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ABSTRACT

There is increasing evidence that anterior pituitary hormones, traditionally thought to
have unitary functions in regulating single endocrine targets, act on multiple somatic tissues,
such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone
action on brain receptors in mediating central neural and peripheral somatic functions. Here, we
have created the most comprehensive neuroanatomical atlas on the expression of TSHRs,
LHCGRs and FSHRs. We have used RNAscope, a technology that allows the detection of
MmRNA at single-transcript level, together with protein level validation, to document Tshr
expression in 173 and Fshr expression in 353 brain regions, nuclei and sub—nuclei identified
using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr
transcripts in 401 brain regions, nuclei and sub—nuclei. Complementarily, we used ViewRNA,
another single-transcript detection technology, to establish the expression of FSHRs in human
brain samples, where transcripts were co—localized in MALAT1—positive neurons. In addition,
we show high expression for all three receptors in the ventricular region—with yet unknown
functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle
was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. TSHRs
were expressed specifically in tanycytes. In contrast, Fshrs were localized to NeuN—positive
neurons in the granular layer of the dentate gyrus in murine and human brain—both are
Alzheimer’s disease vulnerable regions. Our atlas thus provides a vital resource for scientists to
explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors
on somatic function. New actionable pathways for human disease may be unmasked through

further studies.
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INTRODUCTION

There is increasing evidence that pituitary hormones traditionally thought of as ‘pure’
regulators of single physiological processes affect multiple bodily systems, either directly or via
actions on brain receptors (1, 2). We established, for the first time, a direct action of thyroid—
stimulating hormone (TSH) on bone and found that TSH receptor (TSHR) haploinsufficiency
causes profound bone loss in mice (2). We also found that follicle—stimulating hormone (FSH),
hitherto thought to solely regulate gonadal function, displayed direct effects on the skeleton to
cause bone loss (3), and on fat cells, to cause adipogenesis and body fat accumulation (4).
Likewise, we showed that hormones from the posterior pituitary, namely oxytocin and
vasopressin, displayed direct, but opposing skeletal actions—effects that may relate to the
pathogenesis of bone loss in pregnancy and lactation, and in chronic hyponatremia, respectively
(5-8). To add to this complexity, and in addition to the poorly recognized ubiquity of pituitary
hormone receptors, the ligands themselves, or their variants, are expressed widely. We find the
expression of a TSHB variant (TSHBv) in bone marrow macrophages, while oxytocin is
expressed by both osteoblasts and osteoclasts (9-12). These studies have together shifted the
paradigm from established unitary functions of pituitary hormones to an evolving array of yet

unrecognized roles of physiologic and pathophysiologic importance.

There is a compelling body of literature to support the expression of oxytocin receptors
in various brain regions, and their function in regulating peripheral actions, such as social
behavior and satiety (5, 13). However, there is relatively scant information on the expression,
and importantly, the function of the anterior pituitary glycoprotein hormone family of receptors,
namely FSHR, TSHR and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR).
Discrete sites of the rat, mouse and human brain express receptors for these hormones, with
several studies pointing to their relationship to neural functions, such as cognition, learning,
neuronal plasticity, and sensory perception, as well as to neuropsychiatric disorders, including
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95 affective disorders and neurodegeneration (14-21) (Table 1). In the light of such discoveries,
96 the link between the stimulation of these receptors in the brain and the regulation of peripheral

97  physiological processes needs further investigation.

98 Here, we use RNAscope—a cutting—edge technology that detects single RNA
99 transcripts—to create the most comprehensive atlas of glycoprotein hormone receptors in
100 mouse brain. This compendium of glycoprotein hormone receptors in concrete brain regions
101  and sub-regions at a single-transcript level should allow investigators to study both peripheral
102 and central effects of the activation of individual receptors in health and disease. Our
103 identification of brain nuclei with the highest density for each receptor should also create a new
104 way forward in understanding the functional engagement of receptor—bearing nuclei within a
105 large—scale functional network.

106

107 RESULTS

108 Very little is known about the function(s) of anterior pituitary hormone receptors in the
109  brain, except for isolated studies showing a relationship with cognition and affect (Table 1). We
110 therefore used RNAscope to map the expression of Tshr, Lhcgr and Fshr in the mouse brain;
111 immunofluorescence and qPCR to provide confirmatory evidence for Tshr and Fshr expression;
112  and ViewRNA and gPCR to examine for FSHR expression in AD—vulnerable regions of the
113  human brain. RNAscope, which allows the detection of single transcripts, uses ~20 pairs of
114  transcript—specific double Z-probes to hybridize 10—um-—thick whole brain sections.
115  Preamplifiers first hybridize to the ~28-bp binding site formed by each double Z—probe;
116  amplifiers then bind to the multiple binding sites on each preamplifier; and finally, labeled probes
117  containing a fluorescent molecule bind to multiple sites of each amplifier. RNAscope data was
118 quantified on sections from coded mice. Each section was viewed and analyzed using
119  CaseViewer 2.4 (3DHISTECH, Budapest, Hungary) or QuPath v.0.2.3 (University of Edinburgh,
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120 UK). The Atlas for the Mouse Brain in Stereotaxic Coordinates (22) was used to identify every
121 nucleus or sub—nucleus in which we manually counted Tshr, Lhcgr or Fshr transcripts in every
122 tenth section using a tag feature. Repeat counting of the same section agreed within <2%.
123 Receptor density was calculated by dividing transcript count by the total area (um?, ImageJ) of
124  each region, nucleus or sub—nucleus. Photomicrographs were prepared using Photoshop
125 CS5.1 (Adobe) only to adjust brightness, contrast and sharpness, to remove artifacts (i.e.,

126  obscuring bubbles), and to make composite plates.

127 Tshrs were detected bilaterally in 173 brain nuclei and sub—nuclei, in the following
128 descending order of transcript densities: ventricular region, olfactory bulb, forebrain,
129  hypothalamus, medulla, cerebellum, midbrain and pons, cerebral cortex, hippocampus and

130  thalamus (Fig. 1A). Importantly, thyroid glands from Tshr”~

mice did not show a signal, proving
131  probe specificity (Fig. 1B). Tshr expression in pooled brain samples was confirmed by qPCR
132 (Fig. 1C). The hypothalamus and hippocampus expressed Tshrs, with hypothalamic expression
133 being considerably higher (P<0.01) in females than in males. Furthermore, within other regions
134  of the brain, highest Tshr densities were as follows: ependymal layer of the third ventricle
135  (slightly higher than the thyroid follicular cells); VTT in the olfactory bulb; HDB in the forebrain;
136  MTu in the hypothalamus; SolV in the medulla; PFI in the cerebellum; LDTg in midbrain and
137  pons; DP in the cerebral cortex; DG in hippocampus; and PPT in the thalamus (Fig. 1D) (see

138  Appendix for nomenclature). Raw transcript counts in each region and representative

139  micrographs are shown in Supplementary Figs. 1 and 2, respectively.

140 For purposes of replicability, we employed a complementary approach to study brain
141  Tshr expression—the Tshr—deficient mouse—in which exon 1 of the Tshr gene is replaced by a
142  Gfp cassette. This reporter strategy allows for the in vivo display of Tshr locations using GFP
143 immunoreactivity (GFP—ir) as a surrogate for Tshr expression (2). Of note is that the Tshr*~

144  (haploinsufficient) mouse has one Tshr allele intact with normal thyroid function but expresses
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+/+

145  GFP in lieu of one lost allele. In contrast, the Tshr™™ mouse does not express GFP—ir because

146  both Tshr copies are intact and is therefore our negative control.

147 Consistent with our RNAscope finding, profound GFP—ir was noted in the ependymal
148  region of the third ventricle, mostly in NeuN-negative tanycytes, but with some neuronal
149  localization (Fig. 1E). The SVZ of the lateral ventricles, and the Sl, and dorsal and ventral
150 BNST of the forebrain also showed GFP-ir, but immunoreactivity was much lower than the
151  ependymal layer of the third ventricle (Fig. 1F). In all, while there was overall concordance
152  between the two methodologies for high Tshr—expressing areas, GFP—ir was not detected in a
153  number of Tshr—positive regions. This latter discrepancy most likely reflects the grossly lower

154  sensitivity of immunohistochemical detection.

155 There is evidence that high LH levels in post-menopausal women correlate with a higher
156 incidence of Alzheimer’'s disease (AD) (23, 24); that LHB transgenic mice are cognitively
157  impaired (25); that LH receptors (LHCGRSs) are present in the hippocampus (26, 27); and that
158 hCG induces cognitive deficits in rodents (28, 29). Thus, we mapped Lhcgrs in mouse brain to
159  document expression in 401 brain nuclei and sub—nuclei. Probe specificity was established by
160 a positive signal in testicular Leydig cells, and with an absent signal in juxtaposed Sertoli cells
161  (Fig. 2A). Notably similar to Tshr transcripts, the ventricular regions displayed the highest
162  transcript density (Fig. 2B). Among the brain divisions, the densities were as follows: OV in the
163  ventricular region; SFO in the forebrain; PFI in the cerebellum; MiA in the olfactory bulb; SCO in
164  the thalamus; PMD in the hypothalamus; MVPO in the medulla; DT in midbrain and pons; GrDG
165 in the hippocampus; and SL in the cerebral cortex (Fig. 2C). Raw transcript counts in each

166  region and representative micrographs are shown in Supplementary Figs. 3 and 4, respectively.

167 We recently reported the expression of FSHRs in mouse, rat and human brains,

168  particularly in AD—vulnerable regions, including hippocampus and cortex (30). We also found
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169 that FSH exacerbated AD-like neuropathology and cognitive decline in 3xTg, APP/PS1 and
170  APP-KI mice, while the inhibition of FSH action rescued this phenotype. Most notably, shRNA—
171  mediated knockdown of the Fshr in the hippocampus prevented the onset of AD—like features
172 (30). Here, using RNAscope, we report the expression of Fshrs at the single—transcript
173 resolution in 353 brain nuclei and sub—nuclei—and suggest that FSHRs in the brain may have
174  roles beyond cognition. Probe specificity was established by a positive signal in testicular

~~ mice—

175  Sertoli cells, and an absent signal in juxtaposed Leydig cells and in the testes of Fshr
176  as negative controls (Fig. 3A). Immunofluorescence confirmed the expression of FSHRs in

177  NeuN-positive neurons, but not in GFAP—positive glial cells or IBA1—positive microglia (Fig. 3B).

178 Fshr transcript density was highest in the ventricular region, followed in descending
179 order, by the cerebellum, olfactory bulb, hippocampus, cerebral cortex, medulla, midbrain and
180  pons, forebrain, thalamus, and hypothalamus (Fig. 3C). Within each region, respectively, the
181  highest transcript densities were as follows: ependymal layer of the third ventricle (slightly
182 higher than the testicular Sertoli cells); PFI in the cerebellum; GrA in the olfactory bulb; GrDG in
183  the hippocampus; AlV in the cerebral cortex; RMg in the medulla; MHb in the thalamus; IPDL in
184  midbrain and pons; aci in the forebrain; and ArcL in the hypothalamus (Fig. 3D). Raw transcript
185  counts in each region and representative micrographs are shown in Supplementary Figs. 5 and

186 6, respectively.

187 We used ViewRNA to examine the expression of FSHR transcripts in specific regions of
188 the human brain (Fig. 4A). Expression was noted in neuronal cells co—expressing the non—
189  coding RNA MALAT1 in the GrDG—consistent with the RNAscope data in mouse brain—and in
190 the parahippocampal cortex. This latter data is consistent with FSHR expression in a population
191  of excitatory glutamatergic neurons noted in human brain by 10X single cell RNA-seq (Allen

192  Brain Atlas). Affymetrix microarray analysis confirmed FSHR expression in the frontal, cingulate,
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193  temporal, parietal and occipital sub—regions of human cortex in postmortem normal and AD
194  brains (Fig. 4B). Interestingly, FSHR expression trended to be higher in the frontal cortex of the
195 AD brains compared to that of unaffected brains (P=0.060). In all, the data suggest that,
196  beyond a primary role in regulating cognition, brain FSHRs may have a wider role in the central

197  regulation.

198

199 DISCUSSION

200 The past decade has witnessed the unravelling of non—traditional physiologic actions of
201  anterior pituitary glycoprotein hormones, and hence, the unmasking of functional receptors in
202 bone, fat, brain, and immune cells, among other organs (1, 3, 4, 31-34). We report here for the
203  first time that Tshrs, Lhcgrs and Fshrs are expressed in multiple brain regions. The data
204  provide new insights into the distributed central neural network of anterior pituitary hormone
205 receptors, particularly in relation to their role in regulating the somatic tissue function.
206  Specifically, we find a surprising and striking overlap in central neural distribution of the three
207  receptors—with highest transcript densities in the ventricular regions. Furthermore, at least for
208 the TSHR and FSHR, expression levels in ependymal layer of the third ventricle was similar to
209  that of the thyroid follicular cells and testicular Sertoli cells, respectively. Albeit intriguing, this

210 may suggest a primary role for these receptors in central neural regulation.

211 Among 173 Tshr—positive brain regions, sub-regions and nuclei, the tanycyte—
212 containing ependymal layer of the third ventricle displayed the highest Tshr transcript number
213  and density. This region is juxtaposed to the anterior pituitary that produces TSH in response to
214 hypothalamic thyrotropin—releasing hormone (TRH). Furthermore, TSH has been reported to be
215  expressed in the hypothalamus (35, 36). It is therefore possible that a yet uncharacterized

216  central TSH-TSHR feedback circuit may directly regulate the hypothalamic—pituitary—thyroid
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217  axis, thought solely to be controlled by thyroid hormones. To add to this complexity, thyroxine
218  to triiodothyronine conversion occurs in tanycytes (37), which calls into question whether central
219 TSH actions regulate thyroid hormone metabolism in these cells, and/or directly modulate

220  hypothalamic TRH neuronal projections.

221 The forebrain and olfactory bulb also displayed abundant Tshr transcripts, with the
222 highest density in the nucleus of the horizontal limb of the diagonal band (HDB) of the forebrain
223 and ventral tenia tecta (VTT) of the olfactory bulb. These regions are involved, respectively, in
224  learning and odor processing (38-42). In the hypothalamus, the highest density was found in
225  medial tuberal nucleus (MTu), which controls ingestive behaviors and metabolism (43). Finally,
226  we found more recently that the modulation of TSHRs in the bed nucleus of the stria terminalis
227  (BNST), which receives direct afferents from the MTu (44), influences anxiety responses,

228  suggesting that TSHR signaling might, in fact, mediate psychosocial behaviors.

229 While LH has a key role in reproduction and sexual development, we found 401 brain
230 regions, sub—regions and nuclei expressing Lhcgrs. There were nominal differences in Lhcgr
231 expression in many brain regions, but the ventricles stood out as having the highest Lhcgr
232 density. Two regions deserve special mention. The Lhcgr—rich mitral cell layer of the accessory
233 olfactory bulb (MiA) has a known role in scent communication during mating (45-48). A growing
234  body of evidence suggests that men are attracted to cues of impending ovulation in women,
235 raising an intriguing question on whether cycling hormones affect men’s attraction and sexual
236  behavior (45, 48). The broader question is whether LH surges in women during cycling may, in
237  fact, alter male sexual behavior through central mechanisms. Second, a high Lhcgr density in
238  the subfornical organ (SFO) of the forebrain was surprising. SFO sends efferent projections to
239  the organum vasculosum of the lamina terminalis (OVLT) (49, 50), which is surrounded by

240 GnRH neurons and contains estrogen receptors (ESRs) (51). We therefore speculate that
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241  circumventricular interactions between LHCGRs, LH, GnRH, and ESR underpin the central

242 regulation of reproduction.

243 RNAscope revealed 353 Fshr—expressing brain regions, sub-regions and nuclei.
244  Highest expression was noted in the tanycyte-rich ependymal layer, not surprisingly given its
245  anatomical proximity to the anterior pituitary gland where FSH is produced in response to
246 hypothalamic gonadotropin—releasing hormone (GnRH). The functional significance of Fshrs
247  expressed in the cerebellum, particularly in the paraflocculus (PFl), is yet unknown. However,
248  other Fshr—high sub—regions, including the granular cell layer of the accessory olfactory bulb
249  (GrA), granular layer of the dentate gyrus (GrDG) and agranular insular cortex (AlV), have
250 known associations with odor processing, learning, memory formation and anticipation of
251  reward (52-54). It is possible that the anosmia of Kallman syndrome, with unclear etiology, may
252 arise from a dysfunctional FSHR-olfaction circuitry. We also find that inactivation of the
253  hippocampal Fshr blunts the cognitive impairment and AD-like neuropathology induced by
254  ovariectomy in 3xTg mice. This data, together with gain— and loss—of—function studies suggest

255  that hippocampal and cortical FSHRs could represent therapeutic targets for AD.

256 In all, our results provide compelling evidence for multiple central nodes being targets of
257  the anterior pituitary glycoprotein hormones—a paradigm—shift that does not conform with the
258 dogma that pituitary hormones are solely master regulators of single bodily processes. Through
259  the intercession of emerging technologies, we compiled the most complete atlas of glycoprotein
260  hormone receptor distribution in the brain at a single—transcript resolution. In addition, we have
261 identified brain sites with the highest transcript expression and density, findings that are
262  imperative towards a better understanding of the neuroanatomical and functional basis of
263  pituitary hormone signaling in the brain. This understanding should provide the foundation for
264  innovative pharmacological interventions for a range of human diseases, wherein direct actions
265  of pituitary hormones, have been implicated, importantly, Alzheimer’s disease.
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266 METHODS
267 Mice

268 We used Tshr*" (strain #004858, Jackson Laboratory), Lhcgr” (strain #027102, Jackson
269  Laboratory), Fshr” mice (55) and their wild type littermates in this study. Adult male mice (~3 to
270  4—month—old) were housed in a 12 h:12 h light:dark cycle at 22 + 2 °C with ad libitum access to
271 water and regular chow. All procedures were approved by the Mount Sinai Institutional Animal
272 Care and Use Committee (approval number IACUC-2018-0047) and are in accordance with
273 Public Health Service and United States Department of Agriculture guidelines.

274

275 RNAscope

276 Mouse brain tissue was collected for RNAscope. Briefly, mice were anesthetized with
277  isoflurane (2 to 3 % in oxygen; Baxter Healthcare, Deerfield, IL) and transcardially perfused with
278  0.9% heparinized saline followed by 4% paraformaldehyde (PFA). Brains were extracted and
279  post—fixed in 4 % PFA for 24 hours, dehydrated and embedded into paraffin. Coronal sections
280  were cut at 5 ym, with every tenth section mounted onto ~20 slides with 2—6 sections on each
281  slide. This method allowed to cover the entire brain and to eliminate the likelihood of counting
282  the same transcript twice. Sections were air dried overnight at RT and stored at 4 °C until

283  required.

284 Simultaneous detection of mouse Tshr, Lhcgr and Fshr was performed on paraffin
285  sections using RNAscope 2.5 LS Multiplex Reagent Kit and RNAscope 2.5 LS Probes, namely
286 Mm-TSHR, Mm-LHCGR and Mm-FSHR (Advanced Cell Diagnostics, ACD). RNAscope assays
287  on thyroid glands and testes (positive controls for Tshr and Lhcgr/Fshr, respectively), as well as

288  brains from knockout mice (negative controls), were performed in parallel.
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289 Slides were baked at 60 °C for 1 hour, deparaffinized, incubated with hydrogen peroxide
290 for 10 minutes at room temperature, pretreated with Target Retrieval Reagent for 20 minutes at
291 100 °C and with Protease Ill for 30 minutes at 40 °C. Probe hybridization and signal

292  amplification were performed per manufacturer’s instructions for chromogenic assays.

293 Following RNAscope assay, the slides were scanned at 20x magnification and the digital
294  image analysis was successfully validated using the CaseViewer 2.4 (3DHISTECH, Budapest,
295  Hungary) software. The same software was employed to capture and prepare images for the
296  figures in the manuscript. Detection of Tshr—, Lhcgr— and Fshr—positive cells were also
297  performed using the QuPath-0.2.3 (University of Edinburgh, UK) software based on receptor
298 intensity thresholds, size and shape.

299

300 Histology and Immunofluorescence

301 Heterozygous Tshr*~ mice in which a GFP cassette replaced exon 1 of the Tshr gene
302 and their Tshr''* littermates were euthanized with carbon dioxide and perfused transcardially
303  with 0.9 % heparinized saline followed by 4 % PFA in 0.1 M phosphate buffered saline (PBS; pH
304 7.4). Brains were collected and post—fixed in the same fixative for overnight at 4 °C, then
305 transferred to a 30 % sucrose solution in 0.1 M PBS with 0.1 % sodium azide and stored at 4 °C
306  until they were sectioned on a freezing stage sliding microtome at 30 ym. Sections were stored

307 in 0.1 M PBS solution with 0.1 % sodium azide until processed for double immunofluorescence.

308 For the double-label fluorescent immunohistochemistry, free—floating brain sections were
309 rinsed in 0.1 M PBS (2 x 15 min) followed by a 30 min blocking in 3 % normal horse serum
310  (Vector Laboratories, Burlingame, CA) and 0.3 % Triton X-100 in 0.1 M PBS. Sections were
311  incubated with a mixture of primary rabbit anti-GFP antibody (1:500; catalog #SP3005P,

312 OriGene, Rockville, MD) and mouse anti-NeuN antibody (1:1000; catalog #ab104224, Abcam,
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313  Cambridge, MA) for 18 h. Sections were then incubated with the secondary donkey anti—rabbit
314  Alexa 488 (1:700; catalog #711-545-152, Jackson Immunoresearch, West Grove, PA) and
315 donkey anti-mouse DyLight 594 (1:700; catalog #DK-2594, Vector Laboratories, Burlingame,
316 CA) antibodies in 0.1 M PBS for 3 hours at room temperature. For immunohistochemical
317  controls, the primary antibody was either omitted or pre—adsorbed with the immunizing peptide
318 overnight at 4 °C resulting in no immunoreactive staining. In addition, we expectedly did not
319  detect GFP immunoreactivity (-ir) in the Tshr”* littermates, as the Tshr gene was intact and did
320 not express GFP. Sections were mounted onto slides (Superfrost Plus) and cover-slipped
321 using ProLong Gold Antifade Reagent (Life Technologies, Grand Island, NY). All steps were

322  performed at room temperature.

323 For immunofluorescence staining for FSHR, free-floating brain sections were incubated
324  overnight at 4 °C with primary anti-FSHR (1:200; catalog # PA5-50963, ThermoFisher), anti-
325 NeuN (1:300; catalog #MAB377, Sigma-Aldrich), anti-GFAP (1:400; catalog #MAB360, Sigma-
326  Aldrich) or anti-IBA1 (1:500; catalog # PA5-18039, ThermoFisher) antibodies. After washing
327  with Tris-buffered saline, the sections were incubated with a mixture of labelled secondary
328 antibodies for detection. DAPI (Sigma-Aldrich) was used for staining nuclei.

329

330 Microarray Analysis

331 Affymetrix Human Genome U133 Plus 2.0 Array data for FSHR expression in the frontal,
332  cingulate, temporal, parietal and occipital cortex from both AD and non-AD human brains were
333  curated from a previously published dataset (GEO accession #GSE84422) (56).

334

335

336

337
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338 Quantitative PCR

339 For quantitative RT-PCR performed on homogenates of brain tissues, total RNA from
340  the hypothalamus and the hippocampus isolated from five Tshr”* mice was extracted using an
341  RNeasy Mini kit (Qiagen) per manufacturer’s protocol. Thyroid and the liver tissues were used
342  as positive and negative controls, respectively. RNA was treated with DNAse | (Invitrogen), and
343  reverse transcribed using the SuperScript Il Reverse Transcriptase (Thermo Fisher Scientific).
344  gPCR was performed with a QuantStudio 7 Real-Time PCR system (Applied Biosystems). PCR
345 reaction mix consisted of first—strand cDNA template, exon-spanning primer pairs, and SYBR
346 Green PCR master mix (Thermo Fisher Scientific). Expression of the selected targets was
347 compared to that of a panel of normalizing genes (Rpsl11, Tubgl and Gapdh) measured on the
348 same sample in parallel on the same plate, giving a Ct difference (ACt) for the normalizing gene

349  minus the test gene. Relative expression levels were calculated by 224

using thyroid as the
350 reference tissue.
351

352 Quantitation, Validation and Statistical Analysis

353 Immunofluorescent images were viewed and captured using 10x or 20x objectives with
354 an Observer.Z1 fluorescence microscope (Carl Zeiss, Germany) with appropriate filters for
355 Alexa 488, Cy3 and DAPI. The captured GFP and NeuN images were evaluated and overlaid

356  using AxioVision v.4.8 software (Carl Zeiss, Germany) and ImagedJ (NIH, Bethesda, MD).

357 Data were analyzed by two-tailed Student’s t-test using Prism v.9.3.1 (Graphpad, San
358 Diego, CA). Significance was set at P < 0.05.

359
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360 DATA AVAILABILITY

361 All data generated or analyzed during this study are included in the manuscript and
362  supporting files.

363
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364 Table 1: Known Functions of TSHR, FSHR and LHCGR in Brain.
Receptor Species Brain Region Possible Function Reference
Rat Hypothalamus Aging (15)
Mice Hippocampus Spatial learning and (17)
memory
Hypothalamus, hippocampus,
Rat pyriform and postcingulate Thyroid regulation (14)
TSHR cortex
Rat Hypothalamus Feeding behavior (57)
Hypothalamus, amygdala,
Human cingulate gyrus, frontal cortex, Mood disorders (21)
hippocampus, thalamus
Quail Hypothalamus Seasonal reproduction (32)
: Follicle growth,
FSHR Yak Hypothalamus, pineal gland e e (58)
Mice Hippocampus Mood regulation (18)
Rat Hypothalamus Aging (15)
, . Spatial memory,
Mice Hippocampus, cortex cognition, plasticity (19)
Rat Hippocampus Brain metabolism (27)
Fish Hypothalamus Functional roles (59)
: . Promote Amyloid-
Mice Hippocampus formation (60)
LHCGR  Mice  Cortex Regulation of . (20)
neurosteroid production
. Hypothalamus, hippocampus, Regulation of
Mice . . . . (61)
midbrain, cortex reproductive functions
. Follicle growth,
Yak Hypothalamus, pineal gland maturation, estrus (58)
Hypothalamus, hippocampus,
Rat dentate gyrus, cerebellum, Cognitive function (AD) (16)
brainstem, cortex
365
366
367
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526 FIGURE LEGENDS

527

528 Figure 1: Tshr Expression in the Mouse Brain. (A) Tshr transcript density in the thyroid and
529  various brain regions detected by RNAscope. (B) RNAscope probe specificity is confirmed in
530 the Tshr”* thyroid. Tshr™~ thyroid was used as negative control. Scale bar: 50 ym. (C) Tshr
531  expression in the mouse hypothalamus and hippocampus using quantitative PCR. The thyroid
532 and the liver serve as positive and negative controls, respectively. Statistics: Mean + s.e.m.,
533  N=4-5 mice/group, **P<0.01. (D) Tshr transcript density in nuclei and sub-nuclei of the
534  ventricular regions, olfactory bulb, forebrain, hypothalamus, medulla, cerebellum, midbrain &
535 pons, cerebral cortex, hippocampus and thalamus. (E) Abundant GFP immunofluorescence

+/—

536  (green) was detected in the ependymal layer of the third ventricle in Tshr™™ heterozygous mice,
537 in which a GFP cassette replaced exon 1 of the Tshr gene. This GFP signal was absent in
538  Tshr* mice. (F) GFP immunofluorescence was also detected in the subventricular zone (SVZ)
539  of the lateral ventricle, and substantia innominata (Sl) and dorsal and ventral bed nucleus of

+/—

540  stria terminalis (BNST) in the forebrain of the Tshr™ mice. Sections were co-stained with DAPI
541  (blue) and a neuronal marker, NeuN (red). Scale bar: 100 pym.

542

543  Figure 2: Lhcgr Expression in the Mouse Brain. (A) RNAscope signals were detected in the
544  Leydig cells, but not juxtaposed Sertoli cells, in the mouse testis, confirming probe specificity.
545  Scale bar: 25 ym. (B) Lhcgr transcript density in the testis and various brain regions detected
546 by RNAscope. (C) Lhcgr transcript density in nuclei and sub-nuclei of the ventricular regions,
547  forebrain, cerebellum, olfactory bulb, thalamus, hypothalamus, medulla, midbrain & pons,
548  hippocampus and cerebral cortex.

549

550 Figure 3: Fshr Expression in the Mouse Brain. (A) RNAscope signals were detected in the

551  Sertoli cells, but not juxtaposed Leydig cells, in the mouse testis, confirming probe specificity.
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552  Scale bar: 50 um. (B) FSHR immunofluorescence (red) was colocalized with NeuN—positive
553  neurons, but not with GFAP—positive glial cells or IBA1—positive microglia. Scale bar: 100 ym
554  (magnified view, 10 um). (C) Fshr transcript density in the testis and various brain regions
555  detected by RNAscope. (D) Fshr transcript density in nuclei and sub-nuclei of the ventricular
556  regions, cerebellum, olfactory bulb, hippocampus, cerebral cortex, medulla, midbrain & pons,
557  forebrain, thalamus and hypothalamus.

558

559  Figure 4: FSHR Expression in the Human Brain. (A) FSHR expression in the human
560 hippocampus and parahippocampal cortex was detected by ViewRNA in neuronal cells that
561  coexpress the non—coding RNA MALAT1. (B) FSHR mRNA expression in the frontal, cingulate,
562  temporal, parietal and occipital sub-regions of human cortex in postmortem normal and AD
563  brains (Affymetrix microarray, from GEO accession: GSE84422).

564

565 Table 1: Known Functions of TSHR, FSHR and LHCGR in the Brain.

566

567 Supplementary Figure 1: Raw Tshr transcript counts in each brain region, nuclei and

568 subnuclei.
569

570 Supplementary Figure 2: Representative RNAscope micrographs showing Tshr transcripts in

571  the ependymal layer of the third ventricle (3V), ventral tenia tecta (VTT) of the olfactory bulb,
572  nucleus of the horizontal limb of the diagonal band (HDB) of the forebrain, medial tuberal
573 nucleus (MTu) of the hypothalamus, solitary nucleus, ventral part (SolV) of the medulla,
574  paraflocculus (PFI) of the cerebellum, laterodorsal tegmental nucleus (LDTg) of the midbrain
575 and pons, dorsal peduncular cortex (DP) of the cerebral cortex, dentate gyrus (DG) of the
576  hippocampus, and posterior pretectal nucleus (PPT) of the thalamus. Scale bar: 50 pm.

577
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578 Supplementary Figure 3: Raw Lhcgr transcript counts in each brain region, nuclei and

579 subnuclei.
580

581 Supplementary Figure 4: Representative RNAscope micrographs showing Lhcgr transcripts in

582  the olfactory ventricle (OV), subfornical organ (SFO) of the forebrain, paraflocculus (PFl) of the
583  cerebellum, mitral cell layer of the accessory olfactory bulb (MiA), subcommissural organ (SCO)
584  of the thalamus, premammillary nucleus, dorsal part (PMD) of the hypothalamus, medioventral
585  periolivary nucleus (MVPO) of the medulla, dorsal terminal nucleus of the accessory optic tract
586  (DT) of the midbrain and pons, granular layer of the dentate gyrus (GrDG) of the hippocampus,
587  and semilunar nucleus (SL) of the cerebral cortex. Scale bar: 50 ym.

588

589 Supplementary Fiqure 5: Raw Fshr transcript counts in each brain region, nuclei and

590 subnucilei.
591

592  Supplementary Fiqure 6: Representative RNAscope micrographs showing Fshr transcripts in

593  the ependymal layer of the third ventricle (3V), paraflocculus (PFI) of the cerebellum, granule
594  cell layer of the accessory olfactory bulb (GrA), granular layer of the dentate gyrus (GrDG) of
595 the hippocampus, agranular insular cortex, ventral part (AlV) of the cerebral cortex, raphe
596  magnus nucleus (RMg) of the medulla, interpeduncular nucleus, dorsolateral subnucleus (IPDL)
597 of the midbrain and pons, anterior commissure, intrabulbar part (aci) of the forebrain, medial
598  habenular nucleus (MHb) of the thalamus, and arcuate hypothalamic nucleus, lateral part (ArcL)
599  of the hypothalamus. Scale bar: 50 pm.

600

601  Appendix: Glossary of the brain regions, nuclei and subnuclei.
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