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44 Abstract

45  Maize is a globally valuable commodity and one of the most extensively studied genetic
46 model organisms. However, we know surprisingly little about the extent and potential
47  utility of the genetic variation found in the wild relatives of maize. Here, we
48  characterize a high-density genomic variation map from 744 genomes encompassing
49  maize and all wild taxa of the genus Zea, identifying over 70 million single nucleotide
50 polymorphisms (SNPs) and nearly 9 million Insertion/Deletion (InDel) polymorphisms.
51  The variation map reveals evidence of selection within taxa displaying novel
52  adaptations to traits such as waterlogging, perenniality and regrowth. We focus in detail
53  on adaptive alleles in highland teosinte and temperate maize and highlight the key role
54  of flowering time related pathways in highland and high latitude adaptation. To show
55  how this data can identify useful genetic variants, we generated and characterized novel
56  mutant alleles for two flowering time candidate genes. This work provides the most
57  extensive sampling to date of the genetic diversity of the genus Zea, resolving questions
58  on evolution and identifying adaptive variants for direct use in modern breeding.

59  Introduction

60  Global crop production is currently insufficient to meet the anticipated demands of a
61  growing human population'?. Climate change is affecting crop production in many
62  areas, further exacerbating this problem’, and projected shifts in temperature and
63  precipitation will lead to further declines in productivity for many major crops®. New
64  varieties displaying both higher yield and the better adaptation to diverse environments
65 are thus urgently needed to increase crop productivity under changing climate
66  scenarios™®.

67 Maize (Zea mays subsp. mays) is one of the world’s most widely grown crops,

68  with an annual global production of over 1.1 billion tons in 2018 (FAOSTAT, 2020).
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69 Native American peoples domesticated from the wild grass Zea mays subsp.
70 parviglumis (hereafter parviglumis) approximately 9,000 years ago in the southwest of
71 Mexico’*. Population genetic analyses largely agree that maize underwent a substantial
72 population bottleneck during domestication’'?, reducing the genetic diversity available
73 for adaptation. Although maize rapidly spread from its center of domestication across
74  awide range of environments, successful adaptation required hundreds or thousands of
75  years"’. As global populations increase and climate change accelerates, unprecedented
76 maize yield losses are projected to become commonplace in most maize-producing
77 regions>!'*!°, To facilitate adaptation to these new challenges, breeders will need to
78  maximize use of the genetic diversity at their disposal, looking beyond modern elite
79  lines to traditional cultivated varieties and locally adapted wild relatives'®.

80 The wild congeners of maize, collectively called teosintes, are annual and
81  perennial grasses native to Mexico and Central America (Fig. 1a). They are adapted to
82 a diverse range of environments, from hot, humid, subtropical regions of Central

17,18

83  America to cold, dry, high elevations of the Mexican Central Plateau'-'°. Teosintes

84  exhibit biotic and abiotic adaptations absent in modern maize and humid high
85 elevations in central Western Mexico and the Huehuetenango region of Guatemala'’-"”,
86  providing a wealth of genetic diversity that could be utilized in modern breeding. A
87  recent example is a large-effect allele for leaf angle identified in teosinte that was lost
88  during maize domestication’’. CRISPR-Cas9 editing of maize to mimic the teosinte
89  allele resulted in a ~20% yield increase in modern hybrids grown at high density. Other

90 studies have used genetic mapping to capitalize on teosinte alleles for nutrition®'-??,

2324 and disease resistance”?’. Population genetic

91  adaptation to extreme environments
92  evidence suggests that diverse alleles from the teosinte Zea mays subsp. mexicana

93  (hereafter mexicana) played an important role in allowing maize to adapt to arid
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94  highland conditions®®~°.
95 Despite the potential for teosinte to contribute to breeding and adaptation of
96 cultivated maize, we know relatively little about the genetic diversity and history of

31-35

97 these taxa. Estimates of the age of the genus vary substantially’' -, and the phylogenetic

98  relationship of several taxa is debated or unknown'’-*%*¥. Considerable cytological

3941 and large

99 diversity is found within the genus, and transposable element variation
100  inversions***” have been documented as well. Moreover, common garden studies have
101  demonstrated that phenotypic differentiation in both teosinte and maize landraces is the
102 result of local adaptation***”. Low density genotyping or pooled sequencing approaches
103 in parviglumis and mexicana have identified a number of candidate loci related to soil,
104  climate, and disease resistance, highlighting the importance of inversions**>%>!,
105  However, for most taxa in Zea, their potential as sources of useful diversity in maize
106  remains poorly understood.

107 Here, we present a genus-wide resource of genome-scale genetic diversity in
108  Zea. We resequenced 237 teosinte accessions, including all seven taxa of teosinte, and

109  combined these data with sequences from 507 maize inbred lines. Our analyses reveal

110  a detailed phylogeny and demography of the genus Zea, identify substantial novel

111 genetic diversity, and expand our understanding of adaptation in the genus Zea. We
112 predict these resources will substantially facilitate the efficient use of diverse Zea taxa
113 in modern maize breeding and improvement.

114  Results

115  The diversity map and phylogeny of the genus Zea

116  We resequenced 237 teosinte accessions encompassing all described species and
117  subspecies in the genus Zea (Fig. 1a, b) to an average depth of 22x, and combined these

118 data with genome resequencing data from 507 cultivated maize inbred lines
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119  representing both temperate and tropical regions®” (Supplementary Table 1). To ensure
120  the quality of this new Zea diversity map, we used a set of strict filtering conditions
121 (Methods) and identified a final set more than 70M SNPs and nearly 9M
122 insertion/deletions (InDels) (Supplementary Table 2), with nearly 80% of SNPs
123 segregating as rare variants (MAF<0.05) (Supplementary Fig. 1). Both classes of
124  variants appeared enriched in genic and regulatory regions (30% of SNPs and 45% of

125  InDels in 14% of the genome), likely reflecting difficulties in read mapping in repetitive

126  regions of the genome. We validated a subset of genic SNPs using Sanger sequencing,
127  with median concordance between datasets >95% and reasonable false positive and
128  false negative rates (both ~5% on average) for non-reference alleles (Supplementary
129  Table 3). Based on population structure analysis, samples with greater than 60%
130  ancestry in a single group were clustered into parviglumis (n=70), mexicana (n=81),
131  Zea mays subsp. huehuetenangensis (n=5; hereafter, huehuetenangensis), Zea
132 diploperennis (n=20; hereafter, diploperennis), Zea perennis (n=19; hereafter,
133 perennis), Zea luxurians (n=14; hereafter, luxurians), Zea nicaraguensis (n=14;
134  hereafter, nicaraguensis), 210 tropical maize and 280 temperate maize (Supplementary
135  Fig. 2a,b and Supplementary Table 1). Principal component analysis of these lines was
136  in strong concordance with population structure results (Supplementary Fig. 2c).

137 We inferred phylogenetic relationships for the genus Zea under the multispecies
138  coalescent model’® (Fig. 1¢); maximum likelihood phylogenies® produced largely
139  congruent results (Supplementary Fig. 3, 4). Notably, we estimated a very recent origin
140  for the genus, splitting from its sister genus Tripsacum only ~650,000 years ago. This
141  young age is especially striking given the pronounced differences in chromosome
142 structure and sub-genome organization resulting from the two genera’s shared

143 polyploidy event >10M years ago™. Within the genus, our results suggest that
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144  nicaraguensis likely represents a subspecies of luxurians, with divergence times similar
145  to those among subspecies of Zea mays. The phylogeny supports earlier analysis®*
146  suggesting that divergence among Zea mays, luxurians, and diploperennis was nearly
147  contemporaneous, occurring ~120,000 years ago (95% highest posterior density (HPD)
148  interval for luxurians divergence from other taxa: 125,967-127,200; Fig. 1c and
149  Supplementary Table 4). We further estimate that perennis split from its diploid
150  progenitor diploperennis only ~48,000 years ago (95% HPD: 38,033-119,100). Tree
151  topologies and divergence times also support earlier analyses’® showing that
152 huehuetenangensis is a subspecies of Zea mays, diverging from other annual subspecies
153  ~68,000 years ago (95% HPD: 60,133-106,467), followed by the divergence of
154  highland mexicana and lowland parviglumis ~30,000 years ago (95% HPD: 26,733-
155  34,500). Our phylogeny estimates the divergence of maize from parviglumis at ~12,000
156  years, only slightly older than the earliest archaeological evidence® and likely due to

3746 Independent estimates of divergence times

157  population structure within parviglumis
158  taken from rates of cross-coalescence’’ between taxa are strikingly consistent (Fig. 1d).
159 Population genetic analysis of diversity further reveals changes in demography
160 among taxa in Zea. Coalescent estimates of effective population size (N¢) over time
161  reveal the well-established bottleneck associated with maize domestication but also a
162  continued decline in population size for the annual subsepecies parviglumis and
163  mexicana since their divergence (Supplementary Fig. 5). All other taxa in the genus
164  show parallel trends, with steady declines in population size until about 10,000 years
165  ago, with more recent increases for luxurians and diploperennis. Patterns of shared
166  derived alleles and sequence divergence both suggest a history of introgression among

167 taxa (Fig. le, Supplementary Fig. 6 and Supplementary Table 5), including

168  bidirectional admixture between parviglumis/huehuetenangensis and


https://doi.org/10.1101/2022.06.03.494450
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.03.494450; this version posted June 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

169  nicaraguensis/luxurians, and unidirectional introgression from
170  huehuetenangensis/mexicana into domesticated maize, highlighting the important role
171 of gene flow in crop adaptation’®.

172 Novel diversity in Zea

173 SNP data highlight the impressive genetic diversity present in teosinte. Despite the
174  potential downward bias due to strict filtering parameters and read mapping to a maize
175  reference, heterozygosity and nucleotide diversity are both higher in teosinte taxa than
176  the much larger panel of maize lines, even among teosinte with limited geographic
177  ranges (Supplementary Table 2 and Supplementary Fig. 7). Nearly a quarter (24%) of
178 the SNPs and 20% of the InDels identified across all taxa are taxon-specific
179  (Supplementary Table 2), and there are significantly more SNPs specific to each
180  teosinte accession than maize (Fig. 2a), this tendency remains the same after choosing
181  comparable samples in each taxon (Supplementary Fig. 8). In teosintes, a substantial
182  proportion of taxon-specific SNPs and InDels are located in genic and regulatory
183  regions (promoter and cis-regulatory elements®”; Supplementary Fig. 9), suggesting the
184  presence of biologically functional alleles with potential for improving modern maize.
185  Differentiation (Fst) between teosinte taxa is often lower than that found between
186  inbred maize and teosinte (Supplementary Fig. 10a), consistent with the historical
187  reduction of diversity that occurred during modern maize breeding®’. The annual
188  subspecies of Zea mays show much faster decay of linkage disequilibrium than our
189  diverse panel of maize inbreds (10-50Kb compared to ~200Kb; Supplementary Fig.
190  10b), but historical recombination in other teosintes appears to be even more limited
191  (>500Kb).

192 Short-read mapping approaches pose challenges in characterizing genetic

193  diversity, including difficulty with repetitive sequences and reference bias. In order to
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194  circumvent some of these obstacles, we used a reference-free k-mer approach to
195  characterize each taxon (Methods). Consistent with the reference mapping bias (~8%
196  unmapped reads in average), most taxa showed a substantial proportion of unique k-
197  mers (Supplementary Fig. 11a, b Supplementary Table 2). Since non Zea mays species
198  have diverged from Zea mays more than ~120,000 years (Fig. 1c), the higher number
199  of unique k-mers were exhibited in their genomes as expected (Fig. 2b and
200  Supplementary Fig. 11c, d). These results not only highlight the novel genetic diversity
201  present in teosinte but also likely point to the ongoing importance of evolutionary
202  processes in generating and filtering diversity in traditional maize populations in
203  Mexico®'.

204 We next investigated the diversity and abundance of transposons and inversion
205  polymorphisms in Zea. Transposable elements (TEs) are an important driver of shaping
206  the structure and evolution of the genome®’, and over 85% of the maize genome is

207  repetitive sequence®

. Clustering repeats from our short-read data accounted for ~74%
208  of'sequence across the genus (Supplementary Table 6), with the vast majority (60-70%)
209 coming from LTR retrotransposon. Mapping reads from individual genomes to these
210  clusters revealed broadly similar patterns across species, consistent with previous
211 comparisons of Zea mays and luxurians®®. Nonethless, we do identify a notable
212 decrease in the percentage of Ty3 retrotransposons in Zea mays compared to other
213 species, and an increase abundance of DNA transposons in diploperennis and perennis
214 (Fig. 2c and Supplementary Fig 12).

215 Inversions are known to play important roles in adaptation and speciation®>-¢,
216 and previous work has highlighted the evolutionary relevance of several large

46,50,51

217 inversions in Zea’ #4067

including [Inv9e in mexicana adaptation

218  Multidimensional scaling of SNP diversity across the genome®® allowed us to identify
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219  eight large genomic regions (> 1 Mb) indicative of inversion polymorphism
220  (Supplementary Fig. 13, Supplementary Table 7). Six of these are newly identified in
221 the present study, and show clustering patterns delineating the three genotypes
222 (standard; heterozygous inversion and homozygous inversion; Fig. 2d, Supplementary
223 Fig. 14 and Supplementary Table 8).

224 Given previous evidence suggesting the association between inversions and soil

225  characteristics*®

, we performed genome-wide association with nine representative soil
226  traits (Methods) from a rich database of more than 200 soil properties® (Supplementary
227  Fig. 15a and Supplementary Table 9). Inv9e was significantly associated with gypsum
228  content (0.829-1.383m) which is a representative of 29 soil properties (Supplementary
229  Fig. 15b and Supplementary Table 9). We merged nearby significant SNPs located in
230  Inv9e into two QTLs (chr9:127,017,047-127,356,295 and chr9:138,354,955-
231 139,846,464; Supplementary Fig. 16, Supplementary Table 10). These contain 15 genes
232 that have been functionally validated in rice or Arabidopsis (Supplementary Table 11)
233 including two (Zm00001d047667 and Zm00001d047694) with orthologs that have been

70,71

234  confirmed to affect root development in rice and may provide clues to further

235  explore the function of /nv9e in adaptation. Given that many inversions found
236 segregating at appreciable frequency are likely adaptive in some environments’>’3,
237  these data argue that improved assembly and characterization of structural variants in
238  teosinte would be a promising avenue for discovery of new functional genetic diversity.
239  Signals of selection from allele frequency data

240  Their genetic, ecological, and life history diversity make teosintes an ideal model
241 system for studying adaptation'’. To identify potential targets of selection, we

242  calculated Fst between each teosinte taxa and cultivated maize in 5-kb sliding windows

243  (Methods). Here, we found a high proportion of outlier windows shared between the

10
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244 closely related taxa (56% overlapped between nicaraguensis and luxurians; 54%
245  overlapped between diploperennis and perennis; Supplementary Table 12,
246 Supplementary Fig. 17). Shared genes (5,706; Supplementary Table 13) in
247  nicaraguensis and luxurians comparisons were enriched in core cell component and
248  reproductive system developmental processes (GO:0061458; P-value = 1.15E-04; FDR
249 = 6.87E-03; Supplementary Table 14). Candidate adaptive genes (4,659;
250  Supplementary Table 15) in diploperennis and perennis comparisons were enriched in
251 some basic biological process and core cellular components such as nucleus
252 (GO:0005634; P-value = 1.25E-12; FDR = 2.89E -10) (Supplementary Fig. 18,
253  Supplementary Table 16).

254 We also identify a number of genes related with known pathways involved in
255  meiosis’, QTLs in regrowth” and waterlogging’®’® (Supplementary Table 17). These
256 include Zm00001d002945, an ortholog of the Arabidopsis gene AtNACO0S2 involved in
257  the regulation of leaf senescence’’, which shows high Fsrt in diploperennis - maize and
258  perennis - maize comparisons and is located in a QTL region controlling regrowth’. In
259  nicaraguensis - maize, luxurians - maize comparisons, we find genes potentially
260 involved in the response to waterlogging not only by regulating the content of ethylene
261 and wax, but also the photosynthetic efficiency to adapt to the wetter climate in
262  Guatemala'’. These include Zm00001d015637, the maize ortholog of AtOSPI in
263 Arabidopsis, a GDSL lipase that is required for wax biosynthesis and stomatal
264  formation®’. These genes highlight the value of our diversity data in identifying
265 candidate loci of potential adaptive relevance for maize, and present a catalog of genes
266  worth further exploration.

267 In addition to identifying differences among species, our extensive sampling of

268  parviglumis (n=70), mexicana (n=81), and both temperate (#=280) and tropical maize

11
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269  (n=210) accessions allowed investigation of more recent adaptation to highlands and
270  high latitudes. Both the high elevation and high latitude reflects a climate of lower
271  temperate and longer light period, and previous work identified evidence of convergent
272 selection between temperate maize and its broadly-distributed temperate relative
273 Tripsacum®'. Here, we extended this comparison to investigate convergence between
274  temperate maize and high elevation adapted teosinte (mexicana). We applied a
275  composite likelihood genome-scan (see Methods) for selection between mexicana vs
276  parviglumis and temperate vs tropical maize (Fig. 3a, b and Supplementary Table 18,
277 19). We found significant overlap in selected windows (P = 0.047; 14.7% higher than
278  permutations; Supplementary Fig. 19a), but less overlap than expected in candidate
279  genes (P = 0.97; 27% less than permutation). Notably, however, ~90% of selected
280 windows in both comparisons were found in noncoding regions of the genome,
281  suggesting adaptation may predominantly have targeted regulatory regions. To test for
282  convergence in regulatory adaptation, used RNA-seq from the shoot base of
283 parviglumis, mexicana and tropical and temperate maize to search for changes in gene
284  expression. We identified 595 genes differentially expressed between mexicana and
285  parviglumis (Supplementary Table 20) and 437 genes differentially expressed between
286  tropical and temperate maize (Supplementary Table 21), with significant overlap
287  between the two lists (P = 0.006; 102% higher than permutations; Supplementary Fig.
288  19b). Those results may point to the importance of convergent regulatory evolution in
289  maize and teosinte local adaptation.

290 Selection for variants that promote early flowering enabled maize to break day-
291  length restrictions and facilitated the spread of maize across a broad geographical
292 range®, and the alleles involved in flowering time are also a major target of highland

293 landrace adaptation®’. Experimental data in maize® and from orthologs® in other

12
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294  species shows that at least 51 genes associated with highland and 61 genes associated
295 with high latitude adaptation were involved in flowering time pathways
296  (Supplementary Fig. 20 and Supplementary Table 22), respectively. For example, the
297 genes GI and PRR7, both known to participate in the circadian clock pathway in

298  Arabidopsis and rice®®®’

, show evidence of selection both in mexicana and temperate
299  maize. Tracking the flowering time pathway, we found temperate maize has more genes
300  under selection in the photoperiod pathway (eight in temperate maize, five in mexicana;
301  Supplementary Table 22), which may be a signal of adaptation to changing latitude.

302 To validate the utility of the selection scan approach, we tested the function of
303 ZmPRR7 (Zm00001d047761), which shows convergent patterns in maize and teosinte,
304  and the maize-specific candidate ZmCOL9 (Zm00001d051684) that is involved in the
305  photoperiod pathway. Mutants of these two genes were obtained from a CRISPR/Cas9-
306  based high-throughput targeted mutagenesis library”’. The mutant allele of ZmPRR7 is
307 a5.8-Kbdeletion in the gene region that leads to the total loss of protein function. Plants
308  harboring the mutant allele exhibit significantly earlier flowering than the wildtype in
309  Dboth tropical and temperate environments (Fig. 3¢, d and Supplementary Fig. 21). The
310 loss-of-function allele of ZmCOLY includes a 5 bp deletion/1bp insertion in the intron
311 and a 2 bp deletion/4 bp deletion in the 3™ exon (Supplementary Fig. 22a, d) that result
312 in premature translation termination. In a tropical environment (Hainan; China; E109°,
313  NI18°), ZmCOL9Y knockout mutants showed no difference in flowering time compared
314  to the wild type (Fig. 3e and Supplementary Fig. 23b, e¢) but overexpression plants
315  exhibit a later flowering phenotype (Fig. 3f and Supplementary Fig. 23a, b). In contrast,
316  when planted in a temperate environment (Jilin; China; E125°, N44°), the ZmCOL9

317  knockout mutants flowered earlier (Fig. 3e and Supplementary Fig. 22c, f) and the

318  overexpression lines flowered later than the wild type (Fig. 3f, g and Supplementary
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319  Fig. 23c, d). These results confirmed the key roles for both ZmPRR7 and ZmCOLY in
320 regulating flowering time and contributing to the adaptation of highland teosinte and
321  modern maize.

322 Discussion

323 The twin projections of increasing human population and decreasing suitable farmland
324  highlight the challenge breeders face in producing high crop yields, and this has
325 motivated an increasing interest in crop wild relatives as sources of genetic diversity
326  for improvment’ >, Here, we present a high-resolution genetic variation map that
327  greatly expands the publicly available genetic sequence information for the genus Zea.
328 We provide the first complete picture of the phylogeny and demography of the
329 genus Zea using genome-wide data, including both divergence times and effective
330 population sizes of Zea species. We reaffirm several aspects of the phylogeny of Zea,
331  but our data identify a number of new features, including the likely subspecies status of
332 nicaraguensis, the short divergence times between the perennial taxa, and the relatively
333  young age of the genus. We caution that our divergence estimate for Tripsacum may be
334  underestimated because of the difficulty of mapping short reads from divergent
335 genomes, however, and that high-quality Tripsacum and teosinte reference genomes
336 will be essential to better answer this question”.

337 Our broad sampling of the genus allows us to take advantage of population genetic
338  tools to identify candidate genes involved in adaptation across both long and short time
339  scales. We find evidence of convergent adaptation of highland teosinte and high-
340 latitude maize, exemplifying the utility of studying variation in wild relatives to identify
341  genes important in crops. Finally, we validate these approaches by using genome
342  editing to knock out two candidate flowering time genes. All data and results of this

343 work have been integrated into the ZEAMAP database’ for easy query and retrieval.
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344 It is particularly noteworthy that our work identifies a vast trove of genetic
345  variation absent in cultivated maize and even in its closest wild relative parviglumis.
346 Our functional analysis of candidate adaptation genes clarifies the great potential in the
347  utilization of the wild relatives of maize in identifying novel alleles or highlighting
348  potential genes for subsequent editing, potentially accelerating modern genetic
349  improvements’. The data and discoveries presented in this study provide the
350 foundation for the use of crop wild relative resources for breeding in the face of
351 increasing human populations and decreasing farmland.
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578 METHODS

579  Samples and whole genome resequencing. A total of 237 teosinte accessions from
580 CIMMYT, USDA and collaborators were obtained, consisting of 90 mexicana, 79
581  parviglumis, 20 diploperennis, 15 perennis, 15 luxurians, 13 nicaraguensis, five
582  huehuetenangensis according to morphological classification (Supplementary Table 1,
583 2). Two Tripsacum dactyloides were obtained from Dr. Fajia Chen’s lab (Henan
584  Agricultural University, China). Young leaves from one individual of each accession
585  were used for DNA extraction for sequencing using the Illumina HiSeq3000 platform

586  (150-bp paired-end), conducted by BGI (Shenzhen, China) and NovaSeq6000 platform
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587  (150-bp paired-end), conducted by Novogene (Sacramento, USA). DNA sequencing
588 data of 507 cultivated maize were downloaded from the NCBI SRA database
589  (PRINAS531553; Supplementary Table 1).

590 Read mapping and SNP calling. Raw reads of teosinte were first processed using

591  FastQC (v0.11.3; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

592  Trimmomatic’® (v0.33; HiSeq3000 platform; LEADING:3 TRAILING:3
593  SLIDINGWINDOW:4:15 MINLEN:36) and fastp”’’ (v0.19.4; NovaSeq6000 platform;
594  -g -136) were used to remove poor-quality base calls and adaptors. Reads of teosinte
595 and maize were then aligned to the B73 reference genome” (v4) using Bowtie2”
596  (v2.1.0; --very-fast). Unique mapped reads were sorted and indexed using Picard

597  (v1.119;  http://broadinstitute.github.io/picard/). =~ SAMtools'””  (v1.3.1)  and

598  UnifiedGenotyper from GATK (v3.5; https://software.broadinstitute.org/gatk/) were

599 used to estimate the variant calling file for each individual. Hard filtering of the
600  individual SNP calls was carried out with mapping quality (MQ < 20.0), and thresholds
601  set by sequencing coverage based on minimum coverage (DP < 5) and maximum
602  coverage (DP > 200). Then, variants from the 237 teosinte and 507 maize were
603 combined by GATK CombineVariants to a single variant calling file. To confirm if
604  unknown variants were discarded reference genotypes in individual calls, we recalled
605  these sites and replaced them with reference genotypes if they had supported reads.
606  Finally, sites with a missing rate higher than 75% in all samples were excluded. To
607  validate the accuracy of SNPs called from resequencing data, 224 sites in 80 accessions
608  were selected for Sanger sequencing (Supplementary Table 3).

609  Population structure classification, principal component analysis and
610  phylogenetic tree construction. We evaluated patterns of population structure using a

611  set of SNPs filtered to remove multi-allelic loci and SNPs with a minor allele frequency
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612  <0.05 (--maf 0.05 -biallelic-only) using PLINK'°! (v1.9). We then ran admixture'’? for
613  different values of the number of clusters (K) from 2 to 20 (--cv = 10; v1.3.0). Each
614  individual with admixture components < 0.6 was classified as ‘Teosinte (mix)’ or
615  ‘maize (mix)’. We performed PCA analysis using this same set of SNPs with GCTA!*
616  (v1.26) recording the first 10 components (--pca 10). We annotated SNPs with a
617 missing data rate less than 0.7 in teosinte and maize with SnpEff (v4.1g;

618  http://snpeff.sourceforge.net/index.html) using the first transcript of B73 v4 genes. We

619  then used synonymous and noncoding SNPs to construct a simple phylogenetic tree
620  with SNPhylo™* (v20140701) using default parameters and visualized the tree with
621  iTOL'*%

622  Species tree analysis. Species delimitation and species trees were inferred using BPP>?
623  (model A11;v4.1.4). We used the following samples in BPP: three tropical maize, three
624  parviglumis, three mexicana, three nicaraguensis, three diploperennis, three perennis,
625  three [luxurians, two huehuetenangensis and two Tripsacum dactyloides
626  (Supplementary Table 1). Low-quality base calls and adaptors from raw reads of
627  Tripsacum dactyloides were removed using Trimmomatic, and the remaining
628  sequences were aligned to the B73 v4 reference genome with Bowtie2 as described
629 above. The consensus base was estimated from the uniquely mapped reads using
630 ANGSD'® (v0.930). Using the B73 annotation, we randomly selected 2,000 coding
631  sequence genes to estimate the species delimitation and species tree. The prior
632  distribution of ancestral population size (6) and divergence time from the root (7)
633  followed an inverse-gamma (IG) prior with means of 0.005 IG (3 0.01)) and 0.75 (IG
634 (3 1.5)), respectively. The consensus of All species trees was visualized using
635  DensiTree'’° (v2.2.6).

636  Imputation and demographic estimation. SNPs in the 237 teosinte and 507 maize
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637  were imputed with BEAGLE'"" (v4.0), respectively. Divergence times within teosinte
638  and the effective population size of each teosinte were estimated using BPP (A00 model)
639 and MSMC2°7 (v2.1.1). The topological tree in BPP (A00 model) was fixed as the
640  species tree with highest posterior probability (A1l model) estimated from the above
641  species tree analysis. Sequences used in the A11 model were applied to estimate the
642  effective population size and divergence time using priors as above. In MSMC?2, four
643  haplotype models were applied (Supplementary Table 1). The mutation rate used in
644  BPP (A00 model) and MSMC2 was 3E-08'%¢,

645 ABBA-BABA and divergence-based introgression polarization test. We used
646  Patterson’s D statistic'’>!!? to test for introgression between teosinte. Assuming
647  Tripsacum dactyloides as the outgroup (O), we assessed D statistics for the tree (((P1,
648  P2), P3), O), P1/P2/P3 representing different taxa in Zea (autotetraploid perennis was
649  excluded). The number of ABBA and BABA in each block were calculated in ANGSD
650  (-blockSize 10000). To overcome the problem of non-independence within the
651  sequence, a block-jackknifing procedure was used to test for statistical significance. To
652  estimate the directions of introgression, consensus base was estimated from the
653  uniquely mapped reads using ANGSD for representing individuals in different taxa of
654  Zea and Tripsacum (eight taxa in total). The whole-genome consensus files from
655  different taxa were then concatenated into multiple sequence alignment files by
656  different chromosomes. Finally, this eight-taxon alignment was pruned to contain four
657  taxa according to each test as suggested in Supplementary Fig. 6 and divided into a
658  5,000bp windows, which were used as the input of DIP''!.

659 Linkage disequilibrium, nucleotide diversity and Fsr calculation. Linkage
660  disequilibrium (+°) of nicaraguensis (14), luxurians (14), diploperennis (20), perennis

661  (15), huehuetenangensis (five), mexicana (81), parviglumis (70), and maize (507) were
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662  estimated for all bi-allelelic SNPs within 500Kb (--geno 0.5 --maf 0.05 --biallelic-only
663  --snps-only) using PLINK. Nucleotide diversity of nicaraguensis (14), luxurians (14),
664  diploperennis (20), perennis (15), huehuetenangensis (five), mexicana (81),
665  parviglumis (70) and maize (randomly selected 110 individuals) was calculated using
666  ANGSD (v0.930, -doMaf 1 -doMajorMinor 1 -uniqueOnly 1 -minMapQ 30 -minQ 20
667 -GL 2 -fold 1 -win 5000 -step 5000). Differentiation (F'st) between maize and teosinte
668  with five randomly selected samples was estimated in VCFTools!'? (v0.1.16; --fst-
669  window-size 5000).

670  Taxon-specific SNPs, InDels and k-mer analysis. SNPs and InDels found only in one
671  specific taxon in Zea in at least two individuals were regarded as taxon-specific SNPs.
672  The longest transcripts of each gene in the B73 annotation and a recent atlas of cis-
673  regulatory elements™ were used to annotate variants. K-mers of teosinte and maize
674  were counted using Jellyfish!"® (v2.3.0; -m 31). K-mers unique to each taxon that
675  appeared at least two times were obtained with sourmash''* (v3.2.0; --scaled 1000).
676  Transposon element analysis. RepeatExplore2'!® was used to identify repeat clusters
677  of each taxa of Zea (two samples were randomly selected from each taxon). Clusters
678 were further annotated by applying RepeatMasker (http://www.repeatmasker.org/;
679  v4.1.0; -species maize). Reads were mapped to the above repeat clusters by using
680 BWA-MEM!''® (v0.7.10), and the number of mapped reads in each repeat clusters were
681  calculated with SAMTools. Abundance of the repeat elements between samples were
682  normalized by their sequenced library size.

683  Inversion calling. Localized heterogeneity across chromosomes was identified using
684  lostruct®® in windows containing 10,000 SNPs. The most related 5% of windows in
685 each chromosome around one of the four outliers (maximum, minimum MDSI or

686 MDS2) were regarded as candidate inversions and were genotyped using invClust''’
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687  (v1.0) with B73 as the reference state. Genotypes of the candidates were confirmed via
688  PCA of the SNPs in the corresponding region. Only taxa with three clearly different
689  haplotypes identified by PCA were regarded as true inversions. Candidates near the
690  centromeres were filtered out. Centromere information was obtained by combining
691 locations from entire in the NAM population®’.

692  Genome-wide association analysis. SNPs from mexicana were obtained from the
693  imputed teosinte panel according to the name of samples, and then population structure
694  was calculated with admixture (v1.3.0; --cv=10; K=1, 2, 3, 4, 5). The K value with the
695 lowest CV (K=2) was used in downstream analysis. Estimation of the kinship matrix
696 and association analyses using the compressed MLM were performed using
697 TASSEL3''® (v3.0.174), with a P-value cut off set to 1/N (N = the number of tested
698  SNPs). Latitude and longitude information was obtained from Dr.Suketoshi Taba’s lab.
699  Global soil properties used as phenotypes for the GWAS were extracted using the R
700  package ncdf4 (v1.16; http://cirrus.ucsd.edu/~pierce/ncdf/) from the Global Soil
701 Dataset for Earth System Modeling®, a comprehensive database with eight layers to
702 the depth of 2.3m (0-0.045, 0.045-0.091, 0.091-0.166, 0.166-0.289, 0.289-0.493, 0.493-
703 0.829, 0.829-1.383 and 1.383-2.296 m). Soil properties were clustered using the R
704  package clValid''?, which tested hierarchical, k-means and k-medoide in combination
705  with 2-40 clusters to find the best method and cluster numbers. GWAS were performed
706  on a subset of nine features identified by hierarchical cluster analysis (Supplementary
707  Fig. 16).

708  Identification of adaptive regions in non Zea mays taxa. Whole genome adaptive
709  genetic variation between different non Zea mays taxa and maize were estimated by
710  calculating their Fst value in VCFTools (--fst-window-size 5000). Under each

711  comparison, all available teosinte and maize samples were used. We then Z-
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712 transformed the Fsr in each window, windows with ZFsr values exceeding the 95
713 percentile of the whole genome were declared as candidate adaptive regions. GO
714  enrichment analysis was conducted using PANTHER with default parameters'?-'?! and
715  visualized with GlueGo'?.

716  Selective sweeps in teosinte and maize. Whole genome scanning for regions of
717  teosinte elevation adaptation and maize temperate adaptation was implemented by a
718  mixed method. First, two genetic maps were obtained from a B73 x Teosinte
719  population'?® and a maize B73 x By804 population'?*, and the physical locations were
720  converted to coordinates of the B73 v4 reference sequence using CrossMap'? (v0.2.9).
721 The genetic distance between SNPs in mexicana and parviglumis were then calculated
722 based on the B73 x Teosinte genetic map, while the distance in temperate maize and
723 tropical maize were calculated based on the B73 x By804 genetic map. Genetic
724  distances between SNPs located between the genetic markers were assigned based on
725  their physical distance. The likelihood of multi-locus allele frequency differentiation
726  between two tested populations was modeled using XP-CLR'?*® (v1.0; -w1 0.005 100
727 1000 -p0 0.7) in both the teosinte group (mexicana, with parviglumis as the reference)
728  and the maize group (temperate maize, with tropical maize as the reference). Finally,
729  we applied a spline-window method (GenWin'?’ v0.1; smoothness = 100) to smooth
730  the results. The top 5% of genomic region with the highest W statistic in parviglumis
731  and mexicana were regarded as candidate teosinte altitude adaptation regions and the
732 top 5% of the W statistic regions in temperate and tropical maize were regarded as
733 candidate maize temperate adaptation regions. Enrichment analysis between candidate
734  teosinte altitude adaptation regions and maize temperate adaptation was conducted
735  using the shuffle function (-excl -noOverlapping) in BEDTools'?® (v2.25.0). Genes,

736 including the promoter and 2kb upstream, that overlapped with the regions identified
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737  above were regarded as candidate adaptive genes.

738 RNA-seq sampling, library construction and data analysis. The base tissues of V5
739  stage shoots (1-2 cm) of maize (five tropical maize; five temperate maize) and teosinte
740  (three parviglumis; three mexicana) were sampled for mRNA and total RNA extraction.
741 Both mRNA and total RNA samples were used for library preparation according to
742 Illumina strand-specific library construction protocols. Paired-end libraries were
743 sequenced using a mixture of platforms (Hi-Seq3000, x10, NovaSeq) with 150 cycles.
744 Raw reads were filtered to remove the poor-quality base calls and adaptors specifically
745  for each platform (NovaSeq: fastp -g -136; x10: fastp -1 36; Hi-Seq3000: Trimmomatic
746 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36). Reads were then
747  aligned to the B73 reference genome (V4) using TopHat2'?’ (v2.2.1) and read counts
748  for each gene were calculated using htseq-count*’ (v0.9.1). Finally, differentially
749  expressed genes were identified between tropical and temperate maize, as well as
750  between parviglumis and mexicana, using DESeq2'*! (v1.10.1) with absolute fold
751  change higher than 1 and P-value < 0.05.

752 Functional validation of ZmPRR7 and ZmCOLY. Mutants of ZmPRR7 and ZmCOL9
753 were generated from a high-throughput genome-editing design”’. In brief, line-specific
754  sgRNAs were filtered based on the assembled pseudo-genome of the receptor KN5585,
755  and a double sgRNAs pool (DSP) approach was used to construct vectors. The vectors
756  were transformed into the receptor KN5585, and the targets of each Ty individual were
757  assigned by barcode-based sequencing. The genotype of gene-editing lines was
758  identified by PCR amplification and Sanger sequencing using target-specific primers
759  (Supplementary Table 23).

760 Transgenic lines generated with DNA fragments of ZmCOLY driven by the ZmUbi

761  promoter were created using the modified binary vector pCAMBIA3300. Immature
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762 zygotic embryos of maize hybrid Hill (B73 x A188) were infected with A. tumefaciens
763  strain EHA105 harboring the binary vector based on the published method for
764  ZmCOL9'3?. Transgenic plants were identified by qRT-PCR as well as tests for
765  herbicide resistance and the presence of the bar gene. Flowering-time phenotypes of
766  mutants and transgenic plants of ZmPRR7 and ZmCOL9Y were investigated in Jilin
767  province (E125°, N44°) and Hainan province (E109°, N18°).

768  Data availability

769 DNA- and RNA-sequencing reads from this study were deposited in the NCBI
770  Sequence Read Archive with the accession number of PRINA641489, PRINA816255,
771 PRINAS816273 and PRINA645739, respectively. The SNP data can be downloaded
772 from

773 https://ftp.cngb.org/pub/CNSA/data3/CNP0001565/zeamap/02_Variants/PAN Zea V
774  ariants/Zea-vardb/.

775  Code availability

776 All custom scripts used in  this study are available at

777  https://github.com/conniecl/Zea genus.
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883  Fig. 1. Phylogeny of Zea genus. a, Geographical distribution of collected teosintes,
884 taxa were identified and colored based on morphology. b, Morphological
885  characteristics of teosinte (Credit to Dr. Andi Kur). nicaraguensis and luxurians are
886  distinguished from other teosinte based on aerenchyma in their stems which aerate roots
887  during submergence, while nicaraguensis has a more robust tassel than luxurians.
888  perennis is a recent autotetraploid of diploperennis; the rhizomatous root systems of
889  these perennial taxa distinguish them from other teosintes. The Mexican annual
890  teosintes parviglumis and mexicana are distinguished from each other based on the
891  presence of macro-hairs and pigment along their stems, two traits that are linked to

892  highland adaptation. ¢, Divergence times (in thousands of years before present)
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893  estimated from the multispecies coalescent (MSC) model. Blue bars indicate the 95%
894  highest posterior density (HPD) intervals. The star indicates nodes with posterior
895  probability of 1. Edge widths reflect estimates of effective population size
896  (Supplementary Table 4). d, Rates of cross-population coalescence among teosinte
897  species. Curves were computed using four phased haplotypes. e, Introgression among
898  taxa. Arrows indicate the taxa involved (one-way arrow indicate unidirectional
899  introgression, two-way arrow indicate bidirectional introgression), and arrow color
900  shows the value of Patterson’s D-statistic (Supplementary Table 5).

901
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903  Fig. 2. Variation in the Zea genus. a, Taxon specific SNPs and b, k-mers (31bp) in
904  Zea genus. TST indicates tropical maize, and TEM indicates temperate maize. The
905 significantly lines compare all teosinte to TST and TEM (a) or
906 luxurians/diploperennis/perennis to Zea mays (b). ¢, Abundance of transposon
907 elements relative to B73. Each column represents a sample. d, Distribution of
908 inversions across the chromosomes. Each colored segment represents an inversion, with
909  colors referring to the population in which the inversion is most prevalent (deep red:

910 diploperennis; blue: perennis; deep blue: mexicana). Inset shows PCA of SNPs data
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911  from within /nv9e, clearly separating the three genotype classes (left: standard; middle:
912  heterozygous inversion; right: homozygous inversion).

913

914

915

916

917
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919  Fig. 3. Local adaptation in teosinte and maize. Genome-wide selection signals (W
920 statistic reflecting smoothed XP-CLR score) between a, mexicana and parviglumis; and
921 b, temperate and tropical maize. The horizontal grey dashed line represents the top 5%
922  cutoff. Genes associated with flowering time and floral development in maize, rice and
923  A. thaliana are marked with green points. ¢, Days to tassel of wild type and ZmPRR7

924  knock out (KO) mutants under tropical (Hainan province 2019 and 2020; China; E109°,
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925  N18°)and temperate (Jilin province 2020 and 2021; China; E125°, N44°) environments.
926 d,ZmPRR7 KO mutants showed earlier flowering relative to wild type. The picture was
927  taken in Jilin province 2020 at 77 d after planting. e. Days to tassel of wild type and
928 ZmCOL9 KO mutants under tropical and temperate environments. f. Days to tassel of
929  wild type and ZmCOL9 over-expression (OE) mutants under tropical and temperate
930 environments. g, ZmCOL9 OE mutants showed later flowering relative to wild type.
931  The picture was taken in Jilin province in 2020 at 78 d after planting. ns indicates non-
932  significant difference between mutants and wild type by two-sided t-test at P-value =

933 (.05, * indicates P-value < 0.05, ** indicates P-value < 0.01.
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