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Abstract 23 
It is estimated that short association fibers, or “U-shaped” fibers running immediately beneath 24 
the cortex, may make up as much as 60% of the total white matter volume. However, these 25 
have been understudied relative to the long-range association, projection, and commissural 26 
fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, 27 
which is the primary methodology used to non-invasively study the white matter connections. 28 
Inspired by recent anatomical considerations and methodological improvements in U-fiber 29 
tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, 30 
which provide insight into the biological foundation of age-related cognitive changes, and a 31 
better understanding of how age-related pathology differs from healthy aging. To do this, we 32 
used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to 33 
quantify microstructural features and length/volume features of several U-fiber systems. We 34 
find that axial, radial, and mean diffusivities show positive associations with age, while 35 
fractional anisotropy has negative associations with age in superficial white matter throughout 36 
the entire brain. These associations were most pronounced in the frontal, temporal, and 37 
temporoparietal regions. Moreover, measures of U-fiber volume and length decrease with age 38 
in a heterogenous manner across the brain, with prominent effects observed for pre- and post-39 
central gyri. These features, and their variations with age, provide the background for 40 
characterizing normal aging, and, in combination with larger association pathways and gray 41 
matter microstructural features, may provide insight into fundamental mechanisms associated 42 
with aging and cognition.  43 

 44 
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 48 
 49 
Introduction 50 
 Superficial white matter (SWM) is the layer of white matter just beneath the cortex, and 51 
is composed of short association U-shaped fibers, or U-fibers, that primarily connect adjacent 52 
gyri. These U-fibers represent a majority of the connections of the human brain [1, 2], occupy 53 
as much as 60% of the total white matter volume [1], are among the last parts of the brain to 54 
myelinate [3], and contain a comparatively high density of interstitial white matter neurons 55 
relative to other white matter[4]. The SWM serves a critical role in brain function [5], plasticity, 56 
development, and aging, and is especially affected in disorders such as Alzheimer’s disease [6, 57 
7], autism [8], and schizophrenia [9]. 58 
 Despite its prevalence and significance, SWM has been understudied relative to the 59 
long-range association, projection, and commissural fibers of the brain. This is largely because 60 
of the limitations of diffusion MRI fiber tractography [10-12], which is the primary methodology 61 
used to non-invasively study the white matter connections [13]. The study of U-fibers using 62 
tractography faces anatomical and methodological challenges including partial volume effects, 63 
complex local anatomy, and a lack of consensus on definition and taxonomy [12], which 64 
complicate development and validation of algorithms dedicated to studying these fiber 65 
systems. However, recent innovation in diffusion MRI imaging, processing, and tractography 66 
methodologies [10, 12, 14-16] have made it possible to reliably study SWM in health and 67 
disease [9, 17-21]. 68 
 One promising avenue of exploration is to study U-fibers during aging. Studies of the 69 
aging brain may provide insight into the biological foundation of age-related cognitive changes, 70 
and a better understanding of how abnormal aging (e.g., age-related neurodegenerative 71 
disorders) differs from healthy aging [22]. A large body of magnetic resonance imaging (MRI) 72 
research has shown that the structure of the human brain is constantly changing with age. In 73 
the gray matter, structural MRI studies have shown heterogenous patterns of normal age-74 
related changes in cortical volume and thickness [23-30], with detectable differences in 75 
abnormal aging and disease [30-35]. In the white matter, diffusion tensor imaging (DTI) analysis 76 
has shown that fractional anisotropy (FA) is negatively associated with age and mean diffusivity 77 
(MD) is positively associated with age across several white matter pathways [36-39], and 78 
tractography analysis has shown that the volume and surface areas of many pathways 79 
decreases with age [40]. These findings have been attributed to myelin loss and/or decreased 80 
axonal densities and volumes. However, with few exceptions [41-44], studies of white matter 81 
brain aging have focused on the deep white matter and larger long-range pathways of the 82 
brain. 83 
 Inspired by recent anatomical considerations and methodological improvements in U-84 
fiber tractography [12], and lack of studies of SWM during aging, we sought to characterize 85 
changes in these fiber systems during normal aging. To do this, we leveraged three well-86 
established cohorts of aging, including two longitudinal cohorts [Baltimore Longitudinal Study 87 
of Aging (BLSA) [45], Vanderbilt Memory & Aging Project (VMAP) [46]], and one cross-sectional 88 
cohort [Cambridge Centre for Ageing and Neuroscience (Cam-CAN) [47]]. Within these cohorts, 89 
we performed automatic tractography segmentation in 82 U-fiber bundles, characterizing both 90 
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microstructural features and macrostructural features of these SWM systems, to describe 91 
associations between these features and age. 92 
 93 
Methods 94 
 95 
Data 96 

This study used data from three datasets, summarized in Table 1, and contained a total 97 
of 1293 participants (2711 sessions) aged 50-98 years. All datasets were filtered to exclude 98 
participants with diagnoses of mild cognitive impairment, Alzheimer’s disease, or dementia at 99 
baseline, or if they developed these conditions during the follow-up interval. Finally, datasets 100 
were filtered to focus on participants aged 50+, due to limited samples sizes below 50 years old 101 
in each dataset. 102 

  103 

 104 
Table 1. This study used 3 longitudinal and cross-sectional datasets, with a total of 1293 105 
participants ( 2711 sessions), aged 50-98 years. Distributions of age at baseline, and number of 106 
sessions, are shown for each individual dataset.  107 
 108 

First, was the Baltimore Longitudinal Study of Aging (BLSA) dataset, with 741 109 
participants scanned multiple times ranging from 1 to 8 sessions, and time between scans 110 
ranging from 1 to 10 years, yielding a total of 1788 diffusion sessions. Diffusion MRI data was 111 
acquired on a 3T Philips Achieva scanner (32 gradient directions, b-value=700s/mm2, 112 
TR/TE=7454/75ms, reconstructed voxel size=0.81×0.81×2.2mm, reconstruction 113 
matrix=320×320, acquisition matrix=115× 115, field of view=260×260mm). Second, was data 114 
from the Vanderbilt Memory & Aging Project (VMAP), with 187 participants, scanned between 115 
1-4 sessions, with a total of 558 diffusion datasets. Diffusion MRI data was acquired on a 3T 116 
Philips Achieva scanner (32 gradient directions, b-value=1000s/mm2, reconstructed voxel 117 
size=2x2x2mm). Third, was data from the Cambridge Centre for Ageing and Neuroscience (Cam-118 
CAN) data repository [47] with 356 participants, each scanned once using a 3T Siemens TIM Trio 119 
scanner with a 32-channel head coil (30 directions at b-value=1000s/mm2, 30 directions at b-120 
value=2000s/mm2, reconstructed voxel size=2x2x2mm). All human datasets from Vanderbilt 121 
University were acquired after informed consent under supervision of the appropriate 122 
Institutional Review Board. This study accessed only de-identified patient information. 123 
 124 
Tractography and U-fiber bundle dissection 125 

Dataset Number of Subjects Number of Sessions Age
Baltimore Longitudinal 

Study of Aging
741

328 M
1788

Range [1 8]
[50 98]

74.1 +/- 9.9

Cambridge Centre for 
Ageing Neuroscience

365
186 M

365
Range [1]

[50 88]
68.0 +/- 

10.3

Vanderbilt Memory & 
Aging Project

187
113 M

558
Range [1 4]

[60 95]
74.2 +/- 7.0

1293
627 M

2711
Range [1 8]

[50 98]
73.5 +/- 9.3
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For every subject and every session, sets of U-fiber pathways were virtually dissected 126 
using methodology similar to [12], with small modifications. Figure 1 visualizes the 127 
methodological pipeline. This pipeline utilized MRtrix [48], with tractography performed using 128 
the second-order integration probabilistic algorithm [49] to generate 2 million streamlines with 129 
a maximum length of 50mm, utilizing anatomical constraints to ensure gray matter to gray 130 
matter connections. This pipeline has been shown to result in dense systems of fibers 131 
immediately adjacent to the cortical sheet [12].  132 

Freesurfer [50] was run on the T1-weighted images, and results transformed to diffusion 133 
MRI space with ANTs. For this work, we chose to use the Destrieux atlas [51] parcellation, 134 
utilizing only the neocortex labels, to assign all streamlines to edges in a connection matrix, 135 
resulting in a potential 164x164 SWM bundles. An empirical decision was made to select only 136 
those bundles that are reproducible across 75% of the studied population (containing a 137 
minimum of 200 streamlines), resulting in 82 U-fiber bundles studied. These bundles were 138 
filtered to remove streamlines that were not U-shaped using the scilpy toolbox 139 
(https://github.com/scilus/scilpy), and further filtered to remove outlier streamlines [52]. 140 

A list of the 82 bundles, using nomenclature derived from the Destrieux atlas, is given in 141 
the appendix. 142 
 143 

 144 
Figure 1. Methodological pipeline. Fiber tractography is constrained based on anatomy and 145 
length, and streamlines are assigned to edges in a connection matrix. Only bundles reproducible 146 
across the studied population (N=82) are kept for analysis. Bundles are then filtered based on 147 
shape and outlier removals. Finally, for each bundle and each subject, microstructural and 148 
macrostructural features are extracted for analysis. 149 
 150 
Feature extraction 151 

From the final 82 bundles for each subject, 6 features were extracted including four DTI 152 
microstructural measures of fractional anisotropy (FA), and mean, radial, and axial diffusivities 153 
(MD, RD, AD) and two macrostructural measures of length and volume, following the 154 
procedures in [53].  155 
 156 
Analytical Plan 157 

To investigate the relationship between age and each WM feature, linear mixed effects 158 
modeling was performed, with each (z-normalized) feature, Y, modeled as a linear function of 159 
age, 𝑦 = 𝛽! + 𝛽"𝐴𝑔𝑒 + 𝛽#𝑆𝑒𝑥 +	𝛽$𝑇𝐼𝐶𝑉 + 	𝛽$(1 + 𝐴𝐺𝐸	|	𝐷𝐴𝑇𝐴𝑆𝐸𝑇) +	𝛽%(𝑆𝑈𝐵) , where 160 
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subjects (SUB) were entered as a random effect (i.e., subject-specific random intercept), and 161 
subject sex (Sex) and total intracranial volume (TICV) as a fixed effects. Additionally, we 162 
modelled the association between age and outcome variable as dataset (DATASET) specific due 163 
to expected differences in MR protocols [54-58], and included a dataset specific random slope 164 
and intercept. We note that the TICV utilized was calculated from the T1-weighted image from 165 
the baseline scan. 166 

Due to multiple comparisons, all statistical tests were controlled by the false discovery 167 
rate at 0.05 to determine significance. Results are presented as the beta coefficient of estimate 168 
‘B1’, or in other words “the association of the feature ‘y’ with Age”, which (due to 169 
normalization) represents the standard deviation change in feature per year. These measures 170 
are derived for each pathway and each feature. Additionally, results may be shown as a percent 171 
change per year, derived from the slope normalized by the average value across the aging 172 
population (from 50-98), and multiplied by 100, which represents the percent change in feature 173 
per year. These measures are derived for each pathway and each feature. 174 
 175 
Results 176 
 177 
U-fiber systems 178 

Example U-fiber systems that were consistently identified across the population are 179 
shown in Figure 2 for a single example subject. In the coronal and axial slices, these fibers run 180 
immediately below and adjacent to the cortex in locations and geometries expected 181 
traditionally assigned to SWM. In the 3D visualization, U-fibers are represented along a large 182 
portion of the gray matter surface. Notably, many U-fiber systems start and end within the 183 
same cortical label, which still meets our definition of superficial systems.   184 
 185 

 186 
Figure 2. U-fiber systems show expected shape and locations, and cover a large portion of the 187 
surface of the brain. 82 U-fibers determined to be robust across a population are shown in a 188 
single subject, with distinct colors for each bundle.  189 
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 190 
What changes and where? 191 
 Figure 3 shows associations with age of all measures for 7 randomly selected pathways. 192 
In line with previous literature in both long association pathways and SWM, FA shows negative 193 
associations with age, while the diffusivities show positive associations with age. In general, 194 
SWM length and volume tend to decrease with increasing age, even when accounting for TICV, 195 
although the effects are not statistically significant for all pathways. As expected, different 196 
datasets, with different acquisitions, result in different calculated DTI indices, with much 197 
smaller differences in bundle length and volume.  198 
 To summarize association with age for all features and all pathways, we show the beta 199 
coefficient associations with age for all features in a matrix in Figure 4, along with boxplots 200 
summarizing the beta coefficients across all studied pathways in Figure 5. DTI measures show 201 
large, robust associations with age for many pathways. FA in SWM shows negative associations 202 
with age, while all diffusivities (AD, MD, RD) show strong positive associations with age. 203 
Measures of length and volume show reduced associations with age, for fewer pathways. In 204 
general, both length and volume decrease with age for those pathways with statistically 205 
significant age associations. 206 
 207 
 208 
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 209 
Figure 3. Microstructural and macrostructural features change with age in many pathways. 210 
Shown are all studied features for 7 randomly selected pathways, where all data points are 211 
shown (with lines connecting longitudinal datasets). A line of best fit is shown if there are 212 
statistically significant associations with age, where color indicates the cohort. Visualization of 213 
the U-fiber pathways for a single subject are shown overlaid on a transparent brain.  214 
 215 

 216 
Figure 4. What and where changes occur in SWM during aging. The beta coefficient from linear 217 
mixed effects modeling is shown as a matrix for all features across all pathways. Note that the 218 
beta coefficient describes “the association of the feature ‘y’ with Age”, which (due to 219 
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normalization) represents the standard deviation change in feature per year. Only those 220 
features/pathways with statistically significant age-related changes are colored; non-significant 221 
effects are shown as diagonal line. 222 
 223 

 224 
Figure 5. Changes in superficial white matter. The beta coefficient from linear mixed effects 225 
modeling across all studied U-fiber pathways is shown in boxplot form (for statistically 226 
significant results only). In general, diffusivities show positive associations with age, while FA, 227 
length, and volume measures show negative associations with age. 228 
 229 
Visualizing change across superficial white matter 230 

To visualize where changes in SWM occur during aging, all pathways are visualized, 231 
colored coded according to percent change per year, and shown in Figure 6. Again, SWM 232 
pathways throughout the entire cortex show statistically significant increases in diffusivities 233 
with age, of ~0.2-0.4% change per year, while FA shows decreases of similar magnitude per 234 
year. Notably, microstructural features show greatest changes in frontal and temporal lobes, 235 
with minimal changes in pre- and post-central gyri. Changes in length and volume are more 236 
sparse, with decreases in length with age observed throughout the entire brain, while 237 
decreases in volume with age are denser in the frontal lobe.  238 

An alternative visualization is shown in Figure 7, where each cortical region is color-239 
coded based on the percent-change per year of all SWM fibers connecting that label (note that 240 
a single cortical region can be associated with multiple U-fiber systems). Again, clear patterns 241 
are observed in SWM associated with frontal and temporal lobes, including larger decreases in 242 
FA and increases in all diffusivities. Interestingly, SWM of the pre- and post-central gyri, while 243 
indicating less change per year in microstructural features, stand out as the largest decreases in 244 
length and volume per year.  245 

  246 
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 247 
Figure 6. Percent change per year from the population mean shown as color-coded streamlines 248 
on an example subject. Bundles are only shown if statistically significant trends with age are 249 
observed.  250 
 251 

 252 
Figure 7. Percent change per year from the population mean for short superficial U-fibers 253 
connecting individual regions of interest. Regions of an example subject are color-coded based 254 
on the population-averaged percent change per year of all fibers connecting that label. 255 
 256 
Discussion 257 
 Here, we have used multiple large, longitudinal and cross-sectional datasets, and 258 
innovations in tractography generation and filtering, to characterize U-fiber systems in 3 aging 259 
cohorts, describing microstructural features and for the first time, macrostructural features. 260 
Our main findings are that (1) diffusivities show positive associations with age, while anisotropy 261 
has negative associations with age, in SWM throughout the entire brain, (2) larger 262 
microstructural changes were observed in the frontal, temporal, and temporoparietal regions, 263 
(3) measures of U-fiber geometry and length decrease with age, and (4) changes in length and 264 
volume were more heterogenous, with prominent effects seen at the pre- and post-central gyri.  265 
 266 
Superficial white matter in aging 267 
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 Compared to the long-range association, projection, and commissural pathways, SWM 268 
of the brain has been underexplored in the literature, in both healthy and abnormal aging. 269 
Recently, due to advances in software and tools to study SWM, studies of these systems have 270 
started to increase. For a thorough review on SWM tractography analysis and applications, see 271 
work by Guevara et al. [10]. Of note, there have been few studies of SWM in aging using 272 
diffusion MRI.  In a study of 141 healthy individuals (18-86 years old), Nazeri et al. [42] found 273 
widespread negative relationships of FA with age, in agreement with our results. To do this, 274 
they generated a population-based SWM template, and used this to perform a tract-based 275 
spatial statistics (TBSS) style analysis. Similarly, in a cohort of 65 individuals (18-74 years old) 276 
Phillips et al. [41] found age-related reductions in FA and increases in RD and AD across large 277 
areas of SWM, with results more pronounced in the frontal SWM compared to the posterior 278 
and ventral brain regions, and they interpreted this as an increased vulnerability to the aging 279 
process. Rather than tractography, this was done using white matter/gray matter surface-based 280 
alignment from structural MRI data and probing the DTI indices across the population along this 281 
boundary. Finally, using tractography and manually placed regions of interest on 69 subjects 282 
(22-84 years old), and focusing on prefrontal connections, Malykhin et al. [43] found significant 283 
decreases in FA starting at ~60 years of age, in both SWM and association/commissural 284 
pathways. The use of tractography also enabled volumetric analysis, where both long range and 285 
short-range fiber systems showed decreased volumes with age. 286 
 Motivated by these works in SWM, the current study takes advantage of innovations in 287 
tractography and U-fiber segmentation, and incorporates multiple large cross-sectional and 288 
longitudinal cohorts totaling >1200 participants and >2700 sessions to study SWM throughout 289 
the entire brain. Specifically, constrained spherical deconvolution [59], in combination with 290 
probabilistic tractography [49] has become prevalent in state-of-the art studies of the human 291 
connectome and individual fiber bundles. Combining this with anatomical constraints [60] and 292 
subsequent filtering [52] enables robust delineation of white matter systems underneath most 293 
of the cortex (Figure 1), in alignment with current knowledge of SWM. Similar methodology has 294 
been shown to result in reproducible streamlines [12], making studies of clinical cohorts 295 
plausible. Further, we include several large datasets on aging, making this the largest cohort to 296 
date to study these fibers in any clinical study.  297 
 298 
 299 
What changes and where 300 
 The observed associations with age include decreased FA, volume, length, and increased 301 
axial, radial, and mean diffusivities. The biological mechanism for these age-related changes is 302 
not entirely clear, due to the high sensitivity (and low specificity) of these DTI measures to 303 
various features of tissue microstructure. In general, these observations in white matter (in 304 
both health and disease) have been attributed to various biological mechanisms. Increases in 305 
radial and axial diffusivities are often associated with decreased axonal packing [61, 62], 306 
allowing for increased diffusivity in all orientations, as well as myelin thinning which may be 307 
observed as increased radial diffusivity [63, 64]. The low sensitivity of DTI can potentially be 308 
overcome with multi-compartment modeling, which may allow disentangling neurite densities, 309 
compartmental changes, and geometrical configurations. For example, a SWM study of 310 
individuals with young onset Alzheimer’s disease (using the white matter and gray matter 311 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.494720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494720
http://creativecommons.org/licenses/by/4.0/


boundary to define regions, as in [41]) found that these individuals exhibited decreased FA and 312 
increased diffusivities [65]. However, the use of a multi-compartment tissue model (in this case 313 
the neurite orientation dispersion and density imaging model [66], showed both a decreased 314 
neurite volume fraction and higher dispersion index, suggesting both a loss of myelinated fibers 315 
and greater dispersion (less coherent organization) of these SWM systems. While these studies 316 
were able to detect differences in extreme neurodegenerative cases, we found that these 317 
systems are sensitive in aging individuals without cognitive impairment as well. Future studies 318 
should implement similar modeling, in combination with the tractography generation and 319 
segmentation utilized in this study, to improve biological specificity of changes in healthy aging. 320 
 Identifying where changes occur during age may facilitate studying the underpinnings of 321 
cognitive and motor changes, and aid in identifying networks that are susceptible to disease 322 
and disorder. Here, much like previous studies [6, 41, 67-70] in gray matter, white matter 323 
pathways, and axonal diameters, there is a clear anterior-to-posterior gradient in changes of 324 
microstructure across age. The frontal lobe is comprised of functional networks recruited for a 325 
diverse range of cognitive problems, and disruption is associated with age-related declines in 326 
cognitive processes [71]. Our study confirms that in addition to gray matter, and the larger 327 
white matter pathways, the U-fibers of the frontal lobe also indicate strong age-related trends. 328 
future work should investigate relationships between these neuroimaging features and age-329 
related declines in cognition.  330 
 331 
Towards painting a complete picture of brain aging 332 

Noninvasive MR-imaging has slowly led to a convergence of evidence of structural and 333 
functional changes in aging. The main findings from decades of research are that the brain 334 
shrinks in overall volume and the ventricular system expands in volume [22]. The pattern of 335 
changes is heterogenous, as described here and elsewhere [22], with most analyses suggesting 336 
a 0.5%-1% reduction in volume per year in most areas of the brain. The changes in volume are 337 
related to neuronal loss, neuronal shrinkage, decreased length of myelinated axons in white 338 
matter and reduction of synapses in the gray matter. Finally, structural changes in healthy aging 339 
mediate, or explain, domain-specific cognitive decline in individuals both with and without 340 
cognitive impairment [29, 30]. The results of this study highlight that SWM cannot be ignored 341 
when forming a complete picture of brain aging. In addition, variation of these systems across 342 
populations may enable subject-specific analysis and identification of atypical structure, which 343 
may be used to study subject-specific function. 344 
 345 
Limitations and future direction 346 
 Because of the lack of studies on SWM, there are a number of research directions that 347 
can benefit from these methodologies. Understanding not only the relationship between SWM 348 
and the cortex, but also the SWM and long-range pathways would further our understanding of 349 
the complex interactions of the aging brain. Additionally, tractometry [72-74] or high 350 
dimensional analysis of the brain, which has been shown to enable single-subject inference 351 
[72], may benefit from the additional set of features provided by SWM. Understanding which 352 
features of the brain change first is paramount to understanding differences in disease. SWM 353 
has found relevant application in cohorts with autism, schizophrenia, and Alzheimer’s disease, 354 
[10] and may further benefit from a comprehensive examination of the structural changes of 355 
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the brain including both white and gray matter geometric analysis and microstructure analysis. 356 
Similarly, inclusion of cognitive and motor variables will facilitate linking function to structure. 357 
Finally, studies of SWM may help identify challenges for traditional fiber tractography of the 358 
long-range fibers – characterizing where these systems occur may facilitate challenges 359 
associated with gyral biases [11, 75, 76] and bottlenecks in streamline propagation that lead to 360 
creation of false positive pathways [77-80].  361 
 Several limitations should be acknowledged. First, while the use of multiple datasets 362 
allowed a large sample size, the use of different datasets with different acquisitions is known to 363 
result in very different quantitative indices of microstructure and macrostructure [54-58]. 364 
However, we included dataset as a variable in our mixed effects models, and consider this an 365 
advantage to the current study which shows these effects generalize across all data. Second, 366 
the data used is neither high angular resolution nor high spatial resolution, and future studies 367 
should utilize higher resolution datasets (e.g., the Human Connectome Project [81]), which may 368 
reduce variability in quantification, and enable studies across the entire lifetime. Third, we 369 
chose simple linear mixed effects modelling, whereas changes across a lifespan have been 370 
shown to be nonlinear – therefore we chose to focus our analysis on age 50+. Fourth, there are 371 
several methods to segment and study U-fibers, both with and without tractography [10, 14, 372 
82, 83], and we could have chosen different streamline generation and clustering algorithms. 373 
We expect that results will be similar, but not exactly the same, with the use of different 374 
methodologies for virtual dissection [84]. Finally, while U-fiber atlases do exist [14, 15, 83, 85, 375 
86], we choose to include all “U-shaped” fiber systems that exist within a certain percent of the 376 
studied population. This does not guarantee the existence of true anatomical connections, but 377 
has been used in the literature as an indicator of reliability of results.  378 
 379 
Conclusion 380 
Here, we have used a large, longitudinal dataset, and innovations in tractography generation 381 
and filtering, to characterize U-fiber systems in an aging cohort, describing microstructural 382 
features and for the first time, macrostructural features. We find robust associations with age 383 
for all features, across many fiber systems. These features, and their normal variations with 384 
age, may be useful for characterizing abnormal aging, and, in combination with larger 385 
association pathways and gray matter microstructural features, lead to insight into 386 
fundamental mechanisms associated with aging and cognition.  387 
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Abbreviation Freesurfer-based nomenclature
l_g_fr_mid:l_g_fr_mid ctx_lh_G_front_middle---ctx_lh_G_front_middle
l_g_fr_sup:l_g_s_cing ctx_lh_G_front_sup---ctx_lh_G_and_S_cingul-Ant
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l_g_prec:l_g_postc ctx_lh_G_precentral---ctx_lh_G_postcentral
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l_s_fr_mid:l_g_fr_mid ctx_lh_S_front_middle---ctx_lh_G_front_middle
l_s_fr_sup:l_g_fr_mid ctx_lh_S_front_sup---ctx_lh_G_front_middle
l_s_fr_sup:l_g_fr_sup ctx_lh_S_front_sup---ctx_lh_G_front_sup
l_s_fr_sup:l_s_fr_sup ctx_lh_S_front_sup---ctx_lh_S_front_sup
l_s_orbhshape:l_s_orbhshape ctx_lh_S_orbital-H_Shaped---ctx_lh_S_orbital-H_Shaped
l_s_pcal:l_g_fr_sup ctx_lh_S_pericallosal---ctx_lh_G_front_sup
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l_s_precsuppart:l_g_prec ctx_lh_S_precentral-sup-part---ctx_lh_G_precentral
l_s_precsuppart:l_s_precsuppart ctx_lh_S_precentral-sup-part---ctx_lh_S_precentral-sup-part
r_g_fr_mid:r_g_fr_mid ctx_rh_G_front_middle---ctx_rh_G_front_middle
r_g_fr_sup:r_g_s_cing ctx_rh_G_front_sup---ctx_rh_G_and_S_cingul-Ant
r_g_fr_sup:r_g_fr_mid ctx_rh_G_front_sup---ctx_rh_G_front_middle
r_g_fr_sup:r_g_fr_sup ctx_rh_G_front_sup---ctx_rh_G_front_sup
r_g_orb:r_g_orb ctx_rh_G_orbital---ctx_rh_G_orbital
r_g_prec:r_g_prec ctx_rh_G_precentral---ctx_rh_G_precentral
r_s_cent:r_g_prec ctx_rh_S_central---ctx_rh_G_precentral
r_s_fr_inf:r_g_fr_mid ctx_rh_S_front_inf---ctx_rh_G_front_middle
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r_s_fr_mid:r_g_fr_mid ctx_rh_S_front_middle---ctx_rh_G_front_middle
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r_s_precsuppart:r_s_precsuppart ctx_rh_S_precentral-sup-part---ctx_rh_S_precentral-sup-part
l_g_par_infang:l_g_par_infang ctx_lh_G_pariet_inf-Angular---ctx_lh_G_pariet_inf-Angular
l_g_par_infsup:l_g_par_infsup ctx_lh_G_pariet_inf-Supramar---ctx_lh_G_pariet_inf-Supramar
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l_s_inpar_ptrans:l_g_par_sup ctx_lh_S_intrapariet_and_P_trans---ctx_lh_G_parietal_sup
l_s_inpar_ptrans:l_s_inpar_ptrans ctx_lh_S_intrapariet_and_P_trans---ctx_lh_S_intrapariet_and_P_trans
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r_s_paro_occ:r_s_paro_occ ctx_rh_S_parieto_occipital---ctx_rh_S_parieto_occipital
r_s_postc:r_g_postc ctx_rh_S_postcentral---ctx_rh_G_postcentral
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