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Abstract:

CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory.
Empirical rules-of-thumb have been established for only a narrow range of model organisms, and
mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes
a novel feature set and new public resource, produced with quantum chemical tensors, for
interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is
performed using an explainable-artificial intelligence model; iterative Random Forest (iRF). By
encoding quantitative attributes of position-specific sequences for E. coli sgRNAs, we identify
important traits for SRNA design in bacterial species. Additionally, we show that expanding
positional encoding to quantum descriptors of base-pair, dimer, trimer and tetramer sequences
captures intricate interactions in local and neighboring nucleotides of the target DNA. These
features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapien
genomes. These novel encodings of SgRNAs greatly enhance our understanding of the elaborate
quantum biological processes involved in CRISPR-Cas9 machinery.
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CRISPR-Cas9 is revolutionizing genome-editing through the use of a single guide RNA (sgRNA)
to direct precise cleavage at endogenous locations in the genome 2. The first step to engineer or
modify a specific region using CRISPR-Cas9 is to computationally predict cutting efficiencies of
potential sgRNAs. The CRISPR-Cas9 system depends on this designed sgRNA to target the
protein complex to a region flanked by a 3’°NGG protospacer adjacent motif (PAM). The CRISPR-
Cas9 system is only successful if both specificity and efficiency occur at the target loci 3. To
inform sgRNA sequence choices, genomic feature analyses have associated SgRNA attributes with
cutting efficiency for CRISPR-Cas9 systems #8.

Predicting sgRNA efficiency requires careful consideration of relationships among the sgRNA
sequence, genomic features of the target region, and activity within the CRISPR-Cas9 system.
Some of these relationships have been studied extensively 9. Among them, nucleotide composition
of the target sequence is the most thoroughly studied contributor to sgRNA efficiency 1012,
Specific nucleotide patterns have been associated with sgRNA efficiency; including the presence
of guanine and absence of thymine near the PAM sequence, preference for cytosine near the cut
site, and overall GC content 31113, The seed region — defined as the five to ten bases of the target
sequence nearest the PAM — is of central consideration for these patterns in sgRNA sequence
composition 101214,

While nucleotide sequence patterns are observed across species, their influence on integration and
cleavage with CRISPR-Cas9 may vary 11518 The added complexities of chromatin structure have
started to be considered, enhancing understanding of CRISPR-Cas9 dynamics. For example,
human models were expanded with information about the insertion point within the gene sequence
19 and secondary structure of the target sequence 292!, Target regions with low nucleosome
occupancy and high chromatin accessibility have also been investigated 2226, These structural
nuances underscore even greater variation in the CRISPR-Cas9 system across organisms.

DNA is less protected in prokaryotic cells than in eukaryotic cells because of a simpler chromatin
structure; and target regions are often more accessible 3. In contrast, mammalian cells have highly-
active non-homologous end-joining systems, which induce repair mechanisms for the DNA double
strand break during CRISPR-Cas9 integration. In prokaryotes, sgRNA activity is correlated with
cellular survival because double stranded breaks are lethal to the cell /. These pronounced
differences in structure and function illuminate, in part, why models trained for mammalian species
have failed to provide sgRNAs that consistently integrate with the target sequence in other
kingdoms. This insufficiency spurred development of organism-tailored models, including those
for plants 1, yeast ‘8 and bacteria 2. Expanding the breadth and chemical specificity of model
feature sets provides useful avenues for extending state-of-the-art SgRNA efficiency prediction to
other organisms and non-model species. To achieve this next level of model prediction power,
quantum chemical properties warrant consideration.

Bridging chemistry and physics, quantum chemical properties capture the ways in which electron
density impact the reactivities and energetics of molecules. Some properties, such as the HOMO-
LUMO gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap),
describe how electron density is distributed among atoms. Meanwhile, other properties, like
hydrogen-bonding energy or n-stacking energy, describe how a system’s total energy changes as
molecules interact. Such properties depend on how the molecular electron densities shift in
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response to one another. Incorporating quantum chemical detail when characterizing or predicting
biological processes has been transformative for biology; providing new frameworks for viewing
processes, identifying novel features, and enhancing mechanistic understandings 2°°, This work
spotlights quantum properties including HOMO-LUMO gaps, hydrogen bonding, and stacking
interactions to investigate the complex molecular interactions of the DNA double helix and the
DNA CRISPR-Cas9 sgRNA hybrid.

Machine learning models excel at identifying patterns in data to inform outcomes; but the power
behind these algorithms is bottlenecked by the depth and breadth of the training data. Current
methods of feature evaluation for CRISPR-Cas9 efficiency are trained on experimental sgRNA
cutting efficiency data from a narrow range of eukaryotic species, including human, mouse, and
zebrafish 4. While these models’ species-by-species rules for sgRNA prediction are informative,
their insights are rarely generalizable. Therefore, to develop advanced predictive models, the
training data must be sufficiently detailed to capture the complexities of genomic structure and
content that influence efficiencies of CRISPR-Cas9 integration and cleavage across systems.

Here we use machine learning approaches to unravel these species-dependent rules of sgRNA
efficiency. Many current Al model generation approaches use techniques such as neural networks
that can obscure associations behind a “black box” of decision schemes. We sought to understand
feature contributions to cutting efficiency for E.coli through an explainable-artificial intelligence
(XAI) approach. We used iterative Random Forest (iRF), an XAl method designed for model
transparency and feature evaluation, to assess CRISPR-Cas9 efficiency and improve our
understanding of the system’s underlying biological mechanisms. When trained on detailed feature
sets, XAl models provide a shared basis for predicting SgRNA efficiency across organisms. This
work extends sgRNA efficiency modeling to assess both E. coli and H. sapien datasets.
Additionally, our model integrates a novel and interdisciplinary feature set that includes quantum
chemical properties.

Results:
Feature importance with iterative Random Forest

We assess iRF-based predictive models that leverage quantum descriptors for multiple degrees of
base-pair polymerization. This data captures interactions within the sgRNA nucleotide sequence,
along with properties of the individual bases. This approach combines the increased interpretability
of XAl methods for feature interpretation with the novel incorporation of quantum chemical
properties to further mechanistic understandings of CRISPR-Cas9. Models were generated for
SgRNA efficiency in E. coli and H. sapien. Additionally, the variations in feature importance
across kingdoms were assessed.

A publicly-available E. coli dataset was used to generate a detailed feature matrix to determine
highly-influential properties for predicting CRISPR-Cas9 cutting efficiencies (Figure 1). In this
model, the dependent variable (Y-vector) is the experimental cutting efficiency score for every
SgRNA. We used quantum chemical features of nucleotides to capture the intricacies of the multi-
step CRISPR-Cas9 mechanism. In addition, base-pair oligomers (kmers) up to tetramers were
incorporated to enhance understanding of nucleotide position within the SgRNA structure through
binary encoding (one-hot kmers) and quantum chemical properties (quantum kmers). Features
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previously determined to influence CRISPR-Cas9 efficiency in mammalian species were also
encoded; including GC content, melting temperature, and one-hot encoding of single and paired
nucleotides of the target sequence. In addition, we included quantitative measures such as the
distance between the target sequence and the nearest PAM (NGG sequence) and location of the
target sequence relative to the nearest gene. To sharpen insight into the particular contributions of
each feature, predictive capabilities were assessed by Pearson correlations and accuracy (R?)
metrics (Supplemental Results). The iRF model using the complete feature matrix results in a
predictive accuracy of 0.51, which is comparable with the most predictive models currently
available. Quantum kmers and one-hot kmers contribute the largest feature set contributions,
pinpointing isolated features important for sgRNA engineering.

Feature engineering highlights the role of quantum mechanics

A feature engineering approach enhances the understanding of factors influencing sgRNA
efficiency by identifying the model’s most important variables. A total of 6,232 features capturing
information in E. coli were used in an iRF model (the full E. coli feature set). This model was
trained on 32,374 sgRNA and tested on 8,094 sgRNA sequences. This complete feature matrix
cast as an iRF framework resulted in significant correlations between predicted and experimental
SsgRNA cutting efficiency values (Figure 2A). Furthermore, high prediction levels were found in
the iIRF model using only the quantum chemical properties feature set; and accuracy increased
incrementally as additional features and kmers were incorporated (Figure 2A; Figure S1;
Supplemental results). Below, we focus on a subset of features that contributed large effects to
predicting sgRNA efficiency (Figure 2B-C).

Based on the feature importance values produced by iRF, top features emphasized positionally-
encoded kmers of quantum chemical properties and one-hot encoding of the target sequence
(Figure 2B). Top features were localized to positions 18 through 20 of the target sequence. This
region is proximal to the sgRNA tailpin structure, the target DNA PAM sequence, and cut site for
the Cas9 nuclease. The most important feature was the HOMO-LUMO energy gap for the base
pair at position 20 of the target sequence (Figure 2B). This feature alone accounted for more than
6% of the variance in empirical sgRNA efficiency. The next most important feature was the base-
pair dimer stacking energy at bases 19 and 20; accounting for ~3% of the variance. Hydrogen bond
energy of the base pair at position 20 shows a similar contribution. Following these features in
importance, we observe several position-dependent base pair dimer, trimer, and tetramer quantum
chemical-encoded values. Each of these features accounted for 1-2% of the dataset variance.
Several one-hot encoding sequences were also important features, including cytosine positions 15
and 16 (CC pos15) and a CCA beginning at position 19. Additionally, several features with high
feature importance scores are consistent with trends in the literature, including GC content and
melting temperature .

Each decision tree within an iRF model selects features based on their contribution to the predictive
ability of the experimental dataset. Because of complex relationships between features and
SgRNA, however, individual features may not be influential for every sgRNA in the model.
Therefore, each feature’s average number of affected sgRNAs was also calculated for all decision
trees within the iRF model. This average was compared with the total number of training data
SgRNAs to determine the relative proportion of sgRNAs that each feature influenced (Figure 2C).
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The twenty highest-magnitude features affected between 20% and 85% of sgRNA samples. The
three most-commonly influential features included the base pair 20 HOMO-LUMO gap energy,
the base-pair 19-20 dimer hydrogen bond energy , and the base-pair 1-4 tetramer hydrogen bond
energy (Figure 2C). These top features span both positive and negative associations with predicted
cutting efficiency scores.

Assessing feature association with sgRNA efficiency

Each feature was assigned a direction (positive or negative) and effect size, calculated with a
random intersection tree (RIT)-based approach (Figure 3A; ?). These components describe a
feature’s relationship with the cutting efficiency score, allowing for greater interpretation of that
feature’s role in the CRISPR-Cas9 mechanism. For example, it has been shown that higher melting
temperatures and greater GC content decrease guide efficiency L. This anti-correlated relationship
is demonstrated in our model by a negative feature effect value (Figure 3A/C). Important features
exhibited both positive and negative correlations with the predicted cutting efficiency score.

The top positional encoding features also showed varied directions of correlation with sgRNA
cutting efficiency. Two essential features are the HOMO-LUMO gap and hydrogen bond strength
at position 20 of the sgRNA and target sequence (Figure 3A/C, S2A-B). The HOMO-LUMO gap
is positively correlated with sgRNA cutting efficiency, while the hydrogen bond strength at the
same position is anti-correlated. Further, the directionality of the hydrogen bond strength effect
varies by position and encoding length — whether base-pair monomers, dimers, trimers, or
tetramers are considered. Hydrogen bond strength in positions 18-20 have negative effects, while
hydrogen bond strength at position 1 has a positive effect. This contrast indicates varied
preferences for hydrogen bonding energy across regions of the target sequence. One-hot encoding
indicates position 15 CC as anti-correlated, while position 19 GC is positively correlated with
SgRNA cutting efficiency. Additionally, our model indicates that increased distance to PAM is
anti-correlated with sgRNA cutting efficiency.

Quantum chemical insights into kingdom-specific dynamics

Current species-trained models in the literature are inadequate for prediction across organisms. To
assess organism specificity of our iRF model, we tested the efficacy of the full E. coli-trained
model on several publicly accessible H. sapien datasets %33, The resulting predictions were
extremely poor, with a Pearson correlation of 0.016. This reinforces the idea that features
determined by models trained on experimental data from a single species are not predictive across
species, particularly where varied CRISPR-Cas9 interactions and complex DNA structures
contribute.

E. coli and H. sapien represent different kingdoms; Eubacteria and Animalia. These classifications
span single-celled to multi-celled organisms; varied organellar makeup and diversity in genomic
and epigenomic structures and compositions. To compare the predictive capability of the newly
integrated feature set across kingdoms, we generated a model trained on H.sapien-specific data
1033 The full feature matrix was generated as described for the E. coli model, using the specified
SgRNA sequences in the Doench et al. 2014 (1,278 sgRNAs) and Chuai et al. 2018 (16,749
SgRNASs) datasets. The iIRF model was prepared with the same five-fold cross validation scheme
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as for the E. coli models. The resulting model had a Pearson correlation of 0.50 (Table 1). This is
competitive with several of the top predictive cutting efficiency models currently available for
human genome editing 4.

To explore this result, we cross-examined the twenty highest-scoring features for each species-
trained model (Figure 3). Similarly to those identified in the E. coli model, quantum chemical
tensors in the target sequence’s seed region (sgRNA position 10-20, closest to the PAM sequence)
appear to drive the H. sapien model prediction (Figure 3B). While quantum chemical tensors as a
feature set are important for sgRNA efficiency in both E. coli and H. sapien, the particular features
of importance vary considerably between models. In E. coli, the occupancy of frontier orbitals for
PAM-adjacent nucleotides was a driving factor in CRISPR-Cas9 cutting (Figure 3C). In the H.
sapien model, however, properties in central regions of the target sequence were highlighted,
specifically positions 5-15 (Figure 3D). Key features for this model emphasize hydrogen bond
energy and stacking interaction along with electron occupancy (Figure 3B/D). These features
signpost novel mechanistic interpretations focused on central regions of the target sequence that
can be explored in future biological studies.

Discussion:

Current sgRNA efficiency prediction models are limited by a narrow range of species data for
training. To enhance the predictive accuracy, many models use deep learning techniques that can
obscure interpretability of feature influence. This work sought to expand understanding of the
factors influencing sgRNA efficiency through a bacterial dataset and an explainable-Al method.
Furthermore, incorporation of quantum chemical properties provided novel insights into the
interpretation of sgRNA efficiency dynamics and the CRISPR-Cas9 mechanism.

A panel of E.coli sgRNA sequences were encoded into a matrix incorporating PAM sequence
distance, sgRNA melting temperature, GC content, one-hot binary encoding, and quantum
chemical property encoding. This detailed feature set was used to train an XAl iRF model. The
predictive capability of the machine learning model was enhanced by advanced kmer features
(binary and quantum) and is competitive with currently-available models. The XAl methodology
permitted investigation of the underlying features by quantifying feature importance scores.

Quantum chemical properties carried the highest importance for prediction of sgRNA efficiency.
This feature set is novel in the domain of CRISPR-Cas9 models and enhances the model’s
biological interpretability. Beyond position-specific sequence information, which is commonly
encoded in a binary matrix, quantum chemical properties signpost the varied nucleotide
interactions that mediate the CRISPR-Cas9 mechanism. The sgRNA seed region featured quantum
properties with high predictive capacities. Descriptors of hydrogen bond energy, stacking
interactions, and HOMO LUMO gaps enrich the interpretation of why this region plays a vital role
in CRISPR-Cas9 efficiency. Particularly, we note indications of mechanistic competition for
preferred structural features. We focus on three main themes: locality in the “seed region”, degree
of base-pair polymerization, and mechanistic competition (Figure 3C).

The “seed” region, the five to ten base pairs on the target sequence’s 3’ end nearest to the PAM
sequence and cleavage site, has been a focus of sgRNA construction across mammalian species.
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Several of the top E. coli-based features, specifically quantum properties for base-pair and dimer
structures, are essential in positions 18-20 (Figure 3A; Figure 3C). In contrast, the seed region
features further from the PAM sequence are specific to tetramer complexes. These differences
suggest a structure-activity relationship, and may indicate variation in the mechanistic steps
involving these regions. Looking to the multi-step CRISPR-Cas9 mechanism, we postulate that
considering both DNA-DNA double helix unwinding and subsequent DNA-RNA binding are
essential for interpreting these results.

This distinction can be seen when interpreting a positive correlation between the hydrogen bond
stacking energy at position 18 of the target sequence (Figure 3A). Mechanistically, this indicates
that position 18 is important for DNA-RNA binding. Once helix melting has been initiated at the
target sequence’s 3’ end, the remaining sequence composition is less important for unwinding.
Therefore, while lower hydrogen bond strength at position 20 is energetically preferable for DNA
double helix melting, higher hydrogen bond strength at position 18 is important for strong DNA-
RNA binding (Figure 3A).

In another view, a positive correlation between the HOMO-LUMO gap energy and cutting
efficiency is observed at position 20. The HOMO-LUMO gap may capture conformational
changes that are occurring during the initial integration of the CRISPR-Cas9 molecule. We note
recent work identifying the “phosphate lock loop” in this interpretation. When the PAM sequence
is identified and bound, the DNA “kinks” to enable DNA helix unwinding and permit DNA-RNA
binding. These structural events are stabilized by a phosphate lock loop proximal to the PAM 3+
37, While a high HOMO-LUMO gap at this region may describe a change in molecular stability,
the weaker hydrogen bond may relate to the DNA double helix unwinding that follows.

A further discovery was the variation in influential properties for sgRNA efficiency across species.
The novel quantum chemical property feature set is transferable across species because of its
construction from simple nucleotide sequences. While the model does not provide a
comprehensive view of nucleotide binding and interaction in complex genomes, it does provide a
structural grounding for mechanistic interpretations that cannot be captured with traditional binary
encodings. Species-tailored iRF models generated utilizing E. coli and H. sapien data exemplify
this increase in interpretability. Moreover, the H. sapien model provides sufficient predictive
power while allowing for feature engineering insight not currently available with top predictive
models in the field due to their deep learning focus 8. This model performance points to the
beneficial integration of quantum chemical properties, not only for interpretation but for sgRNA
efficiency prediction.

While this novel feature set was shown to be of high importance across species, the specific
quantum chemical properties differed. This highlights its use for understanding complex
mechanisms across diverse species sets and supports critiques that current organism-tailored
models are not applicable across species. This was further emphasized by the very low
performance of the E. coli trained model as a predictor of H. sapien sgRNA efficiency.

This work established a novel feature set, with quantum chemical tensors, that advances the
mechanistic interpretation and predictive accuracy of the model and will become a resource for
continued work in the field. Initial insights into essential variables in the understanding of the
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CRISPR-Cas9 mechanism have been identified through the use of feature engineering techniques.
These advances provide avenues for improving CRISPR-Cas9 sgRNA generation, identify points
of interest for experimental assessment of the CRISPR-Cas9 mechanism, provide insights into
species variation of CRISPR-Cas9, and provide methods for predictive model enhancement.

Model Species Source Dataset # of sgRNAs Feature Set # of Features Description Test Species R2 Pearson Correlation
Row s summary values of sgRNA sequem:e.lndudmg GC content, Tm, MFE, gene density, E.col 0.0406861 0.2007612
and distance to PAM
Onehot 5911 binary positional encoding of 20bp sgRNA nucleotide sequence E.coli 0.26004285 0.4914184
Qcr 316 quantitative metrics for H-bond and HL gap based on poisitional nucleotide sequence E.coli 0.24183122 0.4918057
Raw.Onehot 6916 Raw + Onehot E.coli 0.26028286 0.4931724
Raw.QCT 312 Raw + QCT E.coli 0.24177446 0.4939777
Onehot.QCT 6227 Onehot + QCT E.coli 0.24905183 0.500817
E.coli 0.24906667 0.5019173
Full Matrix 6232 Raw + Onehot + QCT o
? i ‘ 40,468 H.sapien 0.00429969 0.06557198
E.coli G tal. 201
ool poeta 32,374 train)] . col 0.11240746 0.3436711
Top5 5
E.coli 0.15779734 0.4019815
Top 10 10
E.coli 0.2017236 0.4458406
Top20 2 Basedfm the full feature matrix iRF model run with E.coli data, the top feature Ecol 0.24529071 0.4903898
importance scores were utilized to generate new iRF models with
5,10,20,50,100,200,500, and 1000 features.
Top 50 50
Top 100 100 E.coli 0.25119027 0.4967809
Top 200 200
Top 500 500
. 1,278 Raw + Onehot + QCT based on the H.sapien sgRNA sequence set from Doench et al .
H.sapien Doench etal. 2014 . Full Matrix 6172 H.sapien 0.389120714 0.6525512
[1,022 train] 2014
16,749 Raw + Onehot + QCT based on the H.sapi RNA t from Chuai etal
H.sapien Chuai etal. 2018 \ Full Matrix 6172 WiChshotOCibaedontie HESHEn e A st ARt Tiom CEal g Hsapien | 0.229489979 0.486193
(13,399 train] 2018
D hetal, 2014; 17,421 Raw + Onehot + QCT based on the H.sapi RNA t from Doench etal "
H.sapien ety Full Matrix 6172 WA Onehot £ R same"VSS SOt oM Soench rd H. sapien 0.211671332 0.4964907
Chuaietal. 2018 (13,936 train] 2014 and Chuai et al 2018
tal. p 0.69727¢
" " Quoetal. 2015; 30,000 " Raw + Onehot + QCT based on the E.coli sgRNA sequence set from Guo et al 2018 E.coli + 69_ 61
E.coli + H.sapien | Doench etal. 2014; i Full Matrix 6172 % 5 0.486194 [E.coli 0.504]
(24,000 train] and the H.sapien sgRNA sequence sets from Doench et al 2014 and Chuai et al 2018 H.sapien B
Chuaietal. 2018 [H.sapien 0.491]

E. coli: A publicly accessible Escherichia coli dataset published by 28 was utilized. Briefly, this
dataset contains 55,670 unique sgRNAs that are profiled by co-expressing a genome-scale library
with a pooled screening strategy. The data was established for three separate conditions including
Cas9 (Streptococcus pyogenes), eSpCas9, and Cas9 (ArecA). The eSpCas9 is a Cas9 that has been
reengineered for improved specificity and the Cas9 (ArecA) was developed by knockout of recA
blocking DSBs repair. The dataset contains both sgRNA sequence and empirical CRISPR-Cas9
efficiency scores for each of the respective guides. The cutting efficiency scores were calculated
by taking the log2 of the selected read count to the control read count. We focused on the Cas9
dataset for analyses within this manuscript.

H. sapien: A publicly accessible H. sapien dataset published by ° was utilized. This dataset
contains 1,278 unique sgRNAs based on an A375 viability analysis. The cutting efficiency was
determined in the same manner as described above with the log2 fold change calculated relative to
the change in abundance during a two week growth period. Additionally, a larger curated dataset
by 33 which contains four publicly accessible human experimental sgRNA efficiency datasets
111939 including multiple cell lines (HCT116, HEK293T, HELA, and HL60). The cutting
efficiency value was defined as the log fold change in the measured knockout efficacy.
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Multi-species: The multi-species model included sgRNA efficiency data from all previously
described datasets. When model training occurs on multiple species datasets, all data is normalized
on a scale of 0 to 1 and combined into a single matrix of SgRNA and cutting efficiency scores for
model input. To eliminate species bias due to sample size, a consistent subsampling of 15,000
sgRNAs was utilized from E. coli and H. sapien, and the species was encoded as a binary feature.

Feature Matrix:

Quantum Chemical Properties 2°:

Quantum chemical properties provide unique insights into the factors influencing sgRNA
efficiency in CRISPR-Cas9 systems. Duplexes of DNA-DNA, and DNA-RNA were modeled to
assess these factors. The analysis includedincludedThese included e quantum chemical properties
of individual bases; base-pairs; and base-pair dimers, trimers, and tetramers. In this way, a
fourteen-Angstrom (four base-pair) cut-off distance was invoked for long-range quantum
interactions in the sgRNA. Additionally, a new sliding-window approach for the nucleotide base
positions was developed for sgRNA interactions with the target DNA. Base-pair interactions were
encoded into blocks, which subdivided the twenty-nucleotide sgRNA. In this approach, five ranges
of interactions were assessed, from intramolecular to intermolecular.

HOMO-LUMO gap has been described as a signpost for a molecule's kinetic stability 0. It
describes the energetics of allowed electron transitions, and the likelihood of processes involving
electron mobility. Structurally, the H-L gap reflects a molecule's landscape of phase dependence
for wave function interactions—both constructive and destructive— that originate covalent
molecular interactions 4. Meanwhile, hydrogen bonding is a contextual property. It describes an
energetic preference for arrangements of molecules in relation to each other. Hydrogen bonding
directs non-covalent interactions between molecules, playing roles in thermodynamic stability and
the energetics of protein folding, as two examples #2. Stacking interactions are similarly contextual
interactions, and occur between aromatic rings. Stacking interactions range from m-m interactions
within the rings—of the overlapping p-orbital electron density—to steric repulsions from
exocyclic groups, which are implicated in DNA twisting “3. In this way, hydrogen bonding and
stacking interactions differ in the chemical species that participate. Whereas hydrogen bonding
interactions occur between hydrogen and a hydrogen bond acceptor, stacking interactions occur
between aromatic species. Quantifying the energetics of these interactions complements a detailed
feature set for machine learning models for sgRNA efficiency prediction.

The density-functional-based tight binding method (DFTB) is a powerful approach for large-scale
atomistic simulations and calculating quantum properties. This work uses the DFTB3/3ob
parameter set (third order parametrization for biological and organic systems). Calculations with
the DFTB3/30b parameter set yield excellent molecular geometries, which compare favorably with
more resource-intensive methods. For example, DFTB3-30B structures exhibit maximum
absolute deviations of 0.045 Angstroms from MP2/6-31G(d) methods (Second order Mgller—
Plesset perturbation theory with six-primitive split valence polarized Pople basis; 44).

Initial Coordinates: Nucleotide coordinates were collected from PubChem “°. B-DNA base-pairs
were extracted from crystal structure data “6; PDBID: 167D). RNA hybrids and DNA-RNA
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hybrids were prepared by sterics-driven structure overlay in Biovia Discovery Studio software
(Dassault Systemes, S.E.). The nucleotide base and base-pair geometries were optimized through
a gradient descent method with the simulation procedure described below. After optimization, each
base-pair was aligned with the xy-plane in Open-Pymol software (Schrddinger, Inc.). In analogy
to Gil et al. #, each base-pair was then translated such that its centroid was the origin of the
coordinates. To complete the unambiguous set of transformations, the pyrimidine carboxyl groups
provided a final constraint. For this, the thymine carbonyl bond and cytosine carbonyl carbon were
rotated to be normal to each other.

K-mer Construction: For all constructs, base-pairs were stacked at a distance of 3.5 A along the z-
axis, and rotated 36 degrees about their centroids (the origin). Structures were prepared with scripts
executed in Open-Pymol. All non-chimeric single-strand combinations were assessed. In total,
four bases, four base-pairs, 16 base-pair dimers, 64 base-pair trimers, and 256 base-pair tetramers
were evaluated. Compiled k-mers were assessed by single-point energy calculations using the
simulation procedure described below.

Simulation: Calculations were carried out at the DFTB3-D3(BJ)/3ob level of theory with
Grimme’s D3(BJ) dispersion correction 349, Dispersion corrections were included to capture non-
covalent interactions, resolving van der Waals and London dispersion forces in detail. Grimme’s
dispersion correction was selected to describe medium and short-range dispersion effects *C.
Additionally, a “COSMO” model was used with water as a solvent (conductor-like screening
model). This model approximated solvent interactions, and contextualized the geometries and
energy calculations to a water environment. Total system energy, HOMO-LUMO gap, and other
quantum tensors were compiled for assessment in an Iterative Random Forest model.

Positional Encoding: Matrix generation incorporated extraction of several isolated sets of features.
Position-independent and position-dependent positional encoding of the 20bp sgRNA was done as
described by Doench et al., 2014. Briefly, position-independent features were determined by the
count of nucleotides within the 20bp sequence both as a single base (A/C/T/G) and as paired bases
(AA/AC/AGIetc.). Position-dependent features were represented using a binary variable (0 or 1)
to encode the position-dependent single or paired base. Therefore, each position is encoded with a
binary value for each of the four possible bases (A/C/T/G) with the nucleotide present at that
position encoded as a value of one. Paired bases are further encoded with a binary value for each
of the 16 possible base pair combinations. Additionally, we encoded the PAM (NGG) sequence
by incorporating position-independent encoding of the N nucleotide. The combination of
positional encoding approaches resulted in 384 features for each SgRNA assessed.

Further positional encoding was conducted on a kmer basis in order to incorporate larger scale
combinations of nucleotides where the surrounding patterns influence sgRNA binding and
efficiency. This was done through a stepwise integration of additional nucleotides as described
above in a position-dependent manner including nucleotides in groups of two to five. The binary
matrix includes the positional encoding using a sliding window so that each position from 1 to 20
minus the kmer length is encoded.

“Raw” features: Several raw value features were determined including GC content (ratio from O-
1 representing the proportion of the sgRNA sequence that is composed of GC), temperature of
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melting of the DNA duplex (calculated by the Watson-Crick formula of Tm(°C) = 64.9 + 41 *
(nG+nC-16.4)/(nNA+nT+nG+nC)), minimum free energy as a representation of RNA structure
(calculated with ViennaRNA; 51), distance of the target sequence to the closest downstream PAM
(utilizing the known genome assembly this was determined by the number of bases between
position 20 of the sgRNA and the nearest NGG), and location relative to the target gene
(represented by TSS, TTS, and quartiles of gene sequence (Q1-Q4)). These calculated values
resulted in an additional 5 features for each sgRNA assessed.

Iterative Random Forest Model:

Random forest (RF) is a non-linear regression model which incorporates an ensemble of decision
trees that trace the algorithm’s decision process. Iterative Random Forest (iRF) expands on the
Random Forest method and is described in 5253, Briefly, iRF is an advanced form of RF that
implements a boosting and feature culling process based on the feature importance values from
the previous iteration’s random forest to further iterate and amplify the features that repeatedly
indicate high predictive capacity. It adds an iterative boosting process, producing a similar effect
to Lasso in a linear model framework. In iRF, a Random Forest is created where features are
unweighted and randomly sampled, at any given node in the decision trees, with equal probability.
This process generates feature importance scores that are used to weight features in the next forest.
This iterative method provides an amplification effect, increasing the chance that important
features are evaluated at any given node 523,

For this study, the process of weighting and creating a new Random Forest is repeated 10 times
with 1000 trees and incorporates a 5-fold cross validation. For each run, the data is separated into
an 80/20 training/test split where 80% of the data is used for training the model and the remaining
data (not utilized in model training) is used for testing. Each feature is ranked by its importance in
the model in the tree building step and the direction of impact is determined based on the
correlation of feature value and cutting efficiency value. Specifically, the feature matrix described
above (incorporating positional encoding of the nucleotide composition of the sgRNA through a
one-hot binary method and quantitative quantum chemical property values) is utilized to predict
the cutting efficiency of the sRNA. Multiple iRF models were run utilizing different feature sets
to best understand the features of top importance and predictive capabilities; details on these
models are in Table 1 below.

Advanced Feature Engineering Metrics:

In combination with iterative Random Forest, in-house scripts for advanced interpretation of
machine learning output were utilized:

Random intersection trees (RIT) is a method using binary predictor variables to identify
interactions between features in a model. In short, RIT starts with a high level interaction that
includes all variables in the matrix and then gradually removes variables as they fail to appear in
randomly chosen observations of a specified class of interest 554 The algorithm works by
assessing the node-split forest paths from iRF to find features that occur consecutively along the
path more than would be expected by chance. The result of RIT is a set of interactions that have
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been retained with high probability, potentially in a non-linear manner, and are therefore
considered informative to the model as a whole when joint.

For the analyses described we utilize internal R and python scripts specifically designed to deal
with the extensive and iterative tree-based decision process of iRF and expand upon traditional
RIT methods for enhanced feature engineering and model comparison. The resulting metrics for
feature interpretation include normalized importance scores (in order to compare importances
across models), feature effect scores (that show the magnitude and direction of the feature on the
model), and number of samples captured as well as RIT (prevalence of set in the model), RIT
adjusted (difference of prevalence of set in the model from the expected prevalence of the set), and
set importance for identification and characterization of interacting features.

Code Availability:
Github for iRF [https://github.com/jailGroup/RangerBasediRF]
Github for feature matrix [https://github.com/nosha003/sgRNA _iRF]
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Figure 1. Explainable-Al method for analysis of feature importance on prediction of sgRNA efficiency.
Features are formatted to generate a wide matrix with rows representing each sgRNA, the corresponding
experimental cutting efficiency, and columns for all respective numeric feature values. This information is
fed into an iterative Random Forest (iRF) analysis.
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Figure 2: Identifying model variation based on feature input and assessing feature importance in E.coli.
A) Violin plot of R squared values based on iRF model generation with isolated feature input (feature
categories described in Table SX). B) The top 50 features from the full feature matrix iRF model ranked
by normalized feature importance score and colored by feature category. C) Dot plot of features from full
feature matrix iRF model showing the number of samples (sgRNAS) that were influenced by that feature
(y-axis) versus the normalized importance of the feature (x-axis). Color is determined by the feature
effect score (negative = red, positive = blue) and dot size is determined by the normalized importance
score. D) Violin plot of R squared values for the top 5, 10, 20, 50, 100, 200, 500, and 1000 features based
on full feature iRF model output showing the plateau of information gained from features beyond a

certain level of importance.
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Figure 3: Explainable-Al interpretation through iRF output metrics and directional influence on cutting
efficiency. A-B) The top 20 features from the full E.coli matrix ranked by normalized importance score
and colored by the direction of the effect as positively correlated with the cutting efficiency score (blue)
or anti-correlated with cutting efficiency score (pink) for E.coli (A) and H.sapien (B). C-D) sgRNA-
DNA interaction highlighting quantum chemical property features of top importance and their localization
for positively correlated association and anticorrelated associations with cutting efficiency scores in E.coli
(C) and H.sapien (D). DNA strand represented in gray (target sequence) and blue (target complementary
sequence), sgRNA shown in yellow, and PAM sequence displayed with NGG stars. Direction of feature
effect is indicated with arrows, up (blue arrow) indicates a positively correlated relationship between the
feature value and the cutting efficiency value. Feature bars indicate specific quantum properties (HL gap
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= purple, Stacking interactions = green, H-bonding = blue) and the length of the bar indicates the kmer
size (multi-colored bars indicate the same k-mer at the same position has multiple features determined to
be of high importance). The E. coli (C) model shows extensive localization with important features,
primarily long kmers, focused in positions 11-20, with hydrogen bonding having outlier importance at
position 1-5. Hydrogen bonding and stacking energy are observed to have both correlated and anti-
correlated relationships with cutting efficiency (depending on their kmer and position) while HL-gap is
consistent to a positive relationship closest to the PAM sequence. The H. sapien (D) model shows a
greater continuum of location, many features stacked in positions 5-15) and feature-specific directional
effect (hydrogen bonding, stacking energy, and HL-gap all found to have both positive and negative
relationships with cutting efficiency dependent on the feature length and position) for features of high
importance, but maintains that long kmers appear to be the most predictive. The number of electrons
appears novel to H. sapien in comparison to E. coli when focused on top features of importance in the iRF

model.
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Figure S1: iRF metric output relative to feature set. Model output metrics including R squared and
Pearson correlation of the predicted versus experimental cutting efficiency scores for A) k-mer integration
of positional encoding features and B) k-mer integration of quantum property features. C) Bar plot of the
Pearson correlation predictive metric from iRF output based on the feature matrix utilized and the
corresponding number of features incorporated in that matrix (line plot) showing that the increase in
matrix size is not the main contributor to high predictive metrics.
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Figure S2: A) The identification of the highest and lowest occupied molecular orbitals for quantum
property calculations (left). A visual depiction of the HOMO-LUMO gap based on the nucleotide
organization of the SJRNA sequence (right). B) Schematic depiction of hydrogen bonding property and
stacking interactions.
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Figure S3: Effect size and direction for A) E. coli and B) H. sapien. Dot plots of top 20 features based on
effect size, calculated as the average proportion of sgRNAs that were influenced by that feature based on
the presence in decision trees of the iRF model. Additional information displayed includes the direction of
effect (positive = orange, negative = green) and importance score (size of dot).
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Figure
S4: A) The top 20 features from the E.coli and H.sapien multi-species iRF model ranked by normalized
importance score and colored by the direction of the effect as positively correlated with the cutting
efficiency score (blue) or anti-correlated with cutting efficiency score (pink). B) The top 20 features
minus the species feature to zoom in on the remaining more species-generalizable features. C) sgRNA-
DNA interaction highlighting quantum chemical property features of top importance and their localization
for positively correlated association and anticorrelated associations with cutting efficiency scores in the
multi-species model. DNA strand represented in grey (target sequence) and blue (target complementary
sequence), sgRNA shown in yellow, and PAM sequence displayed with NGG stars. Direction of feature
effect is indicated with arrows, up (blue arrow) indicates a positively correlated relationship between the
feature value and the cutting efficiency value. Feature bars indicate specific quantum properties (HL gap
= purple, Stacking interactions = green, H-bonding = blue) and the length of the bar indicates the k-mer
size.
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