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Abstract: 

 

CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory.  

Empirical rules-of-thumb have been established for only a narrow range of model organisms, and 

mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes 

a novel feature set and new public resource, produced with quantum chemical tensors, for 

interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is 

performed using an explainable-artificial intelligence model; iterative Random Forest (iRF). By 

encoding quantitative attributes of position-specific sequences for E. coli sgRNAs, we identify 

important traits for sgRNA design in bacterial species. Additionally, we show that expanding 

positional encoding to quantum descriptors of base-pair, dimer, trimer and tetramer sequences 

captures intricate interactions in local and neighboring nucleotides of the target DNA.  These 

features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapien 

genomes. These novel encodings of sgRNAs greatly enhance our understanding of the elaborate 

quantum biological processes involved in CRISPR-Cas9 machinery.  
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CRISPR-Cas9 is revolutionizing genome-editing through the use of a single guide RNA (sgRNA) 

to direct precise cleavage at endogenous locations in the genome 1,2. The first step to engineer or 

modify a specific region using CRISPR-Cas9 is to computationally predict cutting efficiencies of 

potential sgRNAs. The CRISPR-Cas9 system depends on this designed sgRNA to target the 

protein complex to a region flanked by a 3’NGG protospacer adjacent motif (PAM). The CRISPR-

Cas9 system is only successful if both specificity and efficiency occur at the target loci 3. To 

inform sgRNA sequence choices, genomic feature analyses have associated sgRNA attributes with 

cutting efficiency for CRISPR-Cas9 systems 4–8.  

 

Predicting sgRNA efficiency requires careful consideration of relationships among the sgRNA 

sequence, genomic features of the target region, and activity within the CRISPR-Cas9 system. 

Some of these relationships have been studied extensively 9. Among them, nucleotide composition 

of the target sequence is the most thoroughly studied contributor to sgRNA efficiency 3,10–12. 

Specific nucleotide patterns have been associated with sgRNA efficiency; including the presence 

of guanine and absence of thymine near the PAM sequence, preference for cytosine near the cut 

site, and overall GC content 3,11,13. The seed region – defined as the five to ten bases of the target 

sequence nearest the PAM – is of central consideration for these patterns in sgRNA sequence 

composition 10,12,14.  

 

While nucleotide sequence patterns are observed across species, their influence on integration and 

cleavage with CRISPR-Cas9 may vary 1,15–18. The added complexities of chromatin structure have 

started to be considered, enhancing understanding of CRISPR-Cas9 dynamics. For example, 

human models were expanded with information about the insertion point within the gene sequence 
19 and secondary structure of the target sequence 20,21. Target regions with low nucleosome 

occupancy and high chromatin accessibility have also been investigated 22–26. These structural 

nuances underscore even greater variation in the CRISPR-Cas9 system across organisms.  

 

DNA is less protected in prokaryotic cells than in eukaryotic cells because of a simpler chromatin 

structure; and target regions are often more accessible 3. In contrast, mammalian cells have highly-

active non-homologous end-joining systems, which induce repair mechanisms for the DNA double 

strand break during CRISPR-Cas9 integration. In prokaryotes, sgRNA activity is correlated with 

cellular survival because double stranded breaks are lethal to the cell 27. These pronounced 

differences in structure and function illuminate, in part, why models trained for mammalian species 

have failed to provide sgRNAs that consistently integrate with the target sequence in other 

kingdoms. This insufficiency spurred development of organism-tailored models, including those 

for plants 1, yeast 18 and bacteria 28. Expanding the breadth and chemical specificity of model 

feature sets provides useful avenues for extending state-of-the-art sgRNA efficiency prediction to 

other organisms and non-model species. To achieve this next level of model prediction power, 

quantum chemical properties warrant consideration.  

 

Bridging chemistry and physics, quantum chemical properties capture the ways in which electron 

density impact the reactivities and energetics of molecules. Some properties, such as the HOMO-

LUMO gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap), 

describe how electron density is distributed among atoms. Meanwhile, other properties, like 

hydrogen-bonding energy or π-stacking energy, describe how a system’s total energy changes as 

molecules interact. Such properties depend on how the molecular electron densities shift in 
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response to one another. Incorporating quantum chemical detail when characterizing or predicting 

biological processes has been transformative for biology; providing new frameworks for viewing 

processes, identifying novel features, and enhancing mechanistic understandings 29,30. This work 

spotlights quantum properties including HOMO-LUMO gaps, hydrogen bonding, and stacking 

interactions to investigate the complex molecular interactions of the DNA double helix and the 

DNA CRISPR-Cas9 sgRNA hybrid. 

 

Machine learning models excel at identifying patterns in data to inform outcomes; but the power 

behind these algorithms is bottlenecked by the depth and breadth of the training data. Current 

methods of feature evaluation for CRISPR-Cas9 efficiency are trained on experimental sgRNA 

cutting efficiency data from a narrow range of eukaryotic species, including human, mouse, and 

zebrafish 4. While these models’ species-by-species rules for sgRNA prediction are informative, 

their insights are rarely generalizable. Therefore, to develop advanced predictive models, the 

training data must be sufficiently detailed to capture the complexities of genomic structure and 

content that influence efficiencies of CRISPR-Cas9 integration and cleavage across systems.  

 

Here we use machine learning approaches to unravel these species-dependent rules of sgRNA 

efficiency. Many current AI model generation approaches use techniques such as neural networks 

that can obscure associations behind a “black box” of decision schemes. We sought to understand 

feature contributions to cutting efficiency for E.coli through an explainable-artificial intelligence 

(XAI) approach. We used iterative Random Forest (iRF), an XAI method designed for model 

transparency and feature evaluation, to assess CRISPR-Cas9 efficiency and improve our 

understanding of the system’s underlying biological mechanisms. When trained on detailed feature 

sets, XAI models provide a shared basis for predicting sgRNA efficiency across organisms. This 

work extends sgRNA efficiency modeling to assess both E. coli and H. sapien datasets. 

Additionally, our model integrates a novel and interdisciplinary feature set that includes quantum 

chemical properties. 

 

Results: 

Feature importance with iterative Random Forest 

 

We assess iRF-based predictive models that leverage quantum descriptors for multiple degrees of 

base-pair polymerization. This data captures interactions within the sgRNA nucleotide sequence, 

along with properties of the individual bases. This approach combines the increased interpretability 

of XAI methods for feature interpretation with the novel incorporation of quantum chemical 

properties to further mechanistic understandings of CRISPR-Cas9. Models were generated for 

sgRNA efficiency in E. coli and H. sapien. Additionally, the variations in feature importance 

across kingdoms were assessed.  

 

A publicly-available E. coli dataset was used to generate a detailed feature matrix to determine 

highly-influential properties for predicting CRISPR-Cas9 cutting efficiencies (Figure 1). In this 

model, the dependent variable (Y-vector) is the experimental cutting efficiency score for every 

sgRNA. We used quantum chemical features of nucleotides to capture the intricacies of the multi-

step CRISPR-Cas9  mechanism. In addition, base-pair oligomers (kmers) up to tetramers were 

incorporated to enhance understanding of nucleotide position within the sgRNA structure through 

binary encoding (one-hot kmers) and quantum chemical properties (quantum kmers). Features 
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previously determined to influence CRISPR-Cas9 efficiency in mammalian species were also 

encoded; including GC content, melting temperature, and one-hot encoding of single and paired 

nucleotides of the target sequence. In addition, we included quantitative measures such as the 

distance between the target sequence and the nearest PAM (NGG sequence) and location of the 

target sequence relative to the nearest gene. To sharpen insight into the particular contributions of 

each feature, predictive capabilities were assessed by Pearson correlations and accuracy (R2) 

metrics (Supplemental Results). The iRF model using the complete feature matrix results in a 

predictive accuracy of 0.51, which is comparable with the most predictive models currently 

available. Quantum kmers and one-hot kmers contribute the largest feature set contributions, 

pinpointing isolated features important for sgRNA engineering.  

 

Feature engineering highlights the role of quantum mechanics 

 

A feature engineering approach enhances the understanding of factors influencing sgRNA 

efficiency by identifying the model’s most important variables. A total of 6,232 features capturing 

information in E. coli were used in an iRF model (the full E. coli feature set). This model was 

trained on 32,374 sgRNA and tested on 8,094 sgRNA sequences. This complete feature matrix 

cast as an iRF framework resulted in significant correlations between predicted and experimental 

sgRNA cutting efficiency values (Figure 2A). Furthermore, high prediction levels were found in 

the iRF model using only the quantum chemical properties feature set; and accuracy increased 

incrementally as additional features and kmers were incorporated (Figure 2A; Figure S1; 

Supplemental results). Below, we focus on a subset of features that contributed large effects to 

predicting sgRNA efficiency (Figure 2B-C).  

 

Based on the feature importance values produced by iRF, top features emphasized positionally-

encoded kmers of quantum chemical properties and one-hot encoding of the target sequence 

(Figure 2B). Top features were localized to positions 18 through 20 of the target sequence. This 

region is proximal to the sgRNA tailpin structure, the target DNA PAM sequence, and cut site for 

the Cas9 nuclease. The most important feature was the HOMO-LUMO energy gap for the base 

pair at position 20 of the target sequence (Figure 2B). This feature alone accounted for more than 

6% of the variance in empirical sgRNA efficiency. The next most important feature was the base-

pair dimer stacking energy at bases 19 and 20; accounting for ~3% of the variance. Hydrogen bond 

energy of the base pair at position 20 shows a similar contribution. Following these features in 

importance, we observe several position-dependent base pair dimer, trimer, and tetramer quantum 

chemical-encoded values. Each of these features accounted for 1-2% of the dataset variance. 

Several one-hot encoding sequences were also important features, including  cytosine positions 15 

and 16 (CC pos15) and a CCA beginning at position 19. Additionally, several features with high 

feature importance scores are consistent with trends in the literature, including GC content and 

melting temperature 31.  

  

Each decision tree within an iRF model selects features based on their contribution to the predictive 

ability of the experimental dataset. Because of complex relationships between features and 

sgRNA, however, individual features may not be influential for every sgRNA in the model. 

Therefore, each feature’s average number of affected sgRNAs was also calculated for all decision 

trees within the iRF model. This average was compared with the total number of training data 

sgRNAs to determine the relative proportion of sgRNAs that each feature influenced (Figure 2C). 
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The twenty highest-magnitude features affected between 20% and 85% of sgRNA samples. The 

three most-commonly influential features included the base pair 20 HOMO-LUMO gap energy, 

the base-pair 19-20 dimer hydrogen bond energy , and the base-pair 1-4 tetramer hydrogen bond 

energy  (Figure 2C). These top features span both positive and negative associations with predicted 

cutting efficiency scores.  

 

Assessing feature association with sgRNA efficiency 

 

Each feature was assigned a direction (positive or negative) and effect size, calculated with a 

random intersection tree (RIT)-based approach (Figure 3A; 32). These components describe a 

feature’s relationship with the cutting efficiency score, allowing for greater interpretation of that 

feature’s role in the CRISPR-Cas9 mechanism. For example, it has been shown that higher melting 

temperatures and greater GC content decrease guide efficiency 31. This anti-correlated relationship 

is demonstrated in our model by a negative feature effect value (Figure 3A/C). Important features 

exhibited both positive and negative correlations with the predicted cutting efficiency score.  

 

The top positional encoding features also showed varied directions of correlation with sgRNA 

cutting efficiency. Two essential features are the HOMO-LUMO gap and hydrogen bond strength 

at position 20 of the sgRNA and target sequence (Figure 3A/C, S2A-B). The HOMO-LUMO gap 

is positively correlated with sgRNA cutting efficiency, while the hydrogen bond strength at the 

same position is anti-correlated. Further, the directionality of the hydrogen bond strength effect 

varies by position and encoding length – whether base-pair monomers, dimers, trimers, or 

tetramers are considered. Hydrogen bond strength in positions 18-20 have negative effects, while 

hydrogen bond strength at position 1 has a positive effect. This contrast indicates varied 

preferences for hydrogen bonding energy across regions of the target sequence. One-hot encoding 

indicates position 15 CC as anti-correlated, while position 19 GC is positively correlated with 

sgRNA cutting efficiency. Additionally, our model indicates that increased distance to PAM  is 

anti-correlated with sgRNA cutting efficiency.  

 

Quantum chemical insights into kingdom-specific dynamics  

 

Current species-trained models in the literature are inadequate for prediction across organisms. To 

assess organism specificity of our iRF model, we tested the efficacy of the full E. coli-trained 

model on several publicly accessible H. sapien datasets 10,33. The resulting predictions were 

extremely poor, with a Pearson correlation of 0.016. This reinforces the idea that features 

determined by models trained on experimental data from a single species are not predictive across 

species, particularly where varied CRISPR-Cas9 interactions and complex DNA structures 

contribute. 

 

E. coli and H. sapien represent different kingdoms; Eubacteria and Animalia. These classifications 

span single-celled to multi-celled organisms; varied organellar makeup and diversity in genomic 

and epigenomic structures and compositions. To compare the predictive capability of the newly 

integrated feature set across kingdoms, we generated a model trained on H.sapien-specific data 
10,33. The full feature matrix was generated as described for the E. coli model, using the specified 

sgRNA sequences in the Doench et al. 2014 (1,278 sgRNAs) and Chuai et al. 2018 (16,749 

sgRNAs) datasets. The iRF model was prepared with the same five-fold cross validation scheme 
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as for the E. coli models. The resulting model had a Pearson correlation of 0.50 (Table 1). This is 

competitive with several of the top predictive cutting efficiency models currently available for 

human genome editing 4. 

 

To explore this result, we cross-examined the twenty highest-scoring features for each species-

trained model (Figure 3). Similarly to those identified in the E. coli model, quantum chemical 

tensors in the target sequence’s seed region (sgRNA position 10-20, closest to the PAM sequence) 

appear to drive the H. sapien model prediction (Figure 3B). While quantum chemical tensors as a 

feature set are important for sgRNA efficiency in both E. coli and H. sapien, the particular features 

of importance vary considerably between models. In E. coli, the occupancy of frontier orbitals for 

PAM-adjacent nucleotides was a driving factor in CRISPR-Cas9 cutting (Figure 3C). In the H. 

sapien model, however, properties in central regions of the target sequence were highlighted, 

specifically positions 5-15 (Figure 3D). Key features for this model emphasize hydrogen bond 

energy and stacking interaction along with electron occupancy (Figure 3B/D). These features 

signpost novel mechanistic interpretations focused on central regions of the target sequence that 

can be explored in future biological studies. 

 

Discussion: 

 

Current sgRNA efficiency prediction models are limited by a narrow range of species data for 

training. To enhance the predictive accuracy, many models use deep learning techniques that can 

obscure interpretability of feature influence. This work sought to expand understanding of the 

factors influencing sgRNA efficiency through a bacterial dataset and an explainable-AI method. 

Furthermore, incorporation of quantum chemical properties provided novel insights into the 

interpretation of sgRNA efficiency dynamics and the CRISPR-Cas9 mechanism. 

 

A panel of E.coli sgRNA sequences were encoded into a matrix incorporating PAM sequence 

distance, sgRNA melting temperature, GC content, one-hot binary encoding, and quantum 

chemical property encoding. This detailed feature set was used to train an XAI iRF model. The 

predictive capability of the machine learning model was enhanced by advanced kmer features 

(binary and quantum) and is competitive with currently-available models. The XAI methodology 

permitted investigation of the underlying features by quantifying feature importance scores.  

 

Quantum chemical properties carried the highest importance for prediction of sgRNA efficiency. 

This feature set is novel in the domain of CRISPR-Cas9 models and enhances the model’s 

biological interpretability. Beyond position-specific sequence information, which is commonly 

encoded in a binary matrix, quantum chemical properties signpost the varied nucleotide 

interactions that mediate the CRISPR-Cas9 mechanism. The sgRNA seed region featured quantum 

properties with high predictive capacities. Descriptors of hydrogen bond energy, stacking 

interactions, and HOMO LUMO gaps enrich the interpretation of why this region plays a vital role 

in CRISPR-Cas9 efficiency. Particularly, we note indications of mechanistic competition for 

preferred structural features. We focus on three main themes: locality in the “seed region”, degree 

of base-pair polymerization, and mechanistic competition (Figure 3C). 

 

The “seed” region, the five to ten base pairs on the target sequence’s 3’ end nearest to the PAM 

sequence and cleavage site, has been a focus of sgRNA construction across mammalian species. 
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Several of the top E. coli-based features, specifically quantum properties for base-pair and dimer 

structures, are essential in positions 18-20 (Figure 3A; Figure 3C). In contrast, the seed region 

features further from the PAM sequence are specific to tetramer complexes. These differences 

suggest a structure-activity relationship, and may indicate variation in the mechanistic steps 

involving these regions. Looking to the multi-step CRISPR-Cas9 mechanism, we postulate that 

considering both DNA-DNA double helix unwinding and subsequent DNA-RNA binding are 

essential for interpreting these results.  

 

This distinction can be seen when interpreting a positive correlation between the hydrogen bond 

stacking energy at position 18 of the target sequence (Figure 3A). Mechanistically, this indicates 

that position 18 is important for DNA-RNA binding. Once helix melting has been initiated at the 

target sequence’s 3’ end, the remaining sequence composition is less important for unwinding. 

Therefore, while lower hydrogen bond strength at position 20 is energetically preferable for DNA 

double helix melting, higher hydrogen bond strength at position 18 is important for strong DNA-

RNA binding (Figure 3A).  

 

In another view, a positive correlation between the HOMO-LUMO gap energy and cutting 

efficiency is observed at position 20. The HOMO-LUMO gap may capture conformational 

changes that are occurring during the initial integration of the CRISPR-Cas9 molecule. We note 

recent work identifying the “phosphate lock loop” in this interpretation. When the PAM sequence 

is identified and bound, the DNA “kinks” to enable DNA helix unwinding and permit DNA-RNA 

binding. These structural events are stabilized by a phosphate lock loop proximal to the PAM 34–

37. While a high HOMO-LUMO gap at this region may describe a change in molecular stability, 

the weaker hydrogen bond may relate to the DNA double helix unwinding that follows.  

 

A further discovery was the variation in influential properties for sgRNA efficiency across species. 

The novel quantum chemical property feature set is transferable across species because of its 

construction from simple nucleotide sequences. While the model does not provide a 

comprehensive view of nucleotide binding and interaction in complex genomes, it does provide a 

structural grounding for mechanistic interpretations that cannot be captured with traditional binary 

encodings. Species-tailored iRF models generated utilizing E. coli and H. sapien data exemplify 

this increase in interpretability. Moreover, the H. sapien model provides sufficient predictive 

power while allowing for feature engineering insight not currently available with top predictive 

models in the field due to their deep learning focus 38. This model performance points to the 

beneficial integration of quantum chemical properties, not only for interpretation but for sgRNA 

efficiency prediction. 

 

While this novel feature set was shown to be of high importance across species, the specific 

quantum chemical properties differed. This highlights its use for understanding complex 

mechanisms across diverse species sets and supports critiques that current organism-tailored 

models are not applicable across species. This was further emphasized by the very low 

performance of the E. coli trained model as a predictor of H. sapien sgRNA efficiency.  

 

This work established a novel feature set, with quantum chemical tensors, that advances the 

mechanistic interpretation and predictive accuracy of the model and will become a resource for 

continued work in the field. Initial insights into essential variables in the understanding of the 
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CRISPR-Cas9 mechanism have been identified through the use of feature engineering techniques. 

These advances provide avenues for improving CRISPR-Cas9 sgRNA generation, identify points 

of interest for experimental assessment of the CRISPR-Cas9 mechanism, provide insights into 

species variation of CRISPR-Cas9, and provide methods for predictive model enhancement.  

 

Tables: 

Table 1: iRF model summary and metrics 

 
 

 

Methods: 

 

Datasets: 

 

E. coli: A publicly accessible Escherichia coli dataset published by 28 was utilized. Briefly, this 

dataset contains 55,670 unique sgRNAs that are profiled by co-expressing a genome-scale library 

with a pooled screening strategy. The data was established for three separate conditions including 

Cas9 (Streptococcus pyogenes), eSpCas9, and Cas9 (△recA). The eSpCas9 is a Cas9 that has been 

reengineered for improved specificity and the Cas9 (△recA) was developed by knockout of recA 

blocking DSBs repair. The dataset contains both sgRNA sequence and empirical CRISPR-Cas9 

efficiency scores for each of the respective guides. The cutting efficiency scores were calculated 

by taking the log2 of the selected read count to the control read count. We focused on the Cas9 

dataset for analyses within this manuscript. 

  

H. sapien: A publicly accessible H. sapien dataset published by 10 was utilized. This dataset 

contains 1,278 unique sgRNAs based on an A375 viability analysis. The cutting efficiency was 

determined in the same manner as described above with the log2 fold change calculated relative to 

the change in abundance during a two week growth period. Additionally, a larger curated dataset 

by 33 which contains four publicly accessible human experimental sgRNA efficiency datasets 
11,19,39 including multiple cell lines (HCT116, HEK293T, HELA, and HL60). The cutting 

efficiency value was defined as the log fold change in the measured knockout efficacy. 
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Multi-species: The multi-species model included sgRNA efficiency data from all previously 

described datasets. When model training occurs on multiple species datasets, all data is normalized 

on a scale of 0 to 1 and combined into a single matrix of sgRNA and cutting efficiency scores for 

model input. To eliminate species bias due to sample size, a consistent subsampling of 15,000 

sgRNAs was utilized from E. coli and H. sapien, and the species was encoded as a binary feature.  

  

Feature Matrix: 

 

Quantum Chemical Properties 29:  

 

Quantum chemical properties provide unique insights into the factors influencing sgRNA 

efficiency in CRISPR-Cas9 systems. Duplexes of DNA-DNA, and DNA-RNA were modeled to 

assess these factors. The analysis includedincludedThese included e quantum chemical properties 

of individual bases; base-pairs; and base-pair dimers, trimers, and tetramers. In this way, a 

fourteen-Ångstrom (four base-pair) cut-off distance was invoked for long-range quantum 

interactions in the sgRNA. Additionally, a new sliding-window approach for the nucleotide base 

positions was developed for sgRNA interactions with the target DNA. Base-pair interactions were 

encoded into blocks, which subdivided the twenty-nucleotide sgRNA. In this approach, five ranges 

of interactions were assessed, from intramolecular to intermolecular.  

HOMO-LUMO gap has been described as a signpost for a molecule's kinetic stability 40. It 

describes the energetics of allowed electron transitions, and the likelihood of processes involving 

electron mobility. Structurally, the H-L gap reflects a molecule's landscape of phase dependence 

for wave function interactions—both constructive and destructive— that originate covalent 

molecular interactions 41. Meanwhile, hydrogen bonding is a contextual property. It describes an 

energetic preference for arrangements of molecules in relation to each other. Hydrogen bonding 

directs non-covalent interactions between molecules, playing roles in thermodynamic stability and 

the energetics of protein folding, as two examples 42. Stacking interactions are similarly contextual 

interactions, and occur between aromatic rings. Stacking interactions range from π-π interactions 

within the rings—of the overlapping p-orbital electron density—to steric repulsions from 

exocyclic groups, which are implicated in DNA twisting 43. In this way, hydrogen bonding and 

stacking interactions differ in the chemical species that participate. Whereas hydrogen bonding 

interactions occur between hydrogen and a hydrogen bond acceptor, stacking interactions occur 

between aromatic species. Quantifying the energetics of these interactions complements a detailed 

feature set for machine learning models for sgRNA efficiency prediction. 

The density-functional-based tight binding method (DFTB) is a powerful approach for large-scale 

atomistic simulations and calculating quantum properties. This work uses the DFTB3/3ob 

parameter set (third order parametrization for biological and organic systems). Calculations with 

the DFTB3/3ob parameter set yield excellent molecular geometries, which compare favorably with 

more resource-intensive methods. For example, DFTB3-3OB structures exhibit maximum 

absolute deviations of 0.045 Ångstroms from MP2/6-31G(d) methods (Second order Møller–

Plesset perturbation theory with six-primitive split valence polarized Pople basis; 44).  
 

Initial Coordinates: Nucleotide coordinates were collected from PubChem 45. B-DNA base-pairs 

were extracted from crystal structure data 46; PDBID: 167D). RNA hybrids and DNA-RNA 
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hybrids were prepared by sterics-driven structure overlay in Biovia Discovery Studio software 

(Dassault Systèmes, S.E.). The nucleotide base and base-pair geometries were optimized through 

a gradient descent method with the simulation procedure described below. After optimization, each 

base-pair was aligned with the xy-plane in Open-Pymol software (Schrödinger, Inc.). In analogy 

to Gil et al. 47, each base-pair was then translated such that its centroid was the origin of the 

coordinates. To complete the unambiguous set of transformations, the pyrimidine carboxyl groups 

provided a final constraint. For this, the thymine carbonyl bond and cytosine carbonyl carbon were 

rotated to be normal to each other. 

  

K-mer Construction: For all constructs, base-pairs were stacked at a distance of 3.5 Å along the z-

axis, and rotated 36 degrees about their centroids (the origin). Structures were prepared with scripts 

executed in Open-Pymol. All non-chimeric single-strand combinations were assessed. In total, 

four bases, four base-pairs, 16 base-pair dimers, 64 base-pair trimers, and 256 base-pair tetramers 

were evaluated. Compiled k-mers were assessed by single-point energy calculations using the 

simulation procedure described below. 

  

Simulation: Calculations were carried out at the DFTB3-D3(BJ)/3ob level of theory with 

Grimme’s D3(BJ) dispersion correction 48,49. Dispersion corrections were included to capture non-

covalent interactions, resolving van der Waals and London dispersion forces in detail. Grimme’s 

dispersion correction was selected to describe medium and short-range dispersion effects 50. 

Additionally, a “COSMO” model was used with water as a solvent (conductor-like screening 

model). This model approximated solvent interactions, and contextualized the geometries and 

energy calculations to a water environment. Total system energy, HOMO-LUMO gap, and other 

quantum tensors were compiled for assessment in an Iterative Random Forest model. 

 

Positional Encoding: Matrix generation incorporated extraction of several isolated sets of features. 

Position-independent and position-dependent positional encoding of the 20bp sgRNA was done as 

described by Doench et al., 2014. Briefly, position-independent features were determined by the 

count of nucleotides within the 20bp sequence both as a single base (A/C/T/G) and as paired bases 

(AA/AC/AG/etc.). Position-dependent features were represented using a binary variable (0 or 1) 

to encode the position-dependent single or paired base. Therefore, each position is encoded with a 

binary value for each of the four possible bases (A/C/T/G) with the nucleotide present at that 

position encoded as a value of one. Paired bases are further encoded with a binary value for each 

of the 16 possible base pair combinations. Additionally, we encoded the PAM (NGG) sequence 

by incorporating position-independent encoding of the N nucleotide. The combination of 

positional encoding approaches resulted in 384 features for each sgRNA assessed.  

  

Further positional encoding was conducted on a kmer basis in order to incorporate larger scale 

combinations of nucleotides where the surrounding patterns influence sgRNA binding and 

efficiency. This was done through a stepwise integration of additional nucleotides as described 

above in a position-dependent manner including nucleotides in groups of two to five. The binary 

matrix includes the positional encoding using a sliding window so that each position from 1 to 20 

minus the kmer length is encoded. 

  

“Raw” features: Several raw value features were determined including GC content (ratio from 0-

1 representing the proportion of the sgRNA sequence that is composed of GC), temperature of 
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melting of the DNA duplex (calculated by the Watson-Crick formula of Tm(°C) = 64.9 + 41 * 

(nG+nC-16.4)/(nA+nT+nG+nC)), minimum free energy as a representation of RNA structure 

(calculated with ViennaRNA; 51), distance of the target sequence to the closest downstream PAM 

(utilizing the known genome assembly this was determined by the number of bases between 

position 20 of the sgRNA and the nearest NGG), and location relative to the target gene 

(represented by TSS, TTS, and quartiles of gene sequence (Q1-Q4)). These calculated values 

resulted in an additional 5 features for each sgRNA assessed. 

  

Iterative Random Forest Model: 

 

Random forest (RF) is a non-linear regression model which incorporates an ensemble of decision 

trees that trace the algorithm’s decision process. Iterative Random Forest (iRF) expands on the 

Random Forest method and is described in 52,53. Briefly, iRF is an advanced form of RF that 

implements a boosting and feature culling process based on the feature importance values from 

the previous iteration’s random forest to further iterate and amplify the features that repeatedly 

indicate high predictive capacity. It adds an iterative boosting process, producing a similar effect 

to Lasso in a linear model framework. In iRF, a Random Forest is created where features are 

unweighted and randomly sampled, at any given node in the decision trees, with equal probability. 

This process generates feature importance scores that are used to weight features in the next forest. 

This iterative method provides an amplification effect, increasing the chance that important 

features are evaluated at any given node 52,53.  

 

For this study, the process of weighting and creating a new Random Forest is repeated 10 times 

with 1000 trees and incorporates a 5-fold cross validation. For each run, the data is separated into 

an 80/20 training/test split where 80% of the data is used for training the model and the remaining 

data (not utilized in model training) is used for testing. Each feature is ranked by its importance in 

the model in the tree building step and the direction of impact is determined based on the 

correlation of feature value and cutting efficiency value. Specifically, the feature matrix described 

above (incorporating positional encoding of the nucleotide composition of the sgRNA through a 

one-hot binary method and quantitative quantum chemical property values) is utilized to predict 

the cutting efficiency of the sgRNA. Multiple iRF models were run utilizing different feature sets 

to best understand the features of top importance and predictive capabilities; details on these 

models are in Table 1 below. 

 

Advanced Feature Engineering Metrics: 

 

In combination with iterative Random Forest, in-house scripts for advanced interpretation of 

machine learning output were utilized: 

  

Random intersection trees (RIT) is a method using binary predictor variables to identify 

interactions between features in a model. In short, RIT starts with a high level interaction that 

includes all variables in the matrix and then gradually removes variables as they fail to appear in 

randomly chosen observations of a specified class of interest 53,54. The algorithm works by 

assessing the node-split forest paths from iRF to find features that occur consecutively along the 

path more than would be expected by chance. The result of RIT is a set of interactions that have 
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been retained with high probability, potentially in a non-linear manner, and are therefore 

considered informative to the model as a whole when joint.  

 

For the analyses described we utilize internal R and python scripts specifically designed to deal 

with the extensive and iterative tree-based decision process of iRF and expand upon traditional 

RIT methods for enhanced feature engineering and model comparison. The resulting metrics for 

feature interpretation include normalized importance scores (in order to compare importances 

across models), feature effect scores (that show the magnitude and direction of the feature on the 

model), and number of samples captured as well as RIT (prevalence of set in the model), RIT 

adjusted (difference of prevalence of set in the model from the expected prevalence of the set), and 

set importance for identification and characterization of interacting features. 

 

Code Availability: 

Github for iRF [https://github.com/jailGroup/RangerBasediRF] 

Github for feature matrix [https://github.com/nosha003/sgRNA_iRF] 
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Figure 1: Explainable-AI method for analysis of feature importance on prediction of sgRNA efficiency. 

Features are formatted to generate a wide matrix with rows representing each sgRNA, the corresponding 

experimental cutting efficiency, and columns for all respective numeric feature values.  This information is 

fed into an iterative Random Forest (iRF) analysis.  
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Figure 2: Identifying model variation based on feature input and assessing feature importance in E.coli.  

A) Violin plot of R squared values based on iRF model generation with isolated feature input (feature 

categories described in Table SX).  B) The top 50 features from the full feature matrix iRF model ranked 

by normalized feature importance score and colored by feature category.  C) Dot plot of features from full 

feature matrix iRF model showing the number of samples (sgRNAs) that were influenced by that feature 

(y-axis) versus the normalized importance of the feature (x-axis).  Color is determined by the feature 

effect score (negative = red, positive = blue) and dot size is determined by the normalized importance 

score.  D) Violin plot of R squared values for the top 5, 10, 20, 50, 100, 200, 500, and 1000 features based 

on full feature iRF model output showing the plateau of information gained from features beyond a 

certain level of importance.   
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Figure 3: Explainable-AI interpretation through iRF output metrics and directional influence on cutting 

efficiency.  A-B) The top 20 features from the full E.coli matrix ranked by normalized importance score 

and colored by the direction of the effect as positively correlated with the cutting efficiency score (blue) 

or anti-correlated with cutting efficiency score (pink) for E.coli (A) and H.sapien (B).  C-D) sgRNA-

DNA interaction highlighting quantum chemical property features of top importance and their localization 

for positively correlated association and anticorrelated associations with cutting efficiency scores in E.coli 

(C) and H.sapien (D).  DNA strand represented in gray (target sequence) and blue (target complementary 

sequence), sgRNA shown in yellow, and PAM sequence displayed with NGG stars.  Direction of feature 
effect is indicated with arrows, up (blue arrow) indicates a positively correlated relationship between the 

feature value and the cutting efficiency value.  Feature bars indicate specific quantum properties (HL gap 
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= purple, Stacking interactions = green, H-bonding = blue) and the length of the bar indicates the kmer 

size (multi-colored bars indicate the same k-mer at the same position has multiple features determined to 

be of high importance).  The E. coli (C) model shows extensive localization with important features, 

primarily long kmers, focused in positions 11-20, with hydrogen bonding having outlier importance at 

position 1-5.  Hydrogen bonding and stacking energy are observed to have both correlated and anti-

correlated relationships with cutting efficiency (depending on their kmer and position) while HL-gap is 

consistent to a positive relationship closest to the PAM sequence.  The H. sapien (D) model shows a 

greater continuum of location, many features stacked in positions 5-15)  and feature-specific directional 

effect (hydrogen bonding, stacking energy, and HL-gap all found to have both positive and negative 

relationships with cutting efficiency dependent on the feature length and position) for features of high 

importance, but maintains that long kmers appear to be the most predictive. The number of electrons 

appears novel to H. sapien in comparison to E. coli when focused on top features of importance in the iRF 

model. 

 

 
Figure S1: iRF metric output relative to feature set. Model output metrics including R squared and 

Pearson correlation of the predicted versus experimental cutting efficiency scores for A) k-mer integration 

of positional encoding features and B) k-mer integration of quantum property features. C) Bar plot of the 

Pearson correlation predictive metric from iRF output based on the feature matrix utilized and the 

corresponding number of features incorporated in that matrix (line plot) showing that the increase in 

matrix size is not the main contributor to high predictive metrics.  
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Figure S2: A) The identification of the highest and lowest occupied molecular orbitals for quantum 

property calculations (left).  A visual depiction of the HOMO-LUMO gap based on the nucleotide 

organization of the sgRNA sequence (right).  B) Schematic depiction of hydrogen bonding property and 

stacking interactions.   

 
Figure S3: Effect size and direction for A) E. coli and B) H. sapien. Dot plots of top 20 features based on 

effect size, calculated as the average proportion of sgRNAs that were influenced by that feature based on 

the presence in decision trees of the iRF model. Additional information displayed includes the direction of 

effect (positive = orange, negative = green) and importance score (size of dot). 
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Figure 

S4: A) The top 20 features from the E.coli and H.sapien multi-species iRF model ranked by normalized 

importance score and colored by the direction of the effect as positively correlated with the cutting 

efficiency score (blue) or anti-correlated with cutting efficiency score (pink).  B) The top 20 features 

minus the species feature to zoom in on the remaining more species-generalizable features. C) sgRNA-
DNA interaction highlighting quantum chemical property features of top importance and their localization 

for positively correlated association and anticorrelated associations with cutting efficiency scores in the 

multi-species model.  DNA strand represented in grey (target sequence) and blue (target complementary 

sequence), sgRNA shown in yellow, and PAM sequence displayed with NGG stars.  Direction of feature 

effect is indicated with arrows, up (blue arrow) indicates a positively correlated relationship between the 

feature value and the cutting efficiency value.  Feature bars indicate specific quantum properties (HL gap 

= purple, Stacking interactions = green, H-bonding = blue) and the length of the bar indicates the k-mer 

size.   
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