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Abstract

Summary: GREAT is a widely used tool for functional enrichment on genomic regions.
However, as an online tool, it has limitations of outdated annotation data, small numbers of
supported organisms and gene set collections, and not being extensible for users. Here we
developed a new R/Bioconductor package named rGREAT which implements the GREAT
algorithm locally. rGREAT by default supports more than 500 organisms and a large number
of gene set collections, as well as self-provided gene sets and organisms from users.
Additionally, it implements a general method for dealing with background regions.
Availability and implementation: The package rGREAT is freely available from the
Bioconductor project: https://bioconductor.ora/packages/r GREAT/. The development version
is available at https://github.com/jokergoo/rGREAT. Gene Ontology gene sets for 556
organisms are freely available at https://jokergoo.qgithub.io/GREAT_genesets/.

Contact: z.qu@dkfz.de or d.huebschmann@dkfz.de

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

Genomics and epigenomics studies often generate lists of genomic regions of interest, e.g.,
single-nucleotide variants (SNVs) from whole genome sequencing or exon sequencing data,
peak regions of a certain chromatin modification from ChIP sequencing data, or differentially
methylated regions (DMRs) from whole genome bisulfite sequencing data. The next step of
analysis is naturally to associate biological functions to these genomic regions. A widely
used approach is to first annotate genomic regions to the nearest genes, then to apply
over-representation analysis (ORA) on the genes against a collection of gene sets where
each gene set corresponds to a specific biological function. ORA is a common gene set
enrichment analysis (GSEA) approach for analyzing whether a list of genes, e.g.,
differentially expressed genes, are enriched in a gene set (Khatri and Draghici, 2005).
However, in the context of genomic regions, applying ORA directly on genes might not be
proper. In ORA where the enrichment analysis is normally performed by Fisher’s exact test
or based on hypergeometric distribution, the null assumption is that genes are independent
and they have the same probability to be picked; but when dealing with genomic regions, the
null assumption becomes genomic regions are uniformly distributed on the genome. Due to
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the fact that genes are not equally distributed on the genome and genes have different
lengths, conversion from genomic regions to genes makes genes not being picked with
equal probability. For example, a gene is difficult to be picked if regions are far from it, or a
gene is easy to be picked if there are a cluster of regions all associated with it or the gene
has a large length. These scenarios violate the null assumption of ORA and it would produce
false positives and improper enrichment results on genomic regions.

The tool GREAT (Genomic Regions Enrichment of Annotations Tool) (McLean et al., 2010)
was developed in 2010. The initial aim of GREAT was to associate biological functions to
cis-regulatory elements, e.g., transcriptional factor binding sites (TFBS), but its algorithm
allows it to be extended to any type of genomic regions. Instead of the gene-centric
enrichment of ORA, GREAT converts the problem to region-centric. For a gene in a gene
set, a basal domain extending its transcription start site (TSS), e.g., to upstream 5kb and
downstream 1kb, is firstly established which captures the TSS-related short-range
associations; next the basal domain is extended in both directions to maximal 1mb or until it
reaches the neighbour gene’s basal domain, which captures the distal associations. In this
way, for genes in the gene set, a list of extended TSSs are constructed and they are
associated with the biological function of this gene set. Simply speaking, GREAT directly
constructs region sets (or genomic domains) that associate with individual biological
functions. The enrichment test is applied as follows. For a specific biological term in a form a
of gene set, denote p as the fraction of its associated functional domains in the genome, N
as the total number of input regions, n as the observed number of input regions that fall in
the associated domains and the corresponding random variable as X, then X follows a
binomial distribution X ~ B(p, N) and the p-value of the enrichment is calculated as Pr(X > n).

GREAT has been widely applied in a large number of studies, nevertheless, there are still
limitations from the aspect of applications from users’ side. As an online tool, all annotation
resources are only controlled by GREAT developers and it is not extensible by users.
Current version (4.0.4) of GREAT only supports human and mouse, and it only supports
seven gene set collections which have not yet been updated to the most recent ones. In this
work, we present an R/Bioconductor package named rGREAT. It applies GREAT analysis in
two ways. First it serves as a client to directly interact with the GREAT web service in the R
environment. It automatically submits the input regions to GREAT and retrieves results from
there. Second, it implements the GREAT algorithm locally and it is seamlessly integrated
with the Bioconductor annotation ecosystem. On one hand, theoretically with local GREAT, it
is possible to perform enrichment analysis on any organism and with any type of gene set
collection; and on the other hand, Bioconductor annotation packages are well maintained
and updated, and it ensures local GREAT analysis always uses the most up-to-date
annotation data. Local GREAT by default supports many gene sets collections and more
than 500 organisms, and more importantly, local GREAT allows providing self-defined gene
sets and organisms though a simple application programming interface (API).

Methods and results

Online GREAT

rGREAT supports interacting with the GREAT web service programmatically. The function
submitGreatJob () automatically submits the input regions to the GREAT web service,
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the function getEnrichmentTables () retrieves results from GREAT, and the function
plotRegionGeneAssociations () generates plots of associations of input regions and
genes that are the same as in the GREAT web service. submitGreatJob () supports all
historical versions of GREAT.

Local GREAT

The function great () implements the GREAT algorithm and applies GREAT analysis
locally with a specific gene set collection on a specific organism. great () has integrated
Gene Ontology (GO) gene sets for all supported organisms and MSigDB gene sets
(Liberzon et al., 2011) for humans. great () also supports more than 500 organisms where
the annotations are retrieved with the biomaRt package (Durinck et al., 2005). great ()
allows users to integrate self-provided gene sets and organisms through a simple API. The
enrichment results can be viewed via a Shiny web application with the function
shinyReport ().

Work with background regions

GREAT applies a different enrichment test when background regions are provided. If
denoting background regions as a list of # intervals (x;, y;) where the index setis 4= {1, ...,
n}, the input regions can only be a list of intervals (x;, y;) where the index set B is a subset of
A. In this setting, for a biological term, GREAT counts the number of background regions
denoted as N,,, the number of input regions (or foreground regions) denoted as N,, the
number of background regions that fall in the associated functional domains denoted as #,,,
the number of input regions that fall in the associated domains as n, and the corresponding
random variable as X, then X, follows a hypergeometric distribution X;, ~ Hyper(N,,, N, 71,).
The p-value is calculated as Pr(X), > n,).

This approach is useful in certain scenarios. For example, for a transcriptional factor (TF)
whose binding sites are measured by ChIP sequencing, the union of its peaks from all
tissues can be taken as the background set, and peaks from one specific tissue are taken as
input region set, then we can test which biological functions are enriched for tissue-specific
TFBS peaks against the background set. However, such background sets sometimes are not
easy to obtain; on the other hand, researchers may look at the “background set” from a
different aspect. For example, they may want to exclude assembly gap regions or
unsequenced regions from the analysis. The null assumption of the GREAT binomial test is
that input regions are uniformly distributed in the genome. Since the unsequenced regions
are never measured, they are suggested to be excluded from the analysis (Domanska et al.,
2018). In Supplementary File 1, we demonstrate indeed excluding gap regions decreases
the number of enriched terms. Other scenarios of such type of backgrounds are when
analyzing DMRs, the background can be set as regions showing similar CpG density as the
input DMRs, or to remove sex chromsomes when genders contribute a huge batch effect in
the analysis. A proper background should be selected based on the attributes of input
regions, and a large and improper background normally underestimates the fractions of
biological term-associated domains in the genome and it generates lower p-values, thus
possibly more false positives (Supplementary File 1).
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great () supports two arguments background and exclude for setting a proper
background. If any of the two arguments is set, the input regions and the extended TSSs are
intersected to the background, and the GREAT binomial algorithm is only applied to the
reduced regions. When background regions are set, for a biological term, denote N, as the
total number of input regions that overlap to the background, p, as the fraction of the
associated functional domains but only in the restricted background, =, as the observed
number of input regions that fall in the associated domains restricted by background and the
corresponding random variable as X,, then X, follows the binomial distribution X, ~ B(p,, N,)
and p-value is calculated as Pr(X, > n,). In fact, the native hypergeometric method in GREAT
can be approximated to the binomial method here. Following the denotations used
previously, there are N, = N, n, = n, and p, = n,,/N,, when the numbers of regions are large.
However, the binomial method is more general and it has no restriction as the
hypergeometric method where input regions must be perfect subsets of backgrounds.

In Supplementary File 1, we applied functional enrichment on a TFBS dataset by taking
regions in different chromatin states as backgrounds. We found TFBSs are specifically
enriched in more biological functions taking enhancers as background than promoters.

Compare online and local GREAT

In Supplementary File 2, we compared GO gene sets used in the GREAT web service and in
local GREAT analysis in rGREAT. We found GO gene sets in GREAT are outdated and have
inconsistencies compared to the newest ones. As a comparison, local GREAT always uses
the newest GO annotations from the GO.db package which is updated twice a year by the
Bioconductor core team. In Supplementary File 3, we also compared the enrichment results
from online GREAT and local GREAT with four TFBS datasets. In general, the results from
the two GREAT analyses are very consistent.

Different TSS annotations

The GREAT method depends on the locations of TSSs. Different sources may have different
annotations of TSSs. great () supports four sources of TSSs, which are 1. the
Bioconductor TxDb packages, e.g., the TxDb.Hsapiens.UCSC.hg19.knownGene package
for humans, 2. RefSeq genes, e.g., the RefSeq Select or Curated subset, 3. GENCODE
annotations (Frankish et al., 2021), and 4. TSSs provided by GREAT itself. In
Supplementary File 4, we demonstrate the four TSS sources almost cover the same set of
genes in the genome, but the exact locations of TSSs differ a lot. For example, the locations
of GENCODE and RefSeq TSSs have a mean difference of 1255 bp and median difference
of 14bp. Nevertheless, the inconsistency of TSS locations has very little effects on the
enrichment results, mainly because the difference is ignorable compared to the scales of
extended TSSs. In Supplementary File 4, we demonstrate with a TFBS dataset, the
enrichment results from the four TSS annotations are highly consistent.

Conclusion

We developed a new R/Bioconductor package rGREAT for functional enrichment on
genomic regions. rGREAT has integrated a large number of organisms and gene set
collections. We believe it will be a useful tool for functional interpretations in genomics and
epigenomics studies.
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