
 

 

1 

 

Distributed information encoding and decoding using self-organized 1 

spatial patterns 2 

Jia Lua, Ryan Tsoia, Nan Luoa, Yuanchi Haa, Shangying Wanga, Minjun Kwakb,1, Yasa Baigc,1, 3 

Nicole Moiseyevb,1, Shari Tiand,1, Alison Zhange,1, Neil Zhenqiang Gongb,e, Lingchong Youa,f,g* 4 

a
Department of Biomedical Engineering, Duke University, Durham, NC 27708 5 

b
Department of Computer Science, Duke University, Durham, NC 27708 6 

c
Department of Physics, Duke University, Durham, NC 27708 7 

d
Department of Statistical Science, Duke University, Durham, NC 27708 8 

e
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 9 

f
Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708 10 

g
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 11 

Durham, NC, 27708 12 

 13 

*Corresponding Author: Lingchong You 14 

 15 

Address: CIEMAS 138, 101 Science Drive, Durham, NC 27705 16 

 17 

Email:  you@duke.edu 18 

 19 

Author Contributions: J.L. and L.Y. conceived the research. J.L. designed and performed 20 

modeling, developed, and trained neural network models, carried out data analysis and 21 

interpretation. N.L. assisted with modeling. L.Y., R.T., N.L. and Y.H., assisted with results 22 

analysis. J.L. and L.Y wrote the manuscript. J.L., M.K., Y.B., N.M., S.T., and A.Z. developed the 23 

website. J.L., R.T., N.L., Y.H., S.W., N.G., and L.Y. contributed to manuscript revisions. 24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.04.494770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494770
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 

 

1Authors contributed equally. 25 

Competing Interest Statement: The authors declare no conflict of interest.  26 

This PDF file includes: 27 

Main Text 28 

Figures 1 to 5 29 

References 30 

  31 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.04.494770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494770
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

 

Abstract 32 

Dynamical systems often generate distinct outputs according to different initial conditions, 33 

and one can infer the corresponding input configuration given an output. This property captures 34 

the essence of information encoding and decoding. Here, we demonstrate the use of self-35 

organized patterns, combined with machine learning, to achieve distributed information encoding 36 

and decoding. Our approach exploits a critical property of many natural pattern-formation 37 

systems: in repeated realizations, each initial configuration generates similar but not identical 38 

output patterns due to randomness in the patterning process. However, for sufficiently small 39 

randomness, different groups of patterns that arise from different initial configurations can be 40 

distinguished from one another. Modulating the pattern generation and machine learning model 41 

training can tune the tradeoff between encoding capacity and security. We further show that this 42 

strategy is applicable to non-biological dynamical systems and scalable by implementing the 43 

encoding and decoding of all characters of the standard English keyboard.   44 

 45 

Significance Statement 46 

 Self-organized patterns are ubiquitous in biology. They arise from interactions in and 47 

between cells, and with the environment. These patterns are often used as a composite 48 

phenotype to distinguish cell states and environment conditions. Conceptually, pattern generation 49 

under an initial condition is encoding; discerning the initial condition from the pattern represents 50 

decoding. Inspired by these examples, we develop a scheme, integrating mathematical modeling 51 

and machine learning, to use self-organization for secure and accurate information encoding and 52 

decoding. We show that this strategy is applicable to non-biological dynamical systems. We 53 

further demonstrate the scalability of the scheme by generating a complete mapping of the 54 

standard English keyboard, allowing encoding of English text. Our work serves as an example of 55 

nature-inspired computation. 56 
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 57 

Main Text 58 

Introduction 59 

Information encoding is a process of converting information, such as text and images, 60 

from its original representation to an output format following defined rules. Dynamical systems 61 

have this information encoding capability as they can generate specific outputs according to given 62 

inputs. Conversely, decoding can be achieved if one can infer the input corresponding to an 63 

output. Depending on the system, decoding could be obvious, challenging, or impossible. 64 

 65 

One example is to use cellular automaton (CA) that converts a grid of cells from a simple 66 

initial configuration into a self-organized sequence or spatial pattern according to a set of update 67 

rules(1). Wolfram proposed to use a chaotic rule to generate random sequences to encode 68 

information(2, 3). Here, the encoding is deterministic -- each initial configuration corresponds to a 69 

unique output pattern. Because of the chaotic nature of the rule, however, decoding the input 70 

from a given output pattern is computationally prohibitive without prior knowledge of the update 71 

rules. As such, the system in theory can serve as the foundation for digital cryptography (4-8).  72 

 73 

While making the encoding secure, however, the chaotic nature of the above example 74 

can limit its application. Like other dynamical systems exhibiting deterministic chaos, the final 75 

patterns generated by CA are extremely sensitive to perturbations and lack statistical 76 

regularities(9, 10). As such, a minute change in the initial configuration or the encoding process 77 

can lead to drastically different final patterns (a phenomenon termed the avalanche effect(11)). 78 

Unless the encoding and transmission are noise-free, the decoding is prone to errors even if the 79 

rules are known (12).     80 

   81 

In contrast to these chaotic systems, many natural systems are convergent. That is, for 82 

the same or similar input configurations and environmental conditions, the final patterns share 83 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.04.494770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494770
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

5 

 

global similarity despite local variances. This property is sometimes referred to as “edge of 84 

chaos”(13). Examples are chemical reaction(14) and cortical networks(15). Many biological 85 

patterning systems also fall into this category. Despite minute variances, coat patterns are largely 86 

determined by animal genomes and allow identification of different species. In microbes, the 87 

same bacterial strain can grow into colonies with distinct shapes and sizes under different growth 88 

conditions(16, 17). Consequently, colony morphology can serve as a crude signature to 89 

distinguish environmental conditions and chemical cues, as well as the stage of infectious 90 

diseases (18, 19).  Despite these empirical examples, the potential and limitations of information 91 

encoding and decoding using biological self-organization remain unexplored. Here, we use these 92 

systems to establish distributed information encoding. Coupled with machine learning (ML) 93 

mediated decoding, our system illustrates a scalable strategy for information encoding and 94 

decoding with quantifiable reliability and security (Figure 1A).  95 

 96 

Results 97 

Criteria for Choosing an Encoding System 98 

Any dynamical systems, including those generating self-organized patterns, can serve as 99 

the foundation for information encoding and decoding. However, to ensure secure encoding and 100 

reliable decoding, we reason that the system dynamics need to meet a set of heuristic criteria. 101 

First, the output patterns are sufficiently complex and diverse such that different initial 102 

configurations would generate distinguishable output patterns. Second, the pattern generation is 103 

subject to stochasticity but remains convergent. That is, in repeated pattern generation 104 

processes, the same initial configuration with small noise or perturbations should generate output 105 

patterns that are approximately the same but differ in minor details. Importantly, the differences 106 

between patterns generated from replicated simulations should be smaller than those between 107 

patterns generated from different inputs. Third, while different groups of patterns arising from 108 

different initial conditions can be decoded by a properly constructed decoder, their differences are 109 

difficult to discern by naked eyes. We note that the degree by which different groups of patterns 110 
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can be distinguished often has to be established empirically (if a reliable decoder can indeed be 111 

constructed). 112 

 113 

As a proof of principle, we focus on a coarse-grained model of self-organized pattern 114 

formation (Figure 1, also see “Mathematical modeling” in Methods). The model was developed to 115 

simulate qualitative aspects of branching dynamics of Pseudomonas aeruginosa colony growth 116 

(20). In it, each simulation initiates from a pre-defined cell seeding configuration and the cells 117 

develop into a branching colony (Figure S1). The patterning process is influenced by two sources 118 

of random noise. One comes from the variability in the initial distribution of seeding cells; the 119 

other comes from the underlying growth kinetics. With appropriate choice of parameters 120 

(including noise levels), the patterning dynamics satisfy all criteria listed above. 121 

 122 

In addition, another rationale for choosing this model is its simplicity and versatility. It can 123 

generate diverse patterns by adjusting model parameters and be solved in a computationally 124 

efficient manner. These features allow us to probe this platform’s security, reliability, and 125 

scalability (see “Tradeoff among encoding capacity, security, and decoding reliability”).  126 

 127 

Distributed Encoding and Decoding by Spatial Patterns 128 

To demonstrate encoding, we represent a dictionary of 15 characters — letters A-E and 129 

numbers 0-9 — using binary numbers 0001-1111 (Table S1). Each binary number then 130 

corresponds to a seeding configuration of cells in a braille-like array at time 0 (Figure 1B): a digit 131 

“1” corresponds to a spot seeding indicating the presence of cells, whereas a digit “0” indicates 132 

no cells. In each simulation, the colony grows from its initial configuration into a final pattern. As 133 

mentioned above, the simulation is subject to two noise sources: the variability in seeding and 134 

during growth.  The former could originate from the marginal but unavoidable uneven cell 135 

seeding, and the latter could originate from inherent heterogeneity of cell gene expression, 136 

motility, or small external perturbation. Therefore, repeated simulations from the same initial 137 
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seeding configuration generate similar final patterns with minor differences, which collectively 138 

encode the identity of the input configuration (Figure 1C). We chose to encode in seeding 139 

configuration because of its simplicity, one may also choose to encode in other parameters 140 

influencing pattern formation. 141 

 142 

We configure our simulations such that neither the mapping between the initial 143 

configurations and the colony patterns nor the difference between patterns corresponding to 144 

different inputs is obvious to the naked eye. To allow reliable decoding, we need a robust method 145 

to navigate through this visual complexity. A direct method is brute-force search, whereby all the 146 

possible patterns for each initial configuration are simulated to establish an empirical mapping 147 

between the input and the output. While apparently straightforward, this approach is 148 

computationally prohibitive and impractical because the training patterns are 8-bit, 80 pixels × 80 149 

pixels grayscale images, resulting in up to 28×80×80 ~ 1015412 possible patterns.  150 

 151 

Alternatively, image classification using convolutional neural networks (CNNs) has been 152 

successful for numerous applications (21-23). Through observing sufficient examples, a CNN 153 

learns to cluster images by their categories. Here we built a CNN to decode the colony patterns 154 

via multiclass classification (Figure S2, see “CNN training” in Methods). During training, our CNN 155 

decoder takes pattern images (generated by repeated simulations) as input and updates its 156 

trainable parameters to classify patterns based on initial seeding configurations. With sufficient 157 

replicates in each class, our trained CNN was able to distinguish patterns corresponding to the 15 158 

characters with high accuracy (Figure 1D). For instance, greater than 93% of decoding accuracy 159 

can be achieved by having 800 replicate patterns in the training set. We note that this decoding 160 

approach is data-driven; other algorithms such as decision tree (24) and support vector machines 161 

(25) may also be used.  162 

 163 
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In an actual application of this encoding/decoding strategy, we assume the channel is 164 

public while the pattern generator, model parameters, training set, and the trained CNNs are 165 

private to the end users (Figure 1A). The recipient chooses the correct, trained CNN to decode a 166 

pattern according to the model parameters transmitted through another private channel (not 167 

shown in the figure) as prior knowledge.  168 

 169 

Tradeoff Among Encoding Capacity, Security, and Decoding Reliability 170 

In this platform, we aim to maximize the capability of the patterns to encode information, 171 

termed encoding capacity, and our platform’s robustness against data leakage to unauthorized 172 

parties, termed encoding security. We consider a system has higher encoding capacity if it can 173 

encode more characters correctly with adequate data, while we consider our encoding scheme 174 

being more secure when the attacker cannot build a successful decoder from the leaked data. 175 

For example, the accuracy of a separate decoder built on only 10 replicates per class drops to 176 

less than 20% (Figure 1D), which is only slightly better than random guessing (1/15). Note that 177 

the efficacy of our platform depends on the complexity of the generated patterns, our desired 178 

accuracy, and the amount of available training data.  179 

 180 

We can tune our scheme’s performance by modulating parameters in the pattern 181 

generation model, i.e., the relative acting distance and magnitude of colony expansion versus 182 

repulsion processes. Large relative distance and magnitude (i.e., higher colony expansion) result 183 

in thick branches, whereas small relative distance and magnitude (i.e., higher repulsion) result in 184 

thin, sparse branches. In extreme cases, these conditions can result in large disks or small 185 

circular colonies, respectively. When these two forces are intermediate and comparable, the 186 

system generates branching colonies. We constructed 16 simulated training datasets of diverse 187 

patterns by tuning these two parameters (Figure S3A). Based on their final appearance, we 188 

categorized our results into three subgroups: disk-like, trivial (final pattern is identical to initial 189 

configuration), and branching. Disk-like colonies cannot be distinguished regardless of the 190 
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training data size—thus, the input information was obscured and “lost” after growth (Figure S3B-191 

D). Conversely, trivial patterns allow perfect but insecure decoding since the reverse mapping is 192 

obvious. Ultimately, the intricate branching patterns allow secure encoding and reliable decoding 193 

as demonstrated previously.  194 

 195 

We can also modulate encoding capacity and security by tuning the noise during the 196 

patterning process. Without noise, one pattern per input is sufficient for perfect decoding as long 197 

as output patterns are distinguishable (Figure 2A). Too much noise would introduce too many 198 

variations in the replicate patterns generated from each input. If these intra-category variations 199 

(between replicate patterns) approach or exceed the inter-category differences (between sets of 200 

patterns corresponding to different inputs), the decoding accuracy would deteriorate significantly 201 

(Figure 2A). Depending on the magnitude of the noise, this loss in accuracy can be alleviated by 202 

increasing the number of replicate patterns per class. A similar tradeoff exists for other 203 

parameters as well, such as the spacing between spots in the initial configuration (Figure 2B). 204 

When spacing decreases, patterns grown from different configurations appear more alike and 205 

indistinguishable. Moreover, increasing dictionary size with all else being equal would also reduce 206 

the decoding accuracy (Figure 2C). Again, expanding the number of replicate patterns per class 207 

can compensate for losses in accuracy, thus increasing the encoding capacity (Figure 2D). 208 

Similar tradeoff was also observed in patterns arrested from growth at different time points (see 209 

“Temporal information encoding and decoding” in Supplementary Information). 210 

 211 

In principle, the encoding-decoding scheme is applicable to any dynamical systems 212 

where the input-output mapping satisfies the criteria listed above. To illustrate this point, we 213 

chose an elementary cellular automaton model with weakly chaotic dynamics (9) (see “Encoding 214 

and Decoding using Elementary Cellular Automaton” in Supplemental Information). Given the set 215 

of rules, we chose the model parameters (including noise levels) such that the resulting dynamics 216 

can allow secure encoding and reliable decoding. Again, we encoded characters in binary 217 
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numbers, which is then converted into 1D initial configuration in a similar manner as in 2D. Noise 218 

was imposed on the initial sequence, and the latter develops into a final sequence following the 219 

evolution rules (Figure S4). A feedforward neural network was trained to code the final sequence. 220 

As expected, higher complexity leads to worse decoding accuracy, and it can be remedied by 221 

increasing training data size (Figure S5). 222 

 223 

Enhancing Encoding Security and Integrity 224 

To enhance security, we evaluated utilizing encryption to prevent unauthorized access 225 

during communication. A secret key is implemented during encoding and successful decoding 226 

requires the correct key (Figure 3A). For pattern formation systems, the geometry of the 227 

patterning domain is a feasible choice of secret key as it can influence the patterning process and 228 

is easily tunable (26-28). In our system, the boundary suppresses bacteria colonization, and the 229 

strength of the impact decreases exponentially as the distance from the focal niche to the 230 

boundary increases (see “Encryption dataset generation” in Methods). As such, the boundary 231 

exhibits a time-invariant, long-range, and weak inhibitive force on colony expansion. As this force 232 

is anisotropic due to asymmetric boundary geometry, the patterns are encrypted by the domain 233 

shape. 234 

 235 

To test this notion, we generated patterns within different boundary shapes. For each 236 

shape, the resulting patterns would occupy the entire space. We removed the information of the 237 

boundary in the output by cropping out a smaller, circular area at the center of each pattern 238 

(Figure 3B). We found that only the decoders trained on the correct datasets can decode at high 239 

accuracy (Figure 3C), indicating that knowledge of the domain shape (i.e., the secret key) is 240 

critical for selecting the right CNN decoder to accurately decode.  Similarly, we evaluated the 241 

potential of other secret key choices, such as the seeding spacing (Figure S7) and patterning 242 

domain size.  243 

 244 
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We have also considered the threat to information integrity during communication, in 245 

which the attackers could alter the output patterns or replace them with fake ones, thus deceiving 246 

the intended information receiver. We demonstrated that the noise in the patterning dynamics 247 

could be used to ensure the integrity (see “Authenticating patterns using noise signatures” in 248 

Supplementary Information). Briefly, the noise leaves a unique signature for each correct pattern, 249 

which can be used to authenticate a received pattern. 250 

 251 

Improving Decoding Performance by Ensemble Learning 252 

All else being equal, the reliability of decoding can be improved by increasing the number 253 

of replicates per class when training the decoder. However, the degree of improvement 254 

diminishes for an increasing number of replicates (Figure 2C). For instance, for a dictionary size 255 

of 63, the decoding accuracy increases ~30 folds by increasing the number of replicates from 10 256 

to 100; it only increases ~1.5 fold by increasing from 100 to 800. To more effectively use the 257 

available data, we adopted ensemble learning – a class of machine learning techniques (29-31).  258 

 259 

Staked generalization combines the knowledge learned by individual, base ML models 260 

for better prediction (32-35). We first trained multiple base CNN decoders on a dataset with 261 

random initialization using the same protocol in the previous sections, then trained an ensemble 262 

decoder to combine their prediction capabilities. The ensemble model was then used for final 263 

decoding (Figure 4A, see “Ensemble learning and uncertainty estimation” in Methods). For 264 

patterns generated with moderate growth noise, the prediction performance of the ensemble 265 

decoder excels that of the base models for up to 22% in accuracy (Figure 4B). Receiver operating 266 

characteristic (ROC) curves and confusion matrices also show significant improvement with 267 

ensemble model (Figure 4C, Figure S8 - 9). As expected, the ensemble model generally 268 

outperforms the base ones when intermediate data are available but demonstrates marginal 269 

improvement with adequate or scarce data. This is expected because when intermediate data are 270 

available, the individual base models are diversified due to random initialization. However, when 271 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.04.494770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494770
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

adequate data are available, each base model individually decodes with high accuracy, leaving 272 

little room for improvement. Conversely, when data are scarce, the base decoders barely learn 273 

such that integrating their results provides little insight. This final aspect implies encoding security 274 

against minor data leakage. Additionally, considerable improvement can be achieved with a 275 

simple logistic regression (LR) model, and more base models leads to better ensemble 276 

performance (Figure S10). In addition to stacking, we have also shown that majority voting can 277 

improve the decoding accuracy (Figure 4D, Figure S11). Multiple patterns corresponding to the 278 

same character were decoded using the same CNN, and the most voted prediction was used as 279 

the final prediction.  280 

 281 

Ensemble learning not only improves the decoding accuracy, but also sheds light on the 282 

prediction uncertainty. According to Lakshminarayanan et al, the base models trained with 283 

random initialization explore the entirely different modes of function space(36), thus their 284 

independent predictions can be used to estimate well-calibrated uncertainty(37). We adopted this 285 

notion and estimated decoding uncertainty through multiple metrics, including log likelihood, 286 

mean squared error (MSE), top-1 and top-5 errors (see “Ensemble learning and uncertainty 287 

estimation” in Methods). Higher metric value indicates larger uncertainty or lower confidence. As 288 

expected, the uncertainty reduces as more training data are available (Figure S12). Having more 289 

base models does not necessarily reduce the uncertainty (Table S2). 290 

 291 

The information on uncertainty can assist decision making on whether to accept the 292 

decoding result or not. Depending on the application, the end users could define a 293 

dichotomization accuracy and uncertainty. For a decoded character, if the decoding accuracy (a 294 

priori knowledge) and the uncertainty are inferior to the suggested threshold, the recipient should 295 

reject the pattern and request a new one. Otherwise, the decoded character can be accepted.  296 

 297 
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Distributed Encoding of English in Emorfi 298 

Our distributed encoding-decoding platform is scalable for practical applications. We 299 

constructed 100 sets of patterns to encode all printable ASCII characters including English letters 300 

in upper and lower cases, digits, punctuations, and whitespaces (Figure 5A, Appendix A). A 7-bit 301 

seeding array was used to create the training dataset, in which, 100 of the unique initial 302 

configurations corresponded to the printable characters. Each of the initial configurations was 303 

then used to generate 1000 patterns. When encoding text, each character is represented by one 304 

or multiple patterns that are then arranged to assemble a video (Figure 5B). We term this 305 

collection of patterns Emorfi, which represents a new, digitally generated coding scheme.  306 

 307 

By doing so, all standard English text can be encoded in Emorfi and decoded back. For 308 

instance, we encoded the public speech “I have a dream” by Martin Luther King Jr. containing 309 

8869 individual characters as a video (Movie S1). Accommodating majority voting, each character 310 

was represented by five different patterns. The video was decoded with 99.8% accuracy 311 

(Appendix B). The same approach was also used to encode the poem “Auguries of Innocence” by 312 

William Blake as video (Movie S2) and decoded with 99.6% accuracy (Appendix C). In another 313 

example, using a 5-bit seeding array, we encoded GFP protein sequence (238 amino acids) as a 314 

video (Movie S3) and decoded at 100% accuracy (Appendix D).  315 

 316 

Discussion  317 

Our encoding and decoding framework is applicable to diverse dynamics systems, as 318 

long as they have three key properties: i) an approximately convergent mapping between initial 319 

input and output, ii) complex output signals, and iii) the output patterns are difficult to distinguish 320 

to the naked eye. While past studies have explored the possibility of using chaos to encode 321 

information and to provide security (38-40), unavoidable noise and error in numerical simulation 322 

(e.g., finite precision computing) or transmission (e.g., channel noise) can alter the output despite 323 

these systems being deterministic. In contrast, the convergent nature of our system ensures 324 
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patterns that originate from the same initial configurations share common features (recognizable 325 

by a trained NN) despite small variances. Though noise is often considered undesirable in 326 

biological studies — such as masking ground truth (41-43) or disrupting interactions between 327 

components (44, 45)— we take advantage of the variance in our system to ensure information 328 

security and to authenticate each pattern.  329 

 330 

These criteria together contribute to the sufficient encoding capacity and tunable 331 

information security of our platform. Many systems satisfy these criteria. With appropriate 332 

parameterization and boundary conditions, many reaction-diffusion models exhibit considerable 333 

robustness in output patterns and sensitivity to initial conditions (46, 47). In addition to the 334 

example we demonstrated (Figure 2 and S4-S5), many CA models with asynchrony update rules 335 

also show convergence (48, 49). Biological systems, such as biofilm morphology, butterfly wing 336 

scale pattern, and human fingerprint, have also evolved to exhibit common features but vary in 337 

detail. Their convergent nature results from the rich multiscale, multidimensional interactions 338 

between different system components, such as chemical reactions and diffusion, gene circuits, 339 

and cell-cell interactions (50-54).  340 

  341 

However, our work does bring up a fundamental question: given a dynamical system with 342 

stochasticity, how do we know the dynamics are convergent enough while the output signals from 343 

different initial conditions are also distinguishable? We suspect that the question has to be 344 

addressed empirically for each specific system. In ours, each initial configuration generates an 345 

ensemble of output patterns following a distribution (visualized using t-SNE in Figure S13). It is 346 

difficult to determine this distribution by solely inspecting the pattern generation model, even if 347 

parameters and noise magnitudes are known. However, whether each distribution corresponding 348 

to an input can be distinguished from another distribution arising from another input is established 349 

by ML. In essence, the trained CNN provides an empirical estimate on the extent by which the 350 
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pattern generation is convergent. To this end, our work has implications for quantifying the 351 

convergence for a dynamical system by using ML. 352 

 353 

As we have demonstrated with Emorfi, the patter-based encoding-decoding platform is 354 

scalable and generalizable for information in various formats. We envision the platform could be 355 

extended to other languages, such as alphabetic languages with different letters or diacritics 356 

(e.g., French, Hebrew) and logographic scripts consisted of thousands of characters (e.g., 357 

Chinese, Japanese). It could also be applicable for communicating science and protecting 358 

intellectual properties by incorporating Greek alphabet, mathematical symbols, nucleic acid bases 359 

and etc.  360 

 361 

Methods 362 

Mathematical Modeling 363 

 The simple colony pattern generation model accounts for several driving forces. In 364 

particular, it uses a kernel-based method to capture the high level positive (expansion) and 365 

negative (inhibition) effects on patterning, regardless of the specific mechanism. The model is 366 

formulated as the following equations:  367 

 368 

������� , ��� 	  � � �
��,�� ����� , ������� 

�
��,�� 	 � 2�� 	
	�


��

 �  2�� 	
	�


��

   

 369 

Here, N is the colonization of the bacteria over the growing medium, K is the growth kernel that is 370 

the addition of the expansion and (negative) repulsion kernels. b is the relative magnitude of 371 

expansion to repulsion, d1 and d2 are the distances that characterize half of the maximum effect 372 

of expansion and repulsion respectively. ��,� is the distance of the focal point to (�� , ��).  We used 373 

��/�� 	 0.4 , �� 	 1000, �� 	  2000, � 	 6.5 as the default parameter values unless otherwise 374 

mentioned. This parameter set generates complex branching patterns. 375 
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 376 

 To adapt the published model for our study, we made several modifications. First, we 377 

implemented various seeding configuration, such as the spot seeding arrangement for encoding 378 

binary representations of characters (Figure 1B). The size and spacing of the spots were 379 

subjected to modulation. As the default setting, we used spacing = 15 and spot radius = 5. 380 

Second, we implemented white Gaussian noise with varying signal-to-noise (SNR) ratios to the 381 

growth kernel at each time step. The noise mimics the heterogeneity and small perturbations in 382 

growth. We also implemented uneven cell seeding by assigning random intensities drawn from a 383 

truncated Gaussian distribution (mean = 0.5, deviation varies) to the pixels within the spot 384 

configurations. Both noise sources contribute to the variation in patterns given the same model 385 

parameters and initial configurations. As default, we used random seeding without growth noise. 386 

 387 

 The model was implemented in MATLAB 2017b and solved numerically. The simulation 388 

terminates once the colony stops growing. The simulation outputs an 8 bit, 451 pixels × 451 389 

pixels greyscale image. Except the encryption experiments, the patterns were formed on a 390 

circular growth domain of a diameter of 451 pixels.  391 

 392 

CNN Training  393 

 For CNN training, we numerically simulated datasets with equal number of replicates for 394 

each encoding character. For evaluation, test datasets made of 100 replicates per class were 395 

used.  The pattern images were rescaled to 80 pixels × 80 pixels before training or testing. 396 

 397 

 The CNN (Figure S2) and the ensemble model (Figure 4A) were implemented in Python 398 

3, TensorFlow 1.15.2, and Keras 2.4.0. The CNN uses pattern images as inputs and outputs N 399 

features, where N is the dictionary size. It consists of two convolutions, each followed by max 400 

pooling and rectified linear unit (ReLU). Then their output is passed onto two fully connected 401 

layers, followed by ReLU and softmax respectively. Here the softmax function turns it into 402 
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categorical probabilities. For training, we used Glorot normal initializer, categorical cross entropy 403 

loss and Adam optimization algorithm with learning rate subject to tuning. Keras early stopping 404 

function was also implemented to stop the training once the loss metric stopped improving. We 405 

carried out hyperparameter tuning (including learning rate, batch size, early stopping patience 406 

and delta) to obtain the best performing models for analysis. The data generation and training 407 

were conducted on Duke Compute Cluster and Google Cloud Platform. 408 

 409 

Encryption Dataset Generation 410 

 The geometry of the growth domain impacts the growth and pattern formation through 411 

exerting a negative effect on the colony in the vicinity of the boundary, such that the colony does 412 

not reach the edge.  The plate influence is formulated as:  413 

 414 

� 	  �� 2�
	
�  

 415 

Here, d is the Euclidean distance of the focal niche to the boundary, R is the plate radius, 416 

and k = 1000. � regulates the shape of the impact function. We deducted the influence from the 417 

colony after each discrete time step. For the purpose of encryption, we maximized the influence 418 

of the geometry by modulating �, such that the negative plate impact reached as far as the center 419 

of the patterns. We used � 	 1 for generating the encryption datasets, and 2000 for any other 420 

dataset. 421 

 422 

 When using the shape of the growing medium as the secret key, we simulated the colony 423 

patterns on circular, diamond, square and equilateral triangular shaped domains. The area of 424 

each geometry was kept the same in order to compare the effect of the geometry. We removed 425 

the information of growth domain shape by cropping out a smaller, circular area at the center of 426 

each pattern, only the processed pattern images were used for CNN training. 427 

 428 
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Ensemble Learning and Uncertainty Estimation 429 

 The training of ensemble model was carried out in two steps. First, we trained several 430 

base CNN models using the same protocol described in “CNN training”. Their probabilistic 431 

predictions on the training set were then linearly combined to constitute a new dataset. Next, we 432 

used the new dataset to train an ensemble model from scratch. We tested several ensemble 433 

model architectures, including logistic regression and feedforward neural networks with different 434 

number of hidden layers and nodes. In the ensemble model, we used ReLU activation function for 435 

the input and hidden layers and passed the model output into softmax function to turn it into 436 

categorical probabilities. For its training, we used Glorot uniform initializer, categorical cross 437 

entropy loss and Adam optimization algorithm with learning rate = 0.0001. Keras early stopping 438 

was used to stop the training once the loss metric stopped improving. The patience was 5 and the 439 

minimum change was 0. 0001. We evaluated the model performance on a balanced dataset of 440 

100 datapoints per class through metrics such as precision, recall, ROC, AUC ROC using scikit-441 

learn (0.22.2).  442 

 443 

 We evaluated the prediction uncertainty based on the output of base models. We used 444 

common metrics, such as log likelihood, mean square error (MSE), top-1 and top-5 errors, for 445 

estimating the uncertainty. Specifically, the log likelihood is ���� ∑ ∑ ��� log�#����
���

�
���  and the 446 

MSE is ������ ∑ ∑ 
��� � #���
��

���
�
��� . For the ith data point, ��� is the true label for class j (1 if the 447 

data point belongs to class j, otherwise 0), #�� is the predicted probabilities for class j. M indicates 448 

the total number of data points, and N indicates the dictionary size. Top-1 and top 5 the fraction of 449 

data points whose correct label is not among their top 1 or 5 probable predictions, respectively. 450 

 451 

Data and Code Availability 452 

 The mathematical simulation and machine learning codes used in this study are available 453 

on GitHub: https://github.com/youlab/Information_encoding. The platform for encoding text in the 454 

format of video is available at https://www.patternencoder.com/.  455 
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 590 

 591 

Figures  592 

Figure 1. Distributed encoding and decoding using self-organized patterns.  593 

A. The encoding and decoding scheme. To encode, a message is converted into cell 594 

seeding configuration followed by colony growth, during which a colony pattern develops.  595 

To decode, the colony pattern of interest is fed into a trained CNN that converts the 596 

pattern into the original message. 597 

B. Predefined braille-like cell seeding arrangement. For a dictionary consisting of 15 598 

characters (A-E and 0-9), we need a minimum 4-digit spot array (top). The characters 599 

(ex. “A” and “C”) are first converted into a 4-digit binary number, then converted into a 600 

seeding configuration. For a given digit, if it is 1, cells are “inoculated” within the 601 

corresponding spot and if it is a 0, no cell is inoculated. 602 

C. One-to-many mapping between seeding configuration and spatial patterns. Pattern formation 603 

is subject to minor biological noise, which includes heterogeneity in cell seeding, external 604 

perturbation and variability in cell phenotype during growth process. The noise is amplified by 605 

the branching mechanism. Hence patterns evolved from the same configuration share 606 

qualitative similarity but are different in detail. A well-trained CNN should navigate through 607 
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this mapping and be able to decode the patterns as the corresponding character. For CNN 608 

training, the dataset is composed of equal number of replicates of patterns developed from all 609 

seeding configurations. 610 

D. Relationship between the number of replicates of the training set and CNN accuracy. The 611 

CNN was trained on a balanced dataset that contains 15 distinct characters. The numerical 612 

simulation used the default parameter values (see “Mathematical modeling” in Methods) and 613 

intermediate growth noise (signal-to-noise ratio = 3.5). The CNN decoding accuracy 614 

increases as the number of available replicates increases. The accuracy is significantly 615 

higher than random chance (1 / the size of the dictionary). 616 

  617 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.04.494770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494770
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

24 

 

Figure 2. Tradeoff between encoding capacity, security, and decoding reliability. We present the 618 

prediction performance of CNNs trained on branching patterns with different parameterizations.  619 

Specifically, 620 

A. We fixed the seeding noise such that the only source of noise is growth. The magnitude of 621 

growth noise is modulated through changing the signal-to-noise ratio (SNR) of the growth 622 

kernel. The higher SNR is, the lower the noise level is. We present the results on datasets 623 

with no noise, SNR = 2, 3.5, 5 and 10 respectively. 624 

B. We simulated patterns using seeding spacing = 10, 25, and 50 respectively, which represent 625 

from small to large spacing. As the spacing increases, patterns corresponding to different 626 

initial configurations become more dissimilar. 627 

C. We simulated datasets of 3, 15, and 63 characters using 2-, 4- and 6-bit predefined braille-628 

like seeding arrays respectively, while keeping all else as the default.  629 

Overall, the decoding accuracy increases as the number of replicates per class increases, 630 

and it significantly exceeds the corresponding accuracy by random guessing. The only 631 

exception is in the absence of growth noise, in which case the patterns are identical thus the 632 

decoding is trivial. Notably, when the patterns become more complicated (ex. larger growth 633 

noise, smaller spacing, or larger dictionary), more data are required to reach the same 634 

accuracy.  635 

D. Required training replicates per class as a function of dictionary size. The green, orange, and 636 

blue lines represent accuracy of 0.9, 0.5 and 0.1, respectively. The required data size 637 

increases exponentially as the desired accuracy increases. 638 

 639 

 640 

  641 
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Figure 3. Encryption using growing domain shape as the secret key. 642 

A. Encryption scheme. A secret key is used to convert a message (ex. “A”) to a self-organized 643 

pattern, and the knowledge of it is required to reliably convert the pattern back to the original 644 

message. For our ML-mediated decoding method, the information on the secret key allows 645 

the designated recipient to choose the correct, trained CNN to decode the received pattern. 646 

B. Training data generation and preprocessing. For each encoding character, we 647 

computationally seeded cells on growing domains of different shapes (left) and let them grow 648 

into spatial patterns over the entire field (middle). The centers of the colonies (within the blue 649 

circles) were cropped to remove the information of the growth domain (right), and then used 650 

for CNN training. 651 

C. Effectiveness of encryption when growth domain shape is the secret key. Four CNN models 652 

were trained independently on datasets encrypted by circular, diamond, square and triangular 653 

growth domains respectively. The heatmap shows their decoding accuracies on each dataset. 654 

Only the model trained on the corresponding dataset can decode at the highest accuracy. 655 
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Figure 4. Using ensemble learning to improve decoding accuracy.  656 

A. Training procedure of the ensemble model. The training is done in two steps. First, we train 657 

multiple base CNN decoders on a dataset as described in the previous sections. Then their 658 

predictions on the training set and the corresponding class labels constitute a new dataset. In 659 

the second step, we train an ensemble model from stretch using the new dataset. 660 

B. Decoding accuracy of ensemble and base models. Here, a LR ensemble model was trained 661 

with five base models. The ensemble model outperforms the base models regardless of the 662 

training data size. Notable improvement in accuracy occurs when moderate amount of data 663 

was available for training, whereas the improvement is less significant with adequate or 664 

scarce data. 665 

C. ROC curve of ensemble and base models (orange: ensemble model; shades of blue: base 666 

models). The ROC curves were computed for each encoding character and then averaged 667 

over all classes to reflect the overall performance of the decoders. The area under the ROC 668 

curve (AUC ROC) of the ensemble model is 0.963. AUC ROC of the base models are 0.881, 669 

0.893, 0.920, 0.925 and 0.924. The models were trained on a dataset with 100 replicated per 670 

class.  671 

D. Schematic of the majority voting algorithm. Instead of using only one pattern for 672 

communication, the sender would generate and send out multiple patterns representing the 673 

same message. Due to the randomness in the patterning process, these patterns appear 674 

similar but differ in detail. The recipient would use a trained decoder to decode each pattern 675 

and obtain the corresponding predictions. The most popular prediction will be used as the 676 

final prediction.  677 

  678 
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Figure 5. Encoding text in Emorfi  679 

A. Each of the 100 printable ASCII characters is represented by a unique initial configuration. 95 680 

of them are shown on the keyboard, and 5 other printable whitespace characters (tab, 681 

linefeed, return, vertical tab, and formfeed) are not shown here. In the training set, each 682 

character maps to 1000 patterns. The collection of patterns, as well as subsequent ones to 683 

be generated, constitutes Emorfi. 684 

B. A piece of text could be encoded as a video and decoded using ensemble method. � Each 685 

character in the text is translated to a corresponding pattern. � The images are arranged in 686 

order and assembled into a video that can be used for commincation.  � To decode, each 687 

frame is retreived from the video.  � The patterns are decoded sequentially, representing the 688 

decoded text.   689 

 690 
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