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Abstract: The microbiome contributes to many different host traits, but its role in host 

adaptation remains enigmatic. The fitness benefits of the microbiome often depend on 

ecological conditions, but fluctuations in both the microbiome and environment modulate these 

fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the 

microbiome and host to respond to changing environments. Drosophila melanogaster provides 

an excellent system to investigate the evolutionary effects of interactions between the 

microbiome and the environment. To address this question, we created field mesocosms of D. 

melanogaster undergoing seasonal adaptation with and without the vertically transmitted 

bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that 

Wolbachia constrained microbial diversity. Furthermore, interactions between Wolbachia and 

the microbiome contributed to fitness-associated traits. Wolbachia often exerted negative fitness 

effects on hosts, and the microbiome modulated these effects. Our work supports recent 

theoretical advances suggesting that hosts in temporally fluctuating environments benefit from 

flexible microbial associations with low transmission fidelity—specifically when changes in the 

microbiome can better enable host phenotypes to match environment change. We conclude by 

exploring the consequences of complex interactions between Wolbachia and the microbiome for 

our understanding of eco-evolutionary processes and the utility of Wolbachia in combating 

vector-borne disease.   
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INTRODUCTION 
The microbiome shapes many different traits in many different eukaryotic hosts, 

contributing to behavioral, metabolic, and immunological phenotypes (1–3). While progress has 

been made in identifying the functional effects of the microbiome in laboratory settings, the eco-

evolutionary forces that generated the links between host and microbiome remain poorly 

understood (3, 4). One key reason is that the phenotypic effects and the potential fitness 

benefits of the microbiome on their host often depend on the local environment (3, 5); changing 

environments can shift the relative costs and benefits of host-microbe interactions. Furthermore, 

the microbiome itself is dynamic. Feedback between the host and the environment can also 

change the composition and function of the microbiome (6, 7). The dynamic nature of the 

microbiome may itself be a key feature of host-microbiome interactions, contributing to buffering 

the effects of environmental stress and potentially conferring key adaptive benefits for the host.  

 

Transmission fidelity can also influence the evolutionary importance of the microbiome 

(3, 8, 9). Transmission fidelity refers to how faithfully the microbiome is shared across 

generations, between parents and offspring. Generally, for the microbiome to influence host 

fitness, microbes benefit their hosts, and hosts faithfully transmit the beneficial microbes to the 

next generation (3, 8). Hosts tend to evolve strict control of microbial transmission through 

vertical transmission to maintain these beneficial interactions (9), such as the intricate molecular 

mechanisms that govern classic symbioses, like the aphid-Buchnera association (10). However, 

strict control can limit the acquisition of other potentially more beneficial microbes, constraining 

hosts and microbes to the ecological conditions that generated the associations in the first place 

(3, 11, 12). Recent theoretical advances suggest that for organisms that occupy habitats with 

variable environments (e.g., seasonality or anthropogenic change), lower transmission fidelity 

and increased flexibility in the microbiome through environmental acquisition may actually 

benefit hosts (9). If the microbiome provides functions that benefit hosts, then flexibility in the 

microbiome may help hosts better match phenotypes to changing environments. Notably, the 

flexibility in the microbiome may also depend on microbe-microbe interactions. Vertically 

transmitted microbes are often present at embryogenesis, while other environmentally acquired 

microbes colonize throughout different points, over development and throughout the lifespan of 

hosts (13). Priority effects by the vertically transmitted microbes may thus facilitate or impede 

variation in the environmentally acquired microbiome (14, 15), but the fitness effects of priority 

effects on hosts remain poorly characterized. 
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Understanding these fundamental processes may also provide novel solutions to 

pressing problems in public health (e.g., vector-borne diseases) and agriculture (e.g., pesticide 

resistance). A particularly notable vertically transmitted bacterium that is currently being 

developed to suppress vector-borne disease is Wolbachia. Wolbachia are intracellular alpha-

proteobacteria, vertically transmitted, and found in an estimated 40-60% of all arthropod species 

(16, 17). Wolbachia, classically known for reproductive manipulations (18, 19), also impacts 

other life history, metabolic, and immunological traits (20, 21). One key trait is pathogen 

blocking which occurs when Wolbachia impedes the establishment of pathogens in the host, 

including pathogens vectored by mosquitoes (22, 23). Indeed, Wolbachia infected mosquitoes 

can reduce the incidence of dengue by ~70% in some locations (24). Yet, introducing 

Wolbachia-infected mosquitoes is labor intensive as Wolbachia does not naturally infect most of 

the mosquitoes that transmit diseases, requiring the rearing of millions of mosquitoes to spread 

Wolbachia effectively enough to provide protection against vector-borne diseases (25).  

 

 To increase the efficiency of Wolbachia introductions, a better understanding of how 

Wolbachia shapes host fitness is needed. The fitness costs and benefits of Wolbachia often 

depend on ecological conditions (21, 26, 27). With climate change potentially reshaping the 

distribution of vector-borne pathogens (28), identifying new mechanisms that buffer 

environmental stressors will be needed. The adaptive potential of the microbiome provides one 

path forward, as rapid evolution in the microbiome may facilitate local adaptation (3). However, 

much about the evolutionary impacts of the interactions between hosts, Wolbachia, and the 

microbiome remain cryptic (29–31).  

 

 Elucidating the eco-evolutionary processes that shape the fitness effects of Wolbachia 

has long been facilitated by research in D. melanogaster. Wolbachia is prevalent in D. 

melanogaster, infecting ~30% of the Drosophila Stock Center (32) as well as many natural 

populations (33, 34). Pathogen blocking by Wolbachia was first discovered in D. melanogaster 

(35, 36), and mechanisms involved in pathogen blocking discovered in Drosophila often apply to 

mosquitoes (22, 37, 38). Additionally, the Drosophila microbiome is relatively simple (<20 

species), environmentally acquired, and shapes many different traits (39). Previous research 

suggests that Wolbachia has conflicting effects on the microbiome, with both antagonistic (40) 

and beneficial (41) effects on Acetobacter and Lactobacillus, the dominant bacteria in the fly 

microbiome. These bacteria are also implicated in shaping adaptation in Drosophila. In a field 

mesocosm experiment, inoculation with Acetobacter and Lactobacillus rapidly generated 
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genomic divergence within five generations during fly adaptation to a seasonally changing 

environment (42); however, all flies were infected with Wolbachia. In the laboratory, a meta-

analysis of experimental evolution in Drosophila found that Wolbachia and microbial diversity 

frequently responded to artificial selection (43), suggesting that the interactions between 

Wolbachia and the microbiome may contribute to host evolution. Thus, D. melanogaster is an 

excellent model to study the evolutionary interplay between host, microbiome, and the 

environment.  

 

Here, using field mesocosms, we performed longitudinal sampling to study the 

microbiome dynamics in D. melanogaster with and without Wolbachia during adaptation to a 

seasonally changing environment (Fig. 1). If bacteria with high transmission fidelity (i.e., 

Wolbachia) shape the microbiome and fitness effects on the host, then Wolbachia infected (W+) 

flies may differ in seasonal adaptation compared to Wolbachia-free (W-) flies. We combined our 

longitudinal microbiome dynamics with phenotyping for fitness-associated traits to understand 

how Wolbachia and microbiome interactions shape host adaptation. 

 

 
 
Figure 1: Experimental design. A) Layout of the eight cages, with compass showing North-
South orientation. Cages are colored by Wolbachia status, with gray representing Wolbachia-
free (W-) and orange representing Wolbachia (W+) flies. All cages maintained the initial 
Wolbachia status, except for C7, which converted to Wolbachia infected in mid-August (~Day 
57). B) Temperature and sampling regime over the season. Cages were seeded with flies on 
July 2, 2019 and ended November 6, 2019. Daily mean temperature is shown in black line and 
range shown in gray. The colored arrows represent sampling points. Microbiome was sampled 
weekly (orange, N=14 timepoints) beginning Day 24 (third week of July) until Day 120. Flies 
were periodically phenotyped for starvation resistance as a proxy for fitness (red, N=3 
timepoints). Finally, at the end of the experiment (blue), longevity and fecundity were measured 
in females to test if Wolbachia status and microbiome variation influenced seasonal evolution.  
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RESULTS 

 
 
Figure 2: Microbiome composition over growing season. Groups are faceted by sampling 
date with averaged Wolbachia-free (W-) and Wolbachia (W+) populations. Asterisks denote the 
dates that were paired with the fitness-associated phenotyping later in the season. Colors 
represent the different genera. Acetobacter was replaced by Commensalibacter by the end of 
the season, while Wautersiella peaks in the middle. Providencia was intermittently present 
throughout the growing season, though most abundant at the beginning and end of the season. 
 
Season shapes the composition of the microbiome 
 Flies were sampled weekly over the season beginning three weeks after the experiment 

started in July 2019. Fly populations maintained their Wolbachia status throughout the 

experiment, except for Cage 7. Cage 7 was initially Wolbachia-free, but we detected Wolbachia 

on the Day 57 sampling and subsequently at the rest of the sampling points. We note that while 

Wolbachia is part of the microbiome, for simplicity, we will refer to the microbiome as the 

bacterial community that primarily infects the gut but can also survive outside of the host (39).  

 

The microbiome was predominantly composed of four bacteria: Acetobacter, 

Commensalibacter, Providencia, and Wautersiella (Fig. 2). At the start of the season, 

Acetobacter and Providencia were the dominant bacteria. Acetobacter peaked early in the 

season (Day 57), and then was replaced by another bacteria in the Acetobacteraceae family, 

W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ W-W+ 

* * *
Days
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Commensalibacter, which dominated for the rest of the season. Providencia fluctuated, with 

peaks at the beginning and end. Wautersiella peaked in the middle of the season (Day 85), but 

was largely absent at the beginning and end. W- and W+ flies generally harbored the same 

bacteria, but the relative abundance differed over the season in complex ways; differences 

between Wolbachia status varied from one time point to the next.  

 

 
 
Figure 3: Alpha diversity fluctuates more in Wolbachia-free populations over the season. 
A) Change in two alpha-diversity measures (Shannon diversity; PD = phylogenetic diversity) 
colored by Wolbachia status. Lines represent the mean change in alpha diversity and error bars 
are standard error. For Shannon diversity, fluctuations increased at the end of the season, 
particularly for W- flies. For PD, both populations fluctuate more at the beginning of the growing 
season.  B) Summation of the changes in alpha diversity over the season by each cage. While 
PD tended to be greater for W-, only the change in Shannon diversity for W- populations was 
significantly higher than W+ flies (Kruskal-Wallis X2 = 5.00, df=1, p=0.03).  
 

Wolbachia constrains microbiome diversity in seasonally changing environment  
If vertically transmitted microbes constrain the ability of the microbiome to respond to 

environmental fluctuations, then Wolbachia infection could reduce microbial diversity in two 

ways. First, Wolbachia infection could reduce the complexity of the community within a 

population (i.e., alpha-diversity). Second, Wolbachia infection may change how community 

turnover proceeds over the season (i.e., beta-diversity). Through longitudinal sampling across 

replicated W+/W- populations, we assessed how Wolbachia infection shaped microbiome 

dynamics.  
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Indeed, W+ flies exhibited reduced fluctuations in alpha-diversity (Fig. 3). Shannon 

diversity fluctuated throughout the season, while phylogenetic diversity stabilized towards the 

end of the growing season (Fig. 3A). W- flies accumulated significantly more changes to 

Shannon diversity than W+ flies (Fig. 3B, Kruskal-Wallis X2 = 5.00, df = 1, p = 0.03). However, 

while a similar trend was observed for phylogenetic diversity, it was not statistically significant 

(Kruskal-Wallis X2 = 2.69, df = 1, p = 0.10).  

 

Community turnover was also shaped by Wolbachia infection status (Fig. 4). Principal 

coordinate analysis using Bray-Curtis dissimilarity (BC) showed that time (i.e., days since the 

start of experiment) significantly shaped differences between microbiomes (Fig. 4A, 

PERMANOVA: R2 = 0.20, p = 0.001, Supp. Table R1). Wolbachia exerted significant, but 

marginal effects on the microbiome (PERMANOVA: R2 = 0.02, p = 0.001, Supp. Table R1). A 

similar trend was observed using Unifrac distance (Supp. Fig. R1, Supp. Table R2). We 

illustrated community turnover by showing the temporal trends in the top four abundant bacteria 

(Fig. 4B). Acetobacter and Providencia declined first, followed by the peak for Wautersiella, then 

Comensalibacter and Providencia increased at the end of the season.  

 

We next assessed the mean BC for each population cage over the growing period. High 

BC is associated with more community turnover, while lower BC values correspond to greater 

similarity. In general, BC decreased over the season (Fig. 4C). Notably, Wolbachia interacted 

with seasonality to shape community turnover for the four dominant bacteria (Wolbachia x time 

interaction: Wald X2 = 12.91, df  = 1, p = 0.0003, Supp. Table R3). W+ populations were initially 

more dissimilar than W-, but became more similar by the end of the season. However, the 

Wolbachia x time interaction was not detected for the complete community (Wolbachia x time 

interaction: Wald X2 = 1.01, df = 1, p=0.31, Supp. Table R4).  

 

Through reducing microbiome diversity and turnover, Wolbachia infection likely 

constrained the ability of the microbiome to respond to the seasonally changing environment. 

So far, we have considered only microbe-microbe interactions. However, these microbial 

communities are also changing in the context of the host response to the changing environment. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494239
http://creativecommons.org/licenses/by/4.0/


 8 

 
 
Figure 4: Community composition turnover changes over growing season and interacts 
with Wolbachia status. A) PCoA plot using Bray-Curtis dissimilarity. Color represents time 
(days since the start), where warm colors represent the summer beginning and cool represent 
the fall ending. Shape shows Wolbachia status. Seasonality significantly affected differences 
between all individuals (Supp. Table R1). Wolbachia infection exerted significant, but marginal 
effects. There was no significant interaction between Wolbachia and seasonality. B) Temporal 
dynamics in the four most abundant genera illustrate community turnover. Lines represent the 
average across all cages for each genus with loess smoothing, and 95% confidence intervals 
are shaded. C) Community turnover over the growing season. Lines represent the Bray-Curtis 
(BC) dissimilarity within each cage, averaged by Wolbachia status. Dashed lines show BC for 
the complete microbiome, while the solid lines show for the top four most abundant genera 
visualized in B. BC dissimilarity decreases over the growing season. For the top four abundant 
genera, Wolbachia interacted significantly with community turnover, where Wolbachia 
populations were initially more dissimilar, but by the end of the growing season, became more 
similar than Wolbachia-free populations (Supp. Table R3).  
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Figure 5: Wolbachia interacts with Commensalibacter to shape starvation resistance. A) 
Points represent the mean time to death (days) for each cage with standard error. X-axis shows 
the relative abundance of Commensalibacter. Color represents Wolbachia, with solid lines for 
females and dotted lines for males. Facets show the three time points collected over the later 
end of the growing season, labeled by the date of collection. For all time points, sex affected 
starvation resistance, with males starving more quickly than females. Earlier in the growing 
season at Day 96 (N: W+ = 107, W- = 77), neither Wolbachia nor Commensalibacter affected 
starvation time. At Day 116 (N: W+ = 93, W- = 92), Commensalibacter was negatively 
associated with starvation resistance (Supp. Table R6). Furthermore, Wolbachia flies were less 
starvation resistant than Wolbachia-free flies (Supp. Table R6). In the final sampling at Day 127 
(N: W+ = 110, W- = 86), increased Commensalibacter significantly reduced starvation 
resistance (Supp. Table R7). Wolbachia and sex interacted to shape starvation, where 
Wolbachia-free females had higher resistance than males, but there was no difference between 
sexes for Wolbachia flies (Supp. Table R7). B) Model estimates (β) ± standard error from Cox 
hazard models over the three sampling points that summarizes data shown in Fig. 5A. 
Wolbachia effects are displayed in orange and blue shows the effects of Commensalibacter. For 
D:127, shown are only the model estimates for statistically significant Wolbachia x sex 
interaction. Overall, the effects of Wolbachia and Commensalibacter increased at the end of the 
growing season. 
 
Interactions between Wolbachia and microbiome shape fitness-associated host traits  

If interactions between Wolbachia and the microbiome influence how the host responds 

to changing environments, then we would expect to see differences in fitness-associated 

phenotypes emerge over the course of the experiment. To test this, we performed periodic 

phenotyping towards the end of the season for starvation resistance. Starvation resistance 

reflects the nutritional reserves used in both reproduction and survival in challenging 

environments. We phenotyped flies at three time points paired with longitudinal microbiome 
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profiling to assess how interactions between Wolbachia, microbiome, and the changing 

environments shape the response in the fly populations.  

  

 Starvation resistance varied over the season (Fig. 5A). For the microbiome, we focused 

on the effects of the most frequent bacterium found at the three time points, Commensalibacter. 

For the first time point (Day 96), only sex affected starvation resistance; males starved twice as 

fast as females (β = 2.08 ± 0.20 SE, p < 0.0001, Supp. Table R5). At the next time point (Day 

116), increased Commensalibacter relative abundance was associated with decreased 

starvation resistance (β = 1.21 ± 0.38 SE, p = 0.001, Supp. Table R6). W+ flies starved 

approximately twice as fast as W- flies (β = 0.52 ± 0.18 SE, p = 0.003). There were moderate 

Wolbachia x sex interactions, but this effect was not statistically significant and was removed 

from the model. However, at the final time point, Commensalibacter and Wolbachia x sex 

interactions significantly influenced starvation resistance (Supp. Table R7). Again, 

Commensalibacter relative abundance negatively affected starvation resistance (β = 1.33 ± 0.48 

SE, p = 0.006). Sex-by-Wolbachia interactions also emerged (β = -0.71 ± 0.30 SE, p = 0.017). 

While W- females had greater starvation resistance than males, there was no difference for W+ 

flies, resulting in a substantial reduction in fitness for females especially. Overall, Wolbachia and 

the microbiome shaped starvation resistance, particularly at the end of the season (Fig. 5B).  

 

Finally, at the end of the season (Day 127), we measured fecundity and lifespan in 

individual females from each population. Fecundity was measured as the number of pupae that 

emerged from individual females. Fecundity was zero-skewed, with 50% W+ and 35% W- 

females producing no pupae (Fig 6A). For the females with non-zero fecundity, pupae produced 

ranged from a single pupa to 118 pupae. Lifespan also varied (Fig. 6B). While 30% of W+ and 

24% of W- females died within the first sampling point (11 days after the egg lay; after Day 11, 

checked every 4-5 days until all died), lifespan ranged from 12 to 82 days. For the microbiome, 

we examined the ratio of the two most frequent bacteria observed at the end of the season, 

Providencia (6 populations) and Commensalibacter (all 8 populations). There was no significant 

effect on Wolbachia on the Providencia:Commensalibacter (Prov:Comm) ratio (Kruskal-Wallis 

X2 = 0.81, df = 1, p = 0.37); though we note the range in W- populations spanned from 0 to 1.2, 

while W+ populations only from 0 to 0.5 (Fig. 6C).  
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Figure 6: Interactions between Wolbachia and the microbiome shape fitness-associated 
traits following seasonal evolution. Female flies (N=~20/cage, total W+ = 99, W- = 60) were 
collected at the end of the growing season and individually phenotyped for fecundity (pupae 
produced) and lifespan (days alive in the lab). A) Distribution of pupae produced from single 
females, colored by Wolbachia status. B) Distribution of lifespan in single females, colored by 
Wolbachia status. C) Box plots showing differences in the ratio of Providencia to 
Commensalibacter (Prov:Comm) between Wolbachia status. D) Fecundity from the interaction 
model between lifespan, Wolbachia, and microbiome. Prov:Comm ratios are from the final 
microbiome sampling point, represent averages per each cage, and were modeled at the three 
Prov:comm levels that captured most of the variation across cages. Lines show the predicted 
interactions between lifespan, fecundity, and Prov:Comm ratios, faceted by Wolbachia status. 
Points show the measured values and are shaded by the Prov:Comm ratio. The three way 
interaction significantly predicted fecundity through interactions between lifespan, Wolbachia, 
and microbiome (Supp. Table R8). Wolbachia-free flies with high Prov:Comm ratio were less 
fecund and had shorter lifespans, but Wolbachia flies were more fecund with shorter lifespans at 
low Prov:Comm ratios.  

 

To investigate the effect of the microbiome on the relationship between fecundity and 

lifespan, we modeled how interactions between Wolbachia and microbiome affected the 

relationship between fecundity and lifespan (Fig. 6D). Broadly, the flies that lived longer were 

also more fecund. However, the interaction between Wolbachia and Prov:Comm ratio shaped 
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this pattern (β = 0.044 ± 0.02 SE, p=0.01, Supp. Table R8). Primarily, high Prov:Comm ratios 

were absent in W+ flies, but tended to be associated with higher fecundity in W- flies. More so, 

W+ flies with low Providencia (i.e., Prov:Comm ratio ~ 0) experienced lower fecundity but longer 

lifespans, while higher Prov:Comm ratio flies experienced higher fecundity but shorter lifespans. 

However, the effects of the Prov:Comm ratio were minimal on W- flies, though trended towards 

longer lifespans and higher fecundity with high Prov: Comm ratios. Overall, the interaction 

between Wolbachia and microbiome shaped the fitness of flies following seasonal evolution.  

 

DISCUSSION 

Here, we examined how interactions between vertically transmitted and environmentally 

acquired bacteria shape adaptation to seasonally changing environments in Drosophila 

melanogaster. The analysis of temporal patterns in the fly microbiome (Fig. 2) suggest that 

Wolbachia constrained microbial diversity (Figs. 3, 4). Furthermore, interactions between 

Wolbachia and the microbiome also contributed to changes in fitness-associated traits. 

Wolbachia often reduced starvation resistance, fecundity and lifespan, but this was mediated by 

an interaction with two dominant bacteria, Commensalibacter and Providencia (Figs. 5, 6). Next, 

we discuss how our results provide insights into the influence of complex interactions between 

Wolbachia and the microbiome on host seasonal evolution.  

 

Wolbachia constraint on flexibility in the environmentally acquired microbiome 
 W+ flies experienced reduced fluctuations for Shannon diversity compared to W- flies 

(Fig. 3). We detected a similar trend for phylogenetic diversity, but because the communities are 

composed of similar taxa (primarily Acetobacteraceae family), the effects of Wolbachia on 

phylogenetic diversity were not statistically significant. Nevertheless, the reduction in Shannon 

diversity suggests that Wolbachia is limiting community complexity. Additionally, Wolbachia also 

reduced community turnover as measured by decreasing Bray-Curtis dissimilarity (Fig. 4C). The 

four most abundant bacteria responded strongly to Wolbachia compared to the total community, 

suggesting that dominant bacteria potentially regulate the interaction between Wolbachia and 

the microbiome. Together, this suggests the presence of Wolbachia changes the capacity for 

microbial change in response to the seasonally changing environment.  

 

The mechanisms underlying Wolbachia interactions with other bacteria are poorly 

understood. Wolbachia has been shown to have conflicting effects on Acetobacteraceae, either 

suppressing (40) or increasing (41) its abundance. The interaction is likely regulated through 
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indirect mechanisms as Wolbachia do not infect the lumen cells where most other bacteria 

reside (40). Wolbachia often interacts with the immune system when protecting against viral 

pathogens (36, 44), but has limited effects on protection against bacterial pathogens (40, 45, 

46). This suggests that the immune system is not directly involved in regulating the interaction 

between Wolbachia and the environmentally acquired microbiome. Temperature may however 

contribute to mediating the temporal dynamics of different bacteria. Wolbachia, like other 

intracellular bacteria, are thermally sensitive, with extreme temperatures exerting negative 

effects on intracellular bacteria and host fitness (47, 48). In Drosophila, both high (>28ºC) and 

low (<20ºC) temperatures decrease Wolbachia abundance and phenotypic effects (e.g., 

pathogen blocking and reproductive manipulations) in laboratory settings (34, 49, 50). However, 

bacteria from the fly microbiome are commonly cultured at 30ºC (51), with Providencia as high 

as 37ºC (46), suggesting these bacteria are more tolerant of temperature variation. During our 

experiment, mean daily temperature ranged from 26.6ºC to 6.6ºC, with temperatures as 

extreme as 55.9ºC in full sun and -3.6ºC observed (Fig. 1B). Differences in microbiome diversity 

may result from differential growth across bacterial species and the consequences of Wolbachia 

sensitivity to extreme temperatures. Taken together, our results suggest that environmental 

variation can alter host-microbe interactions through complex responses to abiotic (e.g., 

temperature) and biotic factors (e.g., microbe-microbe interactions).  

  

While more work is necessary to identify the specific mechanisms underlying Wolbachia-

microbiome interactions, our results highlight how Wolbachia infection constrains microbial 

diversity. The constraint on microbial diversity may benefit hosts by linking beneficial microbes 

to phenotypes that buffer specific environmental stressors and limit potentially negative 

interactions with deleterious microbes (3). However, too much constraint on the microbiome 

may cost host fitness if rapid microbial change can provide novel solutions to new selective 

pressures experienced in fluctuating environments (3, 9). Both of these predictions require a 

better understanding of how interactions between Wolbachia and the environmentally acquired 

microbiome shape host phenotypes.  

 

Wolbachia and microbiome interact to shape fitness-associated traits in hosts  
 For the microbiome to influence host evolution, host phenotypes should change in 

response to microbial variation (3). In Drosophila, both Wolbachia and the environmentally 

acquired microbiome often shape variation for a wide range of phenotypes (39, 52–55). By 

examining changes in fitness-associated traits over the course of the season, we identified 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494239
http://creativecommons.org/licenses/by/4.0/


 14 

shifts in the relative importance of interactions between Wolbachia and the microbiome for host 

adaptation.  

 

 Both Commensalibacter and Wolbachia impacted starvation resistance, but the effects 

depended on the sampling time point (Fig. 5). At the first time point (Day 96), neither had an 

effect. Commensalibacter had direct effects on starvation resistance on both subsequent time 

points; increased Commensalibacter abundance was associated with decreased starvation 

resistance. Starvation resistance in flies is predominantly determined by the amount of lipids 

stored (56, 57), and while the effects of Commensalibacter on lipid stores are unknown, many of 

other bacteria in the Acetobacteraceae family reduce lipid storage (58, 59). Other bacteria, like 

Lactobacillus, are typically associated with increased lipid storage and found in fly populations 

from colder climates (60); however, we did not detect abundant Lactobacillus in our study. 

Wolbachia also affected starvation resistance. W+ flies experienced decreased starvation 

resistance compared to W- flies. Other studies have not found an effect of Wolbachia on 

starvation resistance in laboratory populations of Drosophila (26, 61), but Wolbachia effects are 

often context dependent on both host genotype and ecological conditions (26, 62). The effects 

of Wolbachia varied across the three sampling points, with both Wolbachia and 

Commensalibacter having larger effects on starvation at the end of the season (Fig. 5B). 

Intriguingly, Wolbachia-by-sex interactions significantly decreased starvation resistance in the 

final time point (Day 127), as there was no difference in starvation time between males and 

females only for W+ flies. Reproductive manipulations by Wolbachia can target both males and 

females, biasing transmission of Wolbachia at the expense of host fitness (20, 63, 64). Our 

results suggest that W+ females exhibited the greatest reduction in starvation resistance at the 

end of the season, potentially because the complex interaction between Wolbachia and the 

microbiome reduced the ability of females to store lipids in the seasonally changing 

environment.  

 

 The other fitness-associated traits, fecundity and lifespan, were also shaped by 

interactions between Wolbachia and the microbiome at the end of the season (Fig. 6). Notably, 

for W+ flies, increased Providencia shifted life-history trade-offs, with higher fecundity, but short 

lifespans. However, when Providencia was low or absent, W+ flies lived longer and produced 

more offspring. Only marginal effects were observed for W- flies. The three-way interaction, 

combined with the starvation resistance results, points to one potential mediator–the 

insulin/insulin-like growth factor signaling (IIS) pathway. The IIS pathway helps maintain 
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metabolic homeostasis by shaping the balance between carbohydrate availability and lipid 

storage, and consequently, life-history tradeoffs in Drosophila and many animals (65). The 

microbiome also modulates expression of several genes within the IIS pathway, including insulin 

receptors (66). However, not all bacteria contribute in the same way; different Acetobacter 

species modulate the activity of key components of the IIS pathway in different ways (67). 

Wolbachia also increases insulin signaling in Drosophila (54). Furthermore, many genes within 

the IIS pathway are highly pleiotropic, and polymorphisms in alleles within the IIS pathway also 

contribute to variation in life history traits associated with adaptation to ecological differentiation 

along a latitudinal cline in Drosophila (68). Taken together, complex interactions between 

Wolbachia and the microbiome may shape how hosts allocate nutrition and shift life-history 

strategies to buffer environmental change.  

 

The complex interactions for starvation resistance, fecundity, and lifespan suggest that 

Wolbachia exerted fitness costs on Drosophila. We note that we only assessed fecundity early 

in life and did not account for how fecundity changed over the lifespan. Nevertheless, our work 

here contributes to the evidence for complex, context dependence of Wolbachia effects on host 

fitness (26, 27, 53).  

 

Implications for microbiome interactions in seasonally evolving populations 
Here, Wolbachia shaped the seasonal changes in the environmentally acquired 

microbiome, and together, both affected fitness associated traits in the flies. These changes 

overall highlight the potential for variation in microbe-microbe interactions to shape seasonal 

evolution in hosts–however, the missing link is whether the microbiome changed the host 

response to selection (3). To understand if the microbiome buffered or changed the host 

evolutionary trajectory, genomic sequencing is necessary. Comprehensive genomic analyses of 

fly, Wolbachia, and the microbiome will provide deep insights into evolutionary processes 

shaping seasonal evolution.  

 

Previous work in Drosophila has shown how other microbiome manipulations shaped 

seasonal evolution. In a study where flies were inoculated with either Acetobacter or 

Lactobacillus at the start of the season, the different bacteria drove genomic divergence 

between fly populations in only five generations (42). Acetobacter enriched fly genomes for 

alleles associated with southern populations, where Acetobacter is also more common (60). 

Similarly, Lactobacillus enriched for alleles associated with northern fly populations. The fly 
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populations in these experiments were all infected with Wolbachia, but our flies lacked 

Lactobacillus, so applying these findings to our results is only speculative. Nonetheless, taken 

together, different microbial communities may lead to different evolutionary trajectories. In a 

sense, the host genome may be tracking the changes in the microbiome. As Wolbachia 

decreases the capacity for change in the microbiome, evolution in the host genome also is likely 

to change, much like adaptive tracking (9, 69). More work is necessary to understand the 

linkages between host and microbiome evolution, but adaptive tracking may depend on host-

microbe interactions (9). Adaptive tracking in Drosophila can occur during seasonal evolution 

(70), and potentially in the many organisms that live in temporally fluctuating environments–if 

and how the microbiome contributes to adaptive tracking remains an open question.  

 

Incorporating microbiome interactions with Wolbachia adds additional complexity to an 

already complex system. However, our results provide insights into how the microbiome may 

modulate the fitness effects of Wolbachia on their host. Mismatches between microbes and the 

environment may be exacerbated by Wolbachia, such as the negative association between 

Commensalibacter and starvation resistance (Fig. 5). Interventions to supplement the 

microbiome with better matched microbes may help Wolbachia-infected hosts buffer challenging 

environments, as we observed in the Drosophila microbiome (42, 60). As millions of mosquitoes 

are needed for these Wolbachia-mediated controlled efforts (25, 71), even moderate 

improvements to survival by the microbiome may help substantially increase the efficacy of 

Wolbachia in reducing vector-borne disease.  

 

In conclusion, when the microbiome changes in seasonally changing environments, 

Wolbachia may modulate effects on fitness-associated traits in the host. While many questions 

remain, this study contributes to a growing body of literature utilizing the rewilding of laboratory 

model systems to uncover how eco-evolutionary processes in host-microbe interactions (72–

76). Future work that links host, microbiome, and their interactions will provide fundamental 

insights into host-microbe evolution as well as novel solutions for applied challenges in public 

health.  

 

METHODS 
Fly populations 

Flies in this experiment were derived from a round-robin crossing design of the Global  

Diversity lines (77) and maintained at large population size (>10,000) flies for >100 generations 
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before the field experiment. This base population was naturally infected with Wolbachia (W+). 

To generate the Wolbachia-free (W-) population, flies were treated with 0.25 mg/ml tetracycline 

in the diet for two generations. W- flies were maintained for ~10 generations before the 

beginning of this experiment. During this pre-experimental maintenance phase, all flies were 

maintained at 25ºC with 12 hour light:dark cycles. All flies, in the lab and field, were reared on a 

diet composed of 10% glucose, 10% yeast, 1.2% agar with 0.04% phosphoric acid and 0.4% 

propionic acid as preservatives.  

 

To confirm Wolbachia status, we amplified two genes: cytochrome oxidase I (COI) in D. 

melanogaster (78) and 16S rRNA gene from Wolbachia (79). The COI gene served as a 

positive control as all fly samples should always generate an amplicon. Primer sequences can 

be found in Supp. Table M1.  

 

Field design and experimental sampling  
 Full details can be found in the Supplementary Methods.  

 

 The field site was located at Princeton University, NJ (40.34ºN, 74.64ºW). Eight total 

cages were constructed at the field site (Fig. 1). Cages were 1.2 m x 0.6 m x 0.6m (height x 

width x depth) and constructed from polyethylene monofilament fabric with 150x150 micron 

mesh (Greenhouse Megastore IS-NT-99). Each cage held a temperature/humidity data logger 

(Elitech USA Temlog 20H) placed on shelving units within the cage that held fly food. 

Depending on the position in the field, some temperature loggers may have been in direct 

sunlight during the daytime, but Wolbachia treatment was alternated to deal with variation in sun 

exposure (Fig. 1).  

 

Approximately 2500 flies (equal sex ratio) were placed into each cage at the start of the 

experiment on July 2-3, 2019. We introduced 1000 flies on July 2 and an additional 1500 on 

July 3. We maintained populations by providing ~300 ml fly food once per week, allowing for 

flies to feed, lay eggs, and providing a substrate for larvae to develop. As the population grew, 

we provided food twice a week, with only one loaf pan/week kept with the developing flies to 

maintain population size. Generations were overlapping, but we estimate that ~10 fly 

generations occurred during the experiment from July 2 until November 6, 2019. 
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We allowed fly populations to stabilize for the first three weeks (~1-2 fly generations). 

Following this, we sampled flies weekly to check Wolbachia status and characterize change in 

the fly microbiome. 10 flies were collected from each cage and PCR confirmed for Wolbachia 

status as previously described and then saved for 16S rRNA amplicon sequencing. This 

resulted in 14 timepoints over the season.  

 

To understand how Wolbachia and microbiome change affected fly fitness, we collected 

age-matched flies for starvation resistance on three dates: Day 96, Day 116, and Day 127. To 

age-match flies, we performed a separate egg lay in a cage within the cage. Flies were age-

matched to 5-7 days old. We note Day 127 flies were not specifically age matched, but collected 

from within the larger cage, which reflects the standing variation in traits at the end of the 

season.  

 

To measure starvation resistance, we recorded flies in 15x6.25 mm (diameter x height) 

acrylic arenas over 4-5 days until death. Arenas contained 1% agar to provide humidity, but no 

nutritional value. Cages were randomized across observation plates. Full details of recording 

parameters are in the supplement. We determined the time of death in 2.5 hour intervals to 

quantify starvation resistance.  

 

For the Day 127 flies, we also measured fecundity and lifespan from individual females 

to identify whether these fitness-associated traits varied between Wolbachia status. Individual 

females were placed into fly vials with 6 ml fly food and allowed to lay eggs for ~24 hrs. 

Fecundity from females was measured as the number of pupae that emerged from the 24 hour 

egg lay. We then flipped the flies into new vials after 10 days. Then, after 10 days, we flipped 

every 3-4 days until flies died to determine the lifespan of each individual. Fecundity is defined 

as the number of pupae that emerged from the initial 24 hour egg lay. 

 

Microbiome profiling  
 The microbiomes were profiled using 16S rRNA amplicon sequencing. DNA was first 

extracted from pools (10 flies for each cage and time point) using the Quick-DNA Plus kit (Zymo 

D4068), which includes a proteinase K digestion to ensure unbiased sampling of diverse 

bacteria. Proteinase K digestion did not affect the characterization of the microbiome (Supp. Fig. 

M1), thus in our analysis, we computationally merged samples from the same sampling point 

with +/- proteinase K. 16S rRNA amplicons were generated using a two-step dual-indexed 
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approach. We amplified the V1-V2 region of the 16S rRNA gene (Supp. Table M1), pooled for 

cleanup with Ampure XP beads, and then digested with BstZ17l enzyme to deplete Wolbachia 

amplicons (40). Libraries were sequenced using 300 bp paired-end reads using the Illumina 

MiSeq platform at the Princeton University Genomics Core.  

  

 Sequences were processed using QIIME2 v2020.6 (80). DADA2 was used to cluster the 

amplicon sequence variants (ASVs) (81). Taxonomy was assigned using the Greengenes 

reference database (82), trimmed to the 16S rRNA V1-V2 region. Phyloseq was used to 

visualize data (83). Potential contaminants were flagged using the decontam package (84) and 

removed prior to analyses. Samples were rarefied to 1000 reads per pool for analyses (Supp. 

Fig. M2 for rarefaction).  

 

Statistical analyses 
 To determine if Wolbachia altered the capacity for the microbiome to change during the 

seasonally fluctuating environment, we first calculated alpha-diversity. We calculated Shannon 

diversity and Faith’s phylogenetic diversity on ASVs. We then calculated the change for both 

diversity measures from the prior sampling point and summed the absolute value of change. We 

tested for significant differences between Wolbachia status using the Kruskall-Wallis test.  

 

 For beta-diversity, we first examined differences across all cages at all timepoints. We 

calculated Bray-Curtis dissimilarity (BC) for all samples and then used PERMANOVA 

implemented in vegan (85) to test for the effects of Wolbachia and time (over the course of the 

growing season) on community structure. To better understand how beta-diversity changed over 

time, we then examined beta-diversity change within each cage. We determined the change in 

BC with both the complete community and only the top four most abundant bacterial genera: 

Acetobacter, Commensalibacter, Providencia, and Watuersellia; four genera together comprised 

~85% across all samples. The comparison between the complete community and the top four 

abundant bacteria allowed us to understand whether dominant microbes interact more with 

Wolbachia than low abundance bacteria. We used a mixed linear model to test for the effects of 

Wolbachia, time, and their interaction on BC, with cage as a random effect implement in lme4 in 

R (86).  

 

 To assess the phenotypic effects of Wolbachia and microbiome interactions, we used 

Commensalibacter as a covariate in the starvation resistance analyses. Commensalibacter was 
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the most frequently occurring bacteria for the three phenotyping timepoints (Fig. 2). Given that 

the starvation resistance assay itself would alter the microbiome, we could not directly assess 

the microbiome of the flies we phenotyped. However, we used the Commensalibacter value 

from the preceding microbiome sample (i.e., Day 92 microbiome for the Day 96 phenotyping 

point). For starvation resistance, we fit a mixed effect Cox proportional hazard model for each 

timepoint separately. We modeled the response of starvation resistance (i.e., time to death) 

considering the effects of Wolbachia, sex, and Commensalibacter relative abundance and with 

cage as a random effect, implemented in the coxme package in R (87). We tested for 

Wolbachia x sex interactions, but if the interactions were non-significant, they were removed 

from the model.  

 

 To determine whether Wolbachia and the microbiome influenced fly fitness, we included 

the ratio of Providencia to Commensalibacter (Prov:Comm) as our microbiome covariate. We 

included the Prov:Comm ratio to more fully capture variation in the microbiome, rather than just 

a single bacteria in the model. Both were frequently found in flies, with Providencia in 6/8 cages 

and Commensalibacter in all eight. We modeled the response using a mixed-effect model with 

the negative binomial as the error distribution in the glmmTMB package (88). Our model tested 

for the effect of Wolbachia, lifespan, Prov:Comm interaction, and the three way interaction on 

fecundity, with cage as the random effect. We assessed significance of the main effects using 

Wald X2 tests with Kenward-Roger degrees of freedom.  
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SUPPLEMENTAL METHODS 
 
Construction of field mesocosms 

The field site was located at Princeton University, NJ (40.34ºN, 74.64ºW). Cages were 
1.2 m x 0.6 m x 0.6m (height x width x depth) and constructed from polyethylene monofilament 
fabric with 150x150 micron mesh (Greenhouse Megastore IS-NT-99) and spring locks 
(Greenhouse Megastore GF-9004). Eight total cages were constructed at the field site (Fig. 1). 
Within each cage, we provided shading for flies through a shelving unit and dwarf peach tree 
without fruit. Each cage held a temperature/humidity data logger (Elitech USA Temlog 20H). Fly 
food was composed of 10% glucose, 10% yeast, 1.2% agar, with 0.04% phosphoric acid and 
0.4% propionic acid as preservatives. The fly food was provided in aluminum foil loaf pans (Web 
Restaurant Store #612A80).  
 
Phenotyping procedures  

To understand how Wolbachia and microbiome change affected fly fitness, we collected 
age-matched flies for phenotyping. To age-match flies, we performed an additional egg lay in a 
2.5” muffin tin (Reynolds) with ~80 ml of fly food. The muffin tin was placed inside a small cage 
within the larger cage, allowing flies to develop with the same environmental and microbial 
conditions as the rest of the population. Flies were age-matched to 5-7 days old, and then 
brought into the lab for phenotyping. Flies were collected on Day 96, Day 116, and at the end 
Day 127 for starvation resistance. We note Day 127 flies were not specifically age matched, but 
collected from within the larger cage, which reflects the standing variation in traits at the end of 
the season. For this reason, we primarily focus on differences within each sampling point, rather 
than comparing between the three sampling points.  

 
To measure starvation resistance, individual flies were placed in custom acrylic arenas 

each 15mm in diameter and 6.25mm in height. Arenas only contained 1% agar to provide 
humidity, but no nutritional value. Individuals were allowed to freely move around their individual 
arenas. Flies were aspirated into the plates to avoid side effects from CO2 anesthetization on 
behavior (80). Cages were randomized across observation plates. After plating flies, we 
recorded their movements at 1 frame per second using Basler acA3088-57um cameras allowing 
for full frame videos at 3088 x 2064. This yields approximately 8.197 px/mm – sufficient 
resolution to robustly identify individuals and their movements. All recordings were taken with 
LoopBio’s Motif and compressed with libx264. After all flies died, we determined the time of 
death from the video recordings. To do this, we checked the videos every 2.5 hours to find the 
time when death occurred to quantify starvation resistance.  

 
For the Day 127 flies, we also measured fecundity and lifespan from individual females 

to identify whether these fitness-related traits varied between Wolbachia positive and negative 
flies. Individual females were placed into fly vials with 6 ml fly food and allowed to lay eggs for 
~24 hrs. Fecundity from females was measured as the number of pupae that emerged from the 
24 hour egg lay. We then flipped the flies into new vials for 10 days. Then, after 10 days, we 
flipped every 3-4 days until flies died to determine the lifespan of each individual. We 
considered fecundity to be the number of pupae that emerged from the initial 24 hour egg lay. 
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Supp. Fig. 1: PCoA plot based on Bray-Curtis dissimilarity, colored by proteinase K treatment. 
Each point represents a sample, colored by proteinase K treatment. There was no statistically 
significant difference between proteinase K treatments (PERMANOVA, F1,213 = 1.7, R2 = 0.008, 
p=0.058).  
 
 

 
Supp. Fig. 2: Rarefaction curves of microbiome samples. Each line represents a different 
sample, colored by Wolbachia status. The vertical line shows the rarefaction level (1000 
reads/sample) used in the microbiome analyses presented here. In general, ASV richness was 
captured within 1000 reads/individual, though we do note a few samples had much higher ASV 
richness, and the 1000 reads/individual likely did not capture the ASV richness completely. 
However, the 1000 reads/sample allowed for us to maintain most samples. 
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Supp. Table R1: PERMANOVA results for Bray-Curtis dissimilarity between Wolbachia status 
and time (days since start of experiment). Asterisks denotes significance (i.e.: * p<0.05, ** 
p<0.005, *** p<0.001).  
 
PERMANOVA: Bray-Curtis ~ Wolbachia + Time + (strata = cage) 

 Df 
Sums Of 
Squares 

Mean 
Squares F.Model R2 Pr(>F) 

Wolbachia 1 0.64 0.6396 2.3883 0.01805 0.001 *** 
Time 1 7.203 7.203 26.8956 0.20332 0.001 *** 
Residuals 103 27.585 0.2678  0.77863  
Total 105 35.428   1  

 
 
 
Supp. Table R2: PERMANOVA results for Unifrac distance between Wolbachia status and time 
(days since start of experiment). Asterisks denote significance (i.e.: * p<0.05, ** p<0.005, *** 
p<0.001).   
 
PERMANOVA: Unifrac ~ Wolbachia + Time + (strata = cage) 

 Df Sums Of Squares 
Mean 
Squares F.Model R2 Pr(>F) 

Wolbachia 1 0.8634 0.86342 6.7909 0.05362 0.027 * 
Time 1 2.1445 2.14447 16.8664 0.13317 0.001 *** 
Residuals 103 13.0959 0.12714  0.81322  
Total 105 16.1038   1  
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Supp. Table R3: Fixed effects for community turnover (mean Bray-Curtis dissimilarity by each 
population) over the growing season for the top four abundant bacteria. Significance was 
evaluated using Type III Wald F-tests with Kenward-Rogers degrees of freedom. Asterisks 
denotes significance (i.e.: * p<0.05, ** p<0.005, *** p<0.001).  
 
 

Model: Bray-Curtis (top 4 abundant bacteria) ~ Time * Wolbachia + (1|cage) 

 Estimate Std. Error df t value Wald X2 Pr (>X2)b 
(Intercept) 0.8815 0.0211 28.0515 41.859 1752.1443 < 2.2e-16 *** 
Time -0.0019 0.0002 92.4282 -9.099 82.7876 < 2.2e-16 *** 
Wolbachia -0.0506 0.0192 75.1030 -2.641 6.9729 0.0083 ** 
Time x Wolbachia 0.0008 0.0002 91.9450 3.593 12.9091 0.0003 *** 
 

bdf=1 for all variables 
 
 
 
Supp. Table R4: Fixed effects for community turnover (mean Bray-Curtis dissimilarity by each 
population) over the growing season for the complete microbiome. Significance was evaluated 
using Type III Wald F tests with Kenward-Rogers degrees of freedom. Asterisks denotes 
significance (i.e.: * p<0.05, ** p<0.005,*** p<0.001). 
 

Model: Bray-Curtis (all bacteria) ~ Time * Wolbachia + (1|cage) 

 Estimate Std. Error df t value Wald X2 Pr (>X2)b 

(Intercept) 0.9110 0.0172 48.5 52.859 1752.1443 < 2.2e-16 *** 
Time -0.0016 0.0002 99.8 -8.476 82.7876 < 2.2e-16 *** 
Wolbachia -0.0132 0.0166 87.1 -0.792 6.9729 0.008275 ** 
Time x Wolbachia 0.0002 0.0002 101 1.006 12.9091 0.000327 *** 
 
bdf=1 for all variables 
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Supp. Table R5: Day 96 phenotyping. Effects of Wolbachia, sex, and Commensalibacter on 
starvation resistance using Cox mixed-effects model fit by maximum likelihood. Asterisks denote 
significance (i.e.: * p<0.05, ** p<0.005, *** p<0.001). 
 
Model: Starvation time ~ Wolbachia + sex + Commensalibacter + (1|cage) 

 Coefficient Hazard (exp(coef)) SE Z p 
Wolbachia 0.0554 1.0569 0.4491 0.12 0.9 
Sex 2.0826 8.0252 0.1975 10.55 0*** 
Commensalibacter 0.0627 1.0647 0.9003 0.07 0.94 

 
 
 
Supp. Table R6: Day 116 phenotyping. Effects of Wolbachia, sex, and Commensalibacter on 
starvation resistance using Cox mixed-effects model fit by maximum likelihood. Asterisks denote 
significance (i.e.: * p<0.05, ** p<0.005, *** p<0.001).  
 
Model: Starvation time ~ Wolbachia + sex + Commensalibacter + (1|cage) 

 Coefficient Hazard (exp(coef)) SE Z p 
Wolbachia 0.5287 1.6967 0.1780 2.97 0.0030** 
Sex 0.9734 2.6469 0.1574 6.18 <0.0001*** 
Commensalibacter 1.2187 3.3828 0.3821 3.19 0.0014** 

 
 
Supp. Table R7: Day 127 phenotyping. Effects of Wolbachia, sex, Wolbachia * sex interaction, 
and Commensalibacter on starvation resistance using Cox mixed-effects model fit by maximum 
likelihood. Asterisks denote significance (i.e.: * p<0.05, ** p<0.005, *** p<0.001).  
 
Model: Starvation time ~ Wolbachia + sex + (Wolb. * sex) + Commensalibacter + (1|cage) 

 Coefficient Hazard (exp(coef)) SE Z p 
Wolbachia -0.0004 0.9996 0.2722 0 1.0000 
Sex 0.9075 2.4780 0.2241 4.05 0.0001*** 
Commensalibacter 1.3307 3.7838 0.4790 2.78 0.0055** 
Wolbachia * sex -0.7097 0.4918 0.2980 -2.38 0.0170* 
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Supp. Table R8: Fixed effects for the effects of lifespan, Wolbachia, microbiome 
(Providencia:Commensalibacter ratio) on fecundity using generalized linear mixed model with 
negative binomial as the error distribution. Asterisks denote significance (i.e.: * p<0.05, ** 
p<0.005, *** p<0.001). 
 
Model: Fecundity ~ Lifespan * Wolbachia * PC ratio + (1|cage) 

 Estimate Std. Error Z Pr(>|Z|) 
(Intercept) 2.5838 0.3538 7.304 <0.0001*** 
Lifespan 0.0049 0.0085 0.579 0.5629 
Wolbachia 0.9914 0.3270 3.032 0.0024** 
Prov:Comm (PC) ratio 1.4700 0.6886 2.135 0.0328* 
Lifespan*Wolbachia -0.0150 0.0085 -1.765 0.0776 
Lifespan*PC ratio -0.0141 0.0178 -0.794 0.4271 
Wolbachia*PC ratio -2.6697 0.6912 -3.863 0.0001*** 
Lifespan*Wolbachia*PC ratio 0.0444 0.0178 2.488 0.0128* 
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Supp. Table M1: Primer sequences used. For the amplicon sequencing primers (16S_27_F and 
16S_338_R), the dash separates the Illumina adapters from the 16S rRNA locus.   
 
Primer Sequence 
16S_27_F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-AGAGTTTGATCMTGGCTCAG 
16S_338_R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-TGCTGCCTCCCGTAGGAGT 
16S_wolb_F TTGTAGCCTGCTATGGTATAACT 
16S_wolb_R GAATAGGTATGATTTTCATGT 
COI _F GTAATTGTAACTGCACATGCTT 
COI_R ATTCCTAAAGAACCAAAAGTTTC 
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