

1 Simultaneously cholinergic projection in Ascending and Descending

2 Circuits from Midbrain

3
4 Peilin Zhao¹ $\#$, Tao Jiang² $\#$, Huading Wang¹, Xueyan Jia², Anan Li^{1, 2}, Jing Yuan^{1, 2}, Qingming
5 Luo³, Xiangning Li^{1, 2}, Hui Gong^{1, 2}

¹ Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China

⁹ ²HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China

³Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China.

12

13 *Correspondence*

14 Hui Gong, huigong@mail.hust.edu.cn

15 Xiangning Li, lixiangning@mail.hust.edu.cn

16

17 **Abstract**

18 The midbrain participates in complex neural information processing in the ascending and
19 descending circuits, but their organization remains unclear due to the lack of comprehensive
20 dissection of the characterization of individual neurons. Combining fluorescent micro-optical
21 sectional tomography with sparse labeling, we acquired the whole-brain dataset with high
22 resolution and reconstructed the detailed morphology of the pontine-tegmental cholinergic
23 neurons (PTCNs). As the main cholinergic system of the midbrain, the individual PTCNs own
24 abundant axons with length up to 60 cm and 5000 terminal branches and innervate multiple brain
25 regions from the spinal cord to cortex in both hemispheres. According to various targeting regions
26 in the ascending and descending circuits, individual PTCNs could be grouped into four types and
27 the axonal fibers of cholinergic neurons in the pedunculopontine nucleus present more divergent
28 while neurons in the laterodorsal tegmental nucleus contain richer axonal fibers and dendrites. In
29 the axonal targeting nuclei, such as in the thalamus or cortex, the individual neurons innervate
30 multiple sub-regions with separate pathways. These results provide the detailed organization
31 characterization of the cholinergic neurons to understand the connection logic of the midbrain.

32 **Introduction**

33 The central nervous system is a highly ordered structure, in which the external information is
34 transmitted to the higher center through the ascending pathway, and the decision-making
35 information is delivered through the descending pathway to determine the physiological changes
36 and behavioral responses of the individuals (L. Luo, 2015). The axonal fibers determine where the
37 neurons transmitted information to while their connection patterns decide the role in the circuit
38 from upstream to downstream regions. The midbrain locates between the forebrain and hindbrain
39 with dense connections involve in ascending and descending circuits among different regions from
40 the spinal cord to the cortex ("The Organization of the Central Nervous System," 2014). Previous
41 studies have indicated that some specialized populations of midbrain neurons preferentially
42 innervate ascending or descending circuits respectively. DA neurons in the ventral tegmental area
43 (VTA) (Beier et al., 2015) and different types of neurons in the dorsal raphe (DR) (Xu et al., 2021)
44 mainly send their fibers to ascending areas, while the mesencephalic locomotor region modulates

45 the ascending and descending circuits to participate in different functions via two separate group
46 glutamatergic neurons (Ferreira-Pinto et al., 2021). However, cholinergic neurons in the midbrain
47 send abundant axonal projections both in ascending and descending circuits (Henrich Martin et al.,
48 2020; Peilin Zhao et al., 2022), and their projection patterns have not been systematically
49 characterized until now.

50 The midbrain cholinergic neurons mainly gather in the pedunculopontine nucleus (PPN) and
51 laterodorsal tegmental nucleus (LDT), the two subareas of the pontine-tegmental cholinergic
52 system with different projection patterns (Henrich Martin et al., 2020; I. Huerta-Ocampo et al.,
53 2020; Mena-Segovia et al., 2017; M. Mesulam et al., 1983). As the major source of acetylcholine
54 in many subcortical nuclei, the pontine-tegmental cholinergic neurons (PTCNs) send abundant
55 fibers in three major trajectories (Mena-Segovia & Bolam, 2017) and involve in various functions
56 (Vitale et al., 2019). In the ascending dorsal circuits, PTCNs mediate prefrontal serotonin
57 releasing from the DR (Kinoshita et al., 2018) and participate in multiple functions including
58 auditory sensation (F. Luo et al., 2013), sensorimotor (Muller et al., 2013), and spatial memory
59 (Mitchell et al., 2002) via targeting different thalamic nuclei. In addition, PTCNs innervate
60 different neurons in the striatum (STR) and contribute to exploratory motor behavior (Patel et al.,
61 2012) and action strategies (Dautan et al., 2020). In the ascending ventral circuits, previous studies
62 mainly focus on the cholinergic modulation on the ventral tegmental area (VTA) and substantia
63 nigra (SN), which make great contributions to the reward (Steidl et al., 2017; Zhang et al., 2018),
64 addiction (Picciotto et al., 2002; Schmidt et al., 2009), locomotion (Xiao et al., 2016),
65 depressive-like behaviors (Fernandez et al., 2018) and food taking (Dickson et al., 2010). In the
66 descending circuits, PTCNs govern the activities of the pontine reticular nucleus and contribute to
67 various functions, including inhibiting ongoing movement (Takakusaki et al., 2016) and mediating
68 prepulse inhibition of startle (Azzopardi et al., 2018; Jones et al., 2004). They also modulate
69 breathing via projecting to the retrotrapezoid nucleus (Lima et al., 2019).

70 There are approximately 2000 PTCNs on one hemisphere of the mouse brain (Li et al., 2018).
71 How can the pontine-tegmental cholinergic system innervate so many brain regions to involve in
72 various functions with such a limited number of neurons? Notably, activating of PPN cholinergic
73 neurons have opposite roles in locomotion in the ascending and descending circuits (Dautan et al.,
74 2016; Takakusaki et al., 2016), but the relation of these two circuits is unclear. Although previous

75 studies have mapped the cholinergic fibers in the thalamus (I. Huerta-Ocampo et al., 2020;
76 Sokhadze et al., 2021), striatum, and substantia nigra (Mena-Segovia & Bolam, 2017) and
77 acquired the whole-brain projections of PPN cholinergic neurons (Henrich Martin et al., 2020), we
78 are still confused about the ascending and descending fibers belong to different groups or same
79 group of neurons, which are urgent to be answered at the single-neuron level. Previous studies
80 (Mena-Segovia et al., 2008) reconstructed partial axons in slices and give preliminary evidence
81 that individual PPN neuron has complex axonal fibers, but we until lack the unabridged single-cell
82 connection of pontine-tegmental cholinergic system due to the limited techniques for tracing and
83 imaging.

84 Herein, combining the sparse labeling with fluorescence micro-optical sectioning tomography
85 (fMOST) serial technologies (Gong et al., 2016), we acquired the morphological atlas and
86 uncovered the projection logic of PTCNs at the single-cell level.

87 **Results**

88 **Sparse labeling and single-cell reconstruction**

89 To obtain the fine morphology of individual cholinergic neurons, we employed the Cre-dependent
90 virus for sparse labeling (Sun et al., 2020), fMOST system for whole-brain imaging (Gong et al.,
91 2016), and GTree software for single-cell reconstruction (Zhou et al., 2020) (**Figure 1A, B**).
92 Firstly, we performed 100 nl CSSP-YFP on the PPN or LDT of ChAT-Cre mice. Four weeks later,
93 the infected mice were sacrificed and we checked the object regions. The immunofluorescent
94 staining on the slices verified the cell types of labeled neurons (Figure 1—figure supplement 1
95 A-C) that more than 96% of them were ChAT-positive (from 3 mice). These results indicated that
96 the virus we used has good specificity.

97 Then, we embedded the whole-brain samples with resin and acquired the continuous datasets with
98 high resolution at $0.32 \times 0.32 \times 1 \mu\text{m}^3$ via fMOST (Gong et al., 2016). To verify the quality of
99 datasets for single-cell reconstruction, we valued the labeled signals in the whole brain. We
100 checked the labeled fibers in different targeting areas (**Figure 1C**; Figure 1—figure supplement 1
101 D-Q). We found the labeled signal had a good signal-to-noise ratio with the background and single
102 fibers could be distinguished from each other, whether the fibers were in dense or sparse regions.

103 Combining continuous datasets with semi-automatic reconstruction methods (Zhou et al., 2020),
104 we reconstructed 83 supposed cholinergic neurons (PPN, 39 neurons; LDT, 44 neurons) in the
105 pontine-tegmental cholinergic system (**Figure 1D and E**; Figure 1—figure supplement 2). The
106 fibers of reconstructed neurons widely distributed in the whole-brain and some neurons even sent
107 divergent fibers to cortical areas, cerebellum and medulla simultaneously (**Figure 1F**). These
108 fibers covered the main projection areas of PTCNs (Peilin Zhao et al., 2022), which indicated
109 these reconstructed neurons present the morphological characterization of individual cholinergic
110 neurons in the midbrain.

111 **The whole-brain projection logic of individual PTCNs**

112 To understand the projection patterns of individual PTCNs, we registered all these neurons to the
113 Allen CCFv3 (Wang et al., 2020) and analyzed the terminal properties in the targeting regions
114 (**Figure 2A**). Along with previous studies (Mena-Segovia & Bolam, 2017), we divided the
115 targeting regions into two circuits, that the midbrain and rostral regions into ascending circuit
116 while the pons and medulla into descending circuit. As shown in **Figure 2A**, all reconstructed
117 neurons sent abundant axonal fibers to multiple areas and most of them projected to various nuclei
118 in the ascending and descending circuits simultaneously, except two neurons in the PPN.
119 Moreover, we found most of the reconstructed neurons sent projections to the thalamus, indicating
120 that the thalamus is the major target of both PPN and LDT (PPN, 38/39; LDT, 43/44). Meanwhile,
121 our results showed that many cholinergic neurons projected their axon branches to the cerebellum
122 (PPN, 19/39; LDT, 20/44), and some even extended to the paraflocculus (PFL) (Figure 2—figure
123 supplement 1A).

124 We noted that most individual PTCNs extended fibers to the three major certified trajectories
125 (Mena-Segovia & Bolam, 2017) simultaneously, so we cannot analyze the single-cell projection
126 patterns with traditionally defined trajectories. In view of previous studies on the PTCNs mainly
127 focus on the targets between the STR (Dautan et al., 2020) and medulla (Lima et al., 2019) and
128 most reconstructed neurons projected to the interbrain, midbrain and pons concurrently. To
129 furtherly investigate the projection patterns of PTCNs, we classified the reconstructed neurons
130 into different groups and analyzed their characterizations respectively. Depending on whether they

131 target the areas in ascending circuit and descending circuit, such as STR and medulla, four types
132 were distinguished (**Figure 2 A, B**; Supplementary file 2.). As shown in **Figure 2A, B**, type I
133 neurons tended to target anterior telencephalon with axons stretched to the STR but not medulla
134 (PPN, 10 neurons; LDT, 5 neurons). Type II neurons preferred projecting to the posterior
135 brainstem, including the medulla even the spinal cord but not STR (PPN, 5 neurons; LDT, 24
136 neurons). Neurons of type III projected restrictedly that the axons confined between the STR and
137 medulla (PPN, 5 neurons; LDT, 10 neurons). Type IV neurons had the most widely fibers to both
138 the STR and medulla (PPN, 19 neurons; LDT, 5 neurons). Relatively, the PPN sent richer
139 cholinergic fibers to ascending targets (type I and IV, PPN 29/39; LDT 10/44) while the LDT
140 preferred descending areas (type II and IV PPN 24/39; LDT 29/44). Furthermore, PPN neurons
141 sent more divergent axonal fibers compared with LDT (type IV, PPN, 19/39; LDT, 5/44). Then we
142 investigated the location of somas (**Figure 2 C, D**) and found that the cell bodies of neurons with
143 different projection patterns in the same nucleus were mixed together (Figure 2—figure
144 supplement 1B), which meant adjacent PTCNs might have diverse projections. This agrees with
145 our previous results on the cholinergic neurons in the basal forebrain (Li et al., 2018).
146 To value the difference of neurons in various projection patterns, we counted the length and
147 branches of reconstructed axons (**Figure 2 E, F**). We found that both PPN and LDT neurons had
148 abundant fibers with a length range from 60 to 90 cm (**Figure 2E**). Then, the length of fibers had
149 no significant difference in total or different types between PPN and LDT. However, in PPN, type
150 I had shorter fibers compared with type IV (PPN, I vs IV, $P = 0.0135$), while for four types in LDT,
151 type IV had longest axonal fibers (LDT, IV vs I, $P = 0.0092$; IV vs II, $P = 0.0076$; IV vs III, $P =$
152 0.002). As the distribution of axons and synaptic connection does not always correlate (I.
153 Huerta-Ocampo et al., 2020), we then compared terminal branches of reconstructed neurons. As
154 shown in **Figure 2F**, individual PPN and LDT neurons had a large amount branches ranging from
155 500 to 5200 and LDT neurons had richer branches in total (PPN vs LDT, $P < 0.0001$) or in
156 different projection patterns (II, $P = 0.029$; IV, $P = 0.0018$). Among different types, type I in the
157 PPN had fewer branches compared with type III and IV (PPN, I vs III, $P = 0.0092$; I vs IV, $P =$
158 0.039) while type IV in the LDT had the richest branches compared with others (LDT, IV vs I, $P =$
159 0.0046; IV vs II, $P = 0.0265$; IV vs III, $P = 0.0177$).
160 In the whole brain perspective, most PTCNs tended to extend fibers in the bilateral hemispheres.

161 To investigate the pattern projecting to bilateral hemispheres, we counted the terminals in the
162 targeting regions of single neurons and quantified the ratio of bilateral axons in the ipsilateral
163 axons. As shown in **Figure 2G**, most neurons projected to the bilateral regions except one neuron
164 in the LDT that confined its axons in the ipsilateral areas. Meanwhile, we also found some
165 neurons (PPN, 4 neurons; LDT, 6 neurons; Figure 1—figure supplement 2) preferred contralateral
166 hemisphere and sent richer fibers to the contralateral (**Figure 2H**).
167 The dendrites are portals of neurons receiving information from others. We found that different
168 projection patterns of PTCNs in the PPN and LDT had rich dendrites (**Figure 3B**). Consistent with
169 previous studies (Baksa et al., 2019), we divided the dendrites with bipolar and multipolar
170 dendritic trees according to the distribution of longer dendrites (**Figure 3B**) and found a few of
171 them had bipolar dendritic trees while most were multipolar (Figure 3—figure supplement 1).
172 Then we analyzed the spatial distribution of dendritic branches with the Sholl analysis (**Figure**
173 **3C**). Our results suggested that the dendrites of both PPN and LDT neurons were mainly
174 distributed in about 600 μ m away from the soma and most dendrites gathered in the 50-350 μ m
175 and the LDT neurons had richer dendrites. To confirm the result, we quantified the length and
176 branches of all reconstructed dendrites. As shown in **Figure 3D, E**, LDT neurons had significant
177 longer dendrites and more branches in total ($P < 0.0001$) and different types, especially the type I
178 (PPN vs LDT: dendrites, $P = 0.0093$; branches, $P = 0.0252$), type II (PPN vs LDT: dendrites, $P =$
179 0.0273; branches, $P = 0.0129$), and type V (PPN vs LDT: branches, $P = 0.004$). While in same
180 nuclei, different types of neurons had similar dendrites and branches in quantification, except the
181 type III in the PPN, which had longer dendrites than type I ($P = 0.0098$) and V ($P = 0.0465$), and
182 type II in the LDT, which had longer dendrites and richer branches than type III (dendrites, $P =$
183 0.0083; branches, $P = 0.0231$). These results suggested that different types of PTCNs had similar
184 dendrites but the LDT cholinergic neurons had richer dendrites in comparison with PPN.
185 In a word, the fancy morphologies rebuilt in the whole brain certify that individual PTCNs send
186 abundant fibers to multiple areas in the bilateral hemispheres with various projection patterns. The
187 PPN neurons project more divergent axon fibers to ascending and descending regions while LDT
188 neurons contain richer axonal branches and dendrites.

189 **The projection logic of PTCNs in distinct circuits**

190 In the ascending circuits, the thalamus is one the most important pathways of the
191 pontine-tegmental cholinergic system for information dissemination. The PTCNs involve auditory
192 sensation (F. Luo & Yan, 2013), sensorimotor (Muller et al., 2013), and spatial memory(Mitchell
193 et al., 2002) via innervating different thalamic nuclei.

194 Single-cell morphology suggested that most PTCNs sent abundant fibers to the thalamus (**Figure**
195 **2A**). To explore the cholinergic projection logic in the thalamus, we divided the bilateral thalamus
196 into 22 subregions according to the Allen CCFv3 and then counted the terminals of individual
197 neurons (Figure 4—figure supplement 1A; Supplementary file 3). Consistent with output atlas,
198 both PPN and LDT cholinergic neurons extended rich fibers in the bilateral thalamus, especially
199 the anterior, ventral, and medial areas. Meanwhile, similar to the synaptic distribution in rats (I.
200 Huerta-Ocampo et al., 2020), individual LDT cholinergic neurons preferred the thalamic limbic
201 nuclei, such as the anterior group of the dorsal thalamus (ATN). The single PTCNs tended to
202 innervate multiple thalamic nuclei that more than 80% of reconstructed neurons projected to at
203 least five thalamic nuclei simultaneously (**Figure 4A**). As some individual PTCNs sent axonal
204 fibers to the bilateral thalamus, to verify the organization of cholinergic fibers in the bilateral
205 thalamus, we quantified the proportion of axonal terminals in the ipsilateral thalamus (Figure
206 4—figure supplement 1B). In the thalamus-projecting PTCNs, we found that about a quarter of
207 them only innervated ipsilateral thalamic nuclei (**Figure 4B**; Figure 4—figure supplement 1B)
208 while others targeted the bilateral thalamus synchronously. Meanwhile, we also found about a
209 tenth of PTCNs preferred the contralateral thalamus (**Figure 4C, D**). These results suggested that
210 there had three distinct patterns of dominance from the PTCNs to the bilateral thalamus (**Figure**
211 **4D**).

212 The cortical areas are the advanced center of the nervous system and the thalamus is the main
213 source of subcortical information in the cortical regions (Oh et al., 2014; P. Zhao et al., 2020).
214 Previous studies have certified that the activities of PTCNs influence the function of cortical
215 neurons via indirect circuits (F. Luo et al., 2011; Valencia et al., 2013), but we know little about
216 the direct pathways. Our results revealed stably projection from PTCNs to different cortical areas
217 in the bilateral hemispheres (**Figure 4E**) and most of them originated from the PPN (**Figure 4F**).

218 Then we analyzed the cortical projection neurons and found there were two separate pathways
219 extending to cortical areas. Some axons stretched through the basal forebrain and projected to
220 cortical areas in the anterior, while other fibers came through the lateral thalamus and reached the
221 lateral cortex, such as the perirhinal areas (**Figure 4G**). Meanwhile, we found the PTCNs targeting
222 the cortex also co-projecting to thalamic nuclei (**Figure 2A**).

223 In the descending circuits, the fibers of PTCNs were widely distributed in the pons and medulla,
224 and some axons extended to the spinal cord. Previous studies have certified that activating of PPN
225 cholinergic neurons in ascending circuits and descending circuits make opposite impacts in
226 locomotion (Dautan et al., 2016; Takakusaki et al., 2016). We analyzed the relation of these two
227 functionally different circuits based on the single-cell morphology atlas. As shown in **Figure 4H, I**,
228 most of the reconstructed PPN cholinergic neurons (36/39) targeted the PRN, and more than half
229 them (22/39) co-projected to the VTA/SN. Here was a surprise that we did not find a single neuron
230 innervating the VTA/SN alone without co-projecting to PRN. Then, we also investigated the
231 cholinergic circuits from the LDT to VTA/SN and PRN. Similar to the PPN, the majority of LDT
232 neurons (42/44) extended fibers to the PRN, and about three-quarters of them co-projected to the
233 VTA/SN. These results meant that the cholinergic modulation from the PTCNs to the VTA/SN
234 often together with co-projecting to the PRN and there existed another group of PTCNs innervated
235 the activity of PRN alone.

236 **Discussion**

237 The PTCNs send abundant fibers to multiple regions in the ascending and descending circuits and
238 participate in various functions. We presented here the detailed morphology of PTCNs in the
239 whole brain and uncovered the projection logic at single-cell level. Individual PTCNs always
240 projected to ascending and descending circuits simultaneously and could be divided into four
241 groups with different projection patterns. In the ascending circuits, individual PTCNs innervated
242 the bilateral thalamus with three distinct patterns according to the axonal selection in the bilateral
243 thalamus. Moreover, PTCNs projected directly to the cortical areas with two separate pathways.

244 **Surprising complex morphology of PTCNs**

245 Why do we need the morphology of single-cell? The output atlas indicates that projecting neurons
246 involve in diverse circuits and functions via complex axonal connections with various nuclei, but
247 we are still confused about how these neurons are organized together, such as whether the neurons
248 innervating different regions belong to the same or separate groups. The morphological studies on
249 individual neurons indicated that a single projecting neuron always has abundant fibers in multiple
250 targeting areas with projection preferences. For example, the pyramidal neurons in the cortex can
251 be subdivided into three types (intratelencephalic, pyramidal, and contralateral tract) with distinct
252 projection targets and functions (Peng et al., 2021). Individual cholinergic neurons in the basal
253 forebrain also have abundant fibers and could be gathered into different types due to diverse
254 projection preferences to the olfactory bulb, cortical areas, and hippocampus (Li et al., 2018).
255 Similarly, with the projection logic, we gathered the individual PTCNs into four types with
256 different lengths and extended ranges of axons. Morphological results in the 3D showed that
257 single PTCNs contained rich fibers and simultaneously innervated tens of nuclei ranging from
258 cortical areas to the cerebellum and medulla with the axonal length at 9 ~ 60 cm and 500 ~ 5000
259 terminal branches. In particular, it was quite striking that almost every neuron projected to
260 multiple nuclei in the midbrain, thalamus, and pons. We have even found several neurons deliver
261 their cholinergic fibers to the cortex, thalamus cerebellum, and spinal cord simultaneously. Our
262 results indicated that PTCNs projected to the three major axonal trajectories (Mena-Segovia &
263 Bolam, 2017) mainly from the same groups rather than segregate clusters. To some extent, this
264 may explain how the pontine-tegmental cholinergic system participates in a variety of
265 physiological functions with a finite number of cholinergic neurons (Li et al., 2018).
266 In summary, we may investigate the complexity of PTCNs mainly in the following two aspects.
267 On the one hand, most reconstructed neurons targeted ascending and descending areas
268 synchronously, which was not consistent with previous views (Mena-Segovia & Bolam, 2017) that
269 thought only a small ratio of PPN neurons targeting descending areas and mainly were
270 non-cholinergic. Actually, from the reconstruction of individual neurons, we found that although
271 the PTCNs projected to the medulla with relatively fewer fibers (Henrich Martin et al., 2020),
272 more than half of them sent fibers to the medulla. On the other hand, we also found some neurons

273 sent richer fibers to the contralateral regions, which might deliver information to the bilateral
274 hemisphere. Axonal selection of ipsilateral and/or contralateral targets is crucial for integrating
275 bilateral information and coordinated movement. The PTCNs decrease significantly in PD patients
276 (Sebille et al., 2019), who always are abnormalities of movement, including tremors, difficulties
277 with gait and balance (Mazzoni et al., 2012). The PPN is an important clinical target for deep
278 brain stimulation in PD patients (Nowacki et al., 2019), which reminds us that PTCNs may play
279 an important role in somatic homeostatic regulation via projecting abundant fibers to bilateral
280 hemispheres.

281 **Unique ascending and descending projection patterns of PTCNs**

282 The ascending and descending information flow is highly ordered in the central nervous system.
283 As an important interaction area for ascending and descending information transmission, some
284 midbrain neurons preferentially dominate the ascending or descending circuits (Beier et al., 2015;
285 Ferreira-Pinto et al., 2021; Xu et al., 2021). Cholinergic neurons in the midbrain send abundant
286 fibers to various regions in the ascending and descending circuits. In anticipation, we thought that
287 these cholinergic neurons might be grouped into different groups for ascending and descending
288 projections, like the glutaminergic neurons in the mesencephalic locomotor region (Ferreira-Pinto
289 et al., 2021). Surprisingly, the morphology of individual PTCNs showed an unparalleled
290 complexity that most of them sent abundant fibers to ascending and descending areas
291 simultaneously. This means that when PTCNs send information to ascending regions, they often
292 innervate descending areas via collaterals.

293 Moreover, previous studies (Dautan et al., 2016; Takakusaki et al., 2016) have certified that
294 activating of PPN cholinergic neurons play opposite roles in locomotion via ascending and
295 descending circuits, which mean these two circuits may belong to different groups of cholinergic
296 neurons. However, our results indicated that all the PTCNs projecting to the VTA/SN had
297 co-projection fibers to the PRN while some PTCNs innervated the PRN alone without fibers to the
298 VTA/SN. All of which showed that the opposite functions of two cholinergic circuits might come
299 from different neurons, or from the different responses of downstream neurons to the same
300 neurons. These results hint to us that PTCNs modulating many ascending and descending circuits

301 may mainly originate from the same group of neurons. However, it also raises a larger question, as
302 a region for information interaction, why PTCNs dominate the ascending and descending circuits
303 simultaneously and what it means in the flows of information in the midbrain. More experiments
304 are needed to decode the functional difference of ascending and descending collaterals from the
305 same neurons.

306 **Projection logic of cholinergic fibers ascending to the thalamus and cortex**

307 The thalamus is an important relay station for sensorimotor information in mammals, and act as
308 the main pathway for the pontine-tegmental cholinergic system delivering information in
309 ascending circuits. As the main source of acetylcholine for the thalamus (M. M. Mesulam et al.,
310 1989; Motts et al., 2010; Paré et al., 1988; Sofroniew et al., 1985a), PTCNs send fibers to different
311 thalamic nuclei and form abundant synaptic connections (I. Huerta-Ocampo et al., 2020; Sokhadze
312 et al., 2021).

313 In our studies, we uncovered the projection logic from the PTCNs to the thalamus and found the
314 thalamus-projecting circuits mainly presented the following characteristics. For the first, most
315 PTCNs innervated the thalamic nuclei directly. Only two of 83 reconstructed neurons did not
316 project to the thalamus, the ratio was higher than that retrograde traced from the thalamus
317 (Sofroniew et al., 1985b). These results are not contradictory due to that retrograde tracing had
318 trouble infecting the cholinergic neurons with sparse fibers in specific thalamic nuclei. For the
319 second, individual PTCNs tended to govern multiple thalamic nuclei synchronously. We found
320 more than 80% of reconstructed PTCNs innervated at least five thalamic nuclei and it was
321 amazing that some of them even projected to 18 nuclei in the bilateral thalamus simultaneously.
322 This means that the regulation of PTCNs to the thalamus is mainly diffuse rather than
323 concentrated in a few regions. As we know, PTCNs modulate different thalamic nuclei (F. Luo &
324 Yan, 2013; Mitchell et al., 2002; Muller et al., 2013) which integrated various sensorimotor
325 information and delivered it to diverse cortical areas (Oh et al., 2014; P. Zhao et al., 2020). We
326 speculate that individual PTCNs always send complex information to various thalamic nuclei,
327 which sort the information and then deliver it to the specific cortex. Finally, we decoded three
328 projection patterns from the PTCNs with different preferences in the ipsilateral and/or

329 contralateral thalamus. Hinting that there may be three different modes of information
330 transmission from the pontine-tegmental cholinergic system to the thalamus for further
331 information progress. Specifically, a large amount of PTCNs dominated the activity of the bilateral
332 thalamus and some of them even preferred the contralateral. They may play an important role in
333 coordinated movement and contribute to some diseases with movement disorders, such as PD
334 (Pepeu et al., 2017) and epilepsy (Soares et al., 2018), the cholinergic circuits in the thalamus of
335 these patients present abnormal activity (Miller et al., 1991; Muller et al., 2013).
336 The cortical areas are the higher nervous center of mammals. Various studies have indicated that
337 PTCNs govern the activity of cortical neurons via indirect pathways such as the thalamus (F. Luo
338 et al., 2011). In this study, we certified the direct innervation from the PTCNs to the bilateral
339 cortex and there are two separate pathways to the anterior and lateral cortical areas. The
340 cortex-projection PTCNs also presented stable co-projection to various thalamic nuclei, which
341 meant that direct regulation of the cortex by PTCNs was often accompanied by indirect pathways
342 through the thalamus. Although only a small portion of the PTCNs innervated the activity of
343 cortical neurons directly, it was important for understanding the information transmission of the
344 pontine-tegmental cholinergic system in ascending circuits.

345 **Morphological difference of PPN and LDT cholinergic neurons**

346 As two components of the pontine-tegmental cholinergic system, PPN and LDT cholinergic
347 neurons have their characteristics in connections and functions (Dautan et al., 2016; Icnelia
348 Huerta-Ocampo et al., 2021; Xiao et al., 2016). Previous studies have certified that the PPN and
349 LDT cholinergic neurons innervate similar regions with different preferences (I. Huerta-Ocampo
350 et al., 2020; Mena-Segovia & Bolam, 2017; Sokhadze et al., 2021). In this study, we certified that
351 the PPN and LDT cholinergic neurons had similar projection patterns at the single-cell level and
352 could be divided into four groups. Comparatively, the cholinergic fibers of PPN neurons presented
353 more divergent to the telencephalon, interbrain, midbrain, and lower brainstem simultaneously,
354 while LDT neurons had richer branches that mainly concentrated in the poster brainstem. In
355 addition, the dendrites of LDT cholinergic neurons had richer branches and longer dendrites than
356 that of PPN. As portals of neurons receiving information , the dendrites influence the number and

357 identity of presynaptic inputs (Lefebvre et al., 2015), which implies that LDT neurons may receive
358 wider afferent information.

359 In conclusion, we acquired the single-cell morphology of PTCNs on a brain-wide scale and
360 decoded the projection logic in the whole-brain and some specific circuits. We revealed the
361 individual PTCNs sent abundant fibers in multiple nuclei in the ascending and descending circuits
362 synchronously and could be gathered into four types with different projection patterns. We
363 decoded three different projection patterns from PTCNs to the bilateral thalamus and two
364 separated pathways to cortical areas. This study maps the finest morphological atlas of the
365 pontine-tegmental cholinergic system and gives us a better understanding of projection logic of
366 them.

367 Materials and Methods

368 Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	Anti-ChAT (Goat polyclonal)	Sigma-Aldrich	AB144P	1:500
Antibody	Anti-Goat (Donkey polyclonal)	Abcam	ab150135	1:500
Genetic reagent (Mus musculus)	ChAT-Cre	The Jackson Laboratory	Strain #:018957 RRID:IMSR_JAX:0189 57	B6N.129S6(B6)- Chat ^{tm2(cre)LowJ}
Recombinant DNA reagent	CSSP-YFP	Brain Case Co., Ltd., Shenzhen, China	http://braincase.cn/plus/ list.php?tid=52	5.2 × 10 ¹² vg/mL
Software, algorithm	Amira	FEI, Mérignac Cedex, France	RRID:SCR_007353	
Software, algorithm	Fiji	https://imagej.net/Fiji	RRID:SCR_002285	
Software, algorithm	Graphpad Prism	GraphPad, CA	RRID:SCR_002798	
Software, algorithm	GTree	(Zhou et al., 2020)		

369

370 Animals

371 Adult (2-4 months) ChAT-ires-Cre mice were used in this study. ChAT-Cre transgenic mice (stock
372 No: 018957) were purchased from Jackson Laboratory. The mice were kept under a condition of
373 12-hour light/dark cycle with food and water ad libitum. All animal experiments were approved by
374 the Animal Care and Use Committee of Huazhong University of Science and Technology.

375 **Tracer information**

376 For sparse labeling, we employed the CSSP-YFP (5.2×10^{12} vg/mL) packed by Brain Case (Brain
377 Case Co., Ltd., Shenzhen, China). CSSP-YFP virus is produced by co-packaging the
378 rAAV-EF1 α -DIO-Flp plasmid and rAAV-FDIO-EYFP plasmid with the ratio of 1:20,000 in single
379 rAAV production step (Sun et al., 2020).

380 **Surgery and Viral Injection**

381 Before virus injection, we anesthetized the mice with mixed anesthetics (2% chloral hydrate and
382 10% ethyl urethane dissolved in 0.9% NaCl saline) according to their weight (0.1 ml/10 g). The
383 brain of anesthetized mice was fixed with a stereotaxic holder to adjust the position of skulls.
384 Then a cranial drill (~ 0.5 mm diameter) was employed to uncover the skulls above the target
385 areas. For sparse labeling, we injected 100 nl CSSP-YFP into the PPN or LDT.

386 **Histology and Immunostaining**

387 The histological operations followed previous studies (P. Zhao et al., 2020). Shortly, four weeks
388 after AAV injection, anesthetized mice were perfused with 0.01 M PBS (Sigma–Aldrich, United
389 States), followed with 2.5% sucrose and 4% paraformaldehyde (PFA, Sigma–Aldrich, United
390 States) in 0.01 M PBS. Then, the brains were removed and post-fixed in 4% PFA solution
391 overnight.

392 For immunofluorescent staining, some samples were sectioned in 50 μ m coronal slices with the
393 vibrating slicer (Leica 1200S). All sections containing PPN or LDT were selected to characterize
394 the labeled neurons in inject site. These sections were blocked with 0.01 M PBS containing 5%
395 (wt/vol) bovine serum albumin (BSA) and 0.3% Triton X-100 for 1 h at 37 °C. Then the sections
396 were incubated with the primary antibodies (12h at 4 °C): anti-ChAT (1:500, goat, Sigma-Aldrich,
397 AB144P). Then the sections were washed in PBS five times at room temperature. Next, these
398 sections were incubated with the fluorophore-conjugated secondary antibody (1:500, Abcam:
399 Alexa-Fluor 647, donkey anti-goat) for 2 h at room temperature. After rinsing with PBS, DAPI (1
400 ng/mL) was performed on stained sections for 5 min, and sections were finally mounted after

401 washing. We acquired the stained information of sections with the confocal microscope (LSM 710,
402 Zeiss, Jena, Germany).

403 **Imaging and 3D visualization**

404 For whole-brain imaging, virus-labeled samples were dehydrated with alcohol and embedded with
405 resin (Ren et al., 2018). Then the whole brain datasets were acquired with the fMOST system. In
406 short, we fixed the sample on the base and acquired the image of the top surface with two
407 fluorescent channels; the imaged tissue was subsequently removed. Thus, we obtained the
408 continuous whole-brain dataset layer by layer with high resolution ($0.32 \times 0.32 \times 1 \mu\text{m}^3$).

409 For 3D visualization and statistical analysis of whole-brain datasets, we registered the whole-brain
410 datasets to the Allen Mouse Brain Common Coordinate Framework version 3 (Allen
411 CCFv3)(Wang et al., 2020). The methods of registration have been described previously(Ni et al.,
412 2020). Briefly, we employed image preprocessing to correct uneven illumination and then remove
413 background noise. The down sampling data (the voxel resolution of $10 \times 10 \times 10 \mu\text{m}^3$) was
414 uploaded into Amira software (v6.1.1, FEI, Mérignac Cedex, France) to distinguish and extract
415 regional features of anatomical invariants, including the outline of the brain, the ventricles, and the
416 corpus striatum, etc. Next, the grey-level-based registration algorithm (SyN) was employed to
417 register the extracted features. Basic operations including extraction of areas of interest,
418 resampling, and maximum projection performed via Amira software and Fiji (NIH).

419 **Morphological reconstruction of single neuron**

420 83 neurons were reconstructed from six brains. For single-cell morphological analysis, we
421 reconstructed the morphology of sparsely labeled neurons with semi-automatic methods followed
422 previous studies (Zhou et al., 2020). Briefly, we acquired the spatial coordinates of labeled somas
423 in high-resolution data and transformed the data format of GFP-labeled data from TIFF to TDI
424 type via Amira firstly.

425 Then the data block containing the given soma was loaded into GTree software and we assigned
426 the soma as the initial point and marked all its fibers with unfinished tags. Next, we selected one
427 uncompleted fiber and traced it in the next block with automatic tracing. Then we checked the
428 traced fiber and marked its branches with unfinished tags. We repeated the above procedure until
429 the selected fiber was finished and then we reconstructed the remaining unfinished fibers until all
430 the fibers were achieved. The reconstructed neurons were checked back-to-back by three persons.

431 The tracing results were saved in SWC format. Meanwhile, we registered the PI-labeled data and
432 the corresponding tracing results to the reference atlas with the methods mentioned above.
433 Considering the distribution of axons and synaptic connection does not always correlate(I.
434 Huerta-Ocampo et al., 2020), we counted the terminal branches of reconstructed neurons to
435 represent the connection between single cholinergic neurons and targeting areas.

436 **Statistical information**

437 For terminals quantification, the reconstructed neurons carried spatial information of all nodes that
438 we could calculate the ended nodes based on registered single neurons to obtain the terminals in
439 different regions. In addition, we employed the Amira software to quantify the length of dendrites
440 and axons of individual neurons. Statistical graphs were generated using GraphPad Prism v.8.02
441 and Microsoft Excel (Office 2020). We employed GraphPad Prism v. 8.02 for significance test,
442 Neurolucida360 software for polar histogram, and MATLAB (2017a) for the Sholl Analysis. We
443 conducted two-tailed t-tests to compare the difference. The confidence level was set to 0.05 (P
444 value) and all results were presented as mean \pm SEM.

445 **Acknowledgments**

446 This work was supported by the National Science and Technology Innovation 2030 Grant
447 (No.2021ZD0201001), NSFC projects (Nos. 61890953, 32192412, 31871088) and CAMS
448 Innovation Fund for Medical Sciences (2019-I2M-5-014) and the Director Fund of WNLO. We
449 thank Yang Yang and Mengting Zhao from Huazhong University of Science and Technology for
450 help with experiments and data analysis. We thank the Optical Bioimaging Core Facility of HUST
451 for support with data acquisition.

452 **Competing interests**

453 The authors declare that they have no competing interests.

454 **Author Contributions**

455 Hui Gong, Xiangning Li and Qingming Luo conceived and designed the study. Peilin Zhao
456 performed the experiments and analyzed the data. Tao Jiang and Jing yuan acquired the

457 continuous whole brain datasets. Huading Wang, Xueyan Jia and Anan Li processed the
458 whole-brain data and reconstructed the neurons. Xiangning Li, Hui Gong, and Peilin Zhao wrote
459 the manuscript.

460 **Data availability**

461 The analysis results and data have been uploaded in Supplementary Files 1, 2 and 3. The TB-sized
462 raw data of sparse-labeling samples and 3D data of reconstructed neurons can be accessed at
463 <http://atlas.brainsmatics.org/a/zhao2206>.

464 **References**

465 Azzopardi, E., Louttit, A. G., DeOliveira, C., Laviolette, S. R., & Schmid, S. (2018). The role of
466 cholinergic midbrain neurons in startle and prepulse Inhibition. *The Journal of Neuroscience*,
467 38(41), 8798-8808. doi:10.1523/JNEUROSCI.0984-18.2018

468 Baksa, B., Kovács, A., Bayasgalan, T., Szentesi, P., Kőszeghy, Á., Szűcs, P., & Pál, B. (2019).
469 Characterization of functional subgroups among genetically identified cholinergic neurons in
470 the pedunculopontine nucleus. *Cellular and Molecular Life Sciences*, 76(14), 2799-2815.

471 Beier, K. T., Steinberg, E. E., DeLoach, K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer,
472 E. J., Malenka, R. C., & Luo, L. (2015). Circuit Architecture of VTA Dopamine Neurons
473 Revealed by Systematic Input-Output Mapping. *Cell*, 162(3), 622-634.
474 doi:10.1016/j.cell.2015.07.015

475 Dautan, D., Huerta-Ocampo, I., Gut, N. K., Valencia, M., Kondabolu, K., Kim, Y., Gerdjikov, T. V., &
476 Mena-Segovia, J. (2020). Cholinergic midbrain afferents modulate striatal circuits and shape
477 encoding of action strategies. *Nature Communications*, 11(1), 1739.
478 doi:10.1038/s41467-020-15514-3

479 Dautan, D., Souza, A. S., Huerta-Ocampo, I., Valencia, M., Assous, M., Witten, I. B., Deisseroth, K.,
480 Tepper, J. M., Bolam, J. P., Gerdjikov, T. V., & Mena-Segovia, J. (2016). Segregated
481 cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.
482 *Nat Neurosci*, 19(8), 1025-1033. doi:10.1038/nn.4335

483 Dickson, S. L., Hrabovszky, E., Hansson, C., Jerlhag, E., Alvarez-Crespo, M., Skibicka, K. P., Molnar,
484 C. S., Liposits, Z., Engel, J. A., & Egecioglu, E. (2010). Blockade of central nicotine
485 acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.
486 *Neuroscience*, 171(4), 1180-1186. doi:10.1016/j.neuroscience.2010.10.005

487 Fernandez, S. P., Broussot, L., Marti, F., Contesse, T., Mouska, X., Soiza-Reilly, M., Marie, H., Faure,
488 P., & Barik, J. (2018). Mesopontine cholinergic inputs to midbrain dopamine neurons drive
489 stress-induced depressive-like behaviors. *Nature Communications*, 9(1), 4449.
490 doi:10.1038/s41467-018-06809-7

491 Ferreira-Pinto, M. J., Kanodia, H., Falasconi, A., Sigrist, M., Esposito, M. S., & Arber, S. (2021).
492 Functional diversity for body actions in the mesencephalic locomotor region. *Cell*, 184(17),
493 4564-4578 e4518. doi:10.1016/j.cell.2021.07.002

494 Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., Li, Y., Schwarz, L. A., Li, A., Hu, B., Xiong, B.,
495 Sun, Q., Zhang, Y., Liu, J., Zhong, Q., Xu, T., Zeng, S., & Luo, Q. (2016). High-throughput
496 dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at
497 the cellular level. *Nat Commun*, 7, 12142. doi:10.1038/ncomms12142

498 Henrich Martin, T., Geibl Fanni, F., Lakshminarasimhan, H., Stegmann, A., Giasson Benoit, I., Mao, X.,
499 Dawson Valina, L., Dawson Ted, M., Oertel Wolfgang, H., & Surmeier, D. J. (2020).
500 Determinants of seeding and spreading of α -synuclein pathology in the brain. *Science
501 Advances*, 6(46), abc2487. doi:10.1126/sciadv.abc2487

502 Huerta-Ocampo, I., Dautan, D., Gut, N. K., Khan, B., & Mena-Segovia, J. (2021). Whole-brain
503 mapping of monosynaptic inputs to midbrain cholinergic neurons. *Scientific Reports*, 11(1),
504 9055. doi:10.1038/s41598-021-88374-6

505 Huerta-Ocampo, I., Hacioglu-Bay, H., Dautan, D., & Mena-Segovia, J. (2020). Distribution of
506 Midbrain Cholinergic Axons in the Thalamus. *eNeuro*, 7(1).
507 doi:10.1523/ENEURO.0454-19.2019

508 Jones, C. K., & Shannon, H. E. (2004). Lesions of the laterodorsal tegmental nucleus disrupt prepulse
509 inhibition of the acoustic startle reflex. *Pharmacology Biochemistry and Behavior*, 78(2),
510 229-237. doi:10.1016/j.pbb.2004.03.012

511 Kinoshita, H., Nishitani, N., Nagai, Y., Andoh, C., Asaoka, N., Kawai, H., Shibui, N., Nagayasu, K.,
512 Shirakawa, H., & Nakagawa, T. (2018). Ketamine-induced prefrontal serotonin release is
513 mediated by cholinergic neurons in the pedunculopontine tegmental nucleus. *International
514 Journal of Neuropsychopharmacology*, 21(3), 305-310.

515 Lefebvre, J. L., Sanes, J. R., & Kay, J. N. (2015). Development of dendritic form and function. *Annu
516 Rev Cell Dev Biol*, 31, 741-777. doi:10.1146/annurev-cellbio-100913-013020

517 Li, X., Yu, B., Sun, Q., Zhang, Y., Ren, M., Zhang, X., Li, A., Yuan, J., Madisen, L., Luo, Q., Zeng, H.,
518 Gong, H., & Qiu, Z. (2018). Generation of a whole-brain atlas for the cholinergic system and
519 mesoscopic projectome analysis of basal forebrain cholinergic neurons. *Proc Natl Acad Sci U
520 SA*, 115(2), 415-420. doi:10.1073/pnas.1703601115

521 Lima, J. D., Sobrinho, C. R., Falquetto, B., Santos, L. K., Takakura, A. C., Mulkey, D. K., & Moreira, T.
522 S. (2019). Cholinergic neurons in the pedunculopontine tegmental nucleus modulate breathing
523 in rats by direct projections to the retrotrapezoid nucleus. *The Journal of Physiology*, 597(7),
524 1919-1934. doi:10.1111/jp.277617

525 Luo, F., Liu, X., Wang, C., & Yan, J. (2011). The pedunculopontine tegmental nucleus: a second
526 cholinergic source for frequency-specific auditory plasticity. *J Neurophysiol*, 105(1), 107-116.
527 doi:10.1152/jn.00546.2010

528 Luo, F., & Yan, J. (2013). Sound-specific plasticity in the primary auditory cortex as induced by the
529 cholinergic pedunculopontine tegmental nucleus. *Eur J Neurosci*, 37(3), 393-399.
530 doi:10.1111/ejn.12046

531 Luo, L. (2015). *Principles of Neurobiology*. New York: Garland Science.

532 Mazzoni, P., Shabbott, B., & Cortés, J. C. (2012). Motor control abnormalities in Parkinson's disease.
533 *Cold Spring Harb Perspect Med*, 2(6), a009282. doi:10.1101/cshperspect.a009282

534 Mena-Segovia, J., & Bolam, J. P. (2017). Rethinking the Pedunculopontine Nucleus: From Cellular
535 Organization to Function. *Neuron*, 94(1), 7-18. doi:10.1016/j.neuron.2017.02.027

536 Mena-Segovia, J., Sims, H. M., Magill, P. J., & Bolam, J. P. (2008). Cholinergic brainstem neurons
537 modulate cortical gamma activity during slow oscillations. *J Physiol*, 586(12), 2947-2960.

538 doi:10.1113/jphysiol.2008.153874

539 Mesulam, M., Mufson, E., Wainer, B., & Levey, A. (1983). Central cholinergic pathways in the rat: an
540 overview based on an alternative nomenclature (Ch1–Ch6). *Neuroscience*, 10(4), 1185–1201.

541 Mesulam, M. M., Geula, C., Bothwell, M. A., & Hersh, L. B. (1989). Human reticular formation:
542 cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some
543 cytochemical comparisons to forebrain cholinergic neurons. *J Comp Neurol*, 283(4), 611–633.
544 doi:10.1002/cne.902830414

545 Miller, J. W., Bardgett, M. E., & Gray, B. C. (1991). The role of the laterodorsal tegmental nucleus of
546 the rat in experimental seizures. *Neuroscience*, 43(1), 41–49.
547 doi:[https://doi.org/10.1016/0306-4522\(91\)90415-K](https://doi.org/10.1016/0306-4522(91)90415-K)

548 Mitchell, A. S., Dalrymple-Alford, J. C., & Christie, M. A. (2002). Spatial working memory and the
549 brainstem cholinergic innervation to the anterior thalamus. *J Neurosci*, 22(5), 1922–1928.
550 doi:10.1523/jneurosci.22-05-01922.2002

551 Motts, S. D., & Schofield, B. R. (2010). Cholinergic and non-cholinergic projections from the
552 pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in Guinea
553 pigs. *Front Neuroanat*, 4, 137. doi:10.3389/fnana.2010.00137

554 Muller, M. L., Albin, R. L., Kotagal, V., Koeppe, R. A., Scott, P. J., Frey, K. A., & Bohnen, N. I. (2013).
555 Thalamic cholinergic innervation and postural sensory integration function in Parkinson's
556 disease. *Brain*, 136(Pt 11), 3282–3289. doi:10.1093/brain/awt247

557 Ni, H., Tan, C., Feng, Z., Chen, S., Zhang, Z., Li, W., Guan, Y., Gong, H., Luo, Q., & Li, A. (2020). A
558 Robust Image Registration Interface for Large Volume Brain Atlas. *Sci Rep*, 10(1), 2139.
559 doi:10.1038/s41598-020-59042-y

560 Nowacki, A., Galati, S., Ai-Schlaepi, J., Bassetti, C., Kaelin, A., & Pollo, C. (2019). Pedunculopontine
561 nucleus: An integrative view with implications on Deep Brain Stimulation. *Neurobiology of
562 Disease*, 128, 75–85. doi:10.1016/j.nbd.2018.08.015

563 Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry,
564 A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R.,
565 Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K. E., Bohn, P., Joines, K. M.,
566 Peng, H., Hawrylycz, M. J., Phillips, J. W., Hohmann, J. G., Wohnoutka, P., Gerfen, C. R.,
567 Koch, C., Bernard, A., Dang, C., Jones, A. R., & Zeng, H. (2014). A mesoscale connectome of
568 the mouse brain. *Nature*, 508(7495), 207–214. doi:10.1038/nature13186

569 . The Organization of the Central Nervous System. (2014). In *Principles of Neural Science, Fifth
570 Edition*. New York, NY: McGraw-Hill Education.

571 Paré, D., Smith, Y., Parent, A., & Steriade, M. (1988). Projections of brainstem core cholinergic and
572 non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. *Neuroscience*,
573 25(1), 69–86. doi:10.1016/0306-4522(88)90007-3

574 Patel, J. C., Rossignol, E., Rice, M. E., & Machold, R. P. (2012). Opposing regulation of dopaminergic
575 activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. *Nat
576 Commun*, 3, 1172. doi:10.1038/ncomms2144

577 Peng, H., Xie, P., Liu, L., Kuang, X., Wang, Y., Qu, L., Gong, H., Jiang, S., Li, A., Ruan, Z., Ding, L.,
578 Yao, Z., Chen, C., Chen, M., Daigle, T. L., Dalley, R., Ding, Z., Duan, Y., Feiner, A., He, P.,
579 Hill, C., Hirokawa, K. E., Hong, G., Huang, L., Kebede, S., Kuo, H. C., Larsen, R., Lesnar, P.,
580 Li, L., Li, Q., Li, X., Li, Y., Li, Y., Liu, A., Lu, D., Mok, S., Ng, L., Nguyen, T. N., Ouyang, Q.,
581 Pan, J., Shen, E., Song, Y., Sunkin, S. M., Tasic, B., Veldman, M. B., Wakeman, W., Wan, W.,

582 Wang, P., Wang, Q., Wang, T., Wang, Y., Xiong, F., Xiong, W., Xu, W., Ye, M., Yin, L., Yu, Y.,
583 Yuan, J., Yuan, J., Yun, Z., Zeng, S., Zhang, S., Zhao, S., Zhao, Z., Zhou, Z., Huang, Z. J.,
584 Esposito, L., Hawrylycz, M. J., Sorensen, S. A., Yang, X. W., Zheng, Y., Gu, Z., Xie, W., Koch,
585 C., Luo, Q., Harris, J. A., Wang, Y., & Zeng, H. (2021). Morphological diversity of single
586 neurons in molecularly defined cell types. *Nature*, 598(7879), 174-181.
587 doi:10.1038/s41586-021-03941-1

588 Pepeu, G., & Grazia Giovannini, M. (2017). The fate of the brain cholinergic neurons in
589 neurodegenerative diseases. *Brain Res*, 1670, 173-184. doi:10.1016/j.brainres.2017.06.023

590 Picciotto, M. R., & Corrigall, W. A. (2002). Neuronal systems underlying behaviors related to nicotine
591 addiction: neural circuits and molecular genetics. *J Neurosci*, 22(9), 3338-3341.
592 doi:10.1523/jneurosci.22-09-03338.2002

593 Ren, M., Tian, J., Zhao, P., Luo, J., Feng, Z., Gong, H., & Li, X. (2018). Simultaneous Acquisition of
594 Multicolor Information From Neural Circuits in Resin-Embedded Samples. *Front Neurosci*,
595 12, 885. doi:10.3389/fnins.2018.00885

596 Schmidt, H. D., Famous, K. R., & Pierce, R. C. (2009). The limbic circuitry underlying cocaine seeking
597 encompasses the PPTg/LDT. *Eur J Neurosci*, 30(7), 1358-1369.
598 doi:10.1111/j.1460-9568.2009.06904.x

599 Sebille, S. B., Rolland, A. S., Faillot, M., Perez-Garcia, F., Colomb-Clerc, A., Lau, B., Dumas, S., Vidal,
600 S. F., Welter, M. L., Francois, C., Bardinet, E., & Karachi, C. (2019). Normal and pathological
601 neuronal distribution of the human mesencephalic locomotor region. *Movement Disorders*,
602 34(2), 218-227. doi:10.1002/mds.27578

603 Soares, J. I., Afonso, A. R., Maia, G. H., & Lukyanov, N. V. (2018). The pedunculopontine and
604 laterodorsal tegmental nuclei in the kainate model of epilepsy. *Neurosci Lett*, 672, 90-95.
605 doi:10.1016/j.neulet.2018.02.044

606 Sofroniew, M. V., Priestley, J. V., Consolazione, A., Eckenstein, F., & Cuello, A. C. (1985a).
607 Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by
608 combined retrograde tracing and choline acetyltransferase immunohistochemistry. *Brain Res*,
609 329(1-2), 213-223. doi:10.1016/0006-8993(85)90527-x

610 Sofroniew, M. V., Priestley, J. V., Consolazione, A., Eckenstein, F., & Cuello, A. C. (1985b).
611 Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by
612 combined retrograde tracing and choline acetyltransferase immunohistochemistry. *Brain
613 Research*, 329(1), 213-223. doi:[https://doi.org/10.1016/0006-8993\(85\)90527-X](https://doi.org/10.1016/0006-8993(85)90527-X)

614 Sokhadze, G., Whyland, K. L., Bickford, M. E., & Guido, W. (2021). The organization of cholinergic
615 projections in the visual thalamus of the mouse. *J Comp Neurol*. doi:10.1002/cne.25235

616 Steidl, S., Wasserman, D. I., Blaha, C. D., & Yeomans, J. S. (2017). Opioid-induced rewards,
617 locomotion, and dopamine activation: A proposed model for control by mesopontine and
618 rostromedial tegmental neurons. *Neurosci Biobehav Rev*, 83, 72-82.
619 doi:10.1016/j.neubiorev.2017.09.022

620 Sun, P., Jin, S., Tao, S., Wang, J., Li, A., Li, N., Wu, Y., Kuang, J., Liu, Y., Wang, L., Lin, H., Lv, X.,
621 Liu, X., Peng, J., Zhang, S., Xu, M., Luo, Z., He, X., Xu, T., Li, X., Zeng, S., Zhang, Y.-H., &
622 Xu, F. (2020). Highly efficient and super-bright neurocircuit tracing using vector
623 mixing-based virus cocktail. *bioRxiv*, 705772. doi:10.1101/705772

624 Takakusaki, K., Chiba, R., Nozu, T., & Okumura, T. (2016). Brainstem control of locomotion and
625 muscle tone with special reference to the role of the mesopontine tegmentum and medullary

626 reticulospinal systems. *J Neural Transm (Vienna)*, 123(7), 695-729.
627 doi:10.1007/s00702-015-1475-4

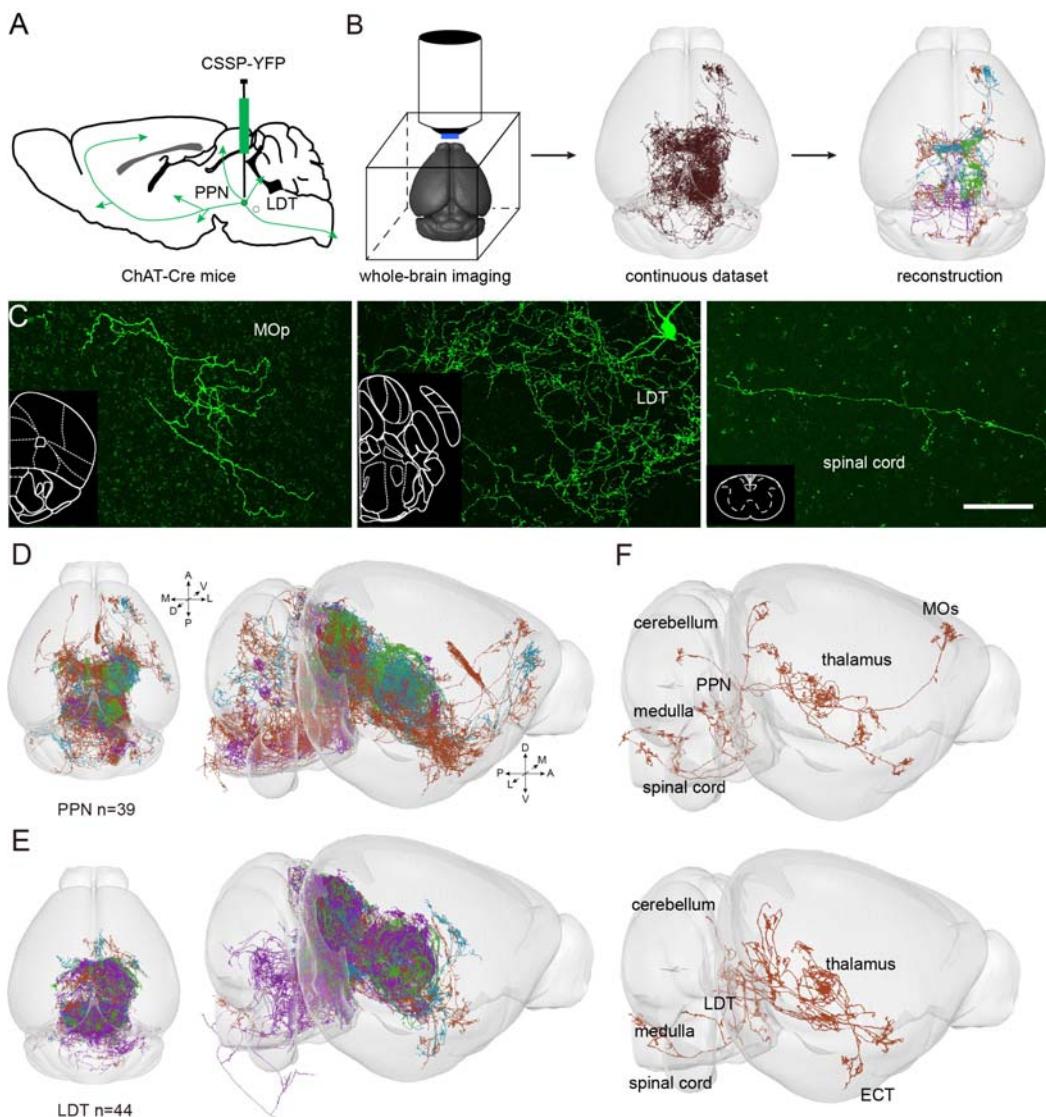
628 Valencia, M., Chavez, M., Artieda, J., Bolam, J. P., & Mena-Segovia, J. (2013). Abnormal functional
629 connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine
630 depletion. *Journal of Neurophysiology*, 111(2), 434-440. doi:10.1152/jn.00555.2013

631 Vitale, F., Capozzo, A., Mazzone, P., & Scarnati, E. (2019). Neurophysiology of the pedunculopontine
632 tegmental nucleus. *Neurobiology of Disease*, 128, 19-30. doi:10.1016/j.nbd.2018.03.004

633 Wang, Q., Ding, S.-L., Li, Y., Royall, J., Feng, D., Lesnar, P., Graddis, N., Naeemi, M., Facer, B., Ho,
634 A., Dolbeare, T., Blanchard, B., Dee, N., Wakeman, W., Hirokawa, K. E., Szafer, A., Sunkin, S.
635 M., Oh, S. W., Bernard, A., Phillips, J. W., Hawrylycz, M., Koch, C., Zeng, H., Harris, J. A., &
636 Ng, L. (2020). The allen mouse brain common coordinate framework: A 3D reference atlas.
637 *Cell*, 181(4), 936-953.e920. doi:<https://doi.org/10.1016/j.cell.2020.04.007>

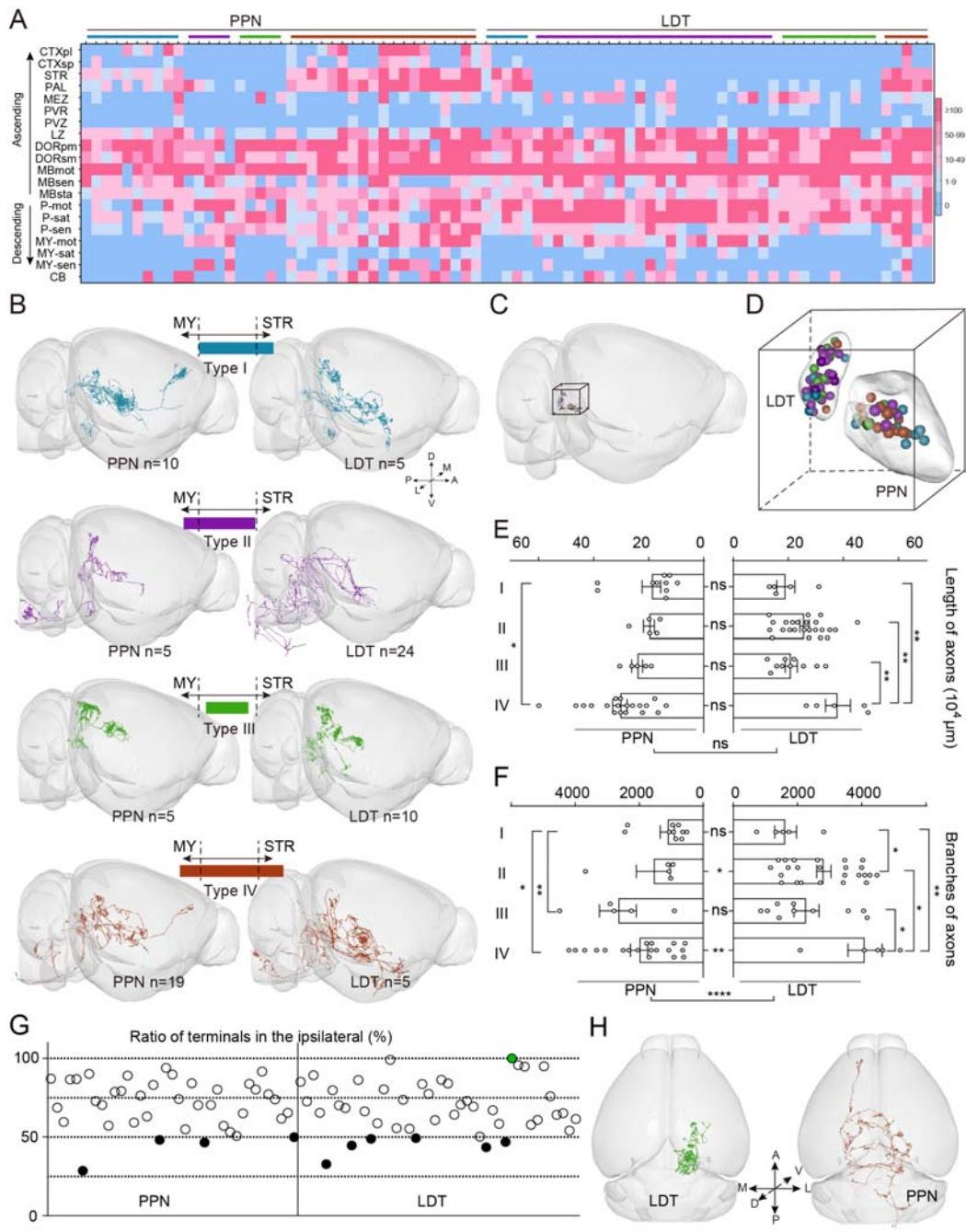
638 Xiao, C., Cho, J. R., Zhou, C., Treweek, J. B., Chan, K., McKinney, S. L., Yang, B., & Gradinaru, V.
639 (2016). Cholinergic Mesopontine Signals Govern Locomotion and Reward through
640 Dissociable Midbrain Pathways. *Neuron*, 90(2), 333-347. doi:10.1016/j.neuron.2016.03.028

641 Xu, Z., Feng, Z., Zhao, M., Sun, Q., Deng, L., Jia, X., Jiang, T., Luo, P., Chen, W., Tudi, A., Yuan, J., Li,
642 X., Gong, H., Luo, Q., & Li, A. (2021). Whole-brain connectivity atlas of glutamatergic and
643 GABAergic neurons in the mouse dorsal and median raphe nuclei. *eLife*, 10, e65502.
644 doi:10.7554/eLife.65502


645 Zhang, C., Liu, X., Zhou, P., Zhang, J., He, W., & Yuan, T. F. (2018). Cholinergic tone in ventral
646 tegmental area: Functional organization and behavioral implications. *Neurochem Int*, 114,
647 127-133. doi:10.1016/j.neuint.2018.02.003

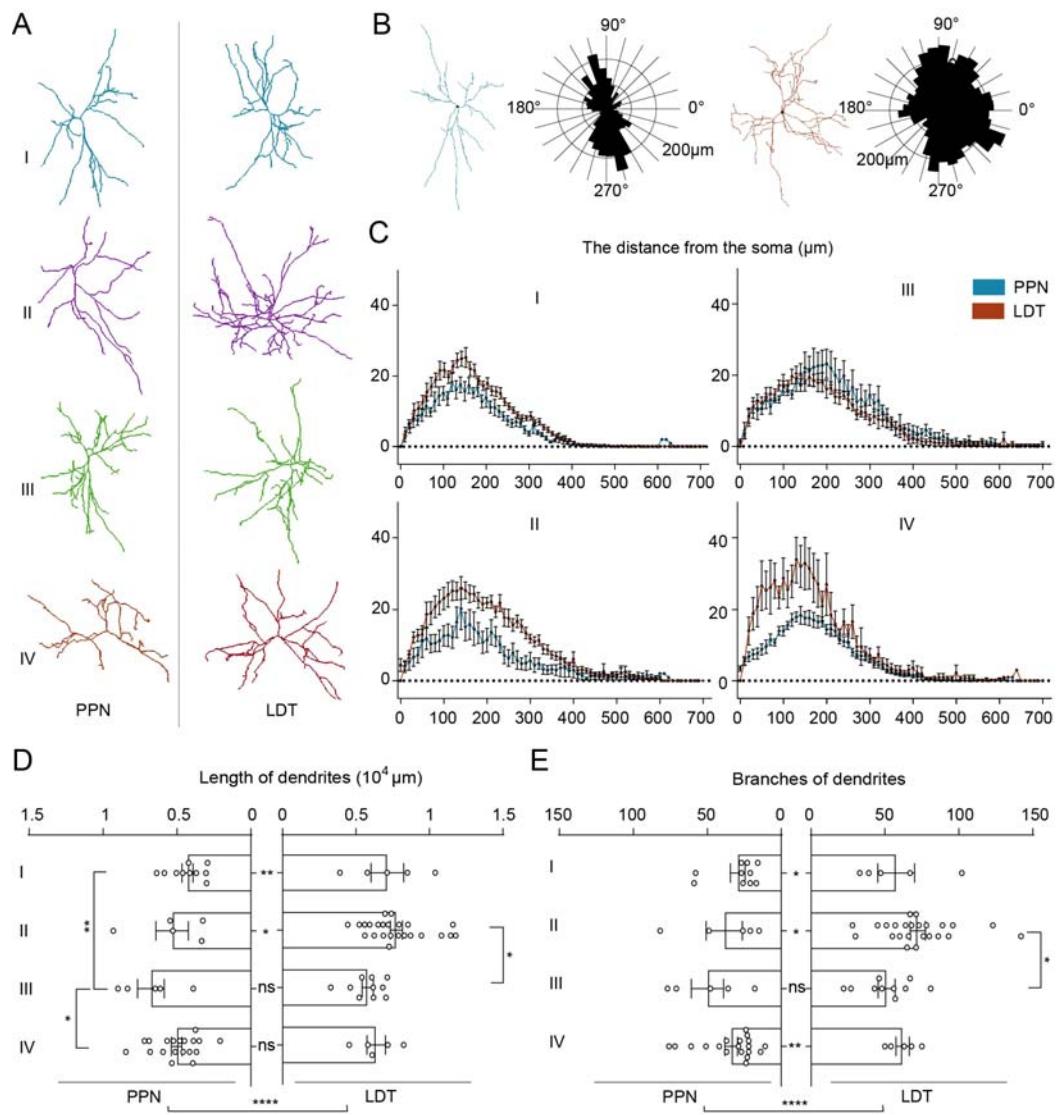
648 Zhao, P., Wang, H., Li, A., Sun, Q., Jiang, T., Li, X., & Gong, H. (2022). The Mesoscopic Connectome
649 of the Cholinergic Pontomesencephalic Tegmentum. *Frontiers in Neuroanatomy*, 16.
650 doi:10.3389/fnana.2022.843303

651 Zhao, P., Zhao, M., Wang, H., Jiang, T., Jia, X., Tian, J., Li, A., Gong, H., & Li, X. (2020). Long-range
652 inputome of cortical neurons containing corticotropin-releasing hormone. *Sci Rep*, 10(1),
653 12209. doi:10.1038/s41598-020-68115-x


654 Zhou, H., Li, S., Li, A., Huang, Q., Xiong, F., Li, N., Han, J., Kang, H., Chen, Y., Li, Y., Lin, H., Zhang,
655 Y. H., Lv, X., Liu, X., Gong, H., Luo, Q., Zeng, S., & Quan, T. (2020). GTree: an Open-source
656 Tool for Dense Reconstruction of Brain-wide Neuronal Population. *Neuroinformatics*.
657 doi:10.1007/s12021-020-09484-6

658 **Figures**

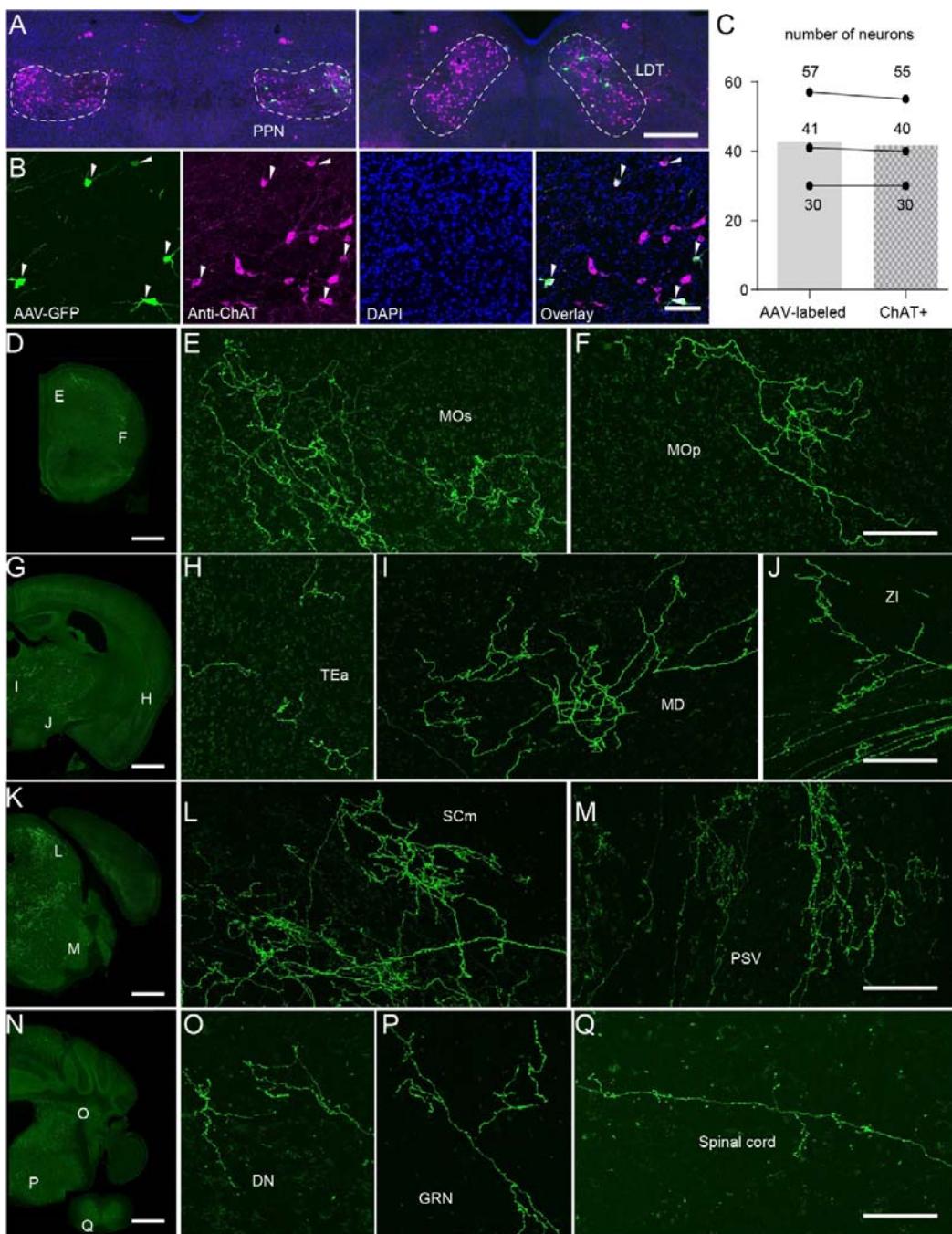
659


660 **Figure 1. Reconstructions of the individual cholinergic neuron in midbrain.** (A) Diagram of
661 the sparse labeling with virus. (B) The main steps for whole-brain data acquisition and single-cell
662 reconstruction. (C) Clear view of Labeled fibers in different regions, such as the cortical area,
663 inject site and spinal cord. (D) (E) Reconstructed neurons mapped to the Allen CCFv3 in 3D. PPN,
664 n = 39 neurons; LDT, n = 44 neurons. Left is plan view of reconstructed neurons. Right is side
665 view of reconstructed neurons in the whole-brain. 83 neurons were reconstructed from six brains.
666 (F) Single neuron stretched its axonal fibers to the cortical areas, thalamus, cerebellum, medulla
667 and spinal cord simultaneously.
668

669

670 **Figure 2. The whole-brain projection patterns of PTINS.** (A) The distribution of axonal
 671 terminals of single neuron. Each column displayed one reconstructed neuron. Boxes in different
 672 color explained the number of terminals of a single neuron in different brain regions. Different
 673 color on the top represent reconstructed neurons were classified into different type base on axonal
 674 fibers. (B) 3D view of typical neurons with different projection patterns. (C)The soma of all
 675 reconstructed neurons in the whole-brain outline. (D)Clear view of reconstructed neurons. The
 676 somas in the PPN and LDT neurons were isolated. The soma of neurons with different projection
 677 patterns were mixed together. (E) Quantification and comparison of axon length of reconstructed
 678 neurons in four types. (F) Quantification and comparison of axon branches of reconstructed

679 neurons in four types. (G) The ratio of axonal terminals in the ipsilateral of single neuron. Green
680 dot showed a neuron confined its axons in the ipsilateral totally. Black filled dots represent 10
681 neurons had richer axons in the contralateral areas. (H) Left was the top view of ipsilateral
682 restricted neuron. Right was top view of typical contralateral preference neuron. Data shown
683 as Mean \pm SEM. two-tailed t-tests, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. The
684 details of abbreviations for brain regions see Supplementary file 1.
685



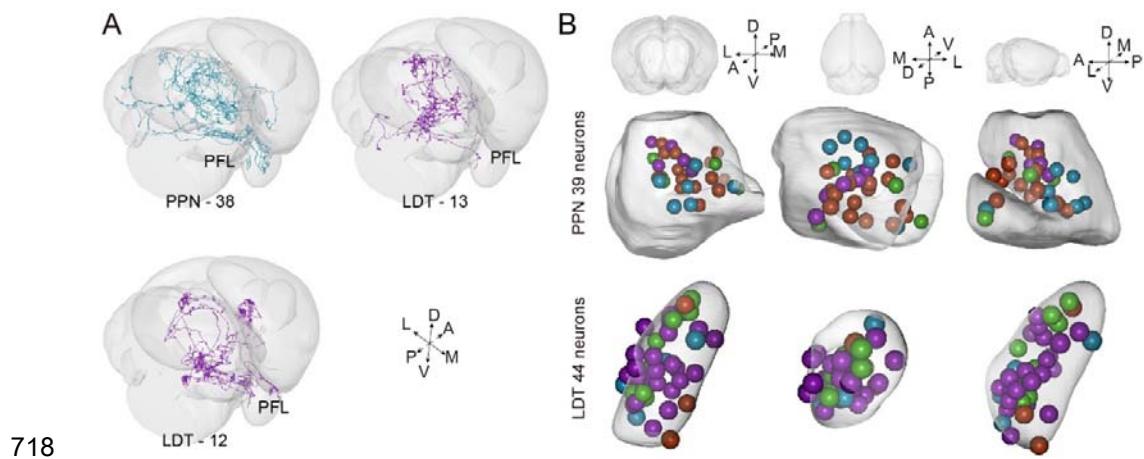
695 **Figure 4. The projection logic in ascending and descending circuits.** (A) Number of thalamic
696 nuclei innervated by individual PTCN. (B) Typical neuron only innervating the ipsilateral
697 thalamus. (C) Typical neuron preferred the contralateral thalamus. (D) Schematic diagram and
698 number of three patterns of PTCNs innervating the thalamus. (E) 3D view of typical neurons
699 projecting to the ipsilateral (left) and contralateral (right) cortical areas. (F) The targeting areas of
700 cortical-projecting neurons. (G) Two separated pathways projecting to rostral and lateral cortical
701 areas. (H) 3D view of typical neuron projecting to the PRN and VTA/SN simultaneously. (I)
702 Number of reconstructed PTCNs projecting to the PRN and VTA/SN. The details of abbreviations
703 for brain regions see Supplementary file 1.

704

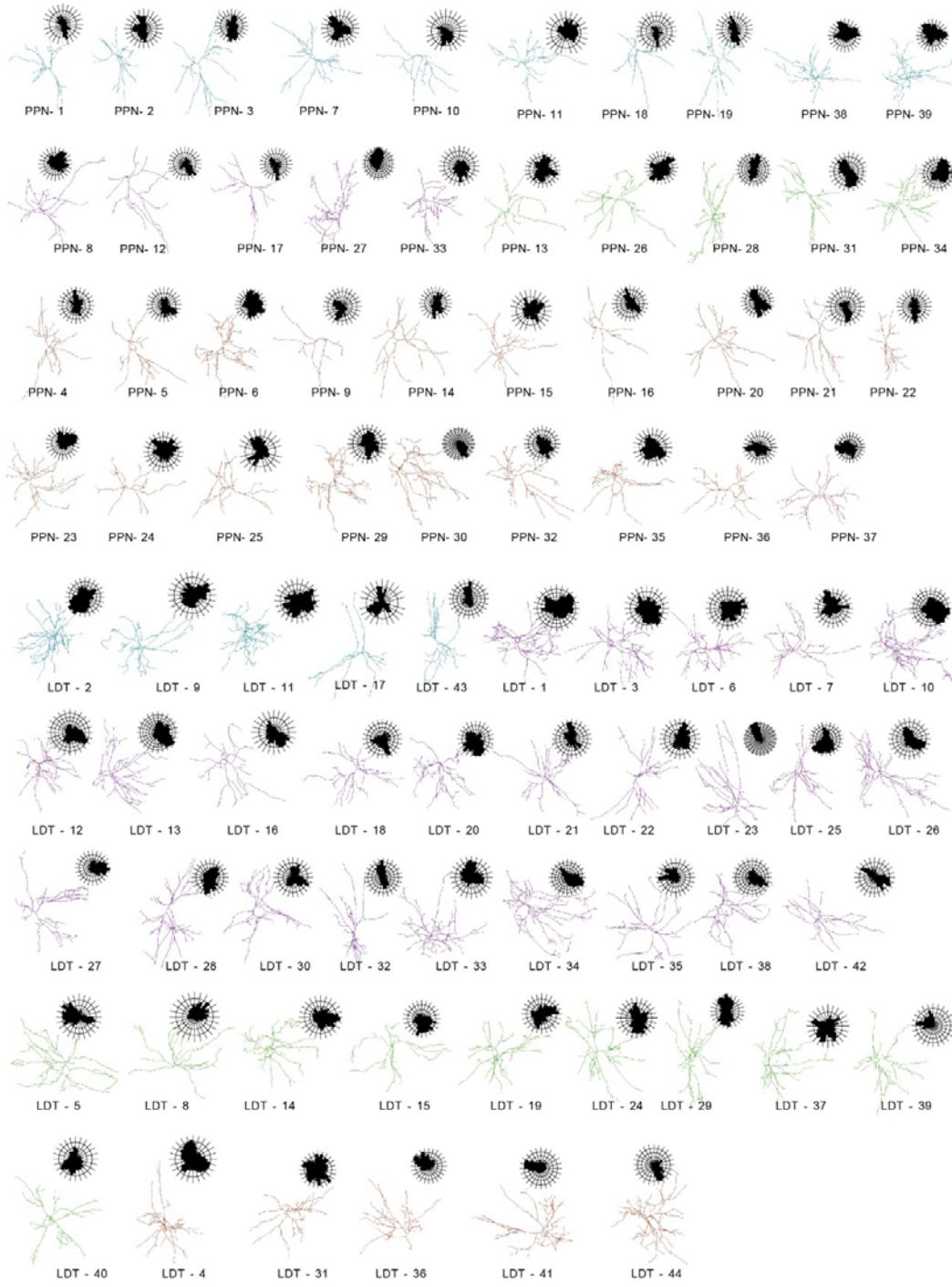
705 **Supplemental Figures**

707 **Figure 1—figure supplement 1. Sparse-labeling of cholinergic neurons.** (A) Sparse labeled
708 neurons in the PPN and LDT. (B) A four-panel presentation with AAV-YFP, anti-ChAT, DAPI and
709 merged, arrows point out cholinergic positive neurons. (C) Calculation of all labeled neurons and
710 ChAT+ labeled neurons ($n = 3$ mice). (D-Q) Labeled fibers ranging from the cortical areas to

711 spinal cord. Scale bar, (A) 500 μ m; (B) 50 μ m; (D, G, K, N) 1000 μ m; (E, F, H, I, J, L, M, O, P, Q)


712 100 μ m.

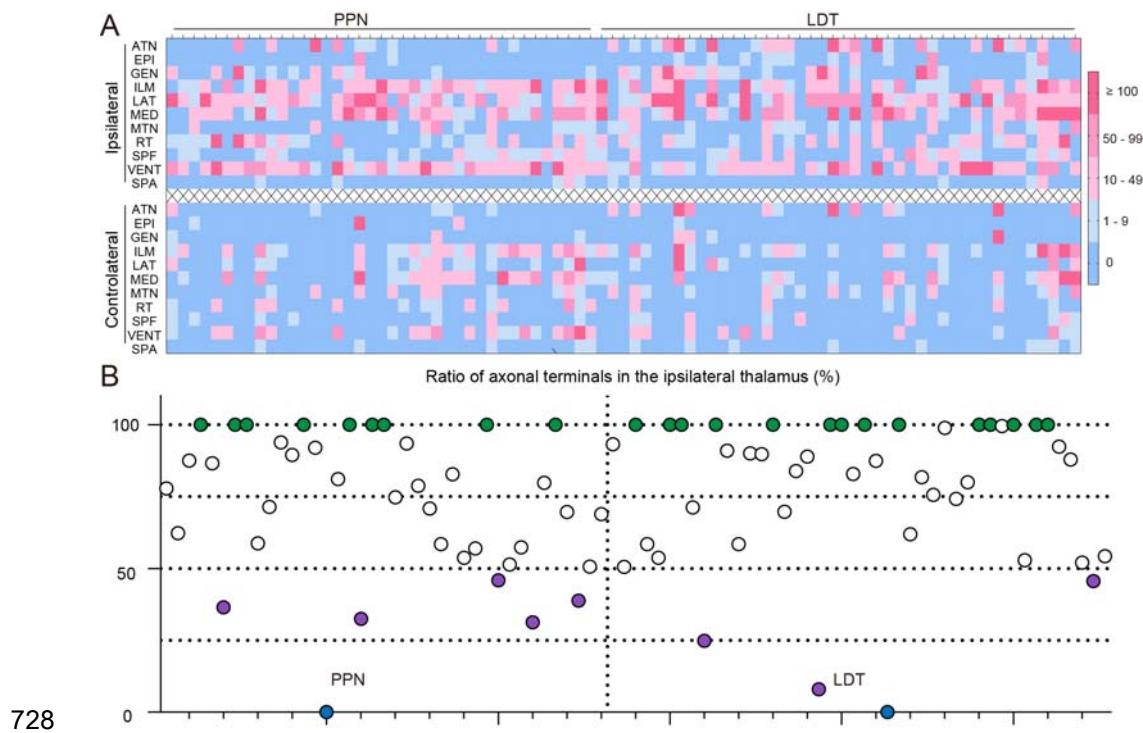
713


714 **Figure 1—figure supplement 2. 3D view of all 83 reconstructed cholinergic neurons.**

715 Pentagons presented neuron had richer axon branches in the contralateral hemisphere. Red triangle
716 pointed neuron restricted its fibers in the ipsilateral thalamus. Green triangle pointed neuron sent
717 richer fibers to the contralateral thalamus.

718 **Figure 2—figure supplement 1. PFL-projection neurons and the soma of reconstructed**
719 **neurons. (A) 3D view of three neurons projecting to the PFL. (B) 3D view of all reconstructed**
720 **soma.**

722



723

724 **Figure 3—figure supplement 1. The morphology and polar analysis of 83 reconstructed**
725 **neurons.**

726

727

728 **Figure 4—figure supplement 1. Quantitative analysis of axons of thalamic projection PTCNs.**

729
730 (A) The distribution of axonal terminals in thalamus of single neuron. Each column displayed one
731 neuron. Boxes in different color explained the number of terminals of a single neuron in different
732 brain regions. (B) The ratio of terminals in the ipsilateral thalamus of single neuron. Green dots
733 showed neurons confined its axons in the ipsilateral thalamus. Purple filled dots represent neurons
734 had richer axons in the contralateral thalamus. Blue dots represent neurons did not target the
735 thalamus. The details of abbreviations for brain regions see Supplementary file 1.

736