cells and Viruses

402 Madin-Darby Canine Kidney (MDCK) cells (a gift from Prof. P Digard at the Roslin Institute, University
403 of Edinburgh) and human embryonic kidney (HEK) 293T cells (a gift from Prof. S Wilson, MRC-

404 University of Glasgow Centre for Virus Research) were maintained in complete media (Dulbecco's
405 Modified Eagle Medium (DMEM, Gibco) supplemented with 10% Foetal Bovine Serum (FBS, Gibco)).
406 All cells were maintained at 37°C and 5% CO₂ in a humidified incubator.
407 The wild-type (WT) PR8 was generated in HEK293T cells using the pDUAL reverse genetics system, a
408 gift of Prof Ron Fouchier (Erasmus MC Rotterdam); as previously described (34). ColorFlu viruses
409 (ColorFlu-eGFP and ColorFlu-mCherry) were rescued in HEK293T cells from plasmids encoding the NS
410 segment supplied by Prof. Y. Kaowaoka (University of Wisconsin-Madison, University of Tokyo), in
411 addition to WT PR8 pDUAL plasmids edited to contain the compensatory mutations (HA T380A and
412 PB2 E712D) as previously described (22). The viruses were then passaged at low MOI in viral growth
413 media (VGM) (DMEM with 0.14% (w/v) bovine serum albumin (BSA) and 1µg/µl TPCK-treated trypsin)
414 to create a working stock.

415 Virus plaque titres in plaque forming units per mL (PFU/mL) were obtained in MDCK cells under
416 agarose, following the procedure of Gaush and Smith (49).

417 Mouse Infections

418 C57BL/6 mice (Charles River, UK) were infected intranasally with a total of 1000 PFU of ColorFlu viruses
419 (an equal mixture of mCherry and eGFP variants). All animal work was carried out in line with the EU
420 Directive 2010/63/eu and Animal (Scientific Procedures) Act 1986, under a project licence P72BA642F,
421 and was approved by the University of Glasgow Animal Welfare and Ethics Review Board. Animals
422 were housed in a barriered facility proactive in environmental enrichment.

423 Immunofluorescence and Imaging

424 Confocal images of infected cells were obtained by infecting cells on coverslips, with an MOI of 0.5
425 (based on plaque titre) for each of the ColorFlu viruses, for 8 hours before fixation in 4% (v/v)
426 formaldehyde diluted in PBS (Sigma). Following fixation, the cells were rinsed in PBS and the nucleus
427 stained with 4',6-diamidino-2-phenylindole (DAPI, ThermoFisher). Coverslips were then mounted and

428 imaged with the Zeiss Laser Scanning 710 confocal microscope images were processed using Zeiss Zen
429 2011 software.

430 To obtain images of viruses spreading from a coinfected focus, MDCK cell monolayers were infected
431 with mCherry and eGFP tagged viruses both at an MOI of 5. At 1h p.i., the infected cells were dispersed
432 with TrypLE express for 15 minutes (ThermoFisher) and diluted in VGM to create a suspension that
433 was applied to fresh MDCK cell monolayers. The cells were left to settle for 4 h, after which an agarose
434 overlay was added and infections were left to proceed, as in a standard plaque assay.

435 To obtain images of interactions between initially separate foci of infection, MDCK cell monolayers
436 were infected with a diluted mixture of mCherry and eGFP tagged ColorFlu viruses after which an
437 agarose overlay was applied and infections were left to proceed as in a standard plaque assay. The
438 infected plates were imaged through the agarose every 24 hours in a Celigo imaging cytometer
439 (Nexcelom). Images were processed in FIJI ImageJ (50) using custom macros which can be accessed
440 here: <https://github.com/annasimsbiol/colorflu>

441 To obtain live cell images of spreading infections, ColorFlu-eGFP and mCherry viruses were diluted in
442 VGM to an MOI of 0.5 (PFU/mL) and applied to confluent MDCK cell monolayers. Following a 1 h
443 incubation the inoculum was removed and agarose was overlaid, as in a standard plaque assay
444 procedure (1). The plate was transferred to an Observer Z1 live-cell imaging microscope (Zeiss, USA),
445 and a tile from a well was imaged every 15 mins over 72h. The acquired videos were compiled using
446 Zen (Zeiss).

447 To obtain images of infections in mice, at the indicated number of days post infection animals were
448 sacrificed and their lungs inflated with 2% low melt agarose. Lungs were then fixed in PLP buffer (0.075
449 M lysine, 0.37 M sodium phosphate (pH 7.2), 2% formaldehyde, and 0.01 M NaIO₄) overnight, 300 µm
450 sections of lung were cut using a vibrotome, and imaging was performed using an LSM 880 confocal
451 microscope (Zeiss) using a 20x objective at 0.6x digital zoom with 5 µm z steps. Images were stitched
452 and a maximum intensity projections were made using Imaris software (version 9.7.0, Bitplane, USA).

453 **Viral Growth Kinetics**

454 For single cycle growth kinetics, viruses were applied to confluent MDCK monolayers at an MOI of 2.5
455 and the cells were incubated with the inoculum for 1 h at 37°C and 5% CO₂ in a humidified incubator
456 to allow the viruses to enter cells. Following this, the inoculum was removed, and the cells bathed in
457 acid wash (10mM HCL and 150mM NaCl in MiliQ-water, pH3) for 1 minute after which fresh VGM was
458 added. Media were sampled at the time points indicated, clarified by low-speed centrifugation and
459 stored at -80°C before titration by plaque assay.

460 Multicycle kinetics were determined as above, except that the cells were infected at an MOI of 0.001
461 and the acid wash step was omitted.

462 **Flow cytometry**

463 MDCK cells were inoculated for 1 hour with ColorFlu-eGFP viruses diluted in VGM at the MOI indicated.
464 After 1 hour the inoculum was removed and replaced with complete media. After the time intervals
465 indicated, cells were inoculated for 1 h with Colorflu-mCherry, at the MOI indicated. After 1 h the
466 inoculum was removed and replaced with complete media, and the cells were incubated for a further
467 16 h at 37 °C. The proportions of cells expressing the different fluorophores were assessed using a
468 Guava easyCyte HT System cytometer (Luminex). Briefly, infected and mock-infected MDCK
469 monolayers were dissociated TrypLE express for 15 minutes (ThermoFisher) and dispersed into a
470 single-cell suspension before fixation in 2% formaldehyde (v/v) in PBS. Each sample was prepared in
471 technical triplicate and the data were analysed in FlowJo software v10.6. The thresholds for assessing
472 positive detection of either red or green fluorophore was set using the mock-infected cells as a
473 negative control.

474 **Modelling**

475 The MOI of viruses that could cause fluorescence in different channels (red forming units (RFU) and
476 green forming units (GFU) per cell) was calculated under the assumptions that viruses that are added

477 to cells at the same time infect independently of each other and that all cells are equally susceptible
478 to infection, meaning that the number of viruses infecting each cell follows a Poisson distribution (51).
479 Under these assumptions, the mean number of fluorescent forming units (FFU) (of a particular colour)
480 infecting a cell is given by $-\ln(1 - (F + C))$, where F is the proportion of cells that only express the
481 fluorophore of interest and C is the proportion of coinfecting cells that express both fluorophores. The
482 change in RFU per cell with increasing intervals between primary and secondary infection was fitted
483 to a model describing an exponential decrease using a four-parameter logistic curve (log(inhibitior) vs
484 response model with variable slope) using GraphPad Prism (version 9; GraphPad).

485 Acknowledgements

486 We acknowledge funding from the UK Medical Research Council (MRC) as studentships to A.S.
487 [MC_ST_CVR_2019] and J.W. [MC_ST_U18018], as CVR core funding to C.B. [MC_UU_12014/5] and as
488 a Career Development Award and Transition Support Award to E.H. [MR/N008618/1 and
489 MR/V035789/1]; funding from the University of Glasgow to E.H., and funding from Cancer Research
490 UK (CRUK) to E.R. [A_BICR_1920_Roberts]. The authors declare no conflicts of interest.

491 Author Contributions

492 A.S.: conceptualisation, visualisation, methodology, investigation, writing - original draft and
493 presentation, L.B.T.: conceptualisation, visualisation, methodology, investigation S.J.:
494 conceptualisation, visualisation, methodology, investigation C.P.: methodology, investigation R.D.:
495 methodology, investigation J.H.: conceptualisation, visualisation, methodology, C.L.: visualisation,
496 methodology, J.W.: conceptualisation, methodology, E.S.: conceptualisation, methodology, L.T.:
497 conceptualisation, methodology, C.B.: supervision, E.R.: methodology, investigation, visualisation,
498 E.H.: conceptualisation, methodology, supervision, writing - review and editing.

499 References

500

501 1. Paget J, Spreeuwenberg P, Charu V, Taylor RJ, Iuliano AD, Bresee J, et al. Global mortality
502 associated with seasonal influenza epidemics: New burden estimates and predictors from the
503 GLaMOR Project. *J Glob Health.* 2019;9(2):1–12.

504 2. Kim H, Webster RG, Webby RJ. Influenza Virus: Dealing with a Drifting and Shifting Pathogen.
505 *Viral Immunol.* 2018 Mar;31(2):174–83.

506 3. Steel J, Lowen AC. Influenza A virus reassortment. *Curr Top Microbiol Immunol.* 2014;385:377–
507 401.

508 4. Brooke CB. Population Diversity and Collective Infection. *2017;91(22):1–13.*

509 5. Vignuzzi M, López CB. Defective viral genomes are key drivers of the virus–host interaction. *Nat
510 Microbiol [Internet].* 2019;4(7):1075–87. Available from: <http://dx.doi.org/10.1038/s41564-019-0465-y>

512 6. Andreu-Moreno I, Sanjuán R. Collective Infection of Cells by Viral Aggregates Promotes Early
513 Viral Proliferation and Reveals a Cellular-Level Allee Effect. *Curr Biol.* 2018 Oct 22;28(20):3212–
514 3219.e4.

515 7. Davis AR, Nayak DP. Sequence relationships among defective interfering influenza viral RNAs.
516 *Proc Natl Acad Sci U S A.* 1979;76(7):3092–6.

517 8. Ziegler CM, Botten JW. Defective Interfering Particles of Negative-Strand RNA Viruses. *Trends
518 Microbiol [Internet].* 2020;0–11. Available from: <https://doi.org/10.1016/j.tim.2020.02.006>

519 9. Brooke CB. Biological activities of “noninfectious” influenza A virus particles. *Future Virol.*
520 2014;9(1):41–51.

521 10. Brooke CB, Ince WL, Wrammert J, Ahmed R, Wilson PC, Bennink JR, et al. Most Influenza A
522 Virions Fail To Express at Least One Essential Viral Protein. *J Virol.* 2013 Mar 15;87(6):3155–62.

523 11. Farrell A, Brooke C, Koelle K, Ke R. Coinfection of semi-infectious particles can contribute
524 substantially to influenza infection dynamics. *bioRxiv [Internet].* 2019;1–27. Available from:
525 <http://dx.doi.org/10.1101/547349>

526 12. Hutchinson EC. Influenza Virus. *Trends Microbiol.* 2018;26(9):809–10.

527 13. Postnikova Y, Treshchalina A, Boravleva E, Gambaryan A, Ishmukhametov A, Matrosovich M,
528 et al. Diversity and reassortment rate of influenza a viruses in wild ducks and gulls. *Viruses.*
529 2021;13(6):1–14.

530 14. Hill NJ, Hussein ITM, Davis KR, Ma EJ, Spivey TJ, Ramey AM, et al. Reassortment of Influenza A
531 Viruses in Wild Birds in Alaska before H5 Clade 2.3.4.4 Outbreaks. *Emerg Infect Dis [Internet].*
532 2017 Apr;23(4):654–7. Available from: <https://pubmed.ncbi.nlm.nih.gov/28322698>

533 15. Cui Y, Li Y, Li M, Zhao L, Wang D, Tian J, et al. Evolution and extensive reassortment of H5
534 influenza viruses isolated from wild birds in China over the past decade. *Emerg Microbes Infect
535 [Internet].* 2020 Jan 1;9(1):1793–803. Available from:
536 <https://doi.org/10.1080/22221751.2020.1797542>

537 16. Jacobs NT, Onuoha NO, Antia A, Steel J, Antia R, Lowen AC. Incomplete influenza A virus
538 genomes occur frequently but are readily complemented during localized viral spread. *Nat
539 Commun* [Internet]. 2019;10(1). Available from: [http://dx.doi.org/10.1038/s41467-019-11428-x](http://dx.doi.org/10.1038/s41467-019-
540 11428-x)

541 17. Marshall N, Priyamvada L, Ende Z, Steel J, Lowen AC. Influenza Virus Reassortment Occurs with
542 High Frequency in the Absence of Segment Mismatch. *PLoS Pathog*. 2013 Jun;9(6).

543 18. Gallagher ME, Brooke CB, Ke R, Koelle K. Causes and consequences of spatial within-host viral
544 spread. *Viruses*. 2018;10(11):1–23.

545 19. Manicassamy B, Manicassamy S, Belicha-villanueva A, Pisanelli G, Pulendran B. Analysis of in
546 vivo dynamics of influenza virus infection in mice using a GFP reporter virus. 2010;107(25):11531–6.

548 20. Brand JMA Van Den, Stittelaar KJ, Amerongen G Van, Reperant L, De L, Osterhaus ADME, et al.
549 Comparison of Temporal and Spatial Dynamics of Seasonal H3N2, Pandemic H1N1 and Highly
550 Pathogenic Avian Influenza H5N1 Virus Infections in Ferrets. 2012;7(8).

551 21. Guarner J, Shieh WJ, Dawson J, Subbarao K, Shaw M, Ferebee T, et al. Immunohistochemical
552 and in situ hybridization studies of influenza A virus infection in human lungs. *Am J Clin Pathol*.
553 2000 Aug;114(2):227–33.

554 22. Phipps KL, Ganti K, Jacobs NT, Lee C, Carnaccini S, White MC, et al. Collective interactions
555 augment influenza A virus replication in a host-dependent manner. *Nat Microbiol* [Internet].
556 Available from: <http://dx.doi.org/10.1038/s41564-020-0749-2>

557 23. Zou G, Zhang B, Lim P-Y, Yuan Z, Bernard KA, Shi P-Y. Exclusion of West Nile Virus Superinfection
558 through RNA Replication. *J Virol*. 2009;83(22):11765–76.

559 24. Schaller T, Appel N, Koutsoudakis G, Kallis S, Lohmann V, Pietschmann T, et al. Analysis of
560 Hepatitis C Virus Superinfection Exclusion by Using Novel Fluorochrome Gene-Tagged Viral
561 Genomes. *J Virol*. 2007;81(9):4591–603.

562 25. Laliberte JP, Moss B. A Novel Mode of Poxvirus Superinfection Exclusion That Prevents Fusion
563 of the Lipid Bilayers of Viral and Cellular Membranes. *J Virol*. 2014;88(17):9751–68.

564 26. Zhang XF, Sun R, Guo Q, Zhang S, Meulia T, Halfmann R, et al. A self-perpetuating repressive
565 state of a viral replication protein blocks superinfection by the same virus. *PLoS Pathog*.
566 2017;13(3):1–24.

567 27. McAllister WT, Barrett CL. Superinfection exclusion by bacteriophage T7. *J Virol*.
568 1977;24(2):709–11.

569 28. Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and Immunological Outcomes
570 of Coinfections. *Clin Microbiol Rev*. 2018 Oct;31(4).

571 29. Dou D, Hernández-Neuta I, Wang H, Östbye H, Qian X, Thiele S, et al. Analysis of IAV Replication
572 and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method. *Cell Rep*.
573 2017;20(1):251–63.

574 30. Greenbaum BD, Li OTW, Poon LLM, Levine AJ, Rabadian R. Viral reassortment as an information
575 exchange between viral segments. *Proc Natl Acad Sci U S A.* 2012;109(9):3341–6.

576 31. White MC, Lowen AC. Implications of segment mismatch for influenza A virus evolution. *J Gen*
577 *Virol.* 2018;99(1):3–16.

578 32. Fukuyama S, Katsura H, Zhao D, Ozawa M, Ando T, Shoemaker JE, et al. Multi-spectral
579 fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies. *Nat*
580 *Commun.* 2015;6.

581 33. Bodewes R, Nieuwkoop NJ, Verburgh RJ, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF.
582 Use of influenza A viruses expressing reporter genes to assess the frequency of double
583 infections in vitro. *J Gen Virol.* 2012;93(8):1645–8.

584 34. Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A virus cell entry, replication, virion
585 assembly and movement. Vol. 9, *Frontiers in Immunology*. Frontiers Media S.A.; 2018.

586 35. Sun J, Brooke CB. Influenza A Virus Superinfection Potential Is Regulated by Viral Genomic
587 Heterogeneity. *MBio.* 2018;9(5):1–13.

588 36. Vester D, Lagoda A, Hoffmann D, Seitz C, Heldt S, Bettenbrock K, et al. Real-time RT-qPCR assay
589 for the analysis of human influenza A virus transcription and replication dynamics. *J Virol*
590 *Methods.* 2010;168(1–2):63–71.

591 37. Hatada E, Hasegawa M, Mukaigawa J, Shimizu K, Fukuda R. Control of influenza virus gene
592 expression: Quantitative analysis of each viral RNA species in infected cells. *J Biochem.*
593 1989;105(4):537–46.

594 38. Hutchinson EC, Yamauchi Y. Understanding Influenza. In: Yamauchi Y, editor. *Influenza Virus: Methods and Protocols* [Internet]. New York, NY: Springer New York; 2018. p. 1–21. Available
595 from: https://doi.org/10.1007/978-1-4939-8678-1_1

596 39. Frensing T, Kupke SY, Bachmann M, Fritzsche S, Gallo-ramirez LE, Reichl U. Influenza virus
597 intracellular replication dynamics , release kinetics , and particle morphology during
598 propagation in MDCK cells. *Appl Microbiol Biotechnol* [Internet]. 2016;7181–92. Available from:
599 <http://dx.doi.org/10.1007/s00253-016-7542-4>

600 40. Fonville JM, Marshall N, Tao H, Steel J, Lowen AC. Influenza Virus Reassortment Is Enhanced by
601 Semi-infectious Particles but Can Be Suppressed by Defective Interfering Particles. *PLoS Pathog.*
602 2015;11(10).

603 41. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of
604 influenza A viruses. *Microbiol Rev.* 1992 Mar;56(1):152–79.

605 42. Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO. Genetic compatibility and virulence of
606 reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses.
607 *PLoS Pathog.* 2008;4(5):1–11.

608 43. Kilbourne ED. Future influenza vaccines and the use of genetic recombinants. *Bull World Health*
609 *Organ.* 1969;41(3):643–5.

610

611 44. Nakatsu S, Sagara H, Sakai-Tagawa Y, Sugaya N, Noda T, Kawaoka Y. Complete and incomplete
612 genome packaging of influenza A and B viruses. *MBio*. 2016;7(5):1–7.

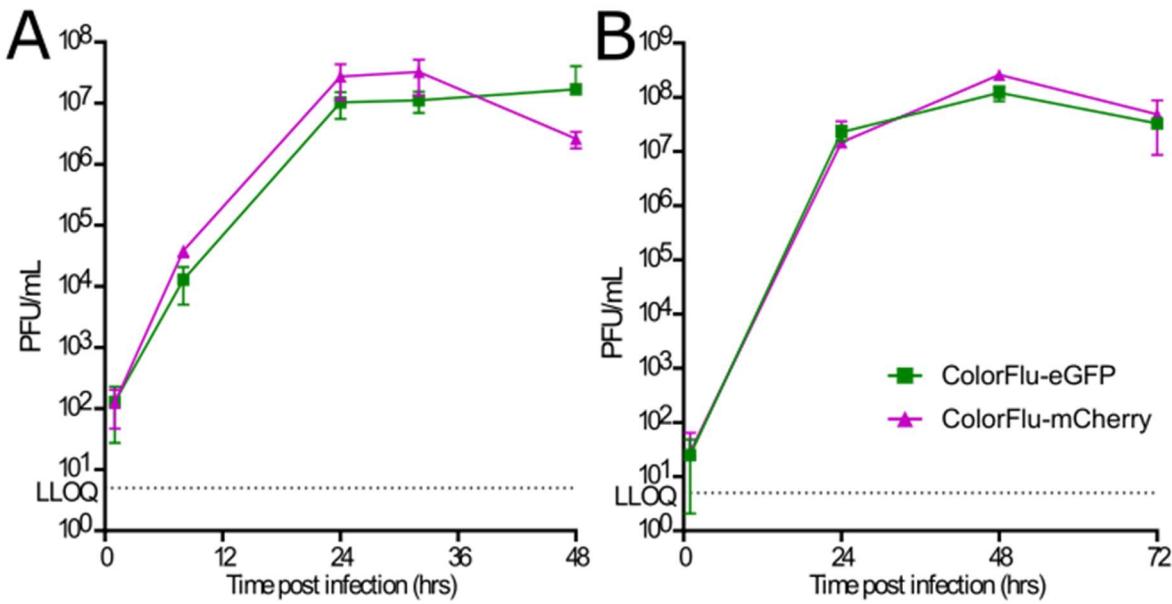
613 45. Diefenbacher M, Sun J, Brooke CB. The parts are greater than the whole: the role of semi-
614 infectious particles in influenza A virus biology. *Curr Opin Virol* [Internet]. 2018;33:42–6.
615 Available from: <https://doi.org/10.1016/j.coviro.2018.07.002>

616 46. Hunter M, Fusco D. Superinfection exclusion: A viral strategy with short-term benefits and long-
617 term drawbacks. *PLOS Comput Biol* [Internet]. 2022 May 10;18(5):e1010125. Available from:
618 <https://doi.org/10.1371/journal.pcbi.1010125>

619 47. Rezelj V V., Levi LI, Vignuzzi M. The defective component of viral populations. *Curr Opin Virol*
620 [Internet]. 2018;33:74–80. Available from: <https://doi.org/10.1016/j.coviro.2018.07.014>

621 48. Huang I-C, Li W, Sui J, Marasco W, Choe H, Farzan M. Influenza A Virus Neuraminidase Limits
622 Viral Superinfection. *J Virol*. 2008;82(10):4834–43.

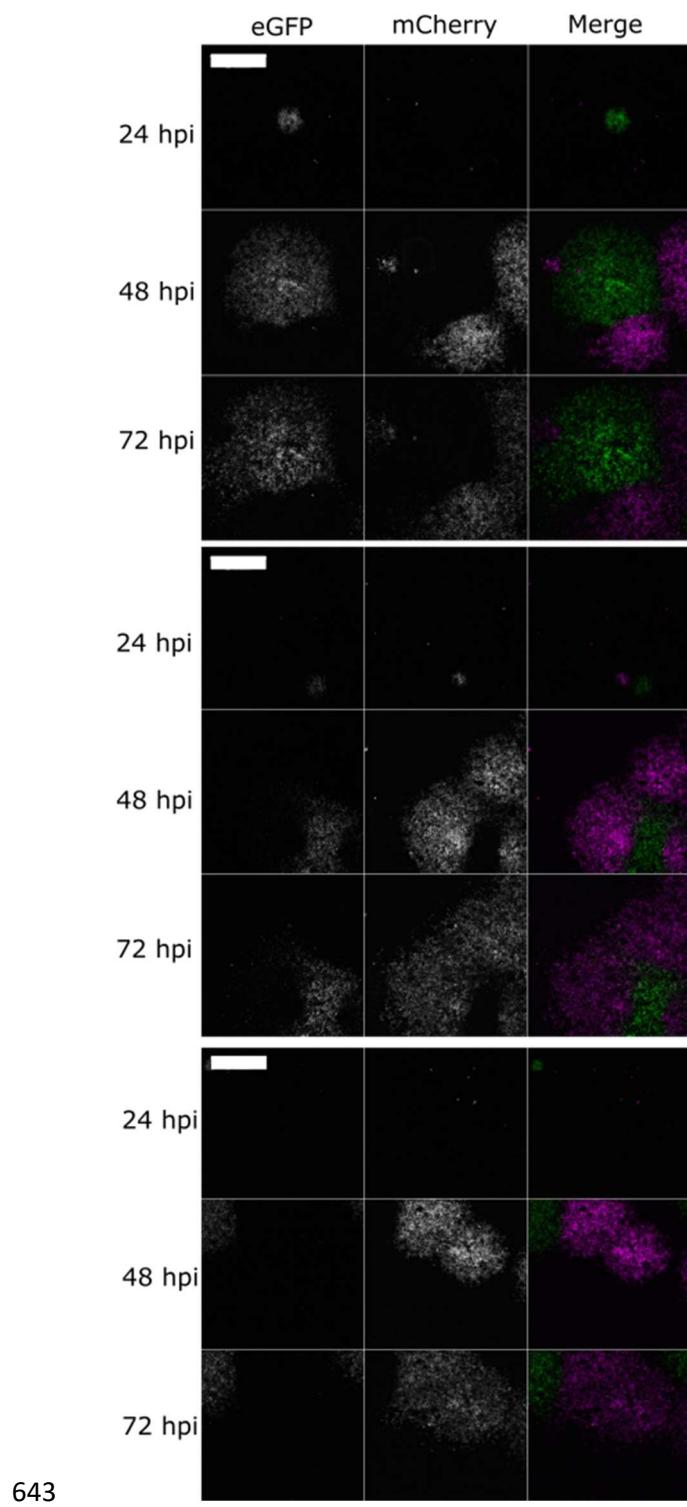
623 49. Gaush CR, Smith TF. Replication and plaque assay of influenza virus in an established line of
624 canine kidney cells. *Appl Microbiol*. 1968;16(4):588–94.


625 50. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-
626 source platform for biological-image analysis. *Nat Methods*. 2012;9(7):676–82.

627 51. Figliozzi RW, Chen F, Chi A, Hsia SCV. Using the inverse Poisson distribution to calculate
628 multiplicity of infection and viral replication by a high-throughput fluorescent imaging system.
629 *Virol Sin*. 2016;31(2):180–3.

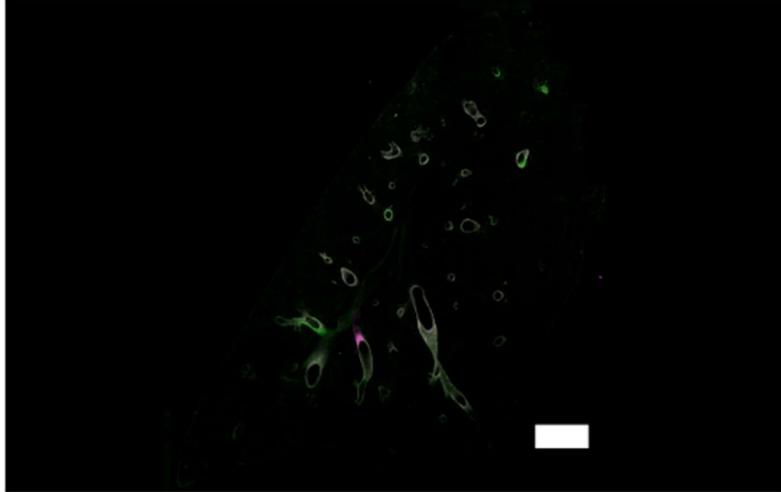
630

631


632 Supporting Information

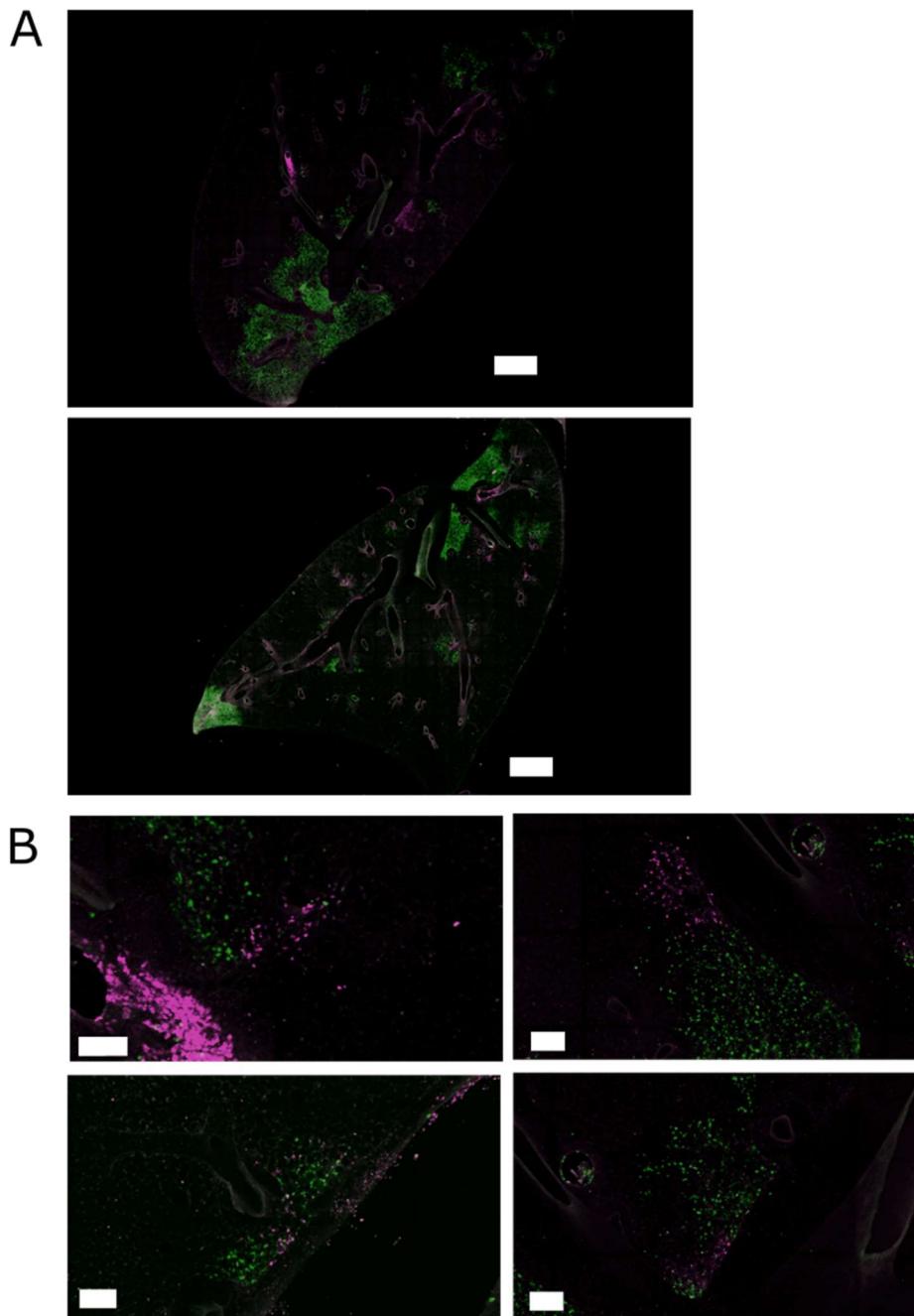
633

634 **SUPPLEMENTARY DATA 1: ColorFlu viruses is a suitable tool for modelling coinfection between**
635 **related viruses (A)** Single cycle growth kinetics of ColorFlu viruses was assessed by infecting MDCK cell
636 monolayers at MOI 2.5 and the supernatant harvested at the time points indicated. Virus titre was
637 assessed using plaque assay on MDCK cells. **(B)** Multi-cycle growth kinetics of ColorFlu viruses was
638 assessed by infecting MDCK cell monolayers at an MOI of 0.001 and sampled as described in single-
639 cycle growth kinetic assay. For both B and C, values represent the mean + SD for three independent
640 experiments. For all timepoints, the difference between the titres of ColorFlu-mCherry and ColorFlu-
641 eGFP was not significant (Mann-Whitney U test, p>0.05). LLOQ = Lower limit of quantification.


642

644 **SUPPLEMENTARY DATA 2: Further examples of superinfection exclusion limiting coinfection**

645 **between distinct virus populations in vitro** Viruses were seeded onto monolayers of MDCK cells,
646 overlayed with agarose and imaged every 24 hours. Images taken on Celigo fluorescent microscope.


647 Scale bar = 2mm.

648

649 **SUPPLEMENTARY DATA 3: Initial mouse infection occurs in the bronchi** Whole lung images of
650 ColorFlu infected mice 3 days post infection B57BL/6 mice were intranasally inoculated with mixtures
651 of mCherry and eGFP expressing viruses (500 pfu of each virus). Lung sections at 3 days post infection
652 were imaged using Zeiss LSM 800 using 20x objective lens. Scale bar = 1500 μ m.

653

654

655 **SUPPLEMENTARY DATA 4: Further examples of superinfection exclusion limiting coinfection**

656 **between distinct virus populations in vivo (A)** Confocal micrographs of whole lung slices from infected

657 mice 6 dpi. B57BL/6 mice were intranasally inoculated with mixtures of mCherry and eGFP expressing

658 viruses (500 pfu of each virus). Lung sections at 6 dpi were imaged using Zeiss LSM 800 using 20x

659 objective lens. **(A)** Whole lung images. Scale bar = 1500 μ m **(B)** Enlarged images of infected lesions.

660 Scale bar = 100 μ m.

661

662 **SUPPLEMENTARY MOVIE 1: Cells migrate inwards as infected plaques expand** Diluted mixtures of
663 ColorFlu viruses were used to infect MDCK cells under agarose and observed over 72 hours in Zeiss
664 Livecell observer microscope using a 20x objective lens.