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ABSTRACT 47 

There is increasing evidence that anterior pituitary hormones, traditionally thought to 48 

have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, 49 

such as bone, fat, and liver.  There is also emerging evidence for anterior pituitary hormone 50 

action on brain receptors in mediating central neural and peripheral somatic functions.  Here, we 51 

have created the most comprehensive neuroanatomical atlas on the expression of TSHRs, 52 

LHCGRs and FSHRs.  We have used RNAscope, a technology that allows the detection of 53 

mRNA at single-transcript level, together with protein level validation, to document Tshr 54 

expression in 173 and Fshr expression in 353 brain regions, nuclei and sub–nuclei identified 55 

using the Atlas for the Mouse Brain in Stereotaxic Coordinates.  We also identified Lhcgr 56 

transcripts in 401 brain regions, nuclei and sub–nuclei.  Complementarily, we used ViewRNA, 57 

another single-transcript detection technology, to establish the expression of FSHRs in human 58 

brain samples, where transcripts were co–localized in MALAT1–positive neurons.  In addition, 59 

we show high expression for all three receptors in the ventricular region—with yet unknown 60 

functions.  Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle 61 

was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively.  TSHRs 62 

were expressed specifically in tanycytes.  In contrast, Fshrs were localized to NeuN–positive 63 

neurons in the granular layer of the dentate gyrus in murine and human brain—both are 64 

Alzheimer’s disease vulnerable regions.  Our atlas thus provides a vital resource for scientists to 65 

explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors 66 

on somatic function.  New actionable pathways for human disease may be unmasked through 67 

further studies. 68 

  69 
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INTRODUCTION 70 

There is increasing evidence that pituitary hormones traditionally thought of as ‘pure’ 71 

regulators of single physiological processes affect multiple bodily systems, either directly or via 72 

actions on brain receptors (1, 2).  We established, for the first time, a direct action of thyroid–73 

stimulating hormone (TSH) on bone and found that TSH receptor (TSHR) haploinsufficiency 74 

causes profound bone loss in mice (2).  We also found that follicle–stimulating hormone (FSH), 75 

hitherto thought to solely regulate gonadal function, displayed direct effects on the skeleton to 76 

cause bone loss (3), and on fat cells, to cause adipogenesis and body fat accumulation (4).  77 

Likewise, we showed that hormones from the posterior pituitary, namely oxytocin and 78 

vasopressin, displayed direct, but opposing skeletal actions—effects that may relate to the 79 

pathogenesis of bone loss in pregnancy and lactation, and in chronic hyponatremia, respectively 80 

(5-8).  To add to this complexity, and in addition to the poorly recognized ubiquity of pituitary 81 

hormone receptors, the ligands themselves, or their variants, are expressed widely.  We find the 82 

expression of a TSHβ variant (TSHβv) in bone marrow macrophages, while oxytocin is 83 

expressed by both osteoblasts and osteoclasts (9-12).  These studies have together shifted the 84 

paradigm from established unitary functions of pituitary hormones to an evolving array of yet 85 

unrecognized roles of physiologic and pathophysiologic importance. 86 

There is a compelling body of literature to support the expression of oxytocin receptors 87 

in various brain regions, and their function in regulating peripheral actions, such as social 88 

behavior and satiety (5, 13).  However, there is relatively scant information on the expression, 89 

and importantly, the function of the anterior pituitary glycoprotein hormone family of receptors, 90 

namely FSHR, TSHR and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR).  91 

Discrete sites of the rat, mouse and human brain express receptors for these hormones, with 92 

several studies pointing to their relationship to neural functions, such as cognition, learning, 93 

neuronal plasticity, and sensory perception, as well as to neuropsychiatric disorders, including 94 
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affective disorders and neurodegeneration (14-21) (Table 1).  In the light of such discoveries, 95 

the link between the stimulation of these receptors in the brain and the regulation of peripheral 96 

physiological processes needs further investigation. 97 

Here, we use RNAscope—a cutting–edge technology that detects single RNA 98 

transcripts—to create the most comprehensive atlas of glycoprotein hormone receptors in 99 

mouse brain.  This compendium of glycoprotein hormone receptors in concrete brain regions 100 

and sub–regions at a single-transcript level should allow investigators to study both peripheral 101 

and central effects of the activation of individual receptors in health and disease.  Our 102 

identification of brain nuclei with the highest density for each receptor should also create a new 103 

way forward in understanding the functional engagement of receptor–bearing nuclei within a 104 

large–scale functional network. 105 

 106 

RESULTS 107 

Very little is known about the function(s) of anterior pituitary hormone receptors in the 108 

brain, except for isolated studies showing a relationship with cognition and affect (Table 1).  We 109 

therefore used RNAscope to map the expression of Tshr, Lhcgr and Fshr in the mouse brain; 110 

immunofluorescence and qPCR to provide confirmatory evidence for Tshr and Fshr expression; 111 

and ViewRNA and qPCR to examine for FSHR expression in AD–vulnerable regions of the 112 

human brain.  RNAscope, which allows the detection of single transcripts, uses ~20 pairs of 113 

transcript–specific double Z–probes to hybridize 10–µm–thick whole brain sections.  114 

Preamplifiers first hybridize to the ~28–bp binding site formed by each double Z–probe; 115 

amplifiers then bind to the multiple binding sites on each preamplifier; and finally, labeled probes 116 

containing a fluorescent molecule bind to multiple sites of each amplifier.  RNAscope data was 117 

quantified on sections from coded mice.  Each section was viewed and analyzed using 118 

CaseViewer 2.4 (3DHISTECH, Budapest, Hungary) or QuPath v.0.2.3 (University of Edinburgh, 119 
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UK).  The Atlas for the Mouse Brain in Stereotaxic Coordinates (22) was used to identify every 120 

nucleus or sub–nucleus in which we manually counted Tshr, Lhcgr or Fshr transcripts in every 121 

tenth section using a tag feature.  Repeat counting of the same section agreed within <2%.  122 

Receptor density was calculated by dividing transcript count by the total area (µm2, ImageJ) of 123 

each region, nucleus or sub–nucleus.  Photomicrographs were prepared using Photoshop 124 

CS5.1 (Adobe) only to adjust brightness, contrast and sharpness, to remove artifacts (i.e., 125 

obscuring bubbles), and to make composite plates. 126 

Tshrs were detected bilaterally in 173 brain nuclei and sub–nuclei, in the following 127 

descending order of transcript densities: ventricular region, olfactory bulb, forebrain, 128 

hypothalamus, medulla, cerebellum, midbrain and pons, cerebral cortex, hippocampus and 129 

thalamus (Fig. 1A).  Importantly, thyroid glands from Tshr–/– mice did not show a signal, proving 130 

probe specificity (Fig. 1B).  Tshr expression in pooled brain samples was confirmed by qPCR 131 

(Fig. 1C).  The hypothalamus and hippocampus expressed Tshrs, with hypothalamic expression 132 

being considerably higher (P<0.01) in females than in males.  Furthermore, within other regions 133 

of the brain, highest Tshr densities were as follows: ependymal layer of the third ventricle 134 

(slightly higher than the thyroid follicular cells); VTT in the olfactory bulb; HDB in the forebrain; 135 

MTu in the hypothalamus; SoIV in the medulla; PFI in the cerebellum; LDTg in midbrain and 136 

pons; DP in the cerebral cortex; DG in hippocampus; and PPT in the thalamus (Fig. 1D) (see 137 

Appendix for nomenclature).  Raw transcript counts in each region and representative 138 

micrographs are shown in Supplementary Figs. 1 and 2, respectively. 139 

For purposes of replicability, we employed a complementary approach to study brain 140 

Tshr expression—the Tshr–deficient mouse—in which exon 1 of the Tshr gene is replaced by a 141 

Gfp cassette.  This reporter strategy allows for the in vivo display of Tshr locations using GFP 142 

immunoreactivity (GFP–ir) as a surrogate for Tshr expression (2).  Of note is that the Tshr+/– 143 

(haploinsufficient) mouse has one Tshr allele intact with normal thyroid function but expresses 144 
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GFP in lieu of one lost allele.  In contrast, the Tshr+/+ mouse does not express GFP–ir because 145 

both Tshr copies are intact and is therefore our negative control. 146 

Consistent with our RNAscope finding, profound GFP–ir was noted in the ependymal 147 

region of the third ventricle, mostly in NeuN–negative tanycytes, but with some neuronal 148 

localization (Fig. 1E).  The SVZ of the lateral ventricles, and the SI, and dorsal and ventral 149 

BNST of the forebrain also showed GFP-ir, but immunoreactivity was much lower than the 150 

ependymal layer of the third ventricle (Fig. 1F).  In all, while there was overall concordance 151 

between the two methodologies for high Tshr–expressing areas, GFP–ir was not detected in a 152 

number of Tshr–positive regions.  This latter discrepancy most likely reflects the grossly lower 153 

sensitivity of immunohistochemical detection. 154 

There is evidence that high LH levels in post–menopausal women correlate with a higher 155 

incidence of Alzheimer’s disease (AD) (23, 24); that LHβ transgenic mice are cognitively 156 

impaired (25); that LH receptors (LHCGRs) are present in the hippocampus (26, 27); and that 157 

hCG induces cognitive deficits in rodents (28, 29).  Thus, we mapped Lhcgrs in mouse brain to 158 

document expression in 401 brain nuclei and sub–nuclei.  Probe specificity was established by 159 

a positive signal in testicular Leydig cells, and with an absent signal in juxtaposed Sertoli cells 160 

(Fig. 2A).  Notably similar to Tshr transcripts, the ventricular regions displayed the highest 161 

transcript density (Fig. 2B).  Among the brain divisions, the densities were as follows: OV in the 162 

ventricular region; SFO in the forebrain; PFI in the cerebellum; MiA in the olfactory bulb; SCO in 163 

the thalamus; PMD in the hypothalamus; MVPO in the medulla; DT in midbrain and pons; GrDG 164 

in the hippocampus; and SL in the cerebral cortex (Fig. 2C).  Raw transcript counts in each 165 

region and representative micrographs are shown in Supplementary Figs. 3 and 4, respectively. 166 

We recently reported the expression of FSHRs in mouse, rat and human brains, 167 

particularly in AD–vulnerable regions, including hippocampus and cortex (30).  We also found 168 
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that FSH exacerbated AD–like neuropathology and cognitive decline in 3xTg, APP/PS1 and 169 

APP-KI mice, while the inhibition of FSH action rescued this phenotype.  Most notably, shRNA–170 

mediated knockdown of the Fshr in the hippocampus prevented the onset of AD–like features 171 

(30).  Here, using RNAscope, we report the expression of Fshrs at the single–transcript 172 

resolution in 353 brain nuclei and sub–nuclei—and suggest that FSHRs in the brain may have 173 

roles beyond cognition.  Probe specificity was established by a positive signal in testicular 174 

Sertoli cells, and an absent signal in juxtaposed Leydig cells and in the testes of Fshr–/– mice—175 

as negative controls (Fig. 3A).  Immunofluorescence confirmed the expression of FSHRs in 176 

NeuN–positive neurons, but not in GFAP–positive glial cells or IBA1–positive microglia (Fig. 3B). 177 

Fshr transcript density was highest in the ventricular region, followed in descending 178 

order, by the cerebellum, olfactory bulb, hippocampus, cerebral cortex, medulla, midbrain and 179 

pons, forebrain, thalamus, and hypothalamus (Fig. 3C).  Within each region, respectively, the 180 

highest transcript densities were as follows: ependymal layer of the third ventricle (slightly 181 

higher than the testicular Sertoli cells); PFI in the cerebellum; GrA in the olfactory bulb; GrDG in 182 

the hippocampus; AIV in the cerebral cortex; RMg in the medulla; MHb in the thalamus; IPDL in 183 

midbrain and pons; aci in the forebrain; and ArcL in the hypothalamus (Fig. 3D).  Raw transcript 184 

counts in each region and representative micrographs are shown in Supplementary Figs. 5 and 185 

6, respectively. 186 

We used ViewRNA to examine the expression of FSHR transcripts in specific regions of 187 

the human brain (Fig. 4A).  Expression was noted in neuronal cells co–expressing the non–188 

coding RNA MALAT1 in the GrDG—consistent with the RNAscope data in mouse brain—and in 189 

the parahippocampal cortex.  This latter data is consistent with FSHR expression in a population 190 

of excitatory glutamatergic neurons noted in human brain by 10X single cell RNA–seq (Allen 191 

Brain Atlas).  Affymetrix microarray analysis confirmed FSHR expression in the frontal, cingulate, 192 
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temporal, parietal and occipital sub–regions of human cortex in postmortem normal and AD 193 

brains (Fig. 4B).  Interestingly, FSHR expression trended to be higher in the frontal cortex of the 194 

AD brains compared to that of unaffected brains (P=0.060).  In all, the data suggest that, 195 

beyond a primary role in regulating cognition, brain FSHRs may have a wider role in the central 196 

regulation. 197 

 198 

DISCUSSION 199 

The past decade has witnessed the unravelling of non–traditional physiologic actions of 200 

anterior pituitary glycoprotein hormones, and hence, the unmasking of functional receptors in 201 

bone, fat, brain, and immune cells, among other organs (1, 3, 4, 31-34).  We report here for the 202 

first time that Tshrs, Lhcgrs and Fshrs are expressed in multiple brain regions.  The data 203 

provide new insights into the distributed central neural network of anterior pituitary hormone 204 

receptors, particularly in relation to their role in regulating the somatic tissue function.  205 

Specifically, we find a surprising and striking overlap in central neural distribution of the three 206 

receptors—with highest transcript densities in the ventricular regions.  Furthermore, at least for 207 

the TSHR and FSHR, expression levels in ependymal layer of the third ventricle was similar to 208 

that of the thyroid follicular cells and testicular Sertoli cells, respectively.  Albeit intriguing, this 209 

may suggest a primary role for these receptors in central neural regulation. 210 

Among 173 Tshr–positive brain regions, sub–regions and nuclei, the tanycyte–211 

containing ependymal layer of the third ventricle displayed the highest Tshr transcript number 212 

and density.  This region is juxtaposed to the anterior pituitary that produces TSH in response to 213 

hypothalamic thyrotropin–releasing hormone (TRH).  Furthermore, TSH has been reported to be 214 

expressed in the hypothalamus (35, 36).  It is therefore possible that a yet uncharacterized 215 

central TSH–TSHR feedback circuit may directly regulate the hypothalamic–pituitary–thyroid 216 
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axis, thought solely to be controlled by thyroid hormones.  To add to this complexity, thyroxine 217 

to triiodothyronine conversion occurs in tanycytes (37), which calls into question whether central 218 

TSH actions regulate thyroid hormone metabolism in these cells, and/or directly modulate 219 

hypothalamic TRH neuronal projections. 220 

The forebrain and olfactory bulb also displayed abundant Tshr transcripts, with the 221 

highest density in the nucleus of the horizontal limb of the diagonal band (HDB) of the forebrain 222 

and ventral tenia tecta (VTT) of the olfactory bulb.  These regions are involved, respectively, in 223 

learning and odor processing (38-42).  In the hypothalamus, the highest density was found in 224 

medial tuberal nucleus (MTu), which controls ingestive behaviors and metabolism (43).  Finally, 225 

we found more recently that the modulation of TSHRs in the bed nucleus of the stria terminalis 226 

(BNST), which receives direct afferents from the MTu (44), influences anxiety responses, 227 

suggesting that TSHR signaling might, in fact, mediate psychosocial behaviors. 228 

While LH has a key role in reproduction and sexual development, we found 401 brain 229 

regions, sub–regions and nuclei expressing Lhcgrs.  There were nominal differences in Lhcgr 230 

expression in many brain regions, but the ventricles stood out as having the highest Lhcgr 231 

density.  Two regions deserve special mention.  The Lhcgr–rich mitral cell layer of the accessory 232 

olfactory bulb (MiA) has a known role in scent communication during mating (45-48).  A growing 233 

body of evidence suggests that men are attracted to cues of impending ovulation in women, 234 

raising an intriguing question on whether cycling hormones affect men’s attraction and sexual 235 

behavior (45, 48).  The broader question is whether LH surges in women during cycling may, in 236 

fact, alter male sexual behavior through central mechanisms.  Second, a high Lhcgr density in 237 

the subfornical organ (SFO) of the forebrain was surprising.  SFO sends efferent projections to 238 

the organum vasculosum of the lamina terminalis (OVLT) (49, 50), which is surrounded by 239 

GnRH neurons and contains estrogen receptors (ESRs) (51).  We therefore speculate that 240 
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circumventricular interactions between LHCGRs, LH, GnRH, and ESR underpin the central 241 

regulation of reproduction. 242 

RNAscope revealed 353 Fshr–expressing brain regions, sub–regions and nuclei.  243 

Highest expression was noted in the tanycyte–rich ependymal layer, not surprisingly given its 244 

anatomical proximity to the anterior pituitary gland where FSH is produced in response to 245 

hypothalamic gonadotropin–releasing hormone (GnRH).  The functional significance of Fshrs 246 

expressed in the cerebellum, particularly in the paraflocculus (PFI), is yet unknown.  However, 247 

other Fshr–high sub–regions, including the granular cell layer of the accessory olfactory bulb 248 

(GrA), granular layer of the dentate gyrus (GrDG) and agranular insular cortex (AIV), have 249 

known associations with odor processing, learning, memory formation and anticipation of 250 

reward (52-54).  It is possible that the anosmia of Kallman syndrome, with unclear etiology, may 251 

arise from a dysfunctional FSHR–olfaction circuitry.  We also find that inactivation of the 252 

hippocampal Fshr blunts the cognitive impairment and AD–like neuropathology induced by 253 

ovariectomy in 3xTg mice.  This data, together with gain– and loss–of–function studies suggest 254 

that hippocampal and cortical FSHRs could represent therapeutic targets for AD. 255 

In all, our results provide compelling evidence for multiple central nodes being targets of 256 

the anterior pituitary glycoprotein hormones—a paradigm–shift that does not conform with the 257 

dogma that pituitary hormones are solely master regulators of single bodily processes.  Through 258 

the intercession of emerging technologies, we compiled the most complete atlas of glycoprotein 259 

hormone receptor distribution in the brain at a single–transcript resolution.  In addition, we have 260 

identified brain sites with the highest transcript expression and density, findings that are 261 

imperative towards a better understanding of the neuroanatomical and functional basis of 262 

pituitary hormone signaling in the brain.  This understanding should provide the foundation for 263 

innovative pharmacological interventions for a range of human diseases, wherein direct actions 264 

of pituitary hormones, have been implicated, importantly, Alzheimer’s disease. 265 
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METHODS 266 

Mice 267 

We used Tshr+/- (strain #004858, Jackson Laboratory), Lhcgr-/- (strain #027102, Jackson 268 

Laboratory), Fshr-/- mice (55) and their wild type littermates in this study.  Adult male mice (~3 to 269 

4–month–old) were housed in a 12 h:12 h light:dark cycle at 22 ± 2 ºC with ad libitum access to 270 

water and regular chow.  All procedures were approved by the Mount Sinai Institutional Animal 271 

Care and Use Committee (approval number IACUC-2018-0047) and are in accordance with 272 

Public Health Service and United States Department of Agriculture guidelines. 273 

 274 

RNAscope 275 

Mouse brain tissue was collected for RNAscope.  Briefly, mice were anesthetized with 276 

isoflurane (2 to 3 % in oxygen; Baxter Healthcare, Deerfield, IL) and transcardially perfused with 277 

0.9% heparinized saline followed by 4% paraformaldehyde (PFA).  Brains were extracted and 278 

post–fixed in 4 % PFA for 24 hours, dehydrated and embedded into paraffin.  Coronal sections 279 

were cut at 5 μm, with every tenth section mounted onto ~20 slides with 2–6 sections on each 280 

slide.  This method allowed to cover the entire brain and to eliminate the likelihood of counting 281 

the same transcript twice.  Sections were air dried overnight at RT and stored at 4 °C until 282 

required. 283 

Simultaneous detection of mouse Tshr, Lhcgr and Fshr was performed on paraffin 284 

sections using RNAscope 2.5 LS Multiplex Reagent Kit and RNAscope 2.5 LS Probes, namely 285 

Mm-TSHR, Mm-LHCGR and Mm-FSHR (Advanced Cell Diagnostics, ACD).  RNAscope assays 286 

on thyroid glands and testes (positive controls for Tshr and Lhcgr/Fshr, respectively), as well as 287 

brains from knockout mice (negative controls), were performed in parallel. 288 
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Slides were baked at 60 °C for 1 hour, deparaffinized, incubated with hydrogen peroxide 289 

for 10 minutes at room temperature, pretreated with Target Retrieval Reagent for 20 minutes at 290 

100 °C and with Protease III for 30 minutes at 40 °C.  Probe hybridization and signal 291 

amplification were performed per manufacturer’s instructions for chromogenic assays. 292 

Following RNAscope assay, the slides were scanned at 20x magnification and the digital 293 

image analysis was successfully validated using the CaseViewer 2.4 (3DHISTECH, Budapest, 294 

Hungary) software.  The same software was employed to capture and prepare images for the 295 

figures in the manuscript.  Detection of Tshr–, Lhcgr– and Fshr–positive cells were also 296 

performed using the QuPath-0.2.3 (University of Edinburgh, UK) software based on receptor 297 

intensity thresholds, size and shape. 298 

 299 

Histology and Immunofluorescence 300 

Heterozygous Tshr+/– mice in which a GFP cassette replaced exon 1 of the Tshr gene 301 

and their Tshr+/+ littermates were euthanized with carbon dioxide and perfused transcardially 302 

with 0.9 % heparinized saline followed by 4 % PFA in 0.1 M phosphate buffered saline (PBS; pH 303 

7.4).  Brains were collected and post–fixed in the same fixative for overnight at 4 °C, then 304 

transferred to a 30 % sucrose solution in 0.1 M PBS with 0.1 % sodium azide and stored at 4 °C 305 

until they were sectioned on a freezing stage sliding microtome at 30 μm.  Sections were stored 306 

in 0.1 M PBS solution with 0.1 % sodium azide until processed for double immunofluorescence. 307 

For the double-label fluorescent immunohistochemistry, free–floating brain sections were 308 

rinsed in 0.1 M PBS (2 x 15 min) followed by a 30 min blocking in 3 % normal horse serum 309 

(Vector Laboratories, Burlingame, CA) and 0.3 % Triton X-100 in 0.1 M PBS.  Sections were 310 

incubated with a mixture of primary rabbit anti–GFP antibody (1:500; catalog #SP3005P, 311 

OriGene, Rockville, MD) and mouse anti–NeuN antibody (1:1000; catalog #ab104224, Abcam, 312 
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Cambridge, MA) for 18 h.  Sections were then incubated with the secondary donkey anti–rabbit 313 

Alexa 488 (1:700; catalog #711-545-152, Jackson Immunoresearch, West Grove, PA) and 314 

donkey anti–mouse DyLight 594 (1:700; catalog #DK-2594, Vector Laboratories, Burlingame, 315 

CA) antibodies in 0.1 M PBS for 3 hours at room temperature.  For immunohistochemical 316 

controls, the primary antibody was either omitted or pre–adsorbed with the immunizing peptide 317 

overnight at 4 °C resulting in no immunoreactive staining.  In addition, we expectedly did not 318 

detect GFP immunoreactivity (-ir) in the Tshr+/+ littermates, as the Tshr gene was intact and did 319 

not express GFP.  Sections were mounted onto slides (Superfrost Plus) and cover–slipped 320 

using ProLong Gold Antifade Reagent (Life Technologies, Grand Island, NY).  All steps were 321 

performed at room temperature. 322 

For immunofluorescence staining for FSHR, free-floating brain sections were incubated 323 

overnight at 4 °C with primary anti-FSHR (1:200; catalog # PA5-50963, ThermoFisher), anti-324 

NeuN (1:300; catalog #MAB377, Sigma-Aldrich), anti-GFAP (1:400; catalog #MAB360, Sigma-325 

Aldrich) or anti-IBA1 (1:500; catalog # PA5-18039, ThermoFisher) antibodies.  After washing 326 

with Tris-buffered saline, the sections were incubated with a mixture of labelled secondary 327 

antibodies for detection.  DAPI (Sigma-Aldrich) was used for staining nuclei. 328 

 329 

Microarray Analysis 330 

Affymetrix Human Genome U133 Plus 2.0 Array data for FSHR expression in the frontal, 331 

cingulate, temporal, parietal and occipital cortex from both AD and non-AD human brains were 332 

curated from a previously published dataset (GEO accession #GSE84422) (56). 333 

 334 

 335 

 336 

 337 
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Quantitative PCR 338 

For quantitative RT-PCR performed on homogenates of brain tissues, total RNA from 339 

the hypothalamus and the hippocampus isolated from five Tshr+/+ mice was extracted using an 340 

RNeasy Mini kit (Qiagen) per manufacturer’s protocol.  Thyroid and the liver tissues were used 341 

as positive and negative controls, respectively.  RNA was treated with DNAse I (Invitrogen), and 342 

reverse transcribed using the SuperScript II Reverse Transcriptase (Thermo Fisher Scientific).  343 

qPCR was performed with a QuantStudio 7 Real-Time PCR system (Applied Biosystems).  PCR 344 

reaction mix consisted of first–strand cDNA template, exon-spanning primer pairs, and SYBR 345 

Green PCR master mix (Thermo Fisher Scientific).  Expression of the selected targets was 346 

compared to that of a panel of normalizing genes (Rps11, Tubg1 and Gapdh) measured on the 347 

same sample in parallel on the same plate, giving a Ct difference (ΔCt) for the normalizing gene 348 

minus the test gene.  Relative expression levels were calculated by 2-ΔΔCt using thyroid as the 349 

reference tissue. 350 

 351 

Quantitation, Validation and Statistical Analysis 352 

Immunofluorescent images were viewed and captured using 10x or 20x objectives with 353 

an Observer.Z1 fluorescence microscope (Carl Zeiss, Germany) with appropriate filters for 354 

Alexa 488, Cy3 and DAPI.  The captured GFP and NeuN images were evaluated and overlaid 355 

using AxioVision v.4.8 software (Carl Zeiss, Germany) and ImageJ (NIH, Bethesda, MD). 356 

Data were analyzed by two-tailed Student’s t-test using Prism v.9.3.1 (Graphpad, San 357 

Diego, CA).  Significance was set at P < 0.05. 358 

  359 
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DATA AVAILABILITY 360 

All data generated or analyzed during this study are included in the manuscript and 361 

supporting files. 362 

  363 
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Table 1: Known Functions of TSHR, FSHR and LHCGR in Brain. 364 

 365 

 366 

  367 

Receptor Species Brain Region Possible Function Reference

TSHR 

Rat Hypothalamus Aging (15) 

Mice Hippocampus Spatial learning and 
memory (17) 

Rat 
Hypothalamus, hippocampus, 
pyriform and postcingulate 
cortex 

Thyroid regulation (14) 

Rat Hypothalamus Feeding behavior (57) 

Human 
Hypothalamus, amygdala, 
cingulate gyrus, frontal cortex, 
hippocampus, thalamus 

Mood disorders (21) 

Quail Hypothalamus Seasonal reproduction (32) 

FSHR Yak Hypothalamus, pineal gland Follicle growth, 
maturation, estrus (58) 

Mice Hippocampus Mood regulation (18) 

LHCGR 

Rat Hypothalamus Aging (15) 

Mice Hippocampus, cortex Spatial memory, 
cognition, plasticity (19) 

Rat Hippocampus Brain metabolism (27) 
Fish Hypothalamus Functional roles (59) 

Mice Hippocampus Promote Amyloid-β 
formation (60) 

Mice Cortex Regulation of 
neurosteroid production (20) 

Mice Hypothalamus, hippocampus, 
midbrain, cortex 

Regulation of 
reproductive functions (61) 

Yak Hypothalamus, pineal gland Follicle growth, 
maturation, estrus (58) 

Rat 
Hypothalamus, hippocampus, 
dentate gyrus, cerebellum, 
brainstem, cortex 

Cognitive function (AD) (16) 
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FIGURE LEGENDS 526 

 527 

Figure 1: Tshr Expression in the Mouse Brain.  (A) Tshr transcript density in the thyroid and 528 

various brain regions detected by RNAscope.  (B) RNAscope probe specificity is confirmed in 529 

the Tshr+/+ thyroid.  Tshr–/– thyroid was used as negative control.  Scale bar: 50 µm.  (C) Tshr 530 

expression in the mouse hypothalamus and hippocampus using quantitative PCR.  The thyroid 531 

and the liver serve as positive and negative controls, respectively.  Statistics: Mean ± s.e.m., 532 

N=4–5 mice/group, **P<0.01. (D) Tshr transcript density in nuclei and sub-nuclei of the 533 

ventricular regions, olfactory bulb, forebrain, hypothalamus, medulla, cerebellum, midbrain & 534 

pons, cerebral cortex, hippocampus and thalamus.  (E) Abundant GFP immunofluorescence 535 

(green) was detected in the ependymal layer of the third ventricle in Tshr+/– heterozygous mice, 536 

in which a GFP cassette replaced exon 1 of the Tshr gene.  This GFP signal was absent in 537 

Tshr+/+ mice.  (F) GFP immunofluorescence was also detected in the subventricular zone (SVZ) 538 

of the lateral ventricle, and substantia innominata (SI) and dorsal and ventral bed nucleus of 539 

stria terminalis (BNST) in the forebrain of the Tshr+/– mice.  Sections were co-stained with DAPI 540 

(blue) and a neuronal marker, NeuN (red).  Scale bar: 100 µm. 541 

 542 

Figure 2: Lhcgr Expression in the Mouse Brain.  (A) RNAscope signals were detected in the 543 

Leydig cells, but not juxtaposed Sertoli cells, in the mouse testis, confirming probe specificity.  544 

Scale bar: 25 µm.  (B) Lhcgr transcript density in the testis and various brain regions detected 545 

by RNAscope.  (C) Lhcgr transcript density in nuclei and sub-nuclei of the ventricular regions, 546 

forebrain, cerebellum, olfactory bulb, thalamus, hypothalamus, medulla, midbrain & pons, 547 

hippocampus and cerebral cortex. 548 

 549 

Figure 3: Fshr Expression in the Mouse Brain.  (A) RNAscope signals were detected in the 550 

Sertoli cells, but not juxtaposed Leydig cells, in the mouse testis, confirming probe specificity.  551 
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Scale bar: 50 µm.  (B) FSHR immunofluorescence (red) was colocalized with NeuN–positive 552 

neurons, but not with GFAP–positive glial cells or IBA1–positive microglia.  Scale bar: 100 µm 553 

(magnified view, 10 µm).  (C) Fshr transcript density in the testis and various brain regions 554 

detected by RNAscope.  (D) Fshr transcript density in nuclei and sub-nuclei of the ventricular 555 

regions, cerebellum, olfactory bulb, hippocampus, cerebral cortex, medulla, midbrain & pons, 556 

forebrain, thalamus and hypothalamus. 557 

 558 

Figure 4: FSHR Expression in the Human Brain.  (A) FSHR expression in the human 559 

hippocampus and parahippocampal cortex was detected by ViewRNA in neuronal cells that 560 

coexpress the non–coding RNA MALAT1.  (B) FSHR mRNA expression in the frontal, cingulate, 561 

temporal, parietal and occipital sub–regions of human cortex in postmortem normal and AD 562 

brains (Affymetrix microarray, from GEO accession: GSE84422). 563 

 564 

Table 1: Known Functions of TSHR, FSHR and LHCGR in the Brain. 565 

 566 

Supplementary Figure 1: Raw Tshr transcript counts in each brain region, nuclei and 567 

subnuclei. 568 

 569 

Supplementary Figure 2: Representative RNAscope micrographs showing Tshr transcripts in 570 

the ependymal layer of the third ventricle (3V), ventral tenia tecta (VTT) of the olfactory bulb, 571 

nucleus of the horizontal limb of the diagonal band (HDB) of the forebrain, medial tuberal 572 

nucleus (MTu) of the hypothalamus, solitary nucleus, ventral part (SolV) of the medulla, 573 

paraflocculus (PFI) of the cerebellum, laterodorsal tegmental nucleus (LDTg) of the midbrain 574 

and pons, dorsal peduncular cortex (DP) of the cerebral cortex, dentate gyrus (DG) of the 575 

hippocampus, and posterior pretectal nucleus (PPT) of the thalamus.  Scale bar: 50 µm. 576 

 577 
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Supplementary Figure 3: Raw Lhcgr transcript counts in each brain region, nuclei and 578 

subnuclei. 579 

 580 

Supplementary Figure 4: Representative RNAscope micrographs showing Lhcgr transcripts in 581 

the olfactory ventricle (OV), subfornical organ (SFO) of the forebrain, paraflocculus (PFI) of the 582 

cerebellum, mitral cell layer of the accessory olfactory bulb (MiA), subcommissural organ (SCO) 583 

of the thalamus, premammillary nucleus, dorsal part (PMD) of the hypothalamus, medioventral 584 

periolivary nucleus (MVPO) of the medulla, dorsal terminal nucleus of the accessory optic tract 585 

(DT) of the midbrain and pons, granular layer of the dentate gyrus (GrDG) of the hippocampus, 586 

and semilunar nucleus (SL) of the cerebral cortex.  Scale bar: 50 µm. 587 

 588 

Supplementary Figure 5: Raw Fshr transcript counts in each brain region, nuclei and 589 

subnuclei. 590 

 591 

Supplementary Figure 6: Representative RNAscope micrographs showing Fshr transcripts in 592 

the ependymal layer of the third ventricle (3V), paraflocculus (PFI) of the cerebellum, granule 593 

cell layer of the accessory olfactory bulb (GrA), granular layer of the dentate gyrus (GrDG) of 594 

the hippocampus, agranular insular cortex, ventral part (AIV) of the cerebral cortex, raphe 595 

magnus nucleus (RMg) of the medulla, interpeduncular nucleus, dorsolateral subnucleus (IPDL) 596 

of the midbrain and pons, anterior commissure, intrabulbar part (aci) of the forebrain, medial 597 

habenular nucleus (MHb) of the thalamus, and arcuate hypothalamic nucleus, lateral part (ArcL) 598 

of the hypothalamus.  Scale bar: 50 µm. 599 

 600 

Appendix: Glossary of the brain regions, nuclei and subnuclei. 601 
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