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Abstract

Recent advances in spatial transcriptomics (ST) enable gene expression measurements
from a tissue sample while retaining its spatial context. This technology enables
unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity
in the tumor and its microenvironment (TME). The direct characterization of cellular
co-localization with spatial technologies facilities quantification of the molecular changes
resulting from direct cell-cell interaction, as occurs in tumor-immune interactions. We
present SpaceMarkers, a novel bioinformatics algorithm to infer molecular changes from
cell-cell interaction from latent space analysis of ST data. We apply this approach to infer
molecular changes from tumor-immune interactions in Visium spatial transcriptomics data
of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further
transfer learning in matched scRNA-seq data enabled further quantification of the specific
cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the
location and context-specific molecular interactions within the TME from ST data.

1 Introduction

The tumor microenvironment (TME) is the tissue region created and controlled by a tumor in
its surroundings and plays a key role in tumorigenesis and therapeutic response in cancer [1–4].
The TME contains tumor cells, stroma, blood vessels, and immune cells as well as cells from the
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resident tissue [4]. A thorough understanding of the molecular profile of individual cells and the
impact of inter-cellular interactions in the TME is crucial for distinguishing the determinants of
tumor progression [5–7] and precision medicine strategies[3, 8–11].

Advances in single-cell technologies have led to the development of spatially resolved
transcriptomics (ST) which captures the transcriptome in situ [12] and thus allows us to study
the spatial relationship between the various cell populations within the TME as well as their
relationship with the tumor cells. For example, the 10X Visium spatial transcriptomic
technology allows us to resolve tissue heterogeneity at near single-cell resolution (from one to
ten cells per spot). The technique has been applied to characterize the cellular and molecular
composition of tumors [13–15]. Robust analysis pipelines for cell-based analysis and cellular
deconvolution have been proposed to model the cellular composition of spatial-transcriptomics
data [16–20] and cellular phenotypes within each spot [21]. While spot deconvolution methods
can infer linear combinations of molecular markers that are reflective of cellular co-localization,
new computational methods are needed to characterize the molecular changes resulting from
cell-cell interaction at a genome-wide scale.

Many analysis pipelines for Visium ST rely on latent space methods for cellular
deconvolution to overcome the mixture of cells at each spot. In this paper, we present the
SpaceMarkers algorithm which leverages spatial overlapping latent features to infer interactions
between cell types or biological processes represented by latent patterns. We demonstrate the
use of our method using latent features inferred from CoGAPS, a Bayesian non-negative matrix
factorization approach. We selected CoGAPS based on its robustness for single-cell RNA-seq
data [22, 23]. We apply CoGAPS followed by SpaceMarkers to distinct tumor samples to
benchmark its performance on both immune alterations resulting from tumor infiltration in the
lymph node and on neoplastic cell alterations resulting from immune infiltration of
intra-tumoral lesions. Briefly, we first demonstrate that the CoGAPS approach can delineate
the established cellular architecture and associated molecular changes to those cells resulting
from a pancreatic ductal adenocarcinoma (PDAC) that has metastasized to the lymph node.
We then demonstrate how multi-resolution factorization of Visium data can further uncover the
molecular pathways of distinct lesions within breast cancer and enable the inference of
intra-tumor heterogeneity of immune cell interactions using SpaceMarkers. Finally, integration
of Visium data with scRNA-seq data of a liver sample from a patient treated with
immunotherapy allows us to determine the specific cell subtypes in which the identified
SpaceMarkers genes are enriched. Altogether, our extension to latent space analysis enables us
to simultaneously infer cellular architecture and model molecular changes resulting from
spatially interacting biological processes.

2 Results

2.1 Interactions between overlapping latent features delineate inter-cellular
interactions in ST data

Here we present SpaceMarkers, a novel bioinformatics algorithm for identifying genes associated
with cell-cell interactions in ST data. SpaceMarkers is an extension of latent space analysis that
leverages spatially overlapping latent features associated with distinct cellular signatures to
infer the genes associated with their interaction (Figure 1). Fundamentally, this inference relies
on estimation of spatially resolved linear latent features representative of cellular signatures in
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Figure 1. continued on the next page.
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Figure 1. (continued) SpaceMarkers identifies genes associated with cell-cell interaction using
spatially overlapping patterns.

A. Identifying interaction region: The input to the SpaceMarkers algorithm are spatially
resolved latent features resulting from latent space analyses (e.g. CoGAPS patterns). The
images on the left show the intensity levels of two spatially resolved CoGAPS patterns. For each
pattern, the SpaceMarkers algorithm first identifies regions of influence (red and blue spots,
respectively) using a Gaussian-kernel based outlier detection method. The patterns are deemed
to be interacting in the region with overlapping influence (yellow spots) from both patterns. It
also identifies regions with mutually exclusive influence from each pattern (red and blue spots).

B. Identifying SpaceMarkers genes: The second stage of the SpaceMarkers algorithm performs
a non-parametric Kruskal-Wallis statistical test with posthoc analysis on the gene expression
data in the three regions (pattern 1 only, pattern 2 only, and interaction region) to identify
molecular changes due to cell-cell interaction. The output is a list of genes associated with the
pattern interaction (see Methods).

the ST data. That is, the latent feature information is characterized by continuous weights
corresponding to each spatial coordinate in the ST data. We denote these continuous weights as
the patterns in the ST data. The inputs to the SpaceMarkers algorithm are the ST data matrix
and spatially resolved patterns learned through latent space analysis, and the output is a list of
genes associated with the interaction between each pair of spatially overlapping patterns. The
first stage of the algorithm involves the identification of each pattern’s region of influence and
subsequently the region of pattern interaction (Figure 1A.; see also Methods). If a pattern has a
nonzero value at a point, we hypothesize that its influence extends to its neighboring region but
rapidly decreases with increasing distance. We model this by spatially smoothing the patterns
using a Gaussian-kernel based approach (see Methods). Subsequently, we identify outlier values
of smoothed patterns by testing it against a null-distribution obtained by identical smoothing of
spatially permuted pattern values. We denote the region corresponding to these outlier values
as the region of influence of the pattern. Furthermore, two patterns are deemed to be
interacting in the region with overlapping influence from both patterns. We hypothesize that
genes associated with the spatially overlapping influence from two patterns represent changes in
molecular pathways due to the interaction between the biological features of the associated cells.
Therefore, we devise the second stage of the SpaceMarkers algorithm to rank genes exhibiting
higher activity levels in the interaction region relative to regions with exclusive influence from
each pattern (Figure 1B.; see also Methods). To this end, we perform a non-parametric
statistical test followed by posthoc analysis to identify these genes which constitute the
SpaceMarkers output.

In the examples demonstrated here, the spatial data is obtained using the spot-based 10x
Visium spatial transcriptomics technology [12] with 1-10 cells per spot. SpaceMarkers is readily
applicable to spot-based ST data with regions of influence and interaction defined as sets of
spots in which one or two patterns respectively have influence as identified by the
Gaussian-kernel based approach. We use CoGAPS Bayesian nonnegative matrix factorization
[24, 25] for identifying the latent features associated with cellular signatures. When two
patterns have overlapping influence in the same region of the tissue, we assume an interaction
between these patterns in this interaction region. We provide a differential expression (DE)
mode for SpaceMarkers to quantify genes with enhanced expression in a region with overlapping
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influence from two patterns when compared to regions with exclusive influence from individual
patterns. Further we extend this approach to provide a “residual” mode — which identifies
genes that have significantly higher residual error between the original ST data and its
estimated fit from the CoGAPS model in the region with overlapping influence from two
patterns when compared to the regions with exclusive influence from each pattern. We
hypothesize that the residual mode detects the nonlinear effects of intercellular interaction more
precisely by accounting for the underlying linear latent features to mitigate confounding effects
from variations in the cell population density and cell types with common markers. Thus, the
SpaceMarkers algorithm infers both simple molecular changes in the “DE” mode as well as
more precise nonlinear molecular changes in the “residual” mode in regions with overlapping
influence from patterns associated with different cell signatures. We denote such patterns with
concurrent influence in a region as “spatially interacting” patterns. The reliance on latent space
patterns from CoGAPS enables the further ability to integrate SpaceMarkers learned from ST
data in corresponding single-cell data using transfer learning from projectR [23, 26] to refine
the specific cells in which these molecular changes occur. While the method is developed for the
example of latent space patterns in ST data from CoGAPS to define cellular signatures, it is
generally applicable to patterns from any of a number of linear latent feature factorization
approaches available in the literature.

2.2 SpaceMarkers identifies molecular changes from tumor immune
interactions associated with metastatic pancreatic cancer cells invading
the lymph node

In the first example, we applied SpaceMarkers on Visium ST data from a pancreatic cancer
metastasis to the lymph node in a patient who received neoadjuvant GVAX vaccination (see
Figure 2). More specifically, this sample is characterized by the presence of metastatic PDAC,
immune cell aggregates, and germinal centers of B-cell maturation (Figure 2A.). Analysis of the
H&E imaging from the lymph node region used to generate the ST data identifies a region of
the tissue in which the metastatic PDAC intersects the immune cells surrounding the germinal
center. On factorizing this data using CoGAPS we obtain ten latent patterns based only on the
expression data (Fig. S1, Methods). By matching pattern activity levels learned from the data
with the independent histological annotations, we observe that CoGAPS can distinguish
metastatic PDAC in Pattern 6 from immune cells in the surrounding lymph node tissue in
Pattern 9 (Fig. 2B.).

We further analyzed the spatial activity of the metastatic PDAC (Pattern 6) and immune
(Pattern 9) patterns to identify regions of overlapping influence to associate with
metastasis-immune interaction. We represent the spatial variation in the activity levels of
Pattern 6 and Pattern 9 in relation to all the other patterns in each spot (Fig. 2B.). This
proportional analysis of patterns enables us to observe a spatial overlap between the regions
where Pattern 6 and Pattern 9 are active. However, we hypothesize that a pattern has influence
in a spot even with zero pattern activity but high pattern activity levels in the neighboring
spots. We deem this overlapping region as the interaction region between the two patterns. We
then use the SpaceMarkers algorithm to define the gene expression changes that occur from
metastasis-immune interaction in the spots where the two patterns have overlapping influence.
Due to the limited number of spots where the two patterns have overlapping influence, we
define SpaceMarkers based upon differential expression. This analysis identifies 1442 genes
which exhibit higher average expression in the interaction region with overlapping influence
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Figure 2. continued on the next page.
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Figure 2. (continued) SpaceMarkers identifies molecular changes associated with
immune-metastatic pancreatic cancer interaction in the lymph node

A. H&E staining of a peritumoral pancreatic lymph node with metastasis from PDAC (arrow)
and annotated germinal center and immune cells (dark lines).

B. Visualization of the relative activity in the CoGAPS patterns associated with metastatic
PDAC (Pattern 6) and immune cells in the lymph node (Pattern 9). Each spot is represented
as a pie chart with fractional gene expression at the location aggregated over the all genes for
Pattern 6 (red), Pattern 9 (blue) and the other patterns (white).

C. Boxplots of the expression of selected genes showing higher expression levels in the
interaction region of Pattern 6 and Pattern 9 compared to the regions with exclusive influence
from Pattern 6 and Pattern 9 respectively.

D. Table showing Hallmark gene set pathways significantly overrepresented in the region of
interaction between Pattern 6 and Pattern 9, with size of overlap and FDR value (see Table S1
for KEGG and Biocarta pathways).

from the two patterns compared to spots where only metastatic PDAC in Pattern 6 or immune
cells in Pattern 9 have exclusive influence (see Methods for details of the statistical test, Table
S2 for complete gene list with the associated statistics).

Figure S1 shows the expression heatmap of the SpaceMarkers genes in spots belonging to
regions with exclusive influence from the metastatic PDAC Pattern 6, exclusive influence from
the immune cell Pattern 9, and overlapping influence from both patterns in metastasis-immune
interaction. In all cases, the interactions are associated with changes in extracellular matrix
genes, including notably genes associated with cytoskeleton regulation (TMSB10, TMSB4X,
CFL1, MARCKSL1 ), the myosin pathway (MYL6, MYH9, MYL12B), actin regulation (ACTB,
ACTN4, CAPG, LCP1, SPTBN1 ), the matrix metallopeptidase family (MMP9, MMP12 ),
galectin genes (LGALS1, LGALS4, LGALS9, LGALS3BP), collagen (COL1A2, COL3A1,
COL4A1, COL4A2, COL18A1, COL6A2 ), and cell adhesion (MSLN, ITGB4, ITGB6,
ADRM1 ). The SpaceMarkers include genes reflecting cell death in the increased expression of
ribosomal protein genes associated with immune response through expression of HLA family
genes, immunogoblulins, interleukins, cytokines, chemokines, the interferon pathway IFITM2,
and immune function. This immune response is counterbalanced by changes to pathways
associated with enhanced invasion in cancer cells, including JUNB, JUND, VIM.

To further elucidate the molecular pathways associated with the metastasis-immune
interaction in the lymph node, we performed gene set overrepresentation analysis (Figure 2D.,
Table S1) from the Hallmark, KEGG, and Biocarta molecular pathways using the Molecular
Signatures Database (MSigDB) [27–29]. As seen in Fig. 2D., Hallmark pathways related to
allograft rejection, interferon gamma, and interferon alpha are all overrepresented in the
pathway analysis for the SpaceMarkers genes, and hence in the region of overlap between the
immune and metastatic PDAC patterns. This confirms activation of the immune response for
tumor rejection at the interface between the metastatic PDAC and the immune cells in the
lymph node observed at the gene level. Likewise, we observe overrepresentation in the epithelial
to mesenchymal signaling and pathways consistent with the invasive process in the metastatic
PDAC cells, further supported by the enrichment of the apical junction consistent with the
changes to the extracellular matrix suggested by the gene-level SpaceMarkers analysis.
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The DE mode of SpaceMarkers is applicable when the available latent features provide only
a partial reconstruction of the original ST data matrix. However, the differential expression of a
marker in the interaction region could be due to nonlinear effects because of two intercellular
interactions or due to confounders such as variable cell populations in each spot and different
co-localized cell types having common markers. In the examples to follow, we mitigate these
confounding effects by using the residual error between the raw expression and its
reconstruction from the CoGAPS patterns, which capture the effect of both variations in cell
population density as well as variations in individual marker expression.

2.3 SpaceMarkers identifies markers of tumor-immune interactions in
invasive breast ductal carcinoma through residual space analysis

While providing a means to detect molecular changes from cellular interactions in limited
interaction regions, using differential expression statistics for SpaceMarkers could confound
nonlinear effects from cell-cell interactions with expression changes resulting from increased
density of co-localized cell types with shared gene markers. In cases where the interaction
region extends across a greater number of spots, these confounding effects can be mitigated by
using the residual error between the raw expression and its estimated fit from the CoGAPS
model for the SpaceMarkers. This estimated fit will capture the effect of both variations in cell
population density as well as variations in individual marker expression to refine the estimates
of the nonlinear effects from cell-cell interactions. We apply this approach to identify the
molecular pathways associated with tumor cell and immune interactions in ST data from a
breast cancer sample that contains multiple ductal carcinoma in situ (DCIS) lesions, an invasive
carcinoma lesion, immune cells, and stroma (Figure 3A.).

The visualization in Figure 3B. shows widespread spatial regions of interactions between
immune and tumor cells at the boundaries of both the invasive carcinoma and the DCIS lesions.
Whereas the pancreatic cancer sample in Figure 2 covered a smaller area with fewer spots
(< 300) having tumor and immune influence respectively, we identify much larger regions
(> 1000 spots) of influence from the immune, invasive carcinoma and DCIS cells (Figure 3B.).
This larger number of spots enables us to estimate SpaceMarkers from CoGAPS residuals to
distinguish the molecular changes in the invasive carcinoma from the DCIS lesions. Similar to
our analysis of the metastatic pancreatic cancer data, we obtain latent features of the ST data
from this breast sample using CoGAPS factorization. These latent features reveal histological
annotations of invasive carcinoma, DCIS lesions, immune, and stromal regions estimated from
the H&E stain (Figure 3A.).

Computing SpaceMarkers based upon the CoGAPS residuals identifies 461 genes associated
with interaction between the immune and invasive carcinoma patterns and 413 markers of
immune and DCIS pattern interaction (Supplemental File 2A), compared to up to 3736
immune-invasive carcinoma and 3036 immune-DCIS genes identified from applying a similar
analysis based upon differential expression for the same FDR value (Supplemental File 2B).
This reduction in the number of markers through the analysis of CoGAPS residuals relative to
inference of SpaceMarkers through differential expression analysis is consistent with the isolation
of specific nonlinear changes resulting from interactions between the cellular processes measured
in the CoGAPS patterns using this mode. We note that 85 of the SpaceMarkers were associated
with immune cell interactions in both the invasive carcinoma and DCIS regions. To further
determine the molecular pathways activated through immune and tumor cell interactions in
both regions, we performed gene set overrepresentation analysis from the Hallmark, Kegg, and
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Figure 3. continued on the next page.
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Figure 3. (continued) Low-resolution CoGAPS and SpaceMarkers analysis identifies markers
of interaction between broad patterns in breast cancer tissue

A. Images of the breast cancer tissue showing activity levels of the immune, DCIS, and invasive
carcinoma patterns respectively overlaid on annotated H&E slides showing regions with invasive
carcinoma, DCIS lesions, immune cells and stroma.

B. Scatterpie visualization shows the relative activity levels and overlap between the invasive
carcinoma, immune, and DCIS patterns.

C. Enriched pathways associated with DCIS-immune interactions and cancer-immune
interactions.

Biocarta molecular pathways using the Molecular Signatures Database (MSigDB), with a
selection of the pathways presented in Figure 3C. (see Table S3 for the complete list of
pathways). We find that while certain pathways were enriched in both interactions (e.g.,
antigen processing and presentation, p53 pathway, Tnf-alpha signaling, mTorc1 signaling,
epithelial to mesenchymal transition, Interferon Gamma response, hypoxia, and estrogen
response early/late), others were enriched exclusively in Immune-DCIS (DNA repair) and
Immune-Invasive (WNT signaling, MapK signaling, and TGF beta signaling) respectively. Note
that a pathway enriched in both Immune-DCIS and Immune-Invasive Carcinoma interactions
may have distinct gene subsets associated with each interaction. For example, it is readily
evident that the Hallmark interferon gamma response gene set has a greater overlap with the
SpaceMarkers of the Immune-DCIS interaction compared to the Immune-Invasive interaction.

2.4 Using SpaceMarkers with high-resolution CoGAPS reveals greater
heterogeneity in intercellular interactions within the TME

In all cases presented, the SpaceMarkers inferred fundamentally depend on the resolution of the
cellular processes inferred in the CoGAPS latent space analysis. Indeed, nonlinear interactions
in interacting regions at a low resolution analysis may be further refined by increasing the
dimensionality of the factorization on the ST data consistent with recent advances to
multi-resolution matrix factorization [30]. We further performed a higher resolution CoGAPS
analysis of the breast cancer data to test if the interaction region between two patterns and the
associated SpaceMarkers genes are identified by increasing the dimensionality of the latent
space analysis. In this higher dimensional analysis, CoGAPS identifies 16 distinct patterns
associated with the diverse biological processes in the TME. The activity levels of a selection of
the patterns overlaid on an H&E stained slide of the sample are shown in Figure 4A. (also see
Figure S2). Although the higher number of patterns reveal greater heterogeneity of the
biological processes in the sample by further resolving patterns identified in the low resolution
analysis, it does not identify patterns specific to the interactions identified between the lower
dimension patterns.

Although we do not associate each Visium spot with solely one pattern, studying the most
dominant pattern in spots informs us of the dominant biological process at that location in the
tissue as inferred by CoGAPS. Consequently, the same spots are associated with broader
biological processes at the lower resolution and with more specific processes at a higher
resolution. The alluvial plot in Figure 4B. shows the relationship between the most dominant
low resolution and high resolution patterns at each spot.
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Figure 4. continued on the next page.
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Figure 4. (continued) High-resolution CoGAPS and SpaceMarkers analysis of breast cancer
tissue reveal greater heterogeneity in intercellular interactions.

A. Multiple patterns associated with invasive carcinoma and DCIS regions identified in
higher-resolution CoGAPS analysis with 16 patterns highlights the heterogeneity in the tumor
and TME by further resolving the underlying pathology (see Figure S2 for remaining patterns).

B. Alluvial plot showing the most dominant pattern associated with each spot using
low-resolution and high-resolution CoGAPS respectively. Spots dominated by low resolution
DCIS pattern are dominated by three distinct DCIS-related patterns associated with different
lesions in the high-resolution analysis. Invasive pattern in low resolution resolves into three
invasive carcinoma related patterns associated with varying levels of immune infiltration in the
high-resolution analysis.

C. Relative activity levels of immune patterns with two invasive patterns reveals that the
immune and Invasive.2 patterns have no overlap, hence do not interact. Immune interaction
with Invasive Carcinoma is captured through the overlap between Immune and Invasive.3
pattern.

D. Relative activity levels of immune patterns with three DCIS patterns associated with
separate lesions reveals distinct overlapping regions associated with each interaction.

E. SpaceMarkers of Immune-DCIS and immune-Invasive interactions reveal functional
heterogeneity of the enriched pathways mirroring the spatial heterogeneity revealed in B-E. (See
Table S4 for complete list of gene sets)

For example, the single DCIS-related pattern in Figure 3A. resolves into multiple DCIS
patterns, some of which are associated with individual DCIS lesions. Even within the single
invasive carcinoma lesion, the low resolution invasive carcinoma pattern resolves into two
distinct patterns, one of which is isolated to the interior of the invasive carcinoma and one
which spans to the tumor-immune boundary. While the DCIS lesions and invasive carcinoma
have universally high ERBB2 and ESR1 expression, evaluating the genes associated with the
distinct patterns identifies heterogeneity in growth factor signaling pathways with enhanced
IGFBP3 expression in the DCIS.5 pattern, FGFR4 expression in the DCIS.6 pattern, and
FGFR1 expression in the Invasive.2 carcinoma pattern (Figure S2, Table S5) We also see spots
previously associated with the immune pattern or with dispersed patterns at the low resolution
now being associated with a dominant pattern which can be associated with the stromal region.
To further compare the enhanced resolution intra-tumor heterogeneity to tumor-immune
interactions in the high resolution factorization, Figure 4C. shows relative pattern weights and
overlap between the immune pattern and the two invasive patterns. It is clear that only one of
the invasive patterns overlaps with the immune pattern, thus contributing to the tumor-immune
interaction. Still, both of these interacting patterns contain a substantial numbers of spots that
are isolated to the immune and invasive carcinoma region, respectively, suggesting that
increasing the resolution of the factorization does not compensate for the estimation of
nonlinear effects through the interaction statistic. Similarly, Figure 4D. shows relative pattern
weights and overlap between the immune pattern and the three DCIS patterns. It logically
follows that the overlapping regions of the distinct DCIS patterns are also distinct, and hence
correspond to different molecular alterations from DCIS-immune interactions that will impact
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subsequent outgrowth of these distinct lesions.
For these interactions involving the immune pattern, we identify SpaceMarkers genes

associated with the inter-pattern interactions as the genes having higher CoGAPS residuals in
the interaction region compared to regions with exclusive influence from the individual patterns.
Upon identification of statistically significant (FDR < 0.05) signaling pathways (see
Supplementary Table S4) pertaining to interaction of the immune pattern with invasive
carcinoma and DCIS patterns in the high-dimensional CoGAPS results and comparing them to
those found in 5 dimensions, we find pathways common to all interactions and unique to
specific pattern interactions. For example, we find 59 signaling pathways enriched due to
immune-invasive carcinoma interaction in 5 dimensions as well as 16 dimensions. These include
but are not limited to pathways related to epithelial-mesenchymal transition, apoptosis, antigen
processing and presentation, hypoxia, p53 signaling, interferon alpha and gamma responses, and
lastly targets of the oncogene MYC. However, the higher resolution analysis also reveals unique
pathways relevant to specific immune-invasive carcinoma pattern interactions. We found
pathways related to the cancer-immune interactions including those related to IL-5 and IL6
signaling, KRAS signaling, Toll-like receptor signaling and the CDC25 pathway exclusively
when the dominant invasive carcinoma pattern (Invasive.3) interacts with the immune cells.
Similarly, the distinct Immune-DCIS interactions reveal a heterogeneity in the enriched
pathways which were not evident with a single DCIS pattern using low-resolution CoGAPS.
Among the immune interactions with different DCIS lesions, the MapK signaling, Tnf alpha
signaling, and hypoxia pathways, known to be mechanisms of resistance to endocrine and
immunotherapies, are enriched exclusively in the Immune-DCIS.4 interaction, antigen
processing, allograft rejection and autoimmunity related pathways are enriched exclusively in
Immune-DCIS.5, and EMT pathway, and estrogen response early/late are exclusively enriched
in the Immune DCIS.6 interaction. These pathways are consistent with the heterogeneity of
subsequent outgrowth of these DCIS lesions, with successful activation of pathways associated
with immune attack in DCIS.5 relative to the invasive processes observed in both DCIS.4 and
DCIS.6.

2.5 Integrated ST and single-cell RNA-seq analysis identifies cell type
specific molecular changes from immunotherapy treatment in
hepatocellular carcinoma

In the examples so far, the SpaceMarkers statistic revealed molecular changes associated with
intercellular interactions. Since SpaceMarkers relies on spot-based colocalization, it limits the
ability to identify the cell subtypes in which these molecular changes were induced. Transfer
learning allows us project new data into learned latent spaces, subsequently associating samples
from the new data with known biology. We first factorize the ST data collected from a resected
hepatocellular carcinoma (HCC) tumor after administration of a neoadjuvant cabozantinib and
nivolumab therapy to obtain 9 CoGAPS patterns. Figure 5A. shows the individual tumor and
immune associated patterns overlaid on an H&E stained image of the HCC tumor sample. As
in the other examples, these tumor and immune patterns are spatially overlapping (Figure 5B.),
and are deemed to be interacting in regions where they have overlapping influence. This
analysis identifies two distinct tumor cell patterns, one of which spans all malignant regions in
the sample (Pattern 2) and the other isolated to a specific region (Pattern 1) that has less
co-localization of the immune cells (Pattern 8). The interaction between the immune cells and
each of the tumor patterns learned through SpaceMarkers identifies enhanced expression of
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Figure 5. continued on the next page.
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Figure 5. (continued) Contextualizing scRNAseq data using SpaceMarkers and transfer
learning from matched ST-scRNAseq data in HCC (see also Figures S3 and S4).

A. CoGAPS factorization reveals spatial patterns associated with tumor annotations of tumor
and immune cells. (see Figure S3).

B. Scatterpie visualization shows the relative pattern activity levels associated with the
spatially overlapping tumor (orange) and immune (blue) patterns in each Visium spot using a
pie chart (white represents activity from all other patterns). SpaceMarkers are genes exhibiting
nonlinear effects in the residual space of the CoGAPS patterns in the region with
tumor-immune overlap.

C. Transfer learning of Patterns 1, 2, and 8 from ST data to matched scRNAseq data. Scatter
plot shows projections of the spatial patterns onto individual cells in the scRNAseq data.
Individual cells in the scRNAseq data are associated with the pattern having the highest
projection in the cell.

D. Expression heatmap of SpaceMarkers in tumor and immune cells from matched single-cell
data from the same tumor provide the spatial context of the individual cells.

hepatocyte markers (KRT18, SERPIN family genes, APOC2, CD24), immune markers (CD63,
HLA genes), and cell death markers (TNF pathway associated genes, ribosomal genes, ANXA2)
consistent with killing of tumor cells through immune cells in the interaction between Patterns
2 and 8 (see Supplemental Table S5). In contrast, SpaceMarkers genes of the interaction
between Patterns 1 and 8 identify fibroblast markers (Collagen coding genes, MYL9, TAGLN)
consistent with a lack of successful immune attack and infiltration in this portion of the tumor.

While the SpaceMarkers analysis of ST data suggests molecular changes associated with
cell-cell interactions, this analysis alone does not pinpoint the precise cells in which these
molecular changes occur. By transfer learning [23, 26] of these latent features into matched
single-cell RNA-seq data from the same tumor, we can associate individual cells with specific
patterns corresponding to tumor and immune signatures (Figure 5C.). This association can
both identify whether a SpaceMarkers gene’s expression changes in tumor or immune cells, and
also whether we can also predict the precise subpopulations of tumor and immune cells involved
in intercellular interactions by observing the gene expression changes of the relevant
SpaceMarkers in individual cells. From Figure 5D., we observe that changes in the expression of
genes SERPINC1, APOC2 and ADH1B, are induced in a subset of the cancer cells attributed
to Pattern 2, whereas expression changes in gene PFN1 and CD14 are induced in a subset of
the immune cells. A further subset of both Pattern 2 tumor cells and immune cells co-express
HSP90AA1 and ribosomal genes. Based on these gene expression patterns of the respective
SpaceMarkers, we hypothesize that these individual cells are sourced from the tumor-immune
boundary.

3 Discussion

We demonstrate how co-localization of multiple cellular processes within a single spot from ST
data from Visium can be leveraged as an asset to infer molecular changes resulting from
inter-cellular interactions. Specifically, this inference is enabled through SpaceMarkers, a novel
algorithm for identifying genes associated with a spatial overlap between pairs of latent features

15/35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.490672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.490672
http://creativecommons.org/licenses/by/4.0/


that each represent distinct cellular processes. We accomplish this by first identifying a region
of influence for each latent feature of interest. The two features are deemed to be interacting in
spots where they have concurrent influence. While the focus in this paper is explicitly on
cellular co-localization in spot-based technologies, we note that SpaceMarkers is readily
applicable to alternative imaging-based ST technologies that achieve single-cell resolutions.

The SpaceMarkers algorithm can estimate molecular changes from spatially overlapping
cellular processes in two ways — a default residual mode and a differential expression (DE)
mode. We demonstrate that the DE mode is able to identify genes with significantly higher
expression in the region where two latent features overlap. However, the DE mode is subject to
confounding factors such as variable cell populations and marker association with multiple cell
types. We mitigate these confounding effects in the residual mode, where we identify genes with
significantly higher residual error between the original data and its reconstruction in the region
of overlap between two latent features. However, this statistic requires a greater number of
spots for robust analysis than the DE method. While we found that this requirement limited
application of the residual model in the case with the smaller lymph node sample with PDAC
metastasis, it was generally applicable to the other tumor-immune interactions in our sample
cohort. Moreover, increased spatial resolution of the ST characterization or multi-omics
methods for inferring cellular boundaries [31, 32] will enable broader application of this
methodology for inter-cellular interactions. We note in the current algorithm if a cell type is
entirely occurring within the interaction region, its marker genes will be inferred through
SpaceMarkers. While not a direct molecular change in the input cell states, this co-localization
exclusively in the interaction region may be a biological effect induced through the TME state
induced by the inter-cellular interactions. Regardless, this effect is mitigated in the residual
mode if some of the learned patterns are associated with that cell type.

We note that our inference of interactions between cellular processes is performed directly
from latent space analyses of the ST data, without the need for additional reference datasets for
single-cell resolution [16] or direct estimates of cellular deconvolution [18]. While our approach
is generally applicable to linear latent space estimation methods, the results of our algorithm
fundamentally depend on the latent space method selected for analysis of the ST data. We
demonstrate the application of SpaceMarkers to 10x Visium ST data from different cancers and
we identify markers associated with the interaction between latent features associated with
different biological processes. In all cases, we observe that the Bayesian matrix factorization
method CoGAPS [23, 24, 33] can learn latent features that distinguish regions with tumor and
immune cells directly from the ST data without reliance on prior knowledge of marker genes,
histology annotations, or spatial coordinates. Moreover, creating higher resolution CoGAPS
analysis by increasing the number of latent features inferred from the ST data is able to further
resolve the biological signatures, revealing the tissue heterogeneity. These higher dimensional
patterns are independent of the interaction regions between the latent features inferred with
SpaceMarkers at a lower dimension. This observation suggests that our approach indeed
isolates non-linear effects due to inter-cellular interactions rather than unresolved latent
features associated with specific cellular processes.

Due to our focus on tumor-immune cell interactions in our biological analyses, the current
version of the SpaceMarkers algorithm admits only two overlapping latent features as input.
However, this approach is generally applicable to inter-cellular inference from ST data across
biological contexts. In many cases, multiple latent features are co-localized at the same spot.
This could result in the same genes being associated with multiple interaction types, although
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we did not observe such effects in our case studies. Furthermore, many critical intercellular
interactions such as cancer-associated fibroblast (CAF)-driven immunosuppression [34] result
from possible colocalization of multiple cell phenotypes. To address this, future work should
extend the application of SpaceMarkers to identify genes associated with multiple overlapping
latent features. The use of SpaceMarkers on spot-based co-localization limits direct inference of
the specific cell subtypes in which interactions induce molecular alterations. We demonstrate
that transfer learning [23, 26] of the latent features inferred from CoGAPS analysis of the ST
data into matched single-cell RNA-seq data enables us to define the precise cellular
subpopulations with gene expression changes in each SpaceMarkers gene. Other approaches
mitigate the need for paired data by coordinated expression changes between annotated pairs of
ligands and receptors in both spatial and non-spatial single-cell data. While these approaches
directly model the signaling process, they rely on the correspondence between gene expression
and protein function and databases of ligand-receptor pairs [35]. Coupling spatial data with
newer single-cell technologies that isolate interacting cells [36] can further enhance this
inference.

Ultimately, the results of SpaceMarkers depends on the patterns inferred from the latent
space method. Biological robustness of the SpaceMarkers statistic relies on the use of patterns
associated with significant activity levels as well as a spatial overlap with other patterns of
interest. For example, we analyzed the interaction of immune cells with one invasive carcinoma
pattern out of the three invasive carcinoma patterns learned using high resolution CoGAPS
analysis. We did not analyze the other two patterns because one was isolated away from the
immune pattern and hence had no interactions, and although the other pattern had a spatial
overlap with the immune pattern, it had much lower activity levels. For the residual mode to be
effectively used, it is important not just to resolve the ST data into biologically meaningful
latent features, but also to provide a good fit between the original ST data and its
reconstruction from the latent features. In the absence of a good fit, the residual errors contain
not just the nonlinear effects attributable to inter-feature interaction and the measurement
error, but also the estimation errors resulting from an overly constrained factorization. In such
cases, we recommend using the SpaceMarkers in the DE mode. Similarly, the utility of
SpaceMarkers is diminished if the learned latent features do not correspond to individual cell
phenotypes, or if markers of essential cell types are not represented by any of the learned latent
features. Future work can overcome this limitation through with semi-supervised learning
methods that use cell-type marker expression as a proxy for the latent feature input in the DE
mode for SpaceMarkers.

When genes associated with cell-surface interactions and cytokine secretions are grouped
together in a latent feature, the assignment of a single kernel-width parameter to the latent
feature in the SpaceMarkers algorithm is inconsistent with the varying distances associated with
these two types of intercellular interactions. Identification of intercellular interactions in such
scenarios requires a mathematical framework for spatially resolved causal inference which
models distinct cell types, varying ranges and gradients of influence for cytokine-secretions and
surface interactions, and spatially resolved expression of individual genes. One such example is
MESSI [37], which uses mixture-of-experts and multi-task learning approaches to predict the
gene expression in a particular cell type with the help of signaling genes in neighboring cells.
Future work integrating these methods with latent features in place of individual genes will
both reduce the computational complexity and enhance the biological interpretability of these
spatially aware network inference methods.
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4 Methods

4.1 Sample collection, preparation, and storage

Invasive breast ductal carcinoma The fresh frozen invasive breast ductal carcinoma was
collected in 2011 and obtained from BioIVT. The tumor was stage IIA, ER Positive, PR
Negative, Hercep Test 2+. The RNA quality of the sample, as measured with Bioanalyzer
(Agilent) was RIN = 9.26. The sample was embedded in optimal cutting temperature (OCT)
compound and immediately frozen. Cryosections of 10 µm were placed on Visium Gene
Expression slides (10x Genomics).

PDAC metastatic lymph node The PDAC peritumoral lypmh node was surgically
resected during curative surgery at the Johns Hopkins University. The lymph node was
embedded in OCT and immediately frozen. Pathological examination of an H&E stained
cryosection identified a PDAC metastasis to the lymph node. A cryosection of 10 µm were
placed on a Visium Gene Expression slide (10x Genomics)

HCC sample The HCC sample was surgically obtained as part of a clinical trial
(NTC03299946) for neoadjuvant cabozantinib and nivolumab previously described [38]. The
surgical specimen was immediately embedded in OCT, frozen and a 10 µm cryosection was
placed in a Visium Gene Expression slide (10x Genomics).

4.2 ST library preparation

Briefly, following tissue permeabilization optimization, according to 10x Genomics instructions,
samples were fixed in methanol, stained (H&E) and imaged. Sequencing libraries were prepared
using the Visium Spatial Gene Expression Reagent Kit (10x Genomics), following
manufacturer’s instructions, and sequenced on an Illumina NovaSeq.

4.3 SpaceMarkers algorithm

Here we describe the SpaceMarkers algorithm to identify genes associated with nonlinear effects
of latent feature interactions. To facilitate exposition, we will refer to the spatial component of
the latent features as ”patterns”.

Modeling pattern interactions in the residual space We assume a generic latent space
representation model where the ST data matrix D is factorized into two low-rank matrices A
and P . Consequently, the matrix product AP is a low-rank approximation of the
high-dimensional spatial RNAseq data, accounting for all linear combinations of the latent
patterns such that

Dij
.
= (AP )ij + εij ,

where measurement noise εij are independent and normally distributed with zero mean (see [24]
for the CoGAPS-specific model). However, this model does not take into account any molecular
changes resulting from inter-pattern interactions. We introduce a model where D is the sum of
linear pattern effects represented by AP as well as unknown nonlinear effects due to inter
pattern interactions represented by a matrix f(A,P ) such that

Dij
.
= (AP + f(A,P ))ij + εij ,
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where the measurement noise εij are independent and normally distributed with zero mean and
variance σ2

ij . If we assume that the nonlinear effects f are known, we can modify the CoGAPS
algorithm to account for the corresponding additional terms. However, since the nonlinear
effects are unknown and may differ for each pair of patterns, this approach is infeasible. Our
aim in this paper is not the exact characterization of the nonlinear effects, but to identify genes
which exhibit higher nonlinear effects when two patterns are interacting. To this end, we use
CoGAPS with the default settings and analyze the residual space of the CoGAPS factorization
results. That is, we compare the CoGAPS residuals

R̂ij = Dij − (AP )ij

in regions where two patterns interact (i.e., have overlapping influence) versus regions where
each pattern has exclusive influence. To identify the genes associated with the nonlinear
interactions between a given pair of patterns, we first identify hotspots of pattern influence for
each pattern. If both patterns have overlapping influence in a spot, they are deemed to be
interacting in that spot. The CoGAPS residuals are computed in the interacting regions as well
as in regions where each pattern is individually active. When the null hypothesis of
non-interaction between the patterns is true, the residuals have no dependence on underlying
regions (interacting or exclusive). On the other hand, genes associated with higher CoGAPS
residuals in the interacting regions compared with the regions with exclusive pattern influence
from either pattern show a strong dependence on spatial overlap between the patterns, and thus
reject the null hypothesis. These genes constitute the SpaceMarkers, markers of spatial
interaction between the two patterns in question. Focusing on strictly higher residuals avoids
the confounding factors from decreased gene expression due to heterogeneous spot populations
compared to homogeneous ones.

Identifying regions of pattern influence and pattern interaction For each spatially
resolved pattern, we identify its region of influence by way of an outlier detection method using
a Gaussian kernel-based spatial smoothing. Given the pattern intensity p(si) associated with a
i-th spot si = (xi, yi) in the sample, we calculate the spatially smoothed pattern intensities by
using the leave-one-out method

p̂wp(si) =
∑
sj ̸=si

wp(si, sj)p(sj)

where the spatial kernel is a Gaussian kernel

wp(si, sj) =
1√

2πσwp

e

−d(si,sj)
2

2σ2
wp ,

where d(si, sj) =
√
(xi − xj)2 + (yi − yj)2 is the distance between the i-th and j-th spots, and

σwp is the kernel width. We used the Smooth.ppp function in the R package spatstat [39] to
perform the smoothing. We obtain a null-distribution by applying the kernel-based smoothing
to spatially permuted pattern values (by pseudorandomly assigning spot locations
(nperm = 100)). This null-distribution is assumed to be normal, and we obtain the sample mean
µ̂p and standard deviation σ̂p for each pattern. We identify the pattern’s region of influence as
the set of spots with outliers

p̂wp(si) > µ̂p + τpσ̂p,
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where τp is the outlier threshold for the pattern. The optimal values of the kernel width wp and
outlier threshold τp are the arguments that minimize the spatial autocorrelation (Moran’s I) of
the residuals

r(si) = p(si)− p̂wp(si).

The optimal kernel width wp for each pattern is the value which minimizes the Moran’s I in the
residuals over all spots in the sample. Subsequently, the optimal outlier threshold τp minimizes
spatial autocorrelation of the residuals r(si) over the spots contained in the resulting region of
pattern influence. If a spot is influenced by two or more patterns, these patterns are said to be
interacting in such a spot. For each pattern pair of interest, the set of all such spots is defined
as their interacting region.

Statistical test to identify genes associated with pattern interactions For a given
pair of patterns p1 and p2 with a substantial regions of exclusive pattern influence and pattern
interaction, we define three subregions characterized by

• The spots with p1 influence and no p2 influence.

• The spots with p2 influence with no p1 influence.

• The spots with overlapping influence from both p1 and p2.

The elements from each row of R̂ corresponding to the subregions described above denote
the CoGAPS residuals in the respective subregions. For each gene (row) i, we perform a
non-parametric Kruskal-Wallis test [40] for stochastic dominance of the CoGAPS residuals in at
least one of the three subregions, with a posthoc Dunn’s test [41] to ascertain the relative
dominance between the respective subregions. Of particular interest to us are the genes which
have statistically significantly higher CoGAPS residuals (FDR¡0.05) in the interacting region
relative to the other two subregions as well as genes which exhibit statistically significantly
higher CoGAPS residuals exclusively in the interacting region compared to at least one of the
two other subregions.

Code Availability The SpaceMarkers package is available on Github at
https://www.github.com/FertigLab/SpaceMarkers. All results in this manuscript were
obtained using version 0.1.

4.4 Multi-resolution CoGAPS analysis

The ST genes by spot counts data for each sample was filtered to remove genes and spots with
no or constant signal and then log2 normalized. The final matrix size of the input data matrix
D are noted in the table below. The element Dij represents the expression of the i-th gene in
the j-th spot. The CoGAPS (version 3.5.8)[33] algorithm was run using the filtered and
normalized counts data as input. Additionally, default CoGAPS parameters were used except
for nIterations = 50,000, sparseOptimization = TRUE, distributed = single-cell, and nSets = 4.
CoGAPS factorization results in two lower-dimensional matrices: an amplitude matrix (A)
containing gene weights and a pattern matrix (P) containing corresponding spot weights
estimated for a pre-specified number of latent features (nPatterns). On each of the input
datasets, the algorithm was tested for a range of nPatterns.
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Sample # genes # spots numPatterns # patterns learned

PDAC metastatic lymph node 18,418 1,351 8 10
Invasive Breast Ductal Carcinoma 24,228 4,898 5 5
Invasive Breast Ductal Carcinoma 24,228 4,898 20 16
HCC 20,423 3,006 15 9

The pattern weights for each spot were plotted over the tissue to show association between a
pattern and a tissue region. In highRes Breast cancer analysis, genes were assigned to the
pattern they were most strongly associated with using the patternMarker function in CoGAPS
(version) in R (version). The genes for each pattern were submitted to the Molecular Signatures
Database and searched within the BIOCARTA, KEGG, and HALLMARK pathways [27–29].
Pathways were considered significant if FDR < 0.05.

4.5 Scatterpie visualizations

We use the A and P matrices in the CoGAPS result to represent each Visium spot as a
combination of overlapping latent patterns. To this end, we calculate the fractional gene
expression FSEkj in pattern k at spot j as

spotFEkj =
Pkj

∑
iAik∑

k(Pkj
∑

iAik)
,

where i is the gene index. We use the ‘vizAllTopics‘ function from the ‘STdeconvolve‘ package
[17] to visualize each spot as a pie chart showing the fractional gene expression in each pattern.

4.6 ProjectR analysis

The transfer learning method, ProjectR, was used to project the spatial patterns from the HCC
sample onto matched scRNAseq data from the same patient. The R package projectR (version)
was used to project the A matrix of the CoGAPS result into the target dataset. The CoGAPS
result object and the counts data from the matched scRNAseq dataset were used as input
where FULL = TRUE. Each individual cell in the scRNAseq dataset is associated with the
pattern with the highest projection. We limit the pattern association to the dominant patterns
in the spatial data, namely Patterns 1,2, and 8.

4.7 Gene Set Enrichment Analysis using MsigDB

For each gene list query corresponding to SpaceMarkers for pairs of patterns, we compute their
overlaps with gene sets belonging to the HALLMARK, BIOCARTA and KEGG pathways in
MsigDB [27–29], and report statistically significant overlaps (FDR¡0.05).

5 Data availability

Spatial transcriptomics and scRNA-seq data are undergoing submission while the manuscript is
under review.
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6 Code availability

SpaceMarkers is implemented in the open-source R package SpaceMarkers, with source code
freely available at https://www.github.com/FertigLab/SpaceMarkers. Additional code used
for analysis in this paper is available at
https://www.github.com/atuldeshpande/SpaceMarkers-paper. All results in this
manuscript were obtained using SpaceMarkers version 0.1.
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Figure S1. (continued) Analysis of lymph node tissue with metastatic PDAC (Related to
Figure 2).

A. Intensity maps of CoGAPS patterns identified in the lymph tissue. Pattern 6 shows high
activity levels in the region annotated as metastatic PDAC and Pattern 9 shows high activity
levels in the region associated with the surrounding immune cells.

B. Spatial expression profile of the genes with expression box plots in Figure 2C. shows higher
expression on the interface of the metastatic PDAC and immune cells.

C. Expression heatmap of top 500 genes identified as SpaceMarkers in the regions with Pattern
6 and Pattern 9 interacting compared to regions with exclusive influence from Pattern 6 and
Pattern 9 respectively. Complete gene list provided in Table S2.
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Figure S2. (continued) Analysis of high dimensional CoGAPS factorization of the breast
cancer tissue (Related to Figure 4).

A. Spatial intensity plots of CoGAPS patterns not shown in Figure 4.

B. Spatial expression heatmap of select genes demonstrating the heterogeneity in the tissue
sample. Whereas ERBB2, ESR1 and PIK3R3 are universally associated with all DCIS and
Invasive lesions, FGFR1 (Invasive.2), IGFBP3 (DCIS.5) and FGFR4 (DCIS.6) are associated
with patterns associated with specific lesions.
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Figure S3. continued on the next page.
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Figure S3. (continued) (CoGAPS learned spatial patterns from HCC tumor sample. Related
to Figure 5) .

A. Scatterpie visualization showing the relative activity levels of all 9 patterns in each spot
shows Patterns 1, 2, and 8 being the dominant patterns in the tissue.

B. Spatial intensity plots of individual patterns normalized to sum to 1 in each spot also shows
that Pattern 1, 2, and 8 explain most of the gene signature in the tissue.
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Figure S4. (continued) Analysis of SpaceMarkers in matched scRNAseq data (Related to
Figure 5).

A. Unsupervised clustering of the scRNAseq data, using Seurat, reveals two distinct tumor cell
clusters and an immune cell cluster. Expression heatmap of select cancer and immune markers
shows heterogeneity in the sample.

B. UMAP plots showing projections of the spatial patterns learned in Figure S3 onto the
scRNAseq data using ProjectR transfer learning.

C. Each cell in the scRNAseq data is associated with the pattern with the highest projection in
the cell as seen in panel B. However, since Patterns 1, 2, and 8 are dominant in the matched ST
data, we assign cells to those three patterns as shown in Figure 5A.

D. Expression heatmap of SpaceMarkers associated with interactions between Pattern 1 and
Pattern 8 provide the spatial context of the individual cells.
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