

1 A transcriptome atlas of leg muscles from healthy human volunteers reveals molecular and
2 cellular signatures associated with muscle location

3 Tooba Abbassi-Daloii^{1#}, Salma el Abdellaoui¹, Lenard M. Voortman², Thom Veeger³, Davy
4 Cats⁴, Hailiang Mei⁴, Duncan E. Meuffels⁵, Ewoud van Arkel⁶, Peter A.C 't Hoen^{1,7*}, Hermien
5 E. Kan^{4,8*}, Vered Raz^{1*}

6 ¹Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands. ²Division
7 of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, 2333 ZA, the Netherlands. ³C.J. Gorter
8 Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, 2333 ZA, the
9 Netherlands. ⁴Sequencing Analysis Support Core, Leiden University Medical Center. ⁵Orthopedic and Sport
10 Medicine Department, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the
11 Netherlands. ⁶Orthopedics, Medisch Centrum Haaglanden, 2501 CK, Den Haag, the Netherlands. ⁷Centre for
12 Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University
13 Medical Center, 6525 EX, Nijmegen, the Netherlands. ⁸Duchenne Center Netherlands, 5591 VE, Heeze, the
14 Netherlands.

15 Peter-Bram.tHoen@radboudumc.nl, H.E.Kan@lumc.nl, V.Raz@lumc.nl

16

17 **Abstract**

18 Skeletal muscles support the stability and mobility of the skeleton but differ in biomechanical
19 properties and physiological functions. The intrinsic factors that regulate muscle-specific
20 characteristics are poorly understood. To study these, we constructed a large atlas of RNA-
21 seq profiles from six leg muscles and two locations from one muscle, using biopsies from 20
22 healthy young males. We identified differential expression patterns and cellular composition
23 across the seven tissues using three bioinformatics approaches confirmed by large-scale
24 newly developed quantitative immune-histology procedures. With all three procedures, the
25 muscle samples clustered into three groups congruent with their anatomical location.
26 Concomitant with genes marking oxidative metabolism, genes marking fast- or slow-twitch
27 myofibers differed between the three groups. The groups of muscles with higher expression
28 of slow-twitch genes were enriched in endothelial cells and showed higher capillary content.
29 In addition, expression profiles of Homeobox (HOX) transcription factors differed between
30 the three groups and were confirmed by spatial RNA hybridization. We created an open-
31 source graphical interface to explore and visualize the leg muscle atlas
32 (<https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/>). Our study reveals molecular
33 specialization of human leg muscles and provides a novel resource to study muscle-specific
34 molecular features, which could be linked with (patho)physiological processes.

35 **Keywords:** Skeletal muscles, mRNA expression atlas, molecular and cellular signatures,
36 Capillary density, Myofiber type, Homeobox genes

[#]Department of Bioinformatics, Maastricht University, Maastricht, 6211 LK, the Netherlands

37 **Introduction**

38 Skeletal muscles have *grosso modo* similar functions, generate the force for mobility and
39 skeleton support, and maintain the body homeostasis. However, skeletal muscles differ in
40 biomechanical and physiological features. These features include the size and contractile
41 properties of the motor units and myofibers, differences in shortening velocity, resistance to
42 fatigue, and differences in innervation and perfusion (Valentine 2017). Yet, the molecular and
43 cellular differences that contribute to this muscle specialization are not fully understood. A
44 molecular atlas for different skeletal muscles could assist in deciphering the molecular basis
45 of muscle-specific physiological features. Such an atlas may also be used to study differential
46 muscle involvement in various conditions, such as muscular dystrophies, myopathies,
47 differences in regenerative potential, physiological compensation in sports and sarcopenia.
48 In aging and muscle diseases, Muscle involvement it has been observed that some muscles
49 were affected at an earlier age than others, and that this muscle involvement pattern can be
50 characteristic for a given disease (Carlier, Laforet et al. 2011, Raz, Henseler et al. 2015,
51 Albayda, Christopher-Stine et al. 2018, Brogna, Cristiano et al. 2018, Diaz-Manera, Fernandez-
52 Torron et al. 2018, Servian-Morilla, Cabrera-Serrano et al. 2020). Several studies suggested
53 that muscle-specific intrinsic molecular factors may explain this muscle involvement pattern
54 (Kang, Kho et al. 2005, Rahimov, King et al. 2012, Huovinen, Penttila et al. 2015, Raz, Henseler
55 et al. 2016, Terry, Zhang et al. 2018, Hettige, Tahir et al. 2020, Xi, Langerman et al. 2020). For
56 example, differences in the cellular pathways and myofiber type (slow- and fast-twitch
57 myofibers) composition between muscles could play a role (De Micheli, Spector et al. 2020,
58 Rubenstein, Smith et al. 2020, Xi, Langerman et al. 2020), but may not fully explain the muscle
59 involvement patterns.

60 Most of the studies characterizing the molecular variation between muscles were performed
61 in mice (Campbell, Gordon et al. 2001, Porter, Khanna et al. 2001, Haslett, Kang et al. 2005,
62 von der Hagen, Laval et al. 2005, Raz, Riaz et al. 2018, Terry, Zhang et al. 2018, Hettige, Tahir
63 et al. 2020), where muscle-specific mRNA profiles were linked to distinct myofiber type
64 composition (Campbell, Gordon et al. 2001, Raz, Riaz et al. 2018, Hettige, Tahir et al. 2020).
65 Since human muscle-related pathologies are not always recapitulated in mouse models (van
66 Putten, Lloyd et al. 2020), understanding molecular variations between skeletal muscles
67 should be performed in human samples. Only a few studies compared mRNA profiles between
68 muscles from healthy human adults, and these studies face several limitations. Skeletal
69 muscles are highly affected by age (McCormick and Vasilaki 2018, Aversa, Zhang et al. 2019),
70 yet, the age range in previous studies was broad (Kang, Kho et al. 2005, Huovinen, Penttila et
71 al. 2015). Moreover, the numbers of sampled muscles and subjects were limited (Abbassi-
72 Daloii, Kan et al. 2020). A study using postmortem material (Kang, Kho et al. 2005) only partly
73 reflects molecular composition in living muscles due to storage in cooling conditions.
74 Understanding muscle involvement in different pathologies can benefit from a molecular
75 atlas of human muscles.

76 We generated a transcriptome atlas from six leg muscles and two locations from one muscle
77 to explore molecular variations within and between muscles. Paired samples were obtained

78 from 20 healthy male subjects of 25 ± 3.6 years old. We show that the seven muscle tissues
79 clustered into three groups, distinguished by cell type composition and mRNA expression
80 profiles. We confirmed the transcriptome analyses with large-scale quantitative
81 immunohistochemistry and RNA *in situ* hybridization procedures. We discuss the value of this
82 skeletal muscle atlas resource to understand human health and pathologies affecting skeletal
83 muscle tissues.

84 Results

85 Transcriptome atlas of adult human skeletal muscles

86 To determine molecular signatures marking leg muscles, we generated a transcriptome atlas
87 of human skeletal muscles by sequencing biopsies from five upper leg muscles, gracilis (GR),
88 semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM)
89 muscles, and one lower leg muscle, gastrocnemius lateralis (GL) (Figure 1A). We also
90 investigated molecular differences within one muscle by including biopsies from the middle
91 and distal end of the semitendinosus muscle (STM and STD, respectively). These two biopsies
92 were treated as independent muscle samples in subsequent analyses (Figure 1B and C). In
93 total, 128 samples from 20 individuals (aged 25 ± 3.6 yr) were analyzed (Supplementary Figure
94 S1), making this currently the largest freely available human muscle atlas. Supplementary
95 Table S1 shows the sample characteristics.

96 Variation in cell type composition between different muscles

97 Skeletal muscle is a heterogeneous tissue containing multiple cell types. The differences in
98 the abundance of these cell types can be reflected in bulk RNA-seq profiles. Therefore, we
99 used RNA-seq data to first explore possible cell type heterogeneity between leg muscles. We
100 summarized the expression level of genes marking each cell type present in human skeletal
101 muscles by calculating their first principal components (eigenvectors) (Supplementary Table
102 S2). We used the eigenvalues of the eigenvectors representing the different cell types to
103 cluster the muscles (Figure 2A) and to identify cell types with significant differences in relative
104 abundance between muscles (Supplementary Figure S2A). The muscle tissues clustered into
105 three groups, Group 1 (G1): GR, STM, and STD; Group 2 (G2): RF, VL, and VM; GL was the only
106 muscle in Group 3 (G3) (Figure 2A). The relative abundance of endothelial cells was
107 statistically the most different between muscles, with higher abundance in G2 and G3 than in
108 G1 (Figure 2A-B, Supplementary Figure S2A). Other cell types marking blood vessels, namely
109 pericytes, post-capillary venule (PCV) endothelial cells, natural killer (NK) cells, T and B cells,
110 and myeloid cells, clustered together with the endothelial cells and all showed a higher
111 abundance in G2 and G3 compared with G1 (Figure 2A-B). These results could suggest a higher
112 capillary density and blood perfusion in/of the muscles in G2 and G3.

113 Genes marking fast-twitch myofibers showed overall higher expression levels in G1, while
114 slow-twitch genes were higher in G2 and G3 (Figure 2A-B). Differences in the relative
115 abundance of non-muscle cell types, pericytes, immune cells, and endothelial cells,
116 distinguished G3 from the G1 and G2 muscles (Supplementary Figure S2B, Figure 2A-B).

117 While STM and STD showed significant differences in the relative abundance of genes marking
118 endothelial cells (higher expression in STD) and slow-twitch myofibers (higher expression in
119 STM), there were no significant differences between ST and GR, and within the G2 muscles.
120 This suggests that differences between regions of the same muscle may be larger than
121 differences between distinct muscles (Supplementary Figure S2A).

122 **Further study of differences in myofiber type composition between groups of muscles**

123 To confirm the differences in myofiber types between muscles, we performed
124 immunofluorescence staining for all muscles with a mixture of antibodies to three MyHC
125 isoforms and anti-laminin antibody (Figure 3A). We developed a semi-automated image
126 processing workflow to segment the myofibers using laminin staining and to quantify the
127 fluorescence intensity of each MyHC isoform per myofiber. We next identified myofiber types
128 by clustering all the myofibers using the MFI values of the three MyHC isoforms. The vast
129 majority of the myofibers (94%) were assigned to three major clusters (Figure 3B). Each
130 myofiber cluster had a major MyHC isoform (Figure 3C). Consistent with our study in human
131 *vastus lateralis* muscle (Raz, van den Akker et al. 2020), the results here suggest that the
132 myofibers are generally not purely type -I, -IIA, or -IIX but contain a mix of myosin heavy chain
133 isoforms. We observed relatively high correlations from 0.55 to 0.62 between normalized
134 gene expression of the dominant MyHC in each cluster and the proportion of myofibers
135 assigned to the corresponding cluster (Figure 3D-F). This correlation demonstrates the
136 reliability of our RNA-seq-based assessment of MyHC expression.

137 In agreement with the results of the RNA-seq cell type composition analysis (Figure 2A-B), the
138 quantitative histology analysis demonstrated a higher proportion of slow-twitch (oxidative)
139 myofibers and a lower proportion of MyHC2X-dominated myofibers in G2 and GL (G3)
140 muscles than in G1 muscles (Figure 3G, Supplementary Figure S3). The quantitative histology
141 analysis further showed that G2 muscles had a higher proportion of MyHC2A-dominated
142 myofibers than the G3 muscle (Figure 3G, Supplementary Figure S3), highlighting a distinct
143 myofiber type composition of the GL muscle.

144 The myofiber composition results further showed a higher proportion of MyHC2X-dominated
145 myofibers in STD than in STM, whereas STM had a higher proportion of MyHC1 and MyHC2A-
146 dominated myofibers (Supplementary Figure S3). This confirms the existence of regional
147 differences within a muscle (Bindellini, Voortman et al. 2021).

148 **Higher capillary density in GL**

149 The RNA-seq cell type composition analysis suggested a higher proportion of endothelial and
150 other cell types marking blood vessels in the GL muscle than in other muscles. To confirm this
151 observation, we immunostained for the endothelial cells using antibodies against Endoglin
152 (ENG) and CD31 proteins (Tey, Robertson et al. 2019). We included cryosections of GL and
153 STM with the largest differences in the expression of genes marking endothelial cells (Figure
154 4A). We observed a higher proportion of CD31-positive areas in GL (Figure 4B), which was
155 consistent with higher CD31 RNA expression levels in this muscle (Figure 4C).

156 Next, we determined the muscles' capillary density by counting small circular objects stained
157 positive for both CD31 and ENG (Wehrhan, Stockmann et al. 2011). We observed a higher
158 capillary density in GL compared with STM (Figure 4D). This observation is consistent with a
159 higher proportion of endothelial cell types in GL compared with muscles in G1 or G2.

160 **Gene expression profiles and molecular pathways distinguishing muscle clusters**

161 We next investigated whether muscle-specific gene expression profiles, not explained by cell
162 type composition, could also be found in our dataset. To this end, we determined the
163 differentially expressed genes (DEGs) in every pairwise comparison (Supplementary Figure
164 S4A, Supplementary Table S3). The DEGs that were driven by differences in cell type
165 composition were excluded (Pearson's R > 0.5 between gene expression levels and the
166 eigenvector of any cell type). The proportion of DEGs that were not driven by cell type
167 composition but discriminated each pair of muscles are shown in Figure 5A. The muscles
168 clustered in a similar way as was observed in the cell type composition analysis: GR, STM, and
169 STD (G1), RF, VL, and VM (G2), and GL (G3) (Figure 5A).

170 To further study muscle-specific expression profiles, we applied weighted gene co-expression
171 network analysis (WGCNA). We identified 35 modules of co-expressed genes (Supplementary
172 Table S4). For each module, we calculated the module eigengene (ME) that represents gene
173 expression levels of the genes in the module. We then implemented a pairwise comparison
174 to find modules showing significant differences in every pairwise comparison (Supplementary
175 Figure S4B-C). Out of the 35 modules, 27 showed a difference between at least two muscles
176 (module size range: 38-1,459; containing 10,695 genes in total). Nine out of the 27 muscle-
177 related modules had at least five genes marking a specific cell type and were therefore
178 defined as modules driven by differences in cell type composition and were not considered
179 for further analysis (Supplementary Figure S4D). Figure 5B shows the remaining modules that
180 were not driven by cell type composition, nevertheless distinguished pairs of muscles. We
181 then plotted the mean eigenvalues of muscle-related modules in a heatmap (Figure 5C) to
182 determine the clustering of muscles based on the expression patterns of genes in the
183 modules. The WGCNA-based clustering was consistent with the cell type composition and
184 differential expression groups (Figure 5C). In total, seven out of the 18 muscle-related
185 modules demonstrated higher expression levels in G1, four modules had higher expression in
186 G2 and G3, and three modules demonstrated higher expression levels in G3 only (Figure 5C).
187 In addition, although none of the modules showed distinct expression patterns between
188 muscles in G2 and between ST and GR, M.21 module showed higher expression levels in STM
189 than STD (Supplementary Figure S4C).

190 To explore the molecular and cellular pathways in the three groups, functional enrichment
191 analysis was performed in the muscle-related modules. The most significantly enriched
192 biological processes and molecular functions within these modules are listed in Table 1 (a
193 complete list is in Supplementary Table S5).

194 **Higher expression of mitochondrial genes in G2 and G3 muscles consistent with higher
195 proportion of slow myofibers**

196 In the M.13 module, with higher expression in G2 (VL, VM, and RF) and G3 (GL), the
197 mitochondrial-related genes were enriched (Table 1). Eighteen out of 122 genes enriched for
198 mitochondria in this module were hub genes, highly interconnected genes in the module
199 (Table 1). To assess a potential impact on mitochondrial metabolic processes, we mapped the
200 122 genes to mitochondrial pathways (Figure 6). The most enriched processes were the
201 respiratory electron transport chain in oxidative phosphorylation, the tricarboxylic acid (TCA)
202 cycle, and beta-oxidation. This observation suggests a higher oxidative metabolism in G2 and
203 G3, which is consistent with a higher proportion of slow myofibers.

204 **Homeobox transcription factors contribute to the mRNA diversity between the three
205 groups of muscles**

206 An enrichment for “anterior/posterior pattern specification” in M.14 was observed, with
207 higher expression in G2 and G3 (Table 1). This module included *HOX* hub genes (Figure 7A).
208 To assess whether the diversity between the groups of muscles was associated with the
209 pattern of *HOX* gene expression, we plotted the normalized expression of all expressed *HOX*
210 genes across all samples (Figure 7B). Remarkably, clustering based on *HOX* gene expression
211 clearly separated the G1 from the G2 and G3 muscles (Figure 7B). Moreover, eleven out of 36
212 *HOX* genes were assigned to three of the muscle-related modules (M.14, M.30, and M.32),
213 which showed the largest differences between the three groups of muscles (Figure 7B). Two
214 *HOX* genes were selected (*HOXA10* and *HOXC10*) to further confirm the differences in
215 expression between muscles using the *in situ* hybridization (ISH) procedure (Figure 8A). We
216 included samples from GL and STM showing the largest difference in *HOX* genes expression.
217 The *HOX* signal was mainly localized in myofibers (Figure 8A). Per sample, the average number
218 of foci per myofiber was calculated revealing a higher number of *HOXA10* and *HOXC10* single
219 molecule RNAs in STM compared with GL (Figure 8B). The ISH results were consistent with
220 the RNA-seq data (Figure 8B-C), further demonstrating the robustness of our RNA-seq data.

221 **Web application for exploring transcriptome atlas of human skeletal muscles**

222 To facilitate data reuse and exploration of human skeletal muscle atlas, we developed a web
223 application (<https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp>), enabling users to look
224 up the sample information and the expression of any gene of interest. In addition, users can
225 explore the list of genes used for the cell type composition analysis and their expression levels
226 across all the samples. Furthermore, users can list and visualize the differentially expressed
227 genes and the modules and their hub genes.

228 **Discussion**

229 We generated a large skeletal muscle transcriptome atlas from 20 young healthy males. We
230 included six leg muscles and two locations within one muscle. The atlas presented in this study
231 is unique in terms of the number of muscles, the individuals included, and the age range of

232 the participants. We confirmed the RNA-seq analysis using large-scale quantitative
233 immunohistochemistry and mRNA in situ hybridization. Based on cell type composition,
234 differential expression analysis and WGCNA, the seven leg muscle tissues consistently
235 clustered into three groups: G1) GR, STM, and STD; G2) VL, VM, and RF; G3) GL. The muscles
236 in G2 and G3 (VL, VM, RF and GL) showed higher proportions of slow myofiber types and
237 higher capillary densities. GL, the only lower leg muscle, was distinct from VL, VM, and RF in
238 its lower proportion of type 2A myofibers and a higher proportion of non-muscle cells.
239 *HOXA10* and *HOXC10* expression were lower in VL, VM, RF and GL than in GR, STM, and STD
240 muscles.

241 Molecular diversity between muscles in different anatomical locations

242 The muscles included in this study mobilize and stabilize the knee joint. Muscles of the
243 hamstrings (ST and GR) clustered together (G1), and muscles of the quadriceps (RF, VL and
244 VM) clustered together (G2). The Hamstrings and quadriceps alternate in contraction and
245 relaxation to flex, extend and stabilize the knee and aid in moving of the thigh. GL, the only
246 lower leg muscle in our set, is located on the posterior side of the knee, allowing flexion of
247 the knee and plantar flection of the ankle. Our study suggests that there is little molecular
248 diversity between muscles of the same group, as compared to muscles in different groups of
249 muscles.

250 We observed a higher proportion of fast-twitch myofibers in G1 compared with G2 and G3.
251 This could be due to the role of the hamstrings in activities that require a large power output
252 since fast-twitch myofibers are used more in these activities than slow-twitch myofibers
253 (Bottinelli, Pellegrino et al. 1999, Willigenburg, McNally et al. 2014, Camic, Kovacs et al. 2015).
254 Slow-twitch myofibers have a higher mitochondrial content compared with fast-twitch
255 myofibers (Berchtold, Brinkmeier et al. 2000, Gouspillou, Sgarioto et al. 2014). Consistently,
256 G2 and G3 muscles showed higher expression of genes encoding for mitochondrial proteins
257 and a higher ratio of slow-twitch myofibers compared with G1. Slow-twitch muscles are also
258 supplied by a denser capillary network (Nishiyama 1965, Murakami, Fujino et al. 2010,
259 Korthuis 2011). Indeed, we observed a higher capillary density and higher endothelial cells in
260 G3. The three groups of muscles also differed by the expression of *HOX* genes, specifically,
261 *HOXA* and *HOXC* family members. *Hox* genes establish the anterior/posterior patterning
262 during vertebrate embryonic limb development (Zakany and Duboule 2007). Interestingly, the
263 development of these groups of leg muscles differs in developmental time (Diogo, Siomava
264 et al. 2019), consistent with the expression of *Hox* genes (Zakany and Duboule 2007). *Hox*
265 genes expression is not limited to embryonic development, but was found also in adult mouse
266 muscles (Houghton and Rosenthal 1999, Yoshioka, Nagahisa et al. 2021), and *Hoxa10* gene
267 was differentially expressed across adult limb mouse muscles (Yoshioka, Nagahisa et al. 2021).
268 Moreover, Yoshioka, Nagahisa et al. (2021) demonstrated that *Hoxa10* expression in adult
269 satellite cells affects muscle regeneration in mice. Here, we show that both *HOXA* and *HOXC*
270 gene family are expressed in myofibers, and their expression levels differs between leg
271 muscles. Yoshioka, Nagahisa et al. (2021) also showed expression of *HOX* genes in adult

272 human muscle tissues. Yet, Terry, Zhang et al. (2018) concluded that the expression pattern
273 of *Hox* genes in adult muscles is insufficient to explain the mRNA expression diversity in adult
274 mouse skeletal muscles. Whether *HOX* genes are transcriptionally active in adult myofibers is
275 a subject for future studies.

276 **Potential relevance to muscles disease and aging**

277 In several muscle-related diseases like muscular dystrophies (MDs), muscle weakness and
278 pathological features like replacement of muscle tissue with fat start in specific muscles and
279 spreads to others as disease progresses (Emery 2002). This pattern differs between diseases,
280 and the reason for the disease-specific involvement pattern is unknown. Exploring the
281 molecular signatures that contribute to the differences between muscles may elucidate the
282 pathophysiology of these diseases. For example, in Duchenne muscular dystrophy (DMD),
283 which is caused by mutations in the *DMD* gene, the quadriceps is involved earlier, whereas
284 the hamstring muscles are less involved, and the GR is spared (Wokke, van den Bergen et al.
285 2014, Hooijmans, Niks et al. 2017). The observed higher expression level of the *DMD* gene in
286 ST and GR may be related to the late involvement in DMD patients during disease progression.
287 Accessing the expression level of genes and implementing a quantitative approach (Veeger,
288 van Zwet et al. 2021) to evaluate the association between leg muscle architectural
289 characteristics and gene expression levels could be performed for other muscle diseases.

290 **Regional differences within muscles**

291 The molecular and cellular differences between the samples from distal and middle locations
292 of ST were larger than differences between ST and GR (Supplementary Figure S2). One module
293 of co-expressed genes, M.21, showed a different expression pattern between STM and STD.
294 This module was enriched for the cellular amino acid catabolic process and monocarboxylic
295 acid catabolic process (Supplementary Table S5). While the distal side of the ST muscle has a
296 rounded tendon, the differences between STM and STD cannot be explained by
297 contamination of tendon tissue or closer proximity to the tendon, because we did not find a
298 difference in the estimated tenocyte proportions between biopsies collected from the distal
299 and middle parts of the muscle (Supplementary Figure S2). The myofiber composition was
300 different between the distal and medial part of the ST muscle (Supplementary Figure S2A,
301 Supplementary Figure S3). A divergent myofiber type composition of biopsies from superficial
302 and deep areas of the same human muscle was reported by Johnson, Polgar et al. (1973) for
303 the GL, RF, VL, VM, *adductor magnus*, *soleus*, and *tibialis anterior* muscles in the leg and thigh.
304 Bindellini, Voortman et al. (2021) also reported different proportions of MyHC2A myofibers
305 in distal and middle parts of *tibialis anterior* in mice.

306 **Interindividual differences were larger than differences between muscles**

307 Despite the narrow age range and an inclusion of only one gender in our study, we observed
308 that the percentage of variance explained by the individual surpassed the variance explained
309 by the muscles (Supplementary Figure S5F). This is in agreement with findings from Kang, Kho
310 et al. (2005). The inter-individual variations are possibly resulting from genetic and
311 environmental (activity, exercise, diet, etc.) factors. To account for inter-individual variation,

312 we included the individual as a random effect in the different analyses and constructed a
313 consensus gene co-expression network by merging the co-expression networks separately
314 constructed per individual. Only after properly accounting for interindividual differences, we
315 could identify the intrinsic differences between leg muscles.

316 **Study limitations**

317 Differences in cell type composition between muscles are best captured using single-cell
318 sequencing. Previous single cell (De Micheli, Spector et al. 2020, Rubenstein, Smith et al. 2020,
319 Xi, Langerman et al. 2020) and single nucleus (Orchard, Manickam et al. 2021, Perez, McGirr
320 et al. 2021) studies reported the cellular composition of adult human muscles, where single
321 nucleus profiling is preferred because myofibers cannot be dispersed into single cell
322 suspensions. The high costs associated with single-cell technologies are currently prohibitive
323 for performing large scale analyses of >100 samples such as performed in our study. Here, we
324 evaluated differences in cellular composition by deconvolution of bulk RNA-seq based on
325 marker genes reported in single-cell studies. This approach appeared to be suitable for
326 analyzing differences in cellular composition between large sets of samples, as we observed
327 good consistency with immunohistochemistry-based analyses of myofiber type and
328 endothelial cell composition. A limitation of the deconvolution approach is, however, that this
329 only captures cell types for which discriminative marker genes are available.

330 We further acknowledge that RNA expression levels do not necessarily match protein
331 abundance in muscles and do not reflect post translational modifications (Greenbaum,
332 Colangelo et al. 2003, Liu, Beyer et al. 2016). Although a protein atlas could relate to muscle
333 cell function better than RNA expression profiles, generating a genome-wide proteome in
334 skeletal muscles is challenging, as muscle proteomes are dominated by the high abundance
335 of high molecular weight sarcomeric proteins, and capturing the low abundance proteins is
336 challenging. Despite this limitation, we showed consistency between results obtained by
337 mRNA expression profiling and immunohistochemical staining of the proteins that were in
338 focus in our study.

339 In summary, we demonstrated divergent molecular and cellular compositions between
340 skeletal muscles in different anatomically adjacent locations. Overall, the consistency of the
341 gene expression patterns, and the results obtained from the immunohistochemistry and RNA
342 in situ hybridization experiments indicates the high accuracy and reliability of the
343 transcriptome atlas generated in this study. Therefore, this atlas provides a resource for
344 exploring molecular characteristics of muscles and studying the association between
345 molecular signatures, muscle (patho)physiology and biomechanics.

346 **Materials and methods**

347 **1. Subject characteristics and biopsy collection**

348 Healthy male subjects (aged 18-32) undergoing surgery of the knee for anterior cruciate
349 ligament (ACL) reconstruction using hamstring autografts were recruited from outpatient

350 clinics of two hospitals: Erasmus Medical Center and Medisch Centrum Haaglanden. Inclusion
351 criteria included age, sex, and the amount of routine exercise. Subjects eligible for
352 reconstructive ACL surgery were mobile, had full range of knee motion, minimal to no knee
353 swelling and had physiotherapy until the surgery.

354 A total of seven biopsies were taken from six different leg muscles (Figure 1A). To study
355 molecular differences within the muscle, two biopsies from the middle and distal sides of the
356 semitendinosus muscle (STM and STD, respectively) were collected. During the surgery, the
357 tendons of the gracilis (GR) and semitendinosus muscles were used to reconstruct the ACL,
358 and biopsies from these muscles were taken directly from the graft after harvesting the
359 autografts at the beginning of the operation. After the ACL construction, biopsies from
360 gastrocnemius lateralis (GL) rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM)
361 muscles were taken by percutaneous biopsy (modified Bergstrom (Bergstrom 1975)) using a
362 minimally invasive biopsy needle. All biopsies were immediately frozen in liquid nitrogen and
363 were kept at -80°C.

364 The study was approved by the local Medical Ethical Review Board of The Hague Zuid-West
365 and the Erasmus Medical Centre and conducted in accordance with the ethical standards
366 stated in the 1964 Declaration of Helsinki and its later amendments (ABR number:
367 NL54081.098.16). All subjects provided written informed consent prior to participation.

368 2. Sample processing, RNA isolation, and cDNA library preparation

369 Biopsies were cryosectioned for RNA isolation, immunofluorescence staining, and *in situ*
370 hybridization. For each sample, three cryosections of 16 µm thick were collected onto
371 SuperFrost slides (Thermo Fisher Scientific, 12372098) and stored at -20°C prior to staining.
372 For *in situ* hybridization, the cryosections were mounted on SuperFrost Plus Adhesion slides
373 (Thermo Fisher Scientific, 12625336) and stored at -80°C. For the RNA isolation, cryosections
374 were transferred into MagNA lyser green beads tubes (Roche, 3358941001). Then, they were
375 homogenized in QIAzol lysis reagent (Qiagen, 79306) using the MagNA Lyser. Subsequently,
376 total RNA was purified with chloroform. For samples from a subset of individuals, RNA was
377 precipitated with isopropyl alcohol (Supplementary Table S1). For the other samples total
378 RNA was mixed with an equal volume of 70% ethanol and further purified with miRNeasy Mini
379 Kit (217004, Qiagen) using the manufacturer's protocol (Supplementary Table S1). To
380 evaluate the effect of two different RNA isolation protocols, RNA from five GR samples were
381 isolated with both protocols (Supplementary Figure S5A). For both protocols, DNA was
382 removed using RNAse-free DNase set (Qiagen, 79254) using the manufacturer's protocol.
383 RNA integrity was assessed with the Agilent 2100 Bioanalyzer using Eukaryote Total RNA Nano
384 chips according to the manufacturer's protocol (Agilent BioAnalyzer, 824.070.709)
385 (Supplementary Table S1).

386 Poly(A) library preparation was performed in four batches each with 39 samples at Leiden
387 Genome Technology Center (LGTC, the Netherlands). Information on the RNA isolation
388 protocol and library preparation batches used for each sample can be found in Supplementary
389 Table S1. Samples from different muscles and individuals were equally distributed in each

390 library batch to minimize a batch effect bias. Approximately 200ng of total RNA was used as
391 starting material. mRNA was enriched using oligo dT beads (polyA+ bead-based enrichment),
392 fragmented, and converted to cDNA using random hexamers and SuperScript III (Invitrogen).
393 End-repair, A-tailing, and adapter ligation were performed using NEBNext chemistry (New
394 England Biolabs) and xGen dual index UMI adapters (Integrated DNA Technologies) according
395 to the manufacturer's protocol. Finally, USER digest (New England Biolabs) and 15 cycles of
396 library amplification were performed. Libraries were purified with XP beads and analyzed for
397 size and purity on a Bioanalyzer DNA HS chip (Agilent BioAnalyzer, 5067-1504).

398 3. Bulk RNA-sequencing and analysis

399 Illumina sequencing was performed by GenomeScan BV (Leiden, the Netherlands) on a
400 Novaseq-6000 producing paired-end 2 × 150 bp reads. Fastq files were processed using the
401 BioWDL pipeline for processing RNA-seq data (v3.0.0,
402 <https://zenodo.org/record/3713261#.X4GpD2MzYck>) developed by the sequencing analysis
403 support core (SASC) team at LUMC. The BioWDL pipeline performs FASTQ pre-processing,
404 RNA-seq alignment, deduplication using unique molecular identifiers (UMIs), variant calling,
405 and read quantification. FastQC (v0.11.7)
406 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) was used for checking raw
407 read QC. Adapter clipping was performed using Cutadapt (v2.4) (Martin 2011) with default
408 settings, followed by checking the QC using FastQC. RNA-Seq reads' alignment was performed
409 using STAR (v2.7.3a) (Dobin, Davis et al. 2013) against the GRCh38 reference genome. PCR
410 duplications were removed based on UMIs using UMI-tools (v0.5.5) (Smith, Heger et al. 2017).
411 Gene read quantification was performed using HTSeq-count (v0.11.2) (Anders, Pyl et al.
412 2015). Ensembl version 98 (<http://sep2019.archive.ensembl.org/>) was used for gene
413 annotation. Samples with less than 5M reads assigned to annotated exons were re-sequenced
414 or excluded from all downstream analyses. A SNP calling was performed using GATK4
415 (v4.1.0.0) (McKenna, Hanna et al. 2010). Possible sample swapping was checked using an SNP
416 panel with 50 SNPs (Yousefi, Abbassi-Daloii et al. 2018). The similarity for calls of these SNPs
417 showed that two samples in the same RNA isolation batch were swapped. We revised the
418 labels of these two samples in our dataset for downstream analyses.
419 We performed all the analyses in RStudio Software (v1.3.959)(RStudio-Team 2020) using R
420 Statistical Software (v4.0.2)(R-Core-Team 2020). Samples with more than 5M reads assigned
421 to annotated exons were included in all downstream analyses (Supplementary Figure S5B).
422 The HTSeq count table was used to create a DGEList object using the edgeR Bioconductor
423 package (v3.30.3) (Robinson, McCarthy et al. 2010). The filterByExpr function from the edgeR
424 Bioconductor package was used to keep genes with 10 or more reads in at least 16 samples
425 (the number of samples in the smallest muscle group). The dataset was normalized using the
426 calcNormFactors function (considering trimmed mean of M-values (TMM) method) from the
427 edgeR Bioconductor package.

428 **4. Quality control and batch effect correction**

429 We performed principal component analysis (PCA) to evaluate the main difference between
430 samples in an unsupervised manner. Log-transformed expression values after normalization
431 by counts per million (CPM) were used to calculate principal components using the base
432 function `prcomp` with the `center` and `scale` argument set to `TRUE`.

433 We then performed the analysis of variance to determine the factors driving gene expression
434 variations. We estimated the contribution of known biological (muscle tissues and individuals)
435 and technical (RNA isolation protocol, RIN score, initial RNA concentration, library preparation
436 batch, sequencing lane, and library size) factors on variation of gene expression. Data
437 transformed by the `voom` function from the `limma` Bioconductor package (v3.44.3) (Law,
438 Chen et al. 2014, Ritchie, Phipson et al. 2015) was used to fit a linear model for each gene.
439 We included all biological and technical factors as fixed effects and fitted the following linear
440 model:

441 **Formula-1: $voom - transformed\ expression_{gene} \sim muscle + individual + RNA\ isolation\ protocol +$**
442 **$RIN\ score + concentration + library\ preparation\ batch + sequencing\ lane + library\ size + error$**

443 We used ANOVA from the `car` R package (v3.0-10) (Fox and Weisberg 2019) to estimate the
444 relative contribution of each of these factors in the total variation of gene expression.
445 Outcomes from both PCA and ANOVA revealed a strong library preparation batch effect
446 (Supplementary Figure S5C and D), while the effect of other technical factors (RNA isolation
447 protocol, initial RNA concentration, RIN score, and library size) was minimal (Supplementary
448 Figure S5D). Accordingly, the HTSeq count table was corrected for the batch effect by the
449 `ComBat-seq` Bioconductor package (Zhang, Parmigiani et al. 2020). The muscle was included
450 in the `ComBat-seq` model to preserve possible molecular differences between muscles. The
451 `ComBat-Seq` count table was used to create a `DGEList` object, followed by removing the low
452 expressed genes and additional normalization using `filterByExpr` and `calcNormFactors`
453 functions, respectively.

454 Outcomes of PCA and ANOVA confirmed the proper removal of the batch effect
455 (Supplementary Figure S5E and F). In addition, the percentage of variance explained by the
456 individual was found to be bigger than the variance explained by the muscle (Supplementary
457 Figure S5F). We, therefore, included the individual as a random effect in all different analyses.
458 Moreover, the RIN score was not considered as an exclusion criterion as it did not contribute
459 to gene expression variation (Supplementary Figure S5F).

460 **5. cell type composition estimation**

461 We collected lists of genes marking different cell types that are present in human skeletal
462 muscles from different studies (Smith, Meyer et al. 2013, Kendal, Layton et al. 2019, Perucca
463 Orfei, Viganò et al. 2019, Rubenstein, Smith et al. 2020)(Supplementary Table S2). The
464 expression of genes marking each cell type was summarized by their eigenvector (first
465 principal component). We subsequently fitted a linear-mixed model to the eigenvector of
466 each cell type using the `lmer` function from the `lmerTest` R package (3.1-3) (Kuznetsova,

467 Brockhoff et al. 2017). These models included muscle as a fixed effect and individual as a
468 random effect shown in the formula below:

469 Formula-2: $\text{eigenvector}_{\text{cell type}} \sim \text{muscle} + (1|\text{individual}) + \text{error}$

470 We tested the significance of fixed effects with the ANOVA from the car R package. The
471 Benjamini-Hochberg false-discovery rate (FDR) was applied to adjust for multiple testing. We
472 conducted post-hoc pairwise comparisons using the lsmeans R package (v2.30-0) (Lenth 2016)
473 to identify a significant difference in the expression level of genes marking different cell types
474 between different muscles. We used the pheatmap function from the pheatmap R package
475 (v1.0.12) (<https://CRAN.R-project.org/package=pheatmap>) with the difficult setting to draw
476 all the heatmaps.

477 6. Differential expression analysis (DEA)

478 We used the *voom*-transformed data to fit linear mixed-effects models for each gene using
479 the lmer function from the lmerTest R package. The individual and muscle were included in
480 the models as a random-effect and a fixed-effect, respectively, similarly to the formula-2. The
481 *voom* precision weights showing the mean-variance trend for each observation were
482 incorporated into the models. We tested the significance of fixed effects with the ANOVA
483 from the car R package and the FDR was applied to adjust for multiple testing. We conducted
484 post-hoc pairwise comparisons using the lsmeans R package to identify significant differences
485 between each pair of muscles.

486 We calculated the Pearson correlation between differentially expressed genes (DEGs, FDR <
487 0.05) and the eigenvector of each cell type using the cor and cor.test from the stats R package.
488 We adjusted for multiple testing using the FDR. DEGs which were significantly associated with
489 a cell type eigenvector (Pearson correlation < 0.5 and FDR > 0.05) were defined as cell type
490 related.

491 7. Consensus gene co-expression network analysis

492 In order to construct a gene network, we used the weighted gene co-expression network
493 analysis algorithm using the WGCNA R package (v1.69) (Langfelder and Horvath 2008). We
494 used the *voom* transformed data as an input. In order to calibrate the parameters of the
495 network, we used the approach published by our group (Abbassi-Daloii, Kan et al. 2020).
496 Briefly, prior knowledge of gene interactions from a pathway database was used to select the
497 most optimal set of WGCNA parameters. We used the biweight midcorrelation (median-
498 based) function in WGCNA of the signed hybrid type to define the adjacency matrix. We
499 performed a full parameter sweep, testing various combinations of settings for power (6, 8,
500 10, 12, 14, 18, and 22), minClusterSize (15, 20, and 30), deepSplit (0, 2, and 4) and CutHeight
501 (0.1, 0.15, 0.2, 0.25, and 0.3). These different settings were assessed using the knowledge
502 network obtained from the Reactome database using g:ProfileR2 R package (v0.2.0) (Kolberg,
503 Raudvere et al. 2020). All possible pairs of genes were assigned into four different groups: (1)
504 in the same module and in the same pathway, (2) in the same module but not in the same
505 pathway, (3) not in the same module but in the same pathway and (4) neither in the same

506 module nor in the same pathway. The enrichment factor
507 ($\frac{\text{No.pairs in group 1} \times \text{No.pairs in group 4}}{\text{No.pairs in group 2} \times \text{No.pairs in group 3}}$) was calculated. The optimal set of parameters with the
508 highest enrichment factor was: power: 8, MinModuleSize: 20, deepSplit: 0, Cut Height: 0.2.
509 To identify gene co-expression networks that were consistent across individuals, we
510 constructed first co-expression networks for each individual separately and merged these
511 subsequently into a consensus co-expression network. To achieve this, the adjacency
512 matrices per individual were raised to power 8 and converted into topological overlap
513 matrices (TOM). TOM of some individuals may be overall lower or higher than TOM of other
514 individuals. To account for this, we performed percentile (0.95) normalization over all the
515 TOMs. The consensus TOM was then calculated by taking the elementwise 40th percentile of
516 the TOMs. The consensus TOM was used to calculate the TOM dissimilarity matrix
517 ($dissTOM = 1 - TOM$) which was then input to agglomerative hierarchical clustering
518 (Langfelder and Horvath 2012). Finally, modules were identified using a dynamic tree-cutting
519 algorithm from the resulting dendrogram (Langfelder, Zhang et al. 2008) specifying
520 MinModuleSize = 20 and deepSplit = 0. The module labeled “grey” was not considered in the
521 analysis as it consisted of genes that did not assign to any specific module. The summary
522 expression measure for each module, the module eigengene (ME), was calculated (Zhang and
523 Horvath 2005). Modules with similar expression profiles were merged at the threshold of 0.2.
524 In addition, we calculated the intramodular connectivity to identify highly interconnected
525 genes, called hub genes, per module.

526 **7.1. Module-muscle association**

527 To identify modules that differ in expression levels between muscles (named as muscle-
528 related modules), we fitted linear mixed-effect models on the module eigengenes (MEs) using
529 the lmer function from the lmerTest R package. These models included individual as a
530 random-effect and muscle as a fixed-effect, like formula-2. We tested the significance of fixed
531 effects with ANOVA from the car R package. We used ranova from the lmerTest R package to
532 test the significance of random effects. To identify significant differences between each pair
533 of muscles, we used a post-hoc multiple comparison tests as implemented in the lsmeans R
534 package.

535 We performed a functional enrichment analysis for the muscle-related modules using ClueGO
536 App (v2.5.7) (Bindea, Mlecnik et al. 2009) in Cytoscape (v3.8.1) (Kohl, Wiese et al. 2011). We
537 used the CyREST API (Ono, Muetze et al. 2015) to execute the ClueGO by R script
538 (<http://www.ici.upmc.fr/cluego/cluegoDocumentation.shtml>). Pathways and gene
539 annotations from Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO),
540 Reactome, and WikiPathways (WP) were included. The Benjamini-Hochberg FDR was applied
541 to adjust for multiple testing. The annotations with any differentially expressed genes or hub
542 genes or a transcription factor were included. To eliminate the redundant annotations, we
543 only included an annotation with the lowest FDR for each ‘GoGroups’ defined by ClueGO and
544 the annotations marked as ‘LeadingGoTerm’ by ClueGO.

545 We next determined muscle-related modules which showed the largest differences between
546 the three groups of muscles. These modules were selected based on the FDR of GlueGO
547 enrichment (< 0.01) and the F-value of the genes resulting from DEA in each module (third
548 quantile > 5.5).

549 **8. Immunofluorescence staining, imaging, image analysis**

550 The immunofluorescence staining included myofiber typing and capillary staining. Prior to the
551 staining, slides were allowed to equilibrate to room temperature, blocked for 30 minutes
552 using 5% milk powder (FrieslandCampina, Amersfoort, The Netherlands) in phosphate-
553 buffered saline containing 0.05% tween (PBST).

554 **8.1 Myofiber type composition**

555 **8.1.1 Myosin staining**

556 The antibodies for three myosin heavy chain (MyHC) isoforms (MyHC1, MyHC2A, and
557 MyHC2X) and laminin were used as described by Riaz, Raz et al. (2016). Briefly, cryosections
558 were stained with rabbit anti-laminin (1:1000, Sigma-Aldrich, L9393) and mouse anti-6H1
559 (1:5, DSHB; AB_2314830) detecting MyHC2X, for two hours at room temperature. Following
560 the PBST washing, the secondary antibodies goat anti-rabbit-conjugated-Alexa Fluor® 750
561 (1:1000, Thermo Fisher Scientific, A21039) and goat anti-mouse-conjugated-Alexa Fluor® 488
562 (1:1000, A11001, Thermo Fisher Scientific) were incubated for an hour at room temperature.
563 After PBST washing, sections were incubated overnight at four degrees with a mix of
564 fluorescently conjugated monoclonal antibodies: BA-D5-conjugated-Alexa Fluor® 350 (1:600,
565 DSHB, AB_2235587) and SC-71-conjugated-Alexa Fluor® 594 (1:700, DSHB, AB_2147165),
566 detecting MyHC1 and MyHC2A, respectively. Lastly, after washing with PBST, the cryosections
567 were mounted with ProLong™ Gold antifade reagent (P36930, Thermo Fisher Scientific) and
568 stored at four degrees prior to imaging.

569 **8.1.2. Image acquisition, processing, and quantification**

570 The stained slides were imaged with the Axio Scan.Z1 slidescanner (Carl Zeiss, Germany) using
571 the ZEN Blue software (v2.6), capturing the entire section. The images were acquired with a
572 10×/0.45 Plan-Apochromat objective lens and the same image settings were used for all
573 slides.

574 After imaging all cryosections, a shading profile was calculated using the 'Shading Reference
575 From Tile Image' in ZEN Lite (v3.3) for each channel in each slide. This procedure produces a
576 shading profile for each channel per slide and does not apply the shading correction. To
577 improve the accuracy of the shading profile, we calculated the median over all the shading
578 profiles over all scanned slides for each channel. These median shading profiles were then
579 used to perform the shading correction using 'Shading Correction' in ZEN Lite (v3.3).

580 Further image processing was performed using Fiji (v 1.51) (Schindelin, Arganda-Carreras et
581 al. 2012). Since the aggregated dataset is relatively large, we created a modular set of Fiji
582 macros that process each step independently.

583 First, we converted the slidescanner datasets from the Carl Zeiss Image format (CZI) to
584 multichannel 16 bit TIFF files using BioFormats (Linkert, Rueden et al. 2010). In this step, the
585 images were 4x downsampled, by averaging, to improve the processing speed and reduce the
586 dataset size. After downsampling the effective pixel size was 2.6 μm .

587 Next, we applied a semi-automated process to generate tissue masks from the laminin
588 channel to determine the (parts of) cryosections to be quantified. To generate masks, we first
589 used an automated procedure, inspired by ‘ArtefactDetectionOnLaminin’ method from
590 MuscleJ (Mayeuf-Louchart, Hardy et al. 2018). Subsequently, a manual step was incorporated
591 to check and correct the generated masks. For each sample, we performed manual
592 corrections to remove artifacts such as tissue folds, out-of-focus regions, scratch, and dirt
593 objects.

594 Then, we generated ‘masked’ copies of the laminin channel. To reduce any possible artifacts
595 due to this binary mask, we applied a gaussian blur of 4 pixels to the masks and we set the
596 pixel values of the laminin channel that were outside the mask to the median intensity of
597 these pixels. The masked laminin images were then fed into the *lLastik* pixel classification
598 algorithm (Berg, Kutra et al. 2019). In *lLastik* we trained a classifier to identify two classes:
599 ‘myofiber boundary’ and ‘not myofiber boundary’. This classifier was then used to process all
600 images in this dataset. This classification step greatly improved the subsequent laminin
601 segmentation outputs.

602 Next, the laminin objects were segmented based on the output of the previous step. In short,
603 the image was slightly blurred with a Gaussian Blur, after which the image was segmented
604 using the Fiji method “Find Maxima” with output “Segmented Particles”, followed by binary
605 dilation, and closing. Finally, the regions-of-interest (ROI) (individual laminin segmented
606 objects) were generated using the ‘Analyze Particle’ method from Fiji.

607 After laminin segmentation, we measured the mean fluorescence intensity (MFI) as well as
608 other properties in ROIs for all three channels using the Fiji measurement: “Mean gray value”.
609 In addition, we recorded the “Area”, “Standard deviation”, “Modal gray value”, “Min & max
610 gray value”, “Shape descriptors”, and “Median” features. We also quantified the results of
611 the pixel-classification step by measuring its “Mean gray value” in each ROI as well as on the
612 border (3-pixel enlargement) of each ROI. This quantification allows the assessment of the
613 myofiber ‘segmentation certainty’, the certainty is high when the pixel-classification is high
614 for the ‘myofiber boundary’ class all around the myofiber and low in the interior of the
615 myofiber.

616 **8.1.3. Myofiber type composition analysis**

617 First, we filtered out the non-myofiber objects since the laminin segmentation was automatic.
618 We applied a percentile filtering for a ‘segmentation certainty’ on the cross-sectional area
619 (CSA) and the circularity values. The objects with (1) pixel-classification on the object
620 boundary less than 5th percentile or (2) pixel-classification in the interior of the object greater
621 than 95th percentile or (3) CSA less than 10th percentile or greater than 99th percentile or (4)
622 circularity greater than 1st percentile were excluded. Samples from different muscles were

623 pooled for all different filtering criteria except for the filtering for CSA, as the density
624 distributions of CSA were found to differ between different muscles. In the next step, we
625 selected the cryosection with the largest number of myofibers for each sample for further
626 analysis. Samples with a minimum of a hundred myofibers were included in the myofiber type
627 analysis. The final dataset contained 1,287,729 myofibers from 96 samples, with a median of
628 888 myofibers per sample. As previously described by Raz, van den Akker et al. (2020), per
629 myofiber, the MFI values for each of three MyHC isoforms were scaled per sample (without
630 centering). Subsequently, the composition of myofiber types was determined by clustering of
631 the transformed (natural logarithm) MFI values. Each myofiber was assigned to a cluster using
632 the mean-shift algorithm (bandwidth (h) = 0.02), a density-based clustering approach,
633 implemented in the LPCM R package (v0.46-7) (Cheng 1995, Einbeck 2011). All the small
634 clusters, with less than 1% from the total myofibers, were excluded. Then, per myofiber type
635 cluster, the proportions of the total myofibers were calculated per sample.

636 **8.2 Capillary density**

637 **8.2.1. Staining and image acquisition**

638 Sections were stained with the primary antibodies: anti-human CD105 (endoglin, ENG) biotin-
639 conjugated (1:100, BioLegend, 323214), anti-human CD31-Alexa Fluor® 594 conjugated
640 (1:400, BioLegend, 303126), and rabbit anti-laminin for two hours at room temperature. After
641 PBST washing, the slides were incubated with streptavidin-Alexa Fluor® 647 conjugated
642 (1:500, Life Technologies, S21374) and goat anti-rabbit Alexa Fluor® 750-conjugated for an
643 hour. After final PSBT washing, nuclei were counterstained with 4',6-diamidino-2-
644 phenylindole (DAPI) (0.5 µg/mL, Sigma-Aldrich) and were mounted with ProLong™ Gold
645 antifade reagent. Cryosections were imaged with Axio Scan.Z1 slide scanner.

646 **8.2.2. Image processing and quantification**

647 We used Fiji macros created for the myofiber composition analysis to convert CZI files to TIFF
648 files, to generate the masks, and for the laminin segmentation. We then measured the cross-
649 sectional area for laminin segmented objects using the Fiji “Area” measurement. Next, a
650 Gaussian Blur filter with an σ value set to 1 was implemented on the CD31 channel, followed
651 by thresholding using setAutoThreshold (“Li dark” algorithm) and processing using Watershed
652 algorithm to separate touching and overlapping cells. The lumens were filled using the Fill
653 Holes algorithm in Fiji. We then measured the properties in ROIs using the Fiji measurements:
654 “Area”, “Mean gray value”, “Standard deviation”, and “Shape descriptors”. We then
655 implemented the same processing on the ENG channel to select the ROIs but measured the
656 “Mean gray value” and “Standard deviation in the CD31 channel to determine the CD31 and
657 ENG colocalization.

658 For the image quantification, we first calculated the ratio between the total positively stained
659 areas for CD31 and the total area of the muscle section, expressed as a percentage. We then
660 determined the capillaries as the objects with (1) positive signals for both CD31 and ENG
661 (Wehrhan, Stockmann et al. 2011), (2) larger than 3 µm² and smaller than 51 µm² (Poole,

662 Copp et al. 2013), and (3) circularity larger than 0.5. Finally, we defined capillary density as
663 the number of capillaries per unit (μm^2) of muscle area.

664 **9. RNAscope *in situ* hybridization**

665 We detected single-molecule RNA using Multiplex Fluorescent Reagent Kit v2 (ACDBio,
666 323135) according to the manufacturer's protocol for fresh-frozen cryosections, with the
667 following adjustments to optimize the experiment for human muscles: fixation with 4%
668 paraformaldehyde at 4 degrees for an hour, and all washing steps with washing buffer were
669 performed three times for two minutes each. The protocol was optimized on control muscle
670 cryosections by negative and positive probe sets provided by ACDBio. We performed the
671 hybridization using probes for *Hs-HOXA11* (ACDBio, 1061891-C1), *Hs-HOXA10* (ACDBio,
672 867141-C2), and *Hs-HOXC10* (ACDBio, 803141-C3). Following the completion of the RNA
673 probe hybridization, we carried out an immunostaining step at room temperature to label
674 myofibers with rabbit anti-laminin followed by secondary labeling with goat anti-rabbit-
675 conjugated-Alexa Fluor® 555 (1:1000, Abcam, ab150078). Lastly, following PBST washing, the
676 nuclei were counterstained with DAPI (ACDbio, 323110). Cryosections were mounted with
677 ProLong™ Gold antifade reagent. Slides were imaged with a Leica SP8 confocal microscope,
678 equipped with a white light laser (WLL) source (Leica Microsystems, Germany) using a 40x/1.3
679 OIL objective. For each sample, multiple tiles at different regions across the muscle
680 cryosection were images with seven z-planes (z-step size = 0.35 μm). The images for DAPI and
681 *HOXA11* channels were acquired using a HyD 2 detector with 414nm-532nm excitation lasers
682 and with 504nm-543nm excitation lasers, respectively. A HyD 4 detector was used to image
683 anti-laminin and *HOXA10* channels with 558nm-585nm excitation lasers and with 603nm-
684 665nm excitation lasers, respectively. A HyD 5 detector was used to image *HOXC10* channel
685 with 675nm-800nm excitation lasers. The same image settings were used for all samples.
686 We performed the image processing in multiple steps and created a modular set of Fiji macros
687 that process each step independently. We first merged and converted the Leica Image File
688 (LIF) to a multichannel 16 bit TIFF file using the Grid/Collection Stitching Plugin (Preibisch,
689 Saalfeld et al. 2009). We segmented myofibers using the following steps: 1) creating the
690 maximum intensities projections of the laminin channel, 2) creating 'probability' maps of the
691 laminin channel in *llastik*, 3) adding a point selection to the TIFF files, which seed the
692 watershed, and 4) implementing watershed segmentation with two halting points for user
693 interaction, first watershed segmentation and then making the ROI list (individual segmented
694 myofibers) generated using the 'Analyze Particle' command.
695 After myofiber segmentation, we implemented a Gaussian Blur filter with an σ value set to 1
696 on each probe channel. We then applied the color threshold settings using setAutoThreshold
697 ("RenyiEntropy dark" algorithm). Finally, for each probe channel, we measured the foci
698 properties in each segmented myofiber using the Fiji measurements: "Area", "Mean gray
699 value", "Standard deviation", and "Shape descriptors".
700 The RNA foci were defined as speckles smaller than 3.5 μm^2 with circularity above 0.98. We
701 excluded *HOXA11* from further analysis due to a low signal-to-noise ratio, agreeing with a

702 lower expression level than *HOXA10* and *HOXC10*. Based on the negative controls, we defined
703 threshold values to filter out false-positive signals for the 2 other HOX genes. These threshold
704 values were set such that approximately all the foci in the negative control were classified as
705 negative. Finally, to compare the expression of two genes between muscles, we calculated
706 the average number of foci per myofiber per sample.

707 Availability of data and scripts

708 All scripts are publicly available on GitHub:
709 github.com/tabbassidalooii/HumanMuscleTranscriptomeAtlasAnalyses. The raw data is
710 publicly available at the European Genome Archive (Dataset ID: EGAS00001005904,
711 <https://ega-archive.org>). Figure 1C and Supplementary Figure S1 show our analyses workflow
712 used to explore genes contributing to the intrinsic differences between muscles.

713 Graphical user interface

714 The muscle transcriptomics atlas is available for exploration through a graphical user interface
715 (<https://tabbassidalooii.shinyapps.io/muscleAtlasShinyApp/>) implemented using shiny, a web
716 application framework for application shiny R package (v1.5.0)(Chang, Cheng et al. 2020).

717 Gene network visualization

718 The subnetwork was exported and visualized in Cytoscape (v3.8.1).

719 Data availability

720 The raw data is publicly available at the European Genome Archive (Dataset ID:
721 EGAS00001005904, <https://ega-archive.org/>). The muscle transcriptomics atlas is available
722 for exploration through a graphical user interface
723 (<https://tabbassidalooii.shinyapps.io/muscleAtlasShinyApp/>).

724 Acknowledgments

725 We thank Susan Kloet, and the personnel from the Leiden genome technology center (LGTC)
726 in the LUMC for providing the sequencing support.

727 Funding

728 This project was funded by the Netherlands Organization for Scientific Research (NWO, under
729 research program VIDI, Grant # 917.164.90) and the Association Française contre les
730 Myopathies (AFM Telethon; Grant # 22506). We thank the personnel of the Sequence Analysis
731 Support Core (SASC) in the LUMC for their support in data pre-processing and data submission
732 at the European Genome Archive.

733 Conflict of interest

734 The authors declare that they have no conflicts of interest.

735 References

736 Abbassi-Daloii, T., H. E. Kan, V. Raz and P. A. C. t Hoen (2020). "Recommendations for the
737 analysis of gene expression data to identify intrinsic differences between similar tissues." *Genomics* **112**(5): 3157-3165.

738 Albayda, J., L. Christopher-Stine, C. O. Bingham Iii, J. J. Paik, E. Tiniakou, S. Billings, O. M. Uy
739 and P. Burlina (2018). "Pattern of muscle involvement in inclusion body myositis: a
740 sonographic study." *Clin Exp Rheumatol* **36**(6): 996-1002.

741 Anders, S., P. T. Pyl and W. Huber (2015). "HTSeq--a Python framework to work with high-
742 throughput sequencing data." *Bioinformatics* **31**(2): 166-169.

743 Aversa, Z., X. Zhang, R. A. Fielding, I. Lanza and N. K. LeBrasseur (2019). "The clinical impact
744 and biological mechanisms of skeletal muscle aging." *Bone* **127**: 26-36.

745 Berchtold, M. W., H. Brinkmeier and M. Muntener (2000). "Calcium ion in skeletal muscle: its
746 crucial role for muscle function, plasticity, and disease." *Physiol Rev* **80**(3): 1215-1265.

747 Berg, S., D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, M. Schiegg, J. Ales, T.
748 Beier, M. Rudy, K. Eren, J. I. Cervantes, B. Xu, F. Beuttenmueller, A. Wolny, C. Zhang, U.
749 Koethe, F. A. Hamprecht and A. Kreshuk (2019). "ilastik: interactive machine learning for
750 (bio)image analysis." *Nat Methods* **16**(12): 1226-1232.

751 Bergstrom, J. (1975). "Percutaneous needle biopsy of skeletal muscle in physiological and
752 clinical research." *Scand J Clin Lab Invest* **35**(7): 609-616.

753 Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W. H. Fridman, F.
754 Pages, Z. Trajanoski and J. Galon (2009). "ClueGO: a Cytoscape plug-in to decipher functionally
755 grouped gene ontology and pathway annotation networks." *Bioinformatics* **25**(8): 1091-1093.

756 Bindellini, D., L. M. Voortman, C. S. Olie, M. van Putten, E. van den Akker and V. Raz (2021).
757 "Discovering fiber type architecture over the entire muscle using data-driven analysis."
758 *Cytometry A* **99**(12): 1240-1249.

759 Bottinelli, R., M. A. Pellegrino, M. Canepari, R. Rossi and C. Reggiani (1999). "Specific
760 contributions of various muscle fibre types to human muscle performance: an in vitro study."
761 *Journal of Electromyography and Kinesiology* **9**(2): 87-95.

762 Brogna, C., L. Cristiano, T. Tartaglione, T. Verdolotti, L. Fanelli, L. Ficociello, G. Tasca, R. Battini,
763 G. Coratti, N. Forcina, R. De Santis, G. Norcia, S. Carnicella, C. Colosimo, P. Carlier, M. Pane
764 and E. Mercuri (2018). "Functional levels and MRI patterns of muscle involvement in upper
765 limbs in Duchenne muscular dystrophy." *PLoS One* **13**(6): e0199222.

766 Camic, C. L., A. J. Kovacs, E. A. Enquist, T. A. McLain and E. C. Hill (2015). "Muscle activation of
767 the quadriceps and hamstrings during incremental running." *Muscle Nerve* **52**(6): 1023-1029.

768 Campbell, W. G., S. E. Gordon, C. J. Carlson, J. S. Pattison, M. T. Hamilton and F. W. Booth
769 (2001). "Differential global gene expression in red and white skeletal muscle." *Am J Physiol
770 Cell Physiol* **280**(4): C763-768.

771 Carlier, R. Y., P. Laforet, C. Wary, D. Mompoint, K. Laloui, N. Pellegrini, D. Annane, P. G. Carlier
772 and D. Orlikowski (2011). "Whole-body muscle MRI in 20 patients suffering from late onset
773 Pompe disease: Involvement patterns." *Neuromuscul Disord* **21**(11): 791-799.

774 Chang, W., J. Cheng, J. J. Allaire, Y. Xie and J. McPherson (2020). shiny: Web Application
775 Framework for R.

776 Cheng, Y. (1995). "Mean Shift, Mode Seeking, and Clustering." *IEEE Trans. Pattern Anal. Mach.
777 Intell.* **17**(8): 790-799.

778 De Michelis, A. J., J. A. Spector, O. Elemento and B. D. Cosgrove (2020). "A reference single-cell
779 transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell
780 populations." *Skelet Muscle* **10**(1): 19.

781

782 Diaz-Manera, J., R. Fernandez-Torron, L. L. J, M. K. James, A. Mayhew, F. E. Smith, U. R. Moore,
783 A. M. Blamire, P. G. Carlier, L. Rufibach, P. Mittal, M. Eagle, M. Jacobs, T. Hodgson, D. Wallace,
784 L. Ward, M. Smith, R. Stramare, A. Rampado, N. Sato, T. Tamaru, B. Harwick, S. Rico Gala, S.
785 Turk, E. M. Coppenrath, G. Foster, D. Bendahan, Y. Le Fur, S. T. Fricke, H. Otero, S. L. Foster,
786 A. Peduto, A. M. Sawyer, H. Hilsden, H. Lochmuller, U. Grieben, S. Spuler, C. Tesi Rocha, J. W.
787 Day, K. J. Jones, D. X. Bharucha-Goebel, E. Salort-Campana, M. Harms, A. Pestronk, S. Krause,
788 O. Schreiber-Katz, M. C. Walter, C. Paradas, J. Y. Hogrel, T. Stojkovic, S. Takeda, M. Mori-
789 Yoshimura, E. Bravver, S. Sparks, L. Bello, C. Semplicini, E. Pegoraro, J. R. Mendell, K. Bushby,
790 V. Straub and C. O. S. C. Jain (2018). "Muscle MRI in patients with dysferlinopathy: pattern
791 recognition and implications for clinical trials." *J Neurol Neurosurg Psychiatry* **89**(10): 1071-
792 1081.

793 Diogo, R., N. Siomava and Y. Gitton (2019). "Development of human limb muscles based on
794 whole-mount immunostaining and the links between ontogeny and evolution." *Development*
795 **146**(20).

796 Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and
797 T. R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." *Bioinformatics* **29**(1): 15-
798 21.

799 Einbeck, J. (2011). "Bandwidth Selection for Mean-shift based Unsupervised Learning
800 Techniques: a Unified Approach via Self-coverage." *Journal of Pattern Recognition Research*
801 **6**(2): 175-192.

802 Emery, A. E. (2002). "The muscular dystrophies." *Lancet* **359**(9307): 687-695.

803 Fox, J. and S. Weisberg (2019). *An R companion to applied regression*. Los Angeles, SAGE.

804 Gouspillou, G., N. Sgarioto, B. Norris, S. Barbat-Artigas, M. Aubertin-Leheudre, J. A. Morais, Y.
805 Burelle, T. Taivassalo and R. T. Hepple (2014). "The relationship between muscle fiber type-
806 specific PGC-1alpha content and mitochondrial content varies between rodent models and
807 humans." *PLoS One* **9**(8): e103044.

808 Greenbaum, D., C. Colangelo, K. Williams and M. Gerstein (2003). "Comparing protein
809 abundance and mRNA expression levels on a genomic scale." *Genome Biol* **4**(9): 117.

810 Haslett, J. N., P. B. Kang, M. Han, A. T. Kho, D. Sanoudou, J. M. Volinski, A. H. Beggs, I. S. Kohane
811 and L. M. Kunkel (2005). "The influence of muscle type and dystrophin deficiency on murine
812 expression profiles." *Mamm Genome* **16**(10): 739-748.

813 Hettige, P., U. Tahir, K. C. Nishikawa and M. J. Gage (2020). "Comparative analysis of the
814 transcriptomes of EDL, psoas, and soleus muscles from mice." *BMC Genomics* **21**(1): 808.

815 Hooijmans, M. T., E. H. Niks, J. Burakiewicz, C. Anastasopoulos, S. I. van den Berg, E. van Zwet,
816 A. G. Webb, J. Verschueren and H. E. Kan (2017). "Non-uniform muscle fat replacement along
817 the proximodistal axis in Duchenne muscular dystrophy." *Neuromuscul Disord* **27**(5): 458-464.

818 Houghton, L. and N. Rosenthal (1999). "Regulation of a muscle-specific transgene by
819 persistent expression of Hox genes in postnatal murine limb muscle." *Dev Dyn* **216**(4-5): 385-
820 397.

821 Huovinen, S., S. Penttila, P. Somervuo, J. Keto, P. Auvinen, A. Vihola, S. Huovinen, K. Pelin, O.
822 Raheem, J. Salenius, T. Suominen, P. Hackman and B. Udd (2015). "Differential isoform
823 expression and selective muscle involvement in muscular dystrophies." *Am J Pathol* **185**(10):
824 2833-2842.

825 Johnson, M. A., J. Polgar, D. Weightman and D. Appleton (1973). "Data on the distribution of
826 fibre types in thirty-six human muscles. An autopsy study." *J Neurol Sci* **18**(1): 111-129.

827 Kang, P. B., A. T. Kho, D. Sanoudou, J. N. Haslett, C. P. Dow, M. Han, J. M. Blasko, H. G. Lidov,
828 A. H. Beggs and L. M. Kunkel (2005). "Variations in gene expression among different types of
829 human skeletal muscle." *Muscle Nerve* **32**(4): 483-491.

830 Kendal, A., T. Layton, H. Al-Mossawi, R. Brown, C. Loizou, M. Rogers, M. Sharp, S. Dakin, L.
831 Appleton and A. Carr (2019). "Identification of human tendon cell populations in healthy and
832 diseased tissue using combined single cell transcriptomics and proteomics." *bioRxiv*:
833 2019.2012.2009.869933.

834 Kohl, M., S. Wiese and B. Warscheid (2011). "Cytoscape: software for visualization and
835 analysis of biological networks." *Methods Mol Biol* **696**: 291-303.

836 Kolberg, L., U. Raudvere, I. Kuzmin, J. Vilo and H. Peterson (2020). "gprofiler2 -- an R package
837 for gene list functional enrichment analysis and namespace conversion toolset g:Profiler." *F1000Res* **9**.

838 Korthuis, R. J. (2011). Anatomy of Skeletal Muscle and Its Vascular. *Skeletal Muscle
839 Circulation*. San Rafael (CA).

840 Kuznetsova, A., P. B. Brockhoff and R. H. B. Christensen (2017). "lmerTest Package: Tests in
841 Linear Mixed Effects Models." *Journal of Statistical Software* **82**(13): 1-26.

842 Langfelder, P. and S. Horvath (2008). "WGCNA: an R package for weighted correlation
843 network analysis." *BMC Bioinformatics* **9**: 559.

844 Langfelder, P. and S. Horvath (2012). "Fast R Functions for Robust Correlations and
845 Hierarchical Clustering." *J Stat Softw* **46**(11).

846 Langfelder, P., B. Zhang and S. Horvath (2008). "Defining clusters from a hierarchical cluster
847 tree: the Dynamic Tree Cut package for R." *Bioinformatics* **24**(5): 719-720.

848 Law, C. W., Y. Chen, W. Shi and G. K. Smyth (2014). "voom: Precision weights unlock linear
849 model analysis tools for RNA-seq read counts." *Genome Biol* **15**(2): R29.

850 Lenth, R. V. (2016). "Least-Squares Means: The R Package lsmeans." *Journal of Statistical
851 Software* **69**(1): 1-33.

852 Linkert, M., C. T. Rueden, C. Allan, J. M. Burel, W. Moore, A. Patterson, B. Loranger, J. Moore,
853 C. Neves, D. Macdonald, A. Tarkowska, C. Sticco, E. Hill, M. Rossner, K. W. Eliceiri and J. R.
854 Swedlow (2010). "Metadata matters: access to image data in the real world." *J Cell Biol* **189**(5):
855 777-782.

856 Liu, Y., A. Beyer and R. Aebersold (2016). "On the Dependency of Cellular Protein Levels on
857 mRNA Abundance." *Cell* **165**(3): 535-550.

858 Martin, M. (2011). "Cutadapt removes adapter sequences from high-throughput sequencing
859 reads." *2011* **17**(1): 3.

860 Mayeuf-Louchart, A., D. Hardy, Q. Thorel, P. Roux, L. Gueniot, D. Briand, A. Mazeraud, A.
861 Bougle, S. L. Shorte, B. Staels, F. Chretien, H. Duez and A. Danckaert (2018). "MuscleJ: a high-
862 content analysis method to study skeletal muscle with a new Fiji tool." *Skelet Muscle* **8**(1): 25.

863 McCormick, R. and A. Vasilaki (2018). "Age-related changes in skeletal muscle: changes to life-
864 style as a therapy." *Biogerontology* **19**(6): 519-536.

865 McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D.
866 Altshuler, S. Gabriel, M. Daly and M. A. DePristo (2010). "The Genome Analysis Toolkit: a
867 MapReduce framework for analyzing next-generation DNA sequencing data." *Genome Res*
868 **20**(9): 1297-1303.

869 Murakami, S., H. Fujino, I. Takeda, R. Momota, K. Kumagishi and A. Ohtsuka (2010).
870 "Comparison of capillary architecture between slow and fast muscles in rats using a confocal
871 laser scanning microscope." *Acta Med Okayama* **64**(1): 11-18.

872

873 Nishiyama, A. (1965). "Histochemical studies on the red, white and intermediate muscle fibers
874 of some skeletal muscles. II. The capillary distribution on three types of fibers of some skeletal
875 muscles." *Acta Med Okayama* **19**(4): 191-198.

876 Ono, K., T. Muetze, G. Kolishovski, P. Shannon and B. Demchak (2015). "CyREST:
877 Turbocharging Cytoscape Access for External Tools via a RESTful API." *F1000Res* **4**: 478.

878 Orchard, P., N. Manickam, C. Ventresca, S. Vadlamudi, A. Varshney, V. Rai, J. Kaplan, C.
879 Lalancette, K. L. Mohlke, K. Gallagher, C. F. Burant and S. C. J. Parker (2021). "Human and rat
880 skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types,
881 regulatory elements, and SNPs for complex traits." *Genome Res.*

882 Perez, K., J. McGirr, C. Limbad, R. Doi, J. P. Nederveen, M. I. Nilsson, M. Tarnopolsky, J. Campisi
883 and S. Melov (2021). "Single nuclei profiling identifies cell specific markers of skeletal muscle
884 aging, sarcopenia and senescence." *medRxiv*: 2021.2001.2022.21250336.

885 Perucca Orfei, C., M. Viganò, J. R. Pearson, A. Colombini, P. De Luca, E. Ragni, L. Santos-Ruiz
886 and L. De Girolamo (2019). "In Vitro Induction of Tendon-Specific Markers in Tendon Cells,
887 Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFβ3, BMP-12 and Ascorbic
888 Acid Stimulation." *International Journal of Molecular Sciences* **20**(1): 149.

889 Poole, D. C., S. W. Copp, S. K. Ferguson and T. I. Musch (2013). "Skeletal muscle capillary
890 function: contemporary observations and novel hypotheses." *Exp Physiol* **98**(12): 1645-1658.

891 Porter, J. D., S. Khanna, H. J. Kaminski, J. S. Rao, A. P. Merriam, C. R. Richmonds, P. Leahy, J. Li
892 and F. H. Andrade (2001). "Extraocular muscle is defined by a fundamentally distinct gene
893 expression profile." *Proc Natl Acad Sci U S A* **98**(21): 12062-12067.

894 Preibisch, S., S. Saalfeld and P. Tomancak (2009). "Globally optimal stitching of tiled 3D
895 microscopic image acquisitions." *Bioinformatics* **25**(11): 1463-1465.

896 R-Core-Team (2020). R: A Language and Environment for Statistical Computing.

897 Rahimov, F., O. D. King, D. G. Leung, G. M. Bibat, C. P. Emerson, Jr., L. M. Kunkel and K. R.
898 Wagner (2012). "Transcriptional profiling in facioscapulohumeral muscular dystrophy to
899 identify candidate biomarkers." *Proc Natl Acad Sci U S A* **109**(40): 16234-16239.

900 Raz, V., M. Riaz, Z. Tatum, S. M. Kielbasa and P. A. C. t Hoen (2018). "The distinct
901 transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs." *FASEB J*
902 **32**(3): 1579-1590.

903 Raz, Y., J. F. Henseler, A. Kolk, M. Riaz, P. van der Zwaal, J. Nagels, R. G. Nelissen and V. Raz
904 (2015). "Patterns of Age-Associated Degeneration Differ in Shoulder Muscles." *Front Aging
905 Neurosci* **7**: 236.

906 Raz, Y., J. F. Henseler, A. Kolk, Z. Tatum, N. K. Groosjohan, N. E. Verwey, W. Arindrarto, S. M.
907 Kielbasa, J. Nagels, P. A. t Hoen, R. G. Nelissen and V. Raz (2016). "Molecular signatures of
908 age-associated chronic degeneration of shoulder muscles." *Oncotarget* **7**(8): 8513-8523.

909 Raz, Y., E. B. van den Akker, T. Roest, M. Riaz, O. van de Rest, H. E. D. Suchiman, N. Lakenberg,
910 S. A. Stassen, M. van Putten, E. J. M. Feskens, M. J. T. Reinders, J. Goeman, M. Beekman, V.
911 Raz and P. E. Slagboom (2020). "A data-driven methodology reveals novel myofiber clusters
912 in older human muscles." *FASEB J* **34**(4): 5525-5537.

913 Riaz, M., Y. Raz, M. van Putten, G. Paniagua-Soriano, Y. D. Krom, B. I. Florea and V. Raz (2016).
914 "PABPN1-Dependent mRNA Processing Induces Muscle Wasting." *PLoS Genet* **12**(5):
915 e1006031.

916 Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi and G. K. Smyth (2015). "limma
917 powers differential expression analyses for RNA-sequencing and microarray studies." *Nucleic
918 Acids Res* **43**(7): e47.

919 Robinson, M. D., D. J. McCarthy and G. K. Smyth (2010). "edgeR: a Bioconductor package for
920 differential expression analysis of digital gene expression data." *Bioinformatics* **26**(1): 139-
921 140.

922 RStudio-Team (2020). RStudio: Integrated Development Environment for R.

923 Rubenstein, A. B., G. R. Smith, U. Raue, G. Begue, K. Minchev, F. Ruf-Zamojski, V. D. Nair, X.
924 Wang, L. Zhou, E. Zaslavsky, T. A. Trappe, S. Trappe and S. C. Sealton (2020). "Single-cell
925 transcriptional profiles in human skeletal muscle." *Sci Rep* **10**(1): 229.

926 Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C.
927 Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak
928 and A. Cardona (2012). "Fiji: an open-source platform for biological-image analysis." *Nat
929 Methods* **9**(7): 676-682.

930 Servian-Morilla, E., M. Cabrera-Serrano, K. Johnson, A. Pandey, A. Ito, E. Rivas, T. Chamova,
931 N. Muelas, T. Mongini, S. Nafissi, K. G. Claeys, R. P. Grewal, M. Takeuchi, H. Hao, C.
932 Bonnemann, O. Lopes Abath Neto, L. Medne, J. Brandsema, A. Topf, A. Taneva, J. J. Vilchez, I.
933 Tournev, R. S. Haltiwanger, H. Takeuchi, H. Jafar-Nejad, V. Straub and C. Paradas (2020).
934 "POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, alpha-dystroglycan
935 hypoglycosylation and a distinctive radiological pattern." *Acta Neuropathol* **139**(3): 565-582.

936 Smith, L. R., G. Meyer and R. L. Lieber (2013). "Systems analysis of biological networks in
937 skeletal muscle function." *Wiley Interdiscip Rev Syst Biol Med* **5**(1): 55-71.

938 Smith, T., A. Heger and I. Sudbery (2017). "UMI-tools: modeling sequencing errors in Unique
939 Molecular Identifiers to improve quantification accuracy." *Genome Res* **27**(3): 491-499.

940 Terry, E. E., X. Zhang, C. Hoffmann, L. D. Hughes, S. A. Lewis, J. Li, M. J. Wallace, L. A. Riley, C.
941 M. Douglas, M. A. Gutierrez-Monreal, N. F. Lahens, M. C. Gong, F. Andrade, K. A. Esser and M.
942 E. Hughes (2018). "Transcriptional profiling reveals extraordinary diversity among skeletal
943 muscle tissues." *Elife* **7**.

944 Tey, S. R., S. Robertson, E. Lynch and M. Suzuki (2019). "Coding Cell Identity of Human Skeletal
945 Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges
946 for Characterization and Isolation." *Front Cell Dev Biol* **7**: 284.

947 Valentine, B. A. (2017). "Skeletal Muscle." *Pathologic Basis of Veterinary Disease*: 908-
948 953.e901.

949 van Putten, M., E. M. Lloyd, J. C. de Greef, V. Raz, R. Willmann and M. D. Grounds (2020).
950 "Mouse models for muscular dystrophies: an overview." *Dis Model Mech* **13**(2).

951 Veeger, T. T. J., E. W. van Zwet, D. Al Mohamad, K. J. Naarding, N. M. van de Velde, M. T.
952 Hooijmans, A. G. Webb, E. H. Niks, J. H. de Groot and H. E. Kan (2021). "Muscle architecture
953 is associated with muscle fat replacement in Duchenne and Becker muscular dystrophies."
954 *Muscle Nerve* **64**(5): 576-584.

955 von der Hagen, M., S. H. Laval, L. M. Cree, F. Haldane, M. Pocock, I. Wappler, H. Peters, H. A.
956 Reitsamer, H. Hoger, M. Wiedner, F. Oberndorfer, L. V. Anderson, V. Straub, R. E. Bittner and
957 K. M. Bushby (2005). "The differential gene expression profiles of proximal and distal muscle
958 groups are altered in pre-pathological dysferlin-deficient mice." *Neuromuscul Disord* **15**(12):
959 863-877.

960 Wehrhan, F., P. Stockmann, E. Nkenke, K. A. Schlegel, A. Guentsch, T. Wehrhan, F. W. Neukam
961 and K. Amann (2011). "Differential impairment of vascularization and angiogenesis in
962 bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue." *Oral
963 Surg Oral Med Oral Pathol Oral Radiol Endod* **112**(2): 216-221.

964 Willigenburg, N. W., M. P. McNally and T. E. Hewett (2014). Quadriceps and Hamstrings
965 Strength in Athletes. Hamstring and Quadriceps Injuries in Athletes: A Clinical Guide. C. C.
966 Kaeding and J. R. Borchers. Boston, MA, Springer US: 15-28.

967 Wokke, B. H., J. C. van den Bergen, M. J. Versluis, E. H. Niks, J. Milles, A. G. Webb, E. W. van
968 Zwet, A. Aartsma-Rus, J. J. Verschuur and H. E. Kan (2014). "Quantitative MRI and strength
969 measurements in the assessment of muscle quality in Duchenne muscular dystrophy."
970 Neuromuscul Disord **24**(5): 409-416.

971 Xi, H., J. Langerman, S. Sabri, P. Chien, C. S. Young, S. Younesi, M. Hicks, K. Gonzalez, W.
972 Fujiwara, J. Marzi, S. Liebscher, M. Spencer, B. Van Handel, D. Evseenko, K. Schenke-Layland,
973 K. Plath and A. D. Pyle (2020). "A Human Skeletal Muscle Atlas Identifies the Trajectories of
974 Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells." Cell
975 Stem Cell **27**(1): 158-176 e110.

976 Yoshioka, K., H. Nagahisa, F. Miura, H. Araki, Y. Kamei, Y. Kitajima, D. Seko, J. Nogami, Y.
977 Tsuchiya, N. Okazaki, A. Yonekura, S. Ohba, Y. Sumita, K. Chiba, K. Ito, I. Asahina, Y. Ogawa, T.
978 Ito, Y. Ohkawa and Y. Ono (2021). "Hoxa10 mediates positional memory to govern stem cell
979 function in adult skeletal muscle." Sci Adv **7**(24).

980 Yousefi, S., T. Abbassi-Daloii, T. Kraaijenbrink, M. Vermaat, H. Mei, P. van 't Hof, M. van
981 Iterson, D. V. Zhernakova, A. Claringbould, L. Franke, L. M. t Hart, R. C. Slieker, A. van der
982 Heijden, P. de Knijff, B. consortium and P. A. C. t Hoen (2018). "A SNP panel for identification
983 of DNA and RNA specimens." BMC Genomics **19**(1): 90.

984 Zakany, J. and D. Duboule (2007). "The role of Hox genes during vertebrate limb
985 development." Curr Opin Genet Dev **17**(4): 359-366.

986 Zhang, B. and S. Horvath (2005). "A general framework for weighted gene co-expression
987 network analysis." Stat Appl Genet Mol Biol **4**: Article17.

988 Zhang, Y., G. Parmigiani and W. E. Johnson (2020). "ComBat-seq: batch effect adjustment for
989 RNA-seq count data." NAR Genom Bioinform **2**(3): lqaa078.

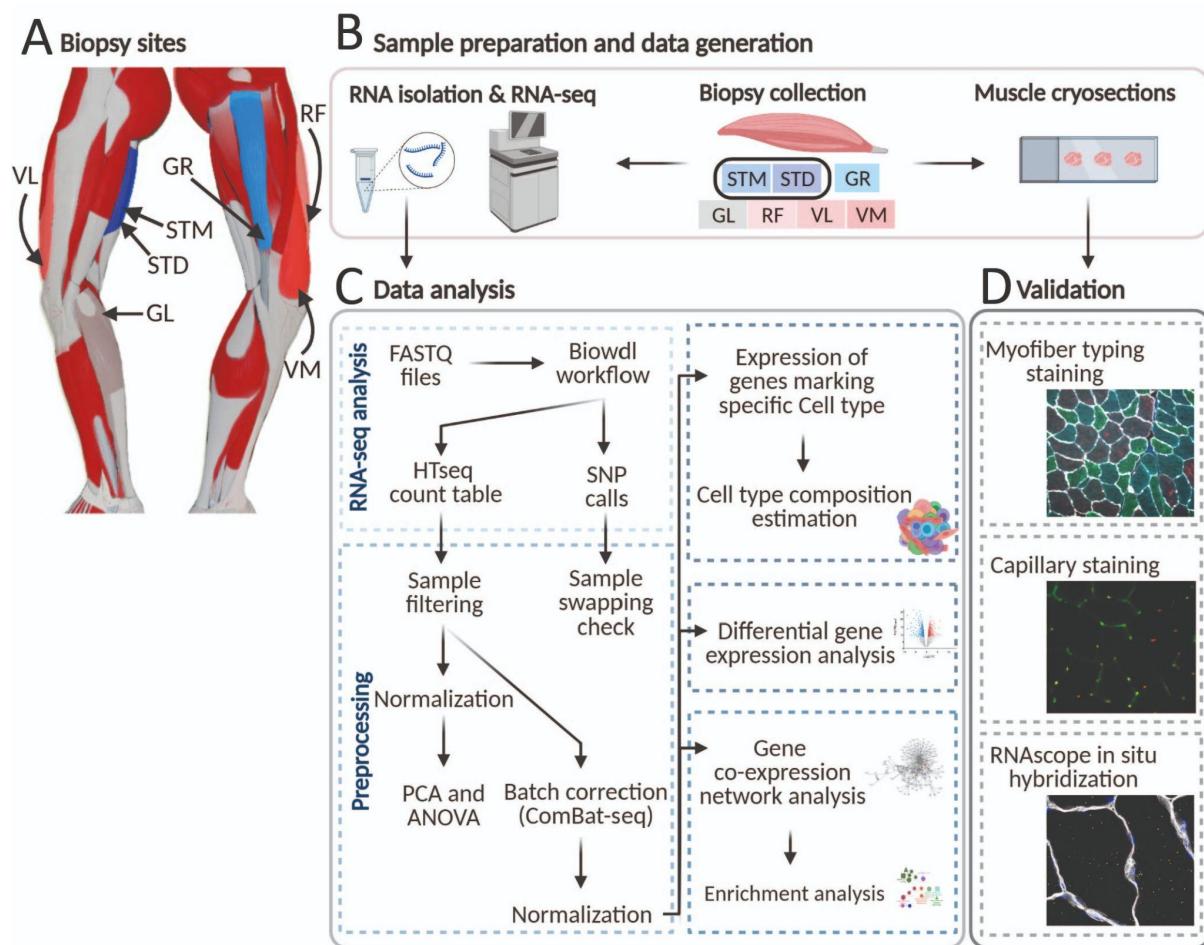
990 **Table 1.** Top enrichment results of muscle-related modules not driven by cell type composition

Module	Term	FDR	#Enriched genes	Hub genes
Higher expression in G1 (GR, STM, and STD)				
M.30 (75 genes)	IRE1-mediated unfolded protein response	4×10^{-4}	4	
M.32 (236 genes)	Hormone-mediated signaling pathway	9×10^{-3}	11	<i>CARM1, WBP2, ZBTB7A</i>
M.7 (308 genes)	Negative regulation of nucleobase-containing compound metabolic process	6×10^{-4}	51	<i>CREBBP, DAB2IP, FOXK2, LARP1, RXRA, THRA</i>
	Chromatin organization	1×10^{-2}	27	<i>ARID1B, CREBBP, HUWE1</i>
M.17 (176 genes)	Chromatin modifying enzymes	4×10^{-3}	11	<i>HCFC1, SETD1A</i>
Higher expression in G2 (RF, VL, and VM) and G3 (GL)				
M.31 (945 genes)	RNA splicing	6×10^{-5}	54	<i>SNRNP70</i>
	Histone modification	3×10^{-3}	47	<i>KAT2A</i>
M.33 (538 genes)	Apical junction complex	2.4×10^{-2}	11	<i>MICALL2</i>
M.13 (300 genes)	Mitochondrion	4×10^{-45}	122	<i>AIFM1, ATP5F1A, ATP5F1B, CKMT2, COQ9, DLD, DLST, FH, GHITM, HADHA, HADHB, IMMT, MFN2, NDUFS2, PDHA1, PDHB, TRAP1, UQCRC2</i>
M.14 (162 genes)	Anterior/posterior pattern specification	4×10^{-3}	7	<i>HOXA11</i>
Higher expression in G3 (GL)				
M.5 (190 genes)	Regulation of lipid metabolic process	8×10^{-4}	15	<i>ADIPOQ, ADRA2A, CIDEA, LEP, LGALS12, PDE3B, SCD</i>
M.25 (188 genes)	Ameboidal-type cell migration	5×10^{-3}	15	<i>CFL1, PML, TGFB1</i>
	Positive regulation of muscle cell differentiation	9×10^{-3}	6	<i>EHD2, ENG, NIBAN2, TGFB1</i>
M.11 (299 genes)	Golgi membrane	2×10^{-3}	30	<i>ASAP2, MAN1A1</i>
	Regulation of nervous system development	8×10^{-3}	30	<i>IQGAP1</i>

991

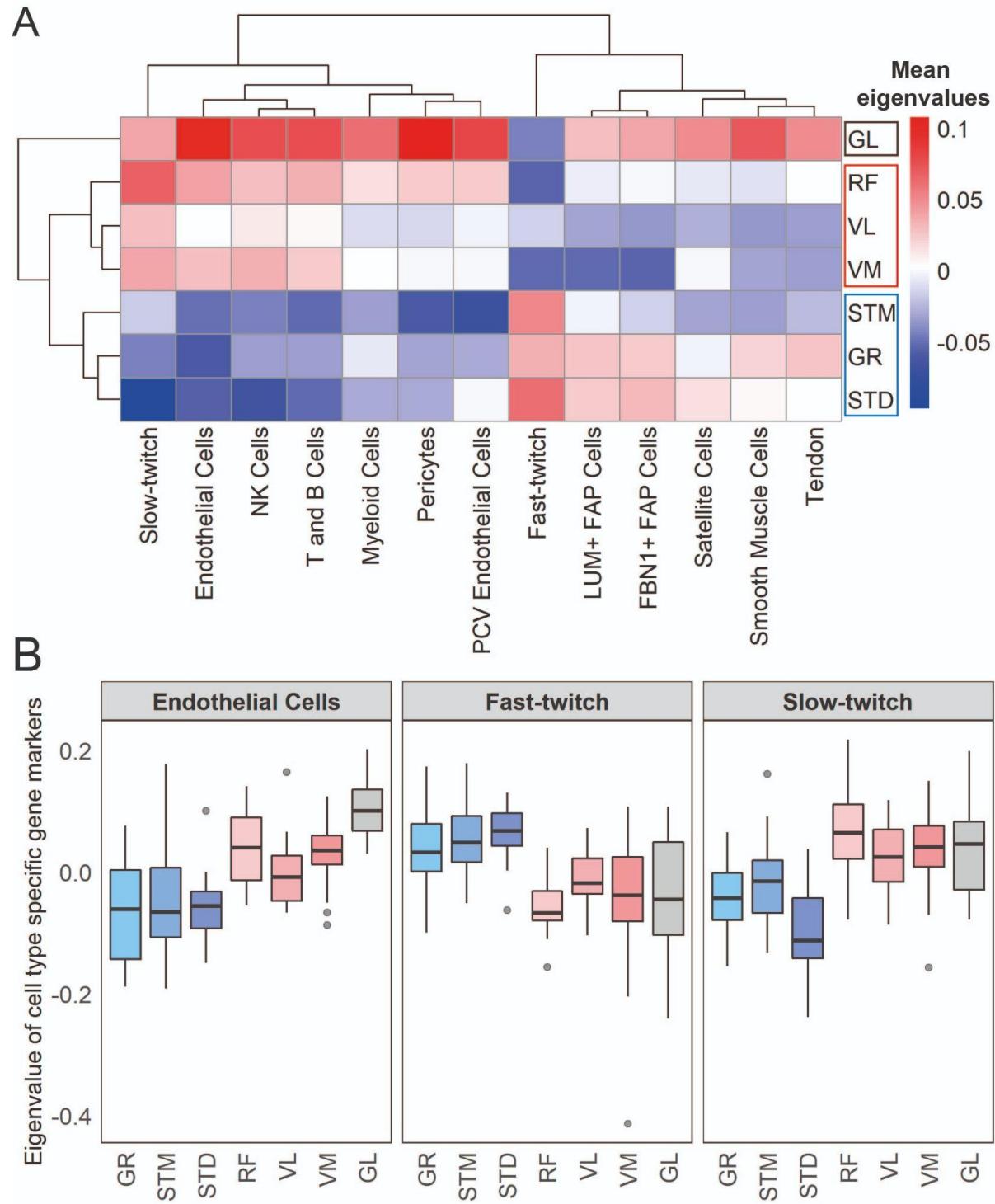
992

993 **Figures**

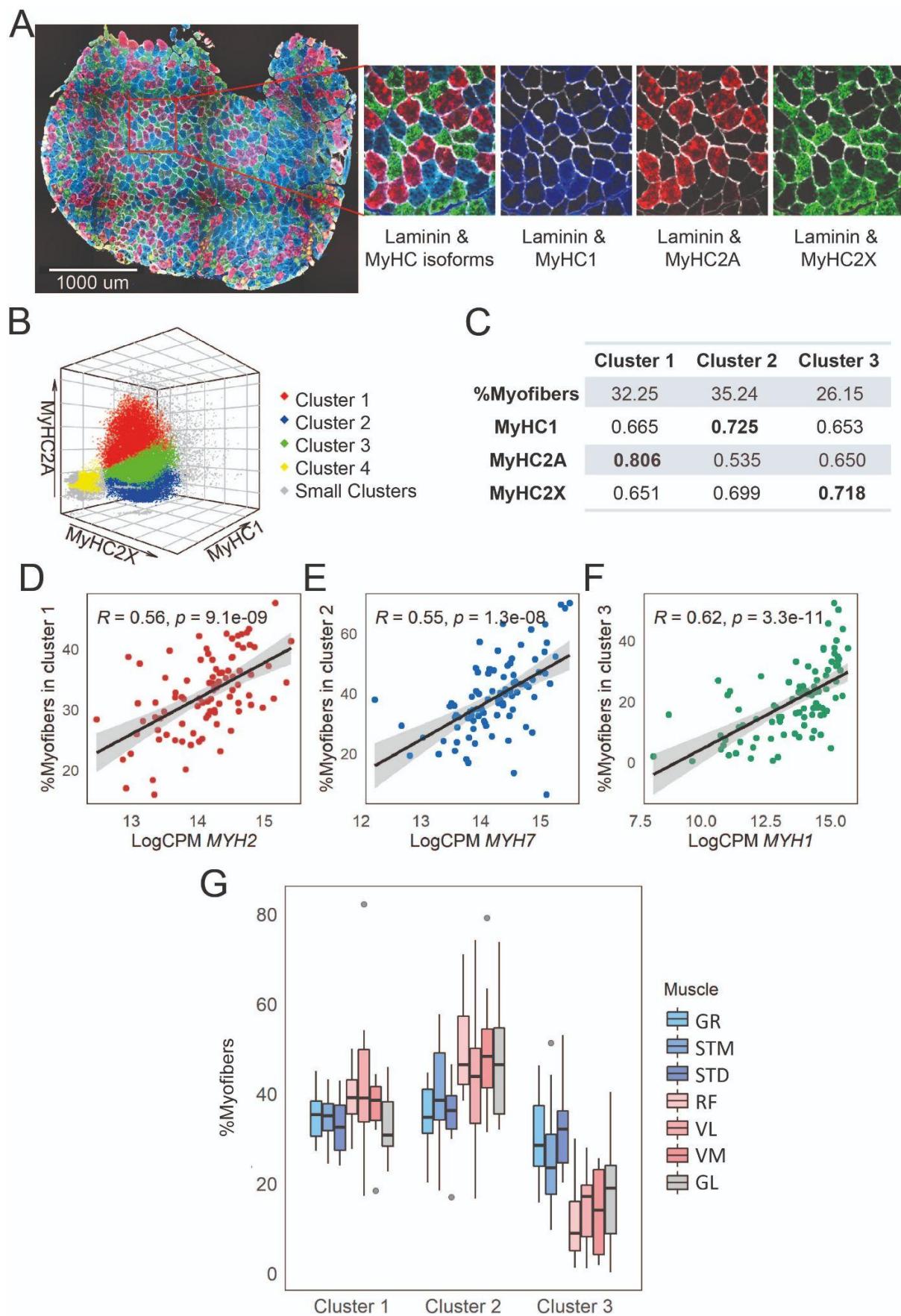


994
995 **Figure 1. An overview of biopsies' location and the study workflow.** A) A schematic overview of the
996 leg muscles. Arrows point to the muscles that were included in this study. The biopsies, with exception
997 of STM (semitendinosus-middle), were taken from the distal area. B-D) The study overview includes
998 cryosectioning, RNA-isolation and sequencing (B) data analysis (C) and validations (D).

999

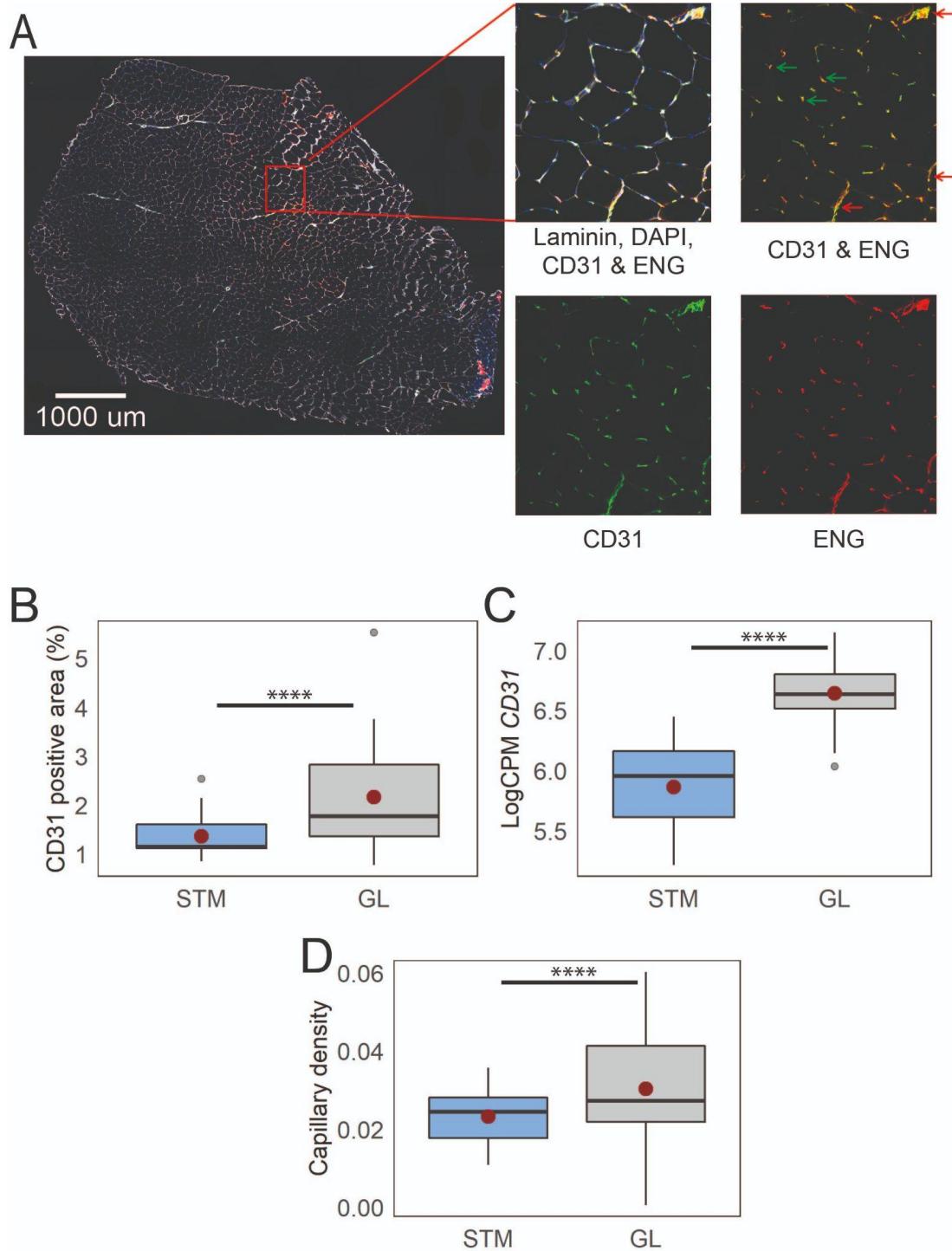


1001
1002 **Figure 2. Muscles cluster into three main groups based on cell type composition. A)** The heatmap
1003 shows the mean eigenvalues of genes marking each cell type across all the individuals. Each row shows
1004 a muscle, and each column shows a cell type. FAB stands for fibro-adipogenic progenitors. **B)** The
1005 boxplot shows the eigenvalues for the endothelial cells, fast-twitch, and slow-twitch myofibers per
muscle. The boxes reflect the median and interquartile range.



1007 **Figure 3. Myofiber type composition is consistent with the expression level of genes marking fast**
1008 **and slow-twitch myofibers. A)** A representative immunostaining image. The overlay of each myosin
1009 heavy chain isoform and laminin are shown separately. **B)** The MFI of the three MyHC isoforms are
1010 plotted in 3-D. Each dot represents a myofiber. Myofibers in the three largest clusters are denoted
1011 with red (Cluster 1), blue (Cluster 2), and green (Cluster 3). The objects with low MFI values for all the
1012 isoforms are denoted in yellow (Cluster 4, ~2% of all the dots). In gray are ~4% of myofibers assigned
1013 to many small clusters. **C)** The table shows the proportion of myofibers assigned to each of the three
1014 largest clusters and the average MFI values for each isoform. **D-F)** Scatterplots show the proportion of
1015 the assigned myofibers to each of the largest clusters and the normalized expression of the gene
1016 coding the isoform with a relatively higher expression in that specific myofiber cluster. **G)** The boxplot
1017 shows the proportion of myofibers in the three largest clusters per muscle. Each muscle is depicted
1018 with a different color, with G1 muscles in blue, G2 muscles in red and the G3 muscle in grey. The boxes
1019 reflect the median and interquartile range.

1020

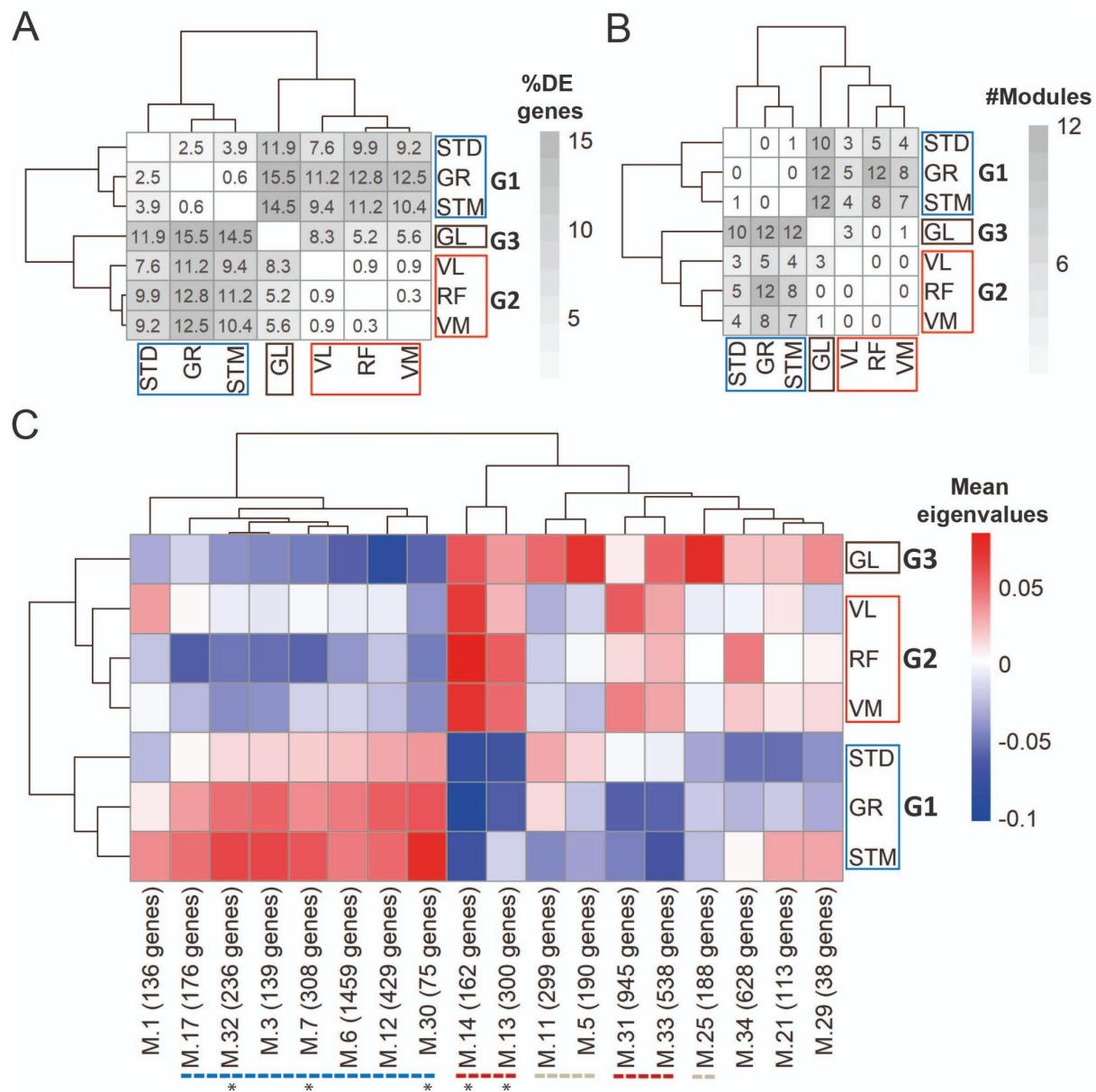


1021

1022 **Figure 4. Immunostaining confirms higher capillary density in GL compared with STM muscles. A)** A
1023 representative muscle cross section image immunostained with CD31, ENG, and laminin. An
1024 enlargement of the boxed region is shown on the right, with images of the three separate channels
1025 and an overlay. Examples of objects recognized as capillaries are shown by green arrows. Some
1026 examples of objects that were not considered as capillaries are shown by red arrows. **B)** The box plot
1027 shows the percentage of CD31 positive area in the two muscles. **C)** The box plot shows the normalized
1028 expression of CD31 gene in the two muscles. **D)** The boxplot shows the estimated capillary density in
1029 the two muscles. The capillary density was defined as the number of objects ($3-51 \mu\text{m}^2$) with an
1030 overlap between CD31 and ENG per unit cross-sectional area of the muscle. The boxes reflect the

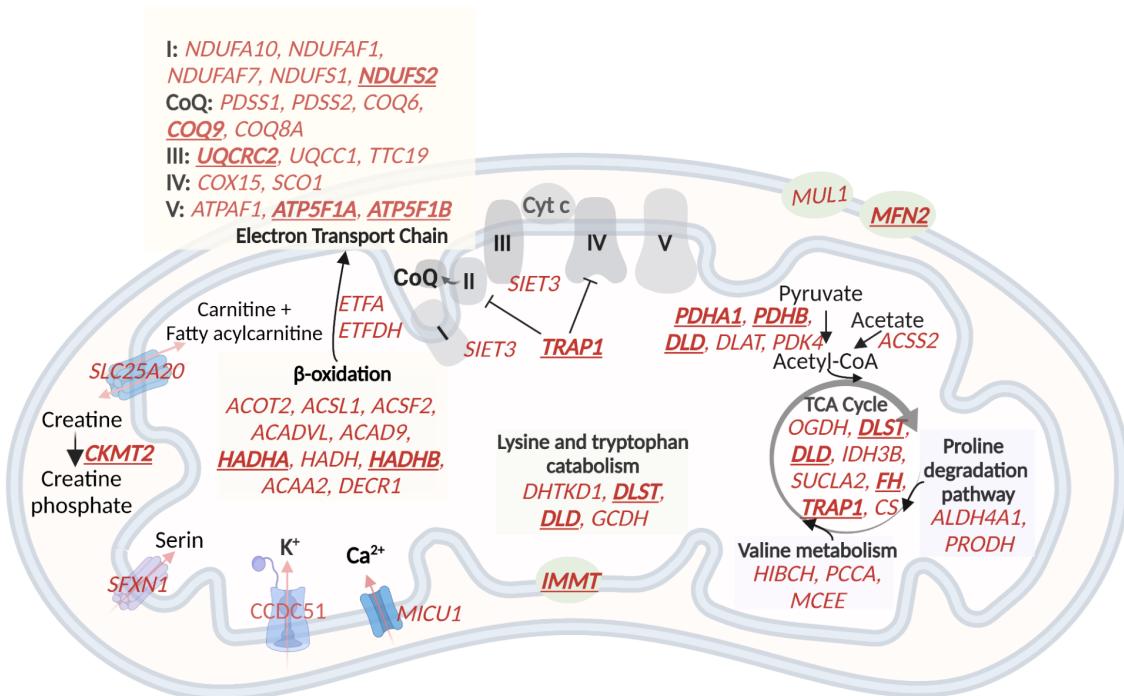
1031 median and interquartile range (N = 19 per muscle). The red dots on the boxes show the mean. ****
1032 *P-value < 1×10⁻⁶* (linear mixed-model).

1033



1035 **Figure 5. Gene expression differences between three groups of muscles not driven by cell type**
1036 **composition. A)** Symmetric heatmap plot shows the percentage of DEGs in different pairwise
1037 comparisons. Genes with a high Pearson correlation ($R > 0.5$) with the eigenvector of any cell type are
1038 excluded. Each row or column represents a muscle. **B)** Symmetric heatmap plot shows the number of
1039 modules that were not driven by cell type composition and were significantly different in each pairwise
1040 comparison. Each row or column represents a muscle. **C)** The heatmap shows the modules that reflect
1041 the intrinsic differences between groups of muscles. Each row represents a muscle, and each column
1042 shows a muscle-related module that was not driven by cell type composition. Color-coded cells show
1043 the corresponding average of eigenvalues across all individuals ($N = 20$). Modules with an overall
1044 higher expression in G1 or G3 are underlined by a blue or gray dashed line, respectively. The red
1045 dashed line underlines the modules with an overall higher expression in both G2 and G3. The black
1046 asterisks show modules with the largest differences between the three groups of muscles.

1047

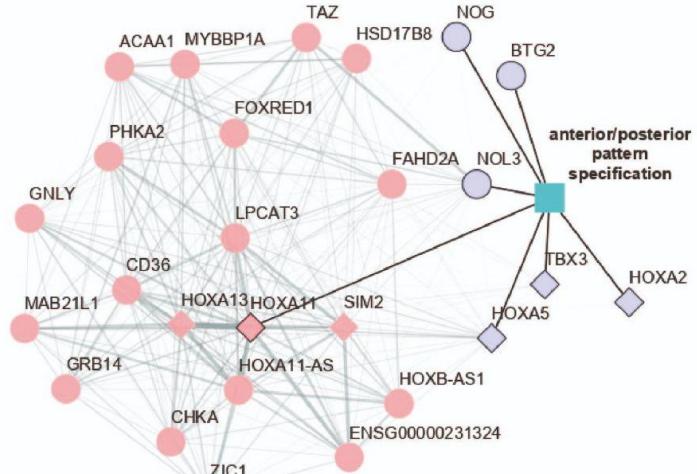


1048
1049
1050
1051
1052
1053

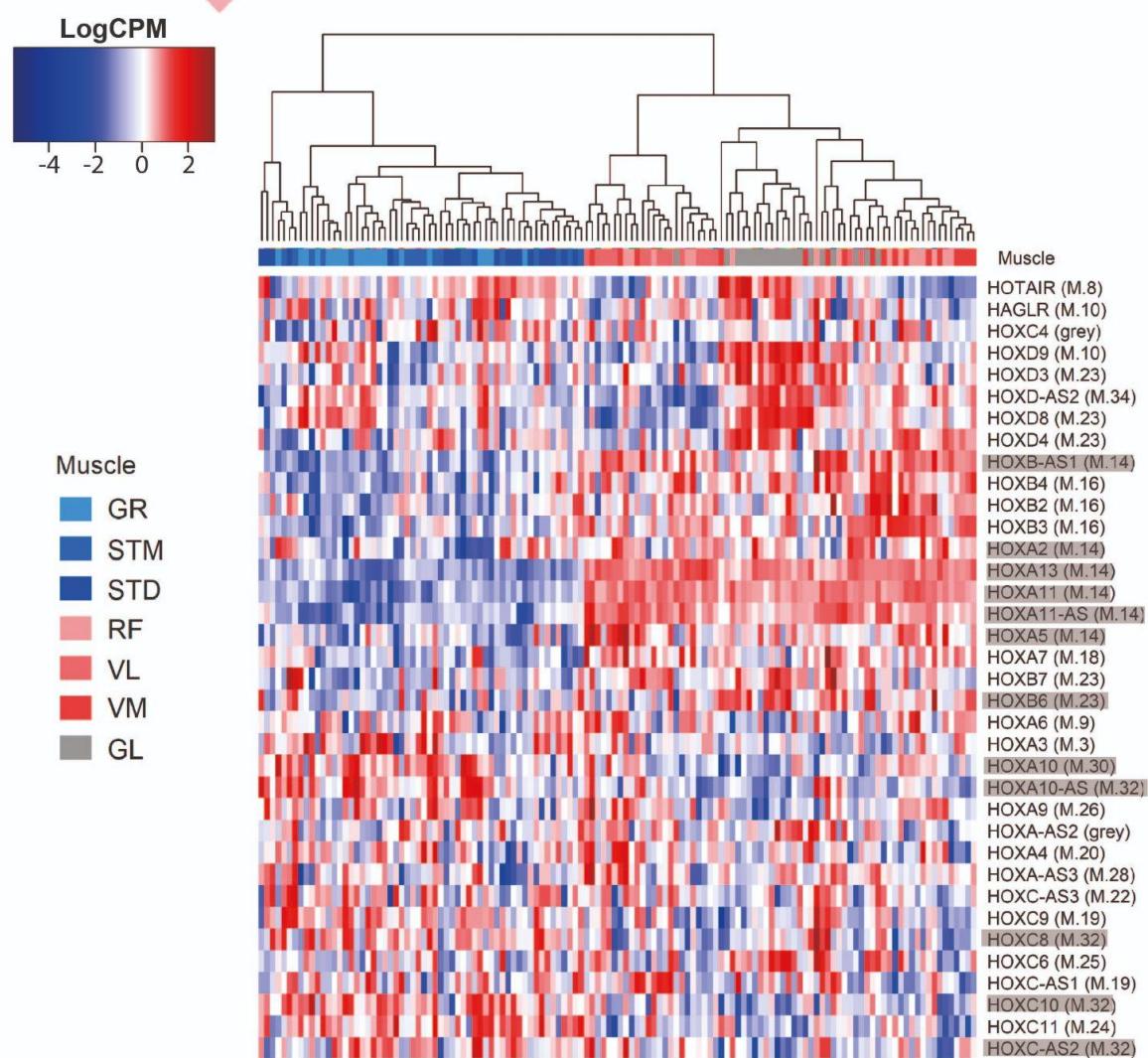
Figure 6. A schematic representation of genes with higher expression in G2 and G3, related to oxidative phosphorylation and metabolic pathways in the mitochondria. 60 (out of the 122) mitochondrial genes with higher expression in G2 and G3 are shown in red. The electron transport chain, lysine and tryptophan catabolism, TCA cycle, and beta-oxidation are shown. The hub genes are underlined and in bold.

1054

A



B

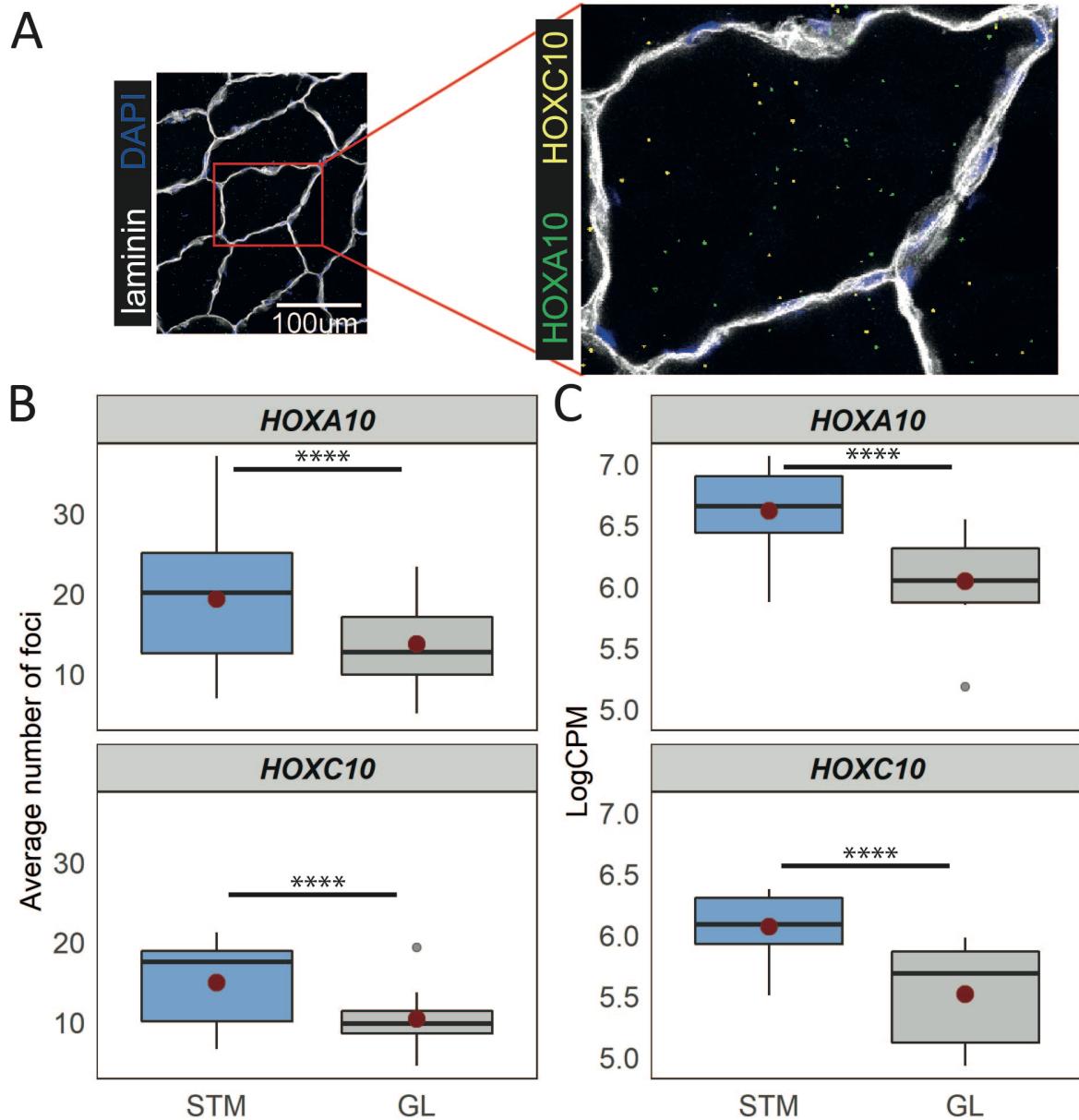


1055

1056 **Figure 7. The expression patterns of HOX genes cluster muscles in the same groups.** A) The graph
1057 shows the co-expression subnetwork of HOX genes and genes related to anterior/posterior pattern
1058 specification assigned to the M.14 module. Diamonds indicate transcription factors while other genes
1059 are indicated by circles. Pink and purple nodes represent the hub genes and non-hub genes,

1060 respectively. The genes related to anterior/posterior pattern specification have a black border. The
1061 edge thickness reflects the degree of topological overlap. Topological overlap is defined as a similarity
1062 measure between each pair of genes in relation to all other genes in the network. High topological
1063 overlaps indicate that genes share the same neighbors in the co-expression network. **B)** Normalized
1064 expression of all HOX genes (scaled by row) represented as a heatmap. The hierarchical clustering was
1065 generated using the normalized expression values. Each row represents a gene and each column
1066 represents a sample. The side color of columns indicates different muscles. The module in which the
1067 gene assigned is given between parentheses. Eleven highlighted HOX genes are assigned into muscle-
1068 related modules which showed the largest differences between the groups of muscles (M.14, M.30,
1069 and M.32).

1070



1071

1072 **Figure 8. Distinct expression of HOX genes confirmed by RNAscope. A)** A representative *in situ*
1073 hybridization image of HOXC10 and HOXA10 in muscle cryosections. The image is a merge image of
1074 the channels used for laminin, DAPI, HOXC10 and HOXA10 staining. **B)** The boxplots show the average
1075 number of foci per myofiber (y-axis) in STM and GL muscles (x-axis). **C)** The boxplots show the
1076 normalized expression of HOXA10 (top) and HOXC10 (bottom) in STM and GL muscles. The boxes
1077 reflect the median and interquartile range (N = 12 per muscle). The red dots on the boxes show the
1078 mean. **** P-value < 1×10⁻⁶ (linear mixed-model).

1 **Supplementary data**

2 **Supplementary Tables**

3 **Supplementary Table S1.** Samples' metadata.

4 **Supplementary Table S2.** A combined list of the genes marking different cell types.

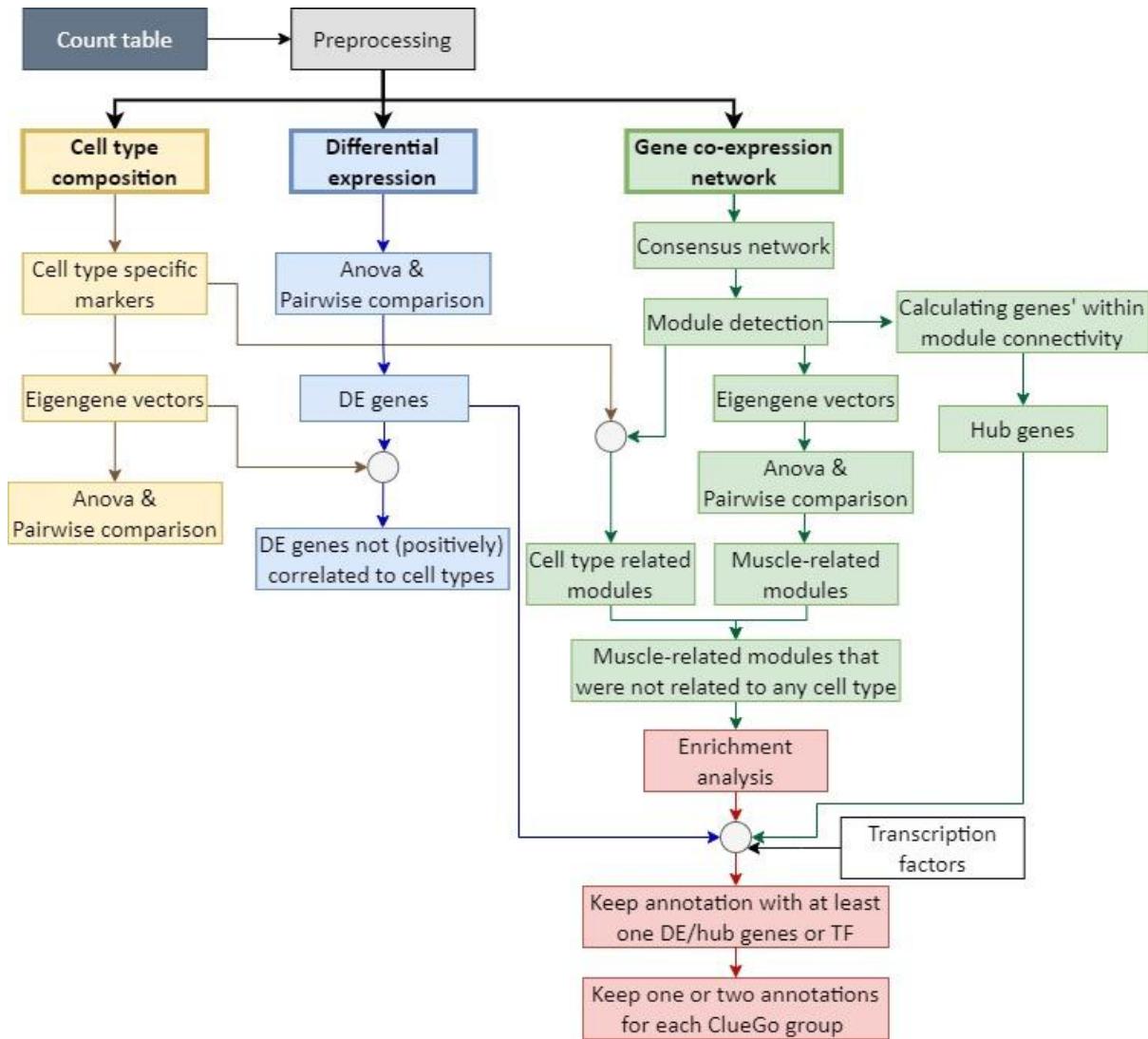
5 **Supplementary Table S3.** The result of differential expression analysis.

6 **Supplementary Table S4.** List of genes – modules.

7 **Supplementary Table S5.** List of enriched biological processes and molecular functions within
8 modules.

9

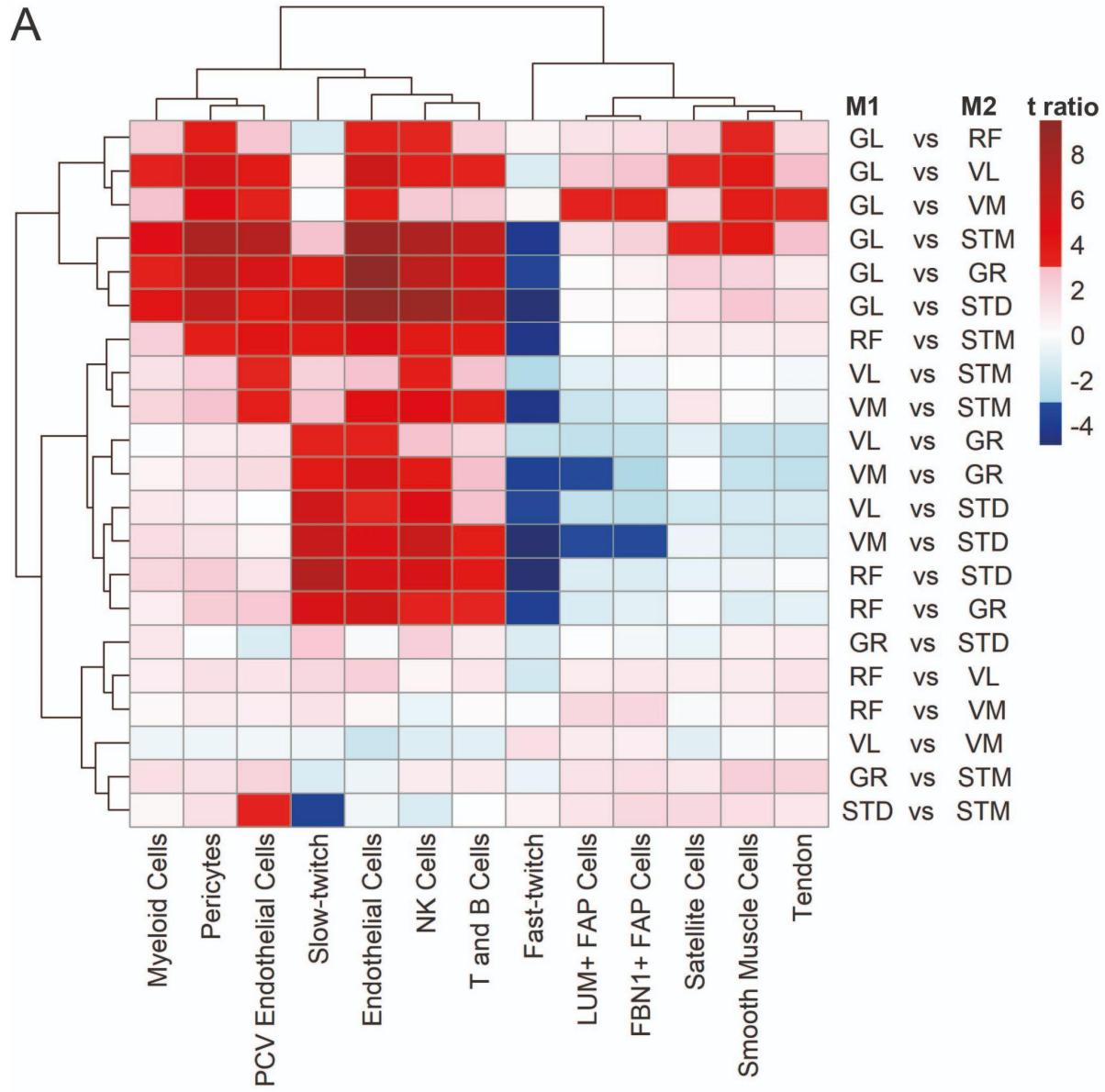
10 Supplementary Figures

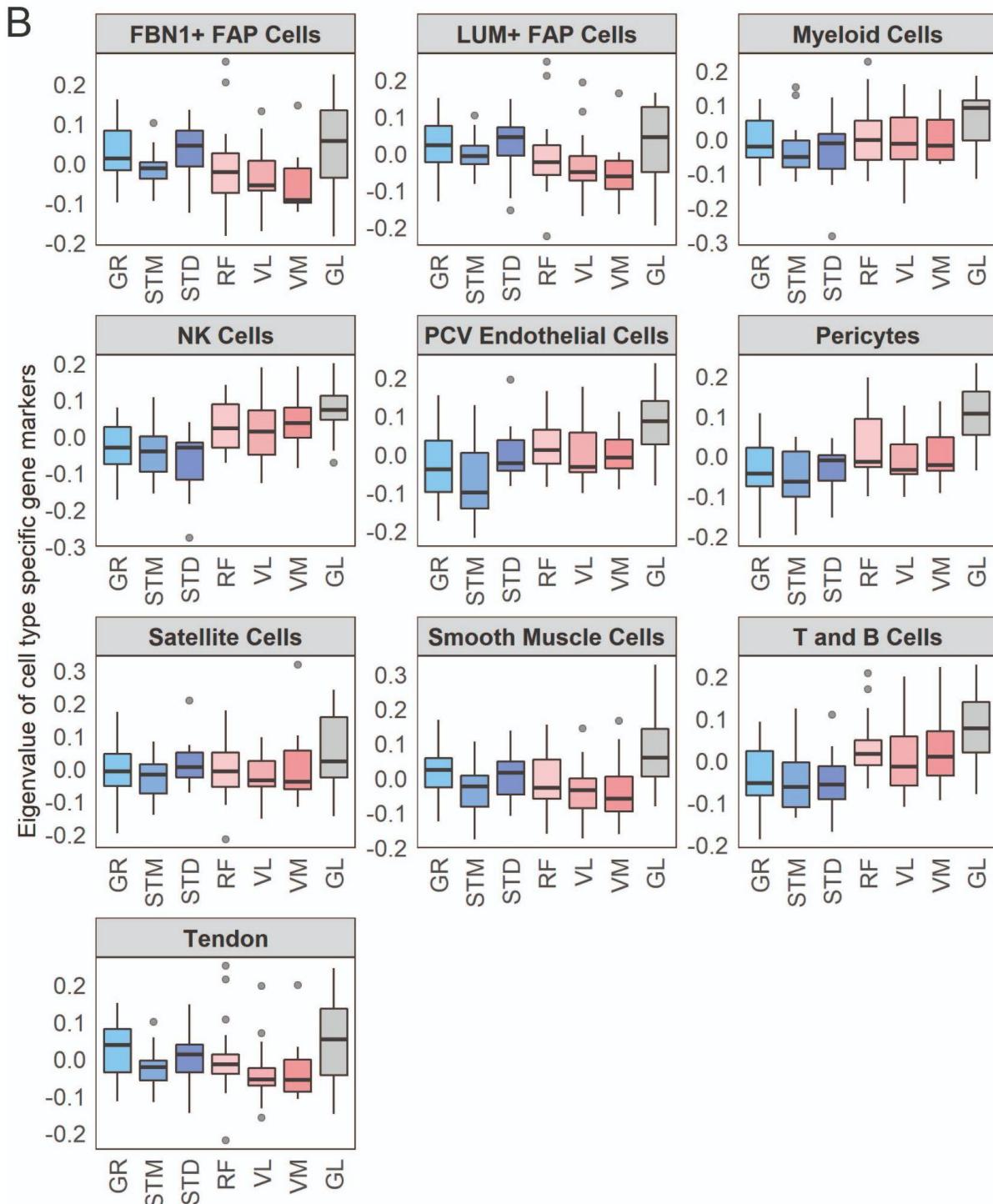


11

12 **Supplementary Figure S1. Analysis framework.** A flowchart summarizing the analysis framework used
13 to detect molecular signatures characterizing distinct skeletal muscles. Following pre-processing,
14 muscle-specific signatures were identified using three approaches: cell type composition analysis (in
15 yellow), differential expression analysis (in blue), gene co-expression network analysis (in green), and
16 functional enrichment analysis (in red).

17

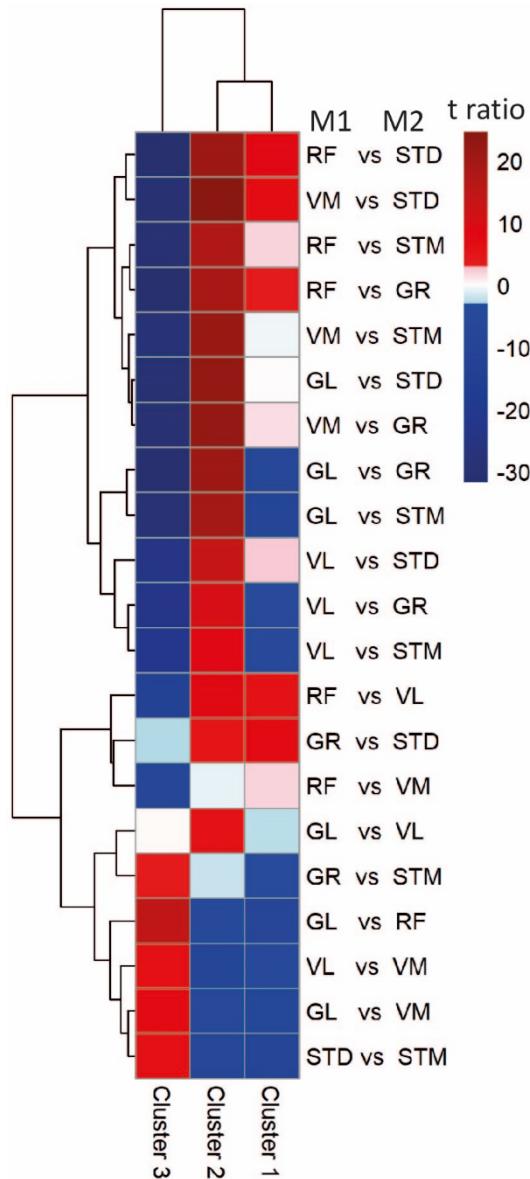




19
20 **Supplementary Figure S2. Cell type composition differences between muscles.** A) The heatmap
21 shows the differences between each pair of muscles. The statistically significant variation between
22 muscles was tested by ANOVA followed by the post-hoc pairwise comparisons. Each row corresponds
23 to a pairwise comparison, and each column shows a cell type. Color-coded cells show the
24 corresponding t-ratio for the differences in eigenvalue of a cell type in each pairwise comparison. The
25 significant differences (Tukey p-value < 0.05) are colored red (significantly higher eigenvalues in
26 muscle M1) or blue (significantly higher eigenvalues in muscle M2). The non-significant differences
27 are colored from pink (relatively higher eigenvalues in M1) to light blue (relatively higher eigenvalues

28 in M1). **B)** Each boxplot shows the eigenvalues of a cell types across different muscles. The boxes
29 reflect the median and interquartile range.

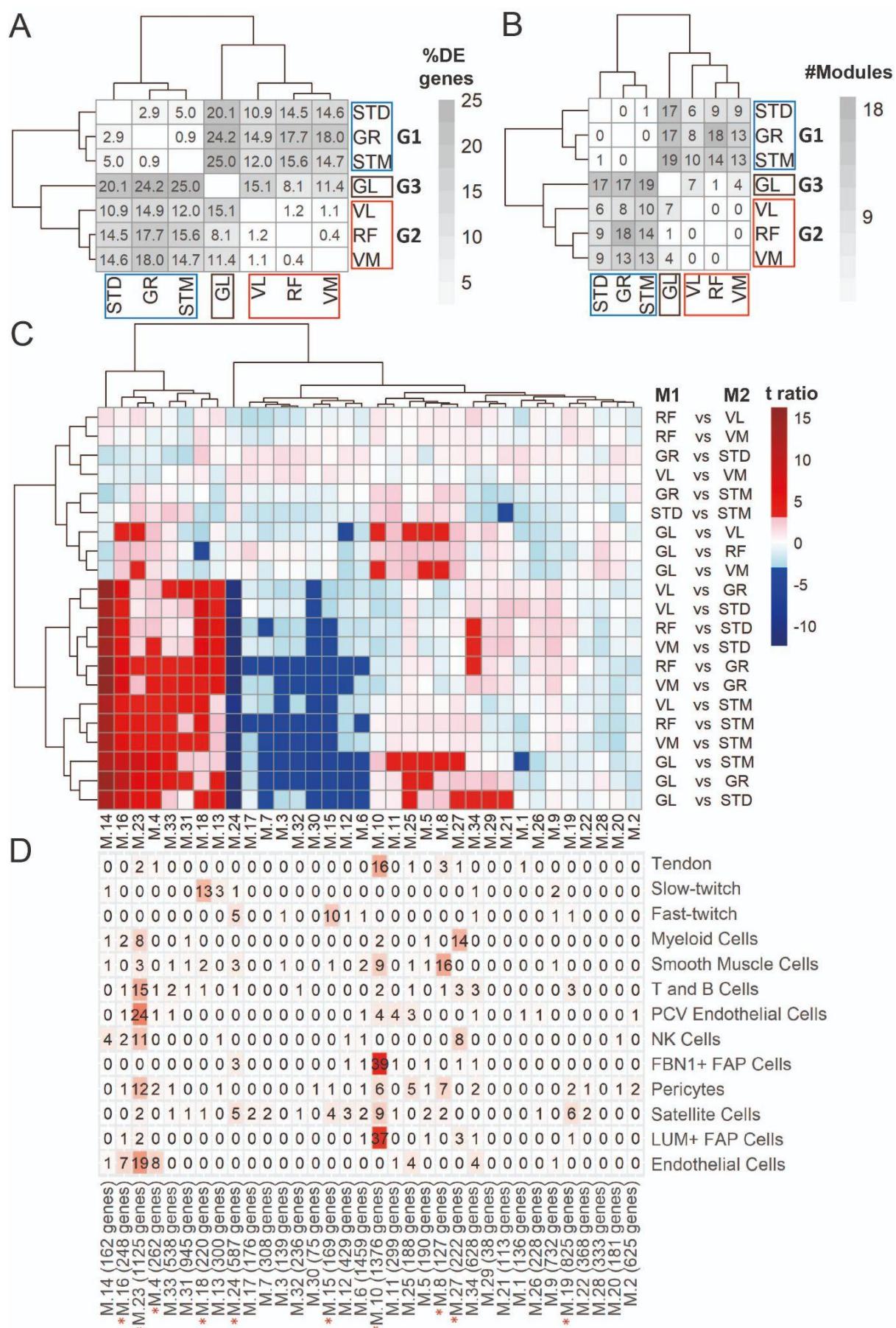
30



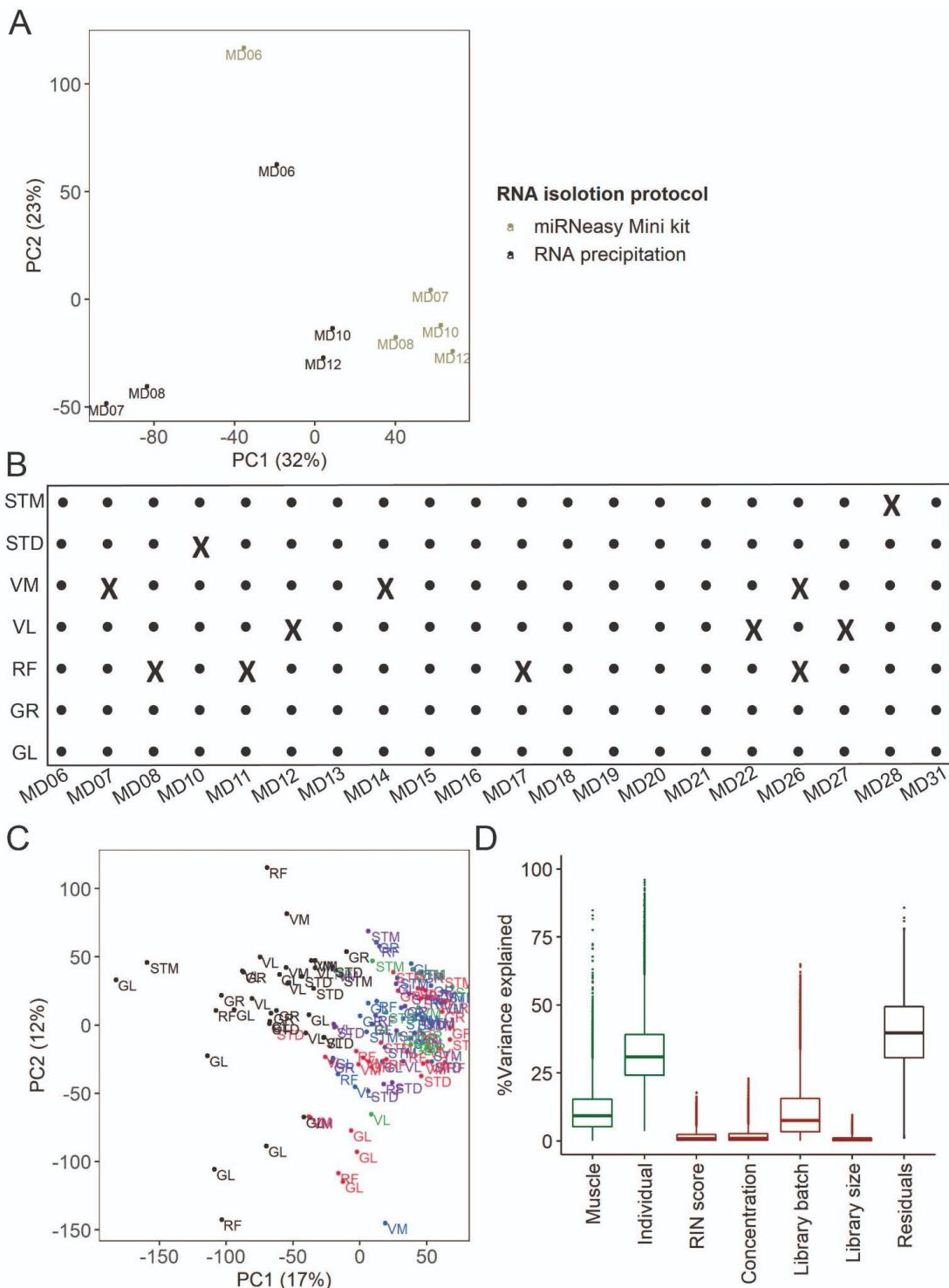
31

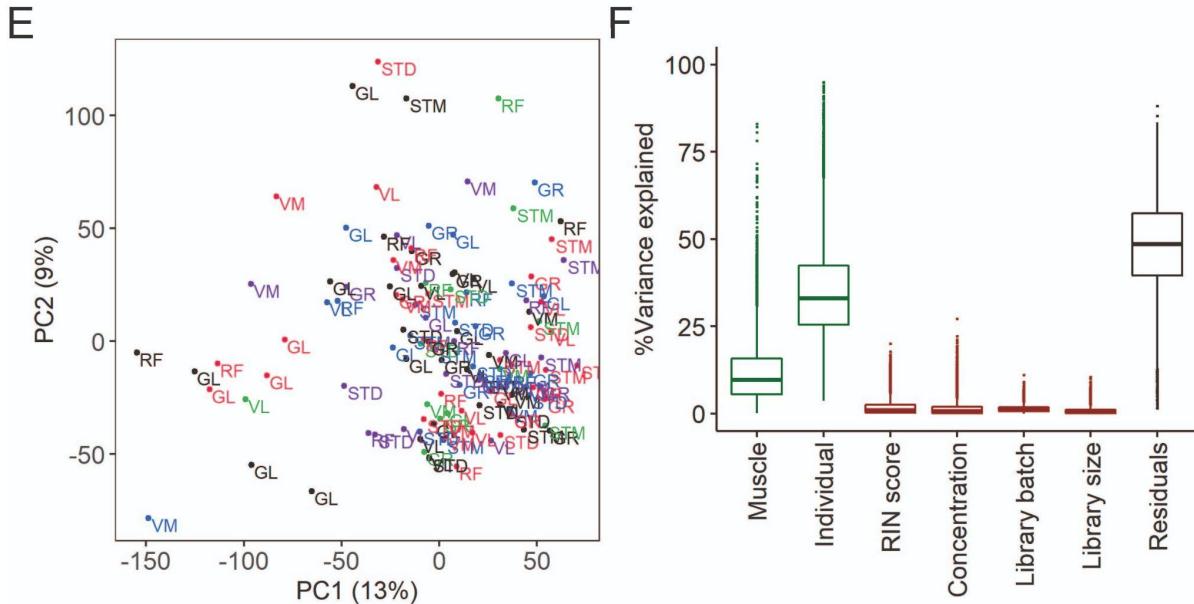
32 **Supplementary Figure S3. Myofiber composition differences between muscles.** The heatmap shows
33 the differences between each pair of muscles. The statistically significant variation between muscles
34 was tested by ANOVA followed by the post-hoc pairwise comparisons. Each row corresponds to a
35 myofiber cluster, and each column shows a pairwise comparison. Color-coded cells show the
36 corresponding t-ratio for the differences in proportions of myofiber in each pairwise comparison. The
37 significant differences (Tukey p-value < 0.05) are colored red (significantly higher proportions in
38 muscle M1) or blue (significantly higher proportions in muscle M2). The non-significant differences
39 are colored from pink (relatively higher proportions in M1) to light blue (relatively higher proportions
40 in M1).

41



43 **Supplementary Figure S4. DEA and WGCNA also clustered muscles in three groups. A)** Symmetric
44 heatmap shows the proportion of all differentially expressed genes in different pairwise comparisons.
45 Each row or column represents a muscle. **B)** Symmetric heatmap shows the number of modules that
46 were significantly different in each pairwise comparison. Each row or column represents a muscle. **C)**
47 Each row corresponds to a pairwise comparison and each column shows a muscle-related. Color-
48 coded cells show the corresponding t-ratio for the differences in eigenvalue of a module in each
49 pairwise comparison. The significant differences (Tukey p-value < 0.05) are colored red (significantly
50 higher eigenvalues in M1) or blue (significantly higher eigenvalues in M2). The insignificant differences
51 are colored from pink (relatively higher eigenvalues in M1) to light blue (relatively higher eigenvalues
52 in M1). **D)** The table shows the intersection of the genes in the modules (columns) with genes marking
53 different cell types (rows). Color-coded cells show the corresponding intersection number. The red
54 asterisks show modules driven by cell type composition.





56
57 **Supplementary Figure S5. The quality control and batch correction of RNA-seq data. A)** The PCA plot
58 shows the effect of the RNA isolation protocols. The scatter plot of PC1 (x-axis) and PC2 (y-axis) shows
59 GR muscle from five individuals from which RNA was isolated using two RNA isolation protocols. **B)** An X indicates samples that are not present in the final transcriptome dataset. **C**
60 & **E)** Scatter plots of PC1 (x-axis) and PC2 (y-axis) before (C) and after (E) batch correction. Each dot
61 presents a sample labeled by muscle tissue. Each library preparation batch is shown with a different
62 color. The re-sequenced batch is denoted in black. **D & F)** Box plots show the analysis of variance
63 before (D) and after (F) batch correction. Y-axis shows the percentage of variance explained by
64 different factors. The x-axis shows the known biological (muscle and individual, shown in green) and
65 technical (RIN score, concentration, batch, library size, shown in red) factors. The RNA isolation
66 protocol effect is captured in the individual effect.
67
68

69