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32 Abstract

33 Dynamical systems often generate distinct outputs according to different initial conditions,
34  and one can infer the corresponding input configuration given an output. This property captures
35 the essence of information encoding and decoding. Here, we demonstrate the use of self-
36 organized patterns, combined with machine learning, to achieve distributed information encoding
37 and decoding. Our approach exploits a critical property of many natural pattern-formation
38 systems: in repeated realizations, each initial configuration generates similar but not identical
39 output patterns due to randomness in the patterning process. However, for sufficiently small
40 randomness, different groups of patterns that arise from different initial configurations can be
41 distinguished from one another. Modulating the pattern generation and machine learning model
42 training can tune the tradeoff between encoding capacity and security. We further show that this
43 strategy is applicable to non-biological dynamical systems and scalable by implementing the
44 encoding and decoding of all characters of the standard English keyboard.

45

46 Significance Statement

47 Self-organized patterns are ubiquitous in biology. They arise from interactions in and
48 between cells, and with the environment. These patterns are often used as a composite
49 phenotype to distinguish cell states and environment conditions. Conceptually, pattern generation
50 under an initial condition is encoding; discerning the initial condition from the pattern represents
51 decoding. Inspired by these examples, we develop a scheme, integrating mathematical modeling
52 and machine learning, to use self-organization for secure and accurate information encoding and
53 decoding. We show that this strategy is applicable to non-biological dynamical systems. We
54  further demonstrate the scalability of the scheme by generating a complete mapping of the
55 standard English keyboard, allowing encoding of English text. Our work serves as an example of

56 nature-inspired computation.
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57

58 Main Text

59 Introduction

60 Information encoding is a process of converting information, such as text and images,
61 from its original representation to an output format following defined rules. Dynamical systems
62 have this information encoding capability as they can generate specific outputs according to given
63 inputs. Conversely, decoding can be achieved if one can infer the input corresponding to an
64  output. Depending on the system, decoding could be obvious, challenging, or impossible.

65

66 One example is to use cellular automaton (CA) that converts a grid of cells from a simple
67 initial configuration into a self-organized sequence or spatial pattern according to a set of update
68  rules(1l). Wolfram proposed to use a chaotic rule to generate random sequences to encode
69 information(2, 3). Here, the encoding is deterministic -- each initial configuration corresponds to a
70 unique output pattern. Because of the chaotic nature of the rule, however, decoding the input
71 from a given output pattern is computationally prohibitive without prior knowledge of the update
72 rules. As such, the system in theory can serve as the foundation for digital cryptography (4-8).

73

74 While making the encoding secure, however, the chaotic nature of the above example
75 can limit its application. Like other dynamical systems exhibiting deterministic chaos, the final
76 patterns generated by CA are extremely sensitive to perturbations and lack statistical
77 regularities(9, 10). As such, a minute change in the initial configuration or the encoding process
78 can lead to drastically different final patterns (a phenomenon termed the avalanche effect(11)).
79 Unless the encoding and transmission are noise-free, the decoding is prone to errors even if the
80 rules are known (12).

81

82 In contrast to these chaotic systems, many natural systems are convergent. That is, for

83  the same or similar input configurations and environmental conditions, the final patterns share
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84  global similarity despite local variances. This property is sometimes referred to as “edge of

85 chaos”(13). Examples are chemical reaction(14) and cortical networks(15). Many biological

86 patterning systems also fall into this category. Despite minute variances, coat patterns are largely

87 determined by animal genomes and allow identification of different species. In microbes, the

88  same bacterial strain can grow into colonies with distinct shapes and sizes under different growth

89 conditions(16, 17). Consequently, colony morphology can serve as a crude signature to

90  distinguish environmental conditions and chemical cues, as well as the stage of infectious

91 diseases (18, 19). Despite these empirical examples, the potential and limitations of information

92 encoding and decoding using biological self-organization remain unexplored. Here, we use these

93  systems to establish distributed information encoding. Coupled with machine learning (ML)

94  mediated decoding, our system illustrates a scalable strategy for information encoding and

95  decoding with quantifiable reliability and security (Figure 1A).

96

97 Results

98 Criteria for Choosing an Encoding System

99 Any dynamical systems, including those generating self-organized patterns, can serve as
100 the foundation for information encoding and decoding. However, to ensure secure encoding and
101 reliable decoding, we reason that the system dynamics need to meet a set of heuristic criteria.
102 First, the output patterns are sufficiently complex and diverse such that different initial
103 configurations would generate distinguishable output patterns. Second, the pattern generation is
104  subject to stochasticity but remains convergent. That is, in repeated pattern generation
105 processes, the same initial configuration with small noise or perturbations should generate output
106 patterns that are approximately the same but differ in minor details. Importantly, the differences
107 between patterns generated from replicated simulations should be smaller than those between
108 patterns generated from different inputs. Third, while different groups of patterns arising from
109 different initial conditions can be decoded by a properly constructed decoder, their differences are

110  difficult to discern by naked eyes. We note that the degree by which different groups of patterns
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111 can be distinguished often has to be established empirically (if a reliable decoder can indeed be
112 constructed).

113

114 As a proof of principle, we focus on a coarse-grained model of self-organized pattern
115 formation (Figure 1, also see “Mathematical modeling” in Methods). The model was developed to
116  simulate qualitative aspects of branching dynamics of Pseudomonas aeruginosa colony growth
117 (20). In it, each simulation initiates from a pre-defined cell seeding configuration and the cells
118 develop into a branching colony (Figure S1). The patterning process is influenced by two sources
119 of random noise. One comes from the variability in the initial distribution of seeding cells; the
120  other comes from the underlying growth kinetics. With appropriate choice of parameters
121 (including noise levels), the patterning dynamics satisfy all criteria listed above.

122

123 In addition, another rationale for choosing this model is its simplicity and versatility. It can
124  generate diverse patterns by adjusting model parameters and be solved in a computationally
125 efficient manner. These features allow us to probe this platform’s security, reliability, and
126  scalability (see “Tradeoff among encoding capacity, security, and decoding reliability”).

127

128 Distributed Encoding and Decoding by Spatial Patterns

129 To demonstrate encoding, we represent a dictionary of 15 characters — letters A-E and
130  numbers 0-9 — using binary numbers 0001-1111 (Table S1). Each binary number then
131  corresponds to a seeding configuration of cells in a braille-like array at time O (Figure 1B): a digit
132 “1” corresponds to a spot seeding indicating the presence of cells, whereas a digit “0” indicates
133 no cells. In each simulation, the colony grows from its initial configuration into a final pattern. As
134 mentioned above, the simulation is subject to two noise sources: the variability in seeding and
135 during growth. The former could originate from the marginal but unavoidable uneven cell
136  seeding, and the latter could originate from inherent heterogeneity of cell gene expression,

137  motility, or small external perturbation. Therefore, repeated simulations from the same initial
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138  seeding configuration generate similar final patterns with minor differences, which collectively
139 encode the identity of the input configuration (Figure 1C). We chose to encode in seeding
140  configuration because of its simplicity, one may also choose to encode in other parameters
141 influencing pattern formation.

142

143 We configure our simulations such that neither the mapping between the initial
144  configurations and the colony patterns nor the difference between patterns corresponding to
145 different inputs is obvious to the naked eye. To allow reliable decoding, we need a robust method
146  to navigate through this visual complexity. A direct method is brute-force search, whereby all the
147  possible patterns for each initial configuration are simulated to establish an empirical mapping
148  between the input and the output. While apparently straightforward, this approach is

149 computationally prohibitive and impractical because the training patterns are 8-bit, 80 pixels x 80

150  pixels grayscale images, resulting in up to 2% ~ 1012

possible patterns.

151

152 Alternatively, image classification using convolutional neural networks (CNNs) has been
153  successful for numerous applications (21-23). Through observing sufficient examples, a CNN
154  learns to cluster images by their categories. Here we built a CNN to decode the colony patterns
155  via multiclass classification (Figure S2, see “CNN training” in Methods). During training, our CNN
156 decoder takes pattern images (generated by repeated simulations) as input and updates its
157  trainable parameters to classify patterns based on initial seeding configurations. With sufficient
158 replicates in each class, our trained CNN was able to distinguish patterns corresponding to the 15
159 characters with high accuracy (Figure 1D). For instance, greater than 93% of decoding accuracy
160 can be achieved by having 800 replicate patterns in the training set. We note that this decoding
161 approach is data-driven; other algorithms such as decision tree (24) and support vector machines

162 (25) may also be used.

163
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164 In an actual application of this encoding/decoding strategy, we assume the channel is
165 public while the pattern generator, model parameters, training set, and the trained CNNs are
166 private to the end users (Figure 1A). The recipient chooses the correct, trained CNN to decode a
167 pattern according to the model parameters transmitted through another private channel (not
168  shown in the figure) as prior knowledge.

169

170  Tradeoff Among Encoding Capacity, Security, and Decoding Reliability

171 In this platform, we aim to maximize the capability of the patterns to encode information,
172 termed encoding capacity, and our platform’s robustness against data leakage to unauthorized
173 parties, termed encoding security. We consider a system has higher encoding capacity if it can
174  encode more characters correctly with adequate data, while we consider our encoding scheme
175 being more secure when the attacker cannot build a successful decoder from the leaked data.
176  For example, the accuracy of a separate decoder built on only 10 replicates per class drops to
177 less than 20% (Figure 1D), which is only slightly better than random guessing (1/15). Note that
178  the efficacy of our platform depends on the complexity of the generated patterns, our desired
179 accuracy, and the amount of available training data.

180

181 We can tune our scheme’s performance by modulating parameters in the pattern
182 generation model, i.e., the relative acting distance and magnitude of colony expansion versus
183 repulsion processes. Large relative distance and magnitude (i.e., higher colony expansion) result
184  in thick branches, whereas small relative distance and magnitude (i.e., higher repulsion) result in
185  thin, sparse branches. In extreme cases, these conditions can result in large disks or small
186 circular colonies, respectively. When these two forces are intermediate and comparable, the
187  system generates branching colonies. We constructed 16 simulated training datasets of diverse
188 patterns by tuning these two parameters (Figure S3A). Based on their final appearance, we
189 categorized our results into three subgroups: disk-like, trivial (final pattern is identical to initial

190  configuration), and branching. Disk-like colonies cannot be distinguished regardless of the


https://doi.org/10.1101/2022.06.04.494770
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.04.494770; this version posted June 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

191 training data size—thus, the input information was obscured and “lost” after growth (Figure S3B-
192 D). Conversely, trivial patterns allow perfect but insecure decoding since the reverse mapping is
193 obvious. Ultimately, the intricate branching patterns allow secure encoding and reliable decoding
194  as demonstrated previously.

195

196 We can also modulate encoding capacity and security by tuning the noise during the
197 patterning process. Without noise, one pattern per input is sufficient for perfect decoding as long
198 as output patterns are distinguishable (Figure 2A). Too much noise would introduce too many
199  variations in the replicate patterns generated from each input. If these intra-category variations
200  (between replicate patterns) approach or exceed the inter-category differences (between sets of
201 patterns corresponding to different inputs), the decoding accuracy would deteriorate significantly
202 (Figure 2A). Depending on the magnitude of the noise, this loss in accuracy can be alleviated by
203 increasing the number of replicate patterns per class. A similar tradeoff exists for other
204 parameters as well, such as the spacing between spots in the initial configuration (Figure 2B).
205  When spacing decreases, patterns grown from different configurations appear more alike and
206 indistinguishable. Moreover, increasing dictionary size with all else being equal would also reduce
207  the decoding accuracy (Figure 2C). Again, expanding the number of replicate patterns per class
208 can compensate for losses in accuracy, thus increasing the encoding capacity (Figure 2D).
209 Similar tradeoff was also observed in patterns arrested from growth at different time points (see
210  “Temporal information encoding and decoding” in Supplementary Information).

211

212 In principle, the encoding-decoding scheme is applicable to any dynamical systems
213  where the input-output mapping satisfies the criteria listed above. To illustrate this point, we
214  chose an elementary cellular automaton model with weakly chaotic dynamics (9) (see “Encoding
215 and Decoding using Elementary Cellular Automaton” in Supplemental Information). Given the set
216 of rules, we chose the model parameters (including noise levels) such that the resulting dynamics

217  can allow secure encoding and reliable decoding. Again, we encoded characters in binary
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218 numbers, which is then converted into 1D initial configuration in a similar manner as in 2D. Noise
219  was imposed on the initial sequence, and the latter develops into a final sequence following the
220  evolution rules (Figure S4). A feedforward neural network was trained to code the final sequence.
221  As expected, higher complexity leads to worse decoding accuracy, and it can be remedied by
222 increasing training data size (Figure S5).

223

224 Enhancing Encoding Security and Integrity

225 To enhance security, we evaluated utilizing encryption to prevent unauthorized access
226 during communication. A secret key is implemented during encoding and successful decoding
227  requires the correct key (Figure 3A). For pattern formation systems, the geometry of the
228  patterning domain is a feasible choice of secret key as it can influence the patterning process and
229 is easily tunable (26-28). In our system, the boundary suppresses bacteria colonization, and the
230  strength of the impact decreases exponentially as the distance from the focal niche to the
231 boundary increases (see “Encryption dataset generation” in Methods). As such, the boundary
232 exhibits a time-invariant, long-range, and weak inhibitive force on colony expansion. As this force
233 is anisotropic due to asymmetric boundary geometry, the patterns are encrypted by the domain
234 shape.

235

236 To test this notion, we generated patterns within different boundary shapes. For each
237  shape, the resulting patterns would occupy the entire space. We removed the information of the
238 boundary in the output by cropping out a smaller, circular area at the center of each pattern
239 (Figure 3B). We found that only the decoders trained on the correct datasets can decode at high
240  accuracy (Figure 3C), indicating that knowledge of the domain shape (i.e., the secret key) is
241 critical for selecting the right CNN decoder to accurately decode. Similarly, we evaluated the
242 potential of other secret key choices, such as the seeding spacing (Figure S7) and patterning
243  domain size.

244

10
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245 We have also considered the threat to information integrity during communication, in
246  which the attackers could alter the output patterns or replace them with fake ones, thus deceiving
247  the intended information receiver. We demonstrated that the noise in the patterning dynamics
248 could be used to ensure the integrity (see “Authenticating patterns using noise signatures” in
249 Supplementary Information). Briefly, the noise leaves a unique signature for each correct pattern,
250  which can be used to authenticate a received pattern.

251

252 Improving Decoding Performance by Ensemble Learning

253 All else being equal, the reliability of decoding can be improved by increasing the number
254  of replicates per class when training the decoder. However, the degree of improvement
255  diminishes for an increasing number of replicates (Figure 2C). For instance, for a dictionary size
256  of 63, the decoding accuracy increases ~30 folds by increasing the number of replicates from 10
257  to 100; it only increases ~1.5 fold by increasing from 100 to 800. To more effectively use the
258 available data, we adopted ensemble learning — a class of machine learning techniques (29-31).
259

260 Staked generalization combines the knowledge learned by individual, base ML models
261 for better prediction (32-35). We first trained multiple base CNN decoders on a dataset with
262 random initialization using the same protocol in the previous sections, then trained an ensemble
263 decoder to combine their prediction capabilities. The ensemble model was then used for final
264  decoding (Figure 4A, see “Ensemble learning and uncertainty estimation” in Methods). For
265 patterns generated with moderate growth noise, the prediction performance of the ensemble
266  decoder excels that of the base models for up to 22% in accuracy (Figure 4B). Receiver operating
267 characteristic (ROC) curves and confusion matrices also show significant improvement with
268 ensemble model (Figure 4C, Figure S8 - 9). As expected, the ensemble model generally
269 outperforms the base ones when intermediate data are available but demonstrates marginal
270 improvement with adequate or scarce data. This is expected because when intermediate data are

271 available, the individual base models are diversified due to random initialization. However, when

11
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272 adequate data are available, each base model individually decodes with high accuracy, leaving
273 little room for improvement. Conversely, when data are scarce, the base decoders barely learn
274  such that integrating their results provides little insight. This final aspect implies encoding security
275  against minor data leakage. Additionally, considerable improvement can be achieved with a
276  simple logistic regression (LR) model, and more base models leads to better ensemble
277 performance (Figure S10). In addition to stacking, we have also shown that majority voting can
278 improve the decoding accuracy (Figure 4D, Figure S11). Multiple patterns corresponding to the
279 same character were decoded using the same CNN, and the most voted prediction was used as
280 the final prediction.

281

282 Ensemble learning not only improves the decoding accuracy, but also sheds light on the
283 prediction uncertainty. According to Lakshminarayanan et al, the base models trained with
284  random initialization explore the entirely different modes of function space(36), thus their
285 independent predictions can be used to estimate well-calibrated uncertainty(37). We adopted this
286 notion and estimated decoding uncertainty through multiple metrics, including log likelihood,
287 mean squared error (MSE), top-1 and top-5 errors (see “Ensemble learning and uncertainty
288 estimation” in Methods). Higher metric value indicates larger uncertainty or lower confidence. As
289 expected, the uncertainty reduces as more training data are available (Figure S12). Having more
290  base models does not necessarily reduce the uncertainty (Table S2).

291

292 The information on uncertainty can assist decision making on whether to accept the
293 decoding result or not. Depending on the application, the end users could define a
294  dichotomization accuracy and uncertainty. For a decoded character, if the decoding accuracy (a
295 priori knowledge) and the uncertainty are inferior to the suggested threshold, the recipient should
296 reject the pattern and request a new one. Otherwise, the decoded character can be accepted.

297

12
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298 Distributed Encoding of English in Emorfi

299 Our distributed encoding-decoding platform is scalable for practical applications. We
300 constructed 100 sets of patterns to encode all printable ASCII characters including English letters
301 in upper and lower cases, digits, punctuations, and whitespaces (Figure 5A, Appendix A). A 7-bit
302 seeding array was used to create the training dataset, in which, 100 of the unique initial
303 configurations corresponded to the printable characters. Each of the initial configurations was
304 then used to generate 1000 patterns. When encoding text, each character is represented by one
305 or multiple patterns that are then arranged to assemble a video (Figure 5B). We term this
306 collection of patterns Emorfi, which represents a new, digitally generated coding scheme.

307

308 By doing so, all standard English text can be encoded in Emorfi and decoded back. For
309 instance, we encoded the public speech “I have a dream” by Martin Luther King Jr. containing
310 8869 individual characters as a video (Movie S1). Accommodating majority voting, each character
311  was represented by five different patterns. The video was decoded with 99.8% accuracy
312 (Appendix B). The same approach was also used to encode the poem “Auguries of Innocence” by
313  William Blake as video (Movie S2) and decoded with 99.6% accuracy (Appendix C). In another
314  example, using a 5-bit seeding array, we encoded GFP protein sequence (238 amino acids) as a
315  video (Movie S3) and decoded at 100% accuracy (Appendix D).

316

317  Discussion

318 Our encoding and decoding framework is applicable to diverse dynamics systems, as
319 long as they have three key properties: i) an approximately convergent mapping between initial
320 input and output, ii) complex output signals, and iii) the output patterns are difficult to distinguish
321 to the naked eye. While past studies have explored the possibility of using chaos to encode
322 information and to provide security (38-40), unavoidable noise and error in numerical simulation
323 (e.g., finite precision computing) or transmission (e.g., channel noise) can alter the output despite

324  these systems being deterministic. In contrast, the convergent nature of our system ensures

13
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325 patterns that originate from the same initial configurations share common features (recognizable
326 by a trained NN) despite small variances. Though noise is often considered undesirable in
327 biological studies — such as masking ground truth (41-43) or disrupting interactions between
328 components (44, 45)— we take advantage of the variance in our system to ensure information
329 security and to authenticate each pattern.

330

331 These criteria together contribute to the sufficient encoding capacity and tunable
332 information security of our platform. Many systems satisfy these criteria. With appropriate
333 parameterization and boundary conditions, many reaction-diffusion models exhibit considerable
334  robustness in output patterns and sensitivity to initial conditions (46, 47). In addition to the
335  example we demonstrated (Figure 2 and S4-S5), many CA models with asynchrony update rules
336  also show convergence (48, 49). Biological systems, such as biofilm morphology, butterfly wing
337  scale pattern, and human fingerprint, have also evolved to exhibit common features but vary in
338 detail. Their convergent nature results from the rich multiscale, multidimensional interactions
339 between different system components, such as chemical reactions and diffusion, gene circuits,
340  and cell-cell interactions (50-54).

341

342 However, our work does bring up a fundamental question: given a dynamical system with
343  stochasticity, how do we know the dynamics are convergent enough while the output signals from
344  different initial conditions are also distinguishable? We suspect that the question has to be
345 addressed empirically for each specific system. In ours, each initial configuration generates an
346  ensemble of output patterns following a distribution (visualized using t-SNE in Figure S13). It is
347 difficult to determine this distribution by solely inspecting the pattern generation model, even if
348 parameters and noise magnitudes are known. However, whether each distribution corresponding
349 to an input can be distinguished from another distribution arising from another input is established

350 by ML. In essence, the trained CNN provides an empirical estimate on the extent by which the

14
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351 pattern generation is convergent. To this end, our work has implications for quantifying the
352 convergence for a dynamical system by using ML.

353

354 As we have demonstrated with Emorfi, the patter-based encoding-decoding platform is
355 scalable and generalizable for information in various formats. We envision the platform could be
356 extended to other languages, such as alphabetic languages with different letters or diacritics
357 (e.g., French, Hebrew) and logographic scripts consisted of thousands of characters (e.g.,
358 Chinese, Japanese). It could also be applicable for communicating science and protecting
359 intellectual properties by incorporating Greek alphabet, mathematical symbols, nucleic acid bases
360  and etc.

361

362 Methods

363 Mathematical Modeling

364 The simple colony pattern generation model accounts for several driving forces. In
365 particular, it uses a kernel-based method to capture the high level positive (expansion) and
366 negative (inhibition) effects on patterning, regardless of the specific mechanism. The model is
367  formulated as the following equations:

368

New (%,9) = [ [ K(d,) N.(x, y)dxdy

L)

K(dx,y) =b 2‘(%)[11 — 2‘(%)
369
370 Here, N is the colonization of the bacteria over the growing medium, K is the growth kernel that is
371 the addition of the expansion and (negative) repulsion kernels. b is the relative magnitude of
372  expansion to repulsion, d; and d, are the distances that characterize half of the maximum effect
373  of expansion and repulsion respectively. d,, is the distance of the focal point to (¥, y). We used
374 d,/d, =0.4,h, =1000,h, = 2000,b = 6.5 as the default parameter values unless otherwise

375 mentioned. This parameter set generates complex branching patterns.
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376

377 To adapt the published model for our study, we made several modifications. First, we
378 implemented various seeding configuration, such as the spot seeding arrangement for encoding
379 binary representations of characters (Figure 1B). The size and spacing of the spots were
380  subjected to modulation. As the default setting, we used spacing = 15 and spot radius = 5.
381 Second, we implemented white Gaussian noise with varying signal-to-noise (SNR) ratios to the
382 growth kernel at each time step. The noise mimics the heterogeneity and small perturbations in
383 growth. We also implemented uneven cell seeding by assigning random intensities drawn from a
384  truncated Gaussian distribution (mean = 0.5, deviation varies) to the pixels within the spot
385  configurations. Both noise sources contribute to the variation in patterns given the same model
386  parameters and initial configurations. As default, we used random seeding without growth noise.
387

388 The model was implemented in MATLAB 2017b and solved numerically. The simulation
389 terminates once the colony stops growing. The simulation outputs an 8 bit, 451 pixels x 451
390 pixels greyscale image. Except the encryption experiments, the patterns were formed on a
391 circular growth domain of a diameter of 451 pixels.

392

393  CNN Training

394 For CNN training, we numerically simulated datasets with equal number of replicates for
395 each encoding character. For evaluation, test datasets made of 100 replicates per class were
396 used. The pattern images were rescaled to 80 pixels x 80 pixels before training or testing.

397

398 The CNN (Figure S2) and the ensemble model (Figure 4A) were implemented in Python
399 3, TensorFlow 1.15.2, and Keras 2.4.0. The CNN uses pattern images as inputs and outputs N
400 features, where N is the dictionary size. It consists of two convolutions, each followed by max
401 pooling and rectified linear unit (ReLU). Then their output is passed onto two fully connected

402 layers, followed by RelLU and softmax respectively. Here the softmax function turns it into

16
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403 categorical probabilities. For training, we used Glorot normal initializer, categorical cross entropy
404  loss and Adam optimization algorithm with learning rate subject to tuning. Keras early stopping
405  function was also implemented to stop the training once the loss metric stopped improving. We
406 carried out hyperparameter tuning (including learning rate, batch size, early stopping patience
407 and delta) to obtain the best performing models for analysis. The data generation and training
408  were conducted on Duke Compute Cluster and Google Cloud Platform.

409

410 Encryption Dataset Generation

411 The geometry of the growth domain impacts the growth and pattern formation through
412  exerting a negative effect on the colony in the vicinity of the boundary, such that the colony does

413 not reach the edge. The plate influence is formulated as:

414
I= -k 2_6%
415
416 Here, d is the Euclidean distance of the focal niche to the boundary, R is the plate radius,

417 and k = 1000. € regulates the shape of the impact function. We deducted the influence from the
418 colony after each discrete time step. For the purpose of encryption, we maximized the influence
419  of the geometry by modulating €, such that the negative plate impact reached as far as the center
420  of the patterns. We used € = 1 for generating the encryption datasets, and 2000 for any other
421  dataset.

422

423 When using the shape of the growing medium as the secret key, we simulated the colony
424 patterns on circular, diamond, square and equilateral triangular shaped domains. The area of
425 each geometry was kept the same in order to compare the effect of the geometry. We removed
426  the information of growth domain shape by cropping out a smaller, circular area at the center of
427 each pattern, only the processed pattern images were used for CNN training.

428

17
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429 Ensemble Learning and Uncertainty Estimation

430 The training of ensemble model was carried out in two steps. First, we trained several
431 base CNN models using the same protocol described in “CNN training”. Their probabilistic
432 predictions on the training set were then linearly combined to constitute a new dataset. Next, we
433 used the new dataset to train an ensemble model from scratch. We tested several ensemble
434 model architectures, including logistic regression and feedforward neural networks with different
435 number of hidden layers and nodes. In the ensemble model, we used ReLU activation function for
436  the input and hidden layers and passed the model output into softmax function to turn it into
437 categorical probabilities. For its training, we used Glorot uniform initializer, categorical cross
438  entropy loss and Adam optimization algorithm with learning rate = 0.0001. Keras early stopping
439  was used to stop the training once the loss metric stopped improving. The patience was 5 and the
440  minimum change was 0. 0001. We evaluated the model performance on a balanced dataset of
441 100 datapoints per class through metrics such as precision, recall, ROC, AUC ROC using scikit-
442 learn (0.22.2).

443

444 We evaluated the prediction uncertainty based on the output of base models. We used
445 common metrics, such as log likelihood, mean square error (MSE), top-1 and top-5 errors, for

446 estimating the uncertainty. Specifically, the log likelihood is —M‘lzj‘-ilzﬁ":lyij log(p;;) and the

447  MSEis MN7*3M YN (i) — pi]-)z. For the i"" data point, y;; is the true label for class j (1 if the
448  data point belongs to class j, otherwise 0), p;; is the predicted probabilities for class j. M indicates
449 the total number of data points, and N indicates the dictionary size. Top-1 and top 5 the fraction of
450  data points whose correct label is not among their top 1 or 5 probable predictions, respectively.
451

452 Data and Code Availability

453 The mathematical simulation and machine learning codes used in this study are available

454  on GitHub: https://github.com/youlab/Information_encoding. The platform for encoding text in the

455 format of video is available at https://www.patternencoder.com/.
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592 Figures

593 Figure 1. Distributed encoding and decoding using self-organized patterns.

594 A. The encoding and decoding scheme. To encode, a message is converted into cell

595 seeding configuration followed by colony growth, during which a colony pattern develops.
596 To decode, the colony pattern of interest is fed into a trained CNN that converts the
597 pattern into the original message.

598 B. Predefined braille-like cell seeding arrangement. For a dictionary consisting of 15

599 characters (A-E and 0-9), we need a minimum 4-digit spot array (top). The characters
600 (ex. “A” and “C") are first converted into a 4-digit binary number, then converted into a
601 seeding configuration. For a given digit, if it is 1, cells are “inoculated” within the
602 corresponding spot and if it is a 0, no cell is inoculated.

603 C. One-to-many mapping between seeding configuration and spatial patterns. Pattern formation

604 is subject to minor biological noise, which includes heterogeneity in cell seeding, external
605 perturbation and variability in cell phenotype during growth process. The noise is amplified by
606 the branching mechanism. Hence patterns evolved from the same configuration share
607 gualitative similarity but are different in detail. A well-trained CNN should navigate through
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608 this mapping and be able to decode the patterns as the corresponding character. For CNN
609 training, the dataset is composed of equal number of replicates of patterns developed from all
610 seeding configurations.

611 D. Relationship between the number of replicates of the training set and CNN accuracy. The

612 CNN was trained on a balanced dataset that contains 15 distinct characters. The numerical
613 simulation used the default parameter values (see “Mathematical modeling” in Methods) and
614 intermediate growth noise (signal-to-noise ratio = 3.5). The CNN decoding accuracy
615 increases as the number of available replicates increases. The accuracy is significantly
616 higher than random chance (1 / the size of the dictionary).

617
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618 Figure 2. Tradeoff between encoding capacity, security, and decoding reliability. We present the
619 prediction performance of CNNs trained on branching patterns with different parameterizations.
620  Specifically,

621 A. We fixed the seeding noise such that the only source of noise is growth. The magnitude of

622 growth noise is modulated through changing the signal-to-noise ratio (SNR) of the growth
623 kernel. The higher SNR is, the lower the noise level is. We present the results on datasets
624 with no noise, SNR = 2, 3.5, 5 and 10 respectively.

625 B. We simulated patterns using seeding spacing = 10, 25, and 50 respectively, which represent
626 from small to large spacing. As the spacing increases, patterns corresponding to different
627 initial configurations become more dissimilar.

628 C. We simulated datasets of 3, 15, and 63 characters using 2-, 4- and 6-hit predefined braille-

629 like seeding arrays respectively, while keeping all else as the default.

630 Overall, the decoding accuracy increases as the number of replicates per class increases,
631 and it significantly exceeds the corresponding accuracy by random guessing. The only
632 exception is in the absence of growth noise, in which case the patterns are identical thus the
633 decoding is trivial. Notably, when the patterns become more complicated (ex. larger growth
634 noise, smaller spacing, or larger dictionary), more data are required to reach the same
635 accuracy.

636 D. Required training replicates per class as a function of dictionary size. The green, orange, and

637 blue lines represent accuracy of 0.9, 0.5 and 0.1, respectively. The required data size
638 increases exponentially as the desired accuracy increases.

639

640

641
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642 Figure 3. Encryption using growing domain shape as the secret key.

643  A. Encryption scheme. A secret key is used to convert a message (ex. “A”) to a self-organized

644 pattern, and the knowledge of it is required to reliably convert the pattern back to the original
645 message. For our ML-mediated decoding method, the information on the secret key allows
646 the designated recipient to choose the correct, trained CNN to decode the received pattern.

647 B. Training data generation and preprocessing. For each encoding character, we

648 computationally seeded cells on growing domains of different shapes (left) and let them grow
649 into spatial patterns over the entire field (middle). The centers of the colonies (within the blue
650 circles) were cropped to remove the information of the growth domain (right), and then used
651 for CNN training.

652  C. Effectiveness of encryption when growth domain shape is the secret key. Four CNN models

653 were trained independently on datasets encrypted by circular, diamond, square and triangular
654 growth domains respectively. The heatmap shows their decoding accuracies on each dataset.
655 Only the model trained on the corresponding dataset can decode at the highest accuracy.
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656 Figure 4. Using ensemble learning to improve decoding accuracy.

657 A. Training procedure of the ensemble model. The training is done in two steps. First, we train

658 multiple base CNN decoders on a dataset as described in the previous sections. Then their
659 predictions on the training set and the corresponding class labels constitute a new dataset. In
660 the second step, we train an ensemble model from stretch using the new dataset.

661 B. Decoding accuracy of ensemble and base models. Here, a LR ensemble model was trained

662 with five base models. The ensemble model outperforms the base models regardless of the
663 training data size. Notable improvement in accuracy occurs when moderate amount of data
664 was available for training, whereas the improvement is less significant with adequate or
665 scarce data.

666 C. ROC curve of ensemble and base models (orange: ensemble model; shades of blue: base

667 models). The ROC curves were computed for each encoding character and then averaged
668 over all classes to reflect the overall performance of the decoders. The area under the ROC
669 curve (AUC ROC) of the ensemble model is 0.963. AUC ROC of the base models are 0.881,
670 0.893, 0.920, 0.925 and 0.924. The models were trained on a dataset with 100 replicated per
671 class.

672 D. Schematic of the majority voting algorithm. Instead of using only one pattern for

673 communication, the sender would generate and send out multiple patterns representing the
674 same message. Due to the randomness in the patterning process, these patterns appear
675 similar but differ in detail. The recipient would use a trained decoder to decode each pattern
676 and obtain the corresponding predictions. The most popular prediction will be used as the
677 final prediction.

678
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679 Figure 5. Encoding text in Emorfi

680  A. Each of the 100 printable ASCII characters is represented by a unique initial configuration. 95

681 of them are shown on the keyboard, and 5 other printable whitespace characters (tab,
682 linefeed, return, vertical tab, and formfeed) are not shown here. In the training set, each
683 character maps to 1000 patterns. The collection of patterns, as well as subsequent ones to
684 be generated, constitutes Emorfi.

685 B. A piece of text could be encoded as a video and decoded using ensemble method. @ Each

686 character in the text is translated to a corresponding pattern. @ The images are arranged in
687 order and assembled into a video that can be used for commincation. To decode, each
688 frame is retreived from the video. @ The patterns are decoded sequentially, representing the
689 decoded text.
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