

1 **Running Title: AKG promotes the shift to C₄ photosynthesis**

2

3 **Title: Increased α -ketoglutarate as a missing link from the C₃-C₄ intermediate**
4 **state to C₄ photosynthesis in the genus *Flaveria***

5

6 Qiming Tang^{1,2}, Yuhui Huang^{1,2}, Xiaoxiang Ni^{1,2}, Ming-Ju Amy Lyu², Genyun Chen²,
7 Rowan Sage³, Xinguang Zhu^{1,2,*}

8

9 ¹University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

10 ²CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology
11 and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China

12 ³University of Toronto, 25 Willcocks Street, Toronto, Canada

13 *Correspondence: Xinguang Zhu (zhuxg@sippe.ac.cn)

14

15

1 ABSTRACT

2 As a complex trait, C₄ photosynthesis has multiple independent origins in evolution.
3 Phylogenetic evidence and theoretical analysis suggest that C₂ photosynthesis, which
4 is driven by glycine decarboxylation in the bundle sheath cell, may function as a bridge
5 from C₃ towards C₄ photosynthesis. However, the exact molecular mechanism
6 underlying the transition between C₂ photosynthesis towards C₄ photosynthesis remains
7 elusive. Here, we provide multiple evidence suggesting a role of higher α -ketoglutarate
8 (AKG) concentration during this transition. Metabolomic data of 12 *Flaveria* species,
9 including multiple photosynthetic types, show that AKG concentration initially
10 increases in the C₃-C₄ intermediate with a further increase in C₄ species. Petiole feeding
11 of AKG increased the concentrations of C₄ related metabolites in C₃-C₄ and C₄ species
12 but not the activity of C₄ related enzymes. Sequence analysis shows that glutamate
13 synthase (Fd-GOGAT), which catalyzes the generation of glutamate using AKG, was
14 under strong positive selection during the evolution of C₄ photosynthesis. Simulations
15 with a constraint-based model for C₃-C₄ intermediate further show that decreasing the
16 activity of Fd-GOGAT facilitates the transition from a C₂-dominant to a C₄-dominant
17 CO₂ concentrating mechanisms. All these provide an insight into the mechanistic switch
18 from C₃-C₄ intermediate to C₄ photosynthesis.

1 **ABBREVIATION**

2 **Species:**

3 ***F. ang:* *Flaveria angustifolia*** 9 ***F. lin:* *Flaveria linearis***
4 ***F. aus:* *Flaveria australasica*** 10 ***F. pal:* *Flaveria palmeri***
5 ***F. bid:* *Flaveria bidentis*** 11 ***F. ram:* *Flaveria ramosissima***
6 ***F. bro:* *Flaveria brownii*** 12 ***F. rob:* *Flaveria robusta***
7 ***F. chl:* *Flaveria chloraeifolia*** 13 ***F. son:* *Flaveria sonorensis***
8 ***F. cro:* *Flaveria cronequistii*** 14 ***F. vag:* *Flaveria vaginata***

15

16 **Metabolite:**

17 **2PG:** 2-phosphoglycolate 31 **Gly:** Glycine
18 **AKG:** α -ketoglutarate (2-oxoglutarate) 32 **HPYR:** Hydroxypyruvate
19 **Ala:** Alanine 33 **MAL:** Malate
20 **CIT:** Citrate 34 **OAA:** Oxaloacetate
21 **E4P:** Erythrose-4-phosphate 35 **PenP:** Pentose phosphate
22 **F6P:** Fructose-6-phosphate 36 **PEP:** Phosphoenol pyruvate
23 **FBP:** Fructose bisphosphatase 37 **PGA:** Phosphoglycerate
24 **Fd:** Ferredoxin 38 **PYR:** Pyruvate
25 **FUM:** Fumarate 39 **RuBP:** Ribulose 1,5-bisphosphate
26 **GCEA:** Glycerate 40 **S7P:** Sedoheptulose-7-phosphate
27 **GCOA:** Glycolate 41 **Ser:** Serine
28 **Gln:** Glutamine 42 **SUC:** Succinate
29 **Glu:** Glutamate 43 **T3P:** Triose phosphate
30 **GLX:** Glyoxylate

44

45 **Gene/Enzyme:**

46 **ALT:** Alanine transaminase [EC:2.6.1.2]
47 **AST:** Aspartate aminotransferase [EC:2.6.1.1]
48 **Fd-GOGAT:** Ferredoxin-dependent glutamate synthase [EC: 1.4.7.1]
49 **GDH:** Glutamate dehydrogenase [EC:1.4.1.3 1.4.1.4]
50 **GGT:** Glutamate: glyoxylate aminotransferase [EC:2.6.1.4]
51 **GS:** Glutamine synthetase [EC: 6.3.1.2]
52 **IDH:** Isocitrate dehydrogenase [EC: 1.1.1.41 1.1.1.42]
53 **OGDH:** 2-Oxoglutarate dehydrogenase [EC:1.2.4.2]
54 **RubisCO:** Ribulose-1,5-bisphosphate carboxylase/oxygenase [EC:4.1.1.39]
55 **SUDH:** Succinate dehydrogenase

56

57

58

59 INTRODUCTION

60 Plants with C₄ photosynthesis have a higher light energy conversion efficiency,
61 higher water, and nitrogen use efficiencies compared with C₃ plants(Dengler and
62 Nelson, 1999; Vogan and Sage, 2011; Zhu, et al., 2010). C₄ plants also generally grow
63 faster than C₃ plants, which contribute 23% of primary productivity on land with 3% of
64 the species in the plant kingdom (Sage, et al., 2012). In many of over 60 lineages,
65 species are known to be both phylogenetically intermediate and both physiologically
66 and anatomically intermediate between the full C₃ and C₄ character states (Araus, et al.,
67 1990; Kennedy and Laetsch, 1974; McKown and Dengler, 2007; Monson, et al., 1989;
68 Monson, et al., 1984). These intermediates have formed the basis for studies that
69 evaluate how C₄ photosynthesis has repeatedly evolved, as well as addressing the larger
70 question of how complex traits can evolve with high frequency. While a general model
71 of C₄ evolution has been developed (Heckmann, et al., 2013; Sage, et al., 2012), key
72 steps in the process remain uncertain, notably, how the C₄ metabolic pathway arose
73 from a background of modifications termed C₂ photosynthesis. In C₂ photosynthesis,
74 CO₂ released from glycine decarboxylase (GDC) in bundle sheath cells (BSC) provides
75 the substrate for RuBisCO carboxylation. On one hand, the C₂ photosynthesis can
76 confer lower CO₂ concentrating point and increased competitive advantage over C₃
77 species under stress conditions (Monson, 1989; Vogan and Sage, 2012); on the other
78 hand, the GDC in BSC can create an imbalance in the ammonia residue between BSC
79 and mesophyll cell (MC) (Bräutigam and Gowik, 2016; Rawsthorne, et al., 1988).
80 Various hypothetical pathways were proposed to address the issue of ammonia
81 misbalance between BSC and MC (de Oliveira Dal'Molin, et al., 2010; Mallmann, et
82 al., 2014; Monson and Rawsthorne, 2000). Among these solutions, a C₄/C₂ mixed
83 pathway which includes major steps of the C₄ photosynthetic pathways (Mallmann, et
84 al., 2014), has been proposed and regarded as a bridge between C₂ and C₄. However, so
85 far, how C₄ metabolism emerges from intermediate photosynthesis remains elusive.

86 This study aims to address how C₄ photosynthesis emerged from C₃-C₄

87 intermediate photosynthesis. To study this question, we used the genus *Flaveria* as our
88 model plant system. We made this choice since not only the genus of *Flaveria* is one of
89 the youngest known C₄ lineages (Sage, et al., 2012), but also various aspects related to
90 C₄ photosynthesis evolution have been well characterized in the genus *Flaveria*,
91 including various physiological indicators (Brown, et al., 1986; McKown, et al., 2005),
92 changes in the transcriptomics (Lyu, et al., 2021; Lyu, et al., 2015; McKown and
93 Dengler, 2007), and activities of key C₄ enzymes (Ludwig, 2011; McKown and Dengler,
94 2007) and metabolite concentrations related to the C₂ and C₄ photosynthesis (Borghi,
95 et al., 2021; Gowik, et al., 2011; Ubierna, et al., 2013).

96 Specifically, in this study, we identified the content of α -ketoglutarate (AKG)
97 whose changes are most relevant to C₄ evolution. The comparison combined with the
98 impacts of external application of AKG on different *Flaveria* species and model
99 simulations show a major role of increased content of AKG during the shift from C₂ to
100 C₄ metabolism, hence fills in a major missing link during the evolution from C₃-C₄
101 intermediate to C₄ photosynthesis.

102 RESULTS

103 Generation of *Flaveria* metabolic and transcriptomic profiles

104 To map the changes of metabolism along C₄ evolution, we conducted primary
105 metabolic profiling and transcriptomic sequencing for 12 *Flaveria* species, including 2
106 species categorized as C₃ photosynthesis: *F. cronquistii* (*F. cro*) and *F. robusta* (*F. rob*),
107 2 C₄ photosynthesis: *F. australasica* (*F. aus*) and *F. bidentis* (*F. bid*), 3 C₄-like: *F.*
108 *brownii* (*F. bro*), *F. vaginata* (*F. vag*) and *F. palmeri* (*F. pal*) and 5 C₃-C₄ intermediate
109 species: *F. sonorensis* (*F. son*), *F. angustifolia* (*F. ang*), *F. ramosissima* (*F. ram*), *F.*
110 *chloraefolia* (*F. chl*) and *F. linearis* (*F. lin*), with 4 species from the base of the
111 phylogeny tree, 5 species from the A clade and 3 species from the B clade of the
112 phylogeny tree (Fig.1A) (Lyu, et al., 2015).

113 On the metabolic level, we quantified the concentrations of forty metabolites
114 involved in the primary metabolism using HPLC-MS/MS. The profile covers

115 metabolites involved in the Calvin-Benson cycle, glycolysis, TCA cycle,
116 photorespiration, nitrogen assimilation and several metabolites involved in energy and
117 redox metabolism. The chlorophyll content of each species was significantly different
118 (Fig 1A), the metabolic variations among species could be different when the
119 calculation is based on fresh weight or chlorophyll content. In our case, the
120 concentrations of all metabolites were normalized on total chlorophyll content basis.
121 Almost all biological repeats are clustered together in UMAP plot, which indicated the
122 reliability of metabolomic samples (Fig 1B).

123 On the transcriptomic level, we obtained on average 25.96 million raw reads for
124 each sample. From 65,144 to 163,967 transcripts were *de novo* assembled based on raw
125 reads for each species. On average, 60.1% of those transcripts were functionally
126 annotated based on the protein reference from *Arabidopsis thaliana*. To quantify the
127 transcript abundance of the *Flaveria* species, raw reads were mapped to assembled
128 transcripts of corresponding species, which resulted in mapping rates percentages
129 ranging from 73.49% to 96.43% for each sample (Table. S1). Transcriptomics profiles
130 of all *Flaveria* species showed high Pearson correlation coefficients ranging from 0.85
131 to 1.00 between biological replicates, suggesting the reliability of transcriptomics data.
132 Besides, the tree topology of the twelve species based on correlations of transcriptomic
133 abundances is largely consistent with that of the phylogenetic tree based on coding
134 sequences on transcriptomic level (Fig 1C). This consistency suggested a co-evolution
135 of gene sequence and transcript abundance as reported recently (Lyu, et al., 2021).

136 **AKG stepwise increased in the evolution of C₄ photosynthesis in *Flaveria***

137 We calculated the importance weight of each metabolite in distinguishment of
138 different photosynthetic types by feature selection analysis (see Methods). Specifically,
139 we characterized the 12 *Flaveria* species into different groups. We tested 4 different
140 schemes of priori grouping (Fig S1A). Among the metabolites resulted in a cumulative
141 importance of 80% (Fig S1B) in each priori grouping, five of them are shared, i.e., α -
142 ketoglutarate (AKG), Ala, Ser, citrate (CIT) and fructose diphosphate (FBP) (Fig S2).

143 In these 4 priori grouping schemes, AKG has always been the top in importance rank
144 (Fig 2B S1B). This result suggests that the content of AKG reflected the evolutionary
145 trajectory of C₄ photosynthesis in the genus of *Flaveria*.

146 Examination of AKG in different species shows a stepwise increase of AKG
147 concentration along the C₄ evolution in the genus of *Flaveria* (Fig 2A, S2). The first
148 step occurred at *F. ram*, a type II C₃-C₄ intermediate with an undeveloped C₄ CCM.
149 Second step occurred at *F. bid*, a model C₄ species. That is, AKG increased at two key
150 nodes of C₄ evolution, i.e., the first key node co-occurred with the preliminary C₄
151 metabolism in *F. ram*, while the second key node co-occurred with the complete C₄
152 cycle (*F. bid*). These results suggest that the gradual increase of AKG content may have
153 a physiological significance during the evolution of C₄ photosynthesis.

154 We further examined what might be a direct cause of changes in AKG content. All
155 AKG-related primary metabolic pathways are summarized in Fig. 2C, which include
156 neo-synthesis of AKG (IDH and OGDH), nitrogen assimilation (GS-GOGAT and GDH)
157 and transamination related reactions (AST, ALT and GGT). The expression of four
158 enzymes (AST, ALT, GS and Fd-GOGAT) shows a regular pattern in the evolution of
159 C₄ photosynthesis (Fig 2D). Though the expression of AST and ALT were increased,
160 however, their increased expression levels do not necessarily increase AKG
161 concentrations since these two enzymes catalyze reversible reaction. Besides, the
162 expression levels of GS and Fd-GOGAT were evidently lower in C₄ species (Fig. 2D).
163 Further, we found that the protein sequence of Fd-GOGAT was under positive selection
164 along the evolution of C₄ photosynthesis ($p = 7.49 \times 10^{-5}$, see Methods), and the
165 phylogenetic tree of Fd-GOGAT protein sequence is very similar to that of species (Fig
166 2E). All these suggest that the decreased Fd-GOGAT might have been a primary reason
167 for the increased concentration of AKG in the C₄ species.

168

169 AKG promotes photosynthetic efficiency in developing C₄ photosynthesis

170 Given the increase of AKG concentration along C₄ evolution, we speculate that

171 there is a positive physiological role of AKG on photosynthesis of leaves from
172 intermediate species, at which stage when the AKG concentration initially increased.
173 We tested this using exogenous feeding of AKG through petiole. As the species where
174 AKG initially increased during the evolution, *F. ram* is the first to test with AKG,
175 sorbitol (as osmotic control) and Ala (another shared important metabolite in feature
176 selection analysis, and same increased during evolution with AKG). Results show that
177 exogenous AKG feeding indeed showed major impacts on photosynthetic properties of
178 intermediate compared with Ala (Fig. 3). Specifically, AKG-treated *F. ram* showed a
179 higher net photosynthesis rate compared with osmotic control, but Ala-treated *F. ram*
180 not. Furthermore, AKG-treated *F. vag* and AKG-treated *F. aus* both showed a positive
181 effect in photosynthesis rate (Fig. 3). All three of them belong to clade A in the
182 phylogenetic tree. On the contrary, as a base species from phylogeny the photosynthesis
183 rate of AKG-treated *F. ang* did not changed. In *F. bro*, a B branch C₄-like *Flaveria*
184 species, the AKG treatment did not increase, rather decreased, the photosynthetic rate
185 (Fig. 3), suggesting that the metabolism of the B branch of *Flaveria* might have
186 different evolutionary trajectory compared to the A branch.

187 Given the positive impact of AKG on leaf photosynthetic rate, we further tested the
188 effects of AKG treatment on the metabolomics of these five species of *Flaveria*. We
189 found that, except AKG itself, SUC and FUM generally increased, which indicate a
190 higher respiration activity in all AKG-treated *Flaveria* (Fig. 4A). But the content of PEP,
191 OAA, MAL and PYR increased in AKG-treated *F. ram* and OAA, MAL and PYR
192 increased in AKG-treated *F. vag* (Fig. 4A). Considering the higher net photosynthesis
193 rate under AKG-treated *F. ram* and AKG-treated *F. vag* (Fig 3), we suggest that, in
194 AKG-treated C₃-C₄ intermediate of *Flaveria*, the efficiency of C₄ photosynthesis was
195 improved and covered the higher respiration activity.

196 ¹³CO₂ labelling experiment was used to further test whether C₄ flux was increased
197 in AKG-treated *F. ram*. The result shows that the accumulation rate of ¹³C abundance
198 in PEP, OAA and MAL was significantly faster in AKG treated *F. ram* compared to

199 osmic control group, which indicates a faster turnover rate of PEPC and NADP-MDH
200 (Fig. 4B, C). While the enzyme activities of PEPC and NADP-MDH did not increase
201 under AKG treatment (Fig. S3), which concludes that the AKG promotes C₄
202 photosynthetic flux by metabolic content rather than the enzyme activity.

203

204 **A constrained flux of Fd-GOGAT promotes the shifting from C₂ to C₄ CCM in**
205 **model simulation**

206 Given that the decreased expression of Fd-GOGAT along C₄ evolution and also the
207 strong positive selection signal in this enzyme in C₄ species, we tested whether Fd-
208 GOGAT can directly affect C₄ photosynthesis using a mechanistic C₃-C₄ intermediate
209 model, which includes both C₂ CCM and C₄ CCM. Specifically, we parameterized the
210 C₃-C₄ photosynthesis model (Mallmann, et al., 2014) with physiological and
211 transcriptomics data of type II C₃-C₄ *Flaveria* species and then conducted flux balance
212 analysis. In our simulation study, serval constrains in the original model were modified:
213 a) we kept the upper bound of RubisCO Oxygenation rate and PEPC carboxylation rate
214 but changed their lower bound to 0; b) we constrained the net AKG generation rate to
215 a constant value and c) we constrained the synthesis of glutamate only from Fd-GOGAT
216 (Fig 5A, See methods for detail). The simulation results show that when the flux of Fd-
217 GOGAT decreases, the flux of GDC in BSC decreased, while the flux of NADP-ME in
218 BSC increased when the flux of Fd-GOGAT gradually decreases (Fig. 5B). Our
219 simulation shows that there could be a “switch point” where the system is switched
220 from C₂-dominant to C₄-dominant metabolic pathways (Fig. 5B). When the system near
221 this switch point, multiple amino acids and malate are transported in plasmodesmata to
222 optimize ammonia balancing and C concentrating (Fig 5C). Since AKG is the substrate
223 of Fd-GOGAT, this simulation results are consistent with a higher AKG concentration
224 and a lower GS-GOGAT expression level in *F. ram* and C₄ species of *Flaveria*. These
225 results suggests that a decreased activity of Fd-GOGAT may increase the concentration
226 of AKG, facilitating the switch from a C₂-dominant metabolism to C₄-dominant

227 metabolism.

228

229 Discussions

230 This study provides multiple evidence supporting an important role of increased
231 AKG concentration during the formation of a C₄ metabolism from C₂ photosynthesis.
232 First, we found that there is a dramatic increase in the concentration of AKG along C₄
233 evolution on chlorophyll content basis. In previous study, the content changes of AKG
234 in different photosynthetic types of *Flaveria* were also be reported with relative
235 abundance (Gowik, et al., 2011), or fresh weight basis (Borghi, et al., 2021). In (Gowik,
236 et al., 2011), AKG increased in C₃-C₄ intermediate relative to C₃, but (Borghi, et al.,
237 2021) not, which could be a more humid condition and large temperature difference
238 between day and night in (Borghi, et al., 2021). Second, under AKG-treatment, we
239 found that the concentrations of critical metabolites involved in C₄ photosynthesis, i.e.
240 OAA and PYR, increased (Fig 4A) and the leaf net photosynthetic rate increased (Fig
241 3A). Finally, Fd-GOGAT showed the greatest number of amino acid residues which are
242 under positive selection ($p = 7.49 \times 10^{-5}$). Considering that the decreased Fd-GOGAT
243 activity can in principle result in an increased concentration of AKG, the increased
244 AKG concentration should be closely linked to the C₄ evolution.

245 Increase in the AKG concentration can directly increase the C₄ flux. AKG can
246 affect the direction and also reaction speed of transamination reactions involving the
247 conversion between AKG and glutamate. At 25°C (1 Standard atmospheric pressure
248 (atm)) aqueous solution, the change in Gibbs free energy of aspartate transaminase
249 (AKG + Asp ⇌ Glu + OAA, EC: 2.6.1.1) is 2.8 ± 1.1 kJ/mol (pH: 7.0) when the ratio
250 of reactant concentrations is 1:1:1:1. However, if the abundance of AKG increased 5
251 times, i.e., the ratio of reactant concentrations is 5:1:1:1, the change in Gibbs free energy
252 would be -1.1 ± 1.1 kJ/mol (pH: 7.0). Reaction would proceed in the direction of
253 generating OAA. Therefore, the relative concentration of AKG can influence the
254 direction of the flux of aspartate transaminase, and same with alanine aminotransferase

255 (EC: 2.6.1.2). High concentration of AKG helps maintain the high concentration of C₄
256 related metabolites (PYR and OAA), which promotes C₄ flux, as is clearly shown by
257 the increased net photosynthesis rates when *Fram* was fed with AKG through petiole
258 (Fig 3A).

259 Besides a direct role of AKG in the C₄ metabolism, AKG may also influence fluxes
260 through the C₂ pathway. AKG is also involved in the transamination reactions in the C₂
261 pathway (GGT, EC: 2.6.1.4) and GS-GOGAT system, decreasing the AKG
262 concentration will decrease the flux through these reactions. Furthermore, the flux of
263 C₂ CCM flux are typically influenced by a number of factors, which include the RuBP
264 oxygenation catalyzed by RubisCO, the formation of glycine shuttle between MC and
265 BSC, and finally the activities of enzymes, such as Fd-GOGAT. Given that the AKG
266 can influence reactions in both the C₂ pathway and the C₄ pathway, we explicitly tested
267 this idea with a mechanistic model with C₃-C₄ intermediate photosynthesis. Our
268 simulation indicates that there was a switch from C₂ to C₄ photosynthesis when the
269 concentration of AKG is increased to a certain level (Fig. 5B). In fact, after an efficient
270 C₄ photosynthesis is established, carboxylation of RubisCO in mesophyll cells can no
271 longer be the dominant carbon assimilation mechanism, i.e. it could be gradually
272 diminished during the evolution. In line with this, in our earlier analysis of C₃-C₄
273 intermediate, i.e. a metabolic state where the C₂ and C₄ co-exist, we have shown that
274 there is little or no competitive advantage in terms of photosynthesis per leaf area (Wang,
275 et al., 2017).

276

277 **Materials and methods**

278 **Plant material**

279 Seeds or plants materials for *Flaveria* species used were kindly provided by Prof.
280 Rowan Sage (University of Toronto, Canada). The plants used for sampling were grown
281 from cuttings and grown in the greenhouse. Growth condition of the greenhouse
282 followed our previous work (Lyu, et al., 2015), i.e. growth temperature: 28 °C;

283 photoperiod: 14h light / 10h dark; relative humidity (RH): 60-65% and photosynthetic
284 photon flux density (PPFD): 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$.

285 **Metabolite treatments and gas exchange measurements**

286 To feed specific metabolites to plants, root was cut and the bottom part of the stem
287 was soaked in 10mM solution of the corresponding metabolite separately. 10 mM
288 sorbitol solution was used as the control group. All solutions' pH has adjusted to 6.5.
289 Plants were illuminated under light with a photosynthetic photon flux density (PPFD)
290 of $400 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ for 1 hour before gas exchange measurement. Leaves were sampled
291 1 hour after light treatments.

292 The LI-6800 Portable Photosynthesis System (Li-Cor, Inc., Lincoln, NE, USA) was
293 used for gas exchange measurements. For the CO_2 response curve measurements, air
294 flow rate was set to be $500 \mu\text{mol/s}$, block temperature of the chamber was set to be
295 28°C , reference CO_2 concentration was set to be 400 ppm and the PPFD was set to be
296 $1800 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$. Plants were maintained under such conditions for 15 mins before
297 the first measurement. In the first loop, the reference CO_2 concentration was set to the
298 following sequence of CO_2 concentrations, i.e. 400, 300, 260, 220, 180, 140, 100, 50
299 and 25 ppm; at each CO_2 level, leaves were maintained for 2 mins before data logging.
300 After this sequence of CO_2 concentrations, the reference CO_2 concentration was set
301 back to 400 ppm and maintained for 15 mins before the second loop began. In the
302 second loop, the reference CO_2 concentrations was set in the following order: 400, 500,
303 600, 700, 800 ppm with plants maintained at each concentration for 2 mins before
304 logging. The reference CO_2 concentration was set to 400 ppm when the second loop is
305 finished.

306 **LC-MS/MS and Metabolomics analysis**

307 The LC-MS/MS analysis was done following (Arrivault, et al., 2019; Wang, et al.,
308 2014). Similar to the sampling procedure for transcriptomics analysis, the newly fully
309 expanded and illuminated leaves, usually the 2nd or the 3rd pair of leaves counted from
310 the top of each branch, were used for all species. For each sample, a leaf sample with a

311 2 cm² leaf area was sampled and frozen in liquid nitrogen instantaneously. For some
312 species which have needle-like leaves (*F. ram* and *F. chl*), two leaves were pieced
313 together. Several leaves with same leaf position were sampled to measure the fresh
314 weight and chlorophyll concentration, which were used to convert the concentration of
315 metabolites between fresh weight and chlorophyll concentration basis.

316 All leaf samples were cut *in situ* and immediately transferred into a pre-frozen 2mL
317 EP tube, then stored in liquid nitrogen for extraction. After grinding, each sample was
318 fully dissolved with 800 μ L extraction buffer (methanol: chloroform = 7:3 (v/v), -20°C
319 pre-cooling) and incubated under -20°C for 3 hours. Then 560 μ L distilled water
320 (ddH₂O) was add and mixed with each sample, 800 μ L supernatant was extracted after
321 centrifugation ($\times 2200g$, 10min, 4°C). After that, 800ul buffer (methanol: ddH₂O = 1:
322 1(v/v), 4°C pre-cooling) was mixed with the sample for another extraction. For each
323 sample, 1.6 mL supernatant in total was obtained by filtering the extraction buffer with
324 a 0.2 μ M nylon filter. Among them, 1 mL was used for MS/MS analysis and 20 μ L was
325 used for QC sample. All extraction operations were performed on ice.

326 Luna NH₂ column (3 μ m, 100mm*2mm, Phenomenex co. Ltd, USA) was used in
327 the liquid chromatography. The LC gradient was set with eluent A, which has 10 mM
328 Ammonium acetate and 5%(v/v) acetonitrile solution, with the pH adjusted to 9.5 using
329 ammonia water and eluent B (acetonitrile): 0-1 min, 15% A; 1-8 min, 15-70% A; 8-20
330 min, 70-95% A; 20-22 min, 95% A; 22-25 min, 15% A. In the aspect of mass
331 spectrometry analysis, QTRAP 6500+ (AB Sciex, co. Ltd, USA) was used in MRM
332 model, all parameters used following (Arrivault, et al., 2019; Wang, et al., 2014) with
333 optimization (Supply Dataset 1). Concentration of all metabolites in samples were
334 calculated based on the “concentration-peak area” curve of standard samples and
335 converted to nmol·gFW-1 with specific leaf weight of each species measured before.

336 **¹³CO₂ labelling**

337 ¹³CO₂ labelling of AKG-treated *F. ram* followed (Heise, et al., 2014). All treated
338 individuals were pre-illuminated at a PPFD of ~500 μ mol·m⁻²·s⁻¹ for 30 mins before

339 labelling. During the labelling, the CO₂ concentration was kept at 450 ppm, relative
340 humidity (RH) was kept at 40-60%. When ¹³C labelling finished, leaf sample was
341 transferred into liquid nitrogen immediately. Then about 30 mg of frozen leaf tissue was
342 used for metabolite extraction. The extraction protocol used is same as earlier used for
343 metabolite profiling with parameters for mass spectrometry optimized (Supply Dataset
344 1).

345 **Transcriptome assembly and quantification**

346 To obtain the transcriptomics data, we sampled the newly developed fully
347 expanded leaves, usually the 2nd or the 3rd pair of leaves counted from the top for each
348 species. The chosen leaves were cut and immediately put into liquid nitrogen and kept
349 in -80 °C liquid nitrogen before further processing. Total RNA was isolated following
350 the protocol of the PureLInkTM RNA kit (Thermo Fisher Scientific, USA). Illumina
351 sequencing was performed and analysis were conducted following our previous work
352 (Lyu, et al., 2021). Specifically, transcript abundances of *Flaveria* samples were
353 calculated as Transcripts Per kilobase of exon model per Million mapped reads (TPM)
354 using the RSEM package (version 1.3.1)(Li and Dewey, 2011).

355 **Enzyme activity measurements**

356 The PEPC activity was assayed following (Fukayama, et al., 2003). The NADP-
357 ME activity and the NADP-MDH activities were assayed followed (Tsuchida, et al.,
358 2001). The PPDK activity was assayed following (Wang, et al., 2008). CARY50 UV
359 Spectrophotometer (VARIAN Co. Ltd, USA) was used to monitor the consumption or
360 generation of NAD(P)H at 340 nm.

361 **Feature selection analysis**

362 Feature selection analysis was performed with a python script
363 (<https://github.com/WillKoehrsen/feature-selector>). The method finds features with a
364 gradient boosting machine implemented in the LightGBM library
365 (<https://github.com/Microsoft/LightGBM>). Analysis implemented with default
366 parameters and the metric used for early stopping is set to the error rate for multiclass

367 classification (Ke, et al., 2017; Li, et al., 2007).

368 **Identification of amino acid residues under positive selection**

369 To identify positively selected amino acid residues in Fd-GOGAT in *Flaveria* C₄
370 species, we used *Flaveria* non-C₄ species (including C₃ and C₃-C₄ species) as
371 background. For each gene, only these genes with completely assembled sequence were
372 included in the analysis. To do this, firstly, protein sequences of orthologous genes were
373 aligned using the software Muscle (Edgar, 2004). Then aligned protein sequences were
374 used to guide the codon-wise alignment of CDS with PAL2NAL (Suyama, et al., 2006).
375 After the gaps and stop codons were removed, multiple sequence alignment results were
376 input into the PAML software (version 4.8) for positive selection tests (Yang, 2007). In
377 this study, the positive selection test was conducted with the branch-site model
378 (model=2, NSsites=2) under the nucleotide substitution conditions of CodonFreq=2 (4
379 distinct frequencies are used for each position, named F3X4). The likelihood of the null
380 hypothesis was calculated under this branch-site model with fixed dN/dS ratio ($\omega=1$,
381 neutral). The maximum likelihood of the alternative hypothesis was calculated under
382 this branch-site model with flexible dN/dS ratio ($\omega>1$, positive selection). Then, the
383 likelihood ratio test (LRT) was conducted between the null hypothesis and the
384 alternative hypothesis under chi-square distribution. Those genes identified to be
385 significant (p-value < 0.05, Benjamini Hochberg (BH) adjusted) by tests under these
386 two different nucleotide substitution parameter settings were considered as genes under
387 positive selection.

388 **Simulation of C₂ and C₄ Photosynthesis with a constrained Fd-GOGAT flux**

389 A previously reported genome-scale constraint based model of C₃-C₄
390 photosynthesis (Mallmann, et al., 2014) was used to test the impacts of different Fd-
391 GOGAT activities on metabolic fluxes. We parameterized this model with parameters
392 for a type II C₃-C₄ state as given in (Heckmann, et al., 2013), which the flux of C₄
393 CCM and flux of C₂ CCM are incorporated together. In the original model, the flux of
394 RubisCO Oxygenase and PEPC are constrained to experimental values from

395 (Heckmann, et al., 2013). In our analysis, these fluxes were set to be flexible while the
396 flux of Fd-GOGAT was set to be under limitation. So, we kept the upper bounds of
397 RubisCO oxygenation rate and PEPC carboxylation rate but changed the lower bound
398 of these two fluxes to be zero. Furthermore, we set the respiration rate to be constant
399 (Byrd, et al., 1992), i.e. the net AKG generation rate (IDH) is set as constant to ensure
400 the AKG generation rate would not be a limitation of model (Mallmann, et al., 2014).
401 Finally, we constrain the synthesis of glutamate can only be carried out through Fd-
402 GOGAT, which is driven by photosynthetic reducing energy.
403

404 **Acknowledgement**

405 We thank Yongyao Zhao for the support on cultivation of *Flaveria*. We thank
406 Faming Chen for the valuable suggestions on bioinformatics analysis. We thank Wenli
407 Hu, Xiaoyan Xu and Shanshan Wang of the public technology platform in Institute of
408 Plant Physiology and Ecology (Shanghai, China) for the assistance on metabolomics
409 measurement.
410

411 **Accession Numbers**

412 The RNA-seq is submitted to Sequence Read Archive (SRA) in the Nation Center for
413 Biotechnology Information (NCBI) database under the following accession number:
414 PRJNA820135
415

416 **Funding**

417 The work financially supported by Strategic Priority Research Program of the Chinese
418 Academy of Sciences (#XDB27020105) and the NSFC general program (#31870214).
419

420 **Author Contribution**

421 QT and XZ designed the study, performed the analysis, and wrote the paper; QT, YH,
422 XN, ML, GC conducted the experiments and performed the analysis. RFS provided
423 many of the species and assisted with manuscript preparation.

424

425 **Competing interests**

426 The authors declare that no competing interests exist.

427

428 **Supplemental Data**

429 Supplemental DataSet1. MS parameters for metabolic profiling.

430 Supplemental DataSet2. Metabolic profiles of 12 *Flaveria* species

431 Supplemental DataSet3. Transcript profiles of 12 *Flaveria* species

432 Supplemental DataSet4. Source R code used for the simulation with constrain-based

433 models

434

REFERENCE

Araus, J.L., *et al.* Leaf anatomical characteristics in Flaveria trinervia (C 4), Flaveria brownii (C 4-like) and their F 1 hybrid. 1990;26(1):49-57.

Arrivault, S., *et al.* Metabolite profiles reveal interspecific variation in operation of the Calvin-Benson cycle in both C4 and C3 plants. *J Exp Bot* 2019;70(6):1843-1858.

Borghí, G.L., *et al.* Metabolic profiles in C3, C3-C4 intermediate, C4-like and C4 species in the genus Flaveria. *Journal of experimental botany* 2021.

Bräutigam, A. and Gowik, U.J.J.o.E.B. Photorespiration connects C3 and C4 photosynthesis. 2016;67(10):2953-2962.

Brown, R.H., *et al.* Photosynthesis of F1 hybrids between C4 and C3-C4 species of Flaveria. *Plant Physiology* 1986;82(1):211-217.

Byrd, G.T., Sage, R.F. and Brown, R.H.J.P.P. A comparison of dark respiration between C3 and C4 plants. 1992;100(1):191-198.

de Oliveira Dal'Molin, C.G., *et al.* C4GEM, a genome-scale metabolic model to study C4 plant metabolism. 2010;154(4):1871-1885.

Dengler, N.G. and Nelson, T. Leaf structure and development in C4 plants. In.: C4 plant biology. San Diego: Academic Press; 1999.

Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids research* 2004;32(5):1792-1797.

Fukayama, H., *et al.* Activity regulation and physiological impacts of maize C 4-specific phospho enol pyruvate carboxylase overproduced in transgenic rice plants. 2003;77(2):227-239.

Gowik, U., *et al.* Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? 2011;23(6):2087-2105.

Heckmann, D., *et al.* Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. 2013;153(7):1579-1588.

Heise, R., *et al.* Flux profiling of photosynthetic carbon metabolism in intact plants. *Nat Protoc* 2014;9(8):1803-1824.

Ke, G., *et al.* Lightgbm: A highly efficient gradient boosting decision tree. 2017;30:3146-3154.

Kennedy, R. and Laetsch, W.J.S. Plant species intermediate for C3, C4 photosynthesis. 1974;184(4141):1087-1089.

Li, B. and Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 2011;12(1):323.

Li, P., Wu, Q. and Burges, C.J.A.i.n.i.p.s. Mcrank: Learning to rank using multiple classification and gradient boosting. 2007;20:897-904.

Ludwig, M. The molecular evolution of β -carbonic anhydrase in Flaveria. *Journal of Experimental Botany* 2011;62(9):3071-3081.

Lyu, M.-J.A., *et al.* The coordination of major events in C4 photosynthesis evolution in the genus Flaveria. 2021;11(1):1-14.

Lyu, M.-J.A., *et al.* RNA-Seq based phylogeny recapitulates previous phylogeny of the genus Flaveria (Asteraceae) with some modifications. *BMC evolutionary biology* 2015;15(1):116.

Mallmann, J., *et al.* The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. *Elife* 2014;3:e02478.

Mallmann, J., *et al.* The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. 2014;3:e02478.

McKown, A.D. and Dengler, N.G. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). *American journal of botany* 2007;94(3):382-399.

McKown, A.D., Moncalvo, J.M. and Dengler, N.G. Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. *American Journal of Botany* 2005;92(11):1911-1928.

Monson, R., Moore, B.d.J.P., Cell and Environment. On the significance of C3—C4 intermediate photosynthesis to the evolution of C4 photosynthesis. 1989;12(7):689-699.

Monson, R.K. The relative contributions of reduced photorespiration, and improved water-and nitrogen-use efficiencies, to the advantages of C 3— C 4 intermediate photosynthesis in Flaveria. *Oecologia* 1989;80(2):215-221.

Monson, R.K., Edwards, G.E. and Ku, M.S.J.B. C3-C4 intermediate photosynthesis in plants. 1984;34(9):563-574.

Monson, R.K. and Rawsthorne, S. CO 2 assimilation in C 3-C 4 intermediate plants. In, *Photosynthesis*. Springer; 2000. p. 533-550.

Rawsthorne, S., *et al.* Distribution of photorespiratory enzymes between bundle-sheath and mesophyll cells in leaves of the C 3— C 4 intermediate species Moricandia arvensis (L.) DC. 1988;176(4):527-532.

Sage, R.F., Sage, T.L. and Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. *Annu Rev Plant Biol* 2012;63:19-47.

Suyama, M., Torrents, D. and Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. *Nucleic acids research* 2006;34:W609-W612.

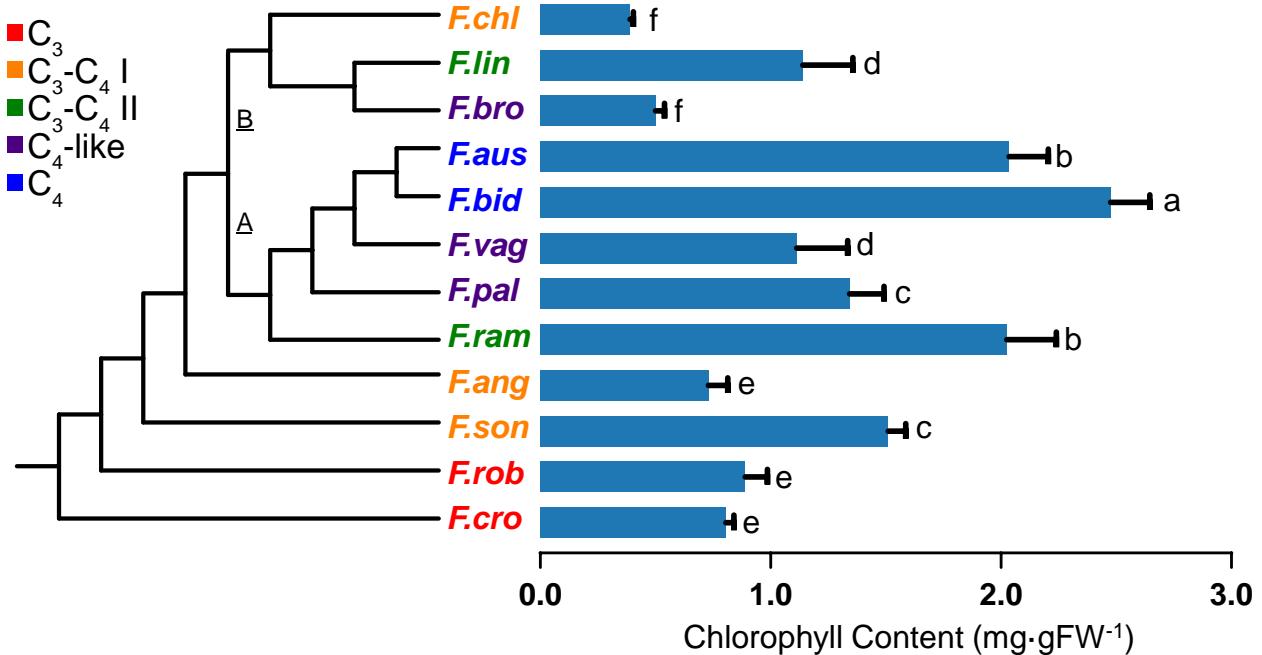
Tsuchida, H., *et al.* High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. 2001;42(2):138-145.

Ubierna, N., *et al.* The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. 2013;36(2):365-381.

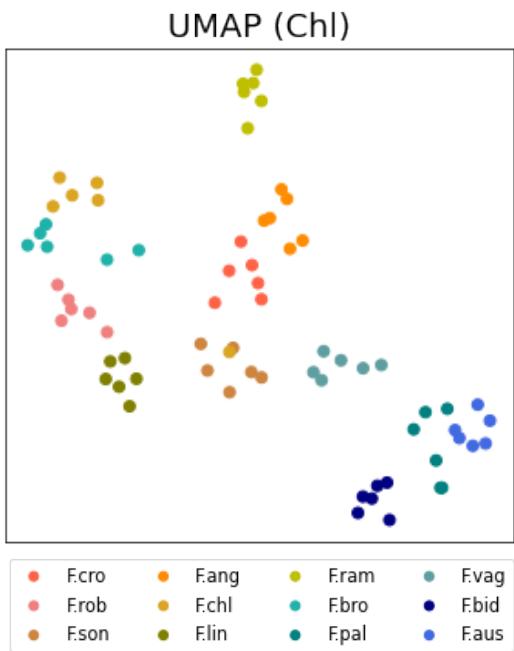
Vogan, P.J. and Sage, R.F. Water-use efficiency and nitrogen-use efficiency of C3-C4 intermediate species of Flaveria Juss.(Asteraceae). *Plant, Cell & Environment* 2011;34(9):1415-1430.

Vogan, P.J. and Sage, R.F. Effects of low atmospheric CO 2 and elevated temperature during growth on the gas exchange responses of C 3, C 3—C 4 intermediate, and C 4 species from three evolutionary lineages of C 4 photosynthesis. *Oecologia* 2012;169(2):341-352.

Wang, D., *et al.* Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus× giganteus. 2008;148(1):557-567.


Wang, L., *et al.* Comparative analyses of C(4) and C(3) photosynthesis in developing leaves of maize and rice. *Nat Biotechnol* 2014;32(11):1158-1165.

Wang, S., *et al.* C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors. 2017;40(1):80-94.


Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 2007;24(8):1586-1591.

Zhu, X.-G., Long, S.P. and Ort, D.R. Improving photosynthetic efficiency for greater yield. *Annual Review of Plant Biology* 2010;61:235-261.

A

B

C

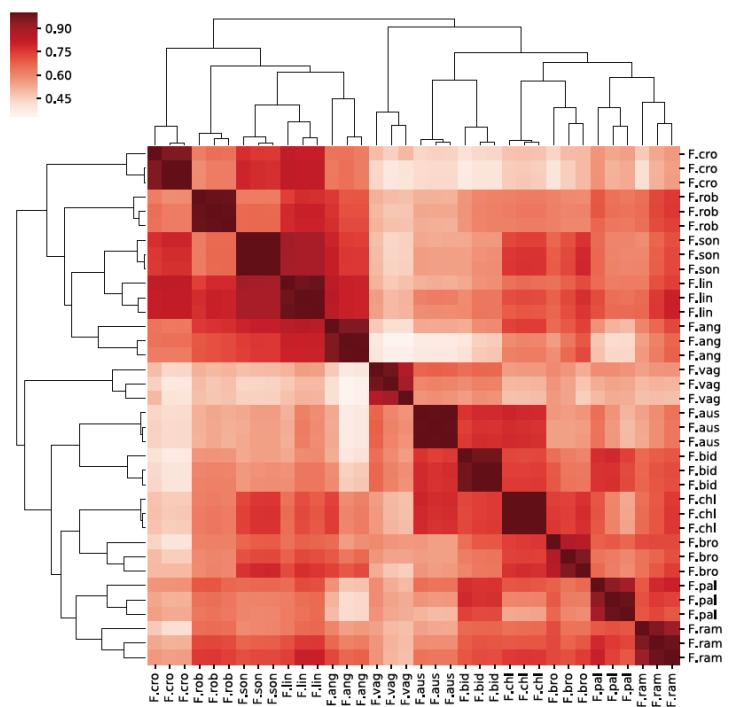


Figure 1. Overview of *Flaveria* metabolic and transcriptomic profiles. A) Phylogenetic tree and chlorophyll content of 12 flaveria species sampled. Different letters indicate a significant difference between the medians (Kruskal-Wallis tests, $\alpha = 0.05$, p-values adjusted using false discovery rate) (Benjamini and Hochberg, 1995). n = 5. B) Dimensionality reduction analysis (UMAP) of metabolomics data normalized on chlorophyll content. Data were normalized using Z-score. C) Heatmap of Pearson correlation coefficient among transcriptomics samples. Duplicate species names represent different biological samples.

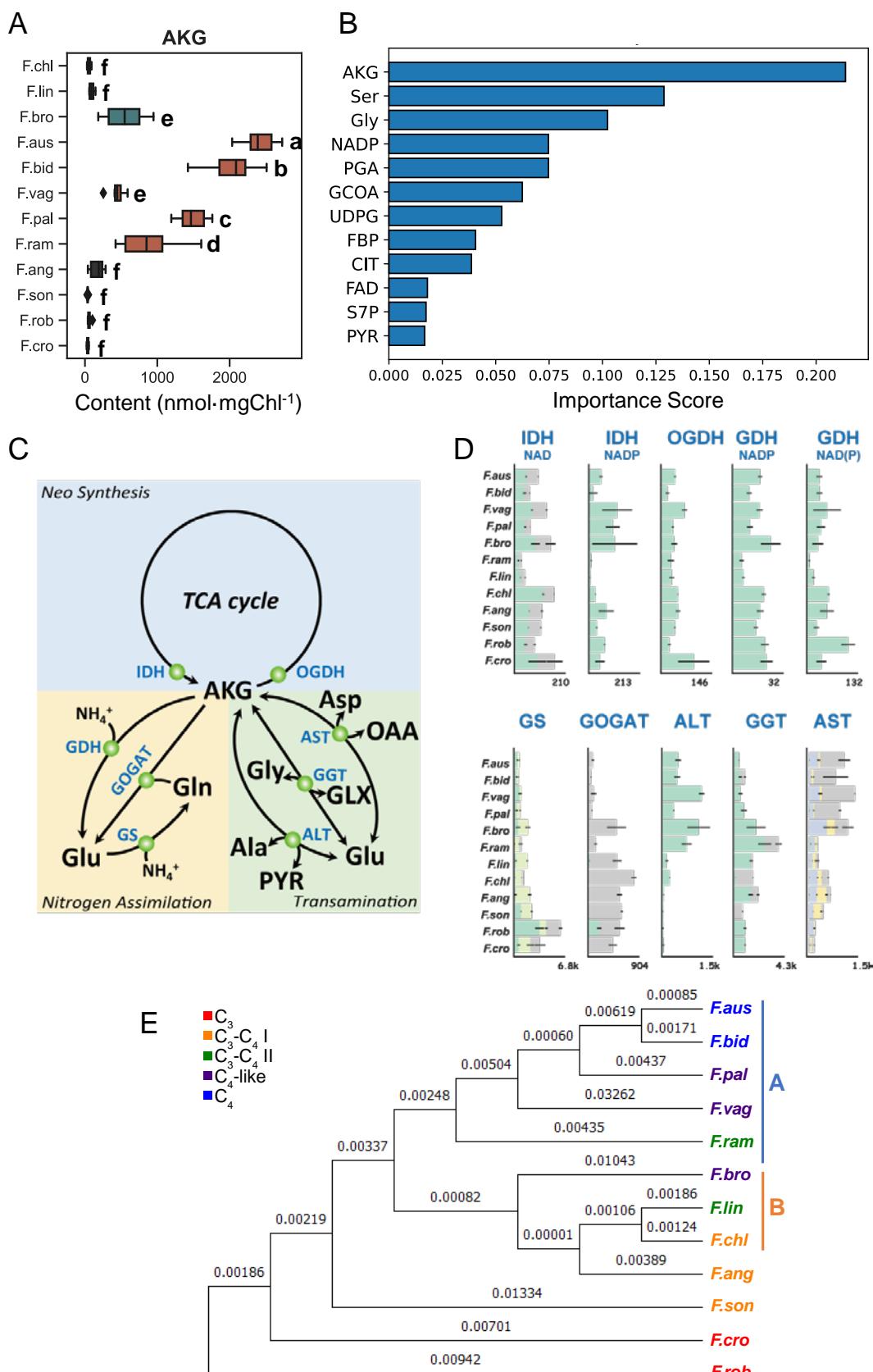


Figure 2. A) Box plot of AKG content. Box with black background indicate the ancestor species in phylogenetic tree, orange indicate the species belong clade A in phylogenetic tree, and green indicate the species belong clade B in phylogenetic tree. Different letters indicate a significant difference between the medians (Kruskal-Wallis tests, $\alpha = 0.05$, p-values adjusted using false discovery rate) (Benjamini and Hochberg, 1995). n = 6. B) important metabolites in scheme #1 with a cutoff of 80% cumulative importance (See Fig S1 for other schemes). C) Metabolic pathways related to AKG formation and metabolism. D) AKG-related gene expression (TPM) plots for all expressed homologous genes annotated with same E.C. number. Error bar indicates S.D., n = 3. The maximum total expression value in all species is marked in the lower right. E) Phylogenetic tree of Fd-GOGAT (AT5G04140) protein sequence. The value above the branch represents the length of the phylogenetic branch. A and B represent the species belonging to clade A and clade B on the phylogenetic tree of Flaveria respectively.

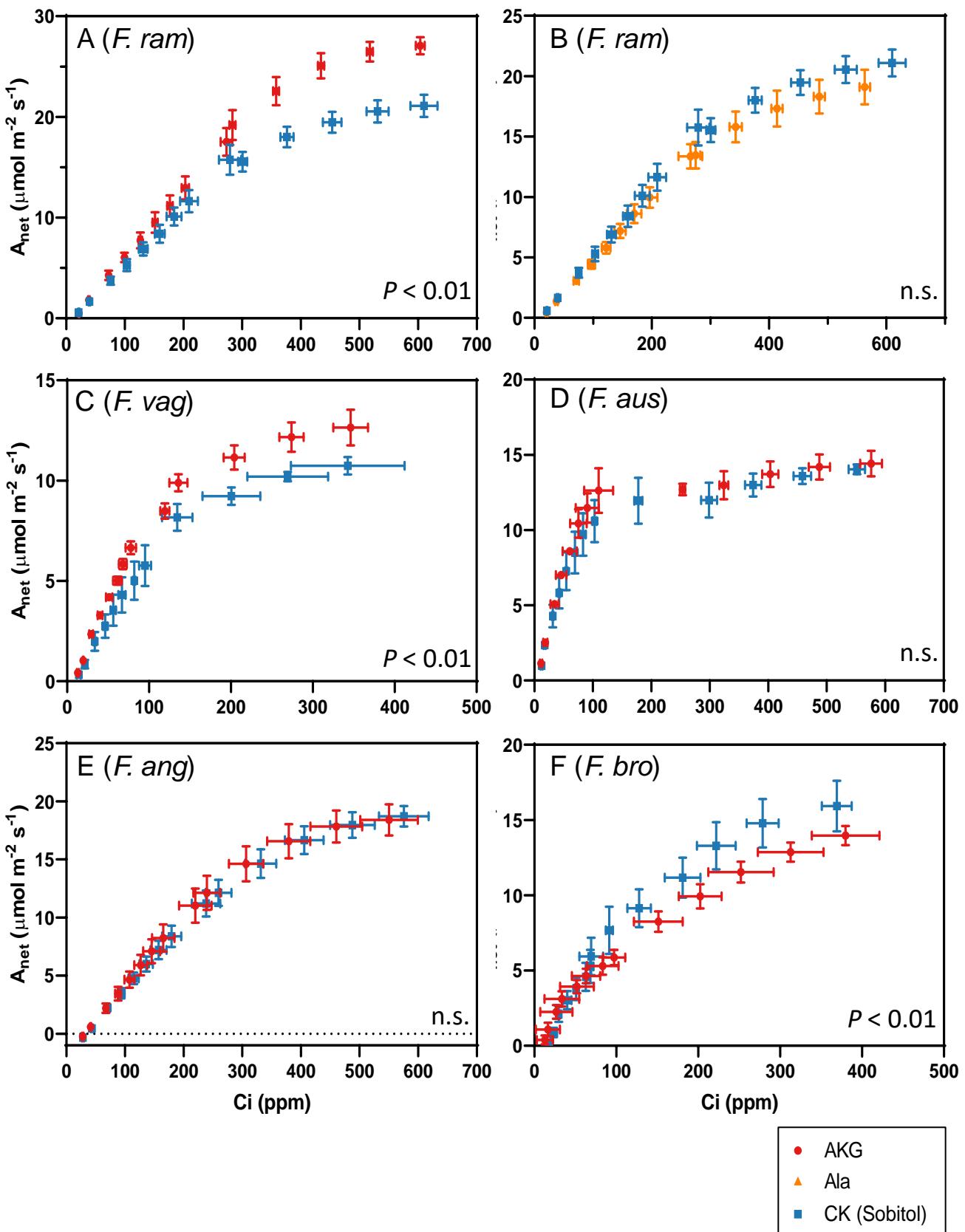
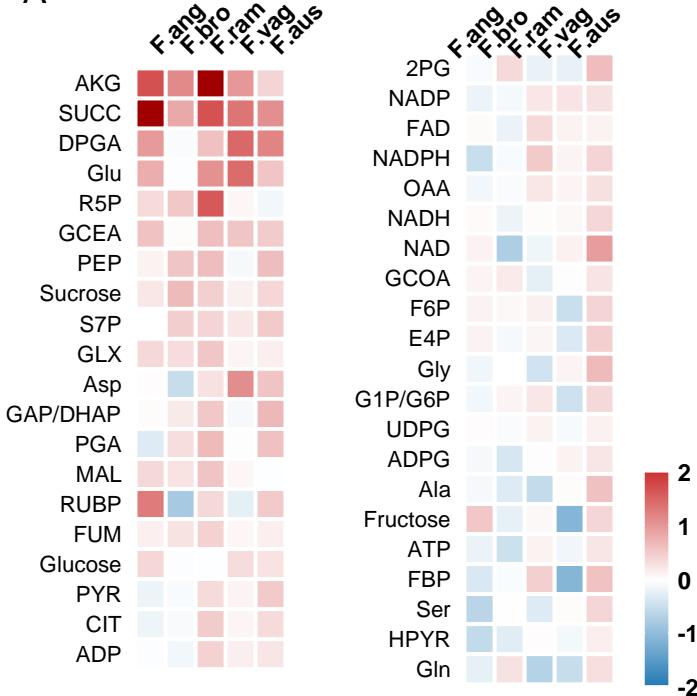
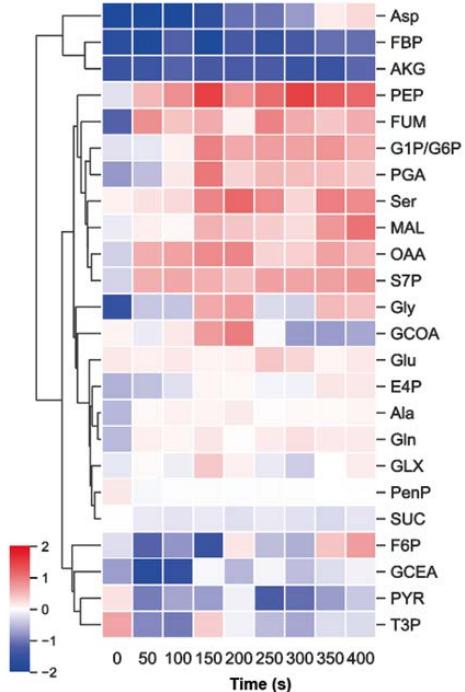




Figure 3. Exogenous AKG showed differential effects on Flaveria species with different photosynthetic types. A-F) CO₂ response curves of Flaveria species treated with metabolites. The data points were the average values of 3-4 biological samples in each group, and the error bar was the standard error (S.E.). Significant differences between treatments were identified using contrasts analysis (lsmeans package, R), n.s.: not significant.

A

B

C

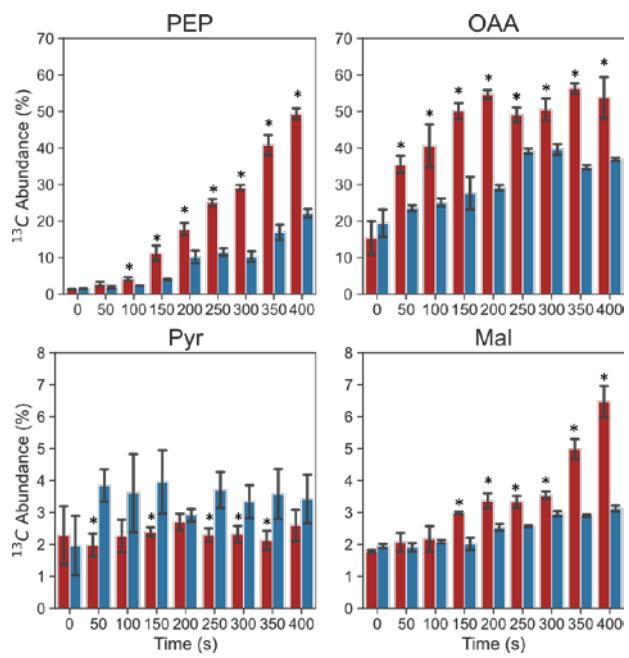
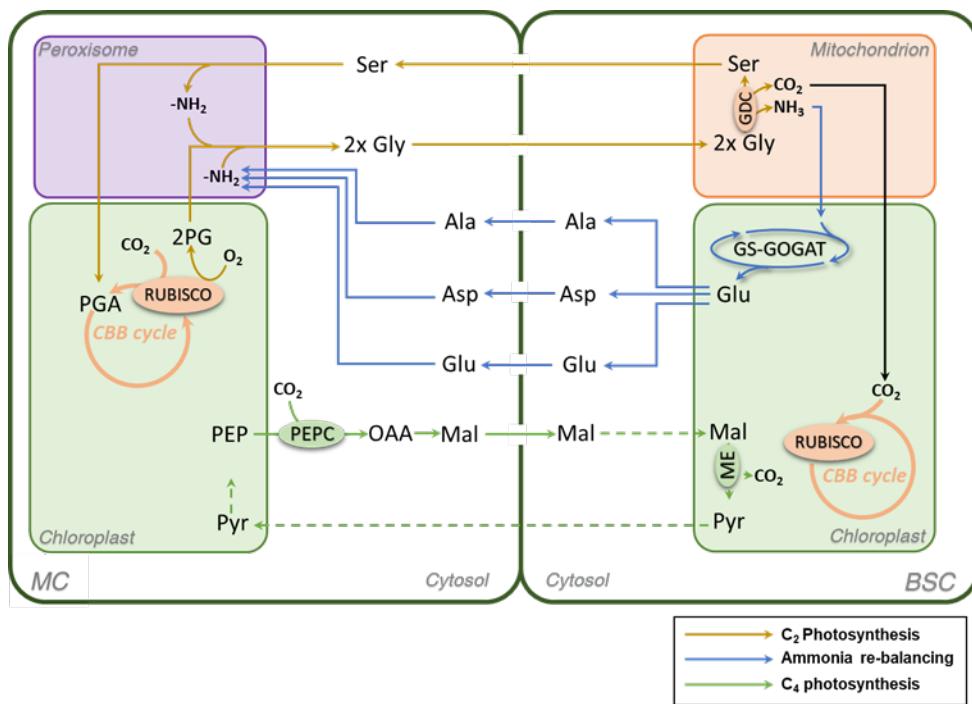
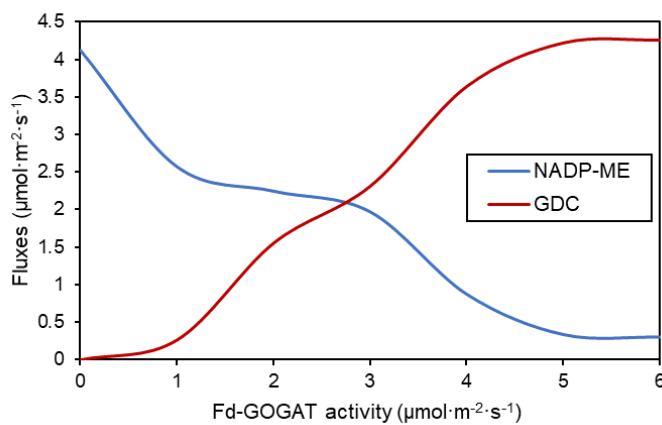




Figure 4. Exogenous AKG promotes the C4 photosynthetic flux. A) Changes in leaf metabolite concentrations for Flaveria species treated with different metabolites (values in heatmap indicate the log2 fold changes compared to the control group). B,C) 13C abundance change of *F. ram* treated with AKG. B) values in heatmap indicated the log2 fold change compared to control group. C) Histogram plot for four C4-related metabolites. error bar indicates S.D., *: p < 0.05 (Student's t-test). n = 4.

A

B

C

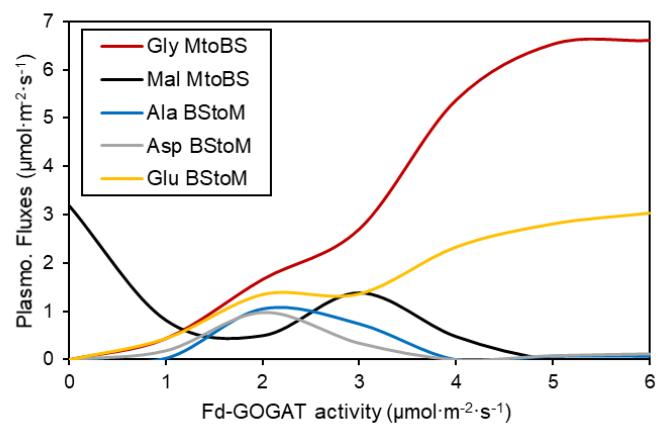


Figure 5. Model simulations suggest that a low Fd-GOGAT activity facilitates the shifting from a C_2 to C_4 CCM in model simulations. A) Mechanistic switching from C_2/C_4 mixed photosynthesis to C_4 photosynthesis when GS-GOGAT activity is limited. B) Predicted fluxes of NADP-ME and GDC in bundle sheath cells at different activities of Fd-GOGAT. C) Predicted plasmodesmata transfer fluxes of amino acids and malate between mesophyll cells and bundle sheath cells at different activities of Fd-GOGAT. MtoBS: flux transfer from mesophyll cells to bundle sheath cells; BStoM: flux transfer from bundle sheath cells to mesophyll cells.

Table S1 Statistics of transcriptomics data

Species	Clean Base (GB)	Assembled Transcripts	Mapping Ratio (%)
F.ang	6.7 / 7.94 / 6.94	75,861	82.00 / 82.72 / 83.01
F.aus	9.49 / 7.53 / 6.78	73,853	83.60 / 83.40 / 83.12
F.bid	7.62 / 8.34 / 7.85	65,144	86.58 / 86.43 / 85.05
F.bro	7.36 / 9.34 / 10.29	85,926	84.12 / 84.06 / 83.13
F.chl	6.04 / 5.16 / 7.58	77,447	83.07 / 82.68 / 83.02
F.cro	6.74 / 8.3 / 6.79	91,918	77.66 / 77.59 / 79.23
F.lin	7.1 / 9.13 / 6.63	110,727	84.59 / 84.68 / 84.94
F.pal	7.11 / 10.81 / 7.35	88,628	84.82 / 73.49 / 80.70
F.ram	6.37 / 6.25 / 7.6	163,967	81.03 / 81.58 / 81.65
F.rob	6.95 / 6.23 / 7.1	80,514	80.01 / 82.41 / 82.95
F.son	7.06 / 7.03 / 6.73	74,137	80.73 / 81.26 / 82.14
F.vag	6.88 / 7.49 / 10.5	80,855	84.31 / 85.21 / 84.17

For each species, clean bases and mapping ratio are counted for three biological samples and distinguished with a slash in table. Transcripts were assembled with pooled reads from all three biological samples

A

	#1	#2	#3	#4
<i>F. cro</i>	C ₃	C ₃	C ₃	
<i>F. rob</i>		C ₃	C ₃	Ancestors
<i>F. son</i>				
<i>F. ang</i>			C ₃ -C ₄ I	
<i>F. chl</i>		C ₃ -C ₄		Clade B
<i>F. lin</i>	C ₃ -C ₄		C ₃ -C ₄ II	
<i>F. ram</i>				Clade A
<i>F. pal</i>		C ₄ -like	C ₄ -like	
<i>F. vag</i>				Clade B
<i>F. bro</i>				
<i>F. bid</i>	C ₄	C ₄	C ₄	Clade A
<i>F. aus</i>				

B

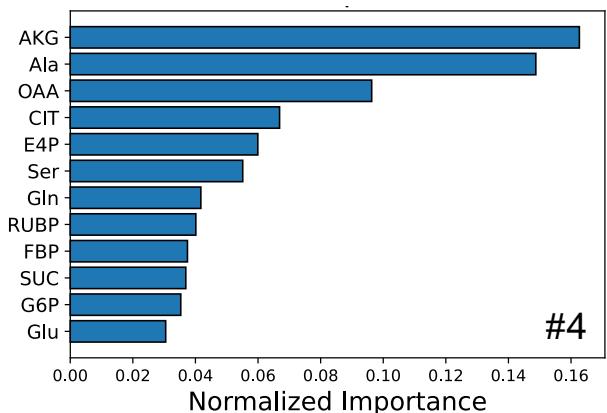
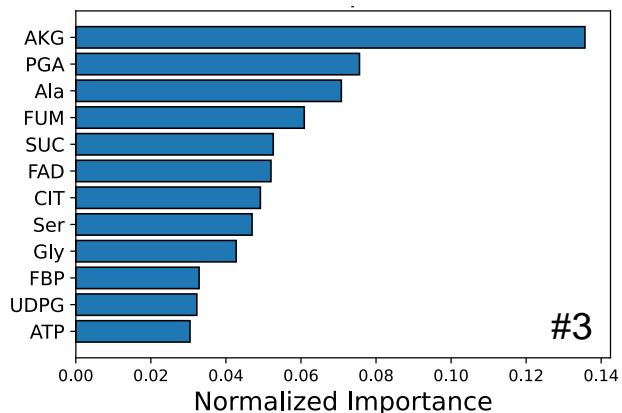
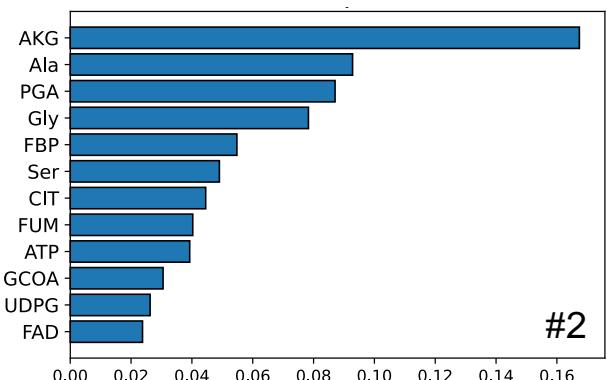
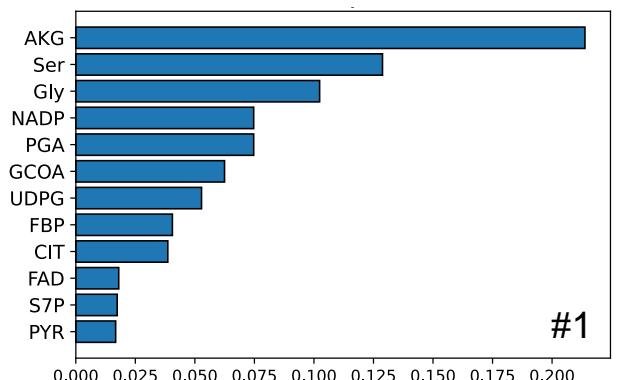





Figure S1. Feature selection analysis of metabolic data. A) Four different schemes for prior grouping. B) important metabolites in each scheme with a cutoff of 80% cumulative importance

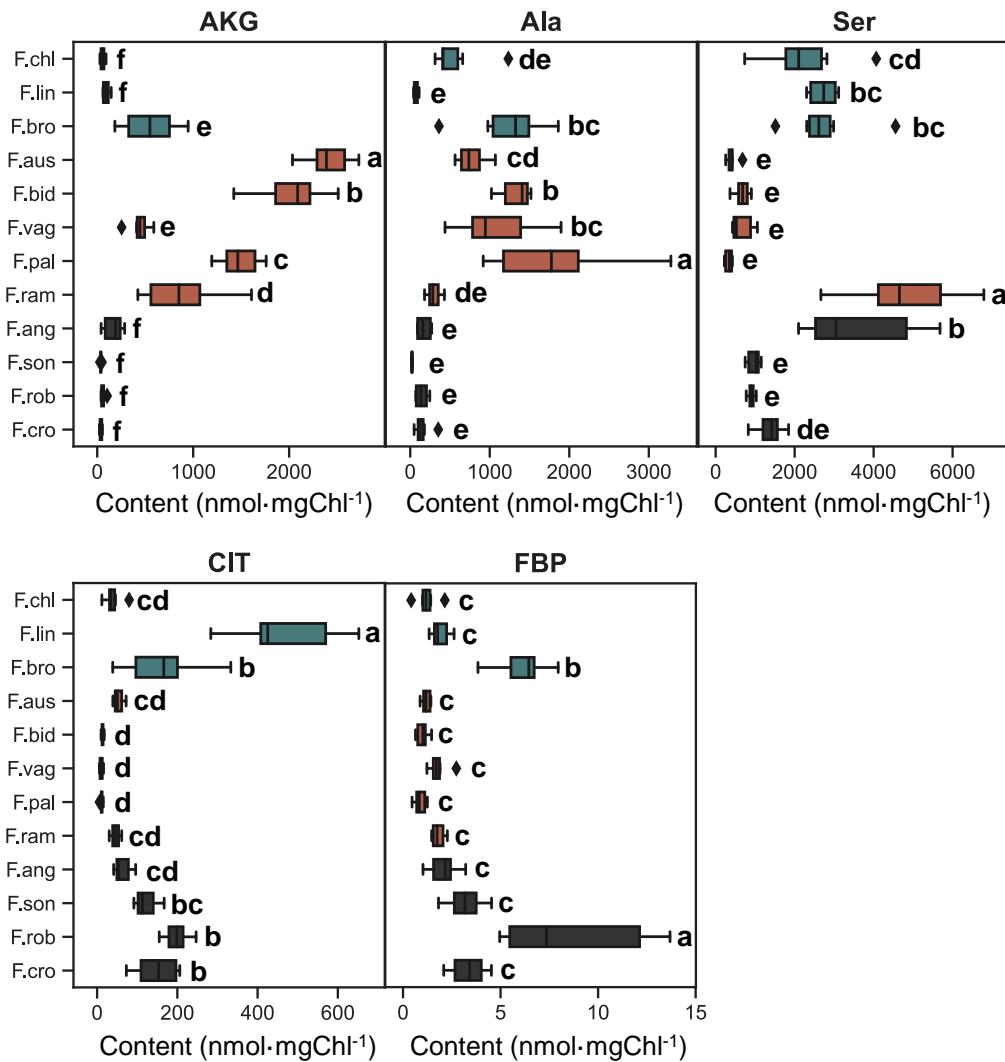


Figure S2. Box plot of five important metabolites. Box with black background indicate the ancestor species in phylogenetic tree, orange indicate the species belong clade A in phylogenetic tree, and green indicate the species belong clade B in phylogenetic tree. Different letters indicate a significant difference between the medians (Kruskal-Wallis tests, $\alpha = 0.05$, p-values adjusted using false discovery rate) (Benjamini and Hochberg, 1995). n = 6.

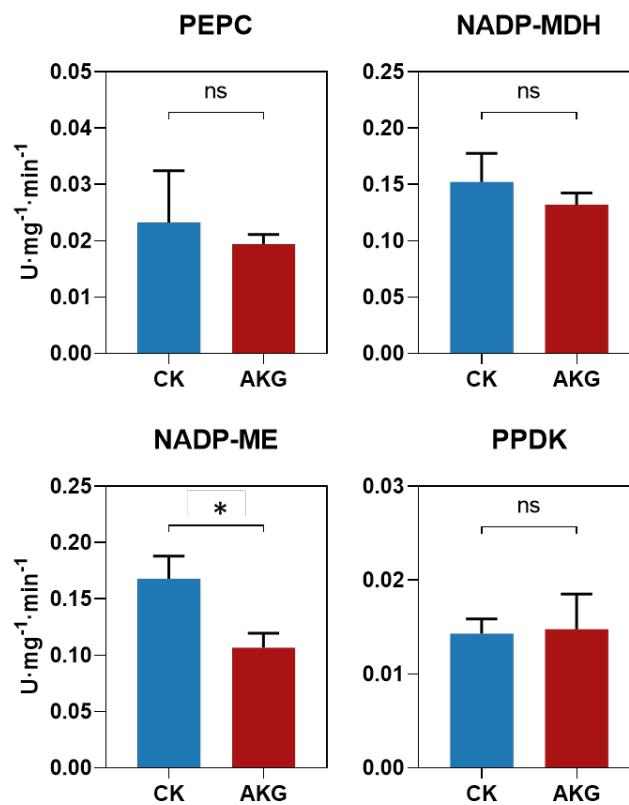


Figure S3. Enzyme activities of C4 photosynthesis in AKG-treated *F. ram*. Error bar indicates S.D., $n = 4$. ns.: not significant, *: $p < 0.05$ (Student's t-test).