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ABSTRACT 

A deeper understanding of the molecular determinants that drive humoral responses to 

coronaviruses, and in particular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

is critical for improving and developing diagnostics, therapies and vaccines. Moreover, viral 

mutations can change key antigens in a manner that alters the ability of the immune system to 

detect and clear infections. In this study, we exploit a deep serological profiling strategy coupled 

with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune 

responses of asymptomatic or recovered COVID-19-positive patients relative to COVID-19-

negative patients. We made use of a novel high-density peptide array (HDPA) spanning the entire 

proteomes of SARS-CoV-2 and endemic human coronaviruses to rapidly identify B cell epitopes 

recognized by distinct antibody isotypes in patients’ blood sera. Using our integrated 

computational pipeline, we then evaluated the fine immunological properties of detected SARS-

CoV-2 epitopes and relate them to their evolutionary and structural properties. While some 

epitopes are common across all CoVs, others are private to specific hCoVs. We also highlight the 

existence of hotspots of pre-existing immunity and identify a subset of cross-reactive epitopes that 

contributes to increasing the overall humoral immune response to SARS-CoV-2. Using a public 

dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- 

and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the 

differences across proteins, waves and SARS-CoV-2 variants, which have important implications 

for genomic surveillance and vaccine design.  Lastly, we show that mutations in Spike and 

Nucleocapsid epitopes are under stronger selection between than within patients, suggesting that 

most of the selective pressure for immune evasion occurs upon transmission between hosts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.494373doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494373
http://creativecommons.org/licenses/by-nc/4.0/


 3 

INTRODUCTION 

Coronaviruses constitute a large family of enveloped, positive-sense single-stranded RNA viruses 

that cause frequent diseases in birds and mammals. The Coronaviridae family includes four 

species that are endemic in the human population (hCoVs): the alpha-coronaviruses which include 

hCoV-229E and hCoV-NL63 and beta-coronavirus species which include hCoV-HKU1 and 

hCoV-OC43, and are usually associated with mild, self-limiting upper respiratory tract infections, 

although they can cause severe illness in immunocompromised patients (1). Three other beta-

coronavirus species have recently emerged: Middle East respiratory syndrome-CoV (MERS-

CoV), SARS-CoV-1, and SARS-CoV-2, all causing severe disease in humans (2, 3). Severe acute 

respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a novel virus belonging to the 

Coronaviridae family that emerged in late 2019 and quickly spread throughout the world, causing 

a pandemic with morbidity, mortality, and economic disruption on a global scale with few 

precedents (3).
 
The clinical course of COVID-19 is highly variable: some infected individuals are 

completely asymptomatic (4), while others experience a spectrum of clinical manifestations 

including fever, severe respiratory distress, pneumonia, diarrhea, blood clotting disorders, 

increased systemic cytokine release and, in <5% of cases, prolonged hospitalization and death (5). 

In addition to factors like viral exposure history, viral inoculum at infection, and the genetic 

background of the individual, the severity of COVID-19 and the response to treatment is also 

heavily influenced by other factors like sex, advanced age, ethnicity, and comorbidities such as 

cardiovascular disease, chronic lung disease, obesity, diabetes, and compromised immune function 

(6-8). An in-depth understanding of the immune response to SARS-CoV-2, particularly humoral, 

could improve our understanding of the diverse courses of disease and better guide the 

development of improved diagnostics and vaccines.  

SARS-CoV-2 infection can elicit robust antibody responses in humans, and this response 

represents the primary focus of global efforts to develop accurate serology-based diagnostics and 

vaccination strategies against infection (9, 10). One prevailing view is that an underlying protective 

immune response directed towards endemic hCoVs is present in infected asymptomatic people 

consistent with the presence of cross-reactive antibodies between SARS-CoV-2 and hCoV 

antibodies in pre-pandemic sera from children and adults (11-15). Notably, structural proteins of 

SARS-CoV-2 show relatively high sequence identity (e.g. Spike: 29-35%, N: 28-50%) (16) with 

hCoVs and provide a molecular basis for this cross-reactivity (16-18). It is proposed that this 
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response can partially inhibit viral replication and eliminate host infected cells with minimal 

pathology and inflammatory consequences. Considering the high propensity for SARS-CoV-2 to 

mutate viral proteins, notably in S protein, variants of concern (VOCs) and variants under 

investigation (VUIs) can acquire properties for increased transmissibility, disease severity, and/or 

immune evasion (19). Thus, promoting this cross-reactive, pre-existing memory immune response 

to common hCoVs may be an effective strategy against SARS-CoV-2 and future VOCs. 

In order to better understand the molecular determinants underlying protective immunity 

to pathogens, including viruses, one must define the epitopes in various viral proteins, the minimal 

unit of an antigen that can be recognized by T and B cells and can elicit potent cellular and humoral 

immune responses, respectively. A recent study used VirScan technology, a high-throughput, 

programmable phage-display immunoprecipitation and sequencing (PhIP-Seq) method (20), to 

analyze epitopes of antiviral antibodies in sera of COVID-19 patients relative to pre–COVID-19 

sera controls (21). However, the nature and dynamics of the peptide pools of VirScan/PHIP-seq 

may limit the resolution, sensitivity and breadth of specific epitope detection in infected 

individuals, in turn, providing a fragmented view of the complete footprint of epitope recognition 

by antibodies (20, 22). 

In the current study, we provide a comprehensive analysis of SARS-CoV-2 humoral 

immune responses in a dataset of symptomatic or recovered COVID-19-positive and COVID-19-

negative patients. We exploited a novel high-density peptide array (HDPA) by spotting 

overlapping 15-mer peptides derived from the entire SARS-CoV-2 and hCoVs proteomes to 

rapidly identify B cell epitopes recognized by distinct antibody isotypes in patients’ blood sera of 

individual patient groups. We then subjected our data to an integrated computational pipeline to 

evaluate the fine immunological properties of detected SARS-CoV-2 epitopes and relate them to 

their evolutionary and structural characteristics in relation to disease onset/susceptibility and 

clinical features. We show that while some epitopes are common (public epitopes) across all 

studied hCoVs (including SARS-CoV-2), others are unique (private epitopes) to a specific hCoV 

strain. Then, to highlight epitopes that have an important role for protecting against SARS-CoV-2 

when an individual gets infected, we defined differential epitopes as epitope for which the response 

is at least two-times higher in COVID-19-positive than COVID-19-negative individuals. We also 

highlight hotspots of pre-existing immunity and a subset of cross-reactive epitopes that contributes 

to increasing the average humoral immune response to SARS-CoV-2. Finally, using a dataset of 
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over 38,000 publicly available genome sequences, collected during the first two waves of the 

pandemic, we tracked single nucleotide variants (SNVs) within and between COVID-19 patients 

and found evidence for positive selection on nonsynonymous mutations in epitopes. Selection is 

stronger between than within patients, indicating that selection for immune evasion occurs mostly 

upon transmission between hosts. Overall, our results have implications for future genomic 

surveillance and vaccine design. 
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RESULTS 
 
Antibody fingerprinting with high-density peptide arrays provides a high-resolution 

antibody epitope map across the SARS-CoV-2 proteome  

Most previously reported high-resolution SARS-CoV-2 B cell epitope mapping strategies 

relied on VirScan/PHIP-seq methodology (21, 23). However, the nature and dynamics of the 

peptide pools of VirScan/PHIP-seq limit the resolution, sensitivity and breadth of specific epitope 

detection in infected individuals, providing a fragmented view of the complete footprint of epitope 

recognition by antibodies (20, 22). To assess the humoral immune response against SARS-CoV-2 

at the epitope level, we used a novel high-density peptide array (HDPA) technology to define virus 

protein-specific B cell epitopes and potential antigenic hotspots for antibody reactivity. A high-

resolution linear epitope map across the entire SARS-CoV-2 proteome was achieved using the 

PEPperCHIP
®

 SARS-CoV-2 proteome microarray technology (Fig. 1A) (24). We performed this 

assay on sera obtained from ten SARS-CoV-2-positive individuals (asymptomatic and recovered) 

and five SARS-CoV-2-negative, control subjects (SARS-CoV-2-negative) (Table S1). The degree 

of immune reactivity to spike protein (S), envelope protein (E), membrane glycoprotein (M), 

nucleocapsid phosphoprotein (N) and ORF1AB was measured in relative fluorescence units 

(RFU). Linear overlapping peptides of 15 amino acid length were used for each protein and a dual 

isotype analysis, determining IgG- and IgA-specific antibody responses, was performed (Fig. 1A). 

This was followed by a comprehensive analysis workflow to characterize the differential epitopes, 

their structural properties and utilize genome sequence analysis of arising SARS-CoV-2 variants 

to assess immune evasion potential. 

Sera from SARS-CoV-2-positive individuals yielded strong immune reactivity (measured 

in RFU) in S and N proteins, as well as in select regions of ORF1AB (Fig. 1B). Antibody responses 

were also identified in samples from SARS-CoV-2-negative individuals (Fig. 1B), suggesting that 

HDPA technology is well suited to detect epitopes of pre-existing immune responses conferred 

through prior infections with hCoVs. Although sera from SARS-CoV-2-positive and -negative 

individuals had very similar epitope coverage per amino acid, some regions in the SARS-CoV-2 

proteome were more immuno-dominant than others, exerting higher RFU values (Fig. 1B). Except 

for M protein, all proteins analyzed had stronger antibody responses to more unique peptides in 

the SARS-CoV-2-positive patient group (Fig. S1, Table 1, Table S2). In addition, the mean RFU 

values of SARS-CoV-2-positive sera were higher towards most regions of the SARS-CoV-2 
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proteome than in the SARS-CoV-2-negative group, demonstrating the elicitation of robust 

antibody responses to immuno-dominant epitopes upon SARS-CoV-2 infection (Fig. 1C). For 

further analysis of epitopes with greatest immuno-dominance, only peptide RFU values greater 

than or equal to 1000 were used in our further analysis.  Taken together, our results demonstrate 

that the applied HDPA approach allows highly sensitive detection of a large pool of epitopes across 

the SARS-CoV-2 proteome. 

 

Structural features of identified epitopes and comparison with computationally predicted 

epitopes. 

An epitope is the minimal unit of an antigen that can be recognized by T and B cells and 

can elicit potent cellular and humoral immune responses, respectively. B cell epitopes can be 

divided into two major categories, namely linear and conformational epitopes. In a linear epitope, 

a stretch of continuous amino acids forms the antibody binding site, while amino acid residues that 

are brought together by protein folding form conformational epitopes. In our current study, 

antibody responses are detected using linear peptide arrays, and thus these epitopes are primarily 

linear in nature, although some linear epitopes contributing to conformational components of a 

protein may also be detected. Though there is a significant interest for short linear epitopes in 

vaccine  design, most of the current SARS-CoV-2 vaccine immunogens are structural S proteins 

(25). Thus, we explored of whether the short peptide-based approach in the applied HDPA 

approach is able to reveal conformational epitope sites as well, as has been recently suggested 

(21).  Using  3D structures and biophysical properties of the SARS-CoV-2 proteome, we applied 

the DiscoTope algorithm (26) to computationally predict conformational B cell epitopes as well 

as the Bepipred algorithm (27) to obtain linear B cell epitopes. We then compared these to the 

epitopes sites identified in our HDPA experiment. Apart from E and M proteins, we observed 

significant overlap of experimentally identified epitopes with predicted epitopes. (Fig. 2A), with 

approximately 38% of the total proteome being part of the amino acid residues contributing 

towards the B cell epitome of SARS-CoV-2 recognized in infected individuals. We observed 

overlap of mapped epitope sites with conformational epitopes predicted by Discotope, suggesting 

that the applied HDPA approach also identifies a considerable number of conformational epitopes. 

It is important for epitopes to be solvent exposed to allow their amino acid side chains to 

interact with the antibody. In our study, there was no significant difference in the average 
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normalized solvent accessibility (SASA) of epitopes compared to non-epitope regions (mean 

SASA = 5.3 Å
2
). However, residues in highly conserved epitope sites have lower solvent 

accessibility (Fig. S2A-C), suggesting that many identified epitopes might only get exposed 

through proteolysis or conformational changes throughout the infectious cycle or stage of anti-

viral immune response. This implies that our linear peptide-based HDPA approach is able to 

capture more epitopes compared to those that use full-length antigens or protein domains to study 

immune profiling of antibody responses (28, 29). Using structural models we mapped the epitopes 

of S protein of SARS-CoV-2 identified by the HDPA approach, which revealed that many of the 

epitope sites identified in the S protein are located in the N terminal domain (NTD) and the receptor 

binding domain (RBD) (Fig. 2B, C). Interestingly, most epitope sites identified in the NTD and 

RBD have low conservation scores, while many other epitope sites identified in the S protein had 

high conservation scores (Fig. 3A, B). In addition, HDPA analysis revealed strong antibody 

immunoreactivity in a few epitope sites of E (Fig. 3C), M (Fig. 3D), N proteins (Fig. 3E), as well 

as ORF1A (Fig. S3) and ORF1B (Fig. S4). Taken together, our results demonstrate that the applied 

HDPA profiling strategy can identify a novel set of linear and conformational B cell epitopes 

unique in sera of SARS-CoV-2-infected individuals. 

 

Cross-reactivity to endemic seasonal human coronaviruses is a significant driver of antibody 

responses to SARS-CoV-2 epitopes 

In addition to the zoonotic pathogens SARS-CoV, MERS-CoV, and SARS-CoV-2, four 

other low-pathogenicity hCoVs are endemic and co-circulating in the human population (30): 

strains OC43 and HKU1 (beta-CoVs like SARS-CoV-2), and NL63 & 229E (alpha-CoVs), of 

which OC43 and 229E are the most common, accounting for 5-30% of common colds (31). 

Notably, structural proteins of SARS-CoV-2 show high amino acid sequence identity with hCoVs 

(17, 18). One prevailing view in our understanding of COVID-19 immunopathogenesis is that an 

underlying immune response towards endemic hCoVs is a hallmark feature of SARS-CoV-2-

infected asymptomatic individuals. This pre-existing immunity is hypothesized to partially control 

viral replication and eliminate infected cells resulting in less severe pathology and inflammation 

(11-15). 

Having established the link between structure accessibility and protein conservation (Fig. 

3B; Fig. S2), we next asked how conservation is related to the humoral immune response. One 
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way protein conservation could affect adaptive immunity is through cross-reactivity to related 

pathogens. To this end, we first analyzed the humoral immune response against the four hCoVs 

OC43, HKU1, NL63 and 229E at the epitope level using HDPA on sera from the same ten SARS-

CoV-2-positive (asymptomatic or recovered) patients and five control subjects (SARS-CoV-2-

negative; Table S1). HDPA yielded strong antibody reactivities to many distinct sites across the 

proteomes of all hCoVs (Table 2, Table S3-S6). We then defined cross-reactive epitopes based on 

the conservation of peptide residues across hCoVs and the presence of an immune response to 

epitopes in SARS-CoV-2 and at least of one of the endemic hCoVs (HKU1, NL63, OC43 or 229E; 

Fig. 4A). To evaluate the conservation of peptide sequences across hCoVs, we aligned the protein 

sequences of these viruses and calculated a conservation score, reflecting the conservation of 

physico-chemical properties in the alignment where identical residues score the highest (32). We 

also defined cross-reactivity at the level of epitope sites (single amino acids) to account for the 

possibility that a particular amino acid site within a 15-mers epitopes are associated with cross-

reactive immunity. Epitope sites with a conservation score ³ 6 and for which we obtained antibody 

reactivity for both SARS-CoV-2 and at least one of the hCoVs were considered as cross-reactive 

epitope sites. These cross-reactive epitope sites represent 27.2% of the pool of detected epitope 

sites by the applied HDPA assay (Table S7). We also carried out local alignment of the peptides 

from the HDPA (with RFU > = 1000) of all five viral strains to the SARS-CoV-2 proteome to 

evaluate the cross-reactivity profile of SARS-CoV-2 epitopes and identified hotspots of conserved 

epitopes (example for S protein in Fig. 4B).  

Next, to be able to highlight cross-reactive epitope sites that are particularly important for 

the humoral immune response after exposure to SARS-CoV-2, we focused on differential cross-

reactive epitope sites that give an antibody response signal in sera of SARS-CoV-2-positive over 

SARS-CoV-2-negative individuals. Although we analyzed sera from a smaller sized cohort 

compared to a recent study using PhIP-Seq (21), we were nonetheless able to sensitively detect 

more differential cross-reactive epitope sites discriminating virus exposed from non-exposed 

individuals (Fig. 4C). The increased sensitivity of HDPA over PhIP-Seq analysis for identifying 

cross-reactive epitope sites was further highlighted when performing a sensitivity analysis on the 

number of cross-reactive epitope sites that define a cross-reactive epitope (Fig. S5A). 

We next analyzed if the humoral immune response to SARS-CoV-2 epitopes correlated 

with the number of cross-reactive epitopes identified. In other words, to what extent is the response 
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to SARS-CoV-2 predictable based on cross-reactivity to other endemic hCoVs? We defined cross-

reactive epitopes as peptide sequences with at least five cross-reactive epitope sites. We found a 

positive correlation between the average humoral immune response to SARS-CoV-2 epitopes and 

the number of cross-reactive epitopes per patient in a recently published PhIP-Seq dataset (21) 

(Fig. 4D) and in our HDPA dataset (Fig S5). We detected a stronger positive correlation between 

the average antibody response to SARS-CoV-2 epitopes and the number of cross-reactive epitopes 

in SARS-CoV-2-positive compared to negative patients (Fig. 4D; correlation coefficients: 4.42e-

3 vs 1.54e-3; ANOVA p for !"#$%19	)*+*,) = 7.43e-10). This positive correlation is robust to 

the threshold number of cross-reactive epitope sites defining a cross-reactive epitope and is also 

replicated in our HDPA dataset (Fig. S5). 

Leveraging the sample size in this same PhIP-Seq dataset, we aimed to identify the subset 

of cross-reactive epitopes with the greatest contribution in humoral immunity in SARS-CoV-2-

positive patients using the IndVal test, which is a non-parametric test to identify significant 

associations from presence-absence data (33). This test allowed us to identify 75 epitopes that are 

significantly associated with SARS-CoV-2-positive over SARS-CoV-2-negative samples, with 16 

out of these 75 epitopes (21.3%) being cross-reactive (Table S8.). These results again highlight the 

contribution of a subset of hCoV-cross-reactive epitopes for the humoral immune response to 

SARS-CoV-2. 

 

Point mutations and natural selection in epitopes occur at higher rates upon transmission 

than within patients 

There is mounting evidence that mutations in SARS-CoV-2 enhance viral fitness, 

replication rate and transmissibility, and/or partially evade adaptive immunity that has been 

induced by prior infection or vaccination (19). Thus, it is essential to shed light on the interplay 

between SARS-CoV-2 mutations and the acquired immune response in infection. To this end, we 

tracked the evolution of SARS-CoV-2 B cell epitopes using single nucleotide variants (SNVs) 

identified in 38,685 SARS-CoV-2 genome sequences from the NCBI sequence read archive (Table 

S9). We selected SARS-CoV-2 samples from the first pandemic wave (defined as  January 1 to 

July 31 2020) and the second wave (defined as August 1 to December 31 2020) sequenced using 

Illumina paired-end amplicons with a minimum average depth of coverage of 200x and fewer than 

10,000 sites with a depth of coverage lower than 100x. Combined with additional filters to remove 
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sequencing errors (see Methods for details), such deep coverage allowed us to identify SNVs that 

are polymorphic within patients, reflecting within-patient evolution (34, 35), as well as those that 

are shared between the consensus sequences of different patients. We refer to these within-patient 

SNVs as 'mutations' and to between-patient SNVs (those present at >75% frequency within a 

sample and observed in three or more samples) as 'substitutions' that have likely been transmitted 

across multiple patients. Our definitions of mutations and substitutions are not mutually exclusive: 

an SNV can be a mutation in one sample and a substitution in another. We counted the absolute 

number of substitutions relative to the Wuhan-1 reference genome, so the count does not reflect 

the unique number of substitution events along a phylogeny, but rather the prevalence of the 

substitutions in the database. As such, substitution counts are weighted to reflect their 'success' in 

transmitting widely. 

 Using this dataset of mutations and substitutions, we first asked whether cross-reactive 

(public) epitopes evolved differently than epitopes private to SARS-CoV-2. We found that cross-

reactive epitopes tend to evolve more slowly than SARS-CoV-2 private epitopes, accumulating 

fewer substitutions and having lower ratios of nonsynonymous to synonymous substitutions (Fig. 

S6A-D). The same trend of slower evolution in cross-reactive epitopes is also observed at the level 

of within-patient mutations, but the effect is much stronger at the level of substitutions between 

patients (Fig. S6A-D). This is consistent with the fact that these epitopes are conserved across 

multiple distinct hCoV strains and could be evolving under strong and longstanding functional 

constraints. However, purifying selection has less time to purge deleterious mutations within hosts, 

and is therefore more detectable over longer time scales spanning multiple transmission events. 

Mutations in epitopes have the potential to evade or lessen the effectiveness of adaptive 

immunity conferred by infection or vaccination. A recent topic of debate has been the extent to 

which natural selection for immune evasion acts on SARS-CoV-2 during infection, or upon 

transmission (19). During influenza virus infection, most of the selective pressure for immune 

evasion occurs upon transmission, not within a patient (36). This is because viral loads often peak 

before the priming of adaptive immune responses. As such, peak viral transmission occurs before 

there is time for selection to act within a patient, and for immune evasion to occur. A similar 

‘asynchrony’ transmission model has been proposed for SARS-CoV-2 (37), although data 

supporting such model has been lacking. To test the asynchrony model in SARS-CoV-2 we tracked 

SNVs within as well as between patients, within and outside epitope sites, and across the first two 
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pandemic waves (Fig. 5, Fig. S7). Throughout both waves, we found consistently lower within-

host mutation rates in epitopes sites when compared to non-epitope sites across most SARS-CoV-

2 proteins (Fig. 5A, Fig. S7A). In contrast, the structural proteins S, M, and N had significantly 

higher rates of between-host substitution in epitope sites compared to non-epitope sites (Fig. 5B, 

Fig. S7B), suggesting stronger positive selection for epitope changes upon transmission than 

within hosts. To further assess the evidence for selection on epitopes, we used the ratio of 

nonsynonymous to synonymous SNVs both between patients (dN/dS) and within patients (pN/dS) 

calculated separately within and outside epitopes. Higher ratios indicate positive or relaxed 

purifying selection, whereas lower ratios indicate stronger purifying selection. We found that the 

structural proteins S and N have consistently higher nonsynonymous SNV rates in epitope sites, 

both within and between patients, and across both pandemic waves (Fig. 5C, D, Fig. S7C, D). 

While this result is consistent with positive selection of altered epitopes (immune evasion) 

occurring both within and between patients, dN/dS ratios (between patients) are consistently higher 

than pN/pS ratios (within patients). These observations indicate that nonsynonymous substitutions 

in S and N epitope sites accumulate most rapidly upon transmission, rather than within patients. 

Taken together these results support the notion that most of the selective pressure for immune 

evasion of SARS-CoV-2 occurs upon transmission between hosts, consistent with the asynchrony 

model (36).  

 

Assessing the immune evasion potential of SARS-CoV-2 variants 

The observation of similar pattern of mutations and selective pressures in epitopes across 

pandemic waves 1 and 2 (Fig. 5, Fig. S7) was surprising, given the expectation that increasing 

levels of immunity in the population would lead to increased selection for immune evasion over 

time. The second wave is characterized by the rise of variants of concern (VOCs) and variants 

under investigation (VUIs) with higher transmissibility and, in some cases, increased disease 

severity and acquired immune evasion phenotypes (19). The rise of VOCs has been suggested to 

be due to a shift in the SARS-CoV-2 fitness landscape, although the nature of such a shift is unclear 

(38). If part of this shift were due to rising population immunity from the first to second wave, one 

would expect increasing selection for immune evasion variants, resulting in higher frequencies of 

SNVs in epitopes in wave 2. Although we found a higher total number of nonsynonymous SNVs 

(including both mutations and substitutions) in epitope sites unique to wave 1 than unique to wave 
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2 (Fig. 6A), wave 2-specific SNVs reached higher frequencies across samples compared to wave 

1-specific SNVs, consistent with increased selection for immune evasion over time (Fig. 6B). 

However, mutations common to both waves achieved the highest frequencies, indicating their 

early appearance and persistence over time (Fig. 6B). 

A likely driver of VOC evolution is selection for increased transmissibility. For example, 

the Delta VOC is estimated to be 76-117% more transmissible than non-VOCs and non-VUIs, 

while Gamma is 29-48% more transmissible and Alpha is 24-33% more transmissible than the 

original Wuhan SARS-CoV-2 strain (39). However, selection for immune evasion could also play 

a significant role for increased spread or VOCs and VUIs. To test this hypothesis, we defined 

signature mutations of each variant (see Methods; Table S10) as substitutions that are present in 

>=90% of sequences assigned to that lineage. We calculated the prevalence of substitutions in 

thousands of publicly available consensus sequences collected from NCBI during 2020 and added 

data from CoV-Spectrum about under-represented lineage in the database or lineages that emerged 

during 2021 (40). We focused on nonsynonymous signature mutations located in epitope sites and 

found that VOCs and VUIs contain significantly more signature mutations in epitopes compared 

to non-VOCs and non-VUIs (Fig. 6C) suggesting that evasion of the humoral immune response 

could be a significant driver of VOC/VUI evolution. We then ranked VOCs and VUIs based on 

their number of signature mutations in epitopes (Fig. 6D). We observed that Delta has an 

intermediate number of mutations in mapped epitopes (Fig. 6D). Many nonsynonymous epitope 

mutations were also found in the C.36.3 linage, which is thought to be highly transmissible (41). 

However, the most nonsynonymous epitope mutations were observed in Omicron (B.1.1.529, Fig. 

6D), which is highly transmissible and immune evasive (42). Most epitope mutations in VOC/VUI 

occur in the S protein (Fig. 6D). However, normalizing by gene length revealed a relatively high 

density of epitope mutations in the N protein, especially at sites of the N protein that overlap with 

ORF9c (Fig. S8), a membrane-anchored protein of SARS-CoV-2 that can hinder interferon 

signaling, viral protein degradation and other stress response pathways when expressed in human 

lung epithelial cell lines (43). Finally, having established these general evolutionary patterns of 

mutation and selection on epitopes, we attempted to pinpoint specific epitope mutations that could 

hinder the immune response. For each epitope site, we extracted both the measured patient immune 

responses and the prevalence of nonsynonymous (missense) mutations from the NCBI dataset 

(Table S11). Among the most prevalent mutations identified are two mutations occurring at 
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consecutive sites in the N protein (N:R203K and N:G204R) that overlap with ORF9c (encoded 

within the N gene). Taken together our observations show that high resolution epitope mapping 

combined with genome sequence analysis provides a powerful strategy to rapidly assess the 

immune evasion potential of emerging SARS-CoV-2 variants. 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.01.494373doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494373
http://creativecommons.org/licenses/by-nc/4.0/


 15 

DISCUSSION  

An in-depth map of the breadth of the antigenic determinants of the immune response 

following infection with SARS-CoV-2 is key for a better understanding of the diagnostic markers, 

the identification of the correlates of protection and the monitoring of vaccine efficacy. We 

therefore set out to define the antigenic hotspots and epitope signatures of SARS-CoV-2-specific 

humoral immune responses in patients with COVID-19 and uninfected healthy controls using 

high-density peptide microarrays (HDPA) covering the entire proteomes of SARS-CoV-2 as well 

as of the four seasonal hCoVs (OC43, NL63, HKU1 and 229E). Our results demonstrate that the 

HDPA approach provides a sensitive, high-throughput antibody profiling strategy to identify linear 

and conformational B cell epitopes. Using structural models, we found that many of the epitope 

sites identified in the S protein are located in the NTD and RBD region of the S protein. 

Interestingly, most epitope sites identified in the NTD and RBD are poorly conserved across 

coronaviruses, while epitope elsewhere in the S protein were more highly conserved. In addition, 

HDPA analysis revealed strong and specific antibody immunoreactivity in select epitope sites of 

structural SARS-CoV-2 proteins (E, M, N proteins), as well as ORF1AB. 

Antibody cross-reactivity with similar viral antigens affects the accuracy of serological 

tests, but also has the potential to elicit beneficial immunological memory responses that could 

affect the course of SARS-CoV-2 infections. Our results highlight a significant cross-reactivity 

between SARS-CoV-2 and hCoV B cell epitope sites in many viral proteins, demonstrating that 

HDPA allows to uncover a novel dimension of cross-reactive immunity relative to PhIP-Seq. The 

fact that more differential epitope sites in the S and N proteins were detected by a recent study 

using PhIP-Seq (21) probably reflects the lower sample size of our dataset. However, HDPA 

detected more cross-reactive epitope sites than PhIP-Seq with fewer patient samples analyzed, 

reflecting one of the benefits of our applied methodology. Sensitivity limitations of PhIP-seq to 

broadly detected polio epitopes have been previously reported (20, 22) and might contribute to the 

observed differences, similarly affecting detectability of CoV antigens. Such limitations are not 

observed in our HDPA approach (44) which typically yielded strong polio responsiveness in over 

90% of sampled individuals (45). 

Importantly, the cross-reactivity in identified B cell epitope sites positively relates to 

previous infections with seasonal common cold hCoVs. This suggests that immune memory 

conferred by previous seasonal hCoV infections positively influences SARS-CoV-2-specific 
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antibody responses and may explain the large portion of SARS-CoV-2-infected individuals with 

mild and asymptomatic disease symptoms (4). Notably, there was little to no correlation between 

cross-reactivity and immune response in COVID-19 negative patients, suggesting that resistance 

to infection is not easily explained by cross reactivity. However, this molecular cross-reactivity 

can pose important complications in serological tests, particularly when studying asymptomatic 

patients. Cross-reactivity in immunodominant epitopes can be molecular determinants of strong 

immunity in individuals and therefore may serve as the basis for future pan-coronavirus vaccine 

design strategies. In turn, mutations in these cross-reactive epitopes can potentially breach pre-

existing immune protection conferred by previous viral exposures, contributing to viral evolution, 

immune selection and immune evasion. 

By combining our epitope dataset with publicly available SARS-CoV-2 genome 

sequences, we were able to study mutations that occur in epitopes and compare their rates of 

evolution and selective pressures to non-epitope sites. Ideally, we would have matched epitopes 

and viral mutations arising from the same patients to more directly infer selection for immune 

evasion. Although such matched data is currently rare, we were still able to make inferences about 

evolution within epitopes on a population-wide scale. First, we found that mutations in SARS-

CoV-2 epitopes are under evolutionary constraints. SARS-CoV-2-specific epitopes that are cross-

reactive with other endemic seasonal hCoVs tend to accumulate fewer substitutions and are under 

purifying selection against nonsynonymous changes. Second, epitopes in structural proteins S, M, 

and N accumulate more substitutions and are under stronger positive selection for nonsynonymous 

changes than non-epitopes. Natural selection favouring changes in epitope sites was therefore 

detectable during the first two pandemic waves. As population immunity accumulates over time, 

we would expect increasing selection for immune evasion. Consistent with this expectation, we 

observed that mutations in epitopes increased in frequency from the first to the second pandemic 

wave, and we expect this trend to continue.  

Notably, we found much slower rates of evolution and weaker evidence for positive 

selection on epitopes within patients, indicating that most selection for immune evasion occurs 

upon transmission rather than within patients. This is consistent with asynchrony between peak 

viral loads (when selection is most efficient) and the adaptive immune response, as is the case for 

influenza (36, 46). Notable exceptions are chronic infections, in which significant adaptive 

evolution occurs within patients, likely including antibody evasion (47, 48). However, such 
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infections likely represent a small minority of the sequences included in our dataset. While they 

may be important – particularly if a chronic infection is transmitted – they do not represent the 

vast majority of COVID-19 cases. Another non-exclusive explanation for the higher between-host 

mutation rate in epitope sites is the small transmission bottleneck (49, 50).  

Consistent with a general trend of immune evasion, we observed that VOCs and VUIs 

contain significantly more signature mutations in epitopes than non-VOCs and non-VUIs 

demonstrating that evasion of the humoral immune response is a significant driver of VOC/VUI 

evolution. The most mutations in epitopes were found in the VOCs Delta, C.36.3, and especially 

Omicron (B.1.1.529). Most of these epitope mutations in VOCs are localized to the S protein, 

highlighting that polymorphism in the S protein critically impacts antigenicity in highly 

transmissible variants.  

Much research rightly focuses on the S protein, but we also find mutation in the N protein 

epitopes that could be selected for immune evasion. The N protein had the highest dN/dS values 

during both pandemic waves analyzed, suggesting the presence of a subset of epitope substitutions 

under positive selection. After normalizing by gene length, we found the highest density of epitope 

mutations in the N protein, especially in regions of overlap with ORF9c. Orf9c is one of the four 

conserved overlapping genes (OLGs) of SARS-CoV-2 (51), wherein a single stretch of nucleotides 

encodes two distinct proteins in different reading frames. OLGs are ‘genes within genes’ that 

compress genomic information, thereby allowing genetic innovation via overprinting (52, 53). 

However, a single mutation in an OLG may alter two proteins at the same time, constraining 

evolution of the pre-existing open reading frame (ORF). Although, OLGs are known entities that 

contribute to the emergence and pathogenicity of new viruses (54), unfortunately, genome 

annotation methods typically miss OLGs, instead favoring one ORF per genomic region (54). 

Similarly, they remain inconsistently reported in viruses of the SARS coronavirus species (55). 

Importantly, annotations of ORF9b and ORF9c are conflicting or absent in the SARS-CoV-2 

reference genome Wuhan-Hu-1 (NCBI: NC_045512.2) and genomic studies (56, 57). In addition, 

OLGs are often not displayed in genome browsers (58) and therefore such inconsistencies 

complicate research to decipher their role in infection and immunity.  

The small protein encoded by the ORF9c OLG has recently been shown to constitute a 

membrane-associated protein to suppresses antiviral interferon and antigen-presentation responses 

and modify innate immune responses (43, 59, 60). Here, we found that N protein epitopes in the 
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region overlap with ORF9c constitute an antigenic target of the humoral immune response and 

accumulate a high density of mutations in VOCs. It remains to be investigated if and to what extent 

ORF9c-specific immune responses contribute to host protection and if mutations could also affect 

these responses. Other OLG-derived proteins, including Orf3d, ORF8 and Orf9b, have been shown 

to elicit strong antibody responses in sera from COVID-19 patients (61-63), although their 

contribution to host protection remains unknown. Concerns have arisen that S-specific vaccine 

immunity conferred solely to S protein may fail to neutralize emerging variants of SARS-CoV-2 

and contribute to selection of immune escape variants (64-66). Vaccination studies in rodent 

models using N protein as antigenic target have recently shown the establishment of protective 

immunity (67). Hence, expansion of viral antigenic targets in SARS-CoV-2 vaccines, including 

OLG proteins, to broaden epitope coverage and immune effector mechanisms should be a goal in 

the development of new COVID-19 vaccines. 
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FIGURE LEGENDS 

 

Fig. 1. High-density peptide arrays (HDPA) provide high-resolution antibody epitope maps 

across the SARS-CoV-2 proteome. (A) Overview of analytical pipeline. The proteome of SARS-

CoV-2 was translated into 15-mer overlapping peptides with a peptide-to-peptide overlap of 13 

amino acids. The resulting individual peptides were printed in duplicates on the microarray. Sera 

from confirmed SARS-CoV-2-positive and -negative individuals were incubated on 

PEPperCHIP® the HDPA. Serum antibody binding was visualized using respective fluorescently 

labeled secondary antibodies (anti-human IgG and anti-human IgA). Image acquisition and data 

quantification resulted in epitope-specific antibody profiles for SARS-CoV-2. (B) Average 

relative fluorescent units (RFU) profiles and peptide coverages are plotted across the SARS-CoV-

2 proteome (ORF1A, ORF1B, Spike (S) protein, Envelope (E) protein, Membrane (M) 

glycoprotein, Nucleocapsid (N) phosphoprotein). Antibody responses to each linear 15-mer 

peptide were mapped across the SARS-CoV-2 proteome and average RFU calculated for each 

amino acid residue. The normalized positional ‘epitope coverage’ at each protein residue location 

is defined as the ratio of total peptides mapped to each position by the total expected peptides (see 

Methods section). ‘Hotspots’ can be seen as spiked in the RFU or coverage distributions. (C) 

Comparison of mean RFU (log-scale) between SARS-CoV-2-positive and -negative sample 

groups for each viral protein. (ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p 

<= 0.0001). 

 

Fig. 2. Structural features of identified epitopes and comparison with computationally 

predicted epitopes. (A) Venn diagrams comparing epitope sites identified by HDPA with 

computational approaches including Bepipred and Discotope. Overlap test for significance 

between epitope sites from HDPA and computational prediction methods; p-value (< 0.10) shown 

in grey. (B) Three-dimensional structural model of the full-length spike protein trimer in an open 

conformation with domains labelled; receptor binding domain (RBD); N-terminal domain (NTD). 

(C) Three-dimensional model of RBD and NTD highlighting epitope sites (green) identified by 

HDPA analysis on the surface of the RBD and NTD domains. 
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Figure 3. Identified differential epitope sites in structural proteins of SARS-CoV-2. Relative 

Fluorescence Unit (RFU) values of HDPA analysis were used to calculate ratio values to define 

differential epitope sites and are color coded on the distinct SARS-CoV-2 proteins. Residues that 

are not part of epitopes are marked in grey. (A) RFU values of differential epitope sites identified 

in SARS-CoV-2 Spike protein. N-terminal domain (NTD) and receptor-binding domain (RBD) 

are highlighted. (B) Conservation scores of physico-chemical properties of the SARS-CoV-2 

Spike protein. (C) RFU values of differential epitope sites identified in SARS-CoV-2 Envelope 

protein. (D) RFU values of differential epitope sites identified in SARS-CoV-2 Membrane protein. 

(E) RFU values of differential epitope sites identified in SARS-CoV-2 Nucleocapsid protein. 

 

Fig. 4. Cross-reactivity to endemic seasonal human coronaviruses is a significant driver of 

antibody responses to SARS-CoV-2 epitopes. (A) Schematic multiple sequence alignment of 

proteome sequences between hCoVs and SARS-CoV-2. We defined cross-reactive epitope sites 

based on peptide sequence conservation between human coronavirus strains (SARS-CoV-2, 

HKU1, OC43 and NL63) and the presence of an antibody response to the corresponding peptide 

in SARS-CoV-2 and at least one of the endemic human coronaviruses (229E, HKU1, OC43 and 

NL63). (B) Mapping of hCoVs epitope-defining peptides within the Spike (S) protein. The colors 

represent the 15-mer peptides to which an antibody response to the human coronavirus strains 

(SARS-CoV-2, 229E, HKU1, OC43 and NL63) has been detected. Conservation score (Cscore) 

was calculated based on this alignment.  (C) Numbers of differential cross-reactive epitope sites 

across distinct viral proteins (ORF1A, ORF1B, Spike (S) protein, Envelope (E) protein, Membrane 

(M) glycoprotein, Nucleocapsid (N) phosphoprotein) detected in the current study using HDPA 

(blue) compared with a recently published PhiP-Seq study (red, n = 432; (21). (D) The average 

immune response to SARS-CoV-2 positively correlates with the number of cross-reactive 

epitopes. A linear regression between the average epitope Z-score per patient and the number of 

cross-reactive epitopes for both SARS-CoV-2-positive (blue; adjusted R
2
= 0.033; slope = 0.059; 

p = 0.003) and both SARS-CoV-2 negative (red; not significant; P > 0.5) patients was performed. 

 

Fig. 5. Evolutionary profiles of SARS-CoV-2 epitopes during the first pandemic wave. 

Mutations (within hosts) and substitutions (between hosts) in epitope sites (orange) vs non-epitope 

sites (grey) during the first pandemic SARS-CoV-2 wave (defined as January 1 to July 31, 2020) 
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is depicted. For each metric, significantly lower values in epitope sites of a certain gene are 

represented by a blue arrow pointing down while significantly higher values in epitope sites of a 

certain gene are represented by a red arrow pointing up (FDR-adjusted Wilcoxon test p<0.05). (A) 

Distributions of sample mutation rates across proteins. (B) Distributions of sample substitution 

rates across proteins. (C) Distributions of pN/pS across proteins. (D) Distributions of dN/dS across 

proteins. Mutation and substitution rates are normalized by gene length and plotted on a log10 

scale.  

 

Fig. 6. Assessing the immune evasion potential of SARS-CoV-2 variants. (A) Venn diagram 

showing the numbers of non-synonymous epitope mutations specific to SARS-CoV-2 pandemic 

wave 1 (blue; defined as January 1 to July 31, 2020), specific to wave 2 (red; defined as August 1 

to December 31 2020), and shared between both waves (green). (B) Distribution of the relative 

abundance of non-synonymous mutations in epitopes across pandemic waves. For better 

visualization, we plotted the Y-axis on a log10 scale and represented the distributions with a jitter 

plot, a violin plot and a boxplot. The Wilcoxon test p-values are indicated above each pair of 

distributions. The Kruskal-Wallis test p-values are indicated at the top left to indicate the 

significance of the differences across all distributions. (C) Distribution of the numbers of signature 

mutations located at epitope sites across SARS-CoV-2 groups (grey for non-VOCs and non-VUIs, 

orange for VOCs and VUIs). The Wilcoxon test p-value is indicated at the top of the panel to show 

the significance of the differences between the two groups. (D) Distribution of the numbers of 

nonsynonymous signature mutations in epitopes of selected VOCs and VUIs. For each VOC or 

VUI we indicate the number of signature mutations in epitopes identified with HDPA across all 

analyzed ORFs: envelope (E) protein (orange), membrane (M) glycoprotein (grey), N sites 

overlapping ORF9c (black), ORF1b (blue), nucleocapsid (N) phosphoprotein (purple), ORF1A 

(red), spike (S) protein (green). 

 
Table 1. Numbers of SARS-CoV-2-specific epitope-defining peptides identified by HDPA. 

Numbers of SARS-CoV-2-specific epitope-defining peptides identified with high density peptide 

arrays (HDPA) in spike (S) protein, envelope (E) protein, membrane (M) glycoprotein, 

nucleocapsid (N) phosphoprotein, and ORF1ab. Numbers of unique peptides that showed a 
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significant antibody response (RFU ³ 1000) in SARS-CoV-2-negative and SARS-CoV-2-positive 

groups are depicted. Some peptides are present in both groups, referred to as overlap. 

 
Table 2. Numbers of seasonal endemic hCoV-specific epitope-defining peptides identified by 

HDPA. Numbers of seasonal endemic hCoV-specific (229E, HKU1, OC43 and NL63) epitope-

defining peptides identified with high density peptide arrays (HDPA) in spike (S) protein, envelope 

(E) protein, membrane (M) glycoprotein, nucleocapsid (N) phosphoprotein, and ORF1ab. 

Numbers of unique peptides that showed a significant antibody response (RFU ³ 1000) in SARS-

CoV-2-negative and SARS-CoV-2-positive groups are depicted. Some peptides are present in both 

groups, referred to as overlap. 
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MATERIALS AND METHODS 

 

Serum Samples and Study Population 

Recruitment of patients at the San Martino University Hospital (Genoa, Italy) was 

approved by the Institutional Review Board at Genoa University, approved by the Ethics 

Committee of Liguria Region (Comitato Etico Regione Liguria; N. CER Liguria 114/2020–ID 

10420) and carried out in accordance with the principles of the Declaration of Helsinki. Positivity 

of SARS-CoV-2 infection was assessed both by PCR and measurement of specific antibodies 

(Cobas-Roche using Elecsys Anti-SARS-CoV-2 S). All patients gave their consent for 

participation in this study. Negative and asymptomatic individuals were health workers who were 

tested regularly in the hospital and classified according to serological and molecular tests for 

COVID-19 (Table S1).  Recovered individuals (convalescent post-infection) were all patients 

previously admitted at the hospital due to lung pneumonia and were found to be positive to 

COVID-19, having severe (n = 2) and mild (n = 3) disease.  Sera were collected according to 

standard procedures, by centrifugation. 

 

High-density peptide array (HDPA)  

To analyze the antibody responses to SARS-CoV-2 at the epitope level we used a recently 

developed high-density peptide array (HDPA), the PEPperCHIP® Microarray (PEPperPRINT 

GmbH, Germany), covering the proteome of the SARS-CoV-2 isolate Wuhan-Hu-1 as well as the 

four seasonal hCoVs OC43, HKU1, NL63 and 229E (see Table S12 for accession numbers used). 

The protein sequences of ORF1A/B, Spike (S) protein, Envelope (E) protein, Membrane (M) 

glycoprotein, Nucleocapsid (N) phosphoprotein were translated into 15 amino acid peptides with 

a peptide overlap of 13 amino acids. This results in 27,540 individual peptides, which were printed 

in duplicates (55,080 spots). In addition, to ensure sensitivity controls of the PEPperCHIP® 

HDPA, positive controls were included to probe for antibody reactivity for influenza 

hemagglutinin (HA; YPYDVPDYAG, 360 spots) and polio virus (KEVPALTAVETGAT, 355 

spots). These additional HA and polio peptides framing the microarrays were simultaneously 

stained as internal quality control to confirm assay performance and peptide microarray integrity. 

With this setup per chip, 15 samples (see Table S1) were analyzed. 
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At first, the peptide microarrays were incubated for 15 minutes in phosphate buffered saline 

supplemented with 0.05% Tween 20 (PBS-T, pH 7.4) and blocked for 30 minutes with Rockland 

Blocking Buffer (RL) (Rockland Immunochemicals) at room temperature. Prior to immunoassay, 

sera of patients were first heat-inactivated at 56°C for 30 minutes, and then the microarrays were 

incubated at serum dilutions of 1:500, 1:100 and 1:20 in 10% RL/PBS-T overnight at 4°C with 

orbital shaking. Microarrays were then washed (three times with PBS-T for 1 minute) and peptide 

binding was detected with isotype-specific secondary goat anti-human IgG (Fc) DyLight680 

(ThermoFisher Scientific) and goat anti-human IgA (alpha chain) DyLight800 (Rockland 

Immunochemicals) antibodies at a final concentration of 0.1 μg/ml and 1 μg/ml, respectively (in 

10% RL/PBS-T for 45 minutes at room temperature). Subsequent washing (three times with PBS-

T for 1 minute) was followed by dipping the microarrays in 1mM TRIS pH 7.4 followed by drying 

with pressurized air. Acquisition of images was done using a LI-COR Odyssey CLx Infrared 

Imaging System (scanning offset 0.65 mm, resolution 21 μm). Data quantification and analysis 

was based on the assays at dilution 1:20. Using ImageJ software the resulting 32-bit gray-scale 

TIFF files were converted into 16-bit gray-scale TIFF files and then further analyzed using the 

PepSlide® Analyzer (SICASYS Software GmbH). The in house developed PEPperPRINT 

software algorithm was used to calculate median foreground intensities (background-corrected 

intensities) of each spot and spot-to-spot deviations of spot duplicates. A maximum spot-to-spot 

deviation of 40% was tolerated, otherwise, the corresponding intensity values were zeroed. To 

complement this analysis, acquired microarray scans were reassessed with respect to artifacts by 

visual inspection, and erroneous values were corrected manually. Based on averaged median 

foreground intensities, intensity maps were generated and interactions in the peptide maps 

highlighted by an intensity color code with red (IgG) or green (IgA) for high and white for low 

spot intensities. To identify the top IgG and IgA antibody responses of the human serum samples, 

the averaged intensity values were sorted by decreasing spot intensities. We further plotted 

averaged spot intensities of the assay against the peptide microarray content from the N-terminus 

of Spike (SARS-CoV-2) to the C-terminus of ORF1AB (HUK1) to visualize overall spot 

intensities and signal-to-noise ratios. The intensity plot was correlated with the peptide and 

intensity map as well as with visual inspection of the microarray scans to identify the main 

antibody responses of the human sera. In general, relative fluorescent units (RFU) of equal to or 
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higher than 100 was considered a positive antibody response. However, as mentioned in the results 

sections, several sets of analysis were performed with and RFU cut-off of 1000 or higher. 

 

Defining cross-reactivity using protein conservation and immune response to endemic 

human coronaviruses 

To find epitope sites associated with cross-reactivity, we first calculated the conservation 

of peptide sequences across endemic hCoVs (HKU1, NL63, OC43 or 229E). To do so, we aligned 

the reference sequences of the hCoVs (proteome) in Jalview and extracted the conservation score 

(CScore) (68). This conservation score reflects the conservation of physico-chemical properties in 

the alignment, where identical residues score the highest (32). Epitope sites with a conservation 

score ³ 6 and for which we detected antibody responses for both SARS-CoV-2 and at least one of 

the endemic hCoVs were considered as cross-reactive epitope sites.  

 

Detecting epitopes that are significantly more prevalent in SARS-CoV-2 positive patients 

First, antibody responses to each linear 15-mer peptide were mapped across the SARS-

CoV-2 proteome and average RFU calculated for each amino acid residue. 

Second, the normalized positional ‘epitope coverage’ at each amino acid residue within the 

proteins was defined as the ratio of total peptides mapped to each position by the total expected 

peptides, with values ranging between 0 to 1. A value of 1 in the SARS-CoV-2-positive group 

means that amino acid residues within the proteins were covered by peptides that showed immune 

response in all 10 SARS-CoV-2-positive patients and 14 peptides that overlap that position. (14 x 

10 = 140 is the theoretical expected positional coverage to be 100%). Similarly, a value of 1 in 

SARS-CoV-2-negative group is 70 peptides with response (14 peptides x 5 SARS-CoV-2-negative 

patients = 70. i.e all 70 unique peptides that cover residue locations). 

Third, to identify the epitopes that are particularly prevalent in SARS-CoV-2-positive 

subjects, we performed an indicator value analysis (33). This type of analysis is frequently used in 

ecology to determine whether species have significant associations with certain site groups. We 

applied this method to epitopes presence/absence data by replacing species with epitopes and site 

groups with patient groups defined by SARS-CoV-2 PCR status (positive or negative). The 

indicator value analysis measures the IndVal metric, which is the product of the specificity (e.g. 

the proportion of individuals within the whole dataset that exhibit a response to the epitope and 
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belongs to a certain patient group) and the fidelity (e.g. the proportion of individuals within a 

certain patient group that exhibits a response) to the epitope. To control for the differences in 

sample size between patient groups, we used the group-equalized version of IndVal, IndValpag 

(33). The R function multipatt from the R package indicspecies allowed us to perform this analysis 

and evaluate the significance of the associations through permutation tests (33).  

 

Structural properties of B cell epitopes and B cell epitope prediction 

SARS-CoV-2 protein sequences were obtained from Uniprot (69). Structure models of all 

24 proteins in SARS-CoV-2 were obtained from I-TASSER (70). Solvent accessibility was 

calculated using freeSASA (71). Pymol was used for visualization. Using  3D structures and 

biophysical properties of the SARS-CoV-2 proteome, we applied the DiscoTope algorithm (26) to 

computationally predict conformational B cell epitopes with a significance threshold of -7.7 (75% 

specificity, 45% sensitivity). In addition, we used the Bepipred algorithm (27) to obtain linear B 

cell epitopes. Epitopes with minimum length of 7 amino acid residues and minimum score of 0.55 

(80% specificity, 30% sensitivity) were used for the analysis.  

 

Epitope evolution profiling 

To understand the evolution of SARS-CoV-2 epitopes in SARS-CoV2-positive patients, we made 

use of single nucleotide variants (SNVs) from 38,685 whole genome sequences from the NCBI 

sequence read archive (Table S9, see 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/4ZXDW0). We 

selected SARS-CoV-2 samples from the first pandemic wave (defined as January 1 to July 31, 

2020) and the second wave (defined as August 1 to December 31 2020) sequenced using Illumina 

paired-end amplicons with a minimum average depth of coverage of 200 x and fewer than 10,000 

sites with a depth of coverage lower than 100x. We then retained single nucleotide variants present 

in both minus and plus strands at a minimum frequency of 2%, occurring at sites with a minimum 

depth of 100x, having a minimum within-sample frequency of 5% and located between sites 101 

and 29778 of the genome to exclude sites at the extremities that are prone to sequencing errors and 

have been frequently masked (72). These additional filters allowed us to remove sequencing errors 

and provided deep coverage to identify SNVs that are polymorphic within patients, reflecting 
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within-patient evolution (34, 35), as well as those that are shared between the consensus sequences 

of different patients.  

Next, to compare epitope evolution from the evolution of non-epitope sites of the same 

protein, we measured the evolution rates at within-host (SNVs with a frequency <75% that are not 

transmitted for sure) and between-host/transmission level (SNVs with a frequency ³75% that are 

observed in at least three samples). Because the number of SNVs observed will vary depending on 

sample coverage, which varies across samples, we estimated the evolution rates in each sample 

separately using the number of SNVs observed per site with adequate coverage. Such sites are 

defined as having a detection power of at least 80%, which is the probability of detecting five reads 

supporting the presence of a SNVs with a frequency of at least 5% in a site of coverage C, i.e. the 

minimum adequate coverage, under a binomial distribution. This approach has been used 

previously for similar purposes with the Lassa virus (73). 

We also inferred selection in the proteins of interest (ORF1A/B, Spike (S) protein, 

Envelope (E) protein, Membrane (M) glycoprotein, Nucleocapsid (N) phosphoprotein) using 

dN/dS, the ratio of non-synonymous (dN) and synonymous substitutions rates (dS), which we 

calculated from the called SNVs in each sample (74).  

dN/dS = (Nbnsub/Nbnss) / (Nbssub/Nbss) Eq. 1 

where Nbnsub is the number of non-synonymous substitutions, Nbnss is the number of non-

synonymous sites, Nbssub is the number of synonymous substitutions, and Nbss is the number of 

synonymous sites. dN/dS can detect purifying selection (dN/dS<1), neutral evolution (dN/dS ≈ 1) 

and positive selection (dN/dS > 1). In each sample, we calculated dN/dS only if there were more 

than three SNVs including at least one synonymous SNV.  

Finally, we inferred selection at the within-host level, using pN/pS, which we calculated 

from intrahost SNVs (iSNVs), i.e. SNVs that are not fixed (within-sample frequency <75%):   

pN/pS = (Nbnmut/Nbnss) / (Nbsmut/Nbss) Eq. 2 

where Nbnmut is the number of non-synonymous iSNVs, Nbnss is the number of non-synonymous 

sites, Nbsmut is the number of synonymous iSNVs, and Nbss is the number of synonymous sites. 

These analyses have been implemented in R (https://github.com/arnaud00013/SARS-CoV-2-

HPDA-evolutionary-analysis).  

 

Selection for immune escape in VOCs and VUIs genomes 
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To reveal VOCs and VUIs mutations possibly involved in selection for immune escape, 

we first defined the signature mutations of each variant (Table S10) as substitutions that are present 

in >=90% of sequences assigned to that lineage. We calculated the prevalence of substitutions in 

thousands of publicly available consensus sequences collected during 2020 and added data from 

CoV-Spectrum about under-represented lineage in the database or lineages that emerged during 

2021 (40). Then, we only focused on nonsynonymous signature mutations in our database and 

asked if these signature mutations are located at epitope sites as these mutations can change the 

antibodies’ ability to recognize the epitopes. The signature mutation prevalence data were 

collected from our database of NCBI samples for the earlier lineages (PANGO v.2.1.7) and from 

GISAID data obtained from cov-spectrum for more recent lineages like Omicron. The database of 

lineage signature mutations is available on Github (https://github.com/arnaud00013/SARS-CoV-

2-HPDA-evolutionary-analysis).  
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SUPPLEMENTARY INFORMATION 
 
Figure S1. Numbers of SARS-CoV-2-specific epitope-defining peptides identified by HDPA. 

Numbers of SARS-CoV-2-specific epitopes identified with high density peptide arrays (HDPA) 

in proteins spike (S) protein, envelope (E) protein, membrane (M) glycoprotein, nucleocapsid (N) 

phosphoprotein, and ORF1AB. Numbers of unique peptides that showed a significant antibody 

response (RFU ³ 1000) in SARS-CoV-2-negative (blue) and SARS-CoV-2-positive (red) groups 

are depicted. Some peptides are present in both groups, shown as overlap. 

 

Figure S2. Relationship between structural properties of epitope sites residues. 

(A) Comparison of solvent accessibility (SASA) between residues in differential epitope sites and 

rest of the protein. The group “Epitope_AA” includes all residues that are part of differential 

epitopes and was compared with rest of the amino acids in the protein (“Others”). Student t-test 

was performed (ns = not significant, * = <0.05). (B) Correlation plot between RFU, SASA and, 

conservation score (Cscore) in differential epitope sites. Top triangle above the diagonal shows p-

value between correlations (*** = > 0.001, **= > 0.01, * = > 0.05). Bottom triangle shows the 

correlation coefficients. (C) Correlation between conservation score and average solvent 

accessibility in differential epitope sites.  

 

Figure S3. Identified differential epitope sites in ORF1A of SARS-CoV-2. Relative 

Fluorescence Unit (RFU) values of HDPA analysis were used to calculate ratio values to define 

differential epitope sites and are color coded. Residues that are not part of epitopes are marked in 

grey.  

 

Figure S4. Identified differential epitope sites in ORF1B of SARS-CoV-2. Relative 

Fluorescence Unit (RFU) values of HDPA analysis were used to calculate ratio values to define 

differential epitope sites and are color coded. Residues that are not part of epitopes are marked in 

grey.  

 

Figure S5. Sensitivity analysis of the number of cross-reactive epitope sites that define a 

cross-reactive epitope. (A) Numbers of cross-reactive epitopes per patient in relation to the 

number of cross-reactive epitope sites in HDPA (blue) and recently published PhiP-Seq study (red; 
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(21)). (B) Slope of the correlation between the average antibody response and the number of cross-

reactive epitopes in relation to the minimum number of cross-reactive epitope sites in HDPA (blue) 

and recently published PhiP-Seq study (red; (21)). Using HDPA, the antibody responses were 

measured as relative fluorescent units (RFU), while it was measured as the Z-score in a recently 

published PhiP-Seq study (21). Data have been normalized before performing the linear 

regressions to respect the assumption of normally distributed residues. 

 

Figure S6. Evolution profile of cross-reactive epitope sites compared to the global epitope 

pool. (A) Distribution of the within-host mutation rates of cross-reactive epitope sites (orange) vs 

non-cross-reactive epitope sites (grey) across samples is shown. (B) Distribution of the substitution 

rate of cross-reactive epitope sites (orange) vs non-cross-reactive epitope sites (grey) across 

samples is shown. (C) Distribution of pN/pS of cross-reactive epitope sites (orange) vs non-cross-

reactive epitope sites (grey) across samples is shown. (D) Distribution of dN/dS of cross-reactive 

epitope sites (orange) vs non-cross-reactive epitope sites (grey) across samples is shown.  

 

Figure S7. Evolutionary profile of SARS-CoV-2 epitopes during the second pandemic wave. 

The extent to which natural selection for immune evasion acts on SARS-CoV-2 during infection, 

or upon transmission is investigated. The distribution of evolutionary parameters in epitope sites 

(orange) vs non-epitope sites (grey) during the second pandemic SARS-CoV-2 wave (defined as 

August 1 to December 31 2020) is depicted. For each metric, significantly lower values in epitope 

sites of a certain gene are represented by a blue arrow pointing down while significantly higher 

values in epitope sites of a certain gene are represented by a red arrow pointing up (FDR-adjusted 

Wilcoxon test p<0.05). (A) Distributions of sample mutation rates (log10(Count/gene length + 1e-

6)) across targeted proteins during were analyzed. (B) Distributions of sample substitution rate 

(log10(Count/gene length + 1e-6)) across targeted proteins were investigated. (C) Analysis of 

distributions of sample pN/pS across targeted proteins. (D) Distributions of sample dN/dS across 

targeted proteins were examined.  

 

Fig. S8. Density of nonsynonymous signature mutations of SARS-CoV-2 variants located at 

epitope sites. Density of nonsynonymous signature mutations in epitopes of selected VOCs and 

VUIs normalized by gene length. For each VOC/VUI we indicate the density of signature 
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mutations in epitopes identified with HDPA across all analyzed ORFs: envelope (E) protein 

(orange), membrane (M) glycoprotein (grey), N sites overlapping ORF9c (black), ORF1b (blue), 

nucleocapsid (N) phosphoprotein (purple), ORF1A (red), spike (S) protein (green). 

 

Table S1. Serum Samples and Study Population. 

Positivity of SARS-CoV-2 infection was assessed both by PCR. 

 

Table S2. SARS-CoV-2-specific epitope information. 

Detailed information of SARS-CoV-2-specific epitopes identified with high density peptide arrays 

(HDPA) in structural proteins; spike (S) protein, envelope (E) protein, membrane (M) 

glycoprotein, nucleocapsid (N) phosphoprotein, and ORF1AB. Peptides that showed a significant 

antibody response (RFU ³ 1000) in SARS-CoV-2-negative and SARS-CoV-2-positive groups are 

depicted. Some peptides are present in both groups, referred to as overlapping. Start and end of 

alignment amino acid (AA) positions of peptides with respect to their full-length protein was 

obtained by aligning the peptides to the protein sequence. 

 

Table S3. OC43-specific epitope information. 

Detailed information of OC43-specific epitopes identified with high density peptide arrays 

(HDPA) in structural proteins; spike (S) protein, envelope (E) protein, membrane (M) 

glycoprotein, nucleocapsid (N) phosphoprotein, and ORF1ab. Peptides that showed a significant 

antibody response (RFU ³ 1000) in SARS-CoV-2-negative and SARS-CoV-2-positive groups are 

depicted. Some peptides are present in both groups, referred to as overlapping. Start and end of 

alignment amino acid (AA) positions of peptides with respect to their full-length protein was 

obtained by aligning the peptides to the protein sequence. 

 

Table S4. HKU1-specific epitope information. 

Detailed information of HKU1-specific epitopes identified with high density peptide arrays 

(HDPA) in structural proteins; spike (S) protein, envelope (E) protein, membrane (M) 

glycoprotein, nucleocapsid (N) phosphoprotein, and ORF1ab. Peptides that showed a significant 

antibody response (RFU ³ 1000) in SARS-CoV-2-negative and SARS-CoV-2-positive groups are 

depicted. Some peptides are present in both groups, referred to as overlapping. Start and end of 
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alignment amino acid (AA) positions of peptides with respect to their full-length protein was 

obtained by aligning the peptides to the protein sequence. 

 

Table S5. NL63-specific epitope information. 

Detailed information of NL63-specific epitopes identified with high density peptide arrays 

(HDPA) in structural proteins; spike (S) protein, envelope (E) protein, membrane (M) 

glycoprotein, nucleocapsid (N) phosphoprotein, and ORF1ab. Peptides that showed a significant 

antibody response (RFU ³ 1000) in SARS-CoV-2-negative and SARS-CoV-2-positive groups are 

depicted. Some peptides are present in both groups, referred to as overlapping. Start and end of 

alignment amino acid (AA) positions of peptides with respect to their full-length protein was 

obtained by aligning the peptides to the protein sequence. 

 

Table S6. 229E-specific epitope information. 

Detailed information of 229E-specific epitopes identified with high density peptide arrays (HDPA) 

in structural proteins; spike (S) protein, envelope (E) protein, membrane (M) glycoprotein, 

nucleocapsid (N) phosphoprotein, and ORF1ab. Peptides that showed a significant antibody 

response (RFU ³ 1000) in SARS-CoV-2-negative and SARS-CoV-2-positive groups are depicted. 

Some peptides are present in both groups, referred to as overlapping. Start and end of alignment 

amino acid (AA) positions of peptides with respect to their full-length protein was obtained by 

aligning the peptides to the protein sequence. 

 

Table S7. Cross-reactive epitope sites. 

The columns of the table indicate from left to right: the proteins of SARS-CoV-2, the amino acid 

position of the site in the protein, the average RFU of antibody responses detected in SARS-CoV-

2-positive patients for epitopes mapping at the site, the average RFU of antibody responses 

detected in SARS-CoV-2-negative patients for epitopes mapping at the site, the presence of cross-

reactivity, and the number of mutations observed in NCBI samples during 2020 (first and second 

wave). 

 

Table S8. Epitopes that are significantly associated to COVID-19-positive patients.  
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Detailed information on epitopes from a recent PhIP-Seq study (21) dataset that are significant 

indicators or COVID-19-positive patients. The p-value was obtained from the IndVal test and are 

corrected for multiple testing using the Sidak method. 

 

Table S9. Features of the called SNVs. 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/4ZXDW0 

 

Table S10. VOCs and VUIs nonsynonymous signature mutations in epitopes. 

 

Table S11. Features of all the nonsynonymous mutations detected at epitope sites. 

 

Table S12. Coronavirus taxonomy and sequence accession numbers for analyzed proteins. 
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Table 1

SARS-CoV2-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 119 41 1 47 294 502
SARS-CoV-2 positive 195 69 6 29 549 848

Overlap 90 35 6 17 353 501
Total 404 145 13 93 1196 1851
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Table 2

OC43-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 126 37 6 4 293 466
SARS-CoV-2 positive 209 70 10 27 508 824

Overlap 104 35 2 8 280 429
Total 439 142 18 39 1081 1719

HKU1-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 104 43 7 17 293 464
SARS-CoV-2 positive 220 105 7 23 503 858

Overlap 90 35 2 10 254 391
Total 414 183 16 50 1050 1713

NL63-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 139 54 12 17 296 518
SARS-CoV-2 positive 183 77 8 24 571 863

Overlap 70 56 3 14 269 412
Total 392 187 23 55 1136 1793

229E-specific Peptides
Spike Nucleocapsid Envelope Membrane ORF1ab TOTAL

SARS-CoV-2 negative 116 43 3 15 306 483
SARS-CoV-2 positive 158 99 7 38 592 894

Overlap 72 46 2 12 325 457
Total 346 188 12 65 1223 1834
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