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Abstract

It is estimated that short association fibers, or “U-shaped” fibers running immediately beneath
the cortex, may make up as much as 60% of the total white matter volume. However, these
have been understudied relative to the long-range association, projection, and commissural
fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography,
which is the primary methodology used to non-invasively study the white matter connections.
Inspired by recent anatomical considerations and methodological improvements in U-fiber
tractography, we aim to characterize changes in these fiber systems in cognitively normal aging,
which provide insight into the biological foundation of age-related cognitive changes, and a
better understanding of how age-related pathology differs from healthy aging. To do this, we
used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to
guantify microstructural features and length/volume features of several U-fiber systems. We
find that axial, radial, and mean diffusivities show positive associations with age, while
fractional anisotropy has negative associations with age in superficial white matter throughout
the entire brain. These associations were most pronounced in the frontal, temporal, and
temporoparietal regions. Moreover, measures of U-fiber volume and length decrease with age
in a heterogenous manner across the brain, with prominent effects observed for pre- and post-
central gyri. These features, and their variations with age, provide the background for
characterizing normal aging, and, in combination with larger association pathways and gray
matter microstructural features, may provide insight into fundamental mechanisms associated
with aging and cognition.

Keywords: brain aging, superficial white matter, u-fibers, tractography


https://doi.org/10.1101/2022.06.06.494720
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.06.494720; this version posted June 6, 2022. The copyright holder for this preprint (which

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

Superficial white matter (SWM) is the layer of white matter just beneath the cortex, and
is composed of short association U-shaped fibers, or U-fibers, that primarily connect adjacent
gyri. These U-fibers represent a majority of the connections of the human brain [1, 2], occupy
as much as 60% of the total white matter volume [1], are among the last parts of the brain to
myelinate [3], and contain a comparatively high density of interstitial white matter neurons
relative to other white matter[4]. The SWM serves a critical role in brain function [5], plasticity,
development, and aging, and is especially affected in disorders such as Alzheimer’s disease [6,
7], autism [8], and schizophrenia [9].

Despite its prevalence and significance, SWM has been understudied relative to the
long-range association, projection, and commissural fibers of the brain. This is largely because
of the limitations of diffusion MRI fiber tractography [10-12], which is the primary methodology
used to non-invasively study the white matter connections [13]. The study of U-fibers using
tractography faces anatomical and methodological challenges including partial volume effects,
complex local anatomy, and a lack of consensus on definition and taxonomy [12], which
complicate development and validation of algorithms dedicated to studying these fiber
systems. However, recent innovation in diffusion MRI imaging, processing, and tractography
methodologies [10, 12, 14-16] have made it possible to reliably study SWM in health and
disease [9, 17-21].

One promising avenue of exploration is to study U-fibers during aging. Studies of the
aging brain may provide insight into the biological foundation of age-related cognitive changes,
and a better understanding of how abnormal aging (e.g., age-related neurodegenerative
disorders) differs from healthy aging [22]. A large body of magnetic resonance imaging (MRI)
research has shown that the structure of the human brain is constantly changing with age. In
the gray matter, structural MRI studies have shown heterogenous patterns of normal age-
related changes in cortical volume and thickness [23-30], with detectable differences in
abnormal aging and disease [30-35]. In the white matter, diffusion tensor imaging (DTI) analysis
has shown that fractional anisotropy (FA) is negatively associated with age and mean diffusivity
(MD) is positively associated with age across several white matter pathways [36-39], and
tractography analysis has shown that the volume and surface areas of many pathways
decreases with age [40]. These findings have been attributed to myelin loss and/or decreased
axonal densities and volumes. However, with few exceptions [41-44], studies of white matter
brain aging have focused on the deep white matter and larger long-range pathways of the
brain.

Inspired by recent anatomical considerations and methodological improvements in U-
fiber tractography [12], and lack of studies of SWM during aging, we sought to characterize
changes in these fiber systems during normal aging. To do this, we leveraged three well-
established cohorts of aging, including two longitudinal cohorts [Baltimore Longitudinal Study
of Aging (BLSA) [45], Vanderbilt Memory & Aging Project (VMAP) [46]], and one cross-sectional
cohort [Cambridge Centre for Ageing and Neuroscience (Cam-CAN) [47]]. Within these cohorts,
we performed automatic tractography segmentation in 82 U-fiber bundles, characterizing both
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microstructural features and macrostructural features of these SWM systems, to describe
associations between these features and age.

Methods

Data

This study used data from three datasets, summarized in Table 1, and contained a total
of 1293 participants (2711 sessions) aged 50-98 years. All datasets were filtered to exclude
participants with diagnoses of mild cognitive impairment, Alzheimer’s disease, or dementia at
baseline, or if they developed these conditions during the follow-up interval. Finally, datasets
were filtered to focus on participants aged 50+, due to limited samples sizes below 50 years old
in each dataset.

Dataset Number of Subjects [ Number of Sessions Age
Baltimore Longitudinal 741 1788 [50 98]
Study of Aging 328 M Range [1 8] 74.1+/-9.9
[50 88]
Cambridge Centre for 365 365 68.0 +/-
Ageing Neuroscience 186 M Range [1] 10.3
Vanderbilt Memory & 187 558 [60 95]
Aging Project 113 M Range [1 4] 742 +/-7.0
1293 2711 [50 98]
627 M Range [1 8] 73.5+/-9.3

Table 1. This study used 3 longitudinal and cross-sectional datasets, with a total of 1293
participants ( 2711 sessions), aged 50-98 years. Distributions of age at baseline, and number of
sessions, are shown for each individual dataset.

First, was the Baltimore Longitudinal Study of Aging (BLSA) dataset, with 741
participants scanned multiple times ranging from 1 to 8 sessions, and time between scans
ranging from 1 to 10 years, yielding a total of 1788 diffusion sessions. Diffusion MRI data was
acquired on a 3T Philips Achieva scanner (32 gradient directions, b-value=700s/mm2,
TR/TE=7454/75ms, reconstructed voxel size=0.81x0.81x2.2mm, reconstruction
matrix=320x320, acquisition matrix=115x 115, field of view=260x260mm). Second, was data
from the Vanderbilt Memory & Aging Project (VMAP), with 187 participants, scanned between
1-4 sessions, with a total of 558 diffusion datasets. Diffusion MRI data was acquired on a 3T
Philips Achieva scanner (32 gradient directions, b-value=1000s/mm2, reconstructed voxel
size=2x2x2mm). Third, was data from the Cambridge Centre for Ageing and Neuroscience (Cam-
CAN) data repository [47] with 356 participants, each scanned once using a 3T Siemens TIM Trio
scanner with a 32-channel head coil (30 directions at b-value=1000s/mm?2, 30 directions at b-
value=2000s/mm?2, reconstructed voxel size=2x2x2mm). All human datasets from Vanderbilt
University were acquired after informed consent under supervision of the appropriate
Institutional Review Board. This study accessed only de-identified patient information.

Tractography and U-fiber bundle dissection
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126 For every subject and every session, sets of U-fiber pathways were virtually dissected
127  using methodology similar to [12], with small modifications. Figure 1 visualizes the

128 methodological pipeline. This pipeline utilized MRtrix [48], with tractography performed using
129 the second-order integration probabilistic algorithm [49] to generate 2 million streamlines with
130 a maximum length of 50mm, utilizing anatomical constraints to ensure gray matter to gray

131  matter connections. This pipeline has been shown to result in dense systems of fibers

132  immediately adjacent to the cortical sheet [12].

133 Freesurfer [50] was run on the T1-weighted images, and results transformed to diffusion
134  MRI space with ANTSs. For this work, we chose to use the Destrieux atlas [51] parcellation,

135  utilizing only the neocortex labels, to assign all streamlines to edges in a connection matrix,
136  resulting in a potential 164x164 SWM bundles. An empirical decision was made to select only
137  those bundles that are reproducible across 75% of the studied population (containing a

138  minimum of 200 streamlines), resulting in 82 U-fiber bundles studied. These bundles were

139 filtered to remove streamlines that were not U-shaped using the scilpy toolbox

140  (https://github.com/scilus/scilpy), and further filtered to remove outlier streamlines [52].

141 A list of the 82 bundles, using nomenclature derived from the Destrieux atlas, is given in
142  the appendix.
143

FA
MD
AD
RD
Length
Volume

U-shape +
Outlier
Filtering

Feature
Extraction

U-Fiber Bundle Bundle
Tractography Assignment Selection

144
145  Figure 1. Methodological pipeline. Fiber tractography is constrained based on anatomy and

146  length, and streamlines are assigned to edges in a connection matrix. Only bundles reproducible
147  across the studied population (N=82) are kept for analysis. Bundles are then filtered based on
148  shape and outlier removals. Finally, for each bundle and each subject, microstructural and

149  macrostructural features are extracted for analysis.

150
151  Feature extraction
152 From the final 82 bundles for each subject, 6 features were extracted including four DTI

153  microstructural measures of fractional anisotropy (FA), and mean, radial, and axial diffusivities
154  (MD, RD, AD) and two macrostructural measures of length and volume, following the
155  proceduresin [53].

156
157  Analytical Plan
158 To investigate the relationship between age and each WM feature, linear mixed effects

159 modeling was performed, with each (z-normalized) feature, Y, modeled as a linear function of
160 age,y = By + P14ge + B,Sex + BsTICV + B3(1+ AGE | DATASET) + B,(SUB) , where
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161  subjects (SUB) were entered as a random effect (i.e., subject-specific random intercept), and
162  subject sex (Sex) and total intracranial volume (TICV) as a fixed effects. Additionally, we

163  modelled the association between age and outcome variable as dataset (DATASET) specific due
164  to expected differences in MR protocols [54-58], and included a dataset specific random slope
165 and intercept. We note that the TICV utilized was calculated from the T1-weighted image from
166  the baseline scan.

167 Due to multiple comparisons, all statistical tests were controlled by the false discovery
168 rate at 0.05 to determine significance. Results are presented as the beta coefficient of estimate
169 ‘B, orin other words “the association of the feature ‘y’ with Age”, which (due to

170 normalization) represents the standard deviation change in feature per year. These measures
171  are derived for each pathway and each feature. Additionally, results may be shown as a percent
172  change per year, derived from the slope normalized by the average value across the aging

173  population (from 50-98), and multiplied by 100, which represents the percent change in feature
174  per year. These measures are derived for each pathway and each feature.

175

176  Results

177

178  U-fiber systems

179 Example U-fiber systems that were consistently identified across the population are

180 shown in Figure 2 for a single example subject. In the coronal and axial slices, these fibers run
181 immediately below and adjacent to the cortex in locations and geometries expected

182  traditionally assigned to SWM. In the 3D visualization, U-fibers are represented along a large
183  portion of the gray matter surface. Notably, many U-fiber systems start and end within the
184  same cortical label, which still meets our definition of superficial systems.

185

186
187  Figure 2. U-fiber systems show expected shape and locations, and cover a large portion of the

188  surface of the brain. 82 U-fibers determined to be robust across a population are shown in a
189  single subject, with distinct colors for each bundle.
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190
191  What changes and where?
192 Figure 3 shows associations with age of all measures for 7 randomly selected pathways.

193 Inline with previous literature in both long association pathways and SWM, FA shows negative
194  associations with age, while the diffusivities show positive associations with age. In general,
195 SWM length and volume tend to decrease with increasing age, even when accounting for TICV,
196 although the effects are not statistically significant for all pathways. As expected, different

197 datasets, with different acquisitions, result in different calculated DTl indices, with much

198 smaller differences in bundle length and volume.

199 To summarize association with age for all features and all pathways, we show the beta
200 coefficient associations with age for all features in a matrix in Figure 4, along with boxplots
201  summarizing the beta coefficients across all studied pathways in Figure 5. DT measures show
202  large, robust associations with age for many pathways. FA in SWM shows negative associations
203  with age, while all diffusivities (AD, MD, RD) show strong positive associations with age.

204  Measures of length and volume show reduced associations with age, for fewer pathways. In
205 general, both length and volume decrease with age for those pathways with statistically

206  significant age associations.

207

208
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Figure 4. What and where changes occur in SWM during aging. The beta coefficient from linear
mixed effects modeling is shown as a matrix for all features across all pathways. Note that the

beta coefficient describes “the association of the feature ‘y’ with Age”, which (due to
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normalization) represents the standard deviation change in feature per year. Only those
features/pathways with statistically significant age-related changes are colored; non-significant
effects are shown as diagonal line.
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Figure 5. Changes in superficial white matter. The beta coefficient from linear mixed effects

modeling across all studied U-fiber pathways is shown in boxplot form (for statistically

significant results only). In general, diffusivities show positive associations with age, while FA,

length, and volume measures show negative associations with age.

Visualizing change across superficial white matter

To visualize where changes in SWM occur during aging, all pathways are visualized,
colored coded according to percent change per year, and shown in Figure 6. Again, SWM
pathways throughout the entire cortex show statistically significant increases in diffusivities
with age, of ~0.2-0.4% change per year, while FA shows decreases of similar magnitude per
year. Notably, microstructural features show greatest changes in frontal and temporal lobes,
with minimal changes in pre- and post-central gyri. Changes in length and volume are more
sparse, with decreases in length with age observed throughout the entire brain, while
decreases in volume with age are denser in the frontal lobe.

An alternative visualization is shown in Figure 7, where each cortical region is color-
coded based on the percent-change per year of all SWM fibers connecting that label (note that
a single cortical region can be associated with multiple U-fiber systems). Again, clear patterns
are observed in SWM associated with frontal and temporal lobes, including larger decreases in
FA and increases in all diffusivities. Interestingly, SWM of the pre- and post-central gyri, while
indicating less change per year in microstructural features, stand out as the largest decreases in
length and volume per year.
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Figure 6. Percent change per year from the population mean shown as color-coded streamlines
on an example subject. Bundles are only shown if statistically significant trends with age are
observed.

Figure 7. Percent change per year from the population mean for short superficial U-fibers
connecting individual regions of interest. Regions of an example subject are color-coded based
on the population-averaged percent change per year of all fibers connecting that label.

Discussion

Here, we have used multiple large, longitudinal and cross-sectional datasets, and
innovations in tractography generation and filtering, to characterize U-fiber systems in 3 aging
cohorts, describing microstructural features and for the first time, macrostructural features.
Our main findings are that (1) diffusivities show positive associations with age, while anisotropy
has negative associations with age, in SWM throughout the entire brain, (2) larger
microstructural changes were observed in the frontal, temporal, and temporoparietal regions,
(3) measures of U-fiber geometry and length decrease with age, and (4) changes in length and
volume were more heterogenous, with prominent effects seen at the pre- and post-central gyri.

Superficial white matter in aging
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Compared to the long-range association, projection, and commissural pathways, SWM
of the brain has been underexplored in the literature, in both healthy and abnormal aging.
Recently, due to advances in software and tools to study SWM, studies of these systems have
started to increase. For a thorough review on SWM tractography analysis and applications, see
work by Guevara et al. [10]. Of note, there have been few studies of SWM in aging using
diffusion MRI. In a study of 141 healthy individuals (18-86 years old), Nazeri et al. [42] found
widespread negative relationships of FA with age, in agreement with our results. To do this,
they generated a population-based SWM template, and used this to perform a tract-based
spatial statistics (TBSS) style analysis. Similarly, in a cohort of 65 individuals (18-74 years old)
Phillips et al. [41] found age-related reductions in FA and increases in RD and AD across large
areas of SWM, with results more pronounced in the frontal SWM compared to the posterior
and ventral brain regions, and they interpreted this as an increased vulnerability to the aging
process. Rather than tractography, this was done using white matter/gray matter surface-based
alignment from structural MRI data and probing the DTl indices across the population along this
boundary. Finally, using tractography and manually placed regions of interest on 69 subjects
(22-84 years old), and focusing on prefrontal connections, Malykhin et al. [43] found significant
decreases in FA starting at ~60 years of age, in both SWM and association/commissural
pathways. The use of tractography also enabled volumetric analysis, where both long range and
short-range fiber systems showed decreased volumes with age.

Motivated by these works in SWM, the current study takes advantage of innovations in
tractography and U-fiber segmentation, and incorporates multiple large cross-sectional and
longitudinal cohorts totaling >1200 participants and >2700 sessions to study SWM throughout
the entire brain. Specifically, constrained spherical deconvolution [59], in combination with
probabilistic tractography [49] has become prevalent in state-of-the art studies of the human
connectome and individual fiber bundles. Combining this with anatomical constraints [60] and
subsequent filtering [52] enables robust delineation of white matter systems underneath most
of the cortex (Figure 1), in alignment with current knowledge of SWM. Similar methodology has
been shown to result in reproducible streamlines [12], making studies of clinical cohorts
plausible. Further, we include several large datasets on aging, making this the largest cohort to
date to study these fibers in any clinical study.

What changes and where

The observed associations with age include decreased FA, volume, length, and increased
axial, radial, and mean diffusivities. The biological mechanism for these age-related changes is
not entirely clear, due to the high sensitivity (and low specificity) of these DTl measures to
various features of tissue microstructure. In general, these observations in white matter (in
both health and disease) have been attributed to various biological mechanisms. Increases in
radial and axial diffusivities are often associated with decreased axonal packing [61, 62],
allowing for increased diffusivity in all orientations, as well as myelin thinning which may be
observed as increased radial diffusivity [63, 64]. The low sensitivity of DTl can potentially be
overcome with multi-compartment modeling, which may allow disentangling neurite densities,
compartmental changes, and geometrical configurations. For example, a SWM study of
individuals with young onset Alzheimer’s disease (using the white matter and gray matter
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boundary to define regions, as in [41]) found that these individuals exhibited decreased FA and
increased diffusivities [65]. However, the use of a multi-compartment tissue model (in this case
the neurite orientation dispersion and density imaging model [66], showed both a decreased
neurite volume fraction and higher dispersion index, suggesting both a loss of myelinated fibers
and greater dispersion (less coherent organization) of these SWM systems. While these studies
were able to detect differences in extreme neurodegenerative cases, we found that these
systems are sensitive in aging individuals without cognitive impairment as well. Future studies
should implement similar modeling, in combination with the tractography generation and
segmentation utilized in this study, to improve biological specificity of changes in healthy aging.

Identifying where changes occur during age may facilitate studying the underpinnings of
cognitive and motor changes, and aid in identifying networks that are susceptible to disease
and disorder. Here, much like previous studies [6, 41, 67-70] in gray matter, white matter
pathways, and axonal diameters, there is a clear anterior-to-posterior gradient in changes of
microstructure across age. The frontal lobe is comprised of functional networks recruited for a
diverse range of cognitive problems, and disruption is associated with age-related declines in
cognitive processes [71]. Our study confirms that in addition to gray matter, and the larger
white matter pathways, the U-fibers of the frontal lobe also indicate strong age-related trends.
future work should investigate relationships between these neuroimaging features and age-
related declines in cognition.

Towards painting a complete picture of brain aging

Noninvasive MR-imaging has slowly led to a convergence of evidence of structural and
functional changes in aging. The main findings from decades of research are that the brain
shrinks in overall volume and the ventricular system expands in volume [22]. The pattern of
changes is heterogenous, as described here and elsewhere [22], with most analyses suggesting
a 0.5%-1% reduction in volume per year in most areas of the brain. The changes in volume are
related to neuronal loss, neuronal shrinkage, decreased length of myelinated axons in white
matter and reduction of synapses in the gray matter. Finally, structural changes in healthy aging
mediate, or explain, domain-specific cognitive decline in individuals both with and without
cognitive impairment [29, 30]. The results of this study highlight that SWM cannot be ignored
when forming a complete picture of brain aging. In addition, variation of these systems across
populations may enable subject-specific analysis and identification of atypical structure, which
may be used to study subject-specific function.

Limitations and future direction

Because of the lack of studies on SWM, there are a number of research directions that
can benefit from these methodologies. Understanding not only the relationship between SWM
and the cortex, but also the SWM and long-range pathways would further our understanding of
the complex interactions of the aging brain. Additionally, tractometry [72-74] or high
dimensional analysis of the brain, which has been shown to enable single-subject inference
[72], may benefit from the additional set of features provided by SWM. Understanding which
features of the brain change first is paramount to understanding differences in disease. SWM
has found relevant application in cohorts with autism, schizophrenia, and Alzheimer’s disease,
[10] and may further benefit from a comprehensive examination of the structural changes of
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the brain including both white and gray matter geometric analysis and microstructure analysis.
Similarly, inclusion of cognitive and motor variables will facilitate linking function to structure.
Finally, studies of SWM may help identify challenges for traditional fiber tractography of the
long-range fibers — characterizing where these systems occur may facilitate challenges
associated with gyral biases [11, 75, 76] and bottlenecks in streamline propagation that lead to
creation of false positive pathways [77-80].

Several limitations should be acknowledged. First, while the use of multiple datasets
allowed a large sample size, the use of different datasets with different acquisitions is known to
result in very different quantitative indices of microstructure and macrostructure [54-58].
However, we included dataset as a variable in our mixed effects models, and consider this an
advantage to the current study which shows these effects generalize across all data. Second,
the data used is neither high angular resolution nor high spatial resolution, and future studies
should utilize higher resolution datasets (e.g., the Human Connectome Project [81]), which may
reduce variability in quantification, and enable studies across the entire lifetime. Third, we
chose simple linear mixed effects modelling, whereas changes across a lifespan have been
shown to be nonlinear — therefore we chose to focus our analysis on age 50+. Fourth, there are
several methods to segment and study U-fibers, both with and without tractography [10, 14,
82, 83], and we could have chosen different streamline generation and clustering algorithms.
We expect that results will be similar, but not exactly the same, with the use of different
methodologies for virtual dissection [84]. Finally, while U-fiber atlases do exist [14, 15, 83, 85,
86], we choose to include all “U-shaped” fiber systems that exist within a certain percent of the
studied population. This does not guarantee the existence of true anatomical connections, but
has been used in the literature as an indicator of reliability of results.

Conclusion

Here, we have used a large, longitudinal dataset, and innovations in tractography generation
and filtering, to characterize U-fiber systems in an aging cohort, describing microstructural
features and for the first time, macrostructural features. We find robust associations with age
for all features, across many fiber systems. These features, and their normal variations with
age, may be useful for characterizing abnormal aging, and, in combination with larger
association pathways and gray matter microstructural features, lead to insight into
fundamental mechanisms associated with aging and cognition.

Statements and Declarations
Funding

This work was supported by the National Science Foundation Career Award #1452485, the
National Institutes of Health under award numbers RO1EB017230, KO1EB032898, and in part by
ViSE/VICTR VR3029 and the National Center for Research Resources, Grant UL1 RR024975-01.
VMAP data is funded by the following sources: Alzheimer’s Association IIRG-08-88733 (ALJ);
RO1-AG034962 (ALJ); K24-AG046373 (ALJ); UL1-TRO00445 and UL1-TR002243 (Vanderbilt
Clinical Translational Science Award); S$10-OD023680 (Vanderbilt’s High-Performance Computer
Cluster for Biomedical Research)


https://doi.org/10.1101/2022.06.06.494720
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.06.494720; this version posted June 6, 2022. The copyright holder for this preprint (which

399

400
401

402

403
404
405
406
407

408

409
410
411
412
413
414
415

416
417
418
419
420

421
422
423
424
425
426
427

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Author Contributions

All authors contributed to the study conception and design. Data collection was performed by
the Baltimore Longitudinal Study of Aging at the National Institutes of Aging, and the Vanderbilt
Memory & Aging Project (VMAP). All authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Data Availability

Derived microstructure and macrostructure features, for all pathways and subjects, along with
demographic information, are made available at (link upon acceptance) for VMAP and CAMCAN
datasets. Data from the BLSA are available on request from the BLSA website
(http://blsa.nih.gov). All requests are reviewed by the BLSA Data Sharing Proposal Review
Committee and may also be subject to approval from the NIH institutional review board.

Ethic Approval

All human datasets from Vanderbilt University were acquired after informed consent under
supervision of the appropriate Institutional Review Board. All additional datasets are freely
available and unrestricted for non-commercial research purposes. This study accessed only de-
identified patient information.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Appendix
Below, we give the abbreviated names used in the manuscript and figure captions, and the
freesurfer-based name as given in FreeSurferColorLUT.txt. Here, U-fibers connect one cortical

“.n

region to another indicated by a “:” in the abbreviation.
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Abbreviation

Freesurfer-based nomenclature

|_g_fr_mid:l_g_fr_mid

ctx_lh_G_front_middle---ctx_lh_G_front_middle

|_g_fr_sup:l_g_s_cing

ctx_Ih_G_front_sup---ctx_lh_G_and_S_cingul-Ant

|_g_fr_sup:l_g_fr_mid

ctx_lh_G_front_sup---ctx_lh_G_front_middle

|_g_fr_sup:l_g_fr_sup

ctx_lh_G_front_sup---ctx_lh_G_front_sup

|_g_prec:|_g_postc

ctx_lh_G_precentral---ctx_lh_G_postcentral

|_g_prec:|_g_prec

ctx_|h_G_precentral---ctx_lh_G_precentral

|_s_cent:|_g_prec

ctx_Ih_S_central---ctx_lh_G_precentral

ctx_lh_S_central---ctx_lh_S_central

ctx_Ih_S_front_inf---ctx_lh_G_front_middle

ctx_lh_S_front_inf---ctx_lh_S_front_inf

ctx_Ih_S_front_middle---ctx_lh_G_front_middle

ctx_lh_S_front_sup---ctx_lh_G_front_middle

ctx_lh_S_front_sup---ctx_lh_G_front_sup

ctx_Ih_S_front_sup---ctx_Ih_S_front_sup

|_s_orbhshape:|_s_orbhshape

ctx_lh_S_orbital-H_Shaped---ctx_lh_S_orbital-H_Shaped

|_s_pcal:l_g_fr_sup

ctx_Ih_S_pericallosal---ctx_lh_G_front_sup

|_s_precinfpart:l_s_fr_inf

ctx_Ih_S_precentral-inf-part---ctx_lh_S_front_inf

|_s_precinfpart:_s_precinfpart

ctx_|h_S_precentral-inf-part---ctx_lh_S_precentral-inf-part

|_s_precsuppart:|_g_prec

ctx_lh_S_precentral-sup-part---ctx_lh_G_precentral

|_s_precsuppart:|_s_precsuppart

ctx_|h_S_precentral-sup-part---ctx_|lh_S_precentral-sup-part

r_g_fr_midir_g_fr_mid

ctx_rh_G_front_middle---ctx_rh_G_front_middle

r_g_fr_sup:rr_g_s_cing

ctx_rh_G_front_sup---ctx_rh_G_and_S_cingul-Ant

r_g_fr_sup:r_g_fr_mid

ctx_rh_G_front_sup---ctx_rh_G_front_middle

r_g_fr_sup:r_g_fr sup

ctx_rh_G_front_sup---ctx_rh_G_front_sup

r_g orbir_g_orb

ctx_rh_G_orbital---ctx_rh_G_orbital

r_g_prec:r_g_prec

ctx_rh_G_precentral---ctx_rh_G_precentral

r_s_cent:r_g_prec

ctx_rh_S_central---ctx_rh_G_precentral

r_s_fr_inf:r_g_fr_mid

ctx_rh_S_front_inf---ctx_rh_G_front_middle

ctx_rh_S_front_inf---ctx_rh_S_front_inf

ctx_rh_S_front_middle---ctx_rh_G_front_middle

r_s_fr_mid:r_s_fr_mid

ctx_rh_S_front_middle---ctx_rh_S_front_middle

r_s_fr_sup:r_g_fr_mid

ctx_rh_S_front_sup---ctx_rh_G_front_middle

r_s_fr_sup:r_g_fr_sup

ctx_rh_S_front_sup---ctx_rh_G_front_sup

r_s_fr_sup:r_s_fr_sup

ctx_rh_S_front_sup---ctx_rh_S_front_sup

r_s_orbhshape:r_g_orb

ctx_rh_S_orbital-H_Shaped---ctx_rh_G_orbital

r_s_pcal:r_g_fr_sup

ctx_rh_S_pericallosal---ctx_rh_G_front_sup

r_s_precinfpart:r_s_fr_inf

ctx_rh_S_precentral-inf-part---ctx_rh_S_front_inf

r_s_precinfpart:r_s_precinfpart

ctx_rh_S_precentral-inf-part---ctx_rh_S_precentral-inf-part

r_s_precsuppart:r_g_prec

ctx_rh_S_precentral-sup-part---ctx_rh_G_precentral

r_s_precsuppart:r_s_precsuppart

ctx_rh_S_precentral-sup-pa tx_rh_S_precentral-sup-part

|_g_par_infang:|_g_par_infang

ctx_lh_G_pariet_inf-Angular---ctx_lh_G_pariet_inf-Angular

|_g_par_infsup:l_g_par_infsup

ctx_lh_G_pariet_inf-Supramar---ctx_lh_G_pariet_inf-Supramar

|_g_par_sup:l_g_par_sup

ctx_lh_G_parietal_sup---ctx_lh_G_parietal_sup

|_g_postc:|_g_postc

ctx_Ih_G_postcentral---ctx_Ih_G_postcentral

|_s_inpar_ptrans:|_g_par_infang

ctx_Ih_S_intrapariet_and_P_trans---ctx_Ih_G_pariet_inf-Angular

|_s_inpar_ptrans:|_g_par_sup

ctx_|h_S_intrapariet_and_P_trans---ctx_lh_G_parietal_sup

|_s_inpar_ptrans:|_s_inpar_ptrans

ctx_lh_S_intrapariet_and_P_trans---ctx_lh_S_intrapariet_and_P_trans

|_s_postc:|_g_postc

ctx_|h_S_postcentral---ctx_lh_G_postcentral

|_s_postc:|_s_postc

ctx_lh_S_postcentral---ctx_lh_S_postcentral

r_g_par_infang:r_g_par_infang

ctx_rh_G_pariet_inf-Angular---ctx_rh_G_pariet_inf-Angular

r_g_par_infsup:r_g_par_infsup

ctx_rh_G_pariet_inf-Supramar---ctx_rh_G_pariet_inf-Supramar

r_g_par_sup:r_g_par_sup

ctx_rh_G_parietal_sup---ctx_rh_G_parietal_sup

r_latfispost:r_g_par_infsup

ctx_rh_Lat_Fis-post---ctx_rh_G_pariet_inf-Supramar

r_s_centir_s_cent

ctx_rh_S_central---ctx_rh_S_central

r_s_inpar_ptrans:r_g_par_infang

ctx_rh_S_intrapariet_and_P_trans---ctx_rh_G_pariet_inf-Angular

inpar_ptrans:r_g_par_sup

ctx_rh_S_intrapariet_and_P_trans---ctx_rh_G_parietal_sup

r_s_inpar_ptrans:r_s_inpar_ptrans

ctx_rh_S_intrapariet_and_P_trans---ctx_rh_S_intrapariet_and_P_trans

ctx_rh_S_parieto_occipital---ctx_rh_S_parieto_occipital

postc

ctx_rh_S_postcentral---ctx_rh_G_postcentral

s_inpar_ptrans

ctx_rh_S_postcentral---ctx_rh_S_intrapariet_and_P_trans

postc

ctx_rh_S_postcentral---ctx_rh_S_postcentral

|_g_octemp_mling:|_g_octemp_mling

ctx_lh_G_oc-temp_med-Lingual---ctx_Ih_G_oc-temp_med-Lingual

|_s_oc_mid_Lunatus:|_g_occ_mid

ctx_lh_S_oc_middle_and_Lunatus---ctx_lh_G_occipital_middle

|_s_oc_sup_trans:|_s_oc_sup_trans

ctx_lh_S_oc_sup_and_transversal---ctx_lh_S_oc_sup_and_transversal

|_s_paro_occ:l_s_paro_occ

ctx_Ih_S_parieto_occipital---ctx_lh_S_parieto_occipital

r_g_cuneus:r_g_cuneus

ctx_rh_G_cuneus---ctx_rh_G_cuneus

r_g_occ_mid:r_g_occ_mid

ctx_rh_G_occipital_middle---ctx_rh_G_occipital_middle

r_g_octemp_mling:r_g_octemp_mling

ctx_rh_G_oc-temp_med-Lingual---ctx_rh_G_oc-temp_med-Lingual

r_pole_occ:r_pole_occ

ctx_rh_Pole_occipital---ctx_rh_Pole_occipital

r_s_oc_mid_Lunatus:r_g_occ_mid

ctx_rh_S_oc_middle_and_Lunatus---ctx_rh_G_occipital_middle

r_s_oc_sup_trans:r_g_occ_sup

ctx_rh_S_oc_sup_and_transversal---ctx_rh_G_occipital_sup

r_s_oc_sup_trans:r_s_oc_sup_trans

ctx_rh_S_oc_sup_and_transversal---ctx_rh_S_oc_sup_and_transversal

|_s_temp_sup:l_g_par_infang

ctx_lh_S_temporal_sup---ctx_lh_G_pariet_inf-Angular

|_s_temp_sup:l_g_temp_mid

ctx_Ih_S_temporal_sup---ctx_lh_G_temporal_middle

ctx_lh_S_temporal_sup---ctx_lh_S_temporal_sup

r_g_temp_mid:r_g_temp_mid

ctx_rh_G_temporal_middle---ctx_rh_G_temporal_middle

r_latfispost:r_latfispost

ctx_rh_Lat_Fis-post---ctx_rh_Lat_Fis-post

r_s_temp_sup:r_g_par_infang

ctx_rh_S_temporal_sup---ctx_rh_G_pariet_inf-Angular

r_s_temp_sup:r_g_temp_mid

ctx_rh_S_temporal_sup---ctx_rh_G_temporal_middle

r_s_temp_sup:r_s_temp_sup

ctx_rh_S_temporal_sup---ctx_rh_S_temporal_sup

|_g_s_cing:l_g_s_cing

ctx_h_G_and_S_cingul-Ant---ctx_lh_G_and_S_cingul-Ant

r_g s_cing:r_g_s_cing

ctx_rh_G_and_S_cingul-Ant---ctx_rh_G_and_S_cingul-Ant
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