

1 **Short superficial white matter and aging: a longitudinal multi-site study of 1,293 subjects and**
2 **2,711 sessions**

4 Kurt G Schilling¹, Derek Archer^{2,3,4}, Fang-Cheng Yeh⁶, Francois Rheault⁷, Leon Y Cai⁷, Andrea
5 Shafer⁸, Susan M. Resnick⁸, Timothy Hohman^{2,3,4}, Angela Jefferson^{2,3,5}, Adam W Anderson⁹,
6 Hakmook Kang¹⁰, Bennett A Landman⁷

8 1. Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
9 2. Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
10 3. Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
11 4. Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
12 5. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
13 6. Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department
14 of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
15 7. Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
16 8. Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore,
17 MD, United States of America.
18 9. Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
19 10. Department of Biostatistics, Vanderbilt University, Nashville, TN, United States

20 Correspondence: kurt.g.schilling.1@vumc.org

21 **Abstract**

22 It is estimated that short association fibers, or “U-shaped” fibers running immediately beneath
23 the cortex, may make up as much as 60% of the total white matter volume. However, these
24 have been understudied relative to the long-range association, projection, and commissural
25 fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography,
26 which is the primary methodology used to non-invasively study the white matter connections.
27 Inspired by recent anatomical considerations and methodological improvements in U-fiber
28 tractography, we aim to characterize changes in these fiber systems in cognitively normal aging,
29 which provide insight into the biological foundation of age-related cognitive changes, and a
30 better understanding of how age-related pathology differs from healthy aging. To do this, we
31 used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to
32 quantify microstructural features and length/volume features of several U-fiber systems. We
33 find that axial, radial, and mean diffusivities show positive associations with age, while
34 fractional anisotropy has negative associations with age in superficial white matter throughout
35 the entire brain. These associations were most pronounced in the frontal, temporal, and
36 parietal regions. Moreover, measures of U-fiber volume and length decrease with age
37 in a heterogenous manner across the brain, with prominent effects observed for pre- and post-
38 central gyri. These features, and their variations with age, provide the background for
39 characterizing normal aging, and, in combination with larger association pathways and gray
40 matter microstructural features, may provide insight into fundamental mechanisms associated
41 with aging and cognition.

42 **Keywords:** brain aging, superficial white matter, u-fibers, tractography

48

49

50 **Introduction**

51 Superficial white matter (SWM) is the layer of white matter just beneath the cortex, and
52 is composed of short association U-shaped fibers, or U-fibers, that primarily connect adjacent
53 gyri. These U-fibers represent a majority of the connections of the human brain [1, 2], occupy
54 as much as 60% of the total white matter volume [1], are among the last parts of the brain to
55 myelinate [3], and contain a comparatively high density of interstitial white matter neurons
56 relative to other white matter [4]. The SWM serves a critical role in brain function [5], plasticity,
57 development, and aging, and is especially affected in disorders such as Alzheimer's disease [6,
58 7], autism [8], and schizophrenia [9].

59 Despite its prevalence and significance, SWM has been understudied relative to the
60 long-range association, projection, and commissural fibers of the brain. This is largely because
61 of the limitations of diffusion MRI fiber tractography [10-12], which is the primary methodology
62 used to non-invasively study the white matter connections [13]. The study of U-fibers using
63 tractography faces anatomical and methodological challenges including partial volume effects,
64 complex local anatomy, and a lack of consensus on definition and taxonomy [12], which
65 complicate development and validation of algorithms dedicated to studying these fiber
66 systems. However, recent innovation in diffusion MRI imaging, processing, and tractography
67 methodologies [10, 12, 14-16] have made it possible to reliably study SWM in health and
68 disease [9, 17-21].

69 One promising avenue of exploration is to study U-fibers during aging. Studies of the
70 aging brain may provide insight into the biological foundation of age-related cognitive changes,
71 and a better understanding of how abnormal aging (e.g., age-related neurodegenerative
72 disorders) differs from healthy aging [22]. A large body of magnetic resonance imaging (MRI)
73 research has shown that the structure of the human brain is constantly changing with age. In
74 the gray matter, structural MRI studies have shown heterogenous patterns of normal age-
75 related changes in cortical volume and thickness [23-30], with detectable differences in
76 abnormal aging and disease [30-35]. In the white matter, diffusion tensor imaging (DTI) analysis
77 has shown that fractional anisotropy (FA) is negatively associated with age and mean diffusivity
78 (MD) is positively associated with age across several white matter pathways [36-39], and
79 tractography analysis has shown that the volume and surface areas of many pathways
80 decreases with age [40]. These findings have been attributed to myelin loss and/or decreased
81 axonal densities and volumes. However, with few exceptions [41-44], studies of white matter
82 brain aging have focused on the deep white matter and larger long-range pathways of the
83 brain.

84 Inspired by recent anatomical considerations and methodological improvements in U-
85 fiber tractography [12], and lack of studies of SWM during aging, we sought to characterize
86 changes in these fiber systems during normal aging. To do this, we leveraged three well-
87 established cohorts of aging, including two longitudinal cohorts [Baltimore Longitudinal Study
88 of Aging (BLSA) [45], Vanderbilt Memory & Aging Project (VMAP) [46]], and one cross-sectional
89 cohort [Cambridge Centre for Ageing and Neuroscience (Cam-CAN) [47]]. Within these cohorts,
90 we performed automatic tractography segmentation in 82 U-fiber bundles, characterizing both

91 microstructural features and macrostructural features of these SWM systems, to describe
92 associations between these features and age.

93

94 **Methods**

95

96 Data

97 This study used data from three datasets, summarized in **Table 1**, and contained a total
98 of 1293 participants (2711 sessions) aged 50-98 years. All datasets were filtered to exclude
99 participants with diagnoses of mild cognitive impairment, Alzheimer's disease, or dementia at
100 baseline, or if they developed these conditions during the follow-up interval. Finally, datasets
101 were filtered to focus on participants aged 50+, due to limited samples sizes below 50 years old
102 in each dataset.

103

Dataset	Number of Subjects	Number of Sessions	Age
Baltimore Longitudinal Study of Aging	741 328 M	1788 Range [1 8]	[50 98] 74.1 +/- 9.9
Cambridge Centre for Ageing Neuroscience	365 186 M	365 Range [1]	[50 88] 68.0 +/- 10.3
Vanderbilt Memory & Aging Project	187 113 M	558 Range [1 4]	[60 95] 74.2 +/- 7.0
	1293 627 M	2711 Range [1 8]	[50 98] 73.5 +/- 9.3

104
105 *Table 1. This study used 3 longitudinal and cross-sectional datasets, with a total of 1293*
106 *participants (2711 sessions), aged 50-98 years. Distributions of age at baseline, and number of*
107 *sessions, are shown for each individual dataset.*

108

109 First, was the Baltimore Longitudinal Study of Aging (BLSA) dataset, with 741
110 participants scanned multiple times ranging from 1 to 8 sessions, and time between scans
111 ranging from 1 to 10 years, yielding a total of 1788 diffusion sessions. Diffusion MRI data was
112 acquired on a 3T Philips Achieva scanner (32 gradient directions, b-value=700s/mm²,
113 TR/TE=7454/75ms, reconstructed voxel size=0.81×0.81×2.2mm, reconstruction
114 matrix=320×320, acquisition matrix=115× 115, field of view=260×260mm). Second, was data
115 from the Vanderbilt Memory & Aging Project (VMAP), with 187 participants, scanned between
116 1-4 sessions, with a total of 558 diffusion datasets. Diffusion MRI data was acquired on a 3T
117 Philips Achieva scanner (32 gradient directions, b-value=1000s/mm², reconstructed voxel
118 size=2x2x2mm). Third, was data from the Cambridge Centre for Ageing and Neuroscience (Cam-
119 CAN) data repository [47] with 356 participants, each scanned once using a 3T Siemens TIM Trio
120 scanner with a 32-channel head coil (30 directions at b-value=1000s/mm², 30 directions at b-
121 value=2000s/mm², reconstructed voxel size=2x2x2mm). All human datasets from Vanderbilt
122 University were acquired after informed consent under supervision of the appropriate
123 Institutional Review Board. This study accessed only de-identified patient information.

124

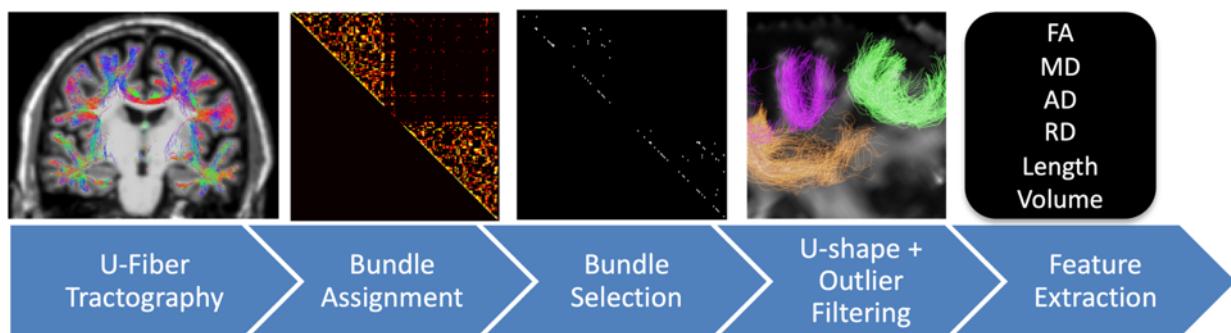
125 Tractography and U-fiber bundle dissection

126 For every subject and every session, sets of U-fiber pathways were virtually dissected
127 using methodology similar to [12], with small modifications. **Figure 1** visualizes the
128 methodological pipeline. This pipeline utilized MRtrix [48], with tractography performed using
129 the second-order integration probabilistic algorithm [49] to generate 2 million streamlines with
130 a maximum length of 50mm, utilizing anatomical constraints to ensure gray matter to gray
131 matter connections. This pipeline has been shown to result in dense systems of fibers
132 immediately adjacent to the cortical sheet [12].

133 Freesurfer [50] was run on the T1-weighted images, and results transformed to diffusion
134 MRI space with ANTs. For this work, we chose to use the Destrieux atlas [51] parcellation,
135 utilizing only the neocortex labels, to assign all streamlines to edges in a connection matrix,
136 resulting in a potential 164x164 SWM bundles. An empirical decision was made to select only
137 those bundles that are reproducible across 75% of the studied population (containing a
138 minimum of 200 streamlines), resulting in 82 U-fiber bundles studied. These bundles were
139 filtered to remove streamlines that were not U-shaped using the scilpy toolbox
140 (<https://github.com/scilus/scilpy>), and further filtered to remove outlier streamlines [52].

141 A list of the 82 bundles, using nomenclature derived from the Destrieux atlas, is given in
142 the appendix.

143



144
145 *Figure 1. Methodological pipeline. Fiber tractography is constrained based on anatomy and*
146 *length, and streamlines are assigned to edges in a connection matrix. Only bundles reproducible*
147 *across the studied population (N=82) are kept for analysis. Bundles are then filtered based on*
148 *shape and outlier removals. Finally, for each bundle and each subject, microstructural and*
149 *macrostructural features are extracted for analysis.*

150

151 Feature extraction

152 From the final 82 bundles for each subject, 6 features were extracted including four DTI
153 microstructural measures of fractional anisotropy (FA), and mean, radial, and axial diffusivities
154 (MD, RD, AD) and two macrostructural measures of length and volume, following the
155 procedures in [53].

156

157 Analytical Plan

158 To investigate the relationship between age and each WM feature, linear mixed effects
159 modeling was performed, with each (z-normalized) feature, Y, modeled as a linear function of
160 age, $y = \beta_0 + \beta_1 Age + \beta_2 Sex + \beta_3 TICV + \beta_4 (1 + AGE | DATASET) + \beta_5 (SUB)$, where

161 subjects (SUB) were entered as a random effect (i.e., subject-specific random intercept), and
162 subject sex (Sex) and total intracranial volume (TICV) as a fixed effects. Additionally, we
163 modelled the association between age and outcome variable as dataset (DATASET) specific due
164 to expected differences in MR protocols [54-58], and included a dataset specific random slope
165 and intercept. We note that the TICV utilized was calculated from the T1-weighted image from
166 the baseline scan.

167 Due to multiple comparisons, all statistical tests were controlled by the false discovery
168 rate at 0.05 to determine significance. Results are presented as the beta coefficient of estimate
169 ' B_1 ', or in other words "the association of the feature 'y' with Age", which (due to
170 normalization) represents the standard deviation change in feature per year. These measures
171 are derived for each pathway and each feature. Additionally, results may be shown as a percent
172 change per year, derived from the slope normalized by the average value across the aging
173 population (from 50-98), and multiplied by 100, which represents the percent change in feature
174 per year. These measures are derived for each pathway and each feature.

175

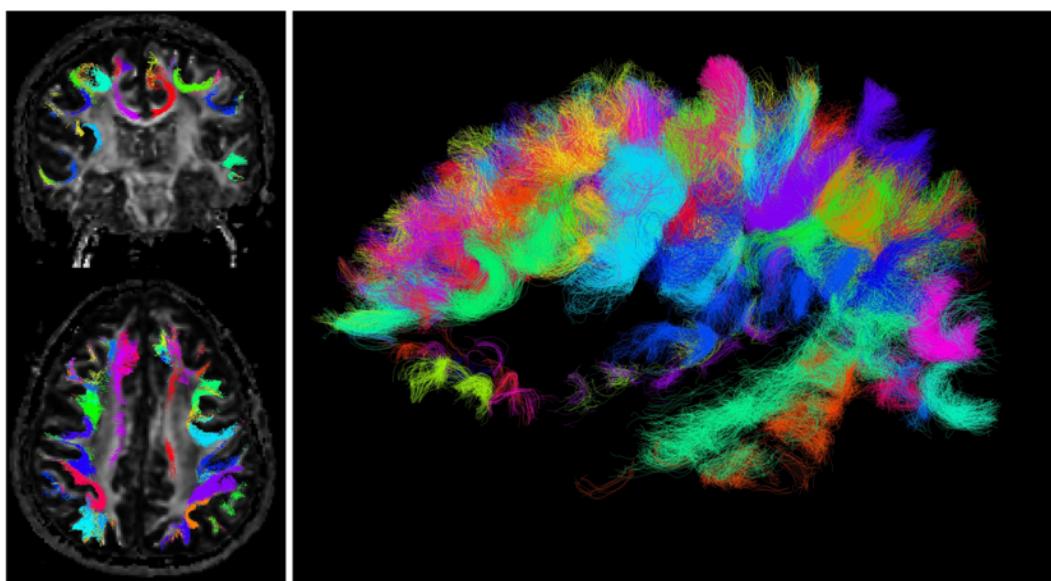
176 **Results**

177

178 U-fiber systems

179 Example U-fiber systems that were consistently identified across the population are
180 shown in **Figure 2** for a single example subject. In the coronal and axial slices, these fibers run
181 immediately below and adjacent to the cortex in locations and geometries expected
182 traditionally assigned to SWM. In the 3D visualization, U-fibers are represented along a large
183 portion of the gray matter surface. Notably, many U-fiber systems start and end within the
184 same cortical label, which still meets our definition of superficial systems.

185



186

187 *Figure 2. U-fiber systems show expected shape and locations, and cover a large portion of the*
188 *surface of the brain. 82 U-fibers determined to be robust across a population are shown in a*
189 *single subject, with distinct colors for each bundle.*

190

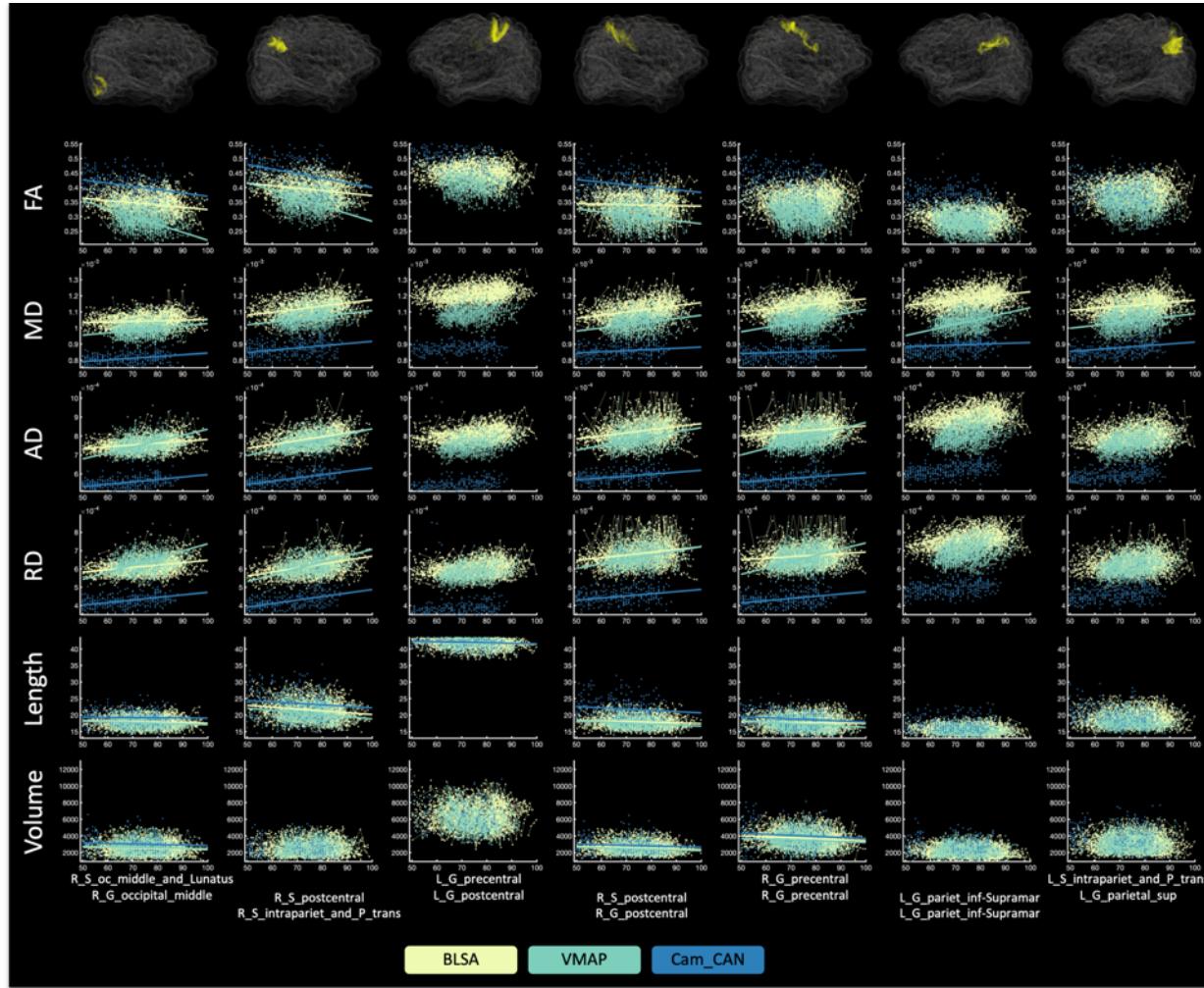
191 What changes and where?

192 **Figure 3** shows associations with age of all measures for 7 randomly selected pathways.
193 In line with previous literature in both long association pathways and SWM, FA shows negative
194 associations with age, while the diffusivities show positive associations with age. In general,
195 SWM length and volume tend to decrease with increasing age, even when accounting for TICV,
196 although the effects are not statistically significant for all pathways. As expected, different
197 datasets, with different acquisitions, result in different calculated DTI indices, with much
198 smaller differences in bundle length and volume.

199 To summarize association with age for all features and all pathways, we show the beta
200 coefficient associations with age for all features in a matrix in **Figure 4**, along with boxplots
201 summarizing the beta coefficients across all studied pathways in **Figure 5**. DTI measures show
202 large, robust associations with age for many pathways. FA in SWM shows negative associations
203 with age, while all diffusivities (AD, MD, RD) show strong positive associations with age.
204 Measures of length and volume show reduced associations with age, for fewer pathways. In
205 general, both length and volume decrease with age for those pathways with statistically
206 significant age associations.

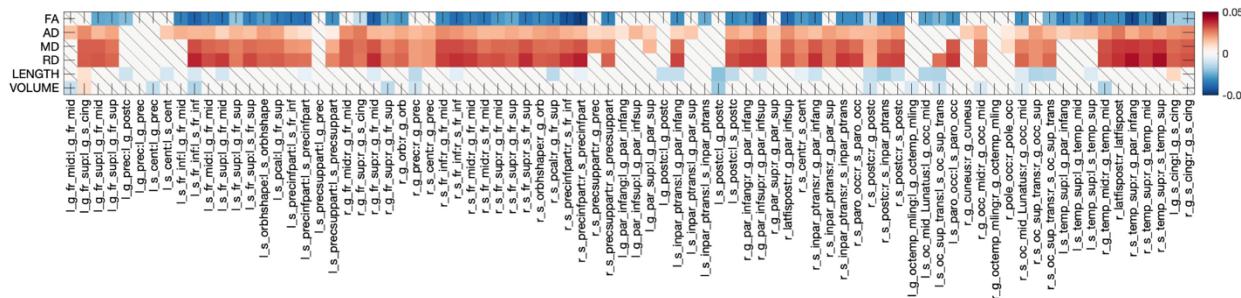
207

208



209
210
211
212
213
214
215

Figure 3. Microstructural and macrostructural features change with age in many pathways.
Shown are all studied features for 7 randomly selected pathways, where all data points are shown (with lines connecting longitudinal datasets). A line of best fit is shown if there are statistically significant associations with age, where color indicates the cohort. Visualization of the U-fiber pathways for a single subject are shown overlaid on a transparent brain.

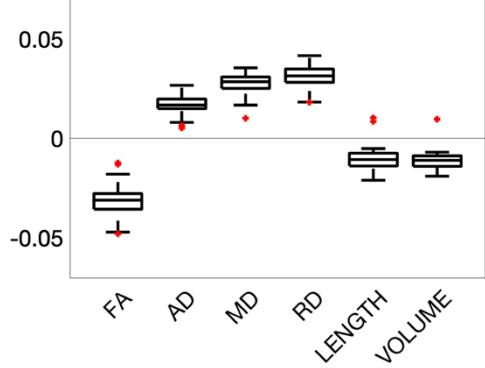


216
217
218
219

Figure 4. What and where changes occur in SWM during aging. The beta coefficient from linear mixed effects modeling is shown as a matrix for all features across all pathways. Note that the beta coefficient describes “the association of the feature ‘y’ with Age”, which (due to

220 normalization) represents the standard deviation change in feature per year. *Only those*
221 *features/pathways with statistically significant age-related changes are colored; non-significant*
222 *effects are shown as diagonal line.*

223



224
225 *Figure 5. Changes in superficial white matter. The beta coefficient from linear mixed effects*
226 *modeling across all studied U-fiber pathways is shown in boxplot form (for statistically*
227 *significant results only). In general, diffusivities show positive associations with age, while FA,*
228 *length, and volume measures show negative associations with age.*

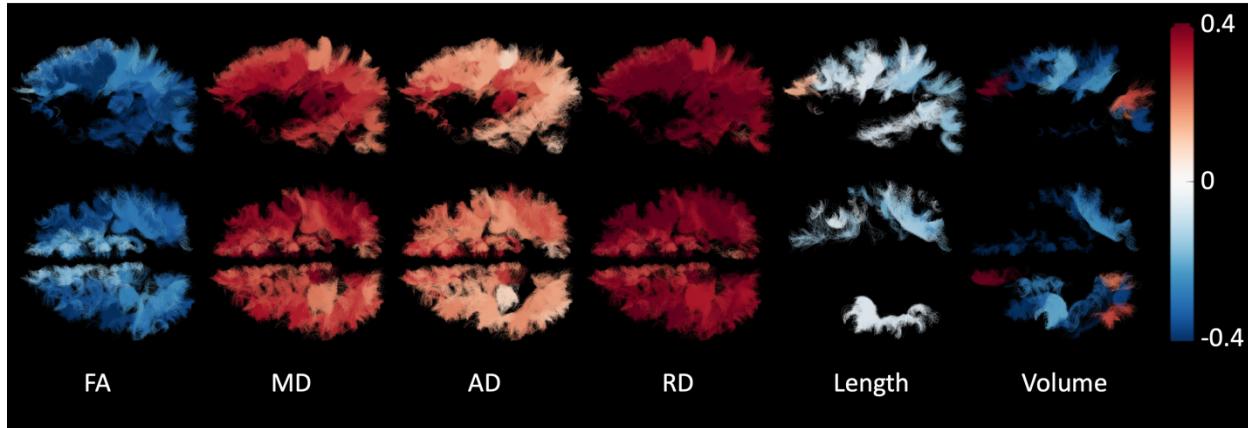
229

230 Visualizing change across superficial white matter

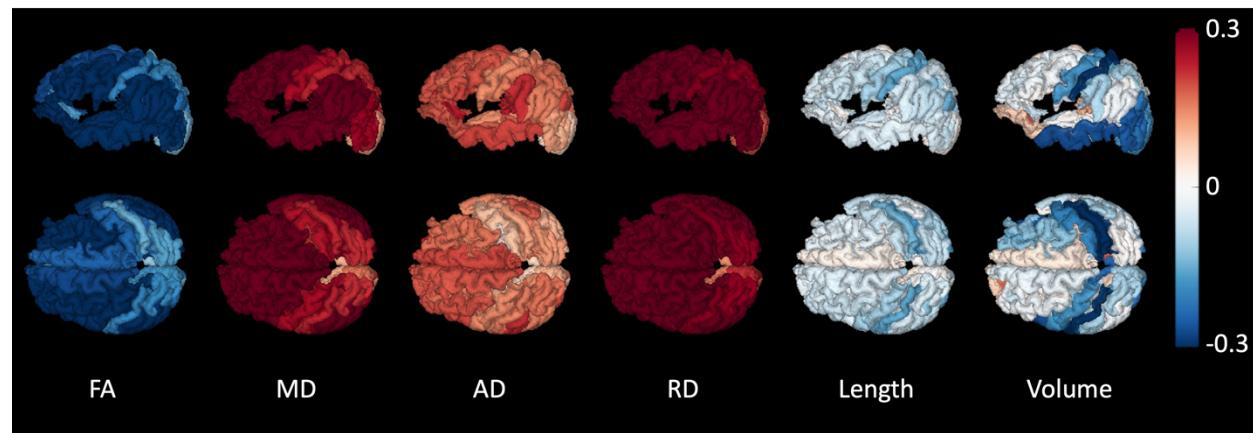
231 To visualize where changes in SWM occur during aging, all pathways are visualized,
232 colored coded according to percent change per year, and shown in **Figure 6**. Again, SWM
233 pathways throughout the entire cortex show statistically significant increases in diffusivities
234 with age, of ~0.2-0.4% change per year, while FA shows decreases of similar magnitude per
235 year. Notably, microstructural features show greatest changes in frontal and temporal lobes,
236 with minimal changes in pre- and post-central gyri. Changes in length and volume are more
237 sparse, with decreases in length with age observed throughout the entire brain, while
238 decreases in volume with age are denser in the frontal lobe.

239 An alternative visualization is shown in **Figure 7**, where each cortical region is color-
240 coded based on the percent-change per year of all SWM fibers connecting that label (note that
241 a single cortical region can be associated with multiple U-fiber systems). Again, clear patterns
242 are observed in SWM associated with frontal and temporal lobes, including larger decreases in
243 FA and increases in all diffusivities. Interestingly, SWM of the pre- and post-central gyri, while
244 indicating less change per year in microstructural features, stand out as the largest decreases in
245 length and volume per year.

246



247
248
249
250
251



252
253
254
255
256
257
Figure 7. Percent change per year from the population mean for short superficial U-fibers connecting individual regions of interest. Regions of an example subject are color-coded based on the population-averaged percent change per year of all fibers connecting that label.

258 Here, we have used multiple large, longitudinal and cross-sectional datasets, and
259 innovations in tractography generation and filtering, to characterize U-fiber systems in 3 aging
260 cohorts, describing microstructural features and for the first time, macrostructural features.
261 Our main findings are that (1) diffusivities show positive associations with age, while anisotropy
262 has negative associations with age, in SWM throughout the entire brain, (2) larger
263 microstructural changes were observed in the frontal, temporal, and temporoparietal regions,
264 (3) measures of U-fiber geometry and length decrease with age, and (4) changes in length and
265 volume were more heterogeneous, with prominent effects seen at the pre- and post-central gyri.
266
267 Superficial white matter in aging

268 Compared to the long-range association, projection, and commissural pathways, SWM
269 of the brain has been underexplored in the literature, in both healthy and abnormal aging.
270 Recently, due to advances in software and tools to study SWM, studies of these systems have
271 started to increase. For a thorough review on SWM tractography analysis and applications, see
272 work by Guevara et al. [10]. Of note, there have been few studies of SWM in aging using
273 diffusion MRI. In a study of 141 healthy individuals (18-86 years old), Nazeri et al. [42] found
274 widespread negative relationships of FA with age, in agreement with our results. To do this,
275 they generated a population-based SWM template, and used this to perform a tract-based
276 spatial statistics (TBSS) style analysis. Similarly, in a cohort of 65 individuals (18-74 years old)
277 Phillips et al. [41] found age-related reductions in FA and increases in RD and AD across large
278 areas of SWM, with results more pronounced in the frontal SWM compared to the posterior
279 and ventral brain regions, and they interpreted this as an increased vulnerability to the aging
280 process. Rather than tractography, this was done using white matter/gray matter surface-based
281 alignment from structural MRI data and probing the DTI indices across the population along this
282 boundary. Finally, using tractography and manually placed regions of interest on 69 subjects
283 (22-84 years old), and focusing on prefrontal connections, Malykhin et al. [43] found significant
284 decreases in FA starting at ~60 years of age, in both SWM and association/commissural
285 pathways. The use of tractography also enabled volumetric analysis, where both long range and
286 short-range fiber systems showed decreased volumes with age.

287 Motivated by these works in SWM, the current study takes advantage of innovations in
288 tractography and U-fiber segmentation, and incorporates multiple large cross-sectional and
289 longitudinal cohorts totaling >1200 participants and >2700 sessions to study SWM throughout
290 the entire brain. Specifically, constrained spherical deconvolution [59], in combination with
291 probabilistic tractography [49] has become prevalent in state-of-the art studies of the human
292 connectome and individual fiber bundles. Combining this with anatomical constraints [60] and
293 subsequent filtering [52] enables robust delineation of white matter systems underneath most
294 of the cortex (**Figure 1**), in alignment with current knowledge of SWM. Similar methodology has
295 been shown to result in reproducible streamlines [12], making studies of clinical cohorts
296 plausible. Further, we include several large datasets on aging, making this the largest cohort to
297 date to study these fibers in any clinical study.

298

299

300 What changes and where

301 The observed associations with age include decreased FA, volume, length, and increased
302 axial, radial, and mean diffusivities. The biological mechanism for these age-related changes is
303 not entirely clear, due to the high sensitivity (and low specificity) of these DTI measures to
304 various features of tissue microstructure. In general, these observations in white matter (in
305 both health and disease) have been attributed to various biological mechanisms. Increases in
306 radial and axial diffusivities are often associated with decreased axonal packing [61, 62],
307 allowing for increased diffusivity in all orientations, as well as myelin thinning which may be
308 observed as increased radial diffusivity [63, 64]. The low sensitivity of DTI can potentially be
309 overcome with multi-compartment modeling, which may allow disentangling neurite densities,
310 compartmental changes, and geometrical configurations. For example, a SWM study of
311 individuals with young onset Alzheimer's disease (using the white matter and gray matter

312 boundary to define regions, as in [41]) found that these individuals exhibited decreased FA and
313 increased diffusivities [65]. However, the use of a multi-compartment tissue model (in this case
314 the neurite orientation dispersion and density imaging model [66], showed both a decreased
315 neurite volume fraction and higher dispersion index, suggesting both a loss of myelinated fibers
316 and greater dispersion (less coherent organization) of these SWM systems. While these studies
317 were able to detect differences in extreme neurodegenerative cases, we found that these
318 systems are sensitive in aging individuals without cognitive impairment as well. Future studies
319 should implement similar modeling, in combination with the tractography generation and
320 segmentation utilized in this study, to improve biological specificity of changes in healthy aging.

321 Identifying where changes occur during age may facilitate studying the underpinnings of
322 cognitive and motor changes, and aid in identifying networks that are susceptible to disease
323 and disorder. Here, much like previous studies [6, 41, 67-70] in gray matter, white matter
324 pathways, and axonal diameters, there is a clear anterior-to-posterior gradient in changes of
325 microstructure across age. The frontal lobe is comprised of functional networks recruited for a
326 diverse range of cognitive problems, and disruption is associated with age-related declines in
327 cognitive processes [71]. Our study confirms that in addition to gray matter, and the larger
328 white matter pathways, the U-fibers of the frontal lobe also indicate strong age-related trends.
329 future work should investigate relationships between these neuroimaging features and age-
330 related declines in cognition.

331

332 Towards painting a complete picture of brain aging

333 Noninvasive MR-imaging has slowly led to a convergence of evidence of structural and
334 functional changes in aging. The main findings from decades of research are that the brain
335 shrinks in overall volume and the ventricular system expands in volume [22]. The pattern of
336 changes is heterogenous, as described here and elsewhere [22], with most analyses suggesting
337 a 0.5%-1% reduction in volume per year in most areas of the brain. The changes in volume are
338 related to neuronal loss, neuronal shrinkage, decreased length of myelinated axons in white
339 matter and reduction of synapses in the gray matter. Finally, structural changes in healthy aging
340 mediate, or explain, domain-specific cognitive decline in individuals both with and without
341 cognitive impairment [29, 30]. The results of this study highlight that SWM cannot be ignored
342 when forming a complete picture of brain aging. In addition, variation of these systems across
343 populations may enable subject-specific analysis and identification of atypical structure, which
344 may be used to study subject-specific function.

345

346 Limitations and future direction

347 Because of the lack of studies on SWM, there are a number of research directions that
348 can benefit from these methodologies. Understanding not only the relationship between SWM
349 and the cortex, but also the SWM and long-range pathways would further our understanding of
350 the complex interactions of the aging brain. Additionally, tractometry [72-74] or high
351 dimensional analysis of the brain, which has been shown to enable single-subject inference
352 [72], may benefit from the additional set of features provided by SWM. Understanding which
353 features of the brain change first is paramount to understanding differences in disease. SWM
354 has found relevant application in cohorts with autism, schizophrenia, and Alzheimer's disease,
355 [10] and may further benefit from a comprehensive examination of the structural changes of

356 the brain including both white and gray matter geometric analysis and microstructure analysis.
357 Similarly, inclusion of cognitive and motor variables will facilitate linking function to structure.
358 Finally, studies of SWM may help identify challenges for traditional fiber tractography of the
359 long-range fibers – characterizing where these systems occur may facilitate challenges
360 associated with gyral biases [11, 75, 76] and bottlenecks in streamline propagation that lead to
361 creation of false positive pathways [77-80].

362 Several limitations should be acknowledged. First, while the use of multiple datasets
363 allowed a large sample size, the use of different datasets with different acquisitions is known to
364 result in very different quantitative indices of microstructure and macrostructure [54-58].
365 However, we included dataset as a variable in our mixed effects models, and consider this an
366 advantage to the current study which shows these effects generalize across all data. Second,
367 the data used is neither high angular resolution nor high spatial resolution, and future studies
368 should utilize higher resolution datasets (e.g., the Human Connectome Project [81]), which may
369 reduce variability in quantification, and enable studies across the entire lifetime. Third, we
370 chose simple linear mixed effects modelling, whereas changes across a lifespan have been
371 shown to be nonlinear – therefore we chose to focus our analysis on age 50+. Fourth, there are
372 several methods to segment and study U-fibers, both with and without tractography [10, 14,
373 82, 83], and we could have chosen different streamline generation and clustering algorithms.
374 We expect that results will be similar, but not exactly the same, with the use of different
375 methodologies for virtual dissection [84]. Finally, while U-fiber atlases do exist [14, 15, 83, 85,
376 86], we choose to include all “U-shaped” fiber systems that exist within a certain percent of the
377 studied population. This does not guarantee the existence of true anatomical connections, but
378 has been used in the literature as an indicator of reliability of results.
379

380 Conclusion

381 Here, we have used a large, longitudinal dataset, and innovations in tractography generation
382 and filtering, to characterize U-fiber systems in an aging cohort, describing microstructural
383 features and for the first time, macrostructural features. We find robust associations with age
384 for all features, across many fiber systems. These features, and their normal variations with
385 age, may be useful for characterizing abnormal aging, and, in combination with larger
386 association pathways and gray matter microstructural features, lead to insight into
387 fundamental mechanisms associated with aging and cognition.
388

389 Statements and Declarations

390 Funding

391 This work was supported by the National Science Foundation Career Award #1452485, the
392 National Institutes of Health under award numbers R01EB017230, K01EB032898, and in part by
393 ViSE/VICTR VR3029 and the National Center for Research Resources, Grant UL1 RR024975-01.
394 VMAP data is funded by the following sources: Alzheimer’s Association IIRG-08-88733 (ALJ);
395 R01-AG034962 (ALJ); K24-AG046373 (ALJ); UL1-TR000445 and UL1-TR002243 (Vanderbilt
396 Clinical Translational Science Award); S10-OD023680 (Vanderbilt’s High-Performance Computer
397 Cluster for Biomedical Research)
398

399 **Competing Interests**

400 The authors have no relevant financial or non-financial interests to disclose.

401

402 **Author Contributions**

403 All authors contributed to the study conception and design. Data collection was performed by
404 the Baltimore Longitudinal Study of Aging at the National Institutes of Aging, and the Vanderbilt
405 Memory & Aging Project (VMAP). All authors commented on previous versions of the
406 manuscript. All authors read and approved the final manuscript.

407

408 **Data Availability**

409 Derived microstructure and macrostructure features, for all pathways and subjects, along with
410 demographic information, are made available at (link upon acceptance) for VMAP and CAMCAN
411 datasets. Data from the BLSA are available on request from the BLSA website
412 (<http://blsa.nih.gov>). All requests are reviewed by the BLSA Data Sharing Proposal Review
413 Committee and may also be subject to approval from the NIH institutional review board.

414

415 **Ethic Approval**

416 All human datasets from Vanderbilt University were acquired after informed consent under
417 supervision of the appropriate Institutional Review Board. All additional datasets are freely
418 available and unrestricted for non-commercial research purposes. This study accessed only de-
419 identified patient information.

420 **Consent to participate**

421 Informed consent was obtained from all individual participants included in the study.

422

423 **Appendix**

424 Below, we give the abbreviated names used in the manuscript and figure captions, and the
425 freesurfer-based name as given in FreeSurferColorLUT.txt. Here, U-fibers connect one cortical
426 region to another indicated by a ":" in the abbreviation.

427

Abbreviation	Freesurfer-based nomenclature
l_g_fr_midl_g_fr_mid	ctx_lh_G_front_middle---ctx_lh_G_front_middle
l_g_fr_sup:l_g_s_cing	ctx_lh_G_front_sup---ctx_lh_G_and_S_cingul-Ant
l_g_fr_sup:l_g_fr_mid	ctx_lh_G_front_sup---ctx_lh_G_front_middle
l_g_fr_sup:l_g_fr_sup	ctx_lh_G_front_sup---ctx_lh_G_front_sup
l_g_prec:l_g_postc	ctx_lh_G_precentral---ctx_lh_G_postcentral
l_g_prec:l_g_prec	ctx_lh_G_precentral---ctx_lh_G_precentral
l_s_centr:l_g_prec	ctx_lh_S_central---ctx_lh_G_precentral
l_s_centr:l_s_centr	ctx_lh_S_central---ctx_lh_S_central
l_s_fr_infl:g_fr_mid	ctx_lh_S_front_inf---ctx_lh_G_front_middle
l_s_fr_infl:s_fr_inf	ctx_lh_S_front_inf---ctx_lh_S_front_inf
l_s_fr_midl:g_fr_mid	ctx_lh_S_front_middle---ctx_lh_G_front_middle
l_s_fr_sup:l_g_fr_mid	ctx_lh_S_front_sup---ctx_lh_G_front_middle
l_s_fr_sup:l_g_fr_sup	ctx_lh_S_front_sup---ctx_lh_G_front_sup
l_s_fr_sup:l_s_fr_sup	ctx_lh_S_front_sup---ctx_lh_S_front_sup
l_s_orbhshape:l_s_orbhshape	ctx_lh_S_orbital-H_Shaped---ctx_lh_S_orbital-H_Shaped
l_s_pcal:l_g_fr_sup	ctx_lh_S_pericallosal---ctx_lh_G_front_sup
l_s_precinfl:l_s_fr_inf	ctx_lh_S_precentral-inf-part---ctx_lh_S_front_inf
l_s_precinfl:l_s_precinflpart	ctx_lh_S_precentral-inf-part---ctx_lh_S_precentral-inf-part
l_s_precsuppart:l_g_prec	ctx_lh_S_precentral-sup-part---ctx_lh_G_precentral
l_s_precsuppart:l_s_precsuppart	ctx_lh_S_precentral-sup-part---ctx_lh_S_precentral-sup-part
r_g_fr_midl:g_fr_mid	ctx_rh_G_front_middle---ctx_rh_G_front_middle
r_g_fr_sup:r_g_s_cing	ctx_rh_G_front_sup---ctx_rh_G_and_S_cingul-Ant
r_g_fr_sup:r_g_fr_mid	ctx_rh_G_front_sup---ctx_rh_G_front_middle
r_g_fr_sup:r_g_fr_sup	ctx_rh_G_front_sup---ctx_rh_G_front_sup
r_g_orbr:g_orb	ctx_rh_G_orbital---ctx_rh_G_orbital
r_g_pccr:g_prec	ctx_rh_G_precentral---ctx_rh_G_precentral
r_s_centr:g_prec	ctx_rh_S_central---ctx_rh_G_precentral
r_s_fr_infr:g_fr_mid	ctx_rh_S_front_inf---ctx_rh_G_front_middle
r_s_fr_infr:s_fr_inf	ctx_rh_S_front_inf---ctx_rh_S_front_inf
r_s_fr_midl:g_fr_mid	ctx_rh_S_front_middle---ctx_rh_G_front_middle
r_s_fr_midl:s_fr_mid	ctx_rh_S_front_middle---ctx_rh_S_front_middle
r_s_fr_sup:r_g_fr_mid	ctx_rh_S_front_sup---ctx_rh_G_front_middle
r_s_fr_sup:r_g_fr_sup	ctx_rh_S_front_sup---ctx_rh_G_front_sup
r_s_fr_sup:r_s_fr_sup	ctx_rh_S_front_sup---ctx_rh_S_front_sup
r_s_orbhshape:r_g_orb	ctx_rh_S_orbital-H_Shaped---ctx_rh_G_orbital
r_s_pcal:r_g_fr_sup	ctx_rh_S_pericallosal---ctx_rh_G_front_sup
r_s_precinflpart:r_s_fr_inf	ctx_rh_S_precentral-inf-part---ctx_rh_S_front_inf
r_s_precinflpart:r_s_precinflpart	ctx_rh_S_precentral-inf-part---ctx_rh_S_precentral-inf-part
r_s_precsuppart:r_g_prec	ctx_rh_S_precentral-sup-part---ctx_rh_G_precentral
r_s_precsuppart:r_s_precsuppart	ctx_rh_S_precentral-sup-part---ctx_rh_S_precentral-sup-part
l_g_par_infang:l_g_par_infang	ctx_lh_G_pariet_inf-Angular---ctx_lh_G_pariet_inf-Angular
l_g_par_infsup:l_g_par_infsup	ctx_lh_G_pariet_inf-Supramar---ctx_lh_G_pariet_inf-Supramar
l_g_par_sup:r_g_par_sup	ctx_lh_G_parietal_sup---ctx_lh_G_parietal_sup
l_g_postc:l_g_postc	ctx_lh_G_postcentral---ctx_lh_G_postcentral
l_s_inpar_ptrans:l_g_par_infang	ctx_lh_S_intrapariet_and_P_trans---ctx_lh_G_pariet_inf-Angular
l_s_inpar_ptrans:l_g_par_sup	ctx_lh_S_intrapariet_and_P_trans---ctx_lh_G_parietal_sup
l_s_inpar_ptrans:l_s_inpar_ptrans	ctx_lh_S_intrapariet_and_P_trans---ctx_lh_S_intrapariet_and_P_trans
l_s_postc:l_g_postc	ctx_lh_S_postcentral---ctx_lh_G_postcentral
l_s_postc:l_s_postc	ctx_lh_S_postcentral---ctx_lh_S_postcentral
r_g_par_infang:r_g_par_infang	ctx_rh_G_pariet_inf-Angular---ctx_rh_G_pariet_inf-Angular
r_g_par_infsup:r_g_par_infsup	ctx_rh_G_pariet_inf-Supramar---ctx_rh_G_pariet_inf-Supramar
r_g_par_sup:r_g_par_sup	ctx_rh_G_parietal_sup---ctx_rh_G_parietal_sup
r_latispostr:g_par_infsup	ctx_rh_Lat_Fis-post---ctx_rh_G_pariet_inf-Supramar
r_s_centr:s_centr	ctx_rh_S_central---ctx_rh_S_central
r_s_inpar_ptrans:r_g_par_infang	ctx_rh_S_intrapariet_and_P_trans---ctx_rh_G_pariet_inf-Angular
r_s_inpar_ptrans:r_g_par_sup	ctx_rh_S_intrapariet_and_P_trans---ctx_rh_G_parietal_sup
r_s_inpar_ptrans:s_inpar_ptrans	ctx_rh_S_intrapariet_and_P_trans---ctx_rh_S_intrapariet_and_P_trans
r_s_paro_occr:s_paro_occ	ctx_rh_S_parieto_occpital---ctx_rh_S_parieto_occpital
r_s_postc:r_g_postc	ctx_rh_S_postcentral---ctx_rh_G_postcentral
r_s_postc:r_inpar_ptrans	ctx_rh_S_postcentral---ctx_rh_S_intrapariet_and_P_trans
r_s_postc:r_s_postc	ctx_rh_S_postcentral---ctx_rh_S_postcentral
l_g_octemp_miling:l_g_octemp_miling	ctx_lh_G_oc-temp_med-Lingual---ctx_lh_G_oc-temp_med-Lingual
l_s_oc_midl:lunatus:g_occ_mid	ctx_lh_S_oc_middle_and_lunatus---ctx_lh_G_occipital_middle
l_s_oc_sup_trans:l_oc_sup_trans	ctx_lh_S_oc_sup_and_transversal---ctx_lh_S_oc_sup_and_transversal
l_s_paro_occl:s_paro_occ	ctx_lh_S_parieto_occpital---ctx_lh_S_parieto_occpital
r_g_cuneus:r_g_cuneus	ctx_rh_G_cuneus---ctx_rh_G_cuneus
r_g_occ_midl:g_occ_mid	ctx_rh_G_occpital_middle---ctx_rh_G_occipital_middle
r_g_octemp_miling:g_octemp_miling	ctx_rh_G_oc-temp_med-Lingual---ctx_rh_G_oc-temp_med-Lingual
r_pole_occr:pole_occ	ctx_rh_Pole_occipital---ctx_rh_Pole_occipital
r_s_oc_midl:lunatus:g_occ_mid	ctx_rh_S_oc_middle_and_lunatus---ctx_rh_G_occipital_middle
r_s_oc_sup_trans:r_g_occ_sup	ctx_rh_S_oc_sup_and_transversal---ctx_rh_G_occipital_sup
r_s_oc_sup_trans:r_s_oc_sup_trans	ctx_rh_S_oc_sup_and_transversal---ctx_rh_S_oc_sup_and_transversal
l_s_temp_sup:l_g_par_infang	ctx_lh_S_temporal_sup---ctx_lh_G_pariet_inf-Angular
l_s_temp_sup:g_temp_mid	ctx_lh_S_temporal_sup---ctx_lh_G_temporal_middle
l_s_temp_sup:s_temp_sup	ctx_lh_S_temporal_sup---ctx_lh_S_temporal_sup
r_g_temp_midi:g_temp_mid	ctx_rh_G_temporal_middle---ctx_rh_G_temporal_middle
r_latispostr:latispostr	ctx_rh_Lat_Fis-post---ctx_rh_Lat_Fis-post
r_s_temp_sup:r_g_par_infang	ctx_rh_S_temporal_sup---ctx_rh_G_pariet_inf-Angular
r_s_temp_sup:r_g_temp_mid	ctx_rh_S_temporal_sup---ctx_rh_G_temporal_middle
r_s_temp_sup:r_s_temp_sup	ctx_rh_S_temporal_sup---ctx_rh_S_temporal_sup
l_g_s_cing:l_g_s_cing	ctx_lh_G_and_S_cingul-Ant---ctx_lh_G_and_S_cingul-Ant
r_g_s_cing:r_g_s_cing	ctx_rh_G_and_S_cingul-Ant---ctx_rh_G_and_S_cingul-Ant

428

429

430

431 1. Schüz, A., V. Braitenberg, and R. Miller, *The Human Cortical White Matter: Quantitative*
 432 *Aspects of Cortico-Cortical Long-Range Connectivity*. Schüz, A.; Miller, R.: In: *Cortical*
 433 *Areas: Unity and Diversity*, 377-385 (2002), 2002.

434 2. Schüz, A. and R. Miller, *Cortical areas : unity and diversity*. 2002, London ; New York:
435 Taylor & Francis. xi, 520 p.

436 3. Wu, M., et al., *Development of superficial white matter and its structural interplay with*
437 *cortical gray matter in children and adolescents*. *Hum Brain Mapp*, 2014. **35**(6): p. 2806-
438 16.

439 4. Suarez-Sola, M.L., et al., *Neurons in the white matter of the adult human neocortex*.
440 *Front Neuroanat*, 2009. **3**: p. 7.

441 5. Colombo, J.A., *Cellular complexity in subcortical white matter: a distributed control*
442 *circuit?* *Brain Struct Funct*, 2018. **223**(2): p. 981-985.

443 6. Phillips, O.R., et al., *The superficial white matter in Alzheimer's disease*. *Hum Brain*
444 *Mapp*, 2016. **37**(4): p. 1321-34.

445 7. Carmeli, C., et al., *Structural covariance of superficial white matter in mild Alzheimer's*
446 *disease compared to normal aging*. *Brain Behav*, 2014. **4**(5): p. 721-37.

447 8. Zikopoulos, B. and H. Barbas, *Changes in prefrontal axons may disrupt the network in*
448 *autism*. *J Neurosci*, 2010. **30**(44): p. 14595-609.

449 9. Nazeri, A., et al., *Alterations of superficial white matter in schizophrenia and relationship*
450 *to cognitive performance*. *Neuropsychopharmacology*, 2013. **38**(10): p. 1954-62.

451 10. Guevara, M., et al., *Superficial white matter: A review on the dMRI analysis methods and*
452 *applications*. *Neuroimage*, 2020. **212**: p. 116673.

453 11. Schilling, K., et al., *Confirmation of a gyral bias in diffusion MRI fiber tractography*. *Hum*
454 *Brain Mapp*, 2018. **39**(3): p. 1449-1466.

455 12. Shastin, D., et al., *Short Association Fibre Tractography*. bioRxiv, 2021: p.
456 2021.05.07.443084.

457 13. Jeurissen, B., et al., *Diffusion MRI fiber tractography of the brain*. *NMR Biomed*, 2019.
458 **32**(4): p. e3785.

459 14. Guevara, M., et al., *Reproducibility of superficial white matter tracts using diffusion-*
460 *weighted imaging tractography*. *Neuroimage*, 2017. **147**: p. 703-725.

461 15. Guevara, P., et al., *Automatic fiber bundle segmentation in massive tractography*
462 *datasets using a multi-subject bundle atlas*. *Neuroimage*, 2012. **61**(4): p. 1083-99.

463 16. Labra, N., et al., *Fast Automatic Segmentation of White Matter Streamlines Based on a*
464 *Multi-Subject Bundle Atlas*. *Neuroinformatics*, 2017. **15**(1): p. 71-86.

465 17. d'Albis, M.A., et al., *Local structural connectivity is associated with social cognition in*
466 *autism spectrum disorder*. *Brain*, 2018. **141**(12): p. 3472-3481.

467 18. Ji, E., et al., *Increased and Decreased Superficial White Matter Structural Connectivity in*
468 *Schizophrenia and Bipolar Disorder*. *Schizophr Bull*, 2019. **45**(6): p. 1367-1378.

469 19. Bigham, B., et al., *Features of the superficial white matter as biomarkers for the*
470 *detection of Alzheimer's disease and mild cognitive impairment: A diffusion tensor*
471 *imaging study*. *Heliyon*, 2022. **8**(1): p. e08725.

472 20. Bigham, B., et al., *Identification of Superficial White Matter Abnormalities in Alzheimer's*
473 *Disease and Mild Cognitive Impairment Using Diffusion Tensor Imaging*. *J Alzheimers Dis*
474 *Rep*, 2020. **4**(1): p. 49-59.

475 21. Reginold, W., et al., *Altered Superficial White Matter on Tractography MRI in Alzheimer's*
476 *Disease*. *Dement Geriatr Cogn Dis Extra*, 2016. **6**(2): p. 233-41.

477 22. Fjell, A.M. and K.B. Walhovd, *Structural brain changes in aging: courses, causes and*
478 *cognitive consequences*. Rev Neurosci, 2010. **21**(3): p. 187-221.

479 23. Ramanoel, S., et al., *Gray Matter Volume and Cognitive Performance During Normal*
480 *Aging. A Voxel-Based Morphometry Study*. Front Aging Neurosci, 2018. **10**: p. 235.

481 24. Terribilli, D., et al., *Age-related gray matter volume changes in the brain during non-*
482 *elderly adulthood*. Neurobiol Aging, 2011. **32**(2): p. 354-68.

483 25. Bergfield, K.L., et al., *Age-related networks of regional covariance in MRI gray matter:*
484 *reproducible multivariate patterns in healthy aging*. Neuroimage, 2010. **49**(2): p. 1750-9.

485 26. Taki, Y., et al., *Correlations among brain gray matter volumes, age, gender, and*
486 *hemisphere in healthy individuals*. PLoS One, 2011. **6**(7): p. e22734.

487 27. Giorgio, A., et al., *Age-related changes in grey and white matter structure throughout*
488 *adulthood*. Neuroimage, 2010. **51**(3): p. 943-51.

489 28. Zuo, N., et al., *Gray Matter-Based Age Prediction Characterizes Different Regional*
490 *Patterns*. Neurosci Bull, 2021. **37**(1): p. 94-98.

491 29. Armstrong, N.M., et al., *Associations between cognitive and brain volume changes in*
492 *cognitively normal older adults*. Neuroimage, 2020. **223**: p. 117289.

493 30. Armstrong, N.M., et al., *Predictors of neurodegeneration differ between cognitively*
494 *normal and subsequently impaired older adults*. Neurobiol Aging, 2019. **75**: p. 178-186.

495 31. Pfefferbaum, A., et al., *Brain gray and white matter volume loss accelerates with aging*
496 *in chronic alcoholics: a quantitative MRI study*. Alcohol Clin Exp Res, 1992. **16**(6): p.
497 1078-89.

498 32. Kimmel, C.L., et al., *Age-related parieto-occipital and other gray matter changes in*
499 *borderline personality disorder: A meta-analysis of cortical and subcortical structures*.
500 Psychiatry Res Neuroimaging, 2016. **251**: p. 15-25.

501 33. Wang, J., et al., *Gray Matter Age Prediction as a Biomarker for Risk of Dementia*. Proc
502 Natl Acad Sci U S A, 2019. **116**(42): p. 21213-21218.

503 34. Jorge, L., et al., *Investigating the Spatial Associations Between Amyloid-beta Deposition,*
504 *Grey Matter Volume, and Neuroinflammation in Alzheimer's Disease*. J Alzheimers Dis,
505 2021. **80**(1): p. 113-132.

506 35. Guo, Y., et al., *Grey-matter volume as a potential feature for the classification of*
507 *Alzheimer's disease and mild cognitive impairment: an exploratory study*. Neurosci Bull,
508 2014. **30**(3): p. 477-89.

509 36. Abe, O., et al., *Aging in the CNS: comparison of gray/white matter volume and diffusion*
510 *tensor data*. Neurobiol Aging, 2008. **29**(1): p. 102-16.

511 37. Storsve, A.B., et al., *Longitudinal Changes in White Matter Tract Integrity across the*
512 *Adult Lifespan and Its Relation to Cortical Thinning*. PLoS One, 2016. **11**(6): p. e0156770.

513 38. Yap, Q.J., et al., *Tracking cerebral white matter changes across the lifespan: insights*
514 *from diffusion tensor imaging studies*. J Neural Transm (Vienna), 2013. **120**(9): p. 1369-
515 95.

516 39. Lebel, C., et al., *Diffusion tensor imaging of white matter tract evolution over the*
517 *lifespan*. Neuroimage, 2012. **60**(1): p. 340-52.

518 40. Schilling, K., et al., *Aging and white matter microstructure and macrostructure: a*
519 *longitudinal multi-site diffusion MRI study of 1,184 participants*. bioRxiv, 2022: p.
520 2022.02.10.479977.

521 41. Phillips, O.R., et al., *Superficial white matter: effects of age, sex, and hemisphere*. Brain
522 Connect, 2013. **3**(2): p. 146-59.

523 42. Nazeri, A., et al., *Superficial white matter as a novel substrate of age-related cognitive*
524 *decline*. Neurobiol Aging, 2015. **36**(6): p. 2094-106.

525 43. Malykhin, N., et al., *Structural organization of the prefrontal white matter pathways in*
526 *the adult and aging brain measured by diffusion tensor imaging*. Brain Struct Funct,
527 2011. **216**(4): p. 417-31.

528 44. Wu, M., A. Kumar, and S. Yang, *Development and aging of superficial white matter*
529 *myelin from young adulthood to old age: Mapping by vertex-based surface statistics*
530 *(VBSS)*. Hum Brain Mapp, 2016. **37**(5): p. 1759-69.

531 45. Williams, O.A., et al., *Vascular burden and APOE epsilon4 are associated with white*
532 *matter microstructural decline in cognitively normal older adults*. Neuroimage, 2019.
533 **188**: p. 572-583.

534 46. Jefferson, A.L., et al., *The Vanderbilt Memory & Aging Project: Study Design and Baseline*
535 *Cohort Overview*. J Alzheimers Dis, 2016. **52**(2): p. 539-59.

536 47. Taylor, J.R., et al., *The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data*
537 *repository: Structural and functional MRI, MEG, and cognitive data from a cross-*
538 *sectional adult lifespan sample*. Neuroimage, 2017. **144**(Pt B): p. 262-269.

539 48. Tournier, J.D., et al., *MRtrix3: A fast, flexible and open software framework for medical*
540 *image processing and visualisation*. Neuroimage, 2019. **202**: p. 116137.

541 49. Tournier, J.-D., F. Calamante, and A. Connelly, *Improved probabilistic streamlines*
542 *tractography by 2nd order integration over fibre orientation distributions*. Proc. Intl. Soc.
543 Mag. Reson. Med. (ISMRM), 2010. **18**.

544 50. Fischl, B., *FreeSurfer*. Neuroimage, 2012. **62**(2): p. 774-81.

545 51. Destrieux, C., et al., *Automatic parcellation of human cortical gyri and sulci using*
546 *standard anatomical nomenclature*. Neuroimage, 2010. **53**(1): p. 1-15.

547 52. Garyfallidis, E., et al., *QuickBundles, a Method for Tractography Simplification*. Front
548 Neurosci, 2012. **6**: p. 175.

549 53. Yeh, F.-C., *Shape Analysis of the Human Association Pathways*. bioRxiv, 2020: p.
550 2020.04.19.049544.

551 54. Jones, D.K., *Diffusion MRI : theory, methods, and application*. 2010, Oxford ; New York:
552 Oxford University Press. xvi, 767 p.

553 55. Farrell, J.A., et al., *Effects of signal-to-noise ratio on the accuracy and reproducibility of*
554 *diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal*
555 *eigenvector measurements at 1.5 T*. J Magn Reson Imaging, 2007. **26**(3): p. 756-67.

556 56. Landman, B.A., et al., *Effects of diffusion weighting schemes on the reproducibility of*
557 *DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector*
558 *measurements at 1.5T*. Neuroimage, 2007. **36**(4): p. 1123-38.

559 57. Schilling, K.G., et al., *Fiber tractography bundle segmentation depends on scanner*
560 *effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion*
561 *sensitization, and bundle segmentation workflow*. Neuroimage, 2021. **242**: p. 118451.

562 58. Ning, L., et al., *Cross-scanner and cross-protocol multi-shell diffusion MRI data*
563 *harmonization: Algorithms and results*. Neuroimage, 2020. **221**: p. 117128.

564 59. Tournier, J.D., F. Calamante, and A. Connelly, *Robust determination of the fibre*
565 *orientation distribution in diffusion MRI: non-negativity constrained super-resolved*
566 *spherical deconvolution*. Neuroimage, 2007. **35**(4): p. 1459-72.

567 60. Smith, R.E., et al., *Anatomically-constrained tractography: improved diffusion MRI*
568 *streamlines tractography through effective use of anatomical information*. Neuroimage,
569 2012. **62**(3): p. 1924-38.

570 61. Sullivan, E.V., T. Rohlfing, and A. Pfefferbaum, *Quantitative fiber tracking of lateral and*
571 *interhemispheric white matter systems in normal aging: relations to timed performance*.
572 Neurobiol Aging, 2010. **31**(3): p. 464-81.

573 62. Sullivan, E.V., et al., *Equivalent disruption of regional white matter microstructure in*
574 *ageing healthy men and women*. Neuroreport, 2001. **12**(1): p. 99-104.

575 63. Song, S.K., et al., *Demyelination increases radial diffusivity in corpus callosum of mouse*
576 *brain*. Neuroimage, 2005. **26**(1): p. 132-40.

577 64. Song, S.K., et al., *Dysmyelination revealed through MRI as increased radial (but*
578 *unchanged axial) diffusion of water*. Neuroimage, 2002. **17**(3): p. 1429-36.

579 65. Veale, T., et al., *Loss and dispersion of superficial white matter in Alzheimer's disease: a*
580 *diffusion MRI study*. Brain Commun, 2021. **3**(4): p. fcab272.

581 66. Zhang, H., et al., *NODDI: practical in vivo neurite orientation dispersion and density*
582 *imaging of the human brain*. Neuroimage, 2012. **61**(4): p. 1000-16.

583 67. Sullivan, E.V. and A. Pfefferbaum, *Diffusion tensor imaging and aging*. Neurosci
584 Biobehav Rev, 2006. **30**(6): p. 749-61.

585 68. Ardekani, S., et al., *Exploratory voxel-based analysis of diffusion indices and hemispheric*
586 *asymmetry in normal aging*. Magn Reson Imaging, 2007. **25**(2): p. 154-67.

587 69. Bhagat, Y.A. and C. Beaulieu, *Diffusion anisotropy in subcortical white matter and*
588 *cortical gray matter: changes with aging and the role of CSF-suppression*. J Magn Reson
589 Imaging, 2004. **20**(2): p. 216-27.

590 70. Huang, S.Y., et al., *High-gradient diffusion MRI reveals distinct estimates of axon*
591 *diameter index within different white matter tracts in the in vivo human brain*. Brain
592 Struct Funct, 2020. **225**(4): p. 1277-1291.

593 71. Pfefferbaum, A., E. Adalsteinsson, and E.V. Sullivan, *Frontal circuitry degradation marks*
594 *healthy adult aging: Evidence from diffusion tensor imaging*. Neuroimage, 2005. **26**(3):
595 p. 891-9.

596 72. Chamberland, M., et al., *Detecting microstructural deviations in individuals with deep*
597 *diffusion MRI tractometry*. medRxiv, 2021: p. 2021.02.23.21252011.

598 73. Winter, M., et al., *Tract-specific MRI measures explain learning and recall differences in*
599 *multiple sclerosis*. Brain Communications, 2021.

600 74. Chamberland, M., et al., *Dimensionality reduction of diffusion MRI measures for*
601 *improved tractometry of the human brain*. Neuroimage, 2019. **200**: p. 89-100.

602 75. St-Onge, E., et al., *Surface-enhanced tractography (SET)*. Neuroimage, 2018. **169**: p. 524-
603 539.

604 76. Reveley, C., et al., *Superficial white matter fiber systems impede detection of long-range*
605 *cortical connections in diffusion MR tractography*. Proc Natl Acad Sci U S A, 2015.
606 **112**(21): p. E2820-8.

607 77. Schilling, K.G., et al., *Challenges in diffusion MRI tractography - Lessons learned from*
608 *international benchmark competitions*. Magn Reson Imaging, 2019. **57**: p. 194-209.

609 78. Schilling, K.G., et al., *Limits to anatomical accuracy of diffusion tractography using*
610 *modern approaches*. Neuroimage, 2019. **185**: p. 1-11.

611 79. Schilling, K.G., et al., *Prevalence of white matter pathways coming into a single white*
612 *matter voxel orientation: The bottleneck issue in tractography*. Hum Brain Mapp, 2021.

613 80. Maier-Hein, K.H., et al., *The challenge of mapping the human connectome based on*
614 *diffusion tractography*. Nat Commun, 2017. **8**(1): p. 1349.

615 81. Van Essen, D.C., et al., *The Human Connectome Project: a data acquisition perspective*.
616 Neuroimage, 2012. **62**(4): p. 2222-31.

617 82. Zhang, F., et al., *An anatomically curated fiber clustering white matter atlas for*
618 *consistent white matter tract parcellation across the lifespan*. Neuroimage, 2018. **179**: p.
619 429-447.

620 83. Oishi, K., et al., *Human brain white matter atlas: identification and assignment of*
621 *common anatomical structures in superficial white matter*. Neuroimage, 2008. **43**(3): p.
622 447-57.

623 84. Schilling, K.G., et al., *Tractography dissection variability: What happens when 42 groups*
624 *dissect 14 white matter bundles on the same dataset?* Neuroimage, 2021. **243**: p.
625 118502.

626 85. Roman, C., et al., *Clustering of Whole-Brain White Matter Short Association Bundles*
627 *Using HARDI Data*. Front Neuroinform, 2017. **11**: p. 73.

628 86. Zhang, F., et al., *Test-retest reproducibility of white matter parcellation using diffusion*
629 *MRI tractography fiber clustering*. Hum Brain Mapp, 2019. **40**(10): p. 3041-3057.

630