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A transcriptome atlas of leg muscles from healthy human volunteers reveals molecular and
cellular signatures associated with muscle location
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Abstract

Skeletal muscles support the stability and mobility of the skeleton but differ in biomechanical
properties and physiological functions. The intrinsic factors that regulate muscle-specific
characteristics are poorly understood. To study these, we constructed a large atlas of RNA-
seq profiles from six leg muscles and two locations from one muscle, using biopsies from 20
healthy young males. We identified differential expression patterns and cellular composition
across the seven tissues using three bioinformatics approaches confirmed by large-scale
newly developed quantitative immune-histology procedures. With all three procedures, the
muscle samples clustered into three groups congruent with their anatomical location.
Concomitant with genes marking oxidative metabolism, genes marking fast- or slow-twitch
myofibers differed between the three groups. The groups of muscles with higher expression
of slow-twitch genes were enriched in endothelial cells and showed higher capillary content.
In addition, expression profiles of Homeobox (HOX) transcription factors differed between
the three groups and were confirmed by spatial RNA hybridization. We created an open-
source graphical interface to explore and Vvisualize the leg muscle atlas
(https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/). Our study reveals molecular
specialization of human leg muscles and provides a novel resource to study muscle-specific
molecular features, which could be linked with (patho)physiological processes.

Keywords: Skeletal muscles, mRNA expression atlas, molecular and cellular signatures,
Capillary density, Myofiber type, Homeobox genes

#Department of Bioinformatics, Maastricht University, Maastricht, 6211 LK, the Netherlands


https://doi.org/10.1101/2022.06.01.494335
http://creativecommons.org/licenses/by/4.0/

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.01.494335; this version posted June 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Introduction

Skeletal muscles have grosso modo similar functions, generate the force for mobility and
skeleton support, and maintain the body homeostasis. However, skeletal muscles differ in
biomechanical and physiological features. These features include the size and contractile
properties of the motor units and myofibers, differences in shortening velocity, resistance to
fatigue, and differences in innervation and perfusion (Valentine 2017). Yet, the molecular and
cellular differences that contribute to this muscle specialization are not fully understood. A
molecular atlas for different skeletal muscles could assist in deciphering the molecular basis
of muscle-specific physiological features. Such an atlas may also be used to study differential
muscle involvement in various conditions, such as muscular dystrophies, myopathies,
differences in regenerative potential, physiological compensation in sports and sarcopenia.
In aging and muscle diseases, Muscle involvement it has been observed that some muscles
were affected at an earlier age than others, and that this muscle involvement pattern can be
characteristic for a given disease (Carlier, Laforet et al. 2011, Raz, Henseler et al. 2015,
Albayda, Christopher-Stine et al. 2018, Brogna, Cristiano et al. 2018, Diaz-Manera, Fernandez-
Torron et al. 2018, Servian-Morilla, Cabrera-Serrano et al. 2020). Several studies suggested
that muscle-specific intrinsic molecular factors may explain this muscle involvement pattern
(Kang, Kho et al. 2005, Rahimov, King et al. 2012, Huovinen, Penttila et al. 2015, Raz, Henseler
et al. 2016, Terry, Zhang et al. 2018, Hettige, Tahir et al. 2020, Xi, Langerman et al. 2020). For
example, differences in the cellular pathways and myofiber type (slow- and fast-twitch
myofibers) composition between muscles could play a role (De Micheli, Spector et al. 2020,
Rubenstein, Smith et al. 2020, Xi, Langerman et al. 2020), but may not fully explain the muscle
involvement patterns.

Most of the studies characterizing the molecular variation between muscles were performed
in mice (Campbell, Gordon et al. 2001, Porter, Khanna et al. 2001, Haslett, Kang et al. 2005,
von der Hagen, Laval et al. 2005, Raz, Riaz et al. 2018, Terry, Zhang et al. 2018, Hettige, Tahir
et al. 2020), where muscle-specific mRNA profiles were linked to distinct myofiber type
composition (Campbell, Gordon et al. 2001, Raz, Riaz et al. 2018, Hettige, Tahir et al. 2020).
Since human muscle-related pathologies are not always recapitulated in mouse models (van
Putten, Lloyd et al. 2020), understanding molecular variations between skeletal muscles
should be performed in human samples. Only a few studies compared mRNA profiles between
muscles from healthy human adults, and these studies face several limitations. Skeletal
muscles are highly affected by age (McCormick and Vasilaki 2018, Aversa, Zhang et al. 2019),
yet, the age range in previous studies was broad (Kang, Kho et al. 2005, Huovinen, Penttila et
al. 2015). Moreover, the numbers of sampled muscles and subjects were limited (Abbassi-
Daloii, Kan et al. 2020). A study using postmortem material (Kang, Kho et al. 2005) only partly
reflects molecular composition in living muscles due to storage in cooling conditions.
Understanding muscle involvement in different pathologies can benefit from a molecular
atlas of human muscles.

We generated a transcriptome atlas from six leg muscles and two locations from one muscle
to explore molecular variations within and between muscles. Paired samples were obtained
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78  from 20 healthy male subjects of 25 + 3.6 years old. We show that the seven muscle tissues
79 clustered into three groups, distinguished by cell type composition and mRNA expression
80 profiles. We confirmed the transcriptome analyses with large-scale quantitative
81 immunohistochemistry and RNA in situ hybridization procedures. We discuss the value of this
82  skeletal muscle atlas resource to understand human health and pathologies affecting skeletal
83  muscle tissues.

84 Results

85 Transcriptome atlas of adult human skeletal muscles

86 To determine molecular signatures marking leg muscles, we generated a transcriptome atlas
87  of human skeletal muscles by sequencing biopsies from five upper leg muscles, gracilis (GR),
88 semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM)
89 muscles, and one lower leg muscle, gastrocnemius lateralis (GL) (Figure 1A). We also
90 investigated molecular differences within one muscle by including biopsies from the middle
91  and distal end of the semitendinosus muscle (STM and STD, respectively). These two biopsies
92  were treated as independent muscle samples in subsequent analyses (Figure 1B and C). In
93  total, 128 samples from 20 individuals (aged 25 * 3.6 yr) were analyzed (Supplementary Figure
94  S1), making this currently the largest freely available human muscle atlas. Supplementary
95 Table S1 shows the sample characteristics.

96 Variation in cell type composition between different muscles

97  Skeletal muscle is a heterogeneous tissue containing multiple cell types. The differences in

98 the abundance of these cell types can be reflected in bulk RNA-seq profiles. Therefore, we

99 used RNA-seq data to first explore possible cell type heterogeneity between leg muscles. We
100 summarized the expression level of genes marking each cell type present in human skeletal
101  muscles by calculating their first principal components (eigenvectors) (Supplementary Table
102  S2). We used the eigenvalues of the eigenvectors representing the different cell types to
103  cluster the muscles (Figure 2A) and to identify cell types with significant differences in relative
104  abundance between muscles (Supplementary Figure S2A). The muscle tissues clustered into
105  three groups, Group 1 (G1): GR, STM, and STD; Group 2 (G2): RF, VL, and VM; GL was the only
106  muscle in Group 3 (G3) (Figure 2A). The relative abundance of endothelial cells was
107  statistically the most different between muscles, with higher abundance in G2 and G3 than in
108  G1 (Figure 2A-B, Supplementary Figure S2A). Other cell types marking blood vessels, namely
109 pericytes, post-capillary venule (PCV) endothelial cells, natural killer (NK) cells, T and B cells,
110 and myeloid cells, clustered together with the endothelial cells and all showed a higher
111 abundancein G2 and G3 compared with G1 (Figure 2A-B). These results could suggest a higher
112  capillary density and blood perfusion in/of the muscles in G2 and G3.
113  Genes marking fast-twitch myofibers showed overall higher expression levels in G1, while
114  slow-twitch genes were higher in G2 and G3 (Figure 2A-B). Differences in the relative
115 abundance of non-muscle cell types, pericytes, immune cells, and endothelial cells,
116  distinguished G3 from the G1 and G2 muscles (Supplementary Figure S2B, Figure 2A-B).
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117  While STM and STD showed significant differences in the relative abundance of genes marking
118  endothelial cells (higher expression in STD) and slow-twitch myofibers (higher expression in
119  STM), there were no significant differences between ST and GR, and within the G2 muscles.
120  This suggests that differences between regions of the same muscle may be larger than
121  differences between distinct muscles (Supplementary Figure S2A).

122  Further study of differences in myofiber type composition between groups of muscles
123  To confirm the differences in myofiber types between muscles, we performed
124  immunofluorescence staining for all muscles with a mixture of antibodies to three MyHC
125 isoforms and anti-laminin antibody (Figure 3A). We developed a semi-automated image
126  processing workflow to segment the myofibers using laminin staining and to quantify the
127  fluorescence intensity of each MyHC isoform per myofiber. We next identified myofiber types
128 by clustering all the myofibers using the MFI values of the three MyHC isoforms. The vast
129  majority of the myofibers (94%) were assigned to three major clusters (Figure 3B). Each
130 myofiber cluster had a major MyHC isoform (Figure 3C). Consistent with our study in human
131  vastus lateralis muscle (Raz, van den Akker et al. 2020), the results here suggest that the
132  myofibers are generally not purely type -I, -lIA, or -lIX but contain a mix of myosin heavy chain
133  isoforms. We observed relatively high correlations from 0.55 to 0.62 between normalized
134  gene expression of the dominant MyHC in each cluster and the proportion of myofibers
135 assigned to the corresponding cluster (Figure 3D-F). This correlation demonstrates the
136  reliability of our RNA-seq-based assessment of MyHC expression.

137  Inagreement with the results of the RNA-seq cell type composition analysis (Figure 2A-B), the
138  quantitative histology analysis demonstrated a higher proportion of slow-twitch (oxidative)
139  myofibers and a lower proportion of MyHC2X-dominated myofibers in G2 and GL (G3)
140  muscles than in G1 muscles (Figure 3G, Supplementary Figure S3). The quantitative histology
141  analysis further showed that G2 muscles had a higher proportion of MyHC2A-dominated
142  myofibers than the G3 muscle (Figure 3G, Supplementary Figure S3), highlighting a distinct
143  myofiber type composition of the GL muscle.

144  The myofiber composition results further showed a higher proportion of MyHC2X-dominated
145  myofibers in STD than in STM, whereas STM had a higher proportion of MyHC1 and MyHC2A-
146  dominated myofibers (Supplementary Figure S3). This confirms the existence of regional
147  differences within a muscle (Bindellini, Voortman et al. 2021).

148  Higher capillary density in GL

149  The RNA-seq cell type composition analysis suggested a higher proportion of endothelial and
150 other cell types marking blood vessels in the GL muscle than in other muscles. To confirm this
151  observation, we immunostained for the endothelial cells using antibodies against Endoglin
152  (ENG) and CD31 proteins (Tey, Robertson et al. 2019). We included cryosections of GL and
153  STM with the largest differences in the expression of genes marking endothelial cells (Figure
154  4A). We observed a higher proportion of CD31-positive areas in GL (Figure 4B), which was
155  consistent with higher CD31 RNA expression levels in this muscle (Figure 4C).
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156  Next, we determined the muscles’ capillary density by counting small circular objects stained
157  positive for both CD31 and ENG (Wehrhan, Stockmann et al. 2011). We observed a higher
158 capillary density in GL compared with STM (Figure 4D). This observation is consistent with a
159  higher proportion of endothelial cell types in GL compared with muscles in G1 or G2.

160 Gene expression profiles and molecular pathways distinguishing muscle clusters

161  We next investigated whether muscle-specific gene expression profiles, not explained by cell
162  type composition, could also be found in our dataset. To this end, we determined the
163  differentially expressed genes (DEGs) in every pairwise comparison (Supplementary Figure
164  S4A, Supplementary Table S3). The DEGs that were driven by differences in cell type
165 composition were excluded (Pearson’s R > 0.5 between gene expression levels and the
166  eigenvector of any cell type). The proportion of DEGs that were not driven by cell type
167 composition but discriminated each pair of muscles are shown in Figure 5A. The muscles
168 clustered in a similar way as was observed in the cell type composition analysis: GR, STM, and
169  STD (G1), RF, VL, and VM (G2), and GL (G3) (Figure 5A).

170  To further study muscle-specific expression profiles, we applied weighted gene co-expression
171  network analysis (WGCNA). We identified 35 modules of co-expressed genes (Supplementary
172  Table S4). For each module, we calculated the module eigengene (ME) that represents gene
173  expression levels of the genes in the module. We then implemented a pairwise comparison
174  tofind modules showing significant differences in every pairwise comparison (Supplementary
175  Figure S4B-C). Out of the 35 modules, 27 showed a difference between at least two muscles
176  (module size range: 38-1,459; containing 10,695 genes in total). Nine out of the 27 muscle-
177  related modules had at least five genes marking a specific cell type and were therefore
178  defined as modules driven by differences in cell type composition and were not considered
179  for further analysis (Supplementary Figure S4D). Figure 5B shows the remaining modules that
180 were not driven by cell type composition, nevertheless distinguished pairs of muscles. We
181  then plotted the mean eigenvalues of muscle-related modules in a heatmap (Figure 5C) to
182  determine the clustering of muscles based on the expression patterns of genes in the
183  modules. The WGCNA-based clustering was consistent with the cell type composition and
184  differential expression groups (Figure 5C). In total, seven out of the 18 muscle-related
185 modules demonstrated higher expression levels in G1, four modules had higher expression in
186 G2 and G3, and three modules demonstrated higher expression levels in G3 only (Figure 5C).
187 In addition, although none of the modules showed distinct expression patterns between
188  muscles in G2 and between ST and GR, M.21 module showed higher expression levels in STM
189  than STD (Supplementary Figure S4C).

190 To explore the molecular and cellular pathways in the three groups, functional enrichment
191  analysis was performed in the muscle-related modules. The most significantly enriched
192  biological processes and molecular functions within these modules are listed in Table 1 (a
193  complete list is in Supplementary Table S5).
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194  Higher expression of mitochondrial genes in G2 and G3 muscles consistent with higher
195 proportion of slow myofibers

196 In the M.13 module, with higher expression in G2 (VL, VM, and RF) and G3 (GL), the
197 mitochondrial-related genes were enriched (Table 1). Eighteen out of 122 genes enriched for
198 mitochondria in this module were hub genes, highly interconnected genes in the module
199 (Table 1). To assess a potential impact on mitochondrial metabolic processes, we mapped the
200 122 genes to mitochondrial pathways (Figure 6). The most enriched processes were the
201  respiratory electron transport chain in oxidative phosphorylation, the tricarboxylic acid (TCA)
202  cycle, and beta-oxidation. This observation suggests a higher oxidative metabolism in G2 and
203  G3, which is consistent with a higher proportion of slow myofibers.

204 Homeobox transcription factors contribute to the mRNA diversity between the three
205 groups of muscles

206  An enrichment for “anterior/posterior pattern specification” in M.14 was observed, with
207  higher expression in G2 and G3 (Table 1). This module included HOX hub genes (Figure 7A).
208 To assess whether the diversity between the groups of muscles was associated with the
209 pattern of HOX gene expression, we plotted the normalized expression of all expressed HOX
210 genes across all samples (Figure 7B). Remarkably, clustering based on HOX gene expression
211  clearly separated the G1 from the G2 and G3 muscles (Figure 7B). Moreover, eleven out of 36
212  HOX genes were assigned to three of the muscle-related modules (M.14, M.30, and M.32),
213  which showed the largest differences between the three groups of muscles (Figure 7B). Two
214  HOX genes were selected (HOXA10 and HOXC10) to further confirm the differences in
215  expression between muscles using the in situ hybridization (ISH) procedure (Figure 8A). We
216  included samples from GL and STM showing the largest difference in HOX genes expression.
217  The HOXsignal was mainly localized in myofibers (Figure 8A). Per sample, the average number
218  of foci per myofiber was calculated revealing a higher number of HOXA10 and HOXC10 single
219  molecule RNAs in STM compared with GL (Figure 8B). The ISH results were consistent with
220 the RNA-seq data (Figure 8B-C), further demonstrating the robustness of our RNA-seq data.

221  Web application for exploring transcriptome atlas of human skeletal muscles

222  To facilitate data reuse and exploration of human skeletal muscle atlas, we developed a web
223 application (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp), enabling users to look
224  up the sample information and the expression of any gene of interest. In addition, users can
225 explore the list of genes used for the cell type composition analysis and their expression levels
226  across all the samples. Furthermore, users can list and visualize the differentially expressed
227  genes and the modules and their hub genes.

228 Discussion

229  We generated a large skeletal muscle transcriptome atlas from 20 young healthy males. We
230 included six leg muscles and two locations within one muscle. The atlas presented in this study
231 s unique in terms of the number of muscles, the individuals included, and the age range of
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232 the participants. We confirmed the RNA-seq analysis using large-scale quantitative
233  immunohistochemistry and mRNA in situ hybridization. Based on cell type composition,
234  differential expression analysis and WGCNA, the seven leg muscle tissues consistently
235  clustered into three groups: G1) GR, STM, and STD; G2) VL, VM, and RF; G3) GL. The muscles
236 in G2 and G3 (VL, VM, RF and GL) showed higher proportions of slow myofiber types and
237  higher capillary densities. GL, the only lower leg muscle, was distinct from VL, VM, and RF in
238 its lower proportion of type 2A myofibers and a higher proportion of non-muscle cells.
239  HOXA10 and HOXC10 expression were lower in VL, VM, RF and GL than in GR, STM, and STD
240  muscles.

241  Molecular diversity between muscles in different anatomical locations

242  The muscles included in this study mobilize and stabilize the knee joint. Muscles of the
243  hamstrings (ST and GR) clustered together (G1), and muscles of the quadriceps (RF, VL and
244 VM) clustered together (G2). The Hamstrings and quadriceps alternate in contraction and
245  relaxation to flex, extend and stabilize the knee and aid in moving of the thigh. GL, the only
246  lower leg muscle in our set, is located on the posterior side of the knee, allowing flexion of
247  the knee and plantar flection of the ankle. Our study suggests that there is little molecular
248  diversity between muscles of the same group, as compared to muscles in different groups of
249  muscles.

250 We observed a higher proportion of fast-twitch myofibers in G1 compared with G2 and G3.
251  This could be due to the role of the hamstrings in activities that require a large power output
252  since fast-twitch myofibers are used more in these activities than slow-twitch myofibers
253  (Bottinelli, Pellegrino et al. 1999, Willigenburg, McNally et al. 2014, Camic, Kovacs et al. 2015).
254  Slow-twitch myofibers have a higher mitochondrial content compared with fast-twitch
255  myofibers (Berchtold, Brinkmeier et al. 2000, Gouspillou, Sgarioto et al. 2014). Consistently,
256 G2 and G3 muscles showed higher expression of genes encoding for mitochondrial proteins
257  and a higher ratio of slow-twitch myofibers compared with G1. Slow-twitch muscles are also
258  supplied by a denser capillary network (Nishiyama 1965, Murakami, Fujino et al. 2010,
259  Korthuis 2011). Indeed, we observed a higher capillary density and higher endothelial cells in
260  G3. The three groups of muscles also differed by the expression of HOX genes, specifically,
261 HOXA and HOXC family members. Hox genes establish the anterior/posterior patterning
262  during vertebrate embryonic limb development (Zakany and Duboule 2007). Interestingly, the
263  development of these groups of leg muscles differs in developmental time (Diogo, Siomava
264 et al. 2019), consistent with the expression of Hox genes (Zakany and Duboule 2007). Hox
265  genes expression is not limited to embryonic development, but was found also in adult mouse
266  muscles (Houghton and Rosenthal 1999, Yoshioka, Nagahisa et al. 2021), and Hoxal0 gene
267  wasdifferentially expressed across adult limb mouse muscles (Yoshioka, Nagahisa et al. 2021).
268 Moreover, Yoshioka, Nagahisa et al. (2021) demonstrated that Hoxal0 expression in adult
269  satellite cells affects muscle regeneration in mice. Here, we show that both HOXA and HOXC
270 gene family are expressed in myofibers, and their expression levels differs between leg
271  muscles. Yoshioka, Nagahisa et al. (2021) also showed expression of HOX genes in adult
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272  human muscle tissues. Yet, Terry, Zhang et al. (2018) concluded that the expression pattern
273  of Hox genes in adult muscles is insufficient to explain the mRNA expression diversity in adult
274  mouse skeletal muscles. Whether HOX genes are transcriptionally active in adult myofibers is
275  asubject for future studies.

276  Potential relevance to muscles disease and aging

277  In several muscle-related diseases like muscular dystrophies (MDs), muscle weakness and
278 pathological features like replacement of muscle tissue with fat start in specific muscles and
279  spreads to others as disease progresses (Emery 2002). This pattern differs between diseases,
280 and the reason for the disease-specific involvement pattern is unknown. Exploring the
281  molecular signatures that contribute to the differences between muscles may elucidate the
282  pathophysiology of these diseases. For example, in Duchenne muscular dystrophy (DMD),
283  which is caused by mutations in the DMD gene, the quadriceps is involved earlier, whereas
284  the hamstring muscles are less involved, and the GR is spared (Wokke, van den Bergen et al.
285 2014, Hooijmans, Niks et al. 2017). The observed higher expression level of the DMD gene in
286 ST and GR may be related to the late involvement in DMD patients during disease progression.
287  Accessing the expression level of genes and implementing a quantitative approach (Veeger,
288 van Zwet et al. 2021) to evaluate the association between leg muscle architectural
289  characteristics and gene expression levels could be performed for other muscle diseases.

290 Regional differences within muscles

291  The molecular and cellular differences between the samples from distal and middle locations
292  of ST were larger than differences between ST and GR (Supplementary Figure S2). One module
293  of co-expressed genes, M.21, showed a different expression pattern between STM and STD.
294  This module was enriched for the cellular amino acid catabolic process and monocarboxylic
295  acid catabolic process (Supplementary Table S5). While the distal side of the ST muscle has a
296 rounded tendon, the differences between STM and STD cannot be explained by
297  contamination of tendon tissue or closer proximity to the tendon, because we did not find a
298 difference in the estimated tenocyte proportions between biopsies collected from the distal
299 and middle parts of the muscle (Supplementary Figure S2). The myofiber composition was
300 different between the distal and medial part of the ST muscle (Supplementary Figure S2A,
301 Supplementary Figure S3). A divergent myofiber type composition of biopsies from superficial
302 and deep areas of the same human muscle was reported by Johnson, Polgar et al. (1973) for
303 theGL, RF, VL, VM, adductor magnus, soleus, and tibialis anterior muscles in the leg and thigh.
304  Bindellini, Voortman et al. (2021) also reported different proportions of MyHC2A myofibers
305 indistal and middle parts of tibialis anterior in mice.

306 Interindividual differences were larger than differences between muscles

307 Despite the narrow age range and an inclusion of only one gender in our study, we observed
308 that the percentage of variance explained by the individual surpassed the variance explained
309 by the muscles (Supplementary Figure S5F). This is in agreement with findings from Kang, Kho
310 et al. (2005). The inter-individual variations are possibly resulting from genetic and
311 environmental (activity, exercise, diet, etc.) factors. To account for inter-individual variation,
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312  we included the individual as a random effect in the different analyses and constructed a
313  consensus gene co-expression network by merging the co-expression networks separately
314  constructed per individual. Only after properly accounting for interindividual differences, we
315 could identify the intrinsic differences between leg muscles.

316  Study limitations

317 Differences in cell type composition between muscles are best captured using single-cell
318 sequencing. Previous single cell (De Micheli, Spector et al. 2020, Rubenstein, Smith et al. 2020,
319 Xi, Langerman et al. 2020) and single nucleus (Orchard, Manickam et al. 2021, Perez, McGirr
320 et al. 2021) studies reported the cellular composition of adult human muscles, where single
321 nucleus profiling is preferred because myofibers cannot be dispersed into single cell
322  suspensions. The high costs associated with single-cell technologies are currently prohibitive
323  for performing large scale analyses of >100 samples such as performed in our study. Here, we
324  evaluated differences in cellular composition by deconvolution of bulk RNA-seq based on
325 marker genes reported in single-cell studies. This approach appeared to be suitable for
326  analyzing differences in cellular composition between large sets of samples, as we observed
327 good consistency with immunohistochemistry-based analyses of myofiber type and
328 endothelial cell composition. A limitation of the deconvolution approach is, however, that this
329  only captures cell types for which discriminative marker genes are available.

330 We further acknowledge that RNA expression levels do not necessarily match protein
331 abundance in muscles and do not reflect post translational modifications (Greenbaum,
332  Colangelo et al. 2003, Liu, Beyer et al. 2016). Although a protein atlas could relate to muscle
333  cell function better than RNA expression profiles, generating a genome-wide proteome in
334  skeletal muscles is challenging, as muscle proteomes are dominated by the high abundance
335 of high molecular weight sarcomeric proteins, and capturing the low abundance proteins is
336 challenging. Despite this limitation, we showed consistency between results obtained by
337  mRNA expression profiling and immunohistochemical staining of the proteins that were in
338 focus in our study.

339 In summary, we demonstrated divergent molecular and cellular compositions between
340 skeletal muscles in different anatomically adjacent locations. Overall, the consistency of the
341  gene expression patterns, and the results obtained from the immunohistochemistry and RNA
342 in situ hybridization experiments indicates the high accuracy and reliability of the
343  transcriptome atlas generated in this study. Therefore, this atlas provides a resource for
344  exploring molecular characteristics of muscles and studying the association between
345 molecular signatures, muscle (patho)physiology and biomechanics.

346 Materials and methods

347 1. Subject characteristics and biopsy collection
348 Healthy male subjects (aged 18-32) undergoing surgery of the knee for anterior cruciate
349 ligament (ACL) reconstruction using hamstring autografts were recruited from outpatient
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350 clinics of two hospitals: Erasmus Medical Center and Medisch Centrum Haaglanden. Inclusion
351 criteria included age, sex, and the amount of routine exercise. Subjects eligible for
352  reconstructive ACL surgery were mobile, had full range of knee motion, minimal to no knee
353 swelling and had physiotherapy until the surgery.

354 A total of seven biopsies were taken from six different leg muscles (Figure 1A). To study
355 molecular differences within the muscle, two biopsies from the middle and distal sides of the
356 semitendinosus muscle (STM and STD, respectively) were collected. During the surgery, the
357 tendons of the gracilis (GR) and semitendinosus muscles were used to reconstruct the ACL,
358 and biopsies from these muscles were taken directly from the graft after harvesting the
359 autografts at the beginning of the operation. After the ACL construction, biopsies from
360 gastrocnemius lateralis (GL) rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM)
361 muscles were taken by percutaneous biopsy (modified Bergstrom (Bergstrom 1975)) using a
362 minimally invasive biopsy needle. All biopsies were immediately frozen in liquid nitrogen and
363  were kept at -802C.

364  The study was approved by the local Medical Ethical Review Board of The Hague Zuid-West
365 and the Erasmus Medical Centre and conducted in accordance with the ethical standards
366 stated in the 1964 Declaration of Helsinki and its later amendments (ABR number:

367 NL54081.098.16). All subjects provided written informed consent prior to participation.

368 2. Sample processing, RNA isolation, and cDNA library preparation

369 Biopsies were cryosectioned for RNA isolation, immunofluorescence staining, and in situ
370 hybridization. For each sample, three cryosections of 16 um thick were collected onto
371  SuperFrost slides (Thermo Fisher Scientific, 12372098) and stored at —20°C prior to staining.
372  Forin situ hybridization, the cryosections were mounted on SuperFrost Plus Adhesion slides
373  (Thermo Fisher Scientific, 12625336) and stored at -80°C. For the RNA isolation, cryosections
374  were transferred into MagNA lyser green beads tubes (Roche, 3358941001). Then, they were
375 homogenized in QlAzol lysis reagent (Qiagen, 79306) using the MagNA Lyser. Subsequently,
376  total RNA was purified with chloroform. For samples from a subset of individuals, RNA was
377  precipitated with isopropyl alcohol (Supplementary Table S1). For the other samples total
378 RNA was mixed with an equal volume of 70% ethanol and further purified with miRNeasy Mini
379 Kit (217004, Qiagen) using the manufacturer’s protocol (Supplementary Table S1). To
380 evaluate the effect of two different RNA isolation protocols, RNA from five GR samples were
381 isolated with both protocols (Supplementary Figure S5A). For both protocols, DNA was
382 removed using RNAse-free DNAse set (Qiagen, 79254) using the manufacturer’s protocol.
383 RNAintegrity was assessed with the Agilent 2100 Bioanalyzer using Eukaryote Total RNA Nano
384 chips according to the manufacturer’s protocol (Agilent BioAnalyzer, 824.070.709)
385 (Supplementary Table S1).

386  Poly(A) library preparation was performed in four batches each with 39 samples at Leiden
387 Genome Technology Center (LGTC, the Netherlands). Information on the RNA isolation
388 protocol and library preparation batches used for each sample can be found in Supplementary
389 Table S1. Samples from different muscles and individuals were equally distributed in each
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390 library batch to minimize a batch effect bias. Approximately 200ng of total RNA was used as
391  starting material. mRNA was enriched using oligo dT beads (polyA+ bead-based enrichment),
392 fragmented, and converted to cDNA using random hexamers and SuperScript Il (Invitrogen).
393  End-repair, A-tailing, and adapter ligation were performed using NEBNext chemistry (New
394  England Biolabs) and xGen dual index UMI adapters (Integrated DNA Technologies) according
395 to the manufacturer’s protocol. Finally, USER digest (New England Biolabs) and 15 cycles of
396 library amplification were performed. Libraries were purified with XP beads and analyzed for
397 size and purity on a Bioanalyzer DNA HS chip (Agilent BioAnalyzer, 5067-1504).

398 3. Bulk RNA-sequencing and analysis

399 lllumina sequencing was performed by GenomeScan BV (Leiden, the Netherlands) on a
400 Novaseqg-6000 producing paired-end 2 x 150 bp reads. Fastq files were processed using the
401 BioWDL pipeline for processing RNA-seq data (v3.0.0,
402  https://zenodo.org/record/3713261#.X4GpD2MzYck) developed by the sequencing analysis
403  support core (SASC) team at LUMC. The BioWDL pipeline performs FASTQ pre-processing,
404  RNA-seq alignment, deduplication using unique molecular identifiers (UMIs), variant calling,
405 and read guantification. FastQC (v0.11.7)
406  (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for checking raw
407 read QC. Adapter clipping was performed using Cutadapt (v2.4) (Martin 2011) with default
408  settings, followed by checking the QC using FastQC. RNA-Seq reads’ alignment was performed
409  using STAR (v2.7.3a) (Dobin, Davis et al. 2013) against the GRCh38 reference genome. PCR
410  duplications were removed based on UMIs using UMI-tools (v0.5.5) (Smith, Heger et al. 2017).
411 Gene read quantification was performed using HTSeq-count (v0.11.2) (Anders, Pyl et al.
412  2015). Ensembl version 98 (http://sep2019.archive.ensembl.org/) was used for gene

413  annotation. Samples with less than 5M reads assigned to annotated exons were re-sequenced
414  or excluded from all downstream analyses. A SNP calling was performed using GATK4
415  (v4.1.0.0) (McKenna, Hanna et al. 2010). Possible sample swapping was checked using an SNP
416  panel with 50 SNPs (Yousefi, Abbassi-Daloii et al. 2018). The similarity for calls of these SNPs
417  showed that two samples in the same RNA isolation batch were swapped. We revised the
418 labels of these two samples in our dataset for downstream analyses.

419  We performed all the analyses in RStudio Software (v1.3.959)(RStudio-Team 2020) using R
420  Statistical Software (v4.0.2)(R-Core-Team 2020). Samples with more than 5M reads assigned
421  to annotated exons were included in all downstream analyses (Supplementary Figure S5B).
422  The HTSeq count table was used to create a DGEList object using the edgeR Bioconductor
423  package (v3.30.3) (Robinson, McCarthy et al. 2010). The filterByExpr function from the edgeR
424  Bioconductor package was used to keep genes with 10 or more reads in at least 16 samples
425  (the number of samples in the smallest muscle group). The dataset was normalized using the
426  calcNormFactors function (considering trimmed mean of M-values (TMM) method) from the
427  edgeR Bioconductor package.
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428 4. Quality control and batch effect correction

429  We performed principal component analysis (PCA) to evaluate the main difference between
430 samples in an unsupervised manner. Log-transformed expression values after normalization
431 by counts per million (CPM) were used to calculate principal components using the base
432  function prcomp with the center and scale argument set to TRUE.

433  We then performed the analysis of variance to determine the factors driving gene expression
434  variations. We estimated the contribution of known biological (muscle tissues and Individuals)
435 andtechnical (RNA isolation protocol, RIN score, initial RNA concentration, library preparation
436  batch, sequencing lane, and library size) factors on variation of gene expression. Data
437  transformed by the voom function from the limma Bioconductor package (v3.44.3) (Law,
438 Chen et al. 2014, Ritchie, Phipson et al. 2015) was used to fit a linear model for each gene.
439  We included all biological and technical factors as fixed effects and fitted the following linear
440 model:

441  Formula-1: voom — transformed expressionge,, ~ muscle + individual + RNA isolation protocol +
442 RIN score + concentration + library preparation batch + sequencing lane + library size + error

443  We used ANOVA from the car R package (v3.0-10) (Fox and Weisberg 2019) to estimate the
444  relative contribution of each of these factors in the total variation of gene expression.
445  Outcomes from both PCA and ANOVA revealed a strong library preparation batch effect
446  (Supplementary Figure S5C and D), while the effect of other technical factors (RNA isolation
447  protocol, initial RNA concentration, RIN score, and library size) was minimal (Supplementary
448  Figure S5D). Accordingly, the HTSeq count table was corrected for the batch effect by the
449 ComBat-seq Bioconductor package (Zhang, Parmigiani et al. 2020). The muscle was included
450 in the ComBat-seq model to preserve possible molecular differences between muscles. The
451 ComBat-Seq count table was used to create a DGEList object, followed by removing the low
452  expressed genes and additional normalization using filterByExpr and calcNormFactors
453  functions, respectively.

454  Outcomes of PCA and ANOVA confirmed the proper removal of the batch effect
455  (Supplementary Figure S5E and F). In addition, the percentage of variance explained by the
456 individual was found to be bigger than the variance explained by the muscle (Supplementary
457  Figure S5F). We, therefore, included the individual as a random effect in all different analyses.
458  Moreover, the RIN score was not considered as an exclusion criterion as it did not contribute
459  to gene expression variation (Supplementary Figure S5F).

460 5. cell type composition estimation

461  We collected lists of genes marking different cell types that are present in human skeletal
462  muscles from different studies (Smith, Meyer et al. 2013, Kendal, Layton et al. 2019, Perucca
463  Orfei, Vigano et al. 2019, Rubenstein, Smith et al. 2020)(Supplementary Table S2). The
464  expression of genes marking each cell type was summarized by their eigenvector (first
465  principal component). We subsequently fitted a linear-mixed model to the eigenvector of
466  each cell type using the Imer function from the ImerTest R package (3.1-3) (Kuznetsova,
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467  Brockhoff et al. 2017). These models included muscle as a fixed effect and individual as a
468 random effect shown in the formula below:

469 Formula-2:  eigenvector ~muscle + (1|individual) + error

cell type
470  We tested the significance of fixed effects with the ANOVA from the car R package. The

471  Benjamini-Hochberg false-discovery rate (FDR) was applied to adjust for multiple testing. We
472  conducted post-hoc pairwise comparisons using the Ismeans R package (v2.30-0)(Lenth 2016)
473  toidentify a significant difference in the expression level of genes marking different cell types
474  between different muscles. We used the pheatmap function from the pheatmap R package
475  (v1.0.12) (https://CRAN.R-project.org/package=pheatmap) with the difficult setting to draw
476  all the heatmaps.

477 6. Differential expression analysis (DEA)

478  We used the voom-transformed data to fit linear mixed-effects models for each gene using
479  the Imer function from the ImerTest R package. The individual and muscle were included in
480 the models as a random-effect and a fixed-effect, respectively, similarly to the formula-2. The
481 voom precision weights showing the mean-variance trend for each observation were
482 incorporated into the models. We tested the significance of fixed effects with the ANOVA
483  from the car R package and the FDR was applied to adjust for multiple testing. We conducted
484  post-hoc pairwise comparisons using the Ismeans R package to identify significant differences
485  between each pair of muscles.

486  We calculated the Pearson correlation between differentially expressed genes (DEGs, FDR <
487  0.05) and the eigenvector of each cell type using the cor and cor.test from the stats R package.
488  We adjusted for multiple testing using the FDR. DEGs which were significantly associated with
489  a cell type eigenvector (Pearson correlation < 0.5 and FDR > 0.05) were defined as cell type
490 related.

491 7. Consensus gene co-expression network analysis

492 In order to construct a gene network, we used the weighted gene co-expression network
493  analysis algorithm using the WGCNA R package (v1.69) (Langfelder and Horvath 2008). We
494  used the voom transformed data as an input. In order to calibrate the parameters of the
495 network, we used the approach published by our group (Abbassi-Daloii, Kan et al. 2020).
496  Briefly, prior knowledge of gene interactions from a pathway database was used to select the
497  most optimal set of WGCNA parameters. We used the biweight midcorrelation (median-
498 based) function in WGCNA of the signed hybrid type to define the adjacency matrix. We
499 performed a full parameter sweep, testing various combinations of settings for power (6, 8,
500 10, 12, 14, 18, and 22), minClusterSize (15, 20, and 30), deepSplit (0, 2, and 4) and CutHeight
501 (0.1, 0.15, 0.2, 0.25, and 0.3). These different settings were assessed using the knowledge
502 network obtained from the Reactome database using g:ProfileR2 R package (v0.2.0) (Kolberg,
503 Raudvere et al. 2020). All possible pairs of genes were assigned into four different groups: (1)
504  in the same module and in the same pathway, (2) in the same module but not in the same
505 pathway, (3) not in the same module but in the same pathway and (4) neither in the same
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506 module nor in the same pathway. The enrichment factor
507 (No.pairs in group 1 X No.pairs in group 4

——— —— ) was calculated. The optimal set of parameters with the
No.pairs in group 2 X No.pairs in group 3

508 highest enrichment factor was: power: 8, MinModuleSize: 20, deepSplit: 0, Cut Height: 0.2.
509 To identify gene co-expression networks that were consistent across individuals, we
510 constructed first co-expression networks for each individual separately and merged these
511 subsequently into a consensus co-expression network. To achieve this, the adjacency
512  matrices per individual were raised to power 8 and converted into topological overlap
513  matrices (TOM). TOM of some individuals may be overall lower or higher than TOM of other
514  individuals. To account for this, we performed percentile (0.95) normalization over all the
515 TOMs. The consensus TOM was then calculated by taking the elementwise 40th percentile of
516 the TOMs. The consensus TOM was used to calculate the TOM dissimilarity matrix
517 (dissTOM =1 —TOM) which was then input to agglomerative hierarchical clustering
518 (Langfelder and Horvath 2012). Finally, modules were identified using a dynamic tree-cutting
519 algorithm from the resulting dendrogram (Langfelder, Zhang et al. 2008) specifying
520 MinModuleSize = 20 and deepSplit = 0. The module labeled “grey” was not considered in the
521  analysis as it consisted of genes that did not assign to any specific module. The summary
522  expression measure for each module, the module eigengene (ME), was calculated (Zhang and
523  Horvath 2005). Modules with similar expression profiles were merged at the threshold of 0.2.
524  In addition, we calculated the intramodular connectivity to identify highly interconnected
525 genes, called hub genes, per module.

526  7.1. Module-muscle association

527 To identify modules that differ in expression levels between muscles (named as muscle-
528 related modules), we fitted linear mixed-effect models on the module eigengenes (MEs) using
529 the Imer function from the ImerTest R package. These models included individual as a
530 random-effect and muscle as a fixed-effect, like formula-2. We tested the significance of fixed
531  effects with ANOVA from the car R package. We used ranova from the LmerTest R package to
532 test the significance of random effects. To identify significant differences between each pair
533  of muscles, we used a post-hoc multiple comparison tests as implemented in the Ismeans R
534  package.

535 We performed a functional enrichment analysis for the muscle-related modules using ClueGO
536  App (v2.5.7) (Bindea, Mlecnik et al. 2009) in Cytoscape (v3.8.1) (Kohl, Wiese et al. 2011). We
537 used the CyREST APl (Ono, Muetze et al. 2015) to execute the ClueGO by R script
538  (http://www.ici.upmc.fr/cluego/cluegoDocumentation.shtmil). Pathways and gene

539  annotations from Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO),
540 Reactome, and WikiPathways (WP) were included. The Benjamini-Hochberg FDR was applied
541  to adjust for multiple testing. The annotations with any differentially expressed genes or hub
542  genes or a transcription factor were included. To eliminate the redundant annotations, we
543  only included an annotation with the lowest FDR for each ‘GoGroups’ defined by ClueGO and
544  the annotations marked as ‘LeadingGoTerm’ by ClueGO.
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545  We next determined muscle-related modules which showed the largest differences between
546  the three groups of muscles. These modules were selected based on the FDR of GlueGO
547  enrichment (< 0.01) and the F-value of the genes resulting from DEA in each module (third
548  quantile > 5.5).

549 8. Immunofluorescence staining, imaging, image analysis

550 The immunofluorescence staining included myofiber typing and capillary staining. Prior to the
551  staining, slides were allowed to equilibrate to room temperature, blocked for 30 minutes
552  using 5% milk powder (FrieslandCampina, Amersfoort, The Netherlands) in phosphate-
553  buffered saline containing 0.05% tween (PBST).

554 8.1 Myofiber type composition

555  8.1.1 Myosin staining

556 The antibodies for three myosin heavy chain (MyHC) isoforms (MyHC1, MyHC2A, and
557  MyHC2X) and laminin were used as described by Riaz, Raz et al. (2016). Briefly, cryosections
558  were stained with rabbit anti-laminin (1:1000, Sigma-Aldrich, L9393) and mouse anti-6H1
559  (1:5, DSHB; AB_2314830) detecting MyHC2X, for two hours at room temperature. Following
560 the PBST washing, the secondary antibodies goat anti-rabbit-conjugated-Alexa Fluor® 750
561  (1:1000, Thermo Fisher Scientific, A21039) and goat anti-mouse-conjugated-Alexa Fluor® 488
562  (1:1000, A11001, Thermo Fisher Scientific) were incubated for an hour at room temperature.
563  After PBST washing, sections were incubated overnight at four degrees with a mix of
564  fluorescently conjugated monoclonal antibodies: BA-D5-conjugated-Alexa Fluor® 350 (1:600,
565 DSHB, AB 2235587) and SC-71-conjugated-Alexa Fluor® 594 (1:700, DSHB, AB 2147165),
566  detecting MyHC1 and MyHC2A, respectively. Lastly, after washing with PBST, the cryosections
567 were mounted with ProLong™ Gold antifade reagent (P36930, Thermo Fisher Scientific) and
568  stored at four degrees prior to imaging.

569  8.1.2. Image acquisition, processing, and quantification

570 The stained slides were imaged with the Axio Scan.Z1 slidescanner (Carl Zeiss, Germany) using
571 the ZEN Blue software (v2.6), capturing the entire section. The images were acquired with a
572  10x/0.45 Plan-Apochromat objective lens and the same image settings were used for all
573  slides.

574  After imaging all cryosections, a shading profile was calculated using the ‘Shading Reference
575  From Tile Image’ in ZEN Lite (v3.3) for each channel in each slide. This procedure produces a
576  shading profile for each channel per slide and does not apply the shading correction. To
577 improve the accuracy of the shading profile, we calculated the median over all the shading
578 profiles over all scanned slides for each channel. These median shading profiles were then
579 used to perform the shading correction using ‘Shading Correction’ in ZEN Lite (v3.3).

580  Further image processing was performed using Fiji (v 1.51) (Schindelin, Arganda-Carreras et
581 al. 2012). Since the aggregated dataset is relatively large, we created a modular set of Fiji
582  macros that process each step independently.
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583  First, we converted the slidescanner datasets from the Carl Zeiss Image format (CZI) to
584  multichannel 16 bit TIFF files using BioFormats (Linkert, Rueden et al. 2010). In this step, the
585 images were 4x downsampled, by averaging, to improve the processing speed and reduce the
586  dataset size. After downsampling the effective pixel size was 2.6 um.

587 Next, we applied a semi-automated process to generate tissue masks from the laminin
588 channel to determine the (parts of) cryosections to be quantified. To generate masks, we first
589 used an automated procedure, inspired by ‘ArtefactDetectionOnLaminin’ method from
590 Musclel (Mayeuf-Louchart, Hardy et al. 2018). Subsequently, a manual step was incorporated
591 to check and correct the generated masks. For each sample, we performed manual
592  corrections to remove artifacts such as tissue folds, out-of-focus regions, scratch, and dirt
593  objects.

594  Then, we generated ‘masked’ copies of the laminin channel. To reduce any possible artifacts
595 due to this binary mask, we applied a gaussian blur of 4 pixels to the masks and we set the
596 pixel values of the laminin channel that were outside the mask to the median intensity of
597 these pixels. The masked laminin images were then fed into the /lastik pixel classification
598 algorithm (Berg, Kutra et al. 2019). In llastik we trained a classifier to identify two classes:
599  ‘myofiber boundary’ and ‘not myofiber boundary’. This classifier was then used to process all
600 images in this dataset. This classification step greatly improved the subsequent laminin
601 segmentation outputs.

602  Next, the laminin objects were segmented based on the output of the previous step. In short,
603 the image was slightly blurred with a Gaussian Blur, after which the image was segmented
604  using the Fiji method “Find Maxima” with output “Segmented Particles”, followed by binary
605 dilation, and closing. Finally, the regions-of-interest (ROI) (individual laminin segmented
606 objects) were generated using the ‘Analyze Particle’ method from Fiji.

607  After laminin segmentation, we measured the mean fluorescence intensity (MFI) as well as
608 other propertiesin ROIs for all three channels using the Fiji measurement: “Mean gray value”.
609 In addition, we recorded the “Area”, “Standard deviation”, “Modal gray value”, “Min & max
610 gray value”, “Shape descriptors”, and “Median” features. We also quantified the results of
611 the pixel-classification step by measuring its “Mean gray value” in each ROl as well as on the
612  border (3-pixel enlargement) of each ROI. This quantification allows the assessment of the
613  myofiber ‘segmentation certainty’, the certainty is high when the pixel-classification is high
614  for the ‘myofiber boundary’ class all around the myofiber and low in the interior of the
615 myofiber.

616  8.1.3. Myofiber type composition analysis

617  First, we filtered out the non-myofiber objects since the laminin segmentation was automatic.
618 We applied a percentile filtering for a ‘segmentation certainty’ on the cross-sectional area
619 (CSA) and the circularity values. The objects with (1) pixel-classification on the object
620  boundary less than 5t percentile or (2) pixel-classification in the interior of the object greater
621  than 95™ percentile or (3) CSA less than 10™" percentile or greater than 99t percentile or (4)
622  circularity greater than 1%t percentile were excluded. Samples from different muscles were
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623 pooled for all different filtering criteria except for the filtering for CSA, as the density
624  distributions of CSA were found to differ between different muscles. In the next step, we
625 selected the cryosection with the largest number of myofibers for each sample for further
626  analysis. Samples with a minimum of a hundred myofibers were included in the myofiber type
627  analysis. The final dataset contained 1,287,729 myofibers from 96 samples, with a median of
628 888 myofibers per sample. As previously described by Raz, van den Akker et al. (2020), per
629  myofiber, the MFI values for each of three MyHC isoforms were scaled per sample (without
630 centering). Subsequently, the composition of myofiber types was determined by clustering of
631 thetransformed (natural logarithm) MFI values. Each myofiber was assigned to a cluster using
632 the mean-shift algorithm (bandwidth (h) = 0.02), a density-based clustering approach,
633 implemented in the LPCM R package (v0.46-7) (Cheng 1995, Einbeck 2011). All the small
634  clusters, with less than 1% from the total myofibers, were excluded. Then, per myofiber type
635 cluster, the proportions of the total myofibers were calculated per sample.

636 8.2 Capillary density

637  8.2.1. Staining and image acquisition

638  Sections were stained with the primary antibodies: anti-human CD105 (endoglin, ENG) biotin-
639 conjugated (1:100, BiolLegend, 323214), anti-human CD31-Alexa Fluor® 594 conjugated
640 (1:400, BioLegend, 303126), and rabbit anti-laminin for two hours at room temperature. After
641  PBST washing, the slides were incubated with streptavidin-Alexa Fluor® 647 conjugated
642  (1:500, Life Technologies, S21374) and goat anti-rabbit Alexa Fluor® 750-conjugated for an
643  hour. After final PSBT washing, nuclei were counterstained with 4’,6-diamidino-2-
644  phenylindole (DAPI) (0.5 pg/mL, Sigma-Aldrich) and were mounted with ProLong™ Gold
645 antifade reagent. Cryosections were imaged with Axio Scan.Z1 slide scanner.

646  8.2.2. Image processing and quantification

647  We used Fiji macros created for the myofiber composition analysis to convert CZI files to TIFF
648 files, to generate the masks, and for the laminin segmentation. We then measured the cross-
649  sectional area for laminin segmented objects using the Fiji “Area” measurement. Next, a
650  Gaussian Blur filter with an o value set to 1 was implemented on the CD31 channel, followed
651 by thresholding using setAutoThreshold (“Li dark” algorithm) and processing using Watershed
652  algorithm to separate touching and overlapping cells. The lumens were filled using the Fill
653  Holes algorithm in Fiji. We then measured the properties in ROIs using the Fiji measurements:
654  “Area”, “Mean gray value”, “Standard deviation”, and “Shape descriptors”. We then
655 implemented the same processing on the ENG channel to select the ROIs but measured the
656  “Mean gray value” and “Standard deviation in the CD31 channel to determine the CD31 and
657  ENG colocalization.

658  For the image quantification, we first calculated the ratio between the total positively stained
659 areas for CD31 and the total area of the muscle section, expressed as a percentage. We then
660 determined the capillaries as the objects with (1) positive signals for both CD31 and ENG
661  (Wehrhan, Stockmann et al. 2011), (2) larger than 3 um? and smaller than 51 um? (Poole,
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662  Copp et al. 2013), and (3) circularity larger than 0.5. Finally, we defined capillary density as
663  the number of capillaries per unit (um?) of muscle area.

664 9. RNAscope in situ hybridization

665 We detected single-molecule RNA using Multiplex Fluorescent Reagent Kit v2 (ACDBio,
666  323135) according to the manufacturer’s protocol for fresh-frozen cryosections, with the
667 following adjustments to optimize the experiment for human muscles: fixation with 4%
668 paraformaldehyde at 4 degrees for an hour, and all washing steps with washing buffer were
669 performed three times for two minutes each. The protocol was optimized on control muscle
670 cryosections by negative and positive probe sets provided by ACDBio. We performed the
671  hybridization using probes for Hs-HOXA11 (ACDBio, 1061891-C1), Hs-HOXA10 (ACDBio,
672 867141-C2), and Hs-HOXC10 (ACDBio, 803141-C3). Following the completion of the RNA
673  probe hybridization, we carried out an immunostaining step at room temperature to label
674  myofibers with rabbit anti-laminin followed by secondary labeling with goat anti-rabbit-
675 conjugated-Alexa Fluor® 555 (1:1000, Abcam, ab150078). Lastly, following PBST washing, the
676 nuclei were counterstained with DAPI (ACDbio, 323110). Cryosections were mounted with
677 ProLong™ Gold antifade reagent. Slides were imaged with a Leica SP8 confocal microscope,
678 equipped with a white light laser (WLL) source (Leica Microsystems, Germany) using a 40x/1.3
679 OIL objective. For each sample, multiple tiles at different regions across the muscle
680  cryosection were images with seven z-planes (z-step size = 0.35 um). The images for DAPI and
681 HOXA11 channels were acquired using a HyD 2 detector with 414nm-532nm excitation lasers
682  and with 504nm-543nm excitation lasers, respectively. A HyD 4 detector was used to image
683  anti-laminin and HOXA10 channels with 558nm-585nm excitation lasers and with 603nm-
684  665nm excitation lasers, respectively. A HyD 5 detector was used to image HOXC10 channel
685  with 675nm-800nm excitation lasers. The same image settings were used for all samples.
686  We performed the image processing in multiple steps and created a modular set of Fiji macros
687  that process each step independently. We first merged and converted the Leica Image File
688  (LIF) to a multichannel 16 bit TIFF file using the Grid/Collection Stitching Plugin (Preibisch,
689  Saalfeld et al. 2009). We segmented myofibers using the following steps: 1) creating the
690 maximum intensities projections of the laminin channel, 2) creating ‘probability’ maps of the
691 laminin channel in llastik, 3) adding a point selection to the TIFF files, which seed the
692  watershed, and 4) implementing watershed segmentation with two halting points for user
693 interaction, first watershed segmentation and then making the ROI list (individual segmented
694  myofibers) generated using the ‘Analyze Particle’ command.

695  After myofiber segmentation, we implemented a Gaussian Blur filter with an o value set to 1
696  on each probe channel. We then applied the color threshold settings using setAutoThreshold
697  (“RenyiEntropy dark” algorithm). Finally, for each probe channel, we measured the foci
698  properties in each segmented myofiber using the Fiji measurements: “Area”, “Mean gray
699 value”, “Standard deviation”, and “Shape descriptors”.

700 The RNA foci were defined as speckles smaller than 3.5 um? with circularity above 0.98. We
701  excluded HOXA11 from further analysis due to a low signal-to-noise ratio, agreeing with a
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702  lower expression level than HOXA10 and HOXC10. Based on the negative controls, we defined
703  threshold values to filter out false-positive signals for the 2 other HOX genes. These threshold
704  values were set such that approximately all the foci in the negative control were classified as
705 negative. Finally, to compare the expression of two genes between muscles, we calculated
706  the average number of foci per myofiber per sample.

707  Availability of data and scripts

708 All scripts are publicly available on GitHub:
709  github.com/tabbassidaloii/HumanMuscleTranscriptomeAtlasAnalyses. The raw data s
710 publicly available at the European Genome Archive (Dataset ID: EGAS00001005904,
711  https://ega-archive.org). Figure 1C and Supplementary Figure S1 show our analyses workflow
712  used to explore genes contributing to the intrinsic differences between muscles.

713  Graphical user interface
714  The muscle transcriptomics atlas is available for exploration through a graphical user interface
715  (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/) implemented using shiny, a web

716  application framework for application shiny R package (v1.5.0)(Chang, Cheng et al. 2020).

717  Gene network visualization
718 The subnetwork was exported and visualized in Cytoscape (v3.8.1).

719 Data availability

720 The raw data is publicly available at the European Genome Archive (Dataset ID:
721  EGAS00001005904, https://ega-archive.org/). The muscle transcriptomics atlas is available
722 for exploration through a graphical user interface
723  (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/).
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Table 1. Top enrichment results of muscle-related modules not driven by cell type composition

Module Term

Higher expression in G1 (GR, STM, and STD)
IRE1-mediated unfolded protein
response

Hormone-mediated signaling pathway
Negative regulation of nucleobase-
containing compound metabolic
process

M.30 (75 genes)
M.32 (236 genes)

M.7 (308 genes)
Chromatin organization

M.17 (176 genes) Chromatin modifying enzymes
Higher expression in G2 (RF, VL, and VM) and G3 (GL)
RNA splicing

Histone modification

Apical junction complex

M.31 (945 genes)
M.33 (538 genes)

M.13 (300 genes) Mitochondrion

M.14 (162 genes) = Anterior/posterior pattern specification
Higher expression in G3 (GL)

M.5 (190 genes)  Regulation of lipid metabolic process
Ameboidal-type cell migration
Positive regulation of muscle cell
differentiation

Golgi membrane

Regulation of nervous system
development

M.25 (188 genes)

M.11 (299 genes)

FDR

4 x10*
9x 1073

6x10*
1x10?
4x103
6 x 107

3x103
2.4 x 107

4 x 104

4 x 1073

8x10*

5x103
9x 103
2x 103
8x 103

#Enriched
genes

11

51

27

11

54

47
11

122

15

15

30
30

Hub genes

CARM1, WBP2, ZBTB7A

CREBBP, DAB2IP, FOXK2,
LARP1, RXRA, THRA

ARID1B, CREBBP,
HUWE1
HCFC1, SETD1A

SNRNP70

KAT2A

MICALL2

AIFM1, ATP5F1A,
ATP5F1B, CKMT2, COQ9,
DLD, DLST, FH, GHITM,
HADHA, HADHB, IMMT,
MFN2, NDUFS2, PDHA1,
PDHB, TRAP1, UQCRC2
HOXA11

ADIPOQ, ADRA2A,
CIDEA, LEP, LGALS12,
PDE3B, SCD

CFL1, PML, TGFB1
EHD2, ENG, NIBAN2,
TGFB1

ASAP2, MAN1A1

IQGAP1
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Figure 1. An overview of biopsies’ location and the study workflow. A) A schematic overview of the
leg muscles. Arrows point to the muscles that were included in this study. The biopsies, with exception
of STM (semitendinosus-middle), were taken from the distal area. B-D) The study overview includes
cryosectioning, RNA-isolation and sequencing (B) data analysis (C) and validations (D).
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Figure 2. Muscles cluster into three main groups based on cell type composition. A) The heatmap
shows the mean eigenvalues of genes marking each cell type across all the individuals. Each row shows
a muscle, and each column shows a cell type. FAB stands for fibro-adipogenic progenitors. B) The
boxplot shows the eigenvalues for the endothelial cells, fast-twitch, and slow-twitch myofibers per
muscle. The boxes reflect the median and interquartile range.
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1007 Figure 3. Myofiber type composition is consistent with the expression level of genes marking fast
1008 and slow-twitch myofibers. A) A representative immunostaining image. The overlay of each myosin
1009  heavy chain isoform and laminin are shown separately. B) The MFI of the three MyHC isoforms are
1010  plotted in 3-D. Each dot represents a myofiber. Myofibers in the three largest clusters are denoted
1011 with red (Cluster 1), blue (Cluster 2), and green (Cluster 3). The objects with low MFI values for all the
1012  isoforms are denoted in yellow (Cluster 4, ~2% of all the dots). In gray are ~4% of myofibers assigned
1013  to many small clusters. C) The table shows the proportion of myofibers assigned to each of the three
1014  largest clusters and the average MFI values for each isoform. D-F) Scatterplots show the proportion of
1015 the assigned myofibers to each of the largest clusters and the normalized expression of the gene
1016  coding the isoform with a relatively higher expression in that specific myofiber cluster. G) The boxplot
1017  shows the proportion of myofibers in the three largest clusters per muscle. Each muscle is depicted
1018 with a different color, with G1 muscles in blue, G2 muscles in red and the G3 muscle in grey. The boxes
1019 reflect the median and interquartile range.
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Figure 4. Immunostaining confirms higher capillary density in GL compared with STM muscles. A) A
representative muscle cross section image immunostained with CD31, ENG, and laminin. An
enlargement of the boxed region is shown on the right, with images of the three separate channels
and an overlay. Examples of objects recognized as capillaries are shown by green arrows. Some
examples of objects that were not considered as capillaries are shown by red arrows. B) The box plot
shows the percentage of CD31 positive area in the two muscles. C) The box plot shows the normalized
expression of CD31 gene in the two muscles. D) The boxplot shows the estimated capillary density in
the two muscles. The capillary density was defined as the number of objects (3-51 um?) with an
overlap between CD31 and ENG per unit cross-sectional area of the muscle. The boxes reflect the
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1031 median and interquartile range (N = 19 per muscle). The red dots on the boxes show the mean. ****
1032  P-value < 1x10°® (linear mixed-model).
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Figure 5. Gene expression differences between three groups of muscles not driven by cell type
composition. A) Symmetric heatmap plot shows the percentage of DEGs in different pairwise
comparisons. Genes with a high Pearson correlation (R > 0.5) with the eigenvector of any cell type are
excluded. Each row or column represents a muscle. B) Symmetric heatmap plot shows the number of
modules that were not driven by cell type composition and were significantly different in each pairwise
comparison. Each row or column represents a muscle. C) The heatmap shows the modules that reflect
the intrinsic differences between groups of muscles. Each row represents a muscle, and each column
shows a muscle-related module that was not driven by cell type composition. Color-coded cells show
the corresponding average of eigenvalues across all individuals (N = 20). Modules with an overall
higher expression in G1 or G3 are underlined by a blue or gray dashed line, respectively. The red
dashed line underlines the modules with an overall higher expression in both G2 and G3. The black
asterisks show modules with the largest differences between the three groups of muscles.
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Figure 6. A schematic representation of genes with higher expression in G2 and G3, related to
oxidative phosphorylation and metabolic pathways in the mitochondria. 60 (out of the 122)
mitochondrial genes with higher expression in G2 and G3 are shown in red. The electron transport
chain, lysin and tryptophan catabolism, TCA cycle, and beta-oxidation are shown. The hub genes are

underlined and in bold.
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1055

1056  Figure 7. The expression patterns of HOX genes cluster muscles in the same groups. A) The graph
1057  shows the co-expression subnetwork of HOX genes and genes related to anterior/posterior pattern
1058  specification assigned to the M.14 module. Diamonds indicate transcription factors while other genes
1059 are indicated by circles. Pink and purple nodes represent the hub genes and non-hub genes,
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respectively. The genes related to anterior/posterior pattern specification have a black border. The
edge thickness reflects the degree of topological overlap. Topological overlap is defined as a similarity
measure between each pair of genes in relation to all other genes in the network. High topological
overlaps indicate that genes share the same neighbors in the co-expression network. B) Normalized
expression of all HOX genes (scaled by row) represented as a heatmap. The hierarchical clustering was
generated using the normalized expression values. Each row represents a gene and each column
represents a sample. The side color of columns indicates different muscles. The module in which the
gene assigned is given between parentheses. Eleven highlighted HOX genes are assigned into muscle-
related modules which showed the largest differences between the groups of muscles (M.14, M.30,
and M.32).
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Figure 8. Distinct expression of HOX genes confirmed by RNAscope. A) A representative in situ
hybridization image of HOXC10 and HOXA10 in muscle cryosections. The image is a merge image of
the channels used for laminin, DAPI, HOXC10 and HOXA10 staining. B) The boxplots show the average
number of foci per myofiber (y-axis) in STM and GL muscles (x-axis). C) The boxplots show the
normalized expression of HOXA10 (top) and HOXC10 (bottom) in STM and GL muscles. The boxes
reflect the median and interquartile range (N = 12 per muscle). The red dots on the boxes show the
mean. **** p_-yglue < 1x10°® (linear mixed-model).
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12 Supplementary Figure S1. Analysis framework. A flowchart summarizing the analysis framework used
13  to detect molecular signatures characterizing distinct skeletal muscles. Following pre-processing,

14  muscle-specific signatures were identified using three approaches: cell type composition analysis (in

15  vyellow), differential expression analysis (in blue), gene co-expression network analysis (in green), and

16  functional enrichment analysis (in red).
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Supplementary Figure S2. Cell type composition differences between muscles. A) The heatmap
shows the differences between each pair of muscles. The statistically significant variation between
muscles was tested by ANOVA followed by the post-hoc pairwise comparisons. Each row corresponds
to a pairwise comparison, and each column shows a cell type. Color-coded cells show the
corresponding t-ratio for the differences in eigenvalue of a cell type in each pairwise comparison. The
significant differences (Tukey p-value < 0.05) are colored red (significantly higher eigenvalues in
muscle M1) or blue (significantly higher eigenvalues in muscle M2). The non-significant differences
are colored from pink (relatively higher eigenvalues in M1) to light blue (relatively higher eigenvalues
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28 in M1). B) Each boxplot shows the eigenvalues of a cell types across different muscles. The boxes
29  reflect the median and interquartile range.

30
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Supplementary Figure S3. Myofiber composition differences between muscles. The heatmap shows
the differences between each pair of muscles. The statistically significant variation between muscles
was tested by ANOVA followed by the post-hoc pairwise comparisons. Each row corresponds to a
myofiber cluster, and each column shows a pairwise comparison. Color-coded cells show the
corresponding t-ratio for the differences in proportions of myofiber in each pairwise comparison. The
significant differences (Tukey p-value < 0.05) are colored red (significantly higher proportions in
muscle M1) or blue (significantly higher proportions in muscle M2). The non-significant differences
are colored from pink (relatively higher proportions in M1) to light blue (relatively higher proportions

in M1).
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Supplementary Figure S4. DEA and WGCNA also clustered muscles in three groups. A) Symmetric
heatmap shows the proportion of all differentially expressed genes in different pairwise comparisons.
Each row or column represents a muscle. B) Symmetric heatmap shows the number of modules that
were significantly different in each pairwise comparison. Each row or column represents a muscle. C)
Each row corresponds to a pairwise comparison and each column shows a muscle-related. Color-
coded cells show the corresponding t-ratio for the differences in eigenvalue of a module in each
pairwise comparison. The significant differences (Tukey p-value < 0.05) are colored red (significantly
higher eigenvalues in M1) or blue (significantly higher eigenvalues in M2). The insignificant differences
are colored from pink (relatively higher eigenvalues in M1) to light blue (relatively higher eigenvalues
in M1). D) The table shows the intersection of the genes in the modules (columns) with genes marking
different cell types (rows). Color-coded cells show the corresponding intersection number. The red
asterisks show modules driven by cell type composition.
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Supplementary Figure S5. The quality control and batch correction of RNA-seq data. A) The PCA plot
shows the effect of the RNA isolation protocols. The scatter plot of PC1 (x-axis) and PC2 (y-axis) shows
GR muscle from five individuals from which RNA was isolated using two RNA isolation protocols. B) An
overview of the RNA-seq samples (available from the European Genome Archive, Dataset ID:
EGAS00001005904). An X indicates samples that are not present in the final transcriptome dataset. C
& E) Scatter plots of PC1 (x-axis) and PC2 (y-axis) before (C) and after (E) batch correction. Each dot
presents a sample labeled by muscle tissue. Each library preparation batch is shown with a different
color. The re-sequenced batch is denoted in black. D & F) Box plots show the analysis of variance
before (D) and after (F) batch correction. Y-axis shows the percentage of variance explained by
different factors. The x-axis shows the known biological (muscle and individual, shown in green) and
technical (RIN score, concentration, batch, library size, shown in red) factors. The RNA isolation
protocol effect is captured in the individual effect.
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