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Abstract

We evaluate deconvolution methods, which infer levels of immune infiltration from bulk
expression of tumor samples, through a community-wide DREAM Challenge. We assess six
published and 22 community-contributed methods using in vitro and in silico transcriptional
profiles of admixed cancer and healthy immune cells. Several published methods predict most
cell types well, though they either were not trained to evaluate all functional CD8+ T cell states
or do so with low accuracy. Several community-contributed methods address this gap, including
a deep learning-based approach, whose strong performance establishes the applicability of this
paradigm to deconvolution. Despite being developed largely using immune cells from healthy
tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed
and purified transcriptional profiles will be a valuable resource for developing deconvolution
methods, including in response to common challenges we observe across methods, such as
sensitive identification of functional CD4+ T cell states.

Introduction

Tissues are comprised of multiple cell types that interact to confer diverse functions. Cells of the
immune system are increasingly recognized for their critical function in both normal and
diseased tissues, and many diseases have been linked to changes in the immune context of
tissues, including cancer, Alzheimer’s disease, arthritis and the SARS-CoV-2 virus, responsible
for the COVID19 pandemic. In the field of oncology, the immune system has emerged as a
critical factor in determining disease progression, patient survival, and response to therapy. The
tumor microenvironment (TME) also presents a number of actionable therapeutic targets.’
Notably, immune checkpoint inhibitors, which are designed to re-potentiate cytotoxic T cells to
engage and kill malignant cells, have led to spectacular clinical outcomes for a subset of
patients with previously dire prognoses. The precise reasons why some patients respond, but
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others do not, are poorly understood, indicating that a more detailed understanding of the TME
is needed.

Single-cell sequencing, imaging, and quantification platforms can directly characterize the
TME,?? yet analysis of existing and new bulk tissue transcriptomic profiles remain significant for
two principal reasons: 1) The community has invested heavily in large databases of clinically
annotated samples with bulk data such as The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEQO). 2) Bulk measurements, in particular RNA-seq, continue to be
regularly employed owing to challenges with more advanced single-cell platforms, including
their cost and/or required specialized equipment [e.g., for CODEX*, mass cytometry (CyTOF),
fluorescence activated cell sorting (FACS), imaging mass cytometry (IMC)®, multiplex ion beam
imaging (MIBI)®, and spatial transcriptomics (ST)’]; difficulties in tissue sample preparation;®
biases induced by preparation and/or single-cell dissociation, such as transcriptome-altering
cellular stress and hypoxia;*'® and under-representation of specific cell types, such as fragile,
short-lived neutrophils.”'?> Hence, both retrospective and prospective correlative studies of
immune infiltration with clinical outcome require dissecting bulk measurements into their
constituent cell types and remain of great interest and value to the community.

Computational ‘deconvolution’ methods meet this need by inferring the relative proportions of
specific cell types from bulk RNA-seq or microarray transcriptional profiles.”'® Application of
these have demonstrated, for example, that tumor B and CD8+ T cell proportions are predictive
of immune checkpoint inhibitor response across different cancers,’®2' and how infiltration of
diverse immune cell types variably impact patient prognosis.?? Unsupervised deconvolution
methods dissect cellular composition without a priori information about the cell types such as
marker genes or expression profiles.?® Supervised approaches instead consist of two main
classes: reference-based deconvolution methods estimate the fractions of cell types in a mixture
(or RNA contribution to the total RNA of the mixture), while enrichment-based methods assign a
per-cell-type score that can be used to compare the relative prevalence of a specific cell type
across samples, but cannot compare different cell types. Enrichment-based methods can
sensitively distinguish between ‘coarse-grained’ cell types (e.g., B versus T cells), but often
have low specificity in discriminating between ‘fine-grained’ cell types (e.g. sub-populations of T
cells such as central memory CD4+ T cells, effector CD8+ T cells, or Tregs).?* Reference-based
deconvolution methods are typically more specific than enrichment-based methods, but may be
less sensitive. The tradeoff between these properties is important when considering their
application to particular questions.

Several benchmarking efforts have used in silico simulation to evaluate factors that impact the
accuracy of published deconvolution methods, including technical noise®® and the specificity of
marker genes.?* The latter study by Sturm and colleagues assessed six published methods and
reported that they robustly predict well-characterized, coarse-grained cell types (e.g., CD8+ T
cells, B cells, NK cells, and fibroblasts), but were less accurate in predicting fine-grained
sub-populations, including Tregs. These prior studies motivated our design of a
community-wide DREAM Challenge to encourage development of new methods to deconvolve
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the cellular composition of fine-grained sub-populations from bulk gene expression and to
rigorously benchmark these against published methods. DREAM Challenges
(https://dreamchallenges.org/) are a well-established framework, and have benchmarked >60
bioinformatic algorithms, leveraging a community of >30,000 participants. We chose to focus on
supervised methods, both reference- and enrichment-based, as these are most widely used in
the cancer community. We use the overarching term ‘deconvolution’ to refer to both reference-
and enrichment-based methods.

To facilitate our benchmarking efforts, we generated in vitro admixtures for use as held-out
validation data. We extracted RNA from cancer cells and healthy immune and stromal cells,
combined them in proportions representative of solid tumors, and performed RNA-seq on them.
Additionally, we generated in silico admixtures from the expression profiles of the same purified
samples used in the in vitro admixtures. In both cases, the known mixing proportions were used
as ground truth in assessing method predictions from the resulting bulk tissue expression using
correlation as a metric. Simulating (in vitro or in silico) admixtures allowed us to define controlled
ground truth in isolation from experimental biases due to technical and biological variability. We
spurred development of 22 new methods contributed by participating international teams. Our
resulting benchmark of these participant methods alongside six published deconvolution
methods that are widely used by the community is the largest to date.

Consistent with Sturm and colleagues, we find that most methods predict coarse-grained
populations well. Beyond that, several participant methods improved prediction of fine-grained
populations, including memory and naive CD8+ T cells, by leveraging the broad cell type
coverage provided by our Challenge data. We generated in silico admixtures from single-cell
RNA-seq (scRNA-seq) profiles of tumor samples and used them to show that these methods,
trained largely on immune expression profiles from healthy tissues, also deconvolve
cancer-associated immune cells well. Through its success in our Challenge, we demonstrate the
applicability of deep learning to deconvolution as an alternative methodology to previously
employed reference- and enrichment-based approaches. Though neither it nor any other single
method performed best across all cell types, we showed that an ensemble approach combining
all methods exploits their individual strengths. The scope of our study allowed us to detect
pervasive difficulties in the field shared across a wide range of methods, diverse in their
computational core and the manner in which they were trained, including challenges in
sensitively predicting CD4+ T cell functional states. These results should contribute to greater
robustness of deconvolution-based analyses, as they will enable researchers to select a method
appropriate for deconvolving a particular cell type, or, alternatively, to appreciate the limitations
of these methods in doing so.

The expression profiles of purified populations and in vitro admixtures generated for this
Challenge are available as a resource for developing and training deconvolution methods in
contexts where quantifying immune and stromal cells is of interest. Specifically, they can be
used to develop methods addressing common shortcomings revealed by our Challenge (e.g.,
with regards to detecting CD4+ T cell functional states). Further, existing methods can be
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re-trained against this standard reference profile so as to evaluate them solely according to their
core computational algorithms independent of differences arising from choice of training
datasets.

Results

Purified and admixed expression profiles enable unbiased

assessment of deconvolution methods

Immune cell infiltration has prognostic significance across multiple levels of immune cell
specialization and polarization. For example, CD8+ T cells, broadly encompassing memory and
naive compartments, have positive prognostic value in many cancer types, whereas regulatory
T cells, a specific subset of CD4+ T cells, generally have negative prognostic associations.?® To
assess deconvolution across these levels, we divided the Tumor Deconvolution DREAM
Challenge into coarse-grained and fine-grained sub-Challenges. In the coarse-grained
sub-Challenge, participants predicted levels of eight major immune and stromal cell populations:
B cells, CD4+ and CD8+ T cells, NK cells, neutrophils, cells of monocytic lineage (monocytes,
macrophages, and dendritic cells), endothelial cells, and fibroblasts. The fine-grained
sub-Challenge further dissected these populations into 14 sub-populations, e.g., memory, naive,
and regulatory CD4+ T cells (Fig. 1A).

To facilitate benchmarking and create a ground truth dataset, we generated in vitro and in silico
expression profiles of cell populations admixed at predefined ratios. We isolated immune cells
from healthy donors and obtained stromal, endothelial, and cancer cells from cell lines (Fig. 1B
and Tables S1 and S2; Methods). Cell type-specific marker expression was confirmed on the
purified cells through RNA sequencing (Fig. S1). To robustly test algorithm performance across
diverse conditions, we defined mixing proportions and generated admixtures from them,
grouped into one of eight datasets according to whether they: (1) included breast (BRCA) or
colon cancer (CRC) cells; (2) had proportions that were unconstrained or constrained by
biologically reasonable expectations (‘biological’ distribution); or (3) were created in silico or in
vitro (Methods; Tables S3-S8). This resulted in a total of 96 in vitro admixtures and 140 in silico
admixtures, with at least 18 admixtures in each dataset to ensure adequate sample size (Table
S9). We generated in silico admixtures as a linear combination of the mixing proportions and the
purified expression profiles and in vitro admixtures by extracting RNA from the purified cells,
mixing them at the specified proportions, and sequencing (Fig. 1B).

We provided participants with a curated set of publicly available transcriptional profiles of
purified cell types to use for training (Tables S10 and S11). Importantly, these training samples
were not used in generating our own admixtures. Methods were evaluated against the
admixtures by correlating the predictions of cell type proportions with the predefined (ground
truth) proportions, independently for each cell type. Because the Challenge focused on
microenvironmental populations, we only assessed participants' predictions based on inference
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of immune and stromal cell content, with the admixed cancer cells effectively treated as
contaminating noise. We ranked methods with an aggregate score that averaged correlations
across cell types and validation datasets (Fig. 1C; Methods). Methods were first assessed using
a primary Pearson correlation-based score. Statistical ties were resolved relative to the
top-performing method (as determined by a Bayes factor; Methods) by a secondary Spearman
correlation-based score. To account for sampling variability, we reported these Pearson-based
(r) and Spearman-based (p) scores as means across bootstraps (Methods). Following the
conclusion of the ranked competition, we further quantified methods based on their
cross-sample, within-cell type correlation, their specificity (i.e., the ‘spillover’ of their prediction
from one cell type into a different one), and their sensitivity (i.e., their limit of detection of a
particular cell type; Fig. 1D).


https://doi.org/10.1101/2022.06.03.494221
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.03.494221; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A #+ Fina-grained sub-<hallenge
J Coarsa-grained sub-challenge

r b
' Mutipoteniial Hematopoistic Stem Cell S
. i Fibmblast
Common Lym.i::iﬁ.uid Progenitor Common Myeloid Progenitor Fibroblast
I *I I n
e AN ke +
:g*".- T .ﬁ-\'l. y I.
B Call MK Cell T Call My ko blast E"dgtghl?"a'
| NK Cell e
. = Endothelial
L ! i t. +
. - Nt - 1
L N -"?‘u —'?*- - ’ J cell
Majve Maive Maive Mewutra phil Mo nocyta
B Cell CDe+TCel  CD4+T Cell Neutrophil
L l 1 +
L. o nﬁ-!-,_d' t-] - t'!'-:i' S t - 4 + L
f,«.— -:.A e f?h. f’@. ,—?-., -"-?'\ 4“‘:’% R ' d
Memory Activated COB+T Memory Regulatory S04+ Memory Myeloid  Macophage
BCel BCell Call CDe+T Cell TCell TCel CD4+T Dendritic Call
B Cell CD8+ T Call coa+ T can 8l Myeloid Lineage
B Admixture Genaration D
mRMNA Generation from — . i witro
Puritied Call Typas =
| _ L i -] m'll S| Within-Sample ﬁ
W e | 3 ] 1 | Cross-Cell Type T
#*[ ’ I‘ = =2 . 5 | Tcorrelation D
- =l L N | = ! I.I. l. &
) ...] i1 o6
immune -] e - Admbiuras
cells ne 15 Felalie abundancss
it B {knive n) ] Knovwm Abundanss
stromal e -......a-.\f_m_ - in silico ) Pur%ﬁm F'u?l:ln
cells - -y 4 & 5 |g
L] e ] &
breastand e | i 4% ..I_ Iz R |I l.. k1 = 4]
colon cancer sl {8 =L et
cells n=15 " e —— bl | cipe o § 5
8 . Purified  Felathve 140 Specificity - =l
''''' -y Calk Abundances Adambpiues = | =
L n= 15 [kn.:w.ln:. J S I ?
¢ ¥ 3 |
C 3 H
eng = Cell Type A
Participant Predictions
e el fion
P -~ = Cell Type A 5
] ., —L.i—*;i = 1':h - Cell Type =
el TR = § e ol mwnoven N senamvy E
AR o = I ﬁ (=) ke
) — e H !
amitu e pred cied
pene expeEson prodiles cell e ;
propon o Known Abundance 5 %25 e I-:.'I :‘.'QF'"H‘_*'

Fig. 1: Generation of in silico and in vitro admixtures of immune, stromal, and cancer cells
and their use as validation data for a DREAM Challenge. (A) Cell populations predicted within
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fine-grained and coarse-grained sub-Challenges indicated with red text and star or blue text
and blue shading, respectively. Cell types aggregated together in coarse-grained
sub-Challenge are connected via their blue shading (e.g., monocytes, myeloid dendritic cells,
and macrophages were classified as monocytic lineage). Immune populations are depicted
within the haematopoietic hierarchy, which represents differential trajectories and not
necessarily levels of specificity. (B) Admixture generation and use for validation. (Left) Purified
immune cell populations were obtained from vendors and volunteers. Purified stromal and
cancer cell populations were obtained from cell lines. (Right) In vitro admixtures were created
by mixing mRNA from purified cell populations in specified ratios (unconstrained or
biologically reasonable) and then subjected to RNA-seq. /n silico admixtures were created by
first sequencing purified cells to define population-specific signatures and then taking a linear
combination of those signatures using specified ratios (unconstrained or constrained
according to biologically reasonable expectation). (C) Deconvolution methods executed in the
cloud against in silico and in vitro admixtures yielded predictions that were then compared to
the input ratios using cross-sample, within-cell type correlation (Figs 2 and 3). Methods were
ranked according to their cross-sample, within-cell type Pearson correlations (primary metric),
with ties resolved using cross-sample, within-cell type Spearman correlations. (D) Method
performance was also quantified according to cross-cell type, within-sample correlation (Fig.
4), specificity (i.e., the ‘spillover’ prediction from a purified cell type into a different cell type;
Fig. 5), and sensitivity (i.e., the limit of detection for a particular cell type; Fig. 6). Fig created
with BioRender.com.

As in previous DREAM Challenges,?” participants submitted their methods as Docker
containers, which were executed in the cloud against held-out validation data. This
‘model-to-data’® approach ensured that data were not leaked to participants, prevented model
over-fitting, and facilitated Challenge reproducibility. Twenty-two teams contributed 39
submissions (i.e., unique methods) to the coarse-grained sub-Challenge, while 16 teams
contributed 48 submissions to the fine-grained sub-Challenge. Additionally, we applied six
widely used published tools (CIBERSORT," CIBERSORTX,?® EPIC,"* MCP-counter,®
quanTlseq," and xCell'®) as baseline comparator methods (Tables 1-2 and Methods section
Comparator method description). Briefly, CIBERSORT'® computes the linear combination of cell
type expression profiles that optimally approximates the observed admixture expression over a
set of markers, using v-support vector regression (v-SVR). CIBERSORTx? uses the same,
v-SVR computational core as CIBERSORT, but additionally corrects for differences between
reference and input admixture data. EPIC' computes the linear combination of cell type
expression profiles that optimally approximates the observed admixture expression over a set of
markers, using constrained, weighted, least-squares optimization. MCP-counter'® computes a
cell type enrichment score as the arithmetic mean of the expression of that cell type’s markers in
linear expression space. quanTlseq' computes the linear combination of cell type expression
profiles that optimally approximates the observed admixture expression over a set of markers,
using constrained least-squares optimization. xCell'® computes a cell type score using
single-sample gene set enrichment analysis of the cell type’s markers that it then calibrates to a
linear scale. Comparator methods were run by Sage Bionetworks independent of method
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developers to ensure unbiased assessments, using default parameters and published reference
signatures. No optimization was applied to tune their performance.

Diverse deconvolution algorithmic cores perform well
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Table 1: Deconvolution approach and marker selection for comparator and top-performing

participant methods.

vector of proportions of cell type ¢ insimulated admixtures

Training Test
Tradiving Batch Batch Coarse Fine
Set Momalization Correction Comection Runtime (s} Runtime (s}
CIBERSORT Healthy Quantile Same platform [HGL1334) 133 13
Healthy (immune subtypes), One platform for immune (HGU1334),  Re-optimizes 2 wort a ComBat-corrected - -
CIBERSORT: Malignant [fumarn immene,'stromal) Quantile (immune only) One dataset for tumar immune st roma admixture matrix w7 67
Re-nommalized TPMs based on genes
EPIC Healthy TRM common to S and test admixture m 0
MCP-Counter Haealthy TRMA A n
quan Tlseq Healthy TPM 53 251
FPEAM [RMA-seq). Markers. determined independently
xCell Healthy RMA [microarray) in each training dataset 0 ?'1
Healthy, TPAM Lo
Agineme-XMU Malignant min-max scaling &0 16
Healthy, -
Biogem Malignant TPM a2 i 2]
Healthay. 7
DAS0S Malignant Rank-hased a2 ol
mitten TDC10 Healthy TPM A Bh BE

Table 2: Training set, normalization, batch correction, and run times of comparator and

top-performing participant methods.

We tested the performance of the six comparator methods, as well as Challenge participant
methods. The median Pearson correlation-based score across participant and comparator
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methods was 0.75 [interquartile range (IQR): 0.43 - 0.81; Fig. 2A] for the coarse-grained
sub-Challenge and 0.61 (IQR: 0.53 - 0.62; Fig. 2B) for the fine-grained sub-Challenge. Methods
differ in their output. Some produce an arbitrary score proportional to the presence of a cell type,
which can be used to compare the same cell type across samples, but not across cell types.
Others generate normalized scores, non-negative proportions summing to one, or non-negative
fractions that need not sum to one, which can be compared both across samples and cell types.
Most approaches were computationally efficient, with a median execution time across methods
for the 236 validation samples of 132 and 156 seconds for the coarse- and fine-grained

sub-Challenges, respectively (Tables 2 and S12).

A . . . B . . . P
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CIBERSORTX- ha -+ Method g inome-XMU- o e
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DA 505- :}'-‘ .FI« oM mitten_TDC19 o4 of= oom
Biogem- DA_505- o + .
1Z1- e [ REG - DN
mitten_ TDC19- o] afe NMF xCell- wle o} o
xCell- o L LS D3Team- o 4 "
Cancer_Decon- .t ¢ svR 1Z1- 4 =} NNLS
ICTD !
Aboensis IV- ofe oje ENS Biogem- ofe offe s
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ol ] o \l £ Yl O el £ R ol Yl ) \cd £ ] O \l £
R N DBD RO ‘\?db\@ & PN & O W \\ob‘q
o’ o
Pearson Spearman Pearson Spearman
Correlation Correlation Correlation Carrelation

Fig. 2: Aggregate cross-sample performance of participant and comparator deconvolution
methods. Aggregate score (primary metric: Pearson correlation; secondary metric: Spearman
correlation) of participant (first submission only) and comparator methods in (A) coarse- and
(B) fine-grained sub-Challenges over bootstraps (n=1,000; Methods). Comparator methods
(bold) are shown only if their published reference signatures include all cell types in each
respective sub-Challenge: CIBERSORTX (coarse-grained only) and xCell. Boxplots display
median (center line), 25th and 75th percentiles (hinges), and 1.5x interquartile range
(whiskers). Methods ordered by median Pearson correlation in respective sub-Challenge.
DNN: deep neural network; ENS: ensemble; NMF: non-negative matrix factorization; NNLS:
non-negative least squares; OTH: other; PI: probabilistic inference; REG: other regression;
SUM: summary; SVR: support vector regression; UNK: unknown/unspecified; Frac:
unnormalized fractions that need not sum to one; Norm: normalized scores (comparable
across cell types and samples); Prop: proportions that sum to one. Source data are provided

as a Source Data file.

Across both comparator and participant approaches, CIBERSORTXx was the top-performing
method in the coarse-grained sub-Challenge according to both metrics (r = 0.90; p = 0.83; Fig.
2A). The next highest-scoring method and the top-performing participant method according to
the primary Pearson-based score was Aginome-XMU (r = 0.85;
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https://doi.org/10.1016/j.patter.2022.100440). Aginome-XMU was the top-performing method
(participant or comparator) in the fine-grained sub-Challenge (r = 0.76; p = 0.64; Fig. 2B).
Methods whose published reference signatures do not include all cell types in a sub-Challenge
(e.g., five of six comparator methods, CIBERSORT, CIBERSORTX, EPIC, MCP-counter, and
quanTlseq, in the fine-grained sub-Challenge) were not considered in that sub-Challenge’s
aggregate ranking. Additionally, there was broad consistency in method ranking across the two
sub-Challenges, with the three top-ranked participant methods in the coarse-grained
sub-Challenge (Aginome-XMU, DA 505, and Biogem) amongst the top seven evaluable
methods in the fine-grained sub-Challenge. Conversely, the three top-ranked evaluable teams in
the fine-grained sub-Challenge (Aginome-XMU, mitten_TDC19, and DA_505) were amongst the
top seven in the coarse-grained sub-Challenge.

We also compared the performance of deconvolution methods to an ensemble combination of
their outputs as a potential upper bound. We defined an ensemble prediction as the consensus
rank across individual methods and found that overall it outperformed any individual method in
both the coarse- (p = 0.84; Fig. 2A) and fine-grained (p = 0.67; Fig. 2B) sub-Challenges.
However, there was only modest improvement of the consensus rank method relative to the
top-scoring individual methods by Spearman correlation in the coarse- (CIBERSORTx p = 0.83)
and fine-grained (Aginome-XMU p = 0.64) sub-Challenges, suggesting that individual methods
are not leveraging independent or orthogonal signals in the data despite their diverse
approaches.

Several core algorithmic approaches were common across submissions, including those based
on non-negative least squares (NNLS; 6 in the coarse-grained and 6 in the fine-grained
sub-Challenge, respectively; Fig. 2A, B; Tables 1-2) and summarization (SUM; 5 and 4).
Nevertheless, there was wide methodological diversity amongst top performers. CIBERSORTXx
uses v-SVR to simultaneously solve for all fractional abundances relating admixed and purified
expression profiles using a signature matrix of ~525 differentially expressed genes spanning 22
immune cells types (LM22)."*?° Aginome-XMU, published subsequent to the Challenge®,
utilizes a neural network composed of an input layer, five fully connected hidden layers, and an
output layer (Supplemental Methods; https://github.com/xmuyulab/DCTD_Team_Aginome-XMU;
Table S13). The network effectively applies feature selection automatically and was trained here
using synthetic admixtures. DA_505 applies a rank-based normalization, selects features by
applying random forests to synthetic admixtures, and ultimately applies regression to predict
abundance of each cell type independently (Supplemental Methods;
https://github.com/martinguerrero89/Dream_Deconv_Challenge_Team_DA505; Fig. S2; Table
S14). mitten_TDC19 calculates a summarization score as the sum of the expression of selected
markers, with the cell type-specific markers first nominated from expression profiles in purified
bulk data or identified®"*? from single-cell data expression profiles and then prioritized according
to their correlation with that cell type’s proportion over synthetic admixtures (Supplemental
Methods; https://github.com/sdomanskyi/mitten_ TDC19; Table S15). Finally, Biogem, based on
a previously published method,*® uses robust linear modeling to perform deconvolution and
differential expression-based feature selection to define the purified expression profiles
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(Supplemental Methods; https://github.com/giannimonaco/DREAMChallenge_Deconvolution;
Fig. S3; Table S16). Hence, despite their algorithmic differences, three of the top-performing

methods were trained using synthetic admixtures, generated in silico from publicly available
purified expression profiles (Table S17). Importantly, the purified profiles that we created to
generate Challenge admixtures were not made available to participants.

Method performance improved for most teams over three allowed submissions (Fig. S4), as
they were permitted to revise their method with each submission. Since we provided teams with
both aggregate and per-cell type scores following each submission, we can not exclude the
possibility that these were used to tune, and potentially over-fit, methods between submissions.
As such, we focused our analyses on the first submission, unless otherwise stated (Fig. S5).

Deconvolution performance differs by cell type

We assessed methods in their ability to predict individual cell type levels within an admixture
(Fig. 3 and Figs S6-S15) and found that all major lineage cell types could be predicted robustly
by at least one method (max row of Fig. 3A and Figs S7, S9, S11, and S14). For example,
though CD4+ T cell levels were most difficult to predict on average, even these could be
predicted with a Pearson correlation of 0.86 by CIBERSORTx and xCell. Neutrophil levels were
predicted most accurately, with 18 of 28 methods having a Pearson correlation of at least 0.90.
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Fig. 3: Per-cell type performance of participant and comparator deconvolution methods. (A)
Pearson correlation of method (left axis) prediction versus known proportion from admixture
for each cell type (bottom axis). Pearson correlation is first averaged over validation dataset
and then over bootstraps (n=1,000; Methods) and subsequently averaged over coarse- and
fine-grained sub-Challenges for cell types occurring in both. Black entry indicates cell type not
predicted by corresponding method. Bottom two rows are the mean and maximum correlation,
respectively, for corresponding cell type across methods. Rightmost column is mean
correlation for corresponding method across predicted cell types. Highest correlations for
each cell type highlighted in bold italics. (B) Performance (Pearson correlation; x axis) of
comparator baseline methods and participant methods ranking within the top three in either or
both sub-Challenges (y axis) for each cell type (facet label). Distribution of Pearson
correlations over bootstraps (n=1,000; Methods), computed as average over validation
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datasets and subsequently over coarse- and fine-grained sub-Challenges for cell types
occurring in both. Blank row indicates cell type not reported by the corresponding method.
Comparator methods in bold. Boxplots display median (center line), 25th and 75th percentiles
(hinges), and 1.5x interquartile range (whiskers). In both panels, methods ordered according
to their mean Pearson correlation across cell types (rightmost column in panel A), and cell
types ordered according to their maximum Pearson correlation across methods (bottom row in
panel A). Source data are provided as a Source Data file.

Baseline comparator methods, other than xCell, were not trained to predict all the fine-grained
immune subtypes used in the Challenge. For example, none of quanTlseq, MCP-counter, or
EPIC differentiate between memory and naive CD4+ T cells; and only xCell differentiates
between memory and naive CD8+ T cells, though with low accuracy for both (Fig. 3; r <= 0.40).
Participant models showed potential at predicting these poorly covered cell types. For example,
mitten_TDC19 improved upon comparator performance in predicting both naive CD8+ T cells (r
= 0.90 vs xCell r=0.15) and memory CD8+ T cells (r = 0.82 vs xCell r = 0.40), with Aboensis IV
outperforming both for naive CD8+ T cells (r = 0.91). Further, Aginome-XMU performance on
macrophages (r = 0.66 vs xCell r = 0.58) and DA_505 performance on memory CD4+ T cells (r
= 0.62 vs CIBERSORTx r = 0.54) improved upon their respective best-performing comparator
methods. In all other cases, participant methods showed some modest improvement (change in
r < 0.05) relative to comparator methods. Notwithstanding these advances, the seven most
difficult populations to predict were functional subsets of CD4+ and CD8+ T cells and
sub-populations of the monocytic lineage (Fig. 3).

The methods that performed well in aggregate also performed well based on individual cell
types, though none dominated across all populations. Nominally, 10 methods were the top
performers across one or more of the 17 individual cell populations. For most of these
populations, multiple methods achieved similar performance to the top-ranked one (Fig. 3B and
Figs S6, S8, S10, S12, S13, and S15). Exceptions in which the top method outperformed the
nearest method (comparator or participant) by a large margin (change in r > 0.05) were: xCell
on myeloid dendritic cells (r = 0.80 vs Cancer_Decon r = 0.63), mitten_TDC19 on memory
CD8+ T cells (r = 0.82 vs Biogem r = 0.66), and DA_505 on memory CD4+ T cells (r=0.62 vs
CIBERSORTX r = 0.54). In all other cases, the top-performing method showed at best a
marginal improvement (change in r < 0.05) relative to the next best-performing method
(comparator or participant).

Cross-cell type, within-sample deconvolution performance is
worse than cross-sample, within-cell type performance

We next assessed prediction performance across cell types within samples for those methods
that produced normalized scores, proportions, and fractions (Fig. 4). To do so, we computed a
correlation (Pearson and Spearman) and the root-mean-square error (RMSE) across cell types
within a sample and then reported the median of these respective values across samples.
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Top-performing methods varied across sub-Challenge and metric (Table S18), though several
methods performed well in both the above aggregate cross-sample/within-cell type comparison
and in this cross cell-type/within-sample comparison: CIBERSORTx was amongst the top
performers (i.e., having the highest score or showing no statistical difference from the method
with the highest score) across all metrics in the coarse-grained sub-Challenge; DA_505 was a
top performer based on RMSE and Spearman correlation in the coarse-grained sub-Challenge;
Biogem was a top performer based on Spearman correlation in the coarse-grained
sub-Challenge; and Aginome-XMU was a top performer based on RMSE and Pearson
correlation in the fine-grained sub-Challenge. Additionally, several other methods were amongst
the top performers across one or more metrics in one or both sub-Challenges, including: (1)
xCell, which computes a score for each cell type by applying single sample gene set enrichment
analysis (ssGEA) to a set of marker genes, transforms the scores to proportions using a
calibration function, and finally compensates for spillover between similar cell types; (2) CCB,
which extends the published NNLS-based EPIC method by applying ssGSEA to those
populations not treated by EPIC and by relating those ssGSEA scores to proportions via a
calibration function; and (3) Patrick, which uses excludes tumor-associated genes from the
immune and stromal reference signatures and then performs constrained optimization in
logarithmic space.
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Fig. 4: Aggregate cross-cell type performance of participant and comparator deconvolution
methods. Performance [Pearson correlation, Spearman correlation, and root mean square
error (RMSE)] of methods capable of within-sample, cross-cell type comparison to ground
truth proportions in (A) coarse- and (B) fine-grained sub-Challenges. Distribution over n=166
samples (methods ordered by median Pearson correlation across samples in respective
sub-Challenge). Comparator methods in bold. Boxplots display median (center line), 25th and
75th percentiles (hinges), and 1.5x interquartile range (whiskers). DNN: deep neural network;
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ENS: ensemble; NNLS: non-negative least squares; OTH: other; PI: probabilistic inference;
REG: other regression; SUM: summary; SVR: support vector regression; UNK:
unknown/unspecified; Frac: fraction; Norm: normalized score (comparable across cell types
and samples); Prop: proportion. Source data are provided as a Source Data file.

Deconvolution specificity is lower for T cells than for other cell
types

Methods sometimes attribute signal from one cell type to a different cell type, particularly for
highly similar cell types such as sub-populations of CD4 T cells. To assess specificity, we
quantified the ‘spillover’ between cell types as a method’s prediction for a particular cell type X
within a sample purified for cell type Y # X (Fig. 5A and Figs S16-S17). Based on median
spillover, methods had greatest specificity for neutrophils. Expectedly, methods had greater
specificity for the coarse- relative to the fine-grained populations (Fig. 5B): the second largest
increase in median spillover separates a group enriched in major cell types [neutrophils, NK
cells, naive and parental (naive and memory) B cells, endothelial cells, monocytes/monocytic
lineage cells, and fibroblasts] from a group enriched in minor cell types (macrophages,
memory/naive/regulatory/parental CD4+ T cells, memory/naive/parental CD8+ T cells, and
myeloid dendritic cells). The single largest increase in median spillover separates memory
CD4+ T cells from the remaining cell types. Across cell types, CCB had the lowest (median)
spillover in both the coarse- (Fig. 5C) and fine-grained (Fig. 5D) sub-Challenges. In both cases,
it was followed by Aboensis IV, a summarization-based approach that defined robust marker
genes within a cell type mutually correlated with one another. The top-performing methods
(Aginome-XMU, Biogem, CIBERSORTx, DA 505, and mitten_TDC19) rank within the top half of
methods in both sub-Challenges.
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Fig. 5: Specificity of participant and comparator deconvolution methods. (A) Normalized
prediction of cell type indicated on x axis in purified sample indicated on y axis. (B)
Distribution over methods of spillover into cell type indicated on y axis (averaged first over
samples purified for any other cell type, then over sub-Challenges; Methods). Cell types
ordered according to their median spillover. (C, D) Distribution over cell types of spillover for
each method in (C) coarse- and (D) fine-grained sub-Challenges. Methods ordered according
to their median spillover. Comparator methods in bold. Boxplots display median (center line),
25th and 75th percentiles (hinges), and 1.5x interquartile range (whiskers). Source data are
provided as a Source Data file.

Deconvolution sensitivity is lower for CD4+ T cells than for other
cell types

In real tumors, the representation of different cell types can range from only a fraction of a
percent to a large proportion of the tissue. The limit of detection by deconvolution is likely to
vary from cell type to cell type dependent on the uniqueness and strength of their transcriptional
signal. We assessed deconvolution sensitivity using in silico spike-in experiments (Methods).
We spiked each cell type at a given frequency (ranging from 0% to 40%) into an unconstrained
admixture of all other cell types. We then determined the minimum frequency at and above
which that cell type could be distinguished from the baseline (0% spike in; Fig. 6A). The lowest
limit of detection for any cell type was <0.2% (CIBERSORTXx and Patrick for neutrophils and
MCP-counter for CD8+ T cells), similar to that observed in prior microarray studies.” Seven
methods showed similar mean limits of detection (3-4%) within the coarse-grained
sub-Challenge (Fig. 6A), including top-ranked methods Biogem, CIBERSORTYX, and
Aginome-XMU. Neutrophils, fibroblasts, (naive) B, and CD8+ T cells were sensitively identified
by at least one method in both the coarse- (Fig. 6B) and fine-grained (Fig. 6C) sub-Challenges.
All methods had low sensitivity in detecting CD4+ T cells (and their naive and memory
orientations) and macrophages, though several methods performed considerably better than
others for both (CD4+ T cells: Aginome-XMU = 6%; D3Team = 7%; others >= 10% and
macrophages: DA 505 = 8%; mitten_TDC19 = 8%; others >= 12%).
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Fig. 6: Sensitivity of participant and comparator deconvolution methods. (A) Aginome-XMU
predictions for CD4+ T cells (y axis) for unconstrained admixtures including the level of CD4+
T cells indicated (x axis). Limit of detection (LoD) is the least frequency at and above which all
admixtures are above background (i.e., statistically different from the baseline admixture of
0% spike in based on a raw / uncorrected, two-sided Wilcoxon p-value), which is 6% in this
case. Boxplots display median (center line), 25th and 75th percentiles (hinges), and 1.5x
interquartile range (whiskers) over n=10 in silico unconstrained spike-in admixtures. (B, C)
Limits of detection for indicated methods (rows) and cell types (columns) calculated using
n=10 in silico unconstrained spike-in admixtures in each of the (B) coarse- and (C)
fine-grained sub-Challenges. Best/lowest LoD for each cell type highlighted in bold italics.
Methods ordered according to their mean LoD. Comparator methods in bold. Source data are
provided as a Source Data file.
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Deconvolution methods quantify healthy and tumor-associated
immune cells

The Challenge used immune cells isolated from healthy individuals, and methods were trained
primarily on non-malignant expression profiles (Table 2). To assess whether these methods
could also robustly detect immune cells derived from cancer samples, we generated in silico
pseudo-bulk admixtures from published breast** and colorectal®® cancer scRNA-seq datasets
(Methods). To do so, we mapped the cell subtypes identified in the breast and colorectal
scRNA-seq studies to those predicted by Challenge deconvolution methods (Methods). For
example, we mapped seven CD4 T cell subsets into the coarse-grained CD4 T cell population
deconvolved by Challenge methods. Thus, our in silico admixtures reflect heterogeneity in real
tumors.

Prediction performance was high for all cell types in both datasets, with at least one method
achieving r>0.75 on each population (Figs S18-S19). Despite a shuffled ranking relative to that
in the Challenge (Fig. S19; cf. Fig. 3A), top-performing methods performed well on average
across the cell types in the two simulated cancer datasets (Fig. 7). Considering approaches that
predicted all cell types in both cancer datasets, top-performing methods in the fine-grained
sub-Challenge, mitten_TDC19 (Fig. S19; r=0.84) and Aginome-XMU (r=0.76) were
outperformed in aggregate only by xCell (r=0.86). The top-performing method in the
coarse-grained sub-Challenge, CIBERSORTX, performed nearly as well relative to the cancer
datasets (r=0.74) as to the healthy Challenge dataset (r=0.79).

There was considerable variability in cell type-level performance across healthy and cancer
datasets (Fig. 7). To determine whether there was a systematic decrease in predicting
cancer-associated immune cells relative to healthy immune cells, we quantified this variability
across the two cancer datasets and the eight healthy immune cell datasets used in the
Challenge via linear modeling (Methods). Method performance for specific cell types was
generally not consistently lower in the two cancer datasets relative to healthy cell datasets (Fig.
S20; Tables S19). Exceptions included NK cells, which were significantly lower in both the
BRCA [t(250) = -5.2, Holm-Bonferroni(HB)-adjusted two-sided p = 4.9x10°°, effect size (model
coefficient) = -0.13, 95% confidence interval (Cl) = -0.17 - -0.08] and CRC [t(250) = -8.9,
HB-adjusted two-sided p = 2.0x10™", effect size = -0.22, 95% CI = -0.26 - -0.17] datasets, and
neutrophils, which were significantly lower in the one cancer dataset including them [CRC;
t(125) = -8.1, HB-adjusted two-sided p = 5.6x10™", effect size = -0.19, 95% Cl =-0.24 - -0.14]. In
other cases, differences in immune cell type performance were not consistent across both
cancer-associated datasets, but rather significant in only one (Table S19). Of note,
heterogeneity across datasets also led to reduced performance for some cell types in some
healthy datasets (Table S19), and macrophage prediction performance was actually higher in
both the BRCA [t(150) = 9.4, HB-adjusted two-sided p = 1.4x10™, effect size = 0.35, 95% Cl =
0.28 - 0.43] and CRC cancer datasets [t(150) = 6.7, HB-adjusted two-sided p = 3.3x107"°, effect
size = 0.25, 95% CIl = 0.18 - 0.33]. Taken together, our results suggest that deconvolution
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methods, evaluated in the Challenge using immune cells derived from healthy patients, perform
well in quantifying immune cell infiltration within tumors.
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Fig. 7: Per-cell type performance of participant and comparator deconvolution methods
across healthy and malignant datasets. Performance (Pearson correlation; x axis) of methods
(y axis) for each cell type (facet label). Methods include comparator baseline methods,
participant methods ranking within the top three in either or both sub-Challenges, or methods
having the best mean performance across datasets for any cell type. Performance indicated
separately (by color) for Challenge validation (Healthy), in silico scRNA-seqg-derived CRC
[Pelka (CRC)], and in silico scRNA-seq-derived BRCA [Wu (BRCA)] datasets. Mean
performance is calculated across these three datasets. Challenge validation performance is
itself the mean performance across the eight healthy Challenge validation datasets (e.g.,
distinguished by in silico versus in vitro, as in Fig. S20). Methods ordered according to their
mean performance across the three datasets and the cell types, and cell types ordered
according to the max over methods of their mean performance across the three datasets.
Source data are provided as a Source Data file.

Discussion

Computational deconvolution methods for unmixing gene expression profiles from pervasive
bulk expression data can estimate cell type compositions, which have been shown to correlate
with cancer phenotypes. The existing repositories of such bulk gene expression data describe
large cohorts of patients through rich annotations, making them invaluable in addressing
qguestions across biological domains. Additionally, bulk repositories continue to grow owing to
difficulties in applying single-cell techniques. Therefore, deconvolution of bulk expression data
has and will continue to be an important tool in correlative studies, as noted by the large and
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increasing number of published methods. Unfortunately, benchmarking such methods has been
hampered by the absence of ground truth data.

Here, we generated a resource and DREAM Challenge evaluation framework for a community
assessment of deconvolution methods, through which we stimulated development of 22 new
methods that we benchmarked alongside six published approaches. We did so using both in
vitro and in silico admixtures of immune and stromal cells derived from healthy and, alternatively
in the latter case, malignant tissues. We first isolated major immune and stromal populations
likely to be found in tumors from healthy patients. We profiled these purified populations, as well
as experimentally generated in vitro admixtures that included cancer cells, using RNA-seq. We
further generated in silico admixtures of these purified non-malignant immune and stromal cells
and of cancer-associated immune and stromal cells from published scRNA-seq studies. Using
these, we assessed methods based on their ability to predict the comparative levels of an
individual cell type across healthy (Fig. 3) and cancer (Fig. 7) samples (i.e., cross-sample,
within-cell type) and further dissected the specificity (i.e., spillover; Fig. 5) and sensitivity (i.e.,
limit of detection; Fig. 6) of those per-cell type predictions. Combining these with prediction
performance across cell types within an individual sample (i.e., cross-cell type, within-sample;
Fig. 4) and with computational efficiency (Table 2) provides an overall summary of each method
(Fig. S21). Two published methods, CIBERSORTx and MCP-counter, emerge with strong
performance across these metrics for most of the cell types they evaluate within both healthy
samples and tumor tissues. CIBERSORTX detects a large set of cell types and, as a
reference-based method, computes proportions also comparable across cell types.
MCP-counter identifies a more restricted set of cell types, but, owing to its enrichment-based
approach, does so for each independently. As such, it is applicable without complete knowledge
of all cell types constituting a tissue. Notably, however, neither were trained to differentiate
between memory and naive CD8+ T cells, and xCell, the only published method that was,
performs poorly in so doing. Here, participant methods Aginome-XMU, mitten_TDC19, Biogem,
and DA _505 all show strong performance for memory and naive CD8+ T cells (Fig. S21).

Aginome-XMU and xCell, another method performing well across test scenarios, enjoy the
benefits typical of both reference- and enrichment-based approaches, allowing within-sample
comparisons across cell types while being robust to contamination by unknown cell types not
present in the training data, respectively. Aginome-XMU achieves this by predicting fractions
using deep learning models, one for each cell type. Its success in our assessment demonstrates
the relevance of deep learning to deconvolution — an alternative to reference- and
enrichment-based approaches that does not require explicit identification of signatures or
markers a priori. XCell achieves independence across cell types by instead calibrating its
enrichment scores to a linear scale. The strong performance of the enrichment-based
approaches mitten_TDC19, xCell, and MCP-counter, despite their computational simplicity,
highlights the importance of marker selection (even if this occurs implicitly within
Aginome-XMU). Regardless, no single method performed best on all cell types, nor did we
observe that a particular high-level algorithmic approach dominated. This suggests that the best
method may be problem specific and could be tailored to cell types of interest in a particular
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context. Our results provide the community cell type-level method performance to assist in
making that decision. Moreover, we showed that a straightforward ensemble of all participant
and comparator deconvolution methods marginally outperforms individual methods. This is
consistent with findings from previous DREAM Challenges showing the superiority of such
approaches.***? As such, the ensemble may prove to be a robust strategy across cell types.

Deconvolution methods performed well in predicting levels of immune and stromal cells derived
from tumor samples, despite their being trained largely on data derived from non-malignant
samples. Our broad assessment over a wide range of immune populations buttresses those
from a more focused evaluation, in which EPIC performance in predicting levels of several
tumor-associated immune cells was similar across healthy- and tumor-derived signature
matrices.' The authors did find differences in predictions of CD8+ T cells, which they attributed
to a bias towards resting CD8+ T cells in the healthy samples. We did not observe this trend in
our own assessment. We did note variability across validation datasets, but overall found no
systematic evidence that methods trained on healthy samples underperformed in predicting
tumor-associated immune cells. This robustness to training setting is consistent with practice.
Certainly, transcriptomic*® and proteomic* heterogeneity between healthy and tumor-associated
immune cells has been reported, including the presence of tumor-specific activated
macrophages. Nevertheless, the broad classification of immune cells (e.g., into CD8+ T cells)
requires canonical markers that are shared across biological contexts - and their phenotypic
isolation via FACS generally relies on them. Deconvolution methods leverage these shared
markers, and indeed disease state-specific markers, including those of exhaustion, have been
intentionally omitted in the training of some methods.™ Analogously, different surface proteins
are not used to sort CD4+ T cells as a function of what tissue they are in, though additional
markers can further subclassify them.

Despite potential strides made by participant Challenge methods in predicting memory and
naive CD4+ T cells, macrophages, and monocytes, performance was lowest for these
sub-populations. We can partially diagnose potential causes of this reduced performance by
leveraging the sequenced purified populations to assess specificity, i.e., spillover from the
purified population to others, and sensitivity, assessed as the limit of detection of in silico spike
ins. We observed that memory CD4+ T cell predictions had poor specificity and sensitivity —
ranking last in both metrics, with a median spillover across methods of 21%. Their best-case
limit of detection was 22%, at which level they could be predicted above background by the
most sensitive method. In contrast, other infiltrating immune cells had spillovers as low as ~5%
for neutrophils and NK cells and could be detected down to a threshold of ~0.2% (neutrophils for
CIBERSORTx and Patrick and CD8+ T cells for MCP-counter). Naive and parental CD4+ T cell
predictions also had poor sensitivity, with best-case limits of detection of 6%, and poor
specificity, with spillovers of 15% and 16%, respectively. On one hand, poor prediction
performance of macrophages may similarly be attributable to both low sensitivity, with a
best-case limit of detection of 8%, and specificity indicated by 12% spillover. On the other hand,
prediction performance of monocytes seems most likely due to low sensitivity (8% spillover)
given the high specificity in detecting them, where the best-case limit of detection was ~1%.
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These difficulties in accurately predicting levels of CD4+ T cells and macrophages have
important implications for tumor immunology given their importance as therapeutic targets.*

Deconvolution methods, and our assessment of them here, are relevant despite the numerous
experimental and computational approaches?? for defining and characterizing the tissue
microenvironment at single-cell resolution. These approaches present challenges slowing their
broad adoption. Well-established techniques, such as fluorescence activated cell sorting (FACS)
and immunohistochemistry, can rapidly and accurately count cells of specific types from a
tissue, but are limited by the number of markers (and therefore cell types) they can
simultaneously assay. Single-cell proteomic technologies, including mass cytometry (CyTOF),
can quantify ~100s of proteins in millions of cells at once, but require validated, high-quality
antibodies for each marker of interest.*® Single-cell RNA-seq (scRNA-seq) profiles the
expression of individual cells,*” however artifacts are introduced by tissue preparation steps
including dissociation and other manipulations, leading to preferential loss of specific cell types,
such as plasma cells and neutrophils, as well as perturbation of cell state, with attendant
transcriptome and proteome changes.?**°' Such methods also cannot currently be applied to
archival tissues and instead require prospective sample collection. /n situ molecular imaging
platforms, such as cyclic immunofluorescence,*? imaging mass cytometry (IMC),> CODEX,* and
multiplex ion beam imaging (MIBI),® can spatially resolve individual cells, but rely on predefined
markers and appropriately prepared tissue. Spatial transcriptomics ST technologies are able to
measure expression for thousands of genes, are applicable to formalin fixed paraffin embedded
as well as fresh frozen tissue, and are rapidly advancing to single-cell resolution.”**** However,
as with other emerging technologies above, they are costly and require specialized analyses
that have yet to be standardized.

Our assessment has several limitations. (1) Our Challenge evaluates deconvolution methods
according to the collective impact of their computational core (e.g., v-SVR or deep neural
network), the manner in which they were trained, and the data upon which they were trained. As
such, we can not attribute performance gains specifically to differences in algorithmic approach,
reference signatures, or some combination. Further, many comparator methods could not be
formally assessed by our two global metrics, since their published reference profiles did not
include all the cell types required for scoring. Among such methods, CIBERSORTx was run on
all cell types except naive and memory CD8 T cells in the fine-grained sub-Challenge and
exhibited comparable performance to other leading methods. MCP-counter could only predict
half the specified cell types, but achieved high performance aggregated across those.
Nevertheless, our results are relevant to the frequent practice'®?2°>-*" of applying a
deconvolution method with its published signature and default settings. Further, we have
assessed their cell type-specific performance. Finally, our purified expression profiles make
possible the retraining of all methods on the same data to isolate the algorithmic component of
their performance. In further support of such an evaluation, we have made code available to
retrain all of the top-performing participant methods, Aginome-XMU
(https://github.com/xmuyulab/DAISM-XMBD), Biogem

(https://qithub.com/giannimonaco/DREAMChallenge_DeconvolutionTrain), DA_505
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(https://qithub.com/martinguerrero89/Dream_Deconv_Challenge_Team_DA505_Training), and
mitten_TDC19 (https://github.com/sdomanskyi/mitten_TDC19), while that for CIBERSORTX is

already available via its online portal (https://cibersortx.stanford.edu). (2) The in vitro mixing of
healthy immune cells and in silico mixing of sScRNA-seq derived profiles of cancer-associated
immune cells are individually imperfect, yet complementary. Isolating immune cells from
peripheral blood, as for our in vitro admixtures, is more experimentally tractable than doing so
from tumor tissues and avoids artifacts associated with scRNA-seq. Isolating cells from
peripheral blood also allowed us to capture a broad array of cell types, including those that
would otherwise be present at low frequency within tissues. Indeed, several populations were
not represented in one or both of the two scRNA-seq studies used to generate our in silico
admixtures, including neutrophils and memory and naive CD4+ and CD8+ T cells. As such, not
only were these particular cell types unevaluable in the cancer-associated admixtures, but a
population that was present, such as memory CD4+ T cells, may have been easier to
distinguish within them because closely related naive CD4+ T cells were not included.
Therefore, we believe that the healthy admixtures present a fuller, less biased representation for
our evaluation. This is supported by overall consistent results with the cancer-associated in
silico admixtures, despite the fact that the healthy cells do not reflect the full tumor-resident
heterogeneity of immune populations. More generally, our approach of using in vitro derived or
in silico simulated admixtures provides objective ground truth that would be difficult to otherwise
obtain. In particular, the seemingly straightforward approach of using scRNA-seqg-derived
proportions as ground truth in evaluating deconvolution of bulk RNA-seq expression from
matched samples is problematic: scRNA-seq experimental artifacts can skew cell type
proportions through preferential loss of certain cell types.?#%% (3) Our Challenge does not
capture all immune cell types of immuno-oncological significance, including those with
exhaustion phenotypes.>® Nevertheless, our fine-grained populations do extend the set of cell
types previously evaluated. Further, that set includes cell types of clinical significance and that
earlier deconvolution studies have already linked to survival,'”%*¢" progression,®? and response
to immune checkpoint inhibitors.’2" Finally, the top performers could be retrained to predict
exhausted CD8+ T cells or other immune subpopulations characterized by single-cell studies by
applying the code we make available here or the resources on the CIBERSORTXx website.
Indeed, CIBERSORTX was previously® trained to predict exhausted CD8+ T cells expressing
PDCD1 and/or CTLA4 that were computationally isolated from a scRNA-seq study of
melanoma.®® Subsequent CIBERSORTXx predictions of exhausted CD8+ T cells from bulk
RNA-seq data were significantly correlated with response to immune checkpoint inhibitors
across three independent melanoma studies.®**® (4) To maintain a practical scope, we have
focused on deconvolution of MRNA expression. DNA methylation profiles have also proven to
be a valuable source of information for tumor content deconvolution and it is possible to
integrate multiple modalities to improve accuracy.®” (5) Our focus in this study was on
deconvolution of bulk RNA-seq, however spatial transcriptomics technologies are rapidly
emerging. To date, many of these approaches rely on sequencing small populations of cells
across tissue regions—for example the multicellular regions ‘spots’ assayed by the Visium
platform’ and the ‘pucks’ of the Slide-seqV2 platform.®® To accelerate development of ST
algorithms, our purified expression profiles could be used to simulate data for assessment of ST
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deconvolution methods. ST deconvolution method development and assessment have
considerations beyond that relevant in deconvolution of bulk RNA-seq data, including modeling
of sparse (near single-cell) sequencing data, incorporating number of cells obtained from a
matched histology image as a prior constraint, and sharing information across a spatial
neighborhood. Others have reviewed®® and benchmarked’® methods in this field. We envision
that the approaches outlined herein could be used in future studies as a blueprint to assess
deconvolution algorithms tuned to ST data.

Our community-wide comparison of 28 community-contributed and published deconvolution
methods revealed that levels of most major immune and stromal lineages were well predicted by
most approaches. As such, our assessment suggests they provide robust signals for
downstream correlative analyses. We observed considerable variability in predictive
performance for minor lineages across methods. Though finer dissection was difficult for most
sub-populations and most methods, even levels of the most challenging cell type, memory
CD4+ T cells, were predicted at an accuracy (r = 0.62) that may be sufficient for some
applications. Hence, our results allow researchers to choose the most appropriate method for
studying an individual cell type. Where greater accuracy is needed, the purified immune and
stromal expression profiles we generated should be a useful resource to the community in
refining marker genes and signature matrices for deconvolution of the tumor microenvironment
or of non-malignant contexts with significant immune modulation. This resource will also permit
developers of new algorithms to perform unbiased comparisons, including for tools with
increasing popularity that emerged after the Challenge competition was completed.”"?

Methods

Ethical regulations

Fresh human whole blood was obtained from the Stanford Blood Center, in accordance with
procedures approved by the Stanford Institutional Review Board (IRB).

Statistics and reproducibility

1000 bootstraps were used to compare methods. A sample size of 1000 was chosen so that
intra-method variance across bootstraps was small (i.e., relative to inter-method variance). No
data were excluded. Cell populations were generally derived from two biological replicates
(often from different vendors). Exceptions were memory B cells, which were not replicated
owing to poor RNA integrity of the second sample. Further, fibroblasts, endothelial cells, and
colon and breast cancer cells were not replicated, as they were derived from cell lines. The
experiments were not randomized, since there were no experimental groups in our study and
randomization was not relevant. The investigators were not blinded during the study, as there
were no group allocations.
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Cell isolation

Cells were obtained from four sources, StemExpress (Folsom, CA), AllCells (Alameda, CA),
ATCC (Manassas, VA), and the Human Immune Monitoring Centering (HIMC) at Stanford
University. Immune and stromal cells provided by StemExpress and AllCells were isolated
according to vendor protocols (Table S1).

Neutrophils and CD8" memory T cells were isolated by HIMC as follows. Fresh human whole
blood was obtained from the Stanford Blood Center, in accordance with procedures approved
by the Stanford Institutional Review Board (IRB). Human whole blood samples were collected
under informed consent in EDTA-coated tubes. After 2h resting, whole blood samples were split
for neutrophils and CD8 memory T cell isolation.

Neutrophil isolation was performed with MACSxpress® Whole Blood Neutrophil Isolation Kit
(Miltenyi Biotec) according to manufacturer instructions. Briefly, the whole blood samples were
mixed with the appropriate amount of isolation mix buffer consisting of magnetically coated
beads conjugated to antibodies targeting all the immune populations in the peripheral blood
except for the neutrophils. The cell suspension containing the isolation mix was incubated for 5
min at room temperature on a low-speed rotator. Then magnetic separation was performed for
15 minutes prior to collecting the untouched neutrophils in a clean tube.

For CD8" memory T cell isolation, Peripheral Blood Mononuclear Cells (PBMCs) were first
isolated by density gradient centrifugation using Ficoll-Paque™ Plus (Cytiva). After washes, cell
counts were obtained using a Vi-Cell XR cell viability analyzer (Beckman Coulter). Actual
isolation was performed using a CD8+ Memory T Cell Isolation Kit (Miltenyi Biotec) per the
manufacturer’s instructions. Briefly, PBMCs were incubated at 4°C for 10 min with a cocktail of
biotin-conjugated monoclonal antibodies against CD4, CD11¢c, CD14, CD15, CD16, CD19,
CD34, CD36, CD45RA, CD56, CD57, CD61, CD123, CD141, TCRgd, and CD235a. After
washing, cells were resuspended in a solution of anti-biotin magnetic microbeads and incubated
for 15 min at 4°C. After another wash, magnetic separation was performed using LS columns
(Miltenyi Biotec), and we collected the cell fraction corresponding to
CD45RO"CD45RACD56'CD57CD8" T cells.

Finally, isolated neutrophils and CD8* memory T cells were resuspended in RNAprotect Cell
Reagent (Qiagen) for RNA extraction.

Cell lines

Cell lines were obtained from ATCC for colon cancer cells (HT-29 colon adenocarcinoma;
HTB-38), breast cancer cells (BT-483 breast ductal carcinoma; HTB-121), fibroblasts (normal
dermal fibroblasts; PCS-201-012), and endothelial cells (primary aortic endothelial cells;
PCS-100-11). We did not perform cell line authentication nor did we test for mycoplasma
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contamination. None of the cell lines are on the list of known misidentified cell lines maintained
by the International Cell Line Authentication Committee
(https:/liclac.org/databases/cross-contaminations/).

Library preparation, RNA sequencing, and data processing

Libraries were prepared using the Clontech SMARTer Stranded Total RNA-Seq v2 kit (Takara
Bio) according to manufacturer instructions. Paired-end RNA sequencing of all in vitro
admixtures and purified samples was performed by MedGenome Inc, by pooling the indexed
libraries across four lanes of an lllumina NovaSeq S4 flowcell.

Estimated transcript read counts and transcripts per million (tpm) were generated via
pseudo-alignment with Kallisto v0.46.0 to hg38 using Homo_sapiens.GRCh38.cdna.all.idx
(ftp://ftp.ensembl.org/pub/release-92/fasta’lhomo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.al
I.fa.gz). A translation table of Ensembl transcript ID to Ensembl gene ID and gene symbol was
derived using biomaRt and stored on the Synapse platform at syn21574276. Estimated gene
read counts and tpm were calculated as the sum of transcript counts and tpm, respectively,
associated with the gene via the translation table.

Training data curation

Participants were provided with a curated list of purified expression profiles in GEO.”* GEO
annotations were queried using regular expressions corresponding to cell populations of interest
(e.g., with patterns ‘T.reg’, ‘regulatory’, and ‘FOXP3’ for regulatory T-cells). Specifically, GEO
annotations for fields ‘source_name’ or involving ‘characteristic’ (e.g., ‘characteristics_ch1’) were
accessed via GEOmetadb in R.” Cell type patterns are available at:
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/scripts/traini
ng-data-curation/phenotypes-to-query.tsv. Matches identified via grepl were manually curated,
resulting in tables associating cell populations with GEO samples. These were further
summarized according to dataset, listing the cell populations and the number of cell populations
represented by each dataset. This was intended to help participants prioritize datasets
representing many or multiple cell types of interest. Per-sample and per-dataset tables were
created separately for microarray (Table S10,
https://www.synapse.org/#!Synapse:syn18728081, and
https://www.synapse.org/#!Synapse:syn18728088) and RNA-seq (Table S11,
https://www.synapse.org/#!Synapse:syn18751454, and
https://www.synapse.org/#!Synapse:syn18751460) platforms. Microarray expression datasets
were identified as those having ‘Expression profiling by array’ in the ‘type’ field of the ‘gse’
SQLite table available in GEOmetadb and as being assayed in human [i.e., as having the
pattern ‘sapiens’ in the ‘organism’ field of the ‘gpl’ (platform) SQLite table]. RNA-seq expression
datasets were similarly identified as having ‘Expression profiling by high throughput sequencing’
in the ‘gse’ table and as being assayed in human. Additionally, RNA-seq datasets were limited
to those generated on lllumina platforms (i.e., as having a pattern of ‘illumina’ in the ‘title’ field of

29


https://paperpile.com/c/X8oBpH/Vev2
https://paperpile.com/c/X8oBpH/4CP1
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/scripts/training-data-curation/phenotypes-to-query.tsv
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/scripts/training-data-curation/phenotypes-to-query.tsv
https://www.synapse.org/#!Synapse:syn18728081
https://www.synapse.org/#!Synapse:syn18728088
https://www.synapse.org/#!Synapse:syn18751454
https://www.synapse.org/#!Synapse:syn18751460
https://doi.org/10.1101/2022.06.03.494221
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.03.494221; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the ‘gpl’ table), specifically the HiSeq (with pattern ‘hiseq’ in the ‘title’ field) or NextSeq (with
pattern ‘nextseq’ in the ‘itle’ field) platforms. Participants were provided only identifiers of GEO
datasets (GSMxxx) and samples (GSExxx). In particular, cross dataset normalization to account
for batch effects was not performed, but rather was left to participants.

Unconstrained admixture generation

Unconstrained admixtures were defined in two stages: (1) a broken-stick approach partitioned
the entire admixture across n cell types and (2) the proportion of each cell type ¢ was restricted
to be within min, and max,. In particular, for n cell types contributing a proportion p <=1 (i.e.,
100%) of the admixture total, the range 0 to p was randomly broken into n segments by
choosing n-1 boundaries of those segments. The n-1 boundaries were uniformly sampled
between a minimum cell population size of 0.01 (i.e., 1%) and p in fixed-sized steps (of 0.01
unless otherwise specified), thus ensuring that each of the n populations was represented at a
frequency of at least 1%. The resulting candidate proportions were excluded if the proportion p,
for any of the n cell types ¢ was outside the bounds [min,, max_]. min, was set to 0 and max,
was set to 1 (i.e., 100%), unless otherwise specified. Setting p < 7 allows the remaining 7-p
proportion to be allocated to an (n+17)% cell type, e.g., fixing a spike in population at proportion

1-p.

Biological admixture generation

Biologically constrained admixtures were defined such that cell population proportions were
within biologically reasonable limits, in particular those detected by CyTOF in PBMCs and
aggregated in the 10,000 Immunomes (10KIP) database’ (downloaded on July 9, 2018),
observed in the Azizi single-cell (sc)RNA-seq breast cancer study,* the Tirosh scRNA-seq
melanoma study®?, or inferred by CIBERSORT in the Thorsson TCGA pan-cancer study.”

As none of these resources included all (coarse- or fine-grained) cell types to be deconvolved,
several were combined in a hierarchical fashion. Two such hierarchical models, one based on
the Thorsson study and the second based on the Azizi study, were created. At each level of the
hierarchy, the models defined a minimum and maximum proportion for each population relative
to its parental population. The minimum and maximum proportions for a particular cell type in a
particular dataset were defined as two standard deviations above (~98th percentile) or below
(~2nd percentile), respectively, the mean of proportions observed for that cell type in that
dataset. The root of the model corresponds to the admixture of n cell populations. In both
hierarchical models, the entire admixture was partitioned into cancer cell, leukocyte, and
non-leukocyte stromal compartments, with minimum and maximum proportions for each
compartment defined using the Thorsson study. Specifically, from the stromal fraction (SF), or
total non-tumor cellular fraction, and the leukocyte fraction (LF) defined by Thorsson, we define
the cancer cell proportion as 1 - SF, the leukocyte proportion as LF, and the non-leukocyte
stromal proportion as 1 - SF - LF. Both hierarchical models next subdivided the non-leukocyte
stromal compartment into (cancer-associated) fibroblasts and endothelial cells using proportions
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of single cells observed in the Tirosh study. The original publication noted that four samples
(CY58, CY67, CY72, and CY74) were experimentally enriched for immune infiltrates (CD45+).
As such, the proportions inferred from them would not have represented cellular proportions
relative to the entire cellular population. Hence, we excluded from analysis these samples, as
well as CY75, which also did not have any tumor cells.

The Thorsson-based hierarchical model subdivided the leukocyte component into those inferred
using CIBERSORT in the original study. Specifically, the leukocyte fraction was subdivided into
the following sub-compartments: memory CD4+ T (i.e., T.Cells.CD4.Memory.Activated +
T.Cells.CD4.Memory.Resting in the original publication), naive CD4+ T (i.e., T.Cells.CD4.Naive),
regulatory CD4+ T (i.e., T.Cells.Regulatory.Tregs), CD8+ T (i.e., T.Cells.CD8), memory B (i.e.,
B.Cells.Memory), naive B (i.e., B.Cells.Naive), natural killer (i.e., NK_cells), neutrophils (i.e.,
Neutrophils), dendritic cells (i.e., Dendritic.Cells.Activated + Dendritic.Cells.Resting), monocytes
(i.e., Monocytes), and macrophages (i.e., Macrophages.M0O + Macrophages.M1 +
Macrophages.M2). Finally, the CD8+ T cell proportion was subdivided into memory and naive
CD8+ T cells using the KIP database.

The Azizi-based hierarchical model subdivided the leukocyte component into those reported in
the Azizi study, specifically: T (i.e., T.cell in the original study), B (i.e., B.cell), natural Killer (i.e.,
NK.cell), neutrophils (i.e., Neutrophil), dendritic cells (i.e., DC), monocytes (i.e., Monocyte),
macrophages (i.e., Macrophage). Using the KIP database, the T cell compartment was further
subdivided into memory, naive, and regulatory CD4 T cells and memory and naive CD8+ T
cells, while the B cell compartment was further subdivided into memory and naive B cells.

A single, final model was created from the Thorsson and Azizi models. This final model had a
maximum proportion for cell type ¢ set to the maximum proportions for ¢ within the Thorsson
and Azizi models. The final model’s minimum proportion for ¢ was set to the minimum
proportions for ¢ within the Thorsson and Azizi models, unless this was below 0.01, in which
case it was set to 0.01.

The biologically constrained admixtures were generated using the Hit and Run Markov Chain
Monte Carlo (MCMC) method for sampling uniformly from convex samples defined by linear
(equality and inequality) constraints, as implemented in the hitandrun library in R
(https://github.com/gertvv/hitandrun). The system of linear constraints included a variable for
each of the n populations. As in the unconstrained admixtures, the corresponding n proportions
sum to p <=1, with p < 7 allowing the remaining 7-p proportion to be allocated to an (n+17)* cell
type. The resulting equality constraint was passed to the solution.basis function, whose
output was in turn passed to the createTransform function. 2n linear inequality constraints
were defined from the minimum and maximum proportions of each of the n populations. These
were passed along with the output of createTransformtothe transformConstraints
function. An initial guess was created by passing these transformed constraints to
createSeedPoint along with arguments homogeneous=TRUE and randomize=TRUE.
Admixtures were sampled by passing the resulting seed and the transformed constraints to the
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har function along with parameters N, the number of iterations to run, set to 7000n°® and
N.thin, the thinning factor indicating how many iterations to skip between samples, set to n°.

Selection of extremal candidate admixtures

Unless otherwise indicated, we ordered candidate admixtures so as to prioritize those most
different from another. In particular, we select as the first two candidate admixtures those having
maximum sum of squared (proportion) differences. Then, we greedily selected admixtures that
maximized the minimal sum of squared differences to those admixtures already selected.

In vitro validation admixture generation

60 biological admixtures and 36 unconstrained admixtures were defined using the procedures
described in the subsections Biological admixture generation and Unconstrained admixture
generation, respectively, with the exceptions noted below. Admixtures were defined over the cell
populations having samples with sufficient mass and high RNA integrity number upon first
assessment (Table S2): breast or colorectal cancer, endothelial cells, neutrophils, dendritic cells,
monocytes, macrophages, NK, regulatory T, naive CD4+ T, memory CD4+ T, naive CD8+ T,
memory CD8+ T, naive B, and memory B cells. Admixtures were designed so as to minimize
batch effects across vendors, with half of the biological and half of the unconstrained admixtures
assigned immune cells from Stem Express wherever availability allowed (Tables S3 and S4,
respectively) and the rest assigned immune cells from AllCells wherever availability allowed
(Tables S5 and S6). However, following subsequent experimental quantification, several cell
populations (neutrophils, naive CD8+ T cells, and memory B cells) did not have sufficient
material for inclusion in the admixtures. As such, the final in vitro admixtures used during the
Challenge validation phase included: breast or colorectal cancer cells, endothelial cells,
fibroblasts, dendritic cells, monocytes, macrophages, NK, regulatory T, naiveCD4+ T, memory
CD4+ T, memory CD8+ T, and naive B cells. The final relative concentrations were rescaled
relative to those designed computationally after excluding neutrophils, naive CD8+ T cells, and
memory B cells. The final in vitro admixtures used during the Challenge validation phase are
provided in Tables S7 and S8.

Biological admixtures were generated with a fixed tumor proportion 7-p in the range 0.2 to 0.8 in
steps of 0.01 (i.e., such that the n populations excluding the tumor cells have proportions
summing to 7-p). This fixed tumor proportion overrode the tumor proportion bounds defined in
the Thorsson-based and Azizi-based biological models.

To assess the ability of methods to differentiate between closely related signal/decoy pairs of
cell types (e.g., memory vs naive CD4+ T cells) and to improve our sensitivity in measuring this
ability, within each unconstrained in vitro admixture we included a signal cell type with a high
proportion (min, of 0.2 and max, of 0.35) and we excluded the decoy cell type (min, and max, of
0). For all other non-cancer cell types ¢, min, was set to 0.01 and max, to 0.5. We considered
three ranges of cancer cell proportions: min,,,cer = 0.2 t0 Max,aneer = 0.3, MiN gneer = 0.4 tO
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MaXgancer = 0.5 and ming,,qe, = 0.6 to max,..... = 0.7. For each combination of these three cancer
ranges and the following signal/decoy pairs, we generated 1,000 candidate admixtures:

Signal Decoy
Monocytes Dendritic cells
Macrophages Monocytes
Dendritic cells Macrophages

Naive CD4+ T cells

Memory CD4+ T cells

Memory CD4+ T cells

Naive CD4+ T cells

Naive CD8+ T cells

Memory CD8+ T cells

Memory CD8+ T cells

Naive CD8+ T cells

Naive B cells

Memory B cells

Memory B cells

Naive B cells

Tregs

Naive CD4+ T cells

Naive CD4+ T cells

Tregs

Finally, we applied the strategy described in the subsection Selection of extremal candidate
admixtures with a minor modification: in each selection round, we only considered candidate
admixtures generated for a particular signal/decoy pair and we iterated through the list of pairs
with each round (recycling pairs as necessary).

Code to generate the (unconstrained and biological) in vitro validation admixtures is in
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/analysis/adm
ixtures/new-admixtures/gen-admixtures-061819.R. The admixture expression data (i.e.,
represented as TPM and as read counts) are in Synapse folder syn21821096 and the (ground
truth) admixtures are in Synapse folder syn21820011. They are the datasets designated ‘DS1’,
‘DS2’, ‘DS3’, and ‘DS4.’ Participants were told the cancer cell type included in each dataset
(BRCA or CRC), which was BRCA for DS1 and DS3 and CRC for DS2 and DS4.

In silico validation admixture generation

Insufficient RNA was available to include naive CD8+ T cells and neutrophils in the in vitro

admixtures. However, material was available to sequence the purified samples. This allowed us
to generate in silico admixtures using the above biological and unconstrained procedures, such
that the final in silico admixtures used during the Challenge validation phase included: breast or
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colorectal cancer cells, endothelial cells, fibroblasts, dendritic cells, monocytes, macrophages,
neutrophils, NK, regulatory T, naive CD4+ T, memory CD4+T, memory CD8+ T, naive CD8+ T,
and naive B cells. Memory B cells were unavailable to be included in either the in vitro or in
silico admixtures.

For each of the two cancers (breast or colorectal) and each of the two vendor batches (i.e.,
Stem Express-enriched or AllCells-enriched, as described in the subsection /n vitro validation
admixture generation), we generated 15 coarse- and 15 fine-grained unconstrained admixtures
and 20 coarse- and 20 fine-grained biological admixtures. Unconstrained admixtures were
generated as described in the subsection Unconstrained admixture generation, except with a
step size of 0.001. Further, we did not diversify admixtures by attempting to maximize the
distance between them (as described in the subsection Selection of extremal candidate
admixtures). We did diversify the biological admixtures, by generating each of the 20
coarse-grained admixtures (and similarly for the fine-grained admixtures) in five batches and by
applying the distance maximization procedure to select the four most distant admixtures from
those in each batch of MCMC samples.

The transcripts per million (TPM)-based expression of in silico admixtures were generated as
the weighted sum of the purified TPM expression profiles. For counts-based expression of the
admixtures, we first normalized the gene counts for each purified sample by the total counts for
that sample, multiplied by the median across samples of sample total counts to obtain
pseudo-counts on the same scale for each sample, and finally derived the admixtures as the
weighted sum of the pseudo-counts.

Code to generate the (unconstrained and biological) in silico validation admixtures is in
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/analysis/vali
dation_data/gc/generate-validation-in-silico-admixtures.R. The admixture expression data (i.e.,
represented as TPM and as read counts) and (ground truth) admixtures are in the same
Synapse folders as the corresponding in vitro data — i.e., syn21821096 and syn21820011,
respectively. They are the datasets designated ‘AA’, ‘AB’, ‘AE’, and ‘AF.’ Participants were told
the cancer cell type included in each dataset (BRCA or CRC), which was BRCA for AA and AE
and CRC for AB and AF.

Comparator method description

CIBERSORT" computes the linear combination of cell type expression profiles that optimally
approximates the observed admixture expression over a set of markers, using v-support vector
regression (v-SVR),”®"® as implemented in svm of the R library e1071. CIBERSORT predicts 22
leukocyte populations, whose reference expression profiles across pre-defined markers are
represented in the LM22 signature matrix. The optimization problem is solved in linear
expression space, after the input admixture and the (vectorized) signature matrix are scaled to
have zero mean and unit variance. All data for LM22 were obtained on the HGU133A
microarray platform from healthy peripheral blood. Markers were defined following quantile
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normalization of the microarray expression data. Markers for a given cell type were defined so
as to be: 1) differentially expressed between that cell type and all others; 2) amongst a subset of
candidate markers, ordered by fold change, that optimized the condition number (i.e., quantified
co-linearity) of the resulting signature matrix; and 3) not expressed in non-hematopoietic healthy
and malignant cells.

CIBERSORTxX? uses the same, v-SVR computational core as CIBERSORT. CIBERSORTx
extends CIBERSORT, however, by correcting for differences between reference and input
admixture data. In this Challenge, we applied bulk-mode (B-mode) batch correction, which
re-optimizes the predicted fractions, B, relative to a ComBat-corrected®® admixture a*.
CIBERSORTYX first solves for B, relative to input admixture a and signature matrix S (e.g.,
LM22), and then defines a* by ComBat-correcting a so as to minimize its differences relative to
the estimated admixture S 3,. The original CIBERSORTX publication defined several new
signature matrices. As described below, we used one of these to first define the fraction of
immune cells (relative to endothelial, stromal, and cancer cells) and then further subdivided this
immune fraction across the 22 leukocytes of LM22.

EPIC™ computes the linear combination of cell type expression profiles that optimally
approximates the observed admixture expression over a set of markers, using constrained,
weighted, least-squares optimization, as implemented in constrOptim of the R library stats.
constrOptim minimizes a function subject to linear inequality constraints using an adaptive
barrier algorithm. The inequality constraint on the sum allows for an uncharacterized cell type.
EPIC operates in linear TPM expression space. Batch correction between reference and input
admixture data consists of subsetting both datasets to a common set of genes and then
normalizing the TPM expression values to sum to unity. EPIC collects cell type marker
expression profiles in a signature matrix, which was derived using sorted immune cells from
peripheral blood within three datasets of healthy patients following influenza vaccination and
from healthy and non-malignant diseased patients. The authors performed no batch correction
across the three studies, but noted that profiles segregated primarily by cell type, rather than
study, using principal component analysis (Fig. 1 of the original study'). Markers were defined
so as to be differentially expressed across reference cells and to be expressed by reference
cells, but not within non-reference (or uncharacterized) cells (e.g., tumor). More specifically,
differential expression was performed using DESeq2®' without specifying any batch correction
and using pairwise comparisons of one reference cell type versus another. Markers were
confirmed not to be expressed in non-hematopoietic tissues in the lllumina Human Body Map
2.0 Project (ArrayExpress ID: E-MTAB-513) or GTEx®2. Finally, to avoid selecting for markers of
exhaustion phenotype, for example, markers were required to have expression in reference
samples and in tumor-infiltrating immune cells in non-lymphoid tissues.®®

MCP-counter’ computes a cell type enrichment score as the arithmetic mean of the expression
of that cell type’s markers in linear expression space. The authors applied frozen robust
multiarray average (fRMA) separately to each GEO series generated from three Affymetrix
microarray platforms: Human Genome 133A, Human Genome 133 Plus 2.0, and HuGene 1.0
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ST. The enrichment-based approach obviates the need for batch correction between reference
and input admixture datasets. The authors organized cell populations hierarchically, and then for
each population applied a stringent test requiring markers be differentially expressed between a
population and populations not overlapping it in the hierarchy and further requiring that the
marker not be expressed in the non-overlapping populations.

quanTlseq'” computes the linear combination of cell type expression profiles that optimally
approximates the observed admixture expression over a set of markers, using constrained
least-squares optimization, as implemented in 1sei of the R library 1imSolve. Unlike in the
original publication, as applied in the Challenge (see below), quanTlseq does not scale inferred
coefficients by mRNA content. quanTlseq operates in linear TPM expression space. quanTlseq
collects cell type marker expression profiles in a signature matrix. Each immune marker was
defined by a strategy requiring that it: 1) be expressed in at least two immune libraries; 2) be
specific to its corresponding cell type (i.e., not a marker for a different cell type according to the
xCell method); 3) have high (binned) expression in all libraries of that cell type and low or
medium quantized expression in all other libraries; 4) not be highly expressed in
non-hematological cell lines in the the Cancer Cell Line Encyclopedia (CCLE)®; 5) not be
expressed in TCGA bulk tumors; 6) not be highly expressed; and 7) be highly correlated with
mixing fractions simulated in 1,700 datasets. The resulting signature matrix is composed of the
median expression for the marker genes over all samples corresponding to a specific cell type.

xCell'® computes a cell type score using single-sample gene set enrichment analysis
(ssGSEA)® of the cell type’s markers that it then calibrates to a linear scale. It deconvolves 64
cell types and uses spillover compensation to resolve those that are highly related. Markers
were defined across 1,725 non-malignant samples in six datasets generated using Cap Analysis
Gene Expression (CAGE), RNA-seq, and microarrays. RNA-seq and CAGE data were FPKM
normalized, while microarray data were normalized using robust multi-array average (RMA).
Markers were defined independently in each dataset, which obviates the need for
inter-technology batch correction. Markers for a specific cell type were selected such that a
quantile of low expression within that cell type exceeded quantiles of high expression for all
other cell types. Further, markers were required not to be expressed in CCLE carcinomas using
a previously developed technique.® Enrichment scores were calculated using ssGSEA for each
marker set within each dataset. The best three such signatures were assessed via validation in
a held-out dataset and the mean of these was computed and fit to an analytical model that
mapped it to cell type abundances.

Comparator method evaluation

All comparator methods were executed by Sage Bionetworks (A.L., V.C., or B.S.W.) and without
modification. All methods were passed expression in linear form.

CIBERSORT" was executed with arguments abs method = “sig.score”, absmean =
TRUE, QN = FALSE, and all other arguments default (including absolute = FALSE) via the
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script CTBERSORT . R. Outputs from CIBERSORT were translated into Challenge populations as
described in Table S20.

CIBERSORTx?® was run in two phases: (1) The first phase separates immune cells (expressing
CD45), endothelial cells (CD37), fibroblasts (CD10), and epithelial/tumor cells (EPCAM) using a
signature matrix (Supplementary Table 2L of Ref*°) derived from FACS purification of these four
cell types within 26 surgically resected primary non-small cell lung cancer biopsies. (2) The
second phase further divides the immune compartment into the 22 immune sub-populations
represented by the same LM22 signature matrix originally published with CIBERSORT." In both
cases, CIBERSORTXx was executed using the cibersortx/fractions docker container obtained
from https://cibersortx.stanford.edu/, with arguments --rmbatchBmode TRUE --perm 1
--verbose TRUE --QN FALSE. The --sigmatrix parameter was used to specify the
appropriate signature matrix. Outputs from the two phases of CIBERSORTXx were translated into
Challenge populations by scaling the output of LM22 phase by the CD45 output from the first
phase as described in Table S21.

EPIC™ was executed using the EPIC function from the EPIC R library, with the arguments
reference = “BRef” and mRNA cell = FALSE. Outputs from EPIC were translated into
Challenge populations as described in Table S22.

MCP-counter’ was executed using the MCPcounter.estimate function from the
MCPcounter R library, with the argument featuresType = ‘HUGO symbols’. Outputs
from MCP-counter were translated into Challenge populations as described in Table S23.

quanTlseq' was executed using the deconvolute quantiseq function implemented in the
immundeconv R library.** deconvolute quantiseqg was passed the arguments tumor =
TRUE, arrays = FALSE, and scale mrna = FALSE. If parameterization of
deconvolute quantiseq returned any invalid (i.e., not-a-number) results, it was re-run with
the additional argument method = “huber”. Outputs from quanTIseq were translated into
Challenge populations as described in Table S24.

xCell'® was executed using the xCel1lAnalysis function of the xCel1 R library, with the
argument rnaseq = TRUE and the argument cell.types.use set to the corresponding cell
types within each challenge [i.e.,t0 ¢ ("B-cells”, “CD4+ T-cells”, “CD8+
T-cells”, “NK cells”, “Neutrophils”, “Monocytes”, “Fibroblasts”, and
“Endothelial cells”) inthe coarse-grained sub-Challenge and to ¢ (“Memory
B-cells”, “naive B-cells”, “CD4+ memory T-cells”, “CD4+ naive
T-cells”, “Treg”, “CD8+ Tem”, “CD8+ naive T-cells”, “NK cells”,
“Neutrophils”, “Monocytes”, “DC”, “Macrophages”, “Fibroblasts”,
“Endothelial cells”) in the fine-grained sub-Challenge]. Outputs from xCell were
translated into Challenge populations as described in Table S25.
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Deconvolution method scoring and comparison

Pearson and Spearman correlation-based scores were calculated hierarchically for a given
method a: For each cell type ¢ and validation dataset d (i.e., DS1, DS2, DS3, DS4, AA, AB,
AE, and AF), the correlation between the values predicted by a and the ground truth was
calculated. These correlations were then averaged over all cell types ¢ to define the score of
method a for dataset d. These dataset-level scores were finally averaged over all datasets d to
define the aggregate score for method a .

To assess scoring differences in the primary metric between a top-performing method a and
another method b, we computed a Bayes factor Kap over 1000 bootstrap samples and
considered Kab >3 as indicating a significant difference. More specifically, we bootstrap
sampled (i.e., sampled with replacement) prediction scores separately within each dataset (i.e.,
DS1, DS2, DS3, DS4, AA, AB, AE, and AF), calculated a Pearson correlation-based score S
between the predictions in bootstrap sample i for method a and the corresponding ground truth
values (and similarly for S? and method b), and calculated Kap as

K., = # of bootstrap samples for which method a outperforms method b __ 2}2(10 1 (S? >S§))
ab — # of bootstrap samples for which method b outperforms methoda ~— Z}S}O 1 (5‘75 >Szt_1) )

where 1(2) is the indicator function that equals 1 if and only if z is true and is 0 otherwise. Any

ties between methods a and b (i.e., Kap < 3) was resolved using the secondary Spearman
correlation-based metric. However, this did not occur in the first submission results.
Distributions, medians, and means over the Si are reported for the Pearson correlation-based
scores in the figures (e.g., Fig. 2A) and main text in lieu of a single score on the original
validation data. Similar bootstrapped distributions, medians, and means were calculated for the
Spearman correlation-based scores and are likewise reported.

Within-sample deconvolution method assessment

We assessed prediction performance across cell types within samples for those methods
outputting normalized scores (CCB, D3Team, NYIT_glomerular), proportions (Patrick), and
fractions (Aginome-XMU, Biogem, CIBERSORTx, DA_505, HM159, IZI, jbkcose, jdroz, LeiliLab,
NPU,REGGEN_LAB, Rubbernecks, Tonys Boys, and xCell). We computed the Pearson
correlation, Spearman correlation, and root-mean-square-error (RMSE) across cell types within
a sample. To assess ties across teams, we fit a linear model whose response was the
correlation or RMSE and whose dependent variable was the team. The top-scoring team (based
on ordering of the median value across samples) was used as the reference in the linear model,
which was fit using 1m in R. Teams were considered tied with the top performer if their
corresponding t-statistic p-value was > 0.05, as computed from the model fit using summary.

Several outliers were excluded from the RMSE sub-plots of Fig. 4 (Patrick from Figs. 4A and 4B
and NYIT_glomerular from Fig. 4A).
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Deconvolution method specificity assessment

To assess deconvolution method specificity, we calculated the (min-max) normalized prediction
for a cell type X in a sample S purified for some cell type other Y # X. These normalized
predictions are displayed in the heatmap of Fig. 5A, with cell types as columns and samples as
rows. Predictions were normalized so as to be comparable across methods independent of the
scale of the prediction (e.g., both unnormalized scores comparable across samples and
proportions comparable across samples and cell types). The min-max normalization of a
prediction pred(X, S, m) for cell type X, method m, and purified sample S was defined as

[ pred(X,S,m) — mins, pred(X, S', m) ]/[maxS, pred(X, §', m) — mins, pred(X, S', m) ].

Spillover into (predicted) cell type X for method m was calculated as the above normalized
prediction for cell type X and method m averaged over samples S purified for some cell type Y #
X (i.e., the mean of the column corresponding to cell type X in Fig. 5A that excludes elements in
which Xis in the sample corresponding to the row). These spillovers were then averaged over
sub-Challenges and the resulting distributions were plotted in Fig. 5B. Distributions of spillovers
over cell types are plotted for each method in the coarse- (Fig. 5C) and fine-grained (Fig. 5D)
sub-Challenges.

Code to format the purified expression profiles is in
https://qithub.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/analysis/spe
cificity-analysis/create-spillover-dataset.R. The processed expression data (i.e., represented as
TPM and as read counts) and the (ground truth) admixtures are in Synapse folder
syn22392130.

Deconvolution method sensitivity assessment

To assess deconvolution method sensitivity in detecting each cell type X, we generated in silico
admixtures in which we computationally spiked in X at regular proportions. We considered 49
spike-in levels from 0% to 0.1% in increments of 0.01%, from 0.1% to 1% in increments of 0.1%,
from 1% to 20% in increments of 1%, and from 20% to 40% in increments of 2%. Cancer cells
were neither used as spike ins nor included within the admixtures. Otherwise, all cell types with
available purified expression profiles were included, namely endothelial cells, fibroblasts,
dendritic cells, monocytes, macrophages, neutrophils, NK, regulatory T, naive CD4+ T, memory
CD4+ T, memory CD8+ T, naive CD8+ T, and naive B cells. Expression profiles of in silico
admixtures were generated as described in the subsection In silico validation admixture
generation.

We defined the limit of detection (LoD) for cell type X and method m as the least frequency at
and above which m’s prediction for X is statistically distinct from the baseline admixture (0%
spike in). We assessed statistical significance using the two-sided Wilcoxon test as
implemented in the compare means function of the ggpubr library and using a raw
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(uncorrected) p-value cutoff of 0.01.

We generated both unconstrained and biological admixtures, using both fine- and
coarse-grained populations. For unconstrained admixtures, we used the broken stick procedure
described in the subsection Unconstrained admixture generation, except with a step size of
0.001 and without diversifying admixtures as described in the subsection Selection of extremal
candidate admixtures. For each of the two vendor batches (i.e., Stem Express-enriched or
AllCells-enriched, as described in the subsection In vitro validation admixture generation) and
each spike in level s, we generated five coarse- and five fine-grained unconstrained admixtures
such that the proportions of the n populations summed to 7-s. We used these same five
admixtures for each of the spike-in experiments by simply assigning the population with fixed
proportion s the name of the population to be spiked in.

For unconstrained coarse-grained populations, we wanted to fix the level of the parental
population (e.g., CD8+ T cells) rather than the sub-populations comprising it (i.e., memory and
naive CD8+ T cells). We defined coarse-grained admixtures at the level of the coarse-grained
populations, but to concretely instantiate them we distributed the proportion of each parental
population into its corresponding sub-populations. We did so by randomly dividing the proportion
into m sub-populations using a flat Dirichlet distribution (using the rdirichlet function in the
dirichlet library) whose m parameters were set to 7/m.

Code to generate the in silico spike in admixtures is in
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/analysis/in-si
lico-admixtures/generate-in-silico-admixtures.R. The processed expression data (i.e.,
represented as TPM and as read counts) and the (ground truth) admixtures are in Synapse
folder syn22361008.

Statistical analyses

All analyses were performed using R statistical software.®® Pearson and Spearman correlations
were calculated with cor . test and two-sided Wilcoxon tests were performed using

compare means.

Consensus rank method

We sought to define an ensemble method to aggregate predictions across all participant and
comparator methods. Since the scales of predicted values vary according to the type of method
output (scores, normalized scores, or fractions), we decided to aggregate the ranks of the
predicted values across methods rather than the predicted values themselves. This is an
instance of the consensus ranking, or social choice, problem in which we seek a ranking that
summarizes the individual rankings of n judges (or, in our case, methods) for m objects (here,
samples). We could define a consensus rank-based ensemble method using ConsRank,* for
example, which uses heuristic algorithms to define one or more consensus rankings. However,
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as the (approximate) solutions are not guaranteed to be unique, we decided instead to take the
more straightforward and more computationally efficient approach of simply defining the
ensemble ranking as the mean of the individual rankings.

Deconvolution method performance across healthy and
cancer-associated immune cell types

We compared deconvolution performance across datasets independently for each cell type and
after controlling for the mean performance of each method. Specifically, within each dataset, cell
type, and method, we adjusted the Pearson correlation between the ground truth and predicted
values by subtracting off the mean Pearson correlation across datasets for the respective cell
type and method. We then performed an ANOVA by passing the formula pearson.r ~ 0 +
dataset to 1min R. To test whether the Pearson correlation within any individual dataset was
less than that of the mean across datasets, we computed one-sided p-values using the Student
t distribution function pt with 1ower=TRUE. Finally, we adjusted all p-values calculated across
all datasets and cell types for multiple hypothesis testing using the Holm-Bonferroni method
implemented in p.adjust. We used the Holm-Bonferroni method as it makes no assumptions
of the p-values, in particular, that they are independent, a condition that would not be met for our
testing scenario. 95% confidence intervals were computed with confint.

Pseudo-bulk Wu et al. BRCA dataset generation

We downloaded the raw count data and metadata generated by the Wu et al. BRCA single-cell
study* from the Broad Single Cell Portal (https://singlecell.broadinstitute.org/single cell).
Specifically, we downloaded A11cells raw count out.zip and

Whole miniatlas meta.csv

from

https://singlecell.broadinstitute.org/single cell/study/SCP1039/a-single-cell-and-spatially-resolve
d-atlas-of-human-breast-cancers. We extracted read counts from the raw data using Read10x
from Seurat.®® We mapped single cells as annotated in the metadata of the published study
using the fields celltype major, celltype minor, and celltype subset to thosein
the coarse-grained sub-Challenge as described in Table S26. The fine-grained cell types were
subsequently mapped to coarse-grained cell types.

Separately for the coarse- and fine-grained translations, we defined the frequency of Challenge
cell types within each patient. We further summed the raw gene counts for cells having the
same annotation within a patient, resulting in raw counts for each cell type within a patient rather
than for each cell. We excluded genes from the original study not present in the Challenge
validation data. We excluded patients whose respective cells don’t cluster with cells of the
corresponding type from other patients. More specifically, we computed a reduced
dimensionality UMAP projection from CPM-normalized deconvolution-related genes. If the most
frequent annotation of a cell’s ten nearest neighbors differed from its own annotation, that cell
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(type) was considered problematic and the corresponding patient was excluded from further
processing. The following patients were excluded: CID4513 and CID4465 (because of
mis-clustering of B cells), CID4461 (monocytic lineage) and CID4523 (endothelial cells).
Deconvolution-related genes were those used in four published methods: MCP-Counter genes,
CIBERSORT’s LM22 genes, EPIC’s TRef and BRef signature genes, and quanTlseq’s TIL10
genes.

As some deconvolution methods expect Hugo gene symbols, whereas others expect Ensembl
gene identifiers, we translated the former to the latter using the same translation table applied
during the Challenge (available on Synapse via syn22394938). Where multiple Ensembl
identifiers mapped to the same gene symbol, the associated raw counts were summed. Counts
were normalized such that genes within each cell type/patient pair summed to the same value —
namely, the maximum sum across all cell type/patient pairs. This facilitated generation of a
pseudo-bulk sample for each patient by taking a sum of raw count, cell type expression profiles
for the patient weighted by their corresponding proportional frequency within that patient. These
were then translated to CPM values and both the raw count and CPMs in both Ensembl and
Hugo namespaces were supplied as input to Challenge participant and comparator methods.
These were then executed against the data using the Dockerized methods submitted to the
Challenge, with the exception of CIBERSORTYX, which was run manually (using the same
version and procedure as in the Challenge).

Pseudo-bulk Pelka et al. CRC dataset generation

We generated pseudo-bulk CRC data from the Pelka et al. single-cell study®, using the same
procedure as described above for the Wu et al. study, except as noted below. We downloaded
the raw data file GSE178341 crclOx full c295v4 submit.h5 from GEO
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178341) and the metadata file
crclOx tSNE cl global.tsv from the Broad Single Cell Portal
(https://singlecell.broadinstitute.org/single_ cell/study/SCP1162/human-colon-cancer-atlas-c295).
We extracted the raw count data, with genes represented with Ensembl identifiers, using
Readl0X_ hb5 with arguments use.names=FALSE and unique.features=FALSE. Using
the hdf5r library, we further extracted the translation between Ensembl identifiers
(matrix/features/id slot) and Hugo symbols (matrix/features/name slot). We
removed genes from pseudoautosomal regions (i.e., with PAR_Y in their Ensembl identifier).

We mapped single cells as annotated in the metadata of the published study using the field
ClusterFull to those in the fine-grained sub-Challenge as described in Table S27. The
fine-grained cell types were subsequently mapped to coarse-grained cell types.
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Data Availability

The raw RNA-seq data generated in this study have been deposited in the NCBI's Sequence
Read Archive (SRA) database under accession code SRP365686
[https://www.ncbi.nlm.nih.gov/sra/?term=SRP365686]. The processed RNA-seq data have been
deposited in the NCBI's Gene Expression Omnibus® (GEQ) database under accession code
GSE199324 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199324]. Additionally,
the raw and processed RNA-seq data are hosted on the Synapse data-sharing platform at
syn21557721 and syn21571479, respectively. Source data are provided with this paper and are
available 10.5281/zenodo.11106980. Raw count data and metadata generated by the Wu et al.
BRCA single-cell study** can be downloaded from the Broad Single Cell Portal
[https://singlecell.broadinstitute.org/single cell/study/SCP1039/a-single-cell-and-spatially-resolv
ed-atlas-of-human-breast-cancers]. Raw data generated by the Pelka et al. CRC single-cell
study® are available under GEO accession code GSE178341
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE178341].

Code Availability

Code used to generate all results, figures, and tables from this manuscript is available on
GitHub
(https://qithub.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/releases/tag/v1.0.0)
Round one code implementations are available for the Aginome-XMU
(https://github.com/xmuyulab/DCTD_Team_Aginome-XMU), Biogem
(https://github.com/giannimonaco/DREAMChallenge Deconvolution;
https://github.com/giannimonaco/DREAMChallenge DeconvolutionTrain), DA 505
(https://github.com/martinguerrero89/Dream_Deconv_Challenge_Team DA505), and
mitten_TDC19 (https://github.com/sdomanskyi/mitten_TDC19) participant methods. Training
code are available for the

Aginome-XMU (https://github.com/xmuyulab/DAISM-XMBD), Biogem
(https://github.com/giannimonaco/DREAMChallenge DeconvolutionTrain), DA 505
(https://qgithub.com/martinguerrero89/Dream _Deconv_Challenge_Team DAS505 Training), and
mitten_TDC19 (https://github.com/sdomanskyi/mitten_TDC19) methods. The script
https://github.com/Sage-Bionetworks/Tumor-Deconvolution-Challenge/blob/master/analysis/vali
dation-analysis/run-deconvolution-method-on-challenge-data.R demonstrates how to run a
deconvolution method against the Challenge data, using xCell as an example, and to compare it
to the Challenge results.
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