

1 **Brain Atlas for Glycoprotein Hormone Receptors at Single-Transcript Level**

2

3

4 Vitaly Ryu^{1,2}, Anisa Gumerova^{1,2}, Funda Korkmaz^{1,2}, Seong Su Kang³, Pavel Katsel⁴, Sari
5 Miyashita^{1,2}, Hasni Kannangara^{1,2}, Liam Cullen^{1,2}, Pokman Chan⁵, Tanchun Kuo^{1,2}, Ashley
6 Padilla^{1,2}, Samir Zaidi⁶, Se-Min Kim^{1,2}, Maria I. New⁷, Clifford J. Rosen⁸, Ki A. Goosens^{1,4}, Tal
7 Frolinger^{1,2}, Vahram Haroutunian⁴, Keqiang Ye⁹, Daria Lizneva^{1,2}, Terry F. Davies^{1,2}, Tony
8 Yuen^{1,2} and Mone Zaidi^{1,2}

9

10

11 ¹Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai,
12 New York, NY 10029

13 ²Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount
14 Sinai, New York, NY 10029

15 ³Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322

16 ⁴Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029

17 ⁵Alamak Biosciences, Beverly, MA 01915

18 ⁶Memorial Sloan Kettering Cancer Center, New York, NY 10065

19 ⁷Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029

20 ⁸Maine Medical Center Research Institute, Scarborough, ME 04074

21 ⁹Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute,
22 Shenzhen Institute of Advanced technology, Chinese Academy of Sciences, Shenzhen, China

23

24 **Corresponding Author:** Mone Zaidi [email: mone.zaidi@mssm.edu]

25

26 **Abbreviated title:** Brain atlas of glycoprotein hormone receptors

27 **Conflict of Interest:** M.Z. is an inventor on issued patents on inhibiting FSH for the prevention
28 and treatment of osteoporosis and obesity: United States: 8,435,948 (2013) and 11,034,761
29 (2021). M.Z. is also an inventor on pending patent application on composition and use of
30 humanized monoclonal anti-*FSH* antibodies. These patents are owned by Icahn School of
31 Medicine at Mount Sinai (ISSMS), and M.Z. would be recipient of royalties, *per* institutional
32 policy. M.Z. and K.Y. are inventors of a pending patent application on the use of FSH as a
33 target for preventing Alzheimer's disease. The latter patent is jointly owned by ISSMS and
34 Emory University, and M.Z. and K.Y. would be recipient of royalties, *per* institutional policy. The
35 other authors declare no competing financial interests. M.Z. also consults for Gershon
36 Lehmann, Guidepoint and Coleman groups, and is Deputy Editor for *eLife* and Editor for *Marrow*
37 (*Annals of The New York Academy of Sciences*)—both positions are compensated. None of the
38 other authors have any conflicts.

39

40 **Acknowledgements:** Work at Icahn School of Medicine at Mount Sinai was performed at the
41 Center for Translational Medicine and Pharmacology and was supported by U19 AG060917 to
42 M.Z. and C.J.R.; R01 DK113627 to M.Z. and T.F.D.; R01 AG074092 and U01 AG073148 to T.Y
43 and M.Z; and R01 AG071870 to S.-M.K., T.Y. and M.Z. M.Z. also thanks the Harrington
44 Discovery Institute for the Innovator-Scholar Award. C.J.R. acknowledges support from the
45 NIH (P20 GM121301).

46

47 **ABSTRACT**

48 There is increasing evidence that anterior pituitary hormones, traditionally thought to
49 have unitary functions in regulating single endocrine targets, act on multiple somatic tissues,
50 such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone
51 action on brain receptors in mediating central neural and peripheral somatic functions. Here, we
52 have created the most comprehensive neuroanatomical atlas on the expression of TSHRs,
53 LHCGRs and FSHRs. We have used RNAscope, a technology that allows the detection of
54 mRNA at single-transcript level, together with protein level validation, to document *Tshr*
55 expression in 173 and *Fshr* expression in 353 brain regions, nuclei and sub-nuclei identified
56 using the *Atlas for the Mouse Brain in Stereotaxic Coordinates*. We also identified *Lhcgr*
57 transcripts in 401 brain regions, nuclei and sub-nuclei. Complementarily, we used ViewRNA,
58 another single-transcript detection technology, to establish the expression of *FSHRs* in human
59 brain samples, where transcripts were co-localized in *MALAT1*-positive neurons. In addition,
60 we show high expression for all three receptors in the ventricular region—with yet unknown
61 functions. Intriguingly, *Tshr* and *Fshr* expression in the ependymal layer of the third ventricle
62 was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. TSHRs
63 were expressed specifically in tanycytes. In contrast, *Fshrs* were localized to NeuN-positive
64 neurons in the granular layer of the dentate gyrus in murine and human brain—both are
65 Alzheimer's disease vulnerable regions. Our atlas thus provides a vital resource for scientists to
66 explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors
67 on somatic function. New actionable pathways for human disease may be unmasked through
68 further studies.

69

70 **INTRODUCTION**

71 There is increasing evidence that pituitary hormones traditionally thought of as ‘pure’
72 regulators of single physiological processes affect multiple bodily systems, either directly or *via*
73 actions on brain receptors (1, 2). We established, for the first time, a direct action of thyroid–
74 stimulating hormone (TSH) on bone and found that TSH receptor (TSHR) haploinsufficiency
75 causes profound bone loss in mice (2). We also found that follicle–stimulating hormone (FSH),
76 *hitherto* thought to solely regulate gonadal function, displayed direct effects on the skeleton to
77 cause bone loss (3), and on fat cells, to cause adipogenesis and body fat accumulation (4).
78 Likewise, we showed that hormones from the posterior pituitary, namely oxytocin and
79 vasopressin, displayed direct, but opposing skeletal actions—effects that may relate to the
80 pathogenesis of bone loss in pregnancy and lactation, and in chronic hyponatremia, respectively
81 (5–8). To add to this complexity, and in addition to the poorly recognized ubiquity of pituitary
82 hormone receptors, the ligands themselves, or their variants, are expressed widely. We find the
83 expression of a TSH β variant (TSH β v) in bone marrow macrophages, while oxytocin is
84 expressed by both osteoblasts and osteoclasts (9–12). These studies have together shifted the
85 paradigm from established unitary functions of pituitary hormones to an evolving array of yet
86 unrecognized roles of physiologic and pathophysiologic importance.

87 There is a compelling body of literature to support the expression of oxytocin receptors
88 in various brain regions, and their function in regulating peripheral actions, such as social
89 behavior and satiety (5, 13). However, there is relatively scant information on the expression,
90 and importantly, the function of the anterior pituitary glycoprotein hormone family of receptors,
91 namely FSHR, TSHR and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR).
92 Discrete sites of the rat, mouse and human brain express receptors for these hormones, with
93 several studies pointing to their relationship to neural functions, such as cognition, learning,
94 neuronal plasticity, and sensory perception, as well as to neuropsychiatric disorders, including

95 affective disorders and neurodegeneration (14-21) (Table 1). In the light of such discoveries,
96 the link between the stimulation of these receptors in the brain and the regulation of peripheral
97 physiological processes needs further investigation.

98 Here, we use RNAscope—a cutting-edge technology that detects single RNA
99 transcripts—to create the most comprehensive atlas of glycoprotein hormone receptors in
100 mouse brain. This compendium of glycoprotein hormone receptors in concrete brain regions
101 and sub-regions at a single-transcript level should allow investigators to study both peripheral
102 and central effects of the activation of individual receptors in health and disease. Our
103 identification of brain nuclei with the highest density for each receptor should also create a new
104 way forward in understanding the functional engagement of receptor-bearing nuclei within a
105 large-scale functional network.

106

107 **RESULTS**

108 Very little is known about the function(s) of anterior pituitary hormone receptors in the
109 brain, except for isolated studies showing a relationship with cognition and affect (Table 1). We
110 therefore used RNAscope to map the expression of *Tshr*, *Lhcgr* and *Fshr* in the mouse brain;
111 immunofluorescence and qPCR to provide confirmatory evidence for *Tshr* and *Fshr* expression;
112 and ViewRNA and qPCR to examine for *FSHR* expression in AD-vulnerable regions of the
113 human brain. RNAscope, which allows the detection of single transcripts, uses ~20 pairs of
114 transcript-specific double Z-probes to hybridize 10-μm-thick whole brain sections.
115 Preamplifiers first hybridize to the ~28-bp binding site formed by each double Z-probe;
116 amplifiers then bind to the multiple binding sites on each preamplifier; and finally, labeled probes
117 containing a fluorescent molecule bind to multiple sites of each amplifier. RNAscope data was
118 quantified on sections from coded mice. Each section was viewed and analyzed using
119 CaseViewer 2.4 (3DHISTECH, Budapest, Hungary) or QuPath v.0.2.3 (University of Edinburgh,

120 UK). The *Atlas for the Mouse Brain in Stereotaxic Coordinates* (22) was used to identify every
121 nucleus or sub-nucleus in which we manually counted *Tshsr*, *Lhcgr* or *Fshsr* transcripts in every
122 tenth section using a tag feature. Repeat counting of the same section agreed within <2%.
123 Receptor density was calculated by dividing transcript count by the total area (μm^2 , ImageJ) of
124 each region, nucleus or sub-nucleus. Photomicrographs were prepared using Photoshop
125 CS5.1 (Adobe) only to adjust brightness, contrast and sharpness, to remove artifacts (i.e.,
126 obscuring bubbles), and to make composite plates.

127 *Tshrs* were detected bilaterally in 173 brain nuclei and sub-nuclei, in the following
128 descending order of transcript densities: ventricular region, olfactory bulb, forebrain,
129 hypothalamus, medulla, cerebellum, midbrain and pons, cerebral cortex, hippocampus and
130 thalamus (Fig. 1A). Importantly, thyroid glands from *Tshsr*^{-/-} mice did not show a signal, proving
131 probe specificity (Fig. 1B). *Tshsr* expression in pooled brain samples was confirmed by qPCR
132 (Fig. 1C). The hypothalamus and hippocampus expressed *Tshrs*, with hypothalamic expression
133 being considerably higher ($P<0.01$) in females than in males. Furthermore, within other regions
134 of the brain, highest *Tshsr* densities were as follows: ependymal layer of the third ventricle
135 (slightly higher than the thyroid follicular cells); VTT in the olfactory bulb; HDB in the forebrain;
136 MTu in the hypothalamus; SolV in the medulla; PFI in the cerebellum; LDTg in midbrain and
137 pons; DP in the cerebral cortex; DG in hippocampus; and PPT in the thalamus (Fig. 1D) (see
138 Appendix for nomenclature). Raw transcript counts in each region and representative
139 micrographs are shown in Supplementary Figs. 1 and 2, respectively.

140 For purposes of replicability, we employed a complementary approach to study brain
141 *Tshsr* expression—the *Tshsr*-deficient mouse—in which exon 1 of the *Tshsr* gene is replaced by a
142 *Gfp* cassette. This reporter strategy allows for the *in vivo* display of *Tshsr* locations using GFP
143 immunoreactivity (GFP-ir) as a surrogate for *Tshsr* expression (2). Of note is that the *Tshsr*^{+/-}
144 (haploinsufficient) mouse has one *Tshsr* allele intact with normal thyroid function but expresses

145 GFP *in lieu* of one lost allele. In contrast, the *Tshrt^{+/+}* mouse does not express GFP–ir because
146 both *Tshrt* copies are intact and is therefore our negative control.

147 Consistent with our RNAscope finding, profound GFP–ir was noted in the ependymal
148 region of the third ventricle, mostly in NeuN–negative tanycytes, but with some neuronal
149 localization (Fig. 1E). The SVZ of the lateral ventricles, and the SI, and dorsal and ventral
150 BNST of the forebrain also showed GFP–ir, but immunoreactivity was much lower than the
151 ependymal layer of the third ventricle (Fig. 1F). In all, while there was overall concordance
152 between the two methodologies for high *Tshrt*–expressing areas, GFP–ir was not detected in a
153 number of *Tshrt*–positive regions. This latter discrepancy most likely reflects the grossly lower
154 sensitivity of immunohistochemical detection.

155 There is evidence that high LH levels in post–menopausal women correlate with a higher
156 incidence of Alzheimer’s disease (AD) (23, 24); that LH β transgenic mice are cognitively
157 impaired (25); that LH receptors (LHCGRs) are present in the hippocampus (26, 27); and that
158 hCG induces cognitive deficits in rodents (28, 29). Thus, we mapped *Lhcgrs* in mouse brain to
159 document expression in 401 brain nuclei and sub–nuclei. Probe specificity was established by
160 a positive signal in testicular Leydig cells, and with an absent signal in juxtaposed Sertoli cells
161 (Fig. 2A). Notably similar to *Tshrt* transcripts, the ventricular regions displayed the highest
162 transcript density (Fig. 2B). Among the brain divisions, the densities were as follows: OV in the
163 ventricular region; SFO in the forebrain; PFI in the cerebellum; MiA in the olfactory bulb; SCO in
164 the thalamus; PMD in the hypothalamus; MVPO in the medulla; DT in midbrain and pons; GrDG
165 in the hippocampus; and SL in the cerebral cortex (Fig. 2C). Raw transcript counts in each
166 region and representative micrographs are shown in Supplementary Figs. 3 and 4, respectively.

167 We recently reported the expression of FSHRs in mouse, rat and human brains,
168 particularly in AD–vulnerable regions, including hippocampus and cortex (30). We also found

169 that FSH exacerbated AD-like neuropathology and cognitive decline in *3xTg*, *APP/PS1* and
170 *APP-KI* mice, while the inhibition of FSH action rescued this phenotype. Most notably, shRNA–
171 mediated knockdown of the *Fshr* in the hippocampus prevented the onset of AD-like features
172 (30). Here, using RNAscope, we report the expression of *Fshrs* at the single–transcript
173 resolution in 353 brain nuclei and sub–nuclei—and suggest that FSHRs in the brain may have
174 roles beyond cognition. Probe specificity was established by a positive signal in testicular
175 Sertoli cells, and an absent signal in juxtaposed Leydig cells and in the testes of *Fshr*^{−/−} mice—
176 as negative controls (Fig. 3A). Immunofluorescence confirmed the expression of FSHRs in
177 NeuN–positive neurons, but not in GFAP–positive glial cells or IBA1–positive microglia (Fig. 3B).

178 *Fshr* transcript density was highest in the ventricular region, followed in descending
179 order, by the cerebellum, olfactory bulb, hippocampus, cerebral cortex, medulla, midbrain and
180 pons, forebrain, thalamus, and hypothalamus (Fig. 3C). Within each region, respectively, the
181 highest transcript densities were as follows: ependymal layer of the third ventricle (slightly
182 higher than the testicular Sertoli cells); PFI in the cerebellum; GrA in the olfactory bulb; GrDG in
183 the hippocampus; AIV in the cerebral cortex; RMg in the medulla; MHb in the thalamus; IPDL in
184 midbrain and pons; aci in the forebrain; and ArcL in the hypothalamus (Fig. 3D). Raw transcript
185 counts in each region and representative micrographs are shown in Supplementary Figs. 5 and
186 6, respectively.

187 We used ViewRNA to examine the expression of *FSHR* transcripts in specific regions of
188 the human brain (Fig. 4A). Expression was noted in neuronal cells co–expressing the non–
189 coding RNA *MALAT1* in the GrDG—consistent with the RNAscope data in mouse brain—and in
190 the parahippocampal cortex. This latter data is consistent with *FSHR* expression in a population
191 of excitatory glutamatergic neurons noted in human brain by 10X single cell RNA–seq (Allen
192 Brain Atlas). Affymetrix microarray analysis confirmed *FSHR* expression in the frontal, cingulate,

193 temporal, parietal and occipital sub-regions of human cortex in postmortem normal and AD
194 brains (Fig. 4B). Interestingly, *FSHR* expression trended to be higher in the frontal cortex of the
195 AD brains compared to that of unaffected brains ($P=0.060$). In all, the data suggest that,
196 beyond a primary role in regulating cognition, brain FSHRs may have a wider role in the central
197 regulation.

198

199 **DISCUSSION**

200 The past decade has witnessed the unravelling of non-traditional physiologic actions of
201 anterior pituitary glycoprotein hormones, and hence, the unmasking of functional receptors in
202 bone, fat, brain, and immune cells, among other organs (1, 3, 4, 31-34). We report here for the
203 first time that *Tshrs*, *Lhcgrs* and *Fshrs* are expressed in multiple brain regions. The data
204 provide new insights into the distributed central neural network of anterior pituitary hormone
205 receptors, particularly in relation to their role in regulating the somatic tissue function.
206 Specifically, we find a surprising and striking overlap in central neural distribution of the three
207 receptors—with highest transcript densities in the ventricular regions. Furthermore, at least for
208 the TSHR and FSHR, expression levels in ependymal layer of the third ventricle was similar to
209 that of the thyroid follicular cells and testicular Sertoli cells, respectively. *Albeit* intriguing, this
210 may suggest a primary role for these receptors in central neural regulation.

211 Among 173 *Tshr*-positive brain regions, sub-regions and nuclei, the tanyocyte-
212 containing ependymal layer of the third ventricle displayed the highest *Tshr* transcript number
213 and density. This region is juxtaposed to the anterior pituitary that produces TSH in response to
214 hypothalamic thyrotropin-releasing hormone (TRH). Furthermore, TSH has been reported to be
215 expressed in the hypothalamus (35, 36). It is therefore possible that a yet uncharacterized
216 central TSH-TSHR feedback circuit may directly regulate the hypothalamic-pituitary-thyroid

217 axis, thought solely to be controlled by thyroid hormones. To add to this complexity, thyroxine
218 to triiodothyronine conversion occurs in tanycytes (37), which calls into question whether central
219 TSH actions regulate thyroid hormone metabolism in these cells, and/or directly modulate
220 hypothalamic TRH neuronal projections.

221 The forebrain and olfactory bulb also displayed abundant *Tshr* transcripts, with the
222 highest density in the nucleus of the horizontal limb of the diagonal band (HDB) of the forebrain
223 and ventral tenia tecta (VTT) of the olfactory bulb. These regions are involved, respectively, in
224 learning and odor processing (38-42). In the hypothalamus, the highest density was found in
225 medial tuberal nucleus (MTu), which controls ingestive behaviors and metabolism (43). Finally,
226 we found more recently that the modulation of TSHRs in the bed nucleus of the stria terminalis
227 (BNST), which receives direct afferents from the MTu (44), influences anxiety responses,
228 suggesting that TSHR signaling might, in fact, mediate psychosocial behaviors.

229 While LH has a key role in reproduction and sexual development, we found 401 brain
230 regions, sub-regions and nuclei expressing *Lhcgrs*. There were nominal differences in *Lhcgr*
231 expression in many brain regions, but the ventricles stood out as having the highest *Lhcgr*
232 density. Two regions deserve special mention. The *Lhcgr*-rich mitral cell layer of the accessory
233 olfactory bulb (MiA) has a known role in scent communication during mating (45-48). A growing
234 body of evidence suggests that men are attracted to cues of impending ovulation in women,
235 raising an intriguing question on whether cycling hormones affect men's attraction and sexual
236 behavior (45, 48). The broader question is whether LH surges in women during cycling may, in
237 fact, alter male sexual behavior through central mechanisms. Second, a high *Lhcgr* density in
238 the subfornical organ (SFO) of the forebrain was surprising. SFO sends efferent projections to
239 the organum vasculosum of the lamina terminalis (OVLT) (49, 50), which is surrounded by
240 GnRH neurons and contains estrogen receptors (ESRs) (51). We therefore speculate that

241 circumventricular interactions between LHCGRs, LH, GnRH, and ESR underpin the central
242 regulation of reproduction.

243 RNAscope revealed 353 *Fshr*-expressing brain regions, sub-regions and nuclei.
244 Highest expression was noted in the tanycyte-rich ependymal layer, not surprisingly given its
245 anatomical proximity to the anterior pituitary gland where FSH is produced in response to
246 hypothalamic gonadotropin-releasing hormone (GnRH). The functional significance of *Fshrs*
247 expressed in the cerebellum, particularly in the paraflocculus (PFI), is yet unknown. However,
248 other *Fshr*-high sub-regions, including the granular cell layer of the accessory olfactory bulb
249 (GrA), granular layer of the dentate gyrus (GrDG) and agranular insular cortex (AlV), have
250 known associations with odor processing, learning, memory formation and anticipation of
251 reward (52-54). It is possible that the anosmia of Kallman syndrome, with unclear etiology, may
252 arise from a dysfunctional FSHR-olfaction circuitry. We also find that inactivation of the
253 hippocampal *Fshr* blunts the cognitive impairment and AD-like neuropathology induced by
254 ovariectomy in 3xTg mice. This data, together with gain- and loss-of-function studies suggest
255 that hippocampal and cortical FSHRs could represent therapeutic targets for AD.

256 In all, our results provide compelling evidence for multiple central nodes being targets of
257 the anterior pituitary glycoprotein hormones—a paradigm-shift that does not conform with the
258 dogma that pituitary hormones are solely master regulators of single bodily processes. Through
259 the intercession of emerging technologies, we compiled the most complete atlas of glycoprotein
260 hormone receptor distribution in the brain at a single-transcript resolution. In addition, we have
261 identified brain sites with the highest transcript expression and density, findings that are
262 imperative towards a better understanding of the neuroanatomical and functional basis of
263 pituitary hormone signaling in the brain. This understanding should provide the foundation for
264 innovative pharmacological interventions for a range of human diseases, wherein direct actions
265 of pituitary hormones, have been implicated, importantly, Alzheimer's disease.

266 **METHODS**

267 **Mice**

268 We used *Tshr*^{+/−} (strain #004858, Jackson Laboratory), *Lhcgr*^{+/−} (strain #027102, Jackson
269 Laboratory), *Fshr*^{+/−} mice (55) and their wild type littermates in this study. Adult male mice (~3 to
270 4-month-old) were housed in a 12 h:12 h light:dark cycle at 22 ± 2 °C with *ad libitum* access to
271 water and regular chow. All procedures were approved by the Mount Sinai Institutional Animal
272 Care and Use Committee (approval number IACUC-2018-0047) and are in accordance with
273 Public Health Service and United States Department of Agriculture guidelines.

274

275 **RNAscope**

276 Mouse brain tissue was collected for RNAscope. Briefly, mice were anesthetized with
277 isoflurane (2 to 3 % in oxygen; Baxter Healthcare, Deerfield, IL) and transcardially perfused with
278 0.9% heparinized saline followed by 4% paraformaldehyde (PFA). Brains were extracted and
279 post-fixed in 4 % PFA for 24 hours, dehydrated and embedded into paraffin. Coronal sections
280 were cut at 5 µm, with every tenth section mounted onto ~20 slides with 2–6 sections on each
281 slide. This method allowed to cover the entire brain and to eliminate the likelihood of counting
282 the same transcript twice. Sections were air dried overnight at RT and stored at 4 °C until
283 required.

284 Simultaneous detection of mouse *Tshr*, *Lhcgr* and *Fshr* was performed on paraffin
285 sections using RNAscope 2.5 LS Multiplex Reagent Kit and RNAscope 2.5 LS Probes, namely
286 Mm-TSHR, Mm-LHCGR and Mm-FSHR (Advanced Cell Diagnostics, ACD). RNAscope assays
287 on thyroid glands and testes (positive controls for *Tshr* and *Lhcgr/Fshr*, respectively), as well as
288 brains from knockout mice (negative controls), were performed in parallel.

289 Slides were baked at 60 °C for 1 hour, deparaffinized, incubated with hydrogen peroxide
290 for 10 minutes at room temperature, pretreated with Target Retrieval Reagent for 20 minutes at
291 100 °C and with Protease III for 30 minutes at 40 °C. Probe hybridization and signal
292 amplification were performed *per* manufacturer's instructions for chromogenic assays.

293 Following RNAscope assay, the slides were scanned at 20x magnification and the digital
294 image analysis was successfully validated using the CaseViewer 2.4 (3DHISTECH, Budapest,
295 Hungary) software. The same software was employed to capture and prepare images for the
296 figures in the manuscript. Detection of *Tshr*–, *Lhcgr*– and *Fshr*–positive cells were also
297 performed using the QuPath-0.2.3 (University of Edinburgh, UK) software based on receptor
298 intensity thresholds, size and shape.

299

300 **Histology and Immunofluorescence**

301 Heterozygous *Tshr*^{+/–} mice in which a GFP cassette replaced exon 1 of the *Tshr* gene
302 and their *Tshr*^{+/+} littermates were euthanized with carbon dioxide and perfused transcardially
303 with 0.9 % heparinized saline followed by 4 % PFA in 0.1 M phosphate buffered saline (PBS; pH
304 7.4). Brains were collected and post-fixed in the same fixative for overnight at 4 °C, then
305 transferred to a 30 % sucrose solution in 0.1 M PBS with 0.1 % sodium azide and stored at 4 °C
306 until they were sectioned on a freezing stage sliding microtome at 30 µm. Sections were stored
307 in 0.1 M PBS solution with 0.1 % sodium azide until processed for double immunofluorescence.

308 For the double-label fluorescent immunohistochemistry, free-floating brain sections were
309 rinsed in 0.1 M PBS (2 x 15 min) followed by a 30 min blocking in 3 % normal horse serum
310 (Vector Laboratories, Burlingame, CA) and 0.3 % Triton X-100 in 0.1 M PBS. Sections were
311 incubated with a mixture of primary rabbit anti-GFP antibody (1:500; catalog #SP3005P,
312 OriGene, Rockville, MD) and mouse anti-NeuN antibody (1:1000; catalog #ab104224, Abcam,

313 Cambridge, MA) for 18 h. Sections were then incubated with the secondary donkey anti-rabbit
314 Alexa 488 (1:700; catalog #711-545-152, Jackson Immunoresearch, West Grove, PA) and
315 donkey anti-mouse DyLight 594 (1:700; catalog #DK-2594, Vector Laboratories, Burlingame,
316 CA) antibodies in 0.1 M PBS for 3 hours at room temperature. For immunohistochemical
317 controls, the primary antibody was either omitted or pre-adsorbed with the immunizing peptide
318 overnight at 4 °C resulting in no immunoreactive staining. In addition, we expectedly did not
319 detect GFP immunoreactivity (-ir) in the *Tshrt^{+/+}* littermates, as the *Tshrt* gene was intact and did
320 not express GFP. Sections were mounted onto slides (Superfrost Plus) and cover-slipped
321 using ProLong Gold Antifade Reagent (Life Technologies, Grand Island, NY). All steps were
322 performed at room temperature.

323 For immunofluorescence staining for FSHR, free-floating brain sections were incubated
324 overnight at 4 °C with primary anti-FSHR (1:200; catalog # PA5-50963, ThermoFisher), anti-
325 NeuN (1:300; catalog #MAB377, Sigma-Aldrich), anti-GFAP (1:400; catalog #MAB360, Sigma-
326 Aldrich) or anti-IBA1 (1:500; catalog # PA5-18039, ThermoFisher) antibodies. After washing
327 with Tris-buffered saline, the sections were incubated with a mixture of labelled secondary
328 antibodies for detection. DAPI (Sigma-Aldrich) was used for staining nuclei.

329

330 **Microarray Analysis**

331 Affymetrix Human Genome U133 Plus 2.0 Array data for *FSHR* expression in the frontal,
332 cingulate, temporal, parietal and occipital cortex from both AD and non-AD human brains were
333 curated from a previously published dataset (GEO accession #GSE84422) (56).

334

335

336

337

338 **Quantitative PCR**

339 For quantitative RT-PCR performed on homogenates of brain tissues, total RNA from
340 the hypothalamus and the hippocampus isolated from five *Tsh^{r/+}* mice was extracted using an
341 RNeasy Mini kit (Qiagen) per manufacturer's protocol. Thyroid and the liver tissues were used
342 as positive and negative controls, respectively. RNA was treated with DNase I (Invitrogen), and
343 reverse transcribed using the SuperScript II Reverse Transcriptase (Thermo Fisher Scientific).
344 qPCR was performed with a QuantStudio 7 Real-Time PCR system (Applied Biosystems). PCR
345 reaction mix consisted of first-strand cDNA template, exon-spanning primer pairs, and SYBR
346 Green PCR master mix (Thermo Fisher Scientific). Expression of the selected targets was
347 compared to that of a panel of normalizing genes (*Rps11*, *Tubg1* and *Gapdh*) measured on the
348 same sample in parallel on the same plate, giving a Ct difference (ΔCt) for the normalizing gene
349 minus the test gene. Relative expression levels were calculated by $2^{-\Delta\Delta Ct}$ using thyroid as the
350 reference tissue.

351

352 **Quantitation, Validation and Statistical Analysis**

353 Immunofluorescent images were viewed and captured using 10x or 20x objectives with
354 an Observer.Z1 fluorescence microscope (Carl Zeiss, Germany) with appropriate filters for
355 Alexa 488, Cy3 and DAPI. The captured GFP and NeuN images were evaluated and overlaid
356 using AxioVision v.4.8 software (Carl Zeiss, Germany) and ImageJ (NIH, Bethesda, MD).

357 Data were analyzed by two-tailed Student's *t*-test using Prism v.9.3.1 (Graphpad, San
358 Diego, CA). Significance was set at $P < 0.05$.

359

360 **DATA AVAILABILITY**

361 All data generated or analyzed during this study are included in the manuscript and
362 supporting files.

363

364 **Table 1: Known Functions of TSHR, FSHR and LHCGR in Brain.**

Receptor	Species	Brain Region	Possible Function	Reference
TSHR	Rat	Hypothalamus	Aging	(15)
	Mice	Hippocampus	Spatial learning and memory	(17)
	Rat	Hypothalamus, hippocampus, pyriform and postcingulate cortex	Thyroid regulation	(14)
	Rat	Hypothalamus	Feeding behavior	(57)
	Human	Hypothalamus, amygdala, cingulate gyrus, frontal cortex, hippocampus, thalamus	Mood disorders	(21)
	Quail	Hypothalamus	Seasonal reproduction	(32)
FSHR	Yak	Hypothalamus, pineal gland	Follicle growth, maturation, estrus	(58)
	Mice	Hippocampus	Mood regulation	(18)
	Rat	Hypothalamus	Aging	(15)
	Mice	Hippocampus, cortex	Spatial memory, cognition, plasticity	(19)
LHCGR	Rat	Hippocampus	Brain metabolism	(27)
	Fish	Hypothalamus	Functional roles	(59)
	Mice	Hippocampus	Promote Amyloid- β formation	(60)
	Mice	Cortex	Regulation of neurosteroid production	(20)
	Mice	Hypothalamus, hippocampus, midbrain, cortex	Regulation of reproductive functions	(61)
	Yak	Hypothalamus, pineal gland	Follicle growth, maturation, estrus	(58)
	Rat	Hypothalamus, hippocampus, dentate gyrus, cerebellum, brainstem, cortex	Cognitive function (AD)	(16)

365

366

367

368 **REFERENCES**

- 369 1. M. Zaidi *et al.*, Actions of pituitary hormones beyond traditional targets. *J
370 Endocrinol* **237**, R83-R98 (2018).
- 371 2. E. Abe *et al.*, TSH is a negative regulator of skeletal remodeling. *Cell* **115**, 151-
372 162 (2003).
- 373 3. L. Sun *et al.*, FSH directly regulates bone mass. *Cell* **125**, 247-260 (2006).
- 374 4. P. Liu *et al.*, Blocking FSH induces thermogenic adipose tissue and reduces
375 body fat. *Nature* **546**, 107-112 (2017).
- 376 5. L. Sun *et al.*, Oxytocin regulates body composition. *Proc Natl Acad Sci U S A* **116**,
377 26808-26815 (2019).
- 378 6. L. Sun *et al.*, Functions of vasopressin and oxytocin in bone mass regulation.
379 *Proc Natl Acad Sci U S A* **113**, 164-169 (2016).
- 380 7. R. Tamma *et al.*, Oxytocin is an anabolic bone hormone. *Proc Natl Acad Sci U S
381 A* **106**, 7149-7154 (2009).
- 382 8. R. Tamma *et al.*, Regulation of bone remodeling by vasopressin explains the
383 bone loss in hyponatremia. *Proc Natl Acad Sci U S A* **110**, 18644-18649 (2013).
- 384 9. G. Colaianni *et al.*, Regulated production of the pituitary hormone oxytocin from
385 murine and human osteoblasts. *Biochem Biophys Res Commun* **411**, 512-515
386 (2011).
- 387 10. G. Colaianni *et al.*, Bone marrow oxytocin mediates the anabolic action of
388 estrogen on the skeleton. *J Biol Chem* **287**, 29159-29167 (2012).
- 389 11. R. Baliram *et al.*, Thyroid and bone: macrophage-derived TSH-beta splice variant
390 increases murine osteoblastogenesis. *Endocrinology* **154**, 4919-4926 (2013).
- 391 12. R. Baliram, R. Latif, S. A. Morshed, M. Zaidi, T. F. Davies, T3 Regulates a
392 Human Macrophage-Derived TSH-beta Splice Variant: Implications for Human
393 Bone Biology. *Endocrinology* **157**, 3658-3667 (2016).
- 394 13. T. L. Bale, A. M. Davis, A. P. Auger, D. M. Dorsa, M. M. McCarthy, CNS region-
395 specific oxytocin receptor expression: importance in regulation of anxiety and sex
396 behavior. *J Neurosci* **21**, 2546-2552 (2001).
- 397 14. P. Crisanti *et al.*, The expression of thyrotropin receptor in the brain.
398 *Endocrinology* **142**, 812-822 (2001).
- 399 15. N. V. Emanuele, G. Baker, D. McDonald, L. Kirsteins, A. M. Lawrence, The
400 impact of aging on luteinizing hormone (LH) and thyroid-stimulating hormone
401 (TSH) in the rat brain. *Brain Res* **352**, 179-183 (1985).
- 402 16. Z. M. Lei, C. V. Rao, J. L. Kornyei, P. Licht, E. S. Hiatt, Novel expression of
403 human chorionic gonadotropin/luteinizing hormone receptor gene in brain.
404 *Endocrinology* **132**, 2262-2270 (1993).
- 405 17. S. Luan *et al.*, Thyrotropin receptor signaling deficiency impairs spatial learning
406 and memory in mice. *J Endocrinol* **246**, 41-55 (2020).
- 407 18. W. K. Bi *et al.*, FSH signaling is involved in affective disorders. *Biochem Biophys
408 Res Commun* **525**, 915-920 (2020).
- 409 19. J. A. Blair, S. Bhatta, G. Casadesus, CNS luteinizing hormone receptor activation
410 rescues ovariectomy-related loss of spatial memory and neuronal plasticity.
411 *Neurobiol Aging* **78**, 111-120 (2019).

412 20. P. M. Apaja, K. T. Harju, J. T. Aatsinki, U. E. Petaja-Repo, H. J. Rajaniemi,
413 Identification and structural characterization of the neuronal luteinizing hormone
414 receptor associated with sensory systems. *J Biol Chem* **279**, 1899-1906 (2004).

415 21. M. Naicker, S. Naidoo, Expression of thyroid-stimulating hormone receptors and
416 thyroglobulin in limbic regions in the adult human brain. *Metab Brain Dis* **33**, 481-
417 489 (2018).

418 22. G. Paxinos, K. B. J. Franklin, *The Mouse Brain in Stereotaxic Coordinates*
419 (Academic Press, New York, ed. 3rd, 2007).

420 23. V. W. Henderson, A. Paganini-Hill, C. K. Emanuel, M. E. Dunn, J. G. Buckwalter,
421 Estrogen replacement therapy in older women. Comparisons between
422 Alzheimer's disease cases and nondemented control subjects. *Arch Neurol* **51**,
423 896-900 (1994).

424 24. W. A. Rocca *et al.*, Increased risk of cognitive impairment or dementia in women
425 who underwent oophorectomy before menopause. *Neurology* **69**, 1074-1083
426 (2007).

427 25. G. Casadesus *et al.*, Increases in luteinizing hormone are associated with
428 declines in cognitive performance. *Mol Cell Endocrinol* **269**, 107-111 (2007).

429 26. C. V. Rao, Involvement of Luteinizing Hormone in Alzheimer Disease
430 Development in Elderly Women. *Reprod Sci* **24**, 355-368 (2017).

431 27. T. Liu, J. Wimalasena, R. L. Bowen, C. S. Atwood, Luteinizing hormone receptor
432 mediates neuronal pregnenolone production via up-regulation of steroidogenic
433 acute regulatory protein expression. *J Neurochem* **100**, 1329-1339 (2007).

434 28. A. Berry, Y. Tomidokoro, J. Ghiso, J. Thornton, Human chorionic gonadotropin (a
435 luteinizing hormone homologue) decreases spatial memory and increases brain
436 amyloid-beta levels in female rats. *Horm Behav* **54**, 143-152 (2008).

437 29. A. M. Barron, G. Verdile, K. Taddei, K. A. Bates, R. N. Martins, Effect of chronic
438 hCG administration on Alzheimer's-related cognition and A beta accumulation in
439 PS1KI mice. *Endocrinology* **151**, 5380-5388 (2010).

440 30. J. Xiong *et al.*, FSH blockade improves cognition in mice with Alzheimer's
441 disease. *Nature* **603**, 470-476 (2022).

442 31. X. M. Liu *et al.*, FSH regulates fat accumulation and redistribution in aging
443 through the Galphai/Ca(2+)/CREB pathway. *Aging Cell* **14**, 409-420 (2015).

444 32. G. R. Williams, Extrathyroidal expression of TSH receptor. *Ann Endocrinol (Paris)*
445 **72**, 68-73 (2011).

446 33. D. Sun *et al.*, Roles of follicle stimulating hormone and its receptor in human
447 metabolic diseases and cancer. *Am J Transl Res* **12**, 3116-3132 (2020).

448 34. M. J. Fields, M. Shemesh, Extragonadal luteinizing hormone receptors in the
449 reproductive tract of domestic animals. *Biol Reprod* **71**, 1412-1418 (2004).

450 35. W. J. DeVito, T. N. Spearman, J. M. Connors, G. A. Hedge, Subcellular
451 localization of immunoreactive thyroid-stimulating hormone in the rat
452 hypothalamus. *Neuroendocrinology* **42**, 459-466 (1986).

453 36. S. Hojvat *et al.*, Immunoreactive thyroid stimulating hormone (TSH): association
454 with synaptosomally-rich fractions in the rat hypothalamus. *Brain Res* **265**, 259-
455 263 (1983).

456 37. T. L. Fonseca *et al.*, Coordination of hypothalamic and pituitary T3 production
457 regulates TSH expression. *J Clin Invest* **123**, 1492-1500 (2013).

458 38. K. Shiotani *et al.*, Tuning of olfactory cortex ventral tenia tecta neurons to distinct
459 task elements of goal-directed behavior. *Elife* **9** (2020).

460 39. T. A. Cleland, C. Linster, Central olfactory structures. *Handb Clin Neurol* **164**, 79-
461 96 (2019).

462 40. A. M. McNamara, T. A. Cleland, C. Linster, Characterization of the synaptic
463 properties of olfactory bulb projections. *Chem Senses* **29**, 225-233 (2004).

464 41. I. Chaves-Coira, J. Martin-Cortecero, A. Nunez, M. L. Rodrigo-Angulo, Basal
465 Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to
466 Sensory Primary and Prefrontal Cortices in the Rat. *Front Neuroanat* **12**, 69
467 (2018).

468 42. X. Zhan, P. Yin, T. Heinbockel, The basal forebrain modulates spontaneous
469 activity of principal cells in the main olfactory bulb of anesthetized mice. *Front*
470 *Neural Circuits* **7**, 148 (2013).

471 43. S. X. Luo *et al.*, Regulation of feeding by somatostatin neurons in the tuberal
472 nucleus. *Science* **361**, 76-81 (2018).

473 44. H. W. Dong, L. W. Swanson, Projections from bed nuclei of the stria terminalis,
474 anteromedial area: cerebral hemisphere integration of neuroendocrine,
475 autonomic, and behavioral aspects of energy balance. *J Comp Neurol* **494**, 142-
476 178 (2006).

477 45. K. A. Gildersleeve, M. G. Haselton, C. M. Larson, E. G. Pillsworth, Body odor
478 attractiveness as a cue of impending ovulation in women: evidence from a study
479 using hormone-confirmed ovulation. *Horm Behav* **61**, 157-166 (2012).

480 46. K. Lydell, R. L. Doty, Male rat odor preferences for female urine as a function
481 of sexual experience, urine age, and urine source. *Horm Behav* **3**, 205-212
482 (1972).

483 47. U. W. Huck, E. M. Banks, Social olfaction in male brown lemmings (*Lemmus*
484 *sibiricus* = *trimucronatus*) and collared lemmings (*Dicrostonyx groenlandicus*): I.
485 Discrimination of species, sex, and estrous condition. *J Comp Psychol* **98**, 54-59
486 (1984).

487 48. D. Singh, P. M. Bronstad, Female body odour is a potential cue to ovulation. *Proc*
488 *Biol Sci* **268**, 797-801 (2001).

489 49. R. R. Miselis, The efferent projections of the subfornical organ of the rat: a
490 circumventricular organ within a neural network subserving water balance. *Brain*
491 *Res* **230**, 1-23 (1981).

492 50. R. W. Lind, Bi-directional, chemically specified neural connections between the
493 subfornical organ and the midbrain raphe system. *Brain Res* **384**, 250-261 (1986).

494 51. M. J. Low, Neuroendocrinology: New hormone treatment for obesity caused by
495 POMC-deficiency. *Nat Rev Endocrinol* **12**, 627-628 (2016).

496 52. H. Eichenbaum, The hippocampus and declarative memory: cognitive
497 mechanisms and neural codes. *Behav Brain Res* **127**, 199-207 (2001).

498 53. S. Nagayama, R. Homma, F. Imamura, Neuronal organization of olfactory bulb
499 circuits. *Front Neural Circuits* **8**, 98 (2014).

500 54. R. P. Kesner, P. E. Gilbert, The role of the agranular insular cortex in anticipation
501 of reward contrast. *Neurobiol Learn Mem* **88**, 82-86 (2007).

502 55. A. Dierich *et al.*, Impairing follicle-stimulating hormone (FSH) signaling in vivo: 503 targeted disruption of the FSH receptor leads to aberrant gametogenesis and 504 hormonal imbalance. *Proc Natl Acad Sci U S A* **95**, 13612-13617 (1998).

505 56. M. Wang *et al.*, Integrative network analysis of nineteen brain regions identifies 506 molecular signatures and networks underlying selective regional vulnerability to 507 Alzheimer's disease. *Genome Med* **8**, 104 (2016).

508 57. J. R. Burgos, B. M. Iresjo, S. Warnaker, U. Smedh, Presence of TSH receptors in 509 discrete areas of the hypothalamus and caudal brainstem with relevance for 510 feeding controls-Support for functional significance. *Brain Res* **1642**, 278-286 511 (2016).

512 58. S. D. Huo *et al.*, Protein and mRNA expression of follicle-stimulating hormone 513 receptor and luteinizing hormone receptor during the oestrus in the yak (*Bos* 514 *grunniens*). *Reprod Domest Anim* **52**, 477-482 (2017).

515 59. C. Peng *et al.*, Cloning, expression and functional characterization of a novel 516 luteinizing hormone receptor in the orange-spotted grouper, *Epinephelus* 517 *coioides*. *Gen Comp Endocrinol* **267**, 90-97 (2018).

518 60. J. Lin *et al.*, Genetic ablation of luteinizing hormone receptor improves the 519 amyloid pathology in a mouse model of Alzheimer disease. *J Neuropathol Exp 520 Neurol* **69**, 253-261 (2010).

521 61. T. Hamalainen, M. Poutanen, I. Huhtaniemi, Age- and sex-specific promoter 522 function of a 2-kilobase 5'-flanking sequence of the murine luteinizing hormone 523 receptor gene in transgenic mice. *Endocrinology* **140**, 5322-5329 (1999).

524

525

526 **FIGURE LEGENDS**

527

528 **Figure 1: *Tshr* Expression in the Mouse Brain.** (A) *Tshr* transcript density in the thyroid and
529 various brain regions detected by RNAscope. (B) RNAscope probe specificity is confirmed in
530 the *Tshr*^{+/+} thyroid. *Tshr*^{-/-} thyroid was used as negative control. Scale bar: 50 μ m. (C) *Tshr*
531 expression in the mouse hypothalamus and hippocampus using quantitative PCR. The thyroid
532 and the liver serve as positive and negative controls, respectively. Statistics: Mean \pm s.e.m.,
533 N=4–5 mice/group, **P<0.01. (D) *Tshr* transcript density in nuclei and sub-nuclei of the
534 ventricular regions, olfactory bulb, forebrain, hypothalamus, medulla, cerebellum, midbrain &
535 pons, cerebral cortex, hippocampus and thalamus. (E) Abundant GFP immunofluorescence
536 (green) was detected in the ependymal layer of the third ventricle in *Tshr*^{-/-} heterozygous mice,
537 in which a GFP cassette replaced exon 1 of the *Tshr* gene. This GFP signal was absent in
538 *Tshr*^{+/+} mice. (F) GFP immunofluorescence was also detected in the subventricular zone (SVZ)
539 of the lateral ventricle, and substantia innominata (SI) and dorsal and ventral bed nucleus of
540 stria terminalis (BNST) in the forebrain of the *Tshr*^{-/-} mice. Sections were co-stained with DAPI
541 (blue) and a neuronal marker, NeuN (red). Scale bar: 100 μ m.

542

543 **Figure 2: *Lhcgr* Expression in the Mouse Brain.** (A) RNAscope signals were detected in the
544 Leydig cells, but not juxtaposed Sertoli cells, in the mouse testis, confirming probe specificity.
545 Scale bar: 25 μ m. (B) *Lhcgr* transcript density in the testis and various brain regions detected
546 by RNAscope. (C) *Lhcgr* transcript density in nuclei and sub-nuclei of the ventricular regions,
547 forebrain, cerebellum, olfactory bulb, thalamus, hypothalamus, medulla, midbrain & pons,
548 hippocampus and cerebral cortex.

549

550 **Figure 3: *Fshr* Expression in the Mouse Brain.** (A) RNAscope signals were detected in the
551 Sertoli cells, but not juxtaposed Leydig cells, in the mouse testis, confirming probe specificity.

552 Scale bar: 50 μ m. **(B)** FSHR immunofluorescence (red) was colocalized with NeuN-positive
553 neurons, but not with GFAP-positive glial cells or IBA1-positive microglia. Scale bar: 100 μ m
554 (magnified view, 10 μ m). **(C)** *Fshr* transcript density in the testis and various brain regions
555 detected by RNAscope. **(D)** *Fshr* transcript density in nuclei and sub-nuclei of the ventricular
556 regions, cerebellum, olfactory bulb, hippocampus, cerebral cortex, medulla, midbrain & pons,
557 forebrain, thalamus and hypothalamus.

558

559 **Figure 4: FSHR Expression in the Human Brain.** **(A)** *FSHR* expression in the human
560 hippocampus and parahippocampal cortex was detected by ViewRNA in neuronal cells that
561 coexpress the non-coding RNA *MALAT1*. **(B)** *FSHR* mRNA expression in the frontal, cingulate,
562 temporal, parietal and occipital sub-regions of human cortex in postmortem normal and AD
563 brains (Affymetrix microarray, from GEO accession: GSE84422).

564

565 **Table 1: Known Functions of TSHR, FSHR and LHCGR in the Brain.**

566

567 **Supplementary Figure 1:** Raw *Tshr* transcript counts in each brain region, nuclei and
568 subnuclei.

569

570 **Supplementary Figure 2:** Representative RNAscope micrographs showing *Tshr* transcripts in
571 the ependymal layer of the third ventricle (3V), ventral tenia tecta (VTT) of the olfactory bulb,
572 nucleus of the horizontal limb of the diagonal band (HDB) of the forebrain, medial tuberal
573 nucleus (MTu) of the hypothalamus, solitary nucleus, ventral part (SolV) of the medulla,
574 paraflocculus (PFI) of the cerebellum, laterodorsal tegmental nucleus (LDTg) of the midbrain
575 and pons, dorsal peduncular cortex (DP) of the cerebral cortex, dentate gyrus (DG) of the
576 hippocampus, and posterior pretectal nucleus (PPT) of the thalamus. Scale bar: 50 μ m.

577

578 **Supplementary Figure 3:** Raw *Lhcgr* transcript counts in each brain region, nuclei and
579 subnuclei.

580

581 **Supplementary Figure 4:** Representative RNAscope micrographs showing *Lhcgr* transcripts in
582 the olfactory ventricle (OV), subfornical organ (SFO) of the forebrain, paraflocculus (PFI) of the
583 cerebellum, mitral cell layer of the accessory olfactory bulb (MiA), subcommissural organ (SCO)
584 of the thalamus, premammillary nucleus, dorsal part (PMD) of the hypothalamus, medioventral
585 periolivary nucleus (MVPO) of the medulla, dorsal terminal nucleus of the accessory optic tract
586 (DT) of the midbrain and pons, granular layer of the dentate gyrus (GrDG) of the hippocampus,
587 and semilunar nucleus (SL) of the cerebral cortex. Scale bar: 50 μ m.

588

589 **Supplementary Figure 5:** Raw *Fshr* transcript counts in each brain region, nuclei and
590 subnuclei.

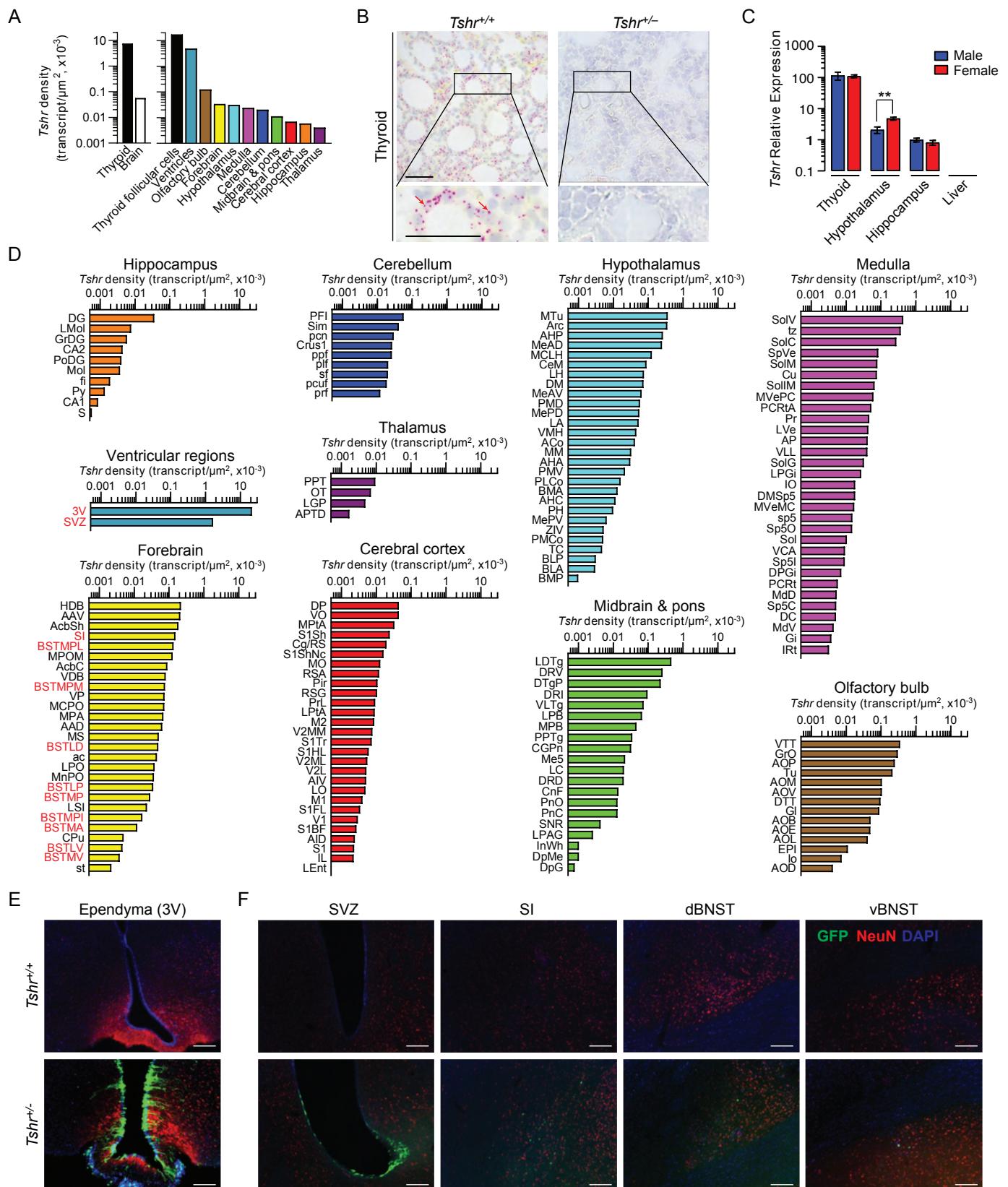
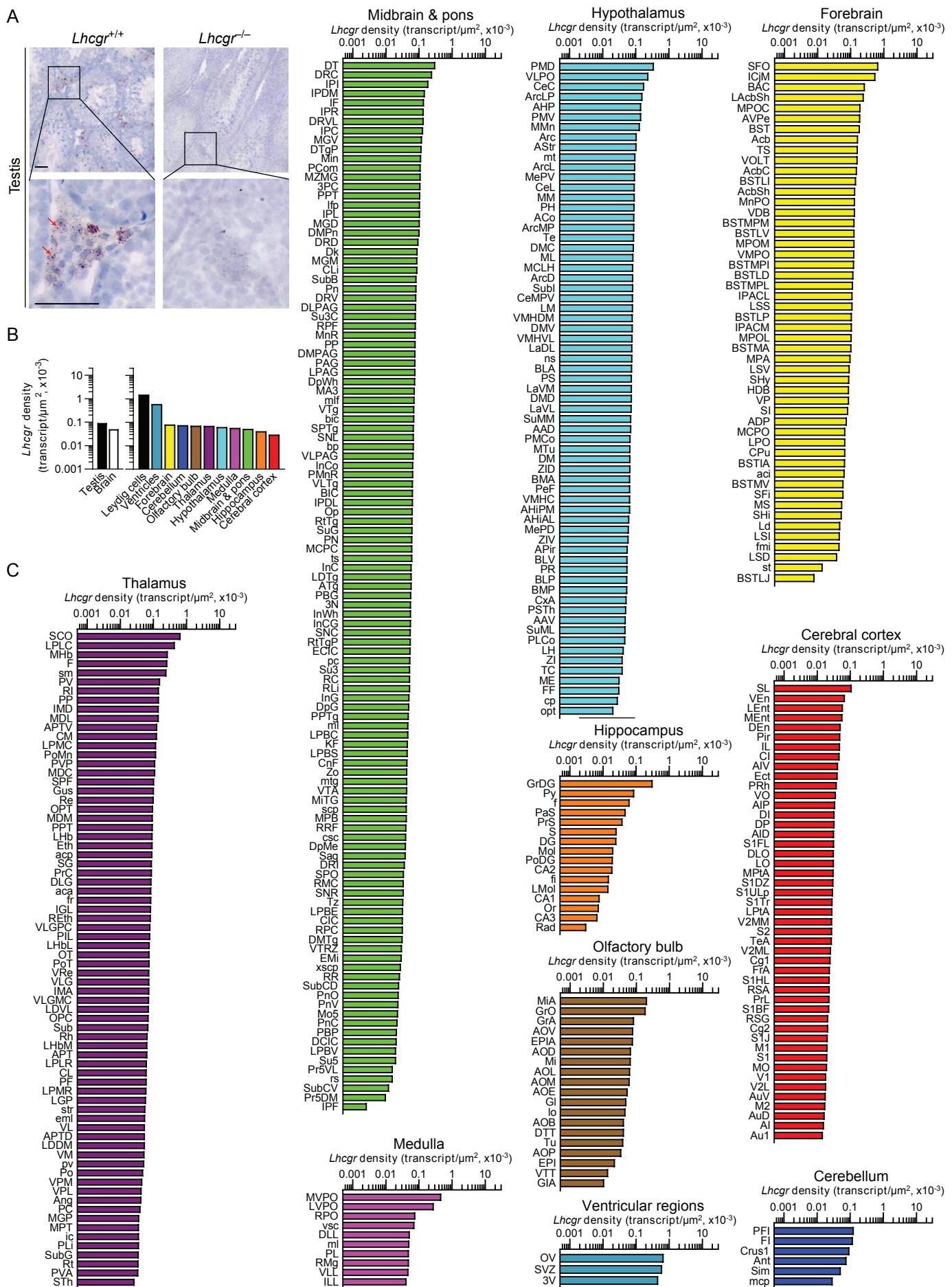
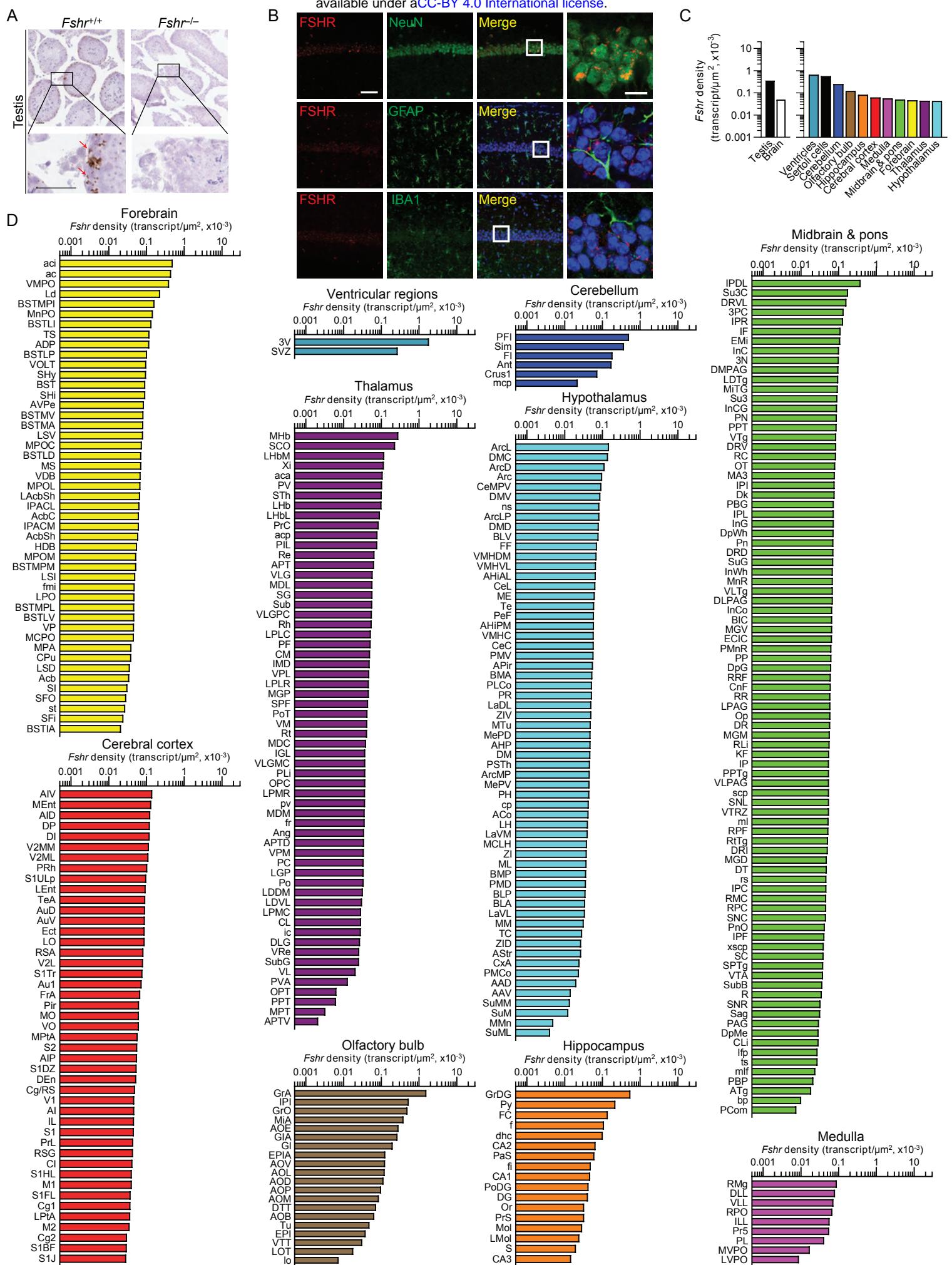
591

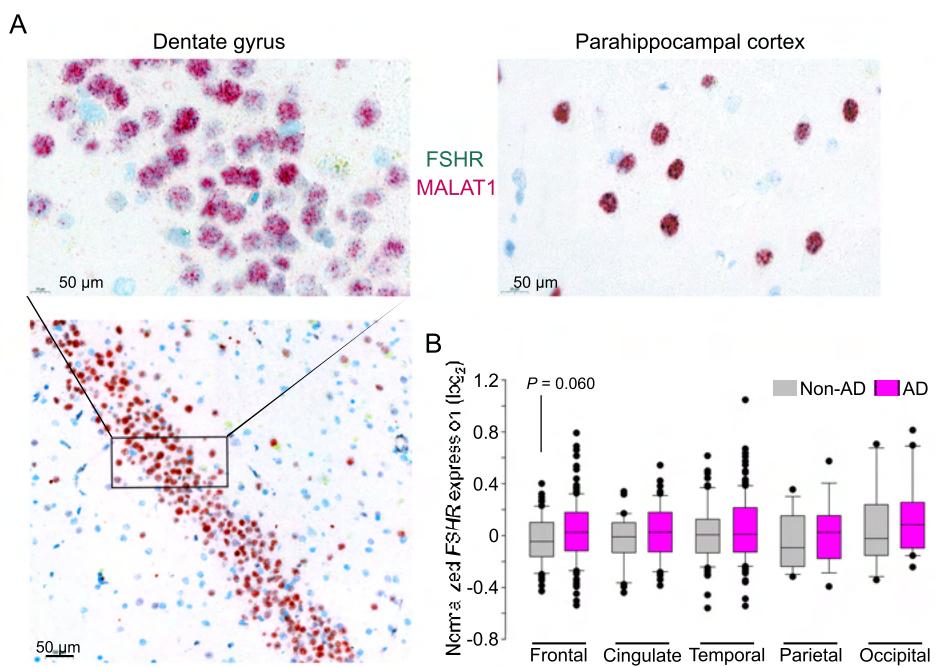
592 **Supplementary Figure 6:** Representative RNAscope micrographs showing *Fshr* transcripts in
593 the ependymal layer of the third ventricle (3V), paraflocculus (PFI) of the cerebellum, granule
594 cell layer of the accessory olfactory bulb (GrA), granular layer of the dentate gyrus (GrDG) of
595 the hippocampus, agranular insular cortex, ventral part (AlV) of the cerebral cortex, raphe
596 magnus nucleus (RMg) of the medulla, interpeduncular nucleus, dorsolateral subnucleus (IPDL)
597 of the midbrain and pons, anterior commissure, intrabulbar part (aci) of the forebrain, medial
598 habenular nucleus (MHb) of the thalamus, and arcuate hypothalamic nucleus, lateral part (ArcL)
599 of the hypothalamus. Scale bar: 50 μ m.

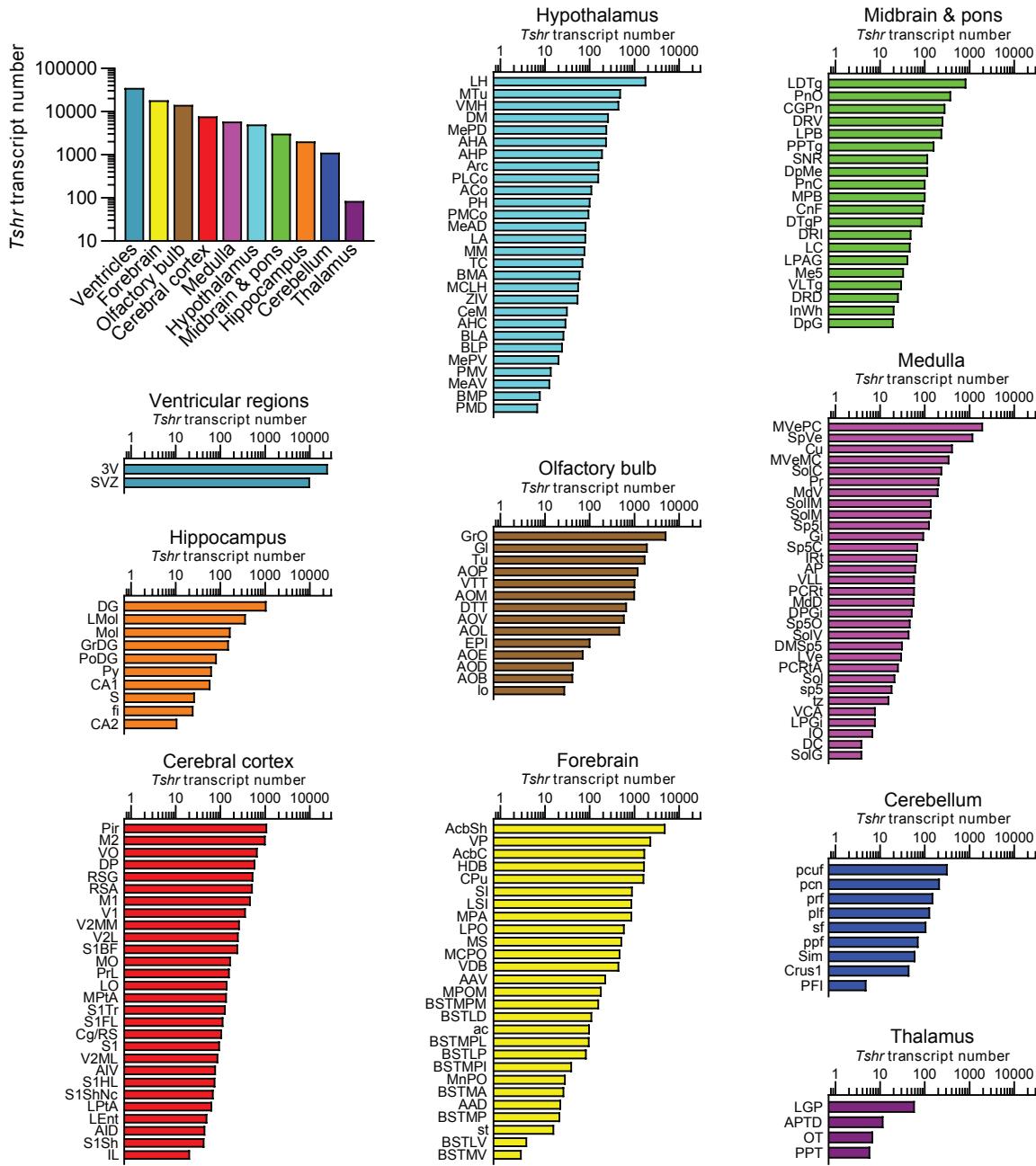
600

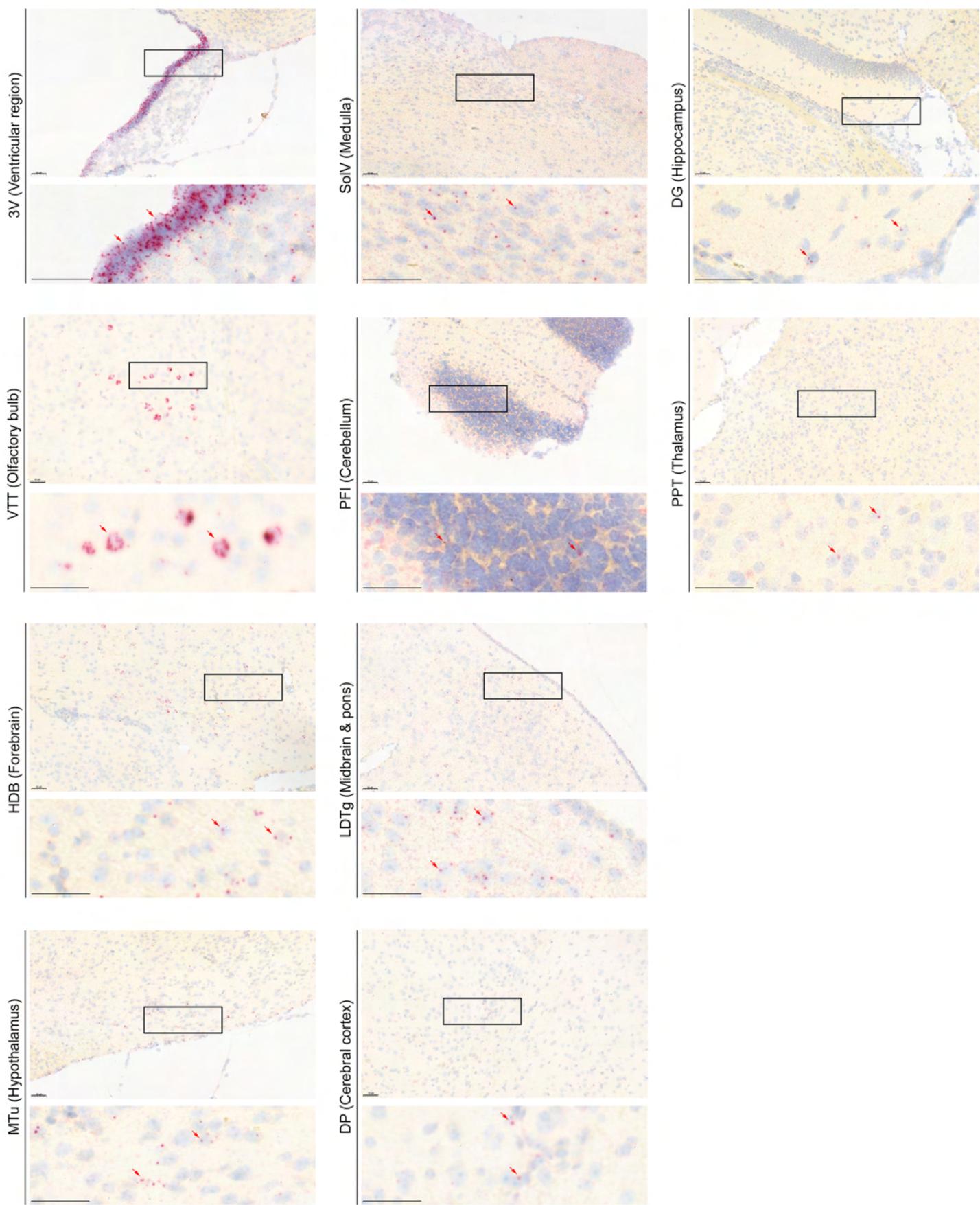
601 **Appendix:** Glossary of the brain regions, nuclei and subnuclei.

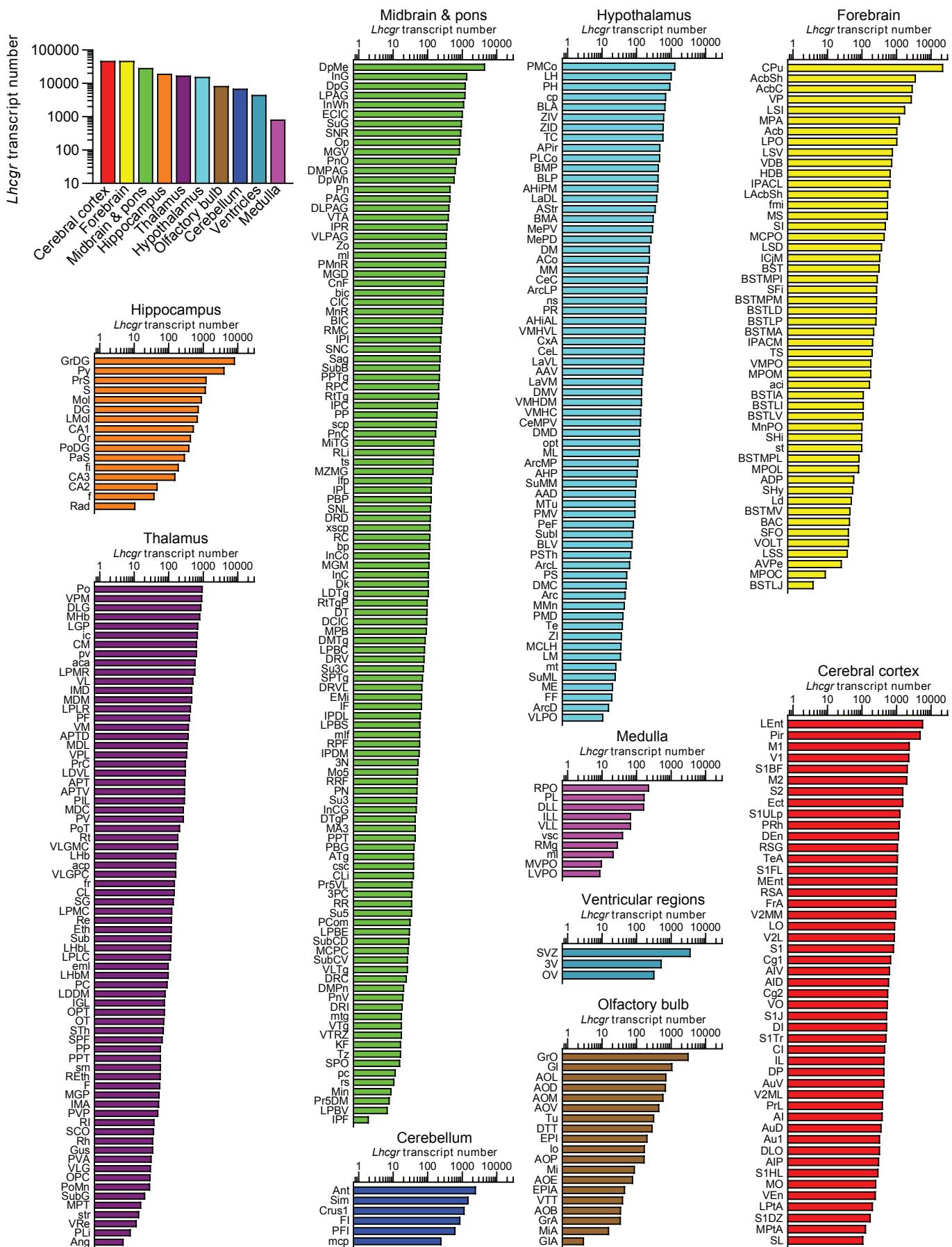
Figure 1

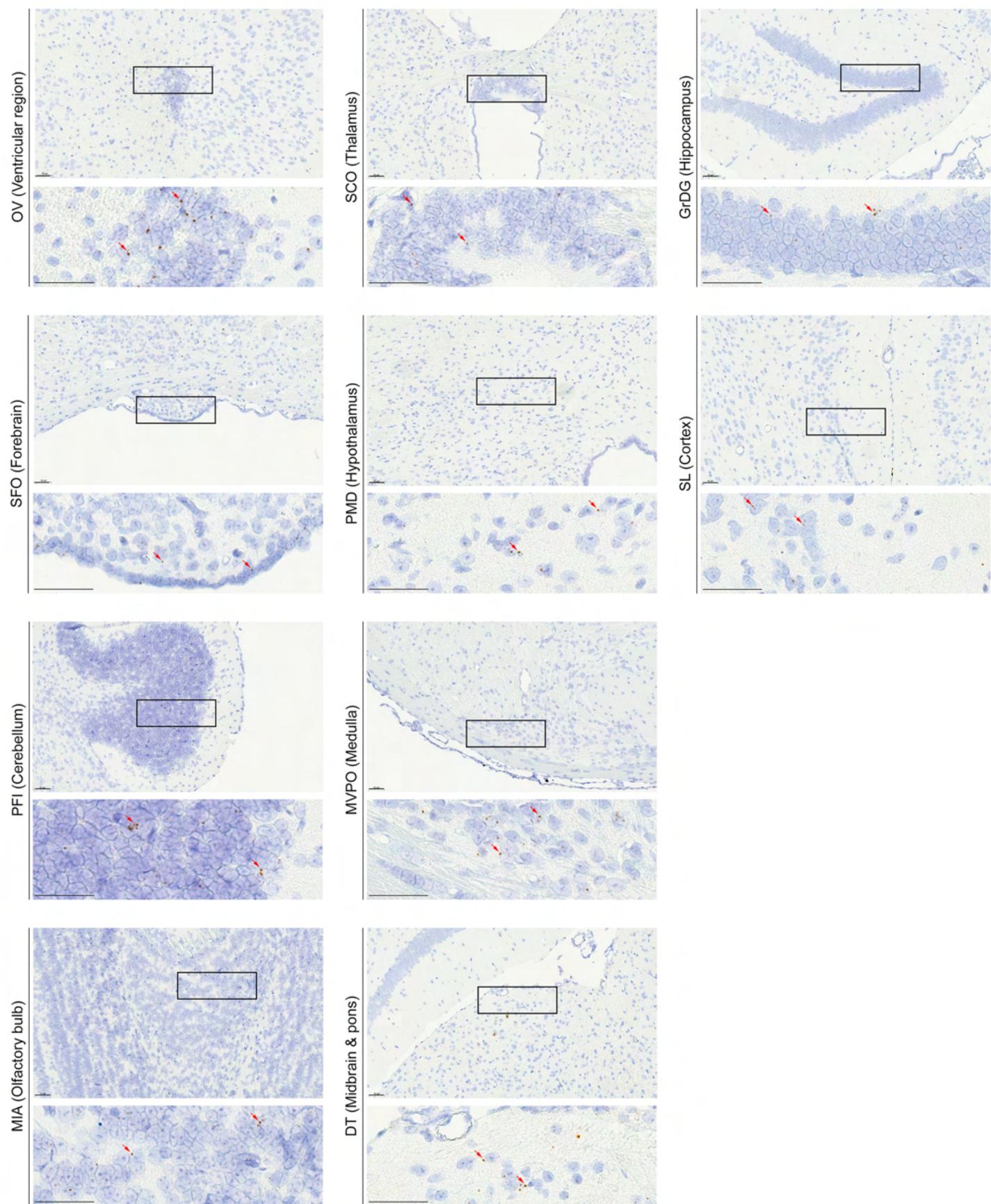




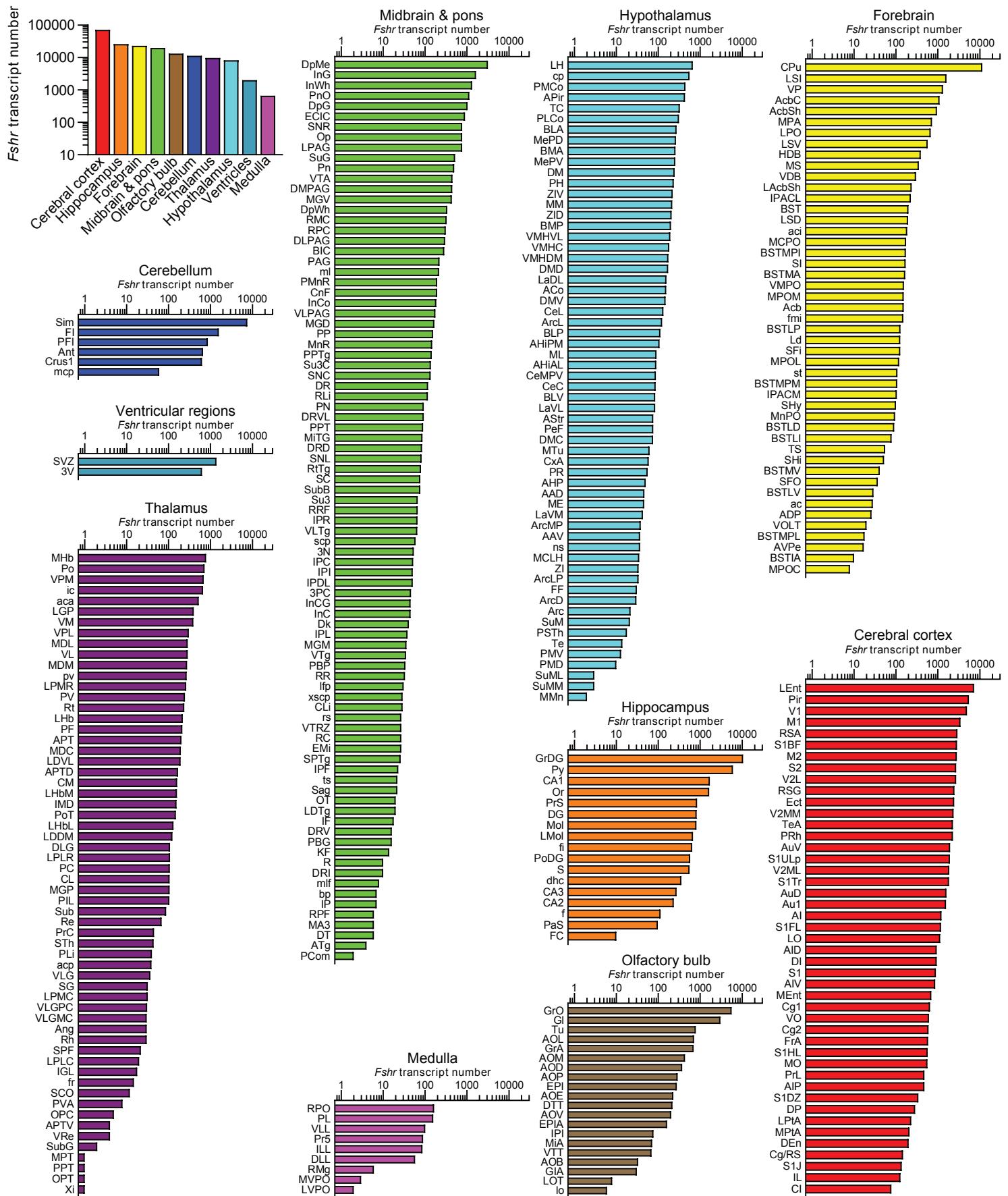

Figure 2

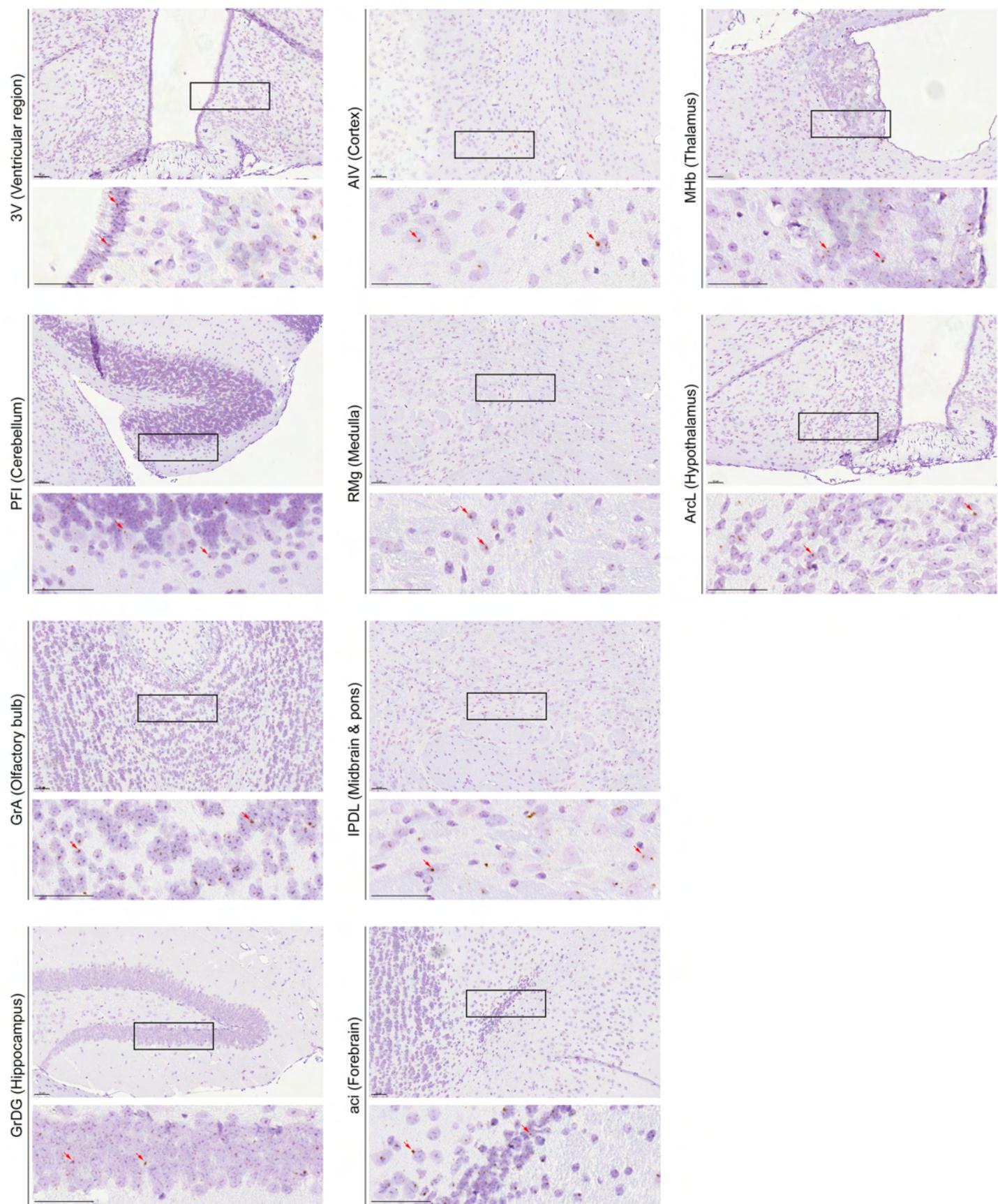

Copyright © 2010


Figure 4


Supplementary Figure 1


Supplementary Figure 2


Supplementary Figure 3


Supplementary Figure 4

Supplementary Figure 5

Supplementary Figure 6

