

1 RESEARCH PAPER

2 ***N*-hydroxy pipecolic acid methyl ester is involved in *Arabidopsis***
3 **immunity**

4 **Lennart Mohnike¹, Weijie Huang⁴, Brigitte Worbs⁵, Kirstin Feussner^{1,2}, Yuelin Zhang⁴ and Ivo**
5 **Feussner^{1,3,*}**

6 ¹University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant
7 Biochemistry, D-37077 Goettingen, Germany.

8 ²University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for
9 Metabolomics and Lipidomics, D-37077 Goettingen, Germany.

10 ³University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of
11 Plant Biochemistry, D-37077 Goettingen, Germany.

12 ⁴University of British Columbia, Department of Botany, V6T 1Z4 Vancouver (BC), Canada.

13 ⁵University of Goettingen, Institute for Organic and Biomolecular Chemistry, Department of Organic
14 Chemistry, D-37077 Goettingen, Germany.

15 *** Correspondence:**

16 Ivo Feussner

17 ifeussn@uni-goettingen.de, ORCID iD: 0000-0002-9888-7003

18 Running title: *N*-hydroxy pipecolic acid metabolites in plant immunity

19 **Highlight**

20 In this work, we identify *N*-hydroxy pipecolic acid (NHP) metabolites including methyl ester and
21 complex glycosides. The application of methyl ester is able to rescue the disease phenotype of the
22 biosynthesis deficient mutant of NHP.

23 **Abstract**

24 The biosynthesis of *N*-hydroxy pipecolic acid (NHP) has been intensively studied, though knowledge
25 on its metabolic turnover is still scarce. To close this gap, we discovered three novel metabolites via
26 metabolite fingerprinting in *Arabidopsis thaliana* leaves. Exact mass information and fragmentation
27 by mass spectrometry (MSMS) suggest a methylated derivative of NHP (MeNHP), a NHP-*O*Glc-
28 hexosyl conjugate (NHP-*O*Glc-Hex) and an additional NHP-*O*Glc-derivative. All three compounds
29 were formed in wildtype leaves but not present in the NHP deficient mutant *fmo1-1*. The
30 identification of these novel NHP-based molecules was possible by a dual-infiltration experiment
31 using a mixture of authentic NHP- and D₉-NHP-standards for leaf infiltration followed by an UV-C
32 treatment. Interestingly, the signal intensity of MeNHP and other NHP-derived metabolites increased
33 in *ugt76b1-1* mutant plants. This suggests a detour, for the inability to synthesize NHP-*O*-glucoside.
34 For MeNHP, we unequivocally determined the site of methylation at the carboxylic acid function.

35 MeNHP application by leaf infiltration leads to the detection of a MeNHP-*OGlc* as well as NHP,
36 suggesting MeNHP-hydrolysis to NHP. This is in line with the observation that MeNHP-infiltration
37 is able to rescue the *fmo1-1* susceptible phenotype against *Hyaloperonospora arabidopsis* Noco 2.
38 Together these data suggest MeNHP as additional storage or transport form of NHP.

39 **Keywords:** *Arabidopsis thaliana*, infection metabolism, *N*-hydroxy pipecolic acid methyl ester, non-
40 targeted metabolomics, plant immunity, salicylic acid, UV-stress.

41 **Abbreviations:** 1D-SOM: one-dimensional-self organizing map, ALD1: AGD2-LIKE DEFENSE
42 RESPONSE PROTEIN 1, BSMT1: BENZOIC ACID/SA METHYL-TRANSFERASE 1, CRISPR:
43 Clustered Regularly Interspaced Short Palindromic Repeats, DHBA: di-hydroxy benzoic acid, EPS1:
44 ENHANCED PSEUDOMONAS SUSCEPTIBILITY 1, ESI: electrospray ionization, hpUV: hours
45 post ultra-violet light treatment, ICS1: ISOCHORISMIC ACID SYNTHASE 1, FMO1: FLAVINE-
46 DEPENDENT MONOOXYGENASE 1, MeNHP: *N*-hydroxy pipecolic acid methyl ester, MeNHP-
47 *OGlc*: MeNHP glycoside, MES: Methyl esterase, MeSA: Salicylic acid methyl ester, MeSAGlc:
48 Salicylic acid methyl ester glycoside, MS: mass spectrometry, MTBE: Methyl-*tert*-butyl ether, NHP:
49 *N*-hydroxy pipecolic acid, NHP-*OGlc*: NHP glucoside, NHP-*OGlc*-Hex: NHP glucoside hexose,
50 NHP-GE: NHP glycosyl ester, NHPMT: NHP methyl transferase, PBS3: AvrPphB SUSCEPTIBLE
51 3, Pip: Pipecolic acid, *P.s.m.*: *Pseudomonas syringae* ES4326, RT: retention time, SA: Salicylic acid,
52 S3H: SA-3-hydroxylase, S5H: SA-5-hydroxylase, SABP2: SA-binding protein 2, SAG: Salicylic
53 acid glucoside, SARD4: SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 4, SGE: Salicylic
54 acid glucoside ester, UGT: UDP-dependent glycosyl transferase, UNK: unknown metabolite,
55 UHPLC-HRMS: ultra-high-performance-liquid-chromatography high-resolution mass spectrometry.

56 **Introduction**

57 Plants encounter reduced growth or induce early senescence, if they are unable to maintain a balance
58 between growth and defense (von Saint Paul *et al.*, 2011; Zhang *et al.*, 2017). Their immune system
59 depends on a tightly regulated and highly dynamic balance of activation and inactivation (Karasov *et*
60 *al.*, 2017; Zeier, 2021). Salicylic acid (SA) and *N*-hydroxy pipecolic acid (NHP) are two key
61 molecules to concert the defense response against (hemi-)biotrophic pathogens (Fu and Dong, 2013;
62 Hartmann and Zeier, 2019).

63 In the Brassicaceae model organism *Arabidopsis thaliana*, SA and NHP are synthesized upon
64 pathogen infection. Roughly, 90 percent of SA derive from chorismic acid, which is converted via
65 the ISOCHORISMIC ACID SYNTHASE 1 (ICS1) pathway. This pathway features the enzymes
66 AvrPphB SUSCEPTIBLE 3 (PBS3) and ENHANCED PSEUDOMONAS SUSCEPTIBILITY 1
67 (EPS1) to synthesize SA (Rekhter *et al.*, 2019; Torrens-Spence *et al.*, 2019; Wildermuth *et al.*, 2001).
68 NHP derives from L-lysine via the enzymatic route of AGD2-LIKE DEFENSE RESPONSE
69 PROTEIN 1 (ALD1), SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 4 (SARD4) and
70 FLAVINE-DEPENDENT MONOOXYGENASE 1 (FMO1) (Fig. 1). Both molecules orchestrate
71 defense signaling including the activation of protective measures, such as defense gene expression,
72 and danger signal amplification (Chen *et al.*, 2018; Ding *et al.*, 2016; Hartmann *et al.*, 2018;
73 Navarova *et al.*, 2012). In consequence, to prime distant leaf tissue for robust defense against
74 secondary stressors, termed systemic acquired resistance (SAR) (Chen *et al.*, 2018; Hartmann *et al.*,
75 2018).

76 Abnormal accumulation of plant defense hormones can lead to phenotypes such as “dwarfism” or
77 early senescence (Cai *et al.*, 2021; von Saint Paul *et al.*, 2011; Zhang *et al.*, 2017). One way to
78 regulate the cellular concentrations of SA and NHP is by metabolic turnover. SA is glycosylated by
79 a minimum of three UDP-dependent glycosyltransferases (UGTs): UGT74F1, UGT74F2 and
80 UGT76B1, forming the SA-glycoside (SAG) (Dean and Delaney, 2008; George Thompson *et al.*,
81 2017; Maksym *et al.*, 2018; Noutoshi *et al.*, 2012). In addition, UGT74F2 was shown to produce SA-
82 glycoside-ester (SGE) (Dean and Delaney, 2008; George Thompson *et al.*, 2017). Another
83 mechanism of SA turnover is via the 3- and 5-hydroxylation via SA-3-hydroxylase (S3H) and SA-5-
84 hydroxylase (S5H) (Zhang *et al.*, 2013; Zhang *et al.*, 2017). The metabolic products of the reactions
85 are 2,3-di-hydroxy benzoic acid (2,3-DHBA) and 2,5-di-hydroxy benzoic acid (2,5-DHBA). These
86 molecules themselves can be turned-over by UGT76D1 to 2,3- and 2,5-DHBA-glycosides (2,3- and
87 2,5-DHBA), respectively (Huang *et al.*, 2018). Arabidopsis plants harboring a mutation in *S5H*
88 exhibit reduced growth and increased defense responses. The *s3h s5h* double mutant shows further
89 increase in SA levels, reduced growth and enhanced resistance compared to wild type plants (Zhang
90 *et al.*, 2017).

91 The identification of the S-adenosyl-dependent methyl transferase BENZOIC ACID/SA METHYL-
92 TRANSFERASE 1 (BSMT1) and its volatile aromatic-ester product SA methyl ester (MeSA) opened
93 novel aspects of defense priming and SAR (Chen *et al.*, 2003; Park *et al.*, 2007). MeSA has been
94 shown to allow defense priming in systemic leaves and airborne plant-to-plant communication
95 resulting in acquired immunity in receiver plants (Park *et al.*, 2007; Shulaev *et al.*, 1997).
96 Nevertheless, the function of MeSA in Arabidopsis SAR is still under discussion. The Arabidopsis
97 *bsmt1* mutant plants exhibit a wild type-like SAR response, without significant accumulation of
98 MeSA in response to pathogen infection (Attaran *et al.*, 2009). Additionally, *bsmt1* mutants are not
99 compromised in communicating airborne SAR induction (Wenig *et al.*, 2019). MeSA can be
100 metabolized to MeSAGlc by UGT73C1 in Arabidopsis (Chen *et al.*, 2019).

101 In terms of the SAR mediator NHP, only two products of turnover were described. NHP
102 glucosylation was identified in several independent studies resulting in the formation of NHP-*O*Glc
103 (Bauer *et al.*, 2021; Cai *et al.*, 2021; Holmes *et al.*, 2021; Mohnike *et al.*, 2021). Bauer and
104 colleagues have proposed a second glycoside form, NHP-Glc-ester (NHP-GE) (Bauer *et al.*, 2021).
105 Nevertheless, the identification of NHP metabolites may so far be incomplete. Other modifications,
106 such as, methylation or amino acid conjugation were not described for NHP yet.

107 Here we report infection and UV-C-dependent formation of methylated NHP (MeNHP) identified via
108 ultra-high-performance-liquid-chromatography high-resolution mass spectrometry (UHPLC-HRMS)
109 metabolome analysis. We confirmed NHP-methylation via D₉-labeled NHP and determined
110 carboxylic acid methylation via a comparison to a synthesized authentic MeNHP-standard.
111 Furthermore, we showed that MeNHP is able to rescue the NHP-deficient phenotype of *fmo1-1*
112 mutant plants and reduce oomycete spore growth in *Arabidopsis thaliana* interaction. In addition, we
113 present a dual-infiltration experiment of a mixture of NHP and D₉-NHP, to identify and to investigate
114 novel metabolites of NHP in a non-targeted manner.

115 **Material and methods**

116 *Plant material and growth conditions*

117 *Arabidopsis thaliana* ecotype Col-0, *fmo1-1*, *ugt76b1-1*, *fmo1* *ugt76b1* (CRISPR *ugt76b1-5* in *fmo1-1*) and *FMO1-3D* were used in this study accordingly (Mohnike *et al.*, 2021). Additionally, 118 *FMO1-3D ald1* was used in this study. We obtained *nhpmt1-1* (SALK_053006) and *nhpmt1-2* 119 (SALKseq_135601) mutant plants from SALK Nottingham. Plants were grown on steam sterilized 120 soil under short day (8h light/16h dark) or long day (16h light/8h dark) for 4 and 6 weeks. The light 121 intensity was 100-120 $\mu\text{mol}/\text{m}^2/\text{s}$ and the humidity was 80 % relative unless specified. The light 122 source were MASTER LED tubes HF 600mm HO 8W840 T8 (PHILIPS AG, Amsterdam, 123 Netherlands). 124

125 *Pseudomonas infection and UV-treatment*

126 To induce defense metabolism, plants were treated with *Pseudomonas* bacteria or UV-C light. 127 *Pseudomonas syringae* strain ES4326 (*P.s.m.*) were grown in LB-medium with 25 μg Rifampecin 128 overnight at 28 °C. The culture was pelleted, medium was decanted, and the bacteria were suspended 129 in 10 mM MgCl₂. Bacteria were diluted to OD₆₀₀=0.05 and infiltrated to the abaxial side of the leaf. 130 As mock treatment control 10 mM MgCl₂ were infiltrated to the leaf. Plants were incubated for 8, 24, 131 or 48 hours, as stated accordingly in the results section and figure legends. UV-C treatment was 132 performed for 20 min in a PrettelTelstar sterile bench as described (Mohnike *et al.*, 2021). Plants 133 were incubated for 24 hours post treatment if not stated otherwise.

134 *Chemical synthesis of MeNHP*

135 MeNHP was synthesized from methylpipecolinate hydrochloride after a modified procedure (de 136 Sousa 2016, *Frontiers*). See supplemental material for a detailed description of the synthesis route, 137 materials and techniques used to gain MeNHP. Additionally we deposited NMR-spectra and MS- 138 spectra of the quality control measures.

139 *Dual infiltration of authentic NHP and D₉-NHP standard*

140 Both 1 mM NHP and D₉-NHP, respectively, in 10 mM MgCl₂ were co-infiltrated to 3 leaves of each 141 individual plant of Col-0, *fmo1-1* and *ugt76b1-1*. As mock treatment 10 mM MgCl₂ was infiltrated 142 accordingly. Both mock and NHPs infiltrated plants were either kept further untreated or were 143 exposed to UV-C radiation for 20 minutes, as described above. Plants were incubated for 24 hours 144 post treatment. Samples were harvested and stored in -80 °C until extraction with 80 %MeOH.

145 *MeNHP infiltration for metabolite tracking*

146 1 mM MeNHP were directly infiltrated to the apical side of the leaf. MeNHP was solved in 10 mM 147 MgCl₂. The infiltrated plants were incubated for 24 hours. Leaves were harvested and frozen in liquid 148 nitrogen. The samples were stored at -80 °C.

149 *MeNHP induced resistance assay*

150 To investigate the MeNHP induced resistance, ddH₂O (mock) or MeNHP at the indicated 151 concentrations diluted in ddH₂O were infiltrated with a needleless syringe on two full-grown leaves 152 of 3-week-old *fmo1-1* and Col-0 plants. 24 hours post infiltration, plants were challenged with 153 *Hyaloperonospora arabidopsis* Noco 2 by spraying a conidiaspore solution at a concentration of 154 50,000 spores/mL. The challenged plants were then grown in a plant chamber at 18°C with a relative

155 humidity of 80% under short day cycle (8-h light/16-h dark). Infection was scored at 7 days post
156 inoculation as described previously (Ding *et al.* 2016). In brief, infection was scored by the
157 conidiospore growth on distal leaves with the following rating category: Category 5 = more than 5
158 conidiospores observed on more than 2 distal leaves, Category 4 = more than 5 conidiospores
159 observed on 2 distal leaves, Category 3 = less than 5 conidiospores observed on 2 distal leaves,
160 Category 2 = more than 5 conidiospores observed on 1 distal leaf, Category 1 = less than 5
161 conidiospores observed on 1 distal leaf, Category 0 = none conidiospore observed on all distal leaves.

162 *Extraction of plant metabolites*

163 Metabolite extracts were generated from frozen leaf material. Leaves were ground under liquid
164 nitrogen and weight to 100 mg fresh weight (MTBE, only Fig. 2) or 50 mg (80 % MeOH). The
165 MTBE extraction was performed as described earlier (Mohnike *et al.*, 2021). The 80 % MeOH
166 extraction was slightly modified of an extraction protocol (kindly communicated by Prof. Dr. Armin
167 Djamei). 50 mg ground leaf material were given into 2 mL Eppendorf cups and 800 μ L of 80%
168 MeOH were added. The samples were vortexed to secure homogenization. Afterwards,
169 ultrasonication was applied to the samples two times for each 15 min. The samples were centrifuged
170 at 18.000 $\times g$ for 15 min. 700 μ L of debris free supernatant were transferred into new tubes and
171 evaporated under streaming nitrogen. Metabolites were resolved in 20 % MeOH by vortex. The
172 solutions were centrifuged at 18.000 $\times g$ for 10 min prior to LC-analysis to remove remaining debris.
173 80 μ L were transferred into the LC-MS vials.

174 *UHPLC-HRMS-based metabolite fingerprinting*

175 Metabolite fingerprinting was conducted according to Feussner and Feussner 2019, as described in
176 Mohnike et al. 2021 (Feussner and Feussner, 2019; Mohnike *et al.*, 2021). In brief, extracted samples
177 were analyzed with the UHPLC1290 (Agilent Technologies, Santa Clara, CA, USA) coupled to a
178 HRMS instrument 6540 UHD Accurate Mass Q-TOF (Agilent Technologies) with Agilent Dual Jet
179 Stream Technology as electrospray ionization (ESI) source (Agilent Technologies). The ACQUITY
180 HSS T3 column (2.1 x 100 mm, 1.8 μ m particle size, Waters Corporation) was used for
181 chromatographic separation at a flow rate of 500 μ L/min at 40 °C. The solvent system applied A
182 (water, 0.1 % (v/v) formic acid) and B (acetronitrile, 0.1 % (v/v) formic acid) were used. The
183 gradient applied was: 0 to 3 min 1 % to 20 % B; 3 to 8 min 20 % to 97 % B; 8 to 12 min: 100 % B; 12
184 to 15 min: 1 % B. For technical details were described recently (Mohnike *et al.* 2021). Data were
185 acquired using Mass Hunter Acquisition B.03.01. Data deconvolution was performed using
186 Profinder 10.0 (Agilent Technologies). Data were processed using MarVis-Suite (Kaeber *et al.*, 2015;
187 Kaeber *et al.*, 2012; Kaeber *et al.*, 2009) (<http://marvis.gobics.de>) or OriginPro2020 (OriginLab
188 Corporation, Northampton, MA, USA).

189 **Results**

190 *Identification of MeNHP via metabolite fingerprinting*

191 Following the hypothesis that molecules of NHP-turnover are missing in *fmo1-1* plants, we compared
192 Col-0 wild type against *fmo1-1* leaves that were infected with *P.s.m*. The leaf extracts were analyzed
193 via UHPLC-HRMS and the obtained dataset was searched for hypothetical NHP-metabolites based
194 on previously described modifications of SA and JA, for instance, hydroxylation, dehydrogenation,

195 decarboxylation and methylation. As proof of concept, the dataset was analyzed for Pip, NHP and
196 NHP-OGlc accumulation after *P.s.m.* treatment. As expected, NHP and NHP-OGlc were not detected
197 in *fmo1-1* plants (Fig. 2). However, we detected exclusively in Col-0 a relative signal intensity with a
198 mass-to-charge ratio (*m/z*) of 160.097 in the positive ionization mode and a retention time of
199 2.63 minutes, which corresponds to the mass of methylated-NHP (put. MeNHP). The exact mass of
200 this molecule has been calculated with 159.090 Da ($C_7H_{13}NO_3$), showing a mass shift of 14.015 Da
201 to NHP. This shift is equivalent to a methyl group deriving possibly from methylation of NHP.

202 *MeNHP is a metabolite of NHP and its identity was unequivocally confirmed by authentic NHP-*
203 *methyl-ester-standard*

204 To confirm MeNHP as a metabolite of NHP, therefore, being dependent on functional *FMO1*, we
205 infiltrated labeled D₉-NHP into Col-0 and *fmo1-1* leaves and measured formation of D₉-MeNHP.
206 Indeed, we detected D₉-MeNHP in both Col-0 and *fmo1-1* leaves. The labeled compound had a
207 retention time shift towards a polar elution compared to MeNHP. Non-labeled native MeNHP was
208 again only found in Col-0 leaves (Fig. 3A).

209 Next, we developed a strategy for the chemical synthesis of a NHP-methyl-ester standard to confirm
210 the identity of MeNHP unequivocally. NHP-methyl-ester was synthesized from methyl piperidin
211 (Supplementary File). Additionally, we tried to identify potential methyl transferase candidates with
212 publicly available co-expression data files of the NHP-metabolizing enzyme UGT76B1 (ATTED II,
213 version 11.0). One gene of interest was AT4G22530 (put. NHP-methyl transferase 1 (NHPMT1))
214 which was annotated as S-adenosyl methionine-dependent methyl transferase and its expression is
215 NHP-responsive (Yildiz *et al.*, 2021). The cDNA of the gene was cloned into a pET28a-expression
216 vector, and the encoded protein was heterologously expressed in *E. coli*, purified to homogeneity,
217 used for an *in vitro* activity assay with NHP as substrate. The reaction was followed by UHPLC-
218 HRMS (Fig. S1). Indeed, the authentic MeNHP-standard coeluted with *in planta* and enzymatically
219 generated MeNHP at a retention time of 2.57 min and is presented in the extracted ion chromatogram
220 of *m/z* 160.097 (Fig. 3B).

221 In addition, the fragmentation pattern of the MS/MS-spectra of *m/z* 160.097 (MeNHP) exhibit
222 identical fragments as the *in vivo* derived MeNHP and the authentic standard. The main fragments
223 are *m/z* 142.08, *m/z* 127.063, *m/z* 110.060, *m/z* 100.076 and *m/z* 82.065 (mass accuracy of ± 2 mDa)
224 (Fig. 3C). The fragment *m/z* 142.08 represents $C_7H_{12}NO_2^+$ after a loss of the *N*-hydroxy function,
225 comparable to NHPs-fragment *m/z* 127.063 (Fig. S2). Moreover, identical fragmentation behavior of
226 MeNHP ($C_7H_{13}NO_3$) and NHP ($C_6H_{11}NO_3$) is observed by fragment ions *m/z* 110.06, *m/z* 100.07 and
227 *m/z* 82.06. First, *m/z* 110.06 represents $C_6H_8NO^+$ after loss of two hydroxy functions. Second, *m/z*
228 100.07 represents the fragment $C_5H_{10}NO^+$ obtained by the loss of the carboxylic acid function with
229 NHP and methyl carboxylic acid function with MeNHP. Last, *m/z* 82.06 resembles the fragment of
230 the N-containing hetero ring structure ($C_5H_8N^+$, dihydropyridine) after loss of the hydroxyl function
231 and carboxylic acid methyl-ester function. Together, the structure of the infection-dependent NHP-
232 derived compound MeNHP as NHP-methyl-ester was confirmed.

233 To strengthen the hypothesis that MeNHP is a downstream metabolite of NHP, we investigated the
234 influence of *ald1* loss-of-function mutation on the occurrence of MeNHP *in vivo* (Fig. 2d). We
235 observed that MeNHP accumulated in Col-0 plants 24 hours post UV (hpUV) stress. Col-0 control
236 plants and *ald1* control, as well as, *ald1* UV-treated plants did not show any signal for MeNHP

237 24 hpUV. Moreover, we tested *FMO1-3D* overexpression lines and *FMO1-3D ald1* double mutant
238 plants on their basal MeNHP amount (Fig. 3D). We observed a constitutive accumulation of MeMHP
239 in the *FMO1-3D* mutant background, whereas no MeNHP was detected in the *FMO1-3D ald1*
240 background.

241 In conclusion, these data further support that MeNHP is NHP-methyl-ester produced *in planta*
242 downstream of NHP. Mutations in the major biosynthetic genes *ald1* and *fmo1* lead to absence of
243 MeNHP after stress induced biosynthesis. Additionally, we showed that NHPMT1 was able to
244 catalyze the formation of MeNHP from NHP and SAM *in vitro* and therefore, provide additional data
245 that confirm exact mass and retention time information from *in vivo* MeNHP and chemically
246 synthesized authentic standard. Whether MeNHP has an influence on plant-immunity remains to be
247 investigated. It remains to be determined whether additional molecules other than MeNHP, NHP-*O*-
248 Glc and NHP-Glc-ester derive from NHP directly and are present in the Pip/NHP molecular network
249 *in vivo*.

250 *Identification of NHP-derived metabolites via NHP and D₉-NHP leaf infiltration, UV-treatment and*
251 *non-targeted metabolomics*

252 To confirm the occurrence of the observed NHP-derivative after stress application and to screen for
253 additional NHP-derivatives, a non-targeted metabolome experiment was performed as another
254 independent line of evidence. We applied NHP and D₉-NHP co-infiltration, as well as, mock
255 infiltration with 10 mM MgCl₂ in leaves of WT, *fmo1-1* and *ugt76b1-1* plants, respectively, and
256 treated the leaves with UV-C afterwards. The aim of this experimental setting was to identify all
257 NHP-derived metabolites, by selecting pairwise features with a mass shift of 9.056 Da (exchange of
258 all 9 hydrogens of the pyridine-moiety by deuterium in NHP) and a small retention time shift of <
259 0.13 min that are enriched after NHP/D₉-NHP infiltration, and ideally be synthesized *in vivo*, without
260 external application. In addition, *ugt76b1-1* mutant plants were included as we hypothesized that
261 other NHP-derived metabolites will accumulate as alternative routes for NHP-turnover, when NHP-
262 OGlc cannot be synthesized.

263 The non-targeted metabolite fingerprinting identified 1152 metabolite features with a false discovery
264 rate (FDR) < 10⁻⁵. The representation of these features by pattern-based clustering via an one-
265 dimensional-self organizing map (1D-SOM) shows two clusters (Fig. 4, cluster number 1 and 2),
266 where metabolites accumulated as consequence of NHP/D₉-NHP co-infiltration. Cluster 1 shows
267 metabolites accumulating after NHPs infiltration in an *UGT76B1*, as well as, UV-C dependent
268 manner. Here three feature pairs were detected with a mass shift of 9.056 Da. First, the pair NHP-
269 OGlc/D₉-NHP-OGlc was detected in cluster 1, as NHP-OGlc is known to be exclusively synthesized
270 by UGT76B1 *in vivo*. This chemotype cannot be restored by external application of NHPs to the
271 *ugt76b1-1* mutant plants. Furthermore, NHP-OGlc accumulated also in those Col-0 samples after
272 UV-stress, where NHP/D₉-NHP infiltration did not take place. As expected, D₉-NHP-OGlc was
273 present in Col-0 and *fmo1-1* plants after NHPs infiltration. The second pair of features with a mass
274 shift of 9.056 Da has exact masses of [M+H]⁺/[D₉M+H]⁺ 470.185/479.241. The exact mass
275 information and its UGT76B1-dependancy let us tentatively assign the features as NHP-OGlc-
276 Hex/D₉-NHP-OGlc-Hex. Subtracting the exact mass of NHP-OGlc ([M+H]⁺ 308.134) from the
277 molecule of [M+H]⁺ 470.185 results in a fragment of 162.051 Da, which corresponds to a hexose
278 moiety. Since the feature pair is exclusively detected in the lines with functional UGT76B1, it
279 strongly suggests that UGT76B1 is responsible for the *O*-glycosylation of NHP required for NHP-

280 *OGlc-Hex* synthesis. In-source fragmentation analysis underlines the compound identity by the
281 detection of NHP-*OGlc* as fragment ion of $[M+H]^+$ 308.134 (Fig. S3). In addition, NHP-*OGlc-Hex* is
282 present in mock infiltrated UV-stressed Col-0 plants, which confirms NHP-*OGlc-Hex* as a native
283 NHP-derivative. The third pair of features in cluster 1 fits to NHP-*OGlc*/D₉-NHP-*OGlc* with an
284 additional C₃H₃O₃-moiety, $[M+H]^+/[D_9M+H]^+$ 394.132/403.188. It is *UGT76B1*-dependent, too, as
285 the molecular features are not present in the *ugt76b1-1* background. A small amount of NHP-*OGlc*-
286 C₃H₃O₃ in mock infiltrated, UV-stressed Col-0 plants confirmed that this metabolite is a native NHP-
287 derivative. MS/MS-fragment analysis of the unknown molecule yielded a fragment of the NHP-
288 backbone of $[M+H]^+$ 308.134, and suggests for an additional malonic acid residue of *m/z* 87.007 as
289 the fragment ion (Fig. S4). Together the MS data led us to assign the third feature pair as NHP-*OGlc*-
290 malonic acid.

291 Cluster 2 represents metabolites that enrich in all three genotypes after NHP/D₉-NHP infiltration,
292 with and without UV-C treatment. Via mass shift search, we detected Pip/D₉-Pip and NHP/D₉-NHP,
293 MeNHP/D₉-MeNHP and NHP-GE/D₉-NHP-GE as NHP-derived metabolites. Pip, NHP and MeNHP
294 accumulated in Col-0 and *ugt76b1-1* after UV-stress. In contrast, NHP-GE was detected only in
295 *ugt76b1-1* after UV-stress in case the NHP/D₉-NHP mixture was not additional infiltration.
296 Interpretation of the MS/MS-fragment pattern confirmed the identity of NHP-GE (Fig. S5).

297 Together the experiment expands the number of novel NHP metabolites to MeNHP, NHP-*OGlc-Hex*,
298 NHP-*OGlc*-malonic acid. Furthermore, the conversion of D₉-NHP into D₉-Pip led us to propose a so
299 far unknown additional dehydration reaction.

300 *MeNHP application rescues the susceptibility of fmo1-1 against Hyaloperonospora arabidopsis*
301 *Noco 2 infection*

302 To determine the metabolic fate of externally applied MeNHP and to assign its role in plant
303 immunity, 0.1 mM MeNHP were infiltrated into leaves of Col-0, *fmo1-1* and *fmo1-1 ugt76b1* plants.
304 Inspired by that SA-binding protein 2 (SABP2) and some of its *Arabidopsis* orthologous hydrolyze
305 MeSA to SA, we wondered whether MeNHP is hydrolyzed to NHP in *Arabidopsis* as well (Forouhar
306 *et al.*, 2005; Vlot *et al.*, 2008a). In addition, we aimed to figure out, which other NHP-related
307 metabolites accumulate upon infiltration of MeNHP and whether SA biosynthesis is induced by
308 MeNHP or by MeNHP-derived metabolites. Furthermore, the mutant *fmo1 ugt76b1* was included to
309 identify the origin of MeNHP-*OGlc* detected in our initial experiment described above (Fig. S6).
310 After MeNHP-infiltration, MeNHP was detected in all three genotypes (Fig. 5), with a higher signal
311 intensity in *fmo1 ugt76b1*. A comparable intensity pattern was observed for NHP, which was
312 significantly enriched after MeNHP treatment in all three backgrounds and accumulated the most in
313 *fmo1 ugt76b1*, which hints towards hydrolysis of the infiltrated MeNHP. Interestingly, the relative
314 amount of Pip increased significantly in Col-0, *fmo1-1*, *fmo1 ugt76b1* plants after MeNHP infiltration
315 in comparison to mock treated plants. NHP-*OGlc* was not detected in *fmo1 ugt76b1* plants, but
316 significantly accumulates in Col-0 and *fmo1-1*. NHP-GE accumulates in all three backgrounds.
317 Interestingly we identified a signal of *m/z* 322.149, which may represent MeNHP-*OGlc*. MeNHP-
318 *OGlc* accumulated significantly after MeNHP infiltration independent of *UGT76B1*. To underline the
319 identification, we conducted an enzymatic reaction using purified SAG forming enzyme UGT74F1
320 and were able to reproduce the MeNHP-*OGlc* signal *in vitro* (Fig. S6). Furthermore, MeNHP
321 treatment resulted in neither a signal increase of SA nor the accumulation of SAG compared to mock
322 treatment. Similar data were obtained after spraying MeNHP to Col-0 and *fmo1-1* plants (Fig. S7).

323 From these results, we conclude that MeNHP can be metabolized in the plant after external
324 application. We were able to detect accumulation of Pip, NHP, NHP-OGlc, NHP-GE and
325 MeNHP-OGlc in Col-0 but more important in *fmo1-1* knock-out plants.

326 To test whether MeNHP is able to prime defense response in Arabidopsis and further to rescue the
327 *fmo1-1* infection phenotype, we challenged MeNHP treated *fmo1-1* and Col-0 plants with a spore
328 solution of *H. arabidopsis* Noco 2 and analyzed spore growth on mock or MeNHP treated plants
329 (Fig. 6A and B). A concentration gradient of 200 μ M, 125 μ M, 20 μ M and 1 μ M was applied to
330 individual groups of *fmo1-1* mutant plants and spore growth was analyzed in comparison to mock
331 treatments (Fig. 6A). We assayed two individual mock treatments against either 200 μ M and 125 μ M
332 or 20 μ M and 1 μ M MeNHP. With treatment of 200 μ M MeNHP, 69 % of the pathogen growth was
333 assigned to disease category zero (no spore growth), 8 % to category one and 23 % to category two.
334 In the respective mock treatment, growth of the pathogen was grouped into disease category five at
335 100 %. The comparison shows reduced pathogen sporulation, therefore, lower disease categories with
336 200 μ M MeNHP treatment compared to mock. The 125 μ M MeNHP treatment resulted in a similar
337 trend of reduced pathogen growth. Plants pretreated with 125 μ M MeNHP exhibited no spore growth
338 at 15 % and disease categories one at 23 %, two at 38 %, three at 8 % and four at 15 %. A
339 comparison between 20 μ M MeNHP and mock treatment showed a similar trend as above. Spore
340 growth on mock treated plants was assigned to disease categories four 7 % and five 93 % of plants,
341 whereas spore growth on plants treated with 20 μ M MeNHP was grouped into disease categories two
342 53 %, three 7 %, four 27% and five 13 %. At the lowest concentration of 1 μ M MeNHP 10 % of
343 plants group into category three, 20 % in category four and 70 % of the challenged plants group into
344 disease category five. We next applied 200 μ M and 125 μ M MeNHP to Col-0 and *fmo1-1* plants,
345 respectively, to compare spore growth of *H.a.* Noco 2 (Fig. 6B). Mock treated Col-0 plants group
346 into disease categories five and four. Treatment with 200 μ M MeNHP resulted in no spore growth on
347 Col-0. Treatment with 125 μ M MeNHP resulted in disease categories zero and one. Mock treated
348 *fmo1-1* mutant plants group into disease category five. Treatment with 200 μ M MeNHP resulted in
349 categories zero, one and two. Application of 125 μ M MeNHP resulted in spore growth that was
350 grouped into disease categories zero, two and three.

351 The experiments confirm that the applied MeNHP is metabolized to NHP in Arabidopsis and that
352 MeNHP treatment is able to rescue the susceptible phenotype of NHP biosynthesis mutant *fmo1-1*
353 and to induce resistance in Col-0. Furthermore, MeNHP treatment alone does not lead to an increase
354 in signal intensity of SA and SAG, however, the amounts of Pip, NHP, NHP-OGlc, NHP-GE and
355 MeNHP-OGlc increase significantly.

356 Discussion

357 Intact metabolite networks are key to hormonal balance in plants. In this work, we lay out the NHP-
358 metabolome by non-targeted UHPLC-HRMS-based metabolomics. For the initial approach, a non-
359 targeted dataset of Arabidopsis infection with *Pseudomonas* was recorded. The strategy was to
360 identify NHP-metabolite features based on exact mass information of the sum formula. *In silico*
361 modifications were performed, based on well-known metabolizing reactions, such as hydroxylation,
362 methylation and amino acid conjugation. From the sum formula of the designed compound, its exact
363 mass was identified and molecular identification was targeted. Via both, analysis of *P.s.m.* infiltrated
364 Col-0 and *fmo1-1* mutant plants and dual infiltration of NHP/D₉-NHP, three molecules of NHP-
365 turnover were identified, namely, MeNHP, NHP-OGlc-Hex and NHP-OGlc-malonic acid (Fig. 2, 3

366 and 4). We detected all three metabolites in Col-0, however, not in the *fmo1-1* mutant background
367 after *P.s.m.* infiltration or UV-C treatment. Moreover, we were able to show that MeNHP is
368 metabolized to NHP and that MeNHP treatment is able to rescue the susceptible phenotype of *fmo1-1*
369 mutant plants against *H. arabinidopsis* Noco 2.

370 *Dual-infiltration as unbiased method to detect undescribed metabolites of NHP*

371 The dual-infiltration method was developed to overcome detection limitation of minor metabolites
372 from native plant extracts and to enable unbiased molecular feature identification, independent of a
373 targeted screen. Due to adding both authentic standard and D₉-labeled authentic standard, the
374 sensitivity to detect NHP metabolites was increased. Especially, the specificity to pin down a
375 molecule to be of NHP origin was enhanced. By the distinctive mass shift fingerprint and retention
376 time difference, we are able to assign metabolites to NHP-origin. Together with the possibility to
377 identify the metabolites in the UV-stressed Col-0 plants, the analysis gives a broad picture of the
378 NHP-metabolites. Most importantly, we are able to present molecules absent in the *fmo1-1*
379 background underlining functional *FMO1*- and NHP-dependency. The data acquisition and analysis
380 enclose both ionization modes positive ESI and negative ESI. To ensure high quality features,
381 molecules with FDR < 10⁻⁵ are included into the dataset underlying non-targeted analysis of D₉-
382 labeled and unlabeled molecular pairs. Yu and colleagues published a similar labeling approach to
383 describe the ability of different species to metabolize nematode signaling molecules (Yu *et al.*, 2021).
384 The researchers applied ascarosides and C¹³-labeled ascarosides to several organisms to identify their
385 ability to metabolize the Nematode derived compounds by product and C¹³-labeled product
386 analysis. Similarly, the group chose exact mass and retention time shift as quality measure for
387 unbiased non-targeted analysis (Yu *et al.*, 2021). The successful application including metabolic
388 turnover inspired us to investigate metabolite mass shifts with our NHP and D₉-labeled NHP
389 standard. NHP metabolites that have already been described are two glycoside forms NHP-OGlc and
390 NHP-GE (Bauer *et al.*, 2021; Chen *et al.*, 2018; Hartmann *et al.*, 2018). Whereas the biosynthesis
391 and infection dependency of NHP-OGlc have been characterized independently, the unambiguous
392 identification of NHP-GE needs to be underlined and its route of biosynthesis remains unknown
393 (Bauer *et al.*, 2021; Cai *et al.*, 2021; Holmes *et al.*, 2021; Mohnike *et al.*, 2021). We tested activity of
394 heterologous expressed and purified UGT73D1 against NHP *in vitro*, however, were no NHP-GE
395 synthesizing activity was found (Fig S8.). In our analysis, NHP-GE is favorably detected in the
396 *ugt76b1* background but of very low to no abundance in Col-0 plants after *P.s.m.* or UV treatment.
397 As proof of the dual-infiltration concept, we showed the expected molecular feature pairs of NHP/D₉-
398 NHP and NHP-OGlc/D₉-NHP-OGlc (Fig. 5). NHP and NHP-OGlc are missing in the *fmo1-1* mutant
399 background without external application of NHP/D₉NHP, but are present when treated with the
400 mixture. Similarly, the MeNHP signal was missing in the *fmo1-1* background and dual-infiltration
401 restored the MeNHP/D₉-MeNHP signal, respectively. Additionally, we were able to detect
402 *UGT76B1*-dependent NHP-metabolites, namely, NHP-OGlc-Hex and NHP-OGlc-Mal. To collect
403 evidence for their molecular structure, we analyzed mass spectra of the two compounds. Infiltrated
404 plant metabolite extract was subject to spectra analysis. In source fragment ions, underline the
405 identification of NHP-OGlc-Hex as the insource fragment *m/z* 308.134 represent NHP-OGlc (Fig.
406 S3). Fragment spectrum analysis suggests malonic acid addition to NHP-OGlc represented by a
407 fragment ion at *m/z* 87.008 (Fig. S4). Malonic acid moieties at glucose residues are for example
408 present at anthocyanin's (Bloor and Abrahams, 2002). Interestingly both molecules are synthesized
409 *in vivo* after UV-stress without the need of additional infiltration.

410 *Structure elucidation and NHP-dependency of MeNHP synthesis*

411 The discovery of the molecular feature m/z 160.097, which was underlined by the pairwise feature
412 identification in dual-infiltration suggested NHP methylation. Nevertheless, we could only rely on
413 the predicted exact mass information of the expected molecular formula that resembles MeNHP.
414 NHP-dependency and the site of methylation remained unclear. To underline MeNHP detection and
415 to identify its site of methylation, we chemically synthesized NHP-methyl-ester from pipecolic acid
416 methyl ester. Due to the specificity of methylation at the carboxylic acid function within the MeNHP-
417 standard, we were able to exclude hydroxyl methylation. We underline MeNHP as NHP-methyl-ester
418 via retention time and MSMS-fragment comparison between authentic standard and the *in vivo* signal
419 (Fig. 3c). Both the MeNHP-standard and the *in vivo* signal exhibit a retention time of 2.57 min, as
420 well as similar fragmentation behavior. Their fragment ions m/z 142.08, m/z 127.063, m/z 110.060,
421 m/z 100.076 and m/z 82.065 are identical and derive from the mother mass m/z 160.097. Especially
422 the fragment ions m/z 127.063, m/z 100.076 and m/z 82.065 are identical with NHP-fragments,
423 underlining structural similarities and hint towards a NHP-derived molecule (Chen *et al.*, 2018;
424 Hartmann *et al.*, 2018). To strengthen the hypothesis that MeNHP is a NHP-derived metabolite, we
425 analyzed functional dependency on NHP-biosynthesis. Via analysis of UV-stressed Col-0 against
426 *ald1* or the basal accumulation of MeNHP in *FMO1-3D* against *FMO1-3D ald1* mutant plants, the
427 dependency of MeNHP on functional NHP biosynthesis was stressed further (Fig. 3d). To support
428 exact mass accuracy and retention time data of MeNHP, we present an *in vitro* reaction of NHPMT1,
429 which produced MeNHP by using NHP as substrate and SAM as co-substrate. Both *in vivo* and *in*
430 *vitro* MeNHP compounds behave as authentic standard in respect to RT and fragmentation pattern.
431 Despite the *in vitro* activity of NHPMT1 with NHP, SALK_053006 (*nhpmt1-1*), SALKseq_135601
432 (*nhpmt1-2*) and *nhpmt1-1 ugt76b1-1* mutant plants did not show absence of MeNHP signal after UV-
433 treatment. Surprisingly, the signal intensity of NHP and MeNHP was increased in the analyzed
434 mutants (Fig. S9, Fig. S10). The analysis of *nhpmt1* mutant plants raises the question, if redundant
435 MTases exist for MeNHP synthesis, or if NHPMT1 shows promiscuous MTase activity with NHP
436 but has no influence on *in vivo* synthesis.

437 *Physiological implications of NHP-metabolites*

438 By targeted and non-targeted metabolomics approaches, NHP metabolites were investigated and
439 novel candidate molecules are presented. Additionally, we underline the discovery of NHP-GE by
440 Bauer *et al.* and present three novel metabolites which are most likely NHP derived and
441 unambiguously *FMO1*-dependent after *P.s.m.* infiltration. Independently we present the NHP-
442 metabolites in a dual infiltration study, tracking the metabolic fate via non-targeted UHPLC-HRMS
443 metabolomics. However, their physiological implications remain elusive. In contrast to the data
444 present by Bauer and colleagues, we detected accumulation of NHP-GE in *ugt76b1* background
445 (Bauer *et al.*, 2021). Furthermore, we describe increased levels of MeNHP in *ugt76b1-1* mutant
446 plants. Taken together we suggest the carboxy methylation and carboxy glycosylation of NHP as
447 alternative route of NHP-turnover, when *O*-glycosylation is not available.

448 Nevertheless, the volatile nature of the methylated phytohormones MeJA and MeSA draw our
449 attention on MeNHP's potential to enhance resistance. In analogy to MeSA's ability to induce
450 systemic resistance in tobacco, we investigated the ability of MeNHP to rescue the *fmo1-1*
451 susceptible phenotype towards oomycete pathogen (Hartmann *et al.*, 2018; Park *et al.*, 2007). MeSA
452 is proposed to be cleaved by tobacco SABP2 resulting in SA and induced acquired resistance

(Forouhar *et al.*, 2005; Park *et al.*, 2007). Several methylesterases (MES) are present in Arabidopsis that show sequence similarity to the tobacco SABP2, of which MES-1, -2, -4, -7 and -9 exhibit *in vitro* activity with MeSA in competition with SA (Vlot *et al.*, 2008b). The molecular structure of SA and NHP opens the question, if there is a shared MES capable to hydrolyze MeSA and MeNHP in Arabidopsis, similar to their shared mechanism for glucosylation by UGT76B1 (Mohnike *et al.*, 2021; Zeier, 2021). In Figure 5, we lay out NHP-related metabolites accumulated upon infiltration of MeNHP. The data suggest a hydrolysis of the externally applied MeNHP to NHP. The external application of MeNHP did not result in significant changes to the SA levels, neither in infiltration studies, nor after spray application (Fig. 5, Fig. S7). Afterwards, we infiltrated MeNHP into *fmo1-1* mutant plants to investigate the potential to enhance disease resistance, especially aiming to rescue the susceptible phenotype of the *fmo1-1* mutants. We analyzed the spore count of *H.a.* Noco 2 on Arabidopsis leaves pretreated with mock or various concentrations of MeNHP (Fig. 6A, B). The data suggests that MeNHP treatment is able to rescue the susceptible phenotype of *fmo1-1* mutant plants, resulting in reduced spore growth. The enhanced resistance after MeNHP treatment at different concentration might be due to the successful conversion of MeNHP to NHP in the *fmo1-1* background. Furthermore, restoring the NHP pool could be a crucial step to enhance disease resistance in the susceptible *fmo1-1* mutant background. In addition, MeNHP treatment increased Col-0 resistance against *H.a* Noco 2, too. The applied concentrations ranging from 200 µM to 1 µM used for infiltration are within the range of similar studies that infiltrated NHP to induce defense from 1 mM to 1 µM (Chen *et al.*, 2018; Hartmann *et al.*, 2018). Additionally, NHP induces SAR in Arabidopsis in low doses independent from the mode of application (Schnake *et al.*, 2020). Two independent studies underlined the potential of NHP to induce resistance beyond the scope of Arabidopsis (Holmes *et al.*, 2019; Schnake *et al.*, 2020). The successful induction of resistance after application of methylated compounds like MeSA and MeJA puts MeNHP in scope for future research in plant-to-plant communication. We suggest a sender receiver experiment applying stress to WT and *fmo1* mutant plants as sender and analyze the NHP chemotype of unstressed *fmo1* receiver plants. In the ideal case, the experiment would be conducted with a MeNHP synthesis mutant.

Interestingly we were able to identify another metabolite of MeNHP, when tracking its metabolic fate, namely, MeNHP-OHex. This compound is *UGT76B1* independent, suggesting an UGT able to use MeNHP as substrate, conjugating the glucosylation at the *N*-hydroxyl function. *In vitro* reaction using UGT74F1 resulted in reproduction of the MeNHP-OGlc signal (Fig. 7, Fig. S3). UGT74F1 might be another candidate protein for *in vivo* biosynthesis of the NHP-metabolite. Nevertheless, MeNHP-OGlc was not shown to be a native product in plant stress response without external application of MeNHP. Hypothetically, UGT71C3 capable of synthesizing MeSA-OGlc may be another interesting candidate protein, due to the similarity in structure between MeNHP and MeSA (Chen *et al.*, 2019). We describe that Pip might also be a product of NHP-turnover, as not only Pip was accumulating after the dual infiltration of NHP and D₉-NHP but also D₉-Pip. It raises the question for a reaction to remove the *N*-hydroxylation from NHP via, for example, hydrolases or as FMO1-reverse reaction. The observation of NHP cleavage may also explain why Pip amounts are still increasing in time-course experiments, when the NHP, NHP-OGlc are already decreasing in signal intensity (Hartmann and Zeier, 2019).

An additional mechanism to control hormonal activity is amino acid conjugation. On the one hand, conjugation can lead to activation as it is known in the case of JA and isoleucine by the enzyme JASMONATE RESPONSE LOCUS 1 (JAR1). The JA-modification by JAR1 results in the

497 biological active form JA-Ile (Staswick and Tiryaki, 2004; Suza and Staswick, 2008). On the other
498 hand, inactivation can be achieved. One example is the conjugation of aspartic acid (Asp) to SA in
499 *A. thaliana* by GH3.5. The product SA-Asp is supposed to be biological inactive and a storage
500 metabolite of SA (Chen 2013). Following the pairwise analysis of labeled and unlabeled metabolites,
501 we can exclude the occurrence of NHP-amino acid conjugates in our experimental setting.

502 Conclusion

503 Four novel metabolites were identified via UHPLC-HRMS: MeNHP, MeNHP-OGlc, NHP-OGlc-
504 Hex and NHP-OGlc-Mal (Fig. 7). The potential of MeNHP to induce defense priming was
505 investigated. Further research, however, is required to clarify the role of MeNHP in defense response,
506 for example, in plant-to-plant communication. What is more is that metabolites of NHP accumulate
507 in *ugt76b1* mutants, where an important mode of NHP turnover into NHP-OGlc is unavailable,
508 suggesting the ability to shuttle NHP into other metabolic pathways to certain extent.

509 Supplementary data

510 Fig. S1. SDS-PAGE from ion metal affinity chromatography purification of heterologously
511 expressed AT4G22530 (NHPMT1).

512 Fig. S2. Collision induced dissociation fragments of MeNHP and NHP

513 Fig. S3. Insource fragments of NHP-OGlc-Hex and D₉-NHP-OGlc-Hex feature pair.

514 Fig. S4. Collision induced dissociation fragments of NHP-OGlc-malonic acid and D₉-NHP-OGlc
515 malonic acid feature pair.

516 Fig. S5. Collision induced dissociation fragments of NHP-GE.

517 Fig. S6. Infiltration of MeNHP leads to MeNHP-OGlc formation, which is underlined *in vitro*.

518 Fig. S7. Metabolite analysis after spray application of MeNHP.

519 Fig. S8. UGT73D1 is not active with NHP *in vitro*.

520 Fig. S9. Metabolite analysis of UV-treated Col-0 and *nhpmt1* mutant plants.

521 Fig. S10. MeNHP analysis of UV-stressed Col-0 vs. *ugt76b1-1 nhpmt1-1*.

522 Supplemental Protocol S11. Chemical synthesis of MeNHP.

523 Supplemental Dataset S12. UHPLC-HRMS-data of NHP/D9NHP dual-infiltration.

524 Acknowledgements

525 We like to thank Prof. Dr. Christiane Gatz for fruitful discussion and Prof. Dr. Armin Djamei for
526 proving the 80 % MeOH extraction protocol. We thank Dr. Ellen Hornung for cloning of NHPMT1
527 and crossing of *ugt76b1-1* with *nhpmt1-1* mutant plants to generate the double mutant. We
528 acknowledge Moritz Klein and Sönke Beewen for laboratory support.

529 Author contributions

530 L.M., W.H., B.W., K.F., Y.Z. and I.F. conceived and designed the experiments. L.M., W.H., B.W.
531 and K.F. performed the experiments. L.M., W.H., B.W., K.F., Y.Z. and I.F. analyzed and discussed
532 the data, L.M., W.H., K.F., Y.Z. and I.F. wrote the article.

533 **Conflict of interest**

534 The authors declare that the research was conducted in the absence of any commercial or financial
535 relationships that could be construed as a potential conflict of interest.

536 **Funding**

537 L.M. was supported by the Goettingen Graduate School for Neurosciences, Biophysics, and
538 Molecular Biosciences in frame of the PRoTECT program at the University of Goettingen. I.F.
539 acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG; GRK 2172-PRoTECT,
540 ZUK 45/2010 and INST 186/822-1). Y.Z. acknowledges funding from the Natural Sciences and
541 Engineering Research Council (NSERC) Discovery Program. W.H. was supported by the China
542 Scholarship Council and NSERC CREATE (PRoTECT).

543 **Data availability**

544 All data generated or analyzed during this study are included in this published article and its
545 supplementary information files.

References

Attaran E, Zeier TE, Griebel T, Zeier J. 2009. Methyl salicylate production and jasmonate
signaling are not essential for systemic acquired resistance in *Arabidopsis*. *The Plant Cell* **21**, 954-
971.

**Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J,
Schäffner AR.** 2021. UGT76B1, a promiscuous hub of small molecule-based immune signaling,
glucosylates N-hydroxypipelicolic acid and balances plant immunity. *The Plant Cell* **33**, 714–734.

Bloor SJ, Abrahams S. 2002. The structure of the major anthocyanin in *Arabidopsis thaliana*.
Phytochemistry **59**, 343-346.

Cai J, Jozwiak A, Holoidovsky L, Meijler MM, Meir S, Rogachev I, Aharoni A. 2021.
Glycosylation of N-hydroxy-pipelicolic acid equilibrates between systemic acquired resistance response
and plant growth. *Molecular Plant* **14**, 440-455.

Chen F, D'Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E. 2003. An
Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics
approach, has a role in defense. *The Plant Journal* **36**, 577-588.

Chen L, Wang W-s, Wang T, Meng X-f, Chen T-t, Huang X-x, Li Y-J, Hou B-k. 2019. Methyl
salicylate glucosylation regulates plant defense signalling and systemic acquired resistance. *Plant
Physiology* **180**, 2167–2181.

Chen Y-C, Holmes EC, Rajniak J, Kim J-G, Tang S, Fischer CR, Mudgett MB, Sattely ES.
2018. N-hydroxy-pipelicolic acid is a mobile metabolite that induces systemic disease resistance in
Arabidopsis. *Proceedings of the National Academy of Sciences* **115**, E4920-E4929.

- Dean JV, Delaney SP.** 2008. Metabolism of salicylic acid in wild-type, *ugt74f1* and *ugt74f2* glucosyltransferase mutants of *Arabidopsis thaliana*. *Physiologica Plantarum* **132**, 417-425.
- Ding P, Rekhter D, Ding Y, Feussner K, Busta L, Haroth S, Xu S, Li X, Jetter R, Feussner I, Zhang Y.** 2016. Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. *The Plant Cell* **28**, 2603-2615.
- Feussner K, Feussner I.** 2019. Comprehensive LC-MS-based metabolite fingerprinting approach for plant and fungal-derived samples. In: D'Alessandro A, ed. *High-Throughput Metabolomics: Methods and Protocols*. New York, NY: Springer New York, 167-185.
- Forouhar F, Yang Y, Kumar D, Chen Y, Friedman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L.** 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. *Proceedings of the National Academy of Sciences USA* **102**, 1773-1778.
- Fu ZQ, Dong X.** 2013. Systemic acquired resistance: Turning local infection into global defense. *Annual Review of Plant Biology* **64**, 839-863.
- George Thompson AM, Iancu CV, Neet KE, Dean JV, Choe JY.** 2017. Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from *Arabidopsis thaliana*. *Scientific Reports* **7**, 46629.
- Greenberg JT, Guo A, Klessig DF, Ausubel FM.** 1994. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. *Cell* **77**, 551-563.
- Hartmann M, Zeier J.** 2018. L-lysine metabolism to *N*-hydroxypipecolic acid: an integral immune-activating pathway in plants. *The Plant Journal* **96**, 5-21.
- Hartmann M, Zeier J.** 2019. *N*-Hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. *Current Opinion in Plant Biology* **50**, 44-57.
- Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T, Ganter C, Zeier J.** 2018. Flavin monooxygenase-generated *N*-hydroxypipecolic acid is a critical element of plant systemic immunity. *Cell* **173**, 456-469.
- Holmes EC, Chen Y-C, Sattely ES, Mudgett MB.** 2019. An engineered pathway for *N*-hydroxypipecolic acid synthesis enhances systemic acquired resistance in tomato. *Science Signaling* **12**, eaay3066.
- Holmes EC, Chen Y-C, Mudgett MB, Sattely ES.** 2021. *Arabidopsis* UGT76B1 glycosylates *N*-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. *The Plant Cell* **33**, 750-765.
- Huang X, Zhu G-q, Liu Q, Chen L, Li Y-J, Hou B-K.** 2018. Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids. *Plant Physiology* **176**, 3103-3119.
- Kaever A, Lingner T, Feussner K, Göbel C, Feussner I, Meinicke P.** 2009. MarVis: a tool for clustering and visualization of metabolic biomarkers. *BMC Bioinformatics* **10**, 92.
- Kaever A, Landesfeind M, Possienke M, Feussner K, Feussner I, Meinicke P.** 2012. MarVis-Filter: Ranking, filtering, adduct and isotope correction of mass spectrometry data. *Journal of Biomedicine and Biotechnology* **2012**, 263910.

- Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, Feussner I, Meinicke P.** 2015. MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. *Metabolomics* **11**, 764-777.
- Karasov TL, Chae E, Herman JJ, Bergelson J.** 2017. Mechanisms to mitigate the trade-off between growth and defense. *The Plant Cell* **29**, 666-680.
- Maksym RP, Ghirardo A, Zhang W, von Saint Paul V, Lange B, Geist B, Hajirezaei M-R, Schnitzler J-P, Schäffner AR.** 2018. The defense-related isoleucic acid differentially accumulates in *Arabidopsis* among branched-chain amino acid-related 2-hydroxy carboxylic acids. *Frontiers in Plant Science* **9**, 766.
- Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I.** 2021. The glycosyltransferase UGT76B1 modulates *N*-hydroxy-pipecolic acid homeostasis and plant immunity. *The Plant Cell* **33**, 735–749.
- Navarova H, Bernsdorff F, Döring A-C, Zeier J.** 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. *The Plant Cell* **24**, 5123-5141.
- Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, Suzuki H, Shibata D, Jikumaru Y, Hanada A, Kamiya Y, Shirasu K.** 2012. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in *Arabidopsis*. *The Plant Cell* **24**, 3795-3804.
- Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF.** 2007. Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. *Science* **318**, 113-116.
- Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I.** 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. *Science* **365**, 498-502.
- Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J, Rose LE, Schaffrath U, Zeier J.** 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer *N*-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. *Journal of Experimental Botany* **71**, 6444–6459.
- Shulaev V, Silverman P, Raskin I.** 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. *Nature* **385**, 718-721.
- Staswick PE, Tiryaki I.** 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in *Arabidopsis*. *The Plant Cell* **16**, 2117-2127.
- Suza W, Staswick P.** 2008. The role of JAR1 in Jasmonoyl-l -isoleucine production during *Arabidopsis* wound response. *Planta* **227**, 1221-1232.
- Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng J-K.** 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in *Arabidopsis*. *Molecular Plant* **12**, 1577-1586.
- Vlot AC, Klessig DF, Park S-W.** 2008a. Systemic acquired resistance: the elusive signal(s). *Current Opinion in Plant Biology* **11**, 436-442.
- Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF.** 2008b. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in *Arabidopsis thaliana*. *The Plant Journal* **56**, 445-456.

- von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schäffner AR.** 2011. The *Arabidopsis* glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. *The Plant Cell* **23**, 4124-4145.
- Wenig M, Ghirardo A, Sales JH, Pabst ES, Breitenbach HH, Antritter F, Weber B, Lange B, Lenk M, Cameron RK, Schnitzler J-P, Vlot AC.** 2019. Systemic acquired resistance networks amplify airborne defense cues. *Nature Communications* **10**, 3813.
- Wildermuth MC, Dewdney J, Wu G, Ausubel FM.** 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. *Nature* **414**, 562-565.
- Yildiz I, Mantz M, Hartmann M, Zeier T, Kessel J, Thurow C, Gatz C, Petzsch P, Köhrer K, Zeier J.** 2021. Mobile SAR signal N-hydroxypipeolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. *Plant Physiology* **186**, 1679-1705.
- Yu Y, Zhang YK, Manohar M, Artyukhin AB, Kumari A, Tenjo-Castano FJ, Nguyen H, Routray P, Choe A, Klessig DF, Schroeder FC.** 2021. Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. *ACS Chemical Biology* **16**, 1050-1058.
- Zeier J.** 2021. Metabolic regulation of systemic acquired resistance. *Current Opinion in Plant Biology* **62**, 102050.
- Zhang K, Halitschke R, Yin C, Liu C-J, Gan S-S.** 2013. Salicylic acid 3-hydroxylase regulates *Arabidopsis* leaf longevity by mediating salicylic acid catabolism. *Proceedings of the National Academy of Sciences* **110**, 14807-14812.
- Zhang Y, Zhao L, Zhao J, Li Y, Wang J, Guo R, Gan S, Liu C-J, Zhang K.** 2017. S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. *Plant Physiology* **175**, 1082-1093.

Figure legends

Fig. 1. Biosynthesis route of NHP-metabolites in *Arabidopsis*. In the plastid, l-lysine (l-Lys) is converted by AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) to epsilon-amino-alpha-keto caproic acid (KAC). Via spontaneous cyclization under water loss of KAC, piperidein-2-carboxylic acid (P2C) is formed. A reductase capable to reduce P2C to pipecolic acid (Pip) is SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 4 (SARD4). How pipecolic acid is exported from the chloroplast is still elusive. The FLAVINE-DEPENDENT MONOOXYGENASE 1 (FMO1) catalyzes *N*-hydroxylation of Pip, resulting in *N*-hydroxy pipecolic acid (NHP) (Chen *et al.*, 2018; Ding *et al.*, 2016; Hartmann *et al.*, 2018; Navarova *et al.*, 2012). NHP was shown to be glycosylated by UGT76B1 to NHP-*O*-glycoside (NHP-*O*-Glc). Furthermore, NHP-glycoside-ester (NHP-GE) was described, but respective enzyme is not known (Bauer *et al.*, 2021; Hartmann and Zeier, 2018). Methylation of NHP to NHP-methyl-ester (MeNHP) was shown as an additional mechanism of NHP-turnover *in planta* in this study.

Fig. 2. Accumulation of selected *FMO1*-dependent and independent metabolites in Col-0 and *fmo1-1* leaves in response to *P.s.m.* infiltration. *A. thaliana* plants grown for 6 weeks under short-day conditions (8h light/16h dark) were infiltrated with 10 mM MgCl₂ (Mock) or virulent *P. syringae*

ES4326 strain at OD₆₀₀= 0.05 in 10 mM MgCl₂ (*P.s.m.*). Infiltrated leaves were harvested 24 hours post infiltration, extracted by MTBE-procedure and analyzed via UHPLC-HRMS. Data were processed using Profinder 8.0 (Agilent Technologies, Santa Clara, CA, USA) and OriginPro2020 (Origin, San Francisco, CA, USA). Relative signal intensities of Pip, NHP, NHP-OGlc and putative methyl-NHP (put. MeNHP) are shown. Y-axis has a break between 1x10⁵ and 1.5x10⁵. Bars represent mean values with standard deviation of n=3 replicates. Letters indicate statistical differences, individually calculated for each metabolite (p < 0.05, one-way ANOVA post-hoc tukey-test). Each replicate represents an independent pool of nine infiltrated leaves from three plants.

Fig. 3. Characterization of *N*-hydroxy pipecolic acid methyl ester (MeNHP). **A** Extracted ion chromatograms of MeNHP [M+H]⁺ 160.097 and D₉-MeNHP [M+H]⁺ 169.153 in Col-0, *fmo1-1* and *ugt76b1-1* leaves. Col-0, *fmo1-1* and *ugt76b1-1* leaves were infiltrated with D₉-NHP. After 24 hours, leaves were harvested, extracted and analyzed by UHPLC-HRMS. **B** Extracted ion chromatograms at [M+H]⁺ 160.097 of *in vivo* metabolite extract, synthesized authentic NHP-methyl-ester standard, *in vitro* assay with NHPMT1 and *in vitro* assay with boiled NHPMT1 as control. **C** Comparison of MSMS-fragments of authentic MeNHP-standard and *in planta* MeNHP. **D** Relative amount of MeNHP in Col-0, *ald1*, *FMO1-3D* and *FMO1-3D ald1* plants. Col-0 and *ald1* plants were kept untreated or treated with UV-C for 20 min. Plants were incubated for 24 hours before harvesting. *FMO1-3D* and *FMO1-3D ald1* plants were left untreated before harvesting. Data represents mean of three biological replicates for the MeNHP signal (relative signal area) via UHPLC-HRMS analysis. Error bars represent standard deviation. Letters indicate statistical differences, individually calculated for each experiment (p < 0.05, one-way ANOVA post-hoc tukey-test).

Fig. 4. Co-infiltration of NHP/D₉-NHP into Col-0, *fmo1-1* and *ugt76b1-1* with a subsequent UV-C-trigger underlines additional *in planta* synthesis of NHP-derivates. Into unstressed leaves, either mock solution (10 mM MgCl₂) or a mixture of 1 mM NHP and 1 mM D₉-NHP were infiltrated. Plants were kept untreated as control or stressed afterwards for 20 min with UV-C light. The plants were incubated for 24 hours in short day conditions before infiltrated leaves were harvested. The extracted leaf material was analyzed with UHPLC-HRMS. Data was analyzed using Profinder 10.0 (Agilent Technologies, Santa Clara, CA, USA) and MarVis (Kaeber et al. 2015). Each sample represent an independent pool of 6 infiltrated leaves of two plants each. Data are shown in Box-Plots representing mean and standard deviation.

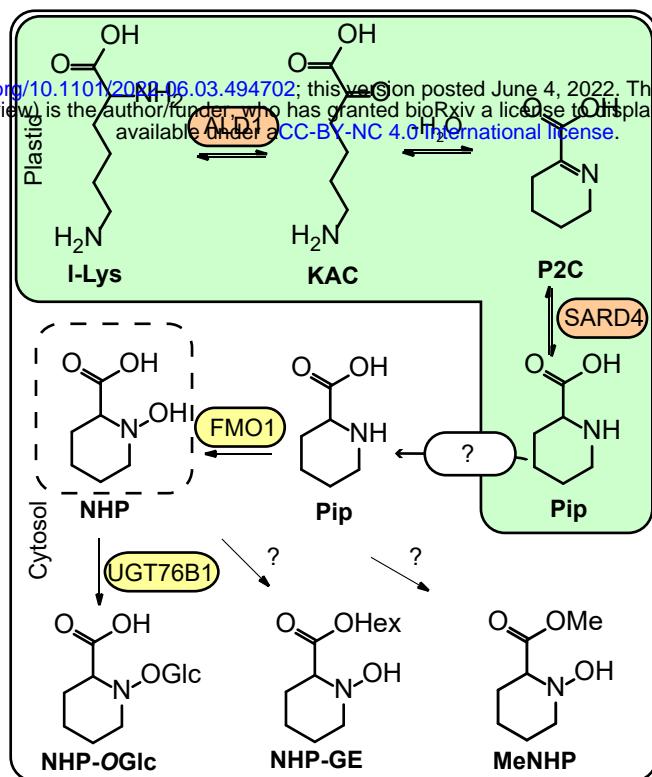
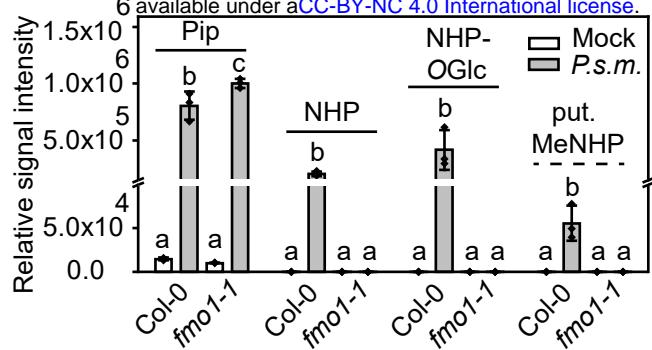
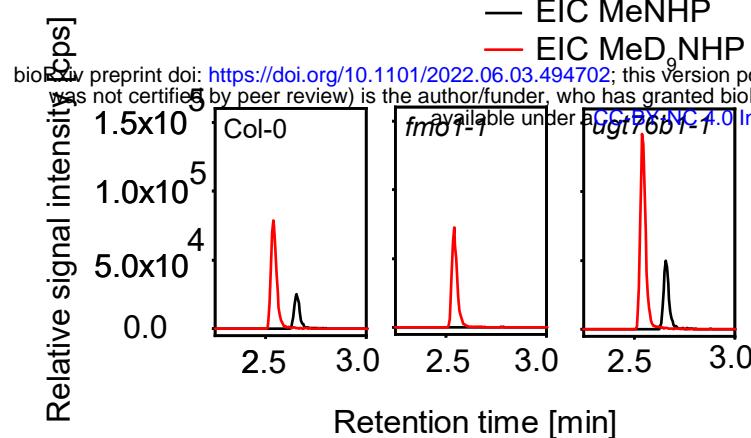
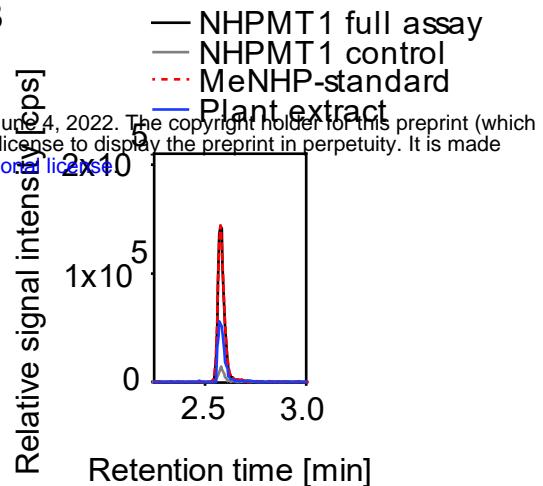
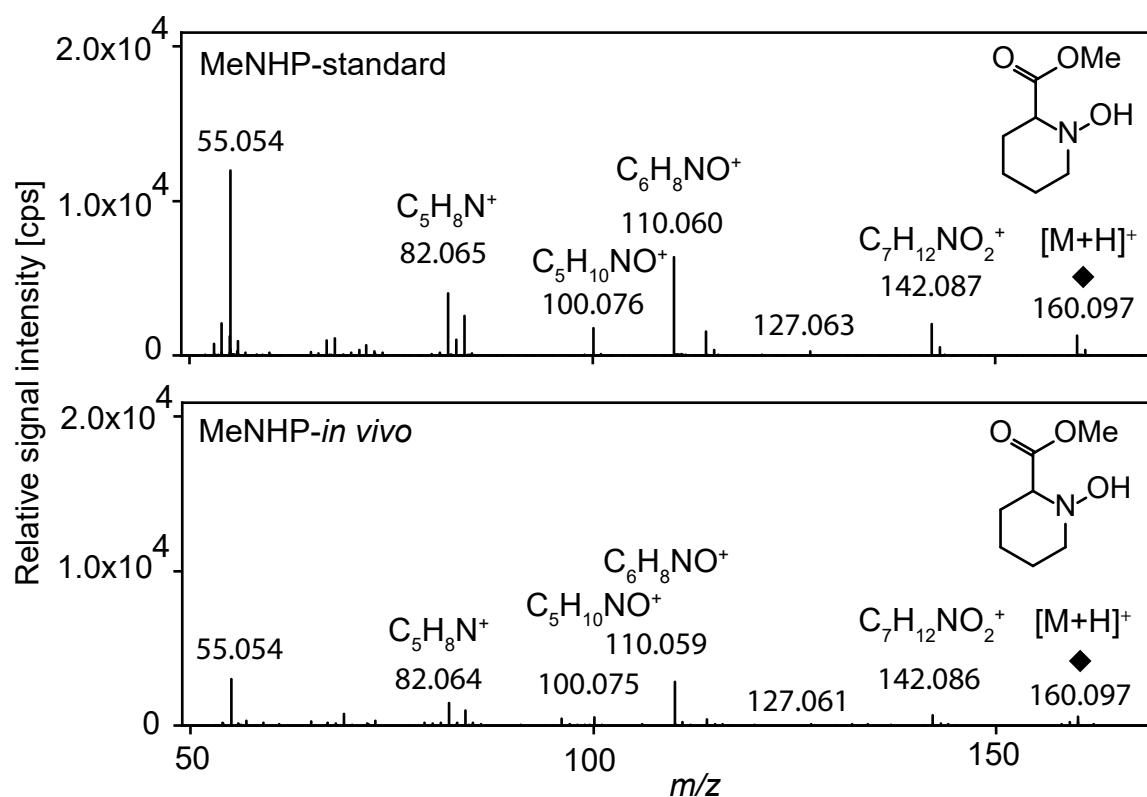
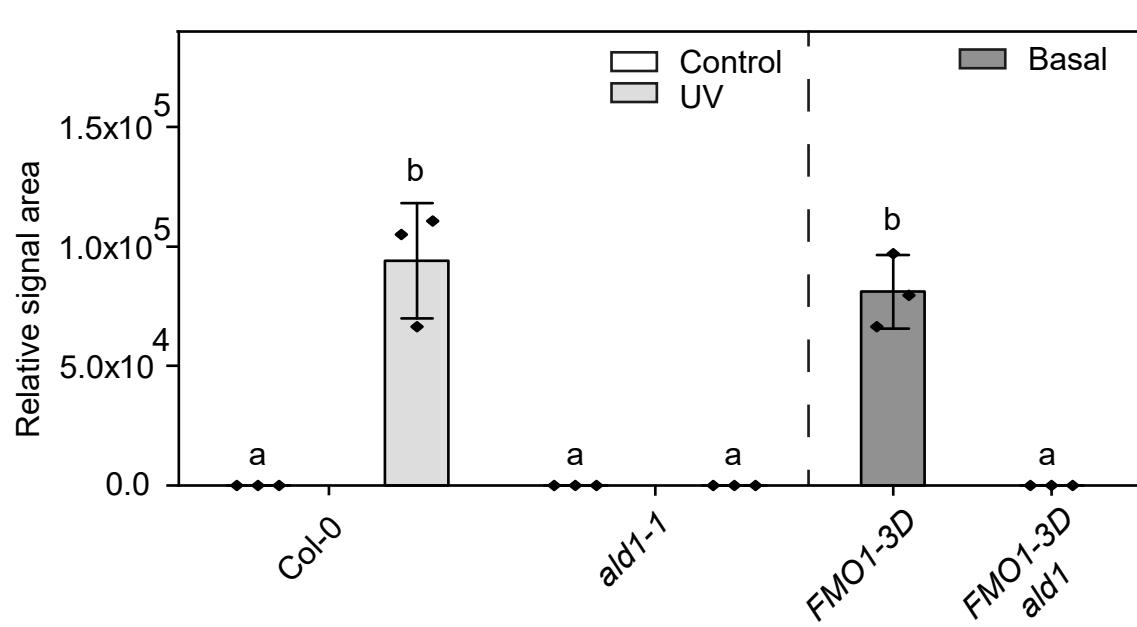
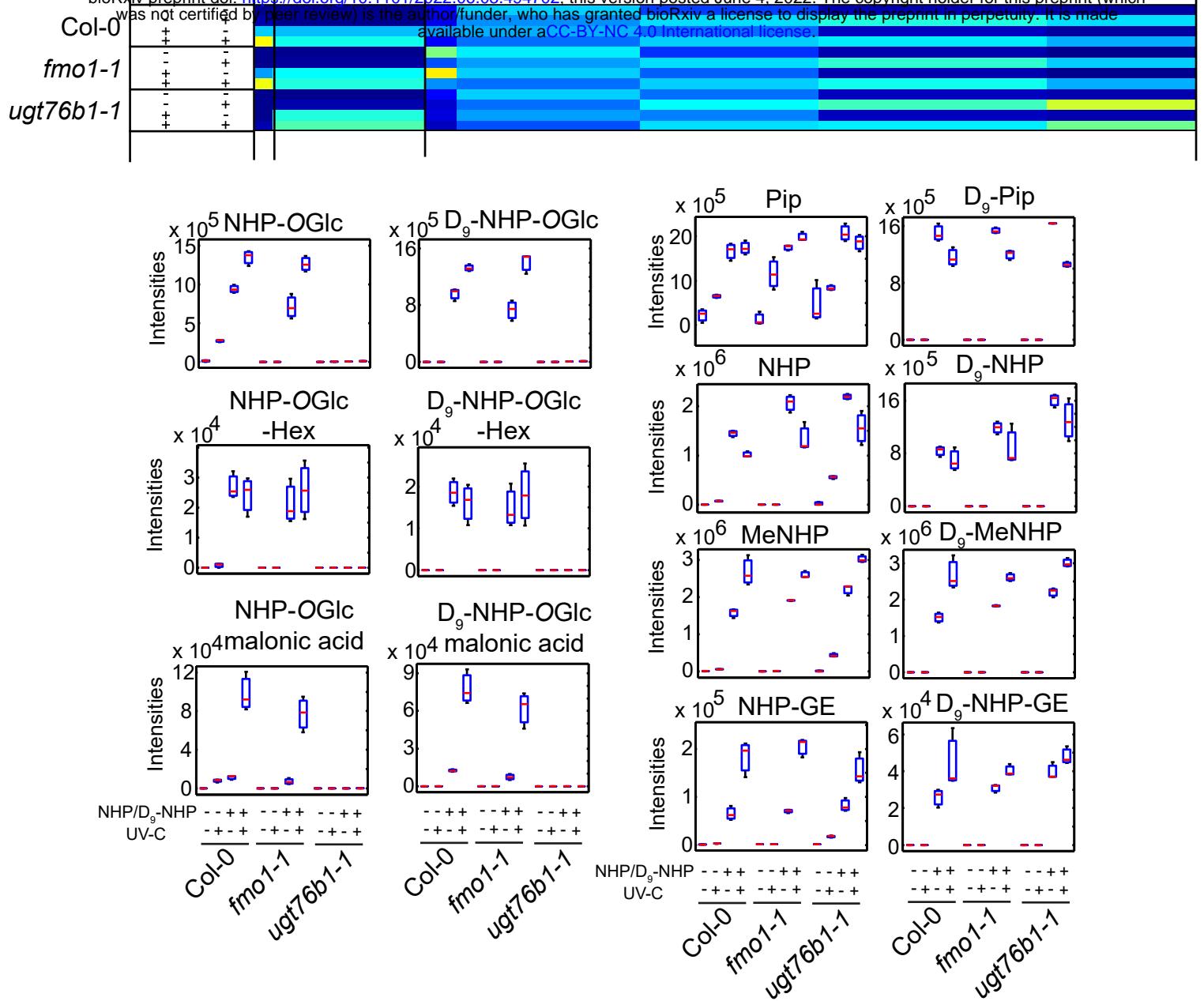

Fig. 5. MeNHP-infiltration leads to metabolite remodeling including NHP and Pip accumulation in *fmo1-1* mutant background. Col-0, *fmo1-1* and *fmo1ugt76b1* were grown in short day conditions for 5 weeks. Plants were infiltrated with 10 mM MgCl₂ (Mock) or 1 mM MeNHP in 10 mM MgCl₂ (MeNHP). The plants were incubated overnight and harvested 20 hours post infiltration. Samples were extracted with 80 % MeOH and measured with UHPLC-HRMS. Data were analyzed using Qualitative analysis (Agilent Technologies, Santa Clara, CA, USA) for relative signal area of the respective compound shown. Relative signal areas of MeNHP, SA, SAG, Pip, NHP, NHP-OGlc, NHP-GE and MeNHP-OGlc are shown in mock and MeNHP treated Col-0, *fmo1-1* and *fmo1ugt76b1*. Each replicate represents an independent pool of 6 infiltrated leaves from two plants. Data represent mean with standard deviation. Statistical analysis was done using Origin Pro 2020. Letters indicate statistical differences (p < 0.05, one-way ANOVA post-hoc tukey-test).

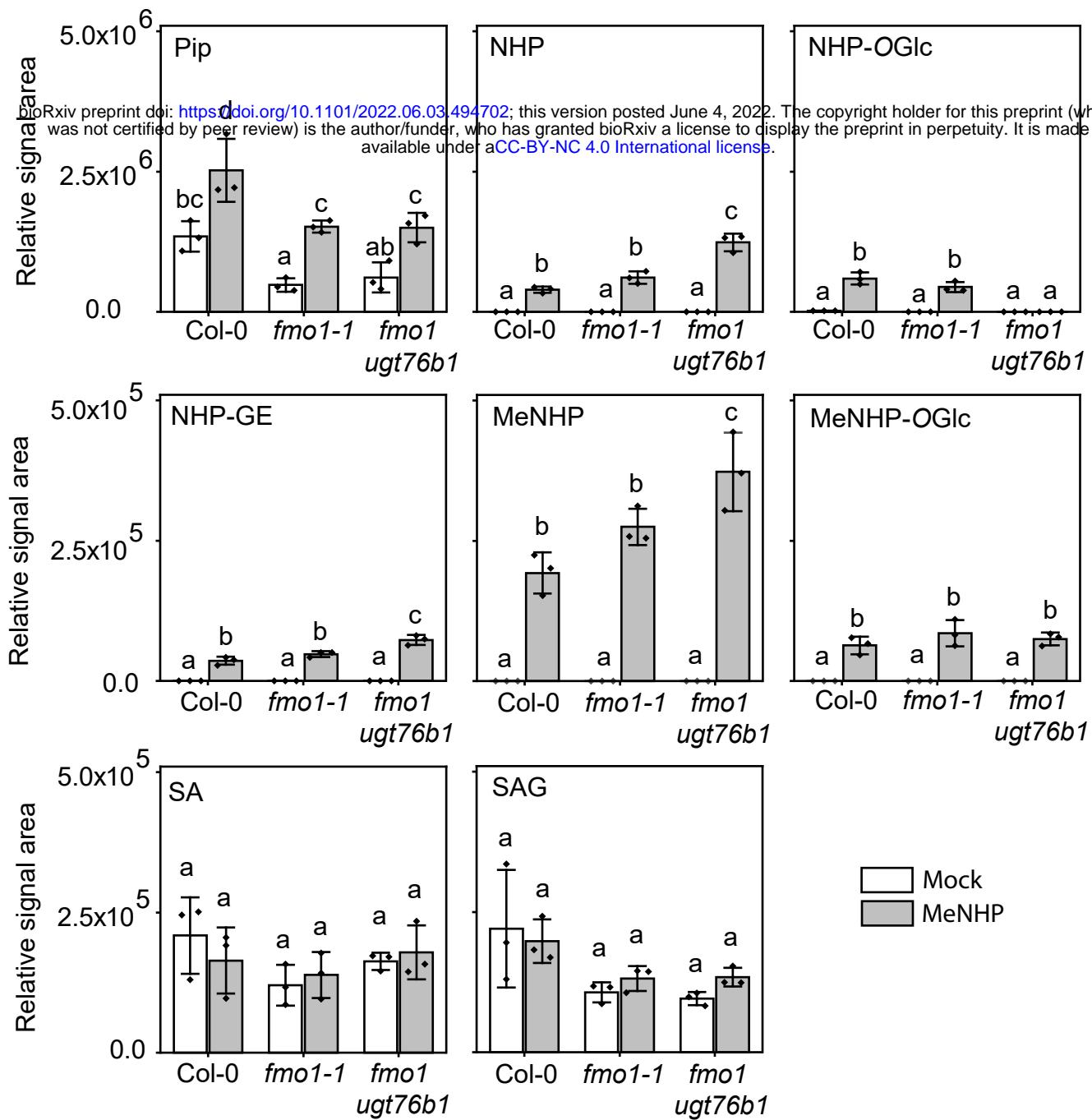
Fig. 6. MeNHP infiltration rescues the *fmo1-1* infection phenotype against *Hyaloperonospora arabidopsis* Noco 2 compared to mock treatment. **A** Four different concentrations of MeNHP


(200 μ M, 125 μ M, 20 μ M and 1 μ M) were applied to *fmo1-1* mutant plants and *H. arabidopsis* Noco 2 spore growth was assayed compared to individual mock (water) treated plants. **B** Col-0 and *fmo1-1* mutant plants were treated with MeNHP at a concentration of 200 μ M or 125 μ M.

H. arabidopsis Noco 2 spore growth was assayed compared to individual mock (water) treated plants. Plants were grouped into disease categories from 5 (heavy spore growth) to 0 (no spore growth). Disease categories were assigned as following: Category 5 = more than two leaves harbor > 5 spores, 4 = two leaves harbor > 5 spores, 3 = two leaves < 5 spores, 2 = one leaf > 5 spores, 1 = one leaf < 5 spores, 0 = no spores at all. n= 10-15 plants per treatment.





Fig. 7. NHP turnover in Arabidopsis induced by UV-C and *P.s.m.* infiltration. The scheme concludes the detected metabolic routes of NHP-turnover. In response to UV-C stress and *P.s.m.* infection, Arabidopsis synthesizes Pip and NHP. To reduce cellular NHP levels, it is hydrolyzed, glycosylated and methylated. Respective products were shown to be further metabolized to complex conjugates, NHP-OGlc-Hex and putatively to NHP-OGlc-malonic acid. Identified enzymes from *in vivo* are circled in purple. Enzymes with identified *in vitro* activity are circled in yellow. Reactions with neither enzyme described *in vivo* nor *in vitro* are marked with a question mark.


Fig. 1. Biosynthesis route of NHP-metabolites in *Arabidopsis*. In the plastid, 1-lysine (l-Lys) is converted by AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) to epsilon-amino-alpha-keto caproic acid (KAC). Via spontaneous cyclization under water loss of KAC, piperidein-2-carboxylic acid (P2C) is formed. A reductase capable to reduce P2C to pipecolic acid (Pip) is SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 4 (SARD4). How pipecolic acid is exported from the chloroplast is still elusive. The FLAVINE-DEPENDENT MONOOXYGENASE 1 (FMO1) catalyzes *N*-hydroxylation of Pip, resulting in *N*-hydroxy pipecolic acid (NHP) (Chen *et al.*, 2018; Ding *et al.*, 2016; Hartmann *et al.*, 2018; Navarova *et al.*, 2012). NHP was shown to be glycosylated by UGT76B1 to NHP-*O*-glycoside (NHP-*O*-Glc). Furthermore, NHP-glycoside-ester (NHP-GE) was described, but respective enzyme is not known (Bauer *et al.*, 2021; Hartmann and Zeier, 2018). Methylation of NHP to NHP-methyl-ester (MeNHP) was shown as an additional mechanism of NHP-turnover *in planta* in this study.


Fig. 2. Accumulation of selected *FMO1*-dependent and independent metabolites in Col-0 and *fmo1-1* leaves in response to *P.s.m.* infiltration. *A. thaliana* plants grown for 6 weeks under short-day conditions (8h light/16h dark) were infiltrated with 10 mM MgCl₂ (Mock) or virulent *P. syringae* ES4326 strain at OD₆₀₀= 0.05 in 10 mM MgCl₂ (*P.s.m.*). Infiltrated leaves were harvested 24 hours post infiltration, extracted by MTBE-procedure and analyzed via UHPLC-HRMS. Data were processed using Profinder 8.0 (Agilent Technologies, Santa Clara, CA, USA) and OriginPro2020 (Origin, San Francisco, CA, USA). Relative signal intensities of Pip, NHP, NHP-OGlc and putative methyl-NHP (put. MeNHP) are shown. Y-axis has a break between 1x10⁵ and 1.5x10⁵. Bars represent mean values with standard deviation of n=3 replicates. Letters indicate statistical differences, individually calculated for each metabolite (p < 0.05, one-way ANOVA post-hoc tukey-test). Each replicate represents an independent pool of nine infiltrated leaves from three plants.

A**B****C****D**

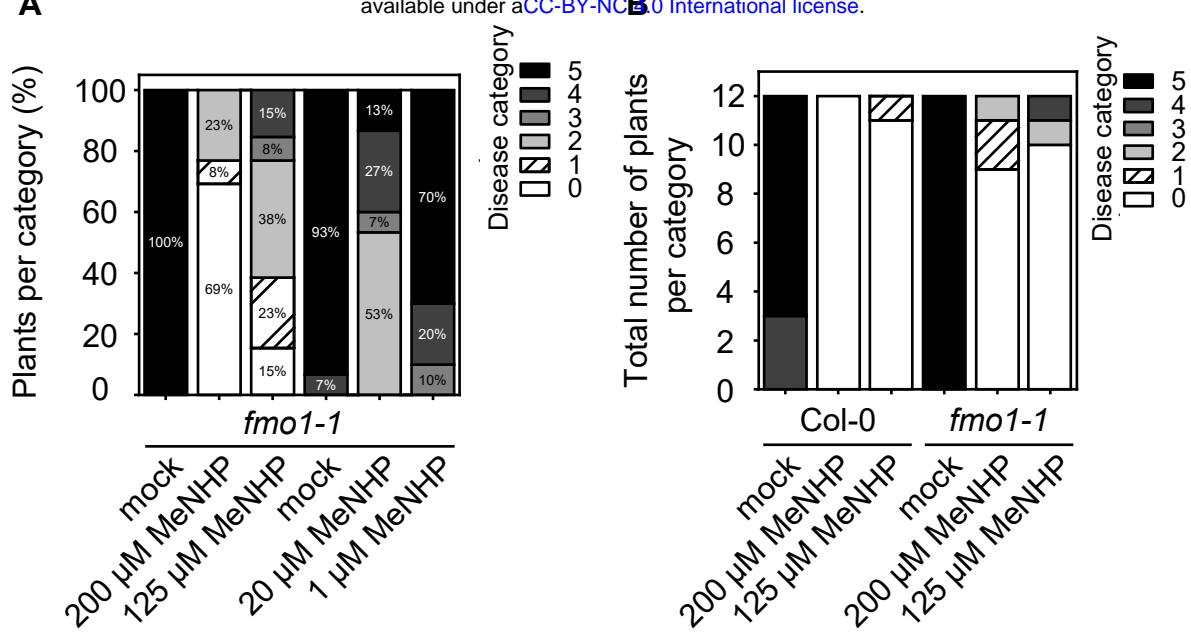

Fig. 3. Characterization of *N*-hydroxy pipecolic acid methyl ester (MeNHP). **A** Extracted ion chromatograms of MeNHP [$M+H$]⁺ 160.097 and D₉-MeNHP [$M+H$]⁺ 169.159 in Col-0, *fmo1* and *ugt76b1-1* leaves. Col-0, *fmo1-1* and *ugt76b1-1* leaves were infiltrated with D₉-NHP. After 24 hours, leaves were harvested, extracted and analyzed by UHPLC-HRMS. **B** Extracted ion chromatograms at [$M+H$]⁺ 160.097 of *in vivo* metabolite extract, synthesized authentic NHP-methyl-ester standard, *in vitro* assay with NHPMT1 and *in vitro* assay with boiled NHPMT1 as control. **C** Comparison of MSMS-fragments of authentic MeNHP-standard and *in planta* MeNHP. **D** Relative amount of MeNHP in Col-0, *ald1*, *FMO1-3D* and *FMO1-3D ald1* plants. Col-0 and *ald1* plants were kept untreated or treated with UV-C for 20 min. Plants were incubated for 24 hours before harvesting. *FMO1-3D* and *FMO1-3D ald1* plants were left untreated before harvesting. Data represents mean of three biological replicates for the MeNHP signal (relative signal area) via UHPLC-HRMS analysis. Error bars represent standard deviation. Letters indicate statistical differences, individually calculated for each experiment ($p < 0.05$, one-way ANOVA post-hoc tukey-test).

Fig. 4. Co-infiltration of NHP/D₉-NHP into Col-0, *fmo1-1* and *ugt76b1-1* with a subsequent UV-C-trigger underlines additional *in planta* synthesis of NHP-derivates. Into unstressed leaves, either mock solution (10 mM MgCl₂) or a mixture of 1 mM NHP and 1 mM D₉-NHP were infiltrated. Plants were kept untreated as control or stressed afterwards for 20 min with UV-C light. The plants were incubated for 24 hours in short day conditions before infiltrated leaves were harvested. The extracted leaf material was analyzed with UHPLC-HRMS. Data was analyzed using Profinder 10.0 (Agilent Technologies, Santa Clara, CA, USA) and MarVis (Kaeber et al. 2015). Each sample represent an independent pool of 6 infiltrated leaves of two plants each. Data are shown in Box-Plots representing mean and standard deviation.

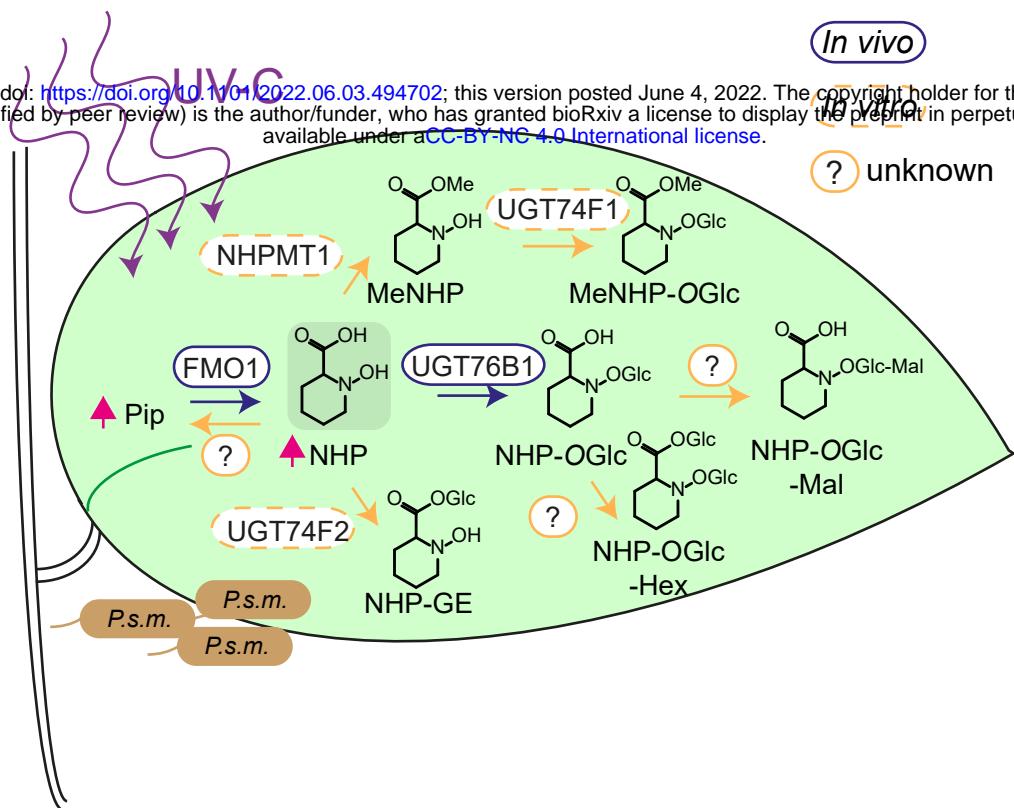

Fig. 5. MeNHP-infiltration leads to metabolite remodeling including NHP and Pip accumulation in *fmo1-1* mutant background. Col-0, *fmo1-1* and *fmo1ugt76b1* were grown in short day conditions for 5 weeks. Plants were infiltrated with 10 mM MgCl₂ (Mock) or 1 mM MeNHP in 10 mM MgCl₂ (MeNHP). The plants were incubated overnight and harvested 20 hours post infiltration. Samples were extracted with 80 % MeOH and measured with UHPLC-HRMS. Data were analyzed using Qualitative analysis (Agilent Technologies, Santa Clara, CA, USA) for relative signal area of the respective compound shown. Relative signal areas of MeNHP, SA, SAG, Pip, NHP, NHP-OGlc, NHP-GE and MeNHP-OGlc are shown in mock and MeNHP treated Col-0, *fmo1-1* and *fmo1ugt76b1*. Each replicate represents an independent pool of 6 infiltrated leaves from two plants. Data represent mean with standard deviation. Statistical analysis was done using Origin Pro 2020. Letters indicate statistical differences ($p < 0.05$, one-way ANOVA post-hoc tukey-test).

Fig. 6. MeNHP infiltration rescues the *fmo1-1* infection phenotype against *Hyaloperonospora arabidopsis* Noco 2 compared to mock treatment. **A** Four different concentrations of MeNHP (200 μM, 125 μM, 20 μM and 1 μM) were applied to *fmo1-1* mutant plants and *H. arabidopsis* Noco 2 spore growth was assayed compared to individual mock (water) treated plants. **B** Col-0 and *fmo1-1* mutant plants were treated with MeNHP at a concentration of 200 μM or 125 μM. *H. arabidopsis* Noco 2 spore growth was assayed compared to individual mock (water) treated plants. Plants were grouped into disease categories from 5 (heavy spore growth) to 0 (no spore growth). Disease categories were assigned as following: Category 5 = more than two leaves harbor > 5 spores, 4 = two leaves harbor > 5 spores, 3 = two leaves < 5 spores, 2 = one leaf > 5 spores, 1 = one leaf < 5 spores, 0 = no spores at all. n= 10-15 plants per treatment

In vivo

In vitro

Fig. 7. NHP turnover in *Arabidopsis* induced by UV-C and *P.s.m.* infiltration. The scheme concludes the detected metabolic routes of NHP-turnover. In response to UV-C stress and *P.s.m.* infection, *Arabidopsis* synthesizes Pip and NHP. To reduce cellular NHP levels, it is hydrolyzed, glycosylated and methylated. Respective products were shown to be further metabolized to complex conjugates, NHP-OGlc-Hex and putatively to NHP-OGlc-malonic acid. Identified enzymes from *in vivo* are circled in purple. Enzymes with identified *in vitro* activity are circled in yellow. Reactions with neither enzyme described *in vivo* nor *in vitro* are marked with a question mark.