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Abstract

The functional connectivity and dynamics of resting-state networks (RSN-FC) are vital for cognitive
functioning. RSN-FC is heritable and partially translates to the anatomical architecture of white matter,
but the genetic component of structural connections of RSNs (RSN-SC) and their potential genetic
overlap with RSN-FC remains unknown. Here we perform genome-wide association studies
(Ndiscovery=24,336; Nieplication=3,412) and in silico annotation on RSN-SC and RSN-FC. We identify the
first genes for visual network-SC, that are involved in axon guidance and synaptic functioning and show
that genetic variation in RSN-FC impacts biological processes related to brain disorders that have
previously been associated with FC alterations in those same RSNs. Correlations of the genetic
components of RSNs are mostly observed within the functional domain, whereas less overlap is
observed within the structural domain and between the functional and structural domains. This study
advances the understanding of the complex functional organization of the brain and its structural

underpinnings from a genetics viewpoint.
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Introduction

Structural (SC) and functional connectivity (FC) are vital for healthy cognitive behaviour'. Brain
regions that show temporally synchronized activity form functionally specialized resting-state networks
(RSNs)?, including primary networks (such as the visual or somatomotor network) and higher-order
cognitive networks (such as the frontoparietal network, salience network, or default mode network)’.
Many psychiatric and neurological disorders have been associated with disruptions within specific
RSNs* and improving our understanding of the biological principles underlying the concept SC and FC
of RSNs (RSN-SC/FC) could help elucidate the neural basis of human cognition and disorders
associated with disruptions in brain connectivity.

Studies have shown that genetic factors significantly contribute to RSN-FC (H* = 20-40%)°.
Genome-wide association studies (GWAS) on FC graph theory measures'' and extrinsic and intrinsic
functional organization'? of RSNs have identified the first genetic variants and genes that make up this
genetic component (mean hZyp = 13.3%'"), and show genetic overlap between FC and psychiatric
disorders>. RSNs were traditionally discovered based on FC? and correlate with the structural

14-16

connectivity (SC) architecture of white matter in the brain to varying degrees across RSNs'’. The

genetic architecture of RSNs-SC has not been investigated to date, but the substantial heritability of

)82 suggests the

multiple properties of major white matter tracts (mean hZyp 25.18% - 34.9%
importance of genetic factors for the anatomical backbone of RSNs. Describing the genetic architecture
of both RSN-FC and RSN-SC as well as annotation and interpretation of the genetic signal can give
insight into a biological substrate relevant to a wide variety of neurological and psychiatric disorders?'
and additionally enables us to estimate to which degree RSN-SC relates to RSN-FC based on a shared
genetic source.

In this study, we aim to characterise the genetic architecture of RSNs, both structurally and
functionally. Large-scale (discovery Nrc = 24,336 and Nsc = 23,985; replication Nrc = 3,408 and Nsc
=3,412) GWAS are performed on the SC and FC within seven well-known RSNs?. We estimate and

partition the SNP-based heritability and examine the convergence of the polygenic signal from these

GWAS onto genes and biological pathways, with the purpose of aiding the biological interpretation of
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results and providing meaningful starting points for functional follow-up experiments®’. We examine
genetic correlations both between different RSN, as well as across structural and functional domains.
These genetic correlation analyses are extended to the locus level to facilitate the prioritisation of
possible pleiotropic loci for future studies®. Altogether, we focus on the translation of RSN-associated
genetic loci into biological interpretation and provide insights into the genetic specificity and overlap

of RSN-FC and RSN-SC.

Results
GWAS of RSN-SC and RSN-FC identify six genome-wide significant loci
Following previously described procedures®, we started our analysis by grouping cortical areas into
seven RSN as defined by Yeo et al® (visual, somatomotor, limbic, dorsal attention, ventral attention,
frontoparietal, and default-mode network; Supplementary Figure 1) and calculating the mean functional
and structural connectivity within the RSNs in UK Biobank subjects (discovery Nrc = 24,336 and Nsc
= 23,985; replication Nrc = 3,408 and Nsc = 3,412). RSN functional connectivity was measured as the
average correlation between the activation signals of brain regions within each RSN over time, RSN
structural connectivity was measured as the average fractional anisotropy (FA) of white matter tracts
between brain regions within each RSN (see Methods). Discovery GWAS were performed for the FC
and SC within every RSN and identified 518 genome-wide significant SNPs (p < 5x107%/16 = 3.13x10"
%) located in six genomic loci: three for visual network-SC, one for limbic network-FC, and a shared
locus for frontoparietal network-FC and somatomotor network-FC (Supplementary Table 1). These loci
seem to show RSN specific genetic effects rather than simply being driven by overall connectivity,
given that none of these six loci showed a genome-wide significant association with global FC or SC.
SNP-based heritability (hZyp) estimates for RSN-SC (M = 13.59%, SD = 1.79%) were
moderately higher than those observed for RSN-FC (M = 6.71%, SD = 3.36%; Supplementary Table

2). We did not find evidence for enrichments of hZyp in functional genomic categories after Bonferroni-
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Figure 1. Multitrait Manhattan plots of SNP-based GWAS for a) RSN-FC and b) RSN-SC. The light grey dashed
horizontal line indicates traditional genome-wide significance (p < 5x107%), whereas the red dashed horizontal line
indicates genome-wide significance after additional correction for the number of traits tested (p < 3.13x10°°). SNPs
with p > 0.01 are omitted for visualisation purposes. Manhattan plots per RSN are provided as Supplementary
Figure 3a (FC) and 4a (SC).

correction (Supplementary Methods 1.1 and Supplementary Table 3). The LD Score Regression (LDSC)
intercept approached one for all phenotypes, indicating limited bias from population stratification. The
robustness of discovery GWAS results is illustrated by polygenic score prediction and lead SNP

validation (Supplementary Methods 1.3-1.4) in a replication sample (Supplementary Results 2.2-2.3).

Axon guidance and synaptic functioning genes implicated in visual network-SC GWAS
We continued by examining the possible functional consequences of the SNPs involved in RSN-FC

and RSN-SC. SNPs in linkage disequilibrium (LD; * > 0.6) with the Bonferroni-corrected genome-
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97  wide significant SNPs from the GWAS which also had suggestive p-values (< 1x107) and a minor

98 allele frequency (MAF) > 0.005 were annotated in FUMA v1.3.7%. A detailed overview of the

99  functional annotation of all candidate SNPs is displayed in Supplementary Table 4, whereas the mapped
100 genes that resulted from positional, expression quantitative trait loci (eQTL) and chromatin interaction
101  mapping in FUMA are listed in Supplementary Table 5.
102 For visual network-SC, an exonic nonsynonymous (ExNS) SNP located in exon 1 of
103 AC007382.1 (rs711244, p = 1.42x10"2, CADD = 10.39) was among the candidate SNPs in the locus
104  on chromosome 2. The function of AC007382.1 is unknown, but it has been associated with amygdala
105  volume previously®®. Within the loci on chromosome 10 and 7, exonic synonymous SNPs were found
106  in exon 7 and exon 12 of FAMI175B and SEMA3A respectively. The transcript of FAMI175B is a
107  component of the BRISC enzyme complex that deubiquitinates Lys-63 linked chains in order to control
108  protein function?’. Experimental studies have suggested that such deubiquitination can regulate synaptic
109  transmission and synaptic plasticity”®. SEMA3A4 contained multiple intronic SNPs associated with visual
110  network-SC with high CADD scores (11 SNPs with CADD > 12.37), which are usually considered
111 reducing organismal fitness and correlating with molecular functionality and pathogenicity®’. The
112 product of SEMA3A is known as a key regulator of axon outgrowth during the establishment of correct
113 pathways in the developing nervous system®”.
114 We additionally mapped 46 visual network-SC candidate SNPs to METTLI0, because of their
115  established eQTL associations in fetal and adult cerebral cortex tissue as well as through chromatin
116  interaction mapping. METTL10 encodes a methyltransferase that catalyses the trimethylation of eEF1 A
117 at Lys-318 — a key regulator of ribosomal translation®'. Visual network-SC SNPs were also mapped to
118  the METTLI10-FAMS53B readthrough (RP11-12J10.3) and FAM53B gene, because of known chromatin
119  interaction in fetal and adult cerebral cortex tissue (Figure 2a). FAMS53B is required for Wnt signaling,
120 a pathway important for cell regeneration®”. Lastly, positional mapping of candidate SNPs within a
121 10kb window of a gene resulted in the identification of VIT, STRN, and HEATR5B genes for visual

122 network-SC (Supplementary Table 5).
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124 Figure 2. a) Visual network-SC SNPs were mapped to METTLI0, FAMS53B and METTL10-FAM53B readthrough
125 (RP11-12J10.3) through chromatin interaction mapping (orange). METTL 10 was additionally mapped by 46 SNPs
126 because of their eQTL associations in cerebral cortex tissue. b) FUMA gene mapping, based on established eQTL
127  associations (green) in human temporal cortex, link eight limbic network-FC SNPs on chromosome 10 to
128 CYP2CS.

129

130  Anneotation of specific and shared loci across RSN-FC

131 We observed two EXNS SNPs in exon 19 (rs2274224, p=1.771x10"'%) and 25 (rs2274223, p = 1.22x10°
132 °) of the PLCEI gene to be associated with limbic network-FC. The PLCEI gene encodes for the
133 phospholipase C €1, which mediates the production of two second messengers that regulate cell growth,
134 differentiation, and gene expression™. The high CADD scores (17.35 and 17.48 respectively) suggest
135  deleteriousness of these two ExXNS SNPs. Additionally, four intergenic SNPs within the same locus
136  were located near the NOC3L gene.

137 On chromosome 10, eight SNPs associated with limbic network-FC were eQTLs for the
138  CYP2CS8 gene (Figure 2b). Expression of CYP2C8 results in an enzyme important for drug
139 metabolism®. One of CYP2CS substrates, the non-selective monoamine oxidase inhibitor phenelzine,
140  is known to target the nervous system and is clinically prescribed as treatment for major depressive

141  disorder®. A large body of research has verified the association between major depressive disorder and
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142 changes in limbic network functional connectivity, as well as with other RSN (see Kaiser et al*® for a
143 meta-analysis).

144 The annotation of SNPs in the locus that was shared between frontoparietal and somatomotor
145  network-FC revealed only intergenic candidate SNPs (enrichment = 2.15, p = 5.09x10), which
146 convolutes biological interpretation but is a common observation for complex traits®’. The nearest genes
147  to the candidate SNPs in this locus were PAXS and IGKVIOR2-108 (respectively 29 and 53 kb
148  distance). PAX8 encodes a transcription factor that is considered to regulate the expression of genes
149 important for thyroid development®™ and the production of thyroid hormone®. FC within both the

1*° and clinical

150  somatomotor and frontoparietal network is reduced in individuals with subclinica
151  hypothyroidism*'.

152

153  Default mode network-FC genes associated with Alzheimer’s disease

154  We next performed gene-based GWAS for the FC and SC within every RSN using MAGMA
155  (Supplementary Table 5). We detected two Bonferroni-corrected genome-wide significant genes
156  additional to the FUMA mapped genes by combining information from neighbouring variants within a
157  single gene in MAGMA (Figure 3, Supplementary Table 6). Visual network-FC was associated with
158  APOCI (z=5.15, p=1.31x107), and for default mode network-FC APOE was found to be associated
159  (z=5.13, p = 1.43x107). APOCI and APOE are both located within the 19q13.2 locus and are well-
160  known risk factors for Alzheimer’s disease*’. Additionally, gene-set analysis results are provided in
161  Supplementary Methods 1.2 and Supplementary Results 2.1.

162 In order to determine whether there is genetic overlap between Alzheimer’s disease®™ and
163  default mode network-FC, we performed local genetic correlation (rg) analysis using LAVA (see
164  Methods; Supplementary Table 7). For default mode network-FC, we detected two loci on chromosome
165 12 (BP 64,403,858-66,114,643) and 19 (BP 45,040,933-45,893,307) which showed significant local 7,
166 at p < (0.05/71=) 7.04x10* with Alzheimer’s disease (Supplementary Figure 5). Given the negligible
167  heritability of global FC in these loci (univariate p = 0.27 and p = 0.01 respectively, whereas p =
168 1.30x10° and p = 1.62x10® for default mode network-FC) we conclude that these local genetic

169  associations with Alzheimer’s disease are not driven by total brain connectivity. The locus on
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171
172 Figure 3. Multitrait Manhattan plots of gene-based GWAS for a) FC and b) SC within RSNs. The light grey

173 dashed horizontal line indicates significance after correcting for the number of genes tested per trait (p <2.65x10°
174 ©), whereas the red dashed horizontal line indicates significance after an additional correction for the number of
175  traits tested (p < 1.66x107). Manhattan plots per RSN are provided as Supplementary Figure 3b (FC) and 4b (SC).
176

177  chromosome 12 showed a positive r; (p) between Alzheimer’s disease and default mode network-FC
178  (BP 64,403,858-66,114,643, p = 0.69, 95% CI = 0.35 — 1.00, p = 3.25x10™). Interestingly, this locus
179  has been identified in a previous GWAS for hippocampal atrophy, a biological marker of Alzheimer’s
180  disease*. Negative r, between Alzheimer’s disease and FC within DMN was observed in the locus on
181  chromosome 19 (BP 45,040,933-45,893,307, p = -0.56, 95% CI = -0.82 — -0.38, p = 9.23x107),
182  indicating that lower default mode network-FC was associated with higher genetic risk of Alzheimer’s
183  disease. Note that this larger defined locus showed weak heritability (p = 0.014) for visual network-FC

184  despite the significance of APOCI in the gene-based GWAS, which would make genetic correlation
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185  estimates with Alzheimer’s disease unreliable and uninterpretable®. Therefore, Alzheimer’s disease
186  seems to show genetic overlap specifically with default mode network-FC.

187

188  Examining overlap between structure and function per RSN through genetic correlations

189  As SC strength has been noted to correlate with FC strength on the phenotypic level', we sought to
190  investigate the correlations between FC and SC within each RSN on a genetic level. Genome-wide
191  genetic correlations (ry) were estimated in LDSC using SNP-based summary statistics (Figure 4). We
192  observed no nominally significant genome-wide r;’s between SC and FC in any of the RSNs
193  (Supplementary Table 8). Genome-wide 7, estimates ranged from -0.19 (SE = 0.15, p = 0.19) in the
194  dorsal attention network (DAN) and 0.23 (SE = 0.23, p = 0.30) in the frontoparietal network (FPN).
195 Strongly localized or opposing local r,’s possibly may go undetected, since genome-wide 7;’s
196  are an average of the shared genetic association signal across the genome. We examined whether such
197  relationships between SC and FC within any given RSN exist by performing local 7, analysis using
198  LAVA?, though we did not identify any significant , on a locus level either (Supplementary Table 9).
199

200  Genome-wide and local genetic correlations within the functional and structural domain

201  We examined the shared genetic signal across RSNs within the same domain by conducting genome-
202  wide rg analyses using LDSC (Figure 5; Supplementary Table 8). For functional connectivity, a positive

203  Bonferroni significant genome-wide 7, was observed between the default mode and ventral attention

Frontoparietal -
Somatomotor A
Limbic

Ventral attention

Default mode

HW;

Dorsal attention

1.0 05 0.0 0.5 1.0

04 Genetic correlation between SC and FC

205 Figure 4. Global r¢ (£SE) between FC and SC within the same RSN as performed in LDSC do not show estimates
206 significantly different from zero (Supplementary Table 8). Additional estimation of local r, did not yield
207 significant overlapping loci between SC and FC within each RSN either (Supplementary Table 9).
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208  network (ry = 0.52, SE = 0.16, p = 1.00x107). This association was not driven by global FC as neither
209  default mode nor ventral attention network-FC were genetically correlated with global FC (7, = 0.19,
210  SE=0.18, p = 0.29; r; = 0.26, SE = 0.19, p = 0.18 respectively). Note that this positive r; does not
211  imply simultaneous functional activation of these two RSNs or their involvement in similar cognitive
212 tasks (which would contradict previous research®’), but suggests that variants that influence default
213 mode network-FC generally tend to influence ventral attention network-FC in the same direction.

214 For structural connectivity, we observed multiple significant genome-wide r,’s (p < 1.19x107%)
215  between RSNs, though many of these were also correlated with global SC (Supplementary Table 6). To
216  determine whether the correlations between the structural RSNs could be accounted for by global SC,
217  we used genomic SEM to compute residual 7, estimates between the structural RSNs while taking
218  global SC into account (see Methods). As none of the residual 7, estimates remained significant, we
219  conclude that global SC likely accounts for the observed relations between the RSN-SC.

220 We extended our investigation into shared genetic signal across RSNs beyond the global to the
221  local scale. Eighteen loci showed Bonferroni corrected significant 7,’s when comparing RSNs within
222 the functional domain (Table 1). These were all highly positive (mean p = 0.84, SD = 0.09) and were

223 not confounded by global FC. When comparing RSNs within the structural domain, local 7, analysis

FC Default 0.52% SC Limbic 28
SC Frontoparietal 0.14 0.12
FC Limbic 0.48 0.3
Corr
- 10
SC Dorsal Attention 0.35 0.27 -0.12
05
FC Dorsal Attention 0.2 0.42 0.19 )
0.0
SC Somatomotor -0.41 0.17 0.09 0.08 05
— -1.0
FC Somatomotor -0.13 0.26 0.28 0.24 :
SC Default 0.27 0.31 0.11 0.06 -0.27
FC Frontoparietal 0.41 0.05 -0.47 0.05 0
SC Visual 0.21 0.09 -0.03 0.22 0.14 -0.01
S & © N S . s > ©
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224
225  Figure 5. Genome-wide rg between (a) RSN-FC and (b) RSN-SC. If one of the two RSNs showing significant
226 LDSC rg showed additional significant ; with global FC/SC, we instead report the residual ¢ (g between the two
227 RSNs while taking global FC/SC into account in Genomic SEM; see Methods and Figure 6). The significant 7

228  that survived correction for multiple testing (p < 1.19x107) is indicated with an asterisk (*).

10
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229  with LAVA revealed only one positively correlated locus between SC within DAN and FPN
230  (15:39238841:40604780, local r, (p) = 0.85, p = 9.51x107"; Table 1). A complete overview of LAVA
231  local 74 results can be found in Supplementary Table 9.
232
233 Table 1.
234 Loci with Bonferroni-corrected significant (p< (0.05/774=) 6.46 x107) rq (p with lower and upper limit of
235  95% confidence interval) between RSN-FC or RSN-SC as performed in LAVA. Within these loci, global FC
236 or SC did not show significant univariate h’ or rg with either of the two RSNs. See Supplementary Table 9
237 foralllocal vy summary statistics. SMN = somatomotor network, VN = visual network, DMN = default mode
238  nmetwork, FPN = frontoparietal network, VAN = ventral attention network, DAN = dorsal attention network,
239 LN = limbic network.

Chr  Start Stop RSN 1 RSN 2 p 95% CI p-value

1 2,215,496 2,983,519 FCSMN FCVN 0.77 047 1.00 3.39x107

1 18,427,821 19,238,924 FCDMN FCFPN  0.72 045 1.00 9.48x10°°

1 211,082,893 212,3475,82 FC VAN FCSMN 1.00 0.74 1.00 1.75x107

2 113,930,669 115,203,835 FCFPN FCSMN 0.88 0.64 1.00 3.42x107

2 207,726,595 208,674,588 FCFPN FC VN 0.97 0.72 1.00 1.02x10°

5 4,636,543 5,828,694 FCDMN FCDAN 0.73 047 1.00 2.72x107

5 68,006,994 71,468,651 FCVAN FCSMN 0.79 0.53 1.00 2.05x107

5 75,959,516 77,290,255 FCDMN FCDAN 091 0.65 1.00 3.42x10°

6 10,416,551 11,790,671 FCVAN FCSMN 0.83 0.55 1.00 2.49x10”

7 50,894,509 51,951,647 FCLN FC VN 0.88 0.57 1.00 5.12x10°

8 64,215,359 66,018,204 FCDMN FC VN 0.86 0.59 1.00 1.09x10”

9 93,441,051 94,175,374 FCFPN FCSMN 0.90 0.61 1.00 1.73x10”

9 93,441,051 94,175,374 FCFPN FCVN 0.87 0.62 1.00 4.58x10°

10 89,971,629 91,021,321 FC VAN FCVN 0.96 0.67 1.00 1.23x10°

15 39,238,841 40,604,780 SCDAN SCFPN  0.85 0.53 1.00 9.51x1077

17 13,648,447 14,508,610 FCDMN FCLN 0.89 0.69 1.00 3.50x107

18 2,839,843 3,722,828 FCDMN FCDAN 0.70 045 1.00 2.66x107

19 17,045,964 17,750,518 FCLN FCDAN 0.73 047 1.00 2.34x10°

19 17,045,964 17,750,518 FCDMN FCDAN 0.79 0.53 1.00 1.43x10”
240
241  Discussion
242  Mapping the genetic components of resting state networks (RSNs) may provide insight into the
243 aetiology of brain function and brain disorders. RSNs are typically defined using functional
244 connectivity (FC), and structural connectivity (SC) correlates to FC in varying degrees across RSNs'”.
245  The genetic component of RSN-SC has been less studied and as one of the fundamental goals in
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246  neuroscience is to understand the relationship between structure and function within the brain, the aim
247  of this study was to gain more insight into the genetic underpinnings of structural and functional
248  connectivity (SC; FC) within a framework that respects the brain’s hierarchical functional architecture.
249  With the use of GWAS and in silico annotation we identify the first genes for visual network-SC, that
250  are involved in axon guidance and synaptic functioning. We further observe that genetic variation in
251  RSN-FC (e.g. limbic network-FC and default mode network-FC) impacts biological processes related
252 to brain disorders (major depressive disorder and Alzheimer’s disease respectively) that have previously
253  been associated with FC alterations in those same RSN. The genetic component of RSNs overlaps
254 mostly within the functional domain, whereas less overlap is observed within the structural domain and
255  between the functional and structural domains.

256 For FC within RSNs (RSN-FC), we detect biologically interpretable results that are specific to
257  default mode and limbic network-FC. For default mode network-FC, we observe APOE as a genome-
258  wide significant gene. The default mode network is hypothesized to relate to Alzheimer’s disease
259  through the role of default model network-FC in memory consolidation*® and through the spreading of
260  cortical atrophy over time, which follows the pattern of default mode network regions*’. Here, we
261  complement earlier phenotypic observations that link Alzheimer’s disease to default mode network-
262  FC* by now also showing genetic correlations in two loci between Alzheimer’s disease and default
263  mode network-FC. Functional follow up would be necessary to investigate how the variants and genes
264  in these loci affect default mode network-FC. The limbic network is commonly known for its
265  involvement in emotion regulation, episodic memory, and action—outcome learning*’ and has been
266  associated with mood disorders, such as major depression disorder and bipolar depression®. The genes
267  PLCEI1, NOC3L and CYP2CS8 were related to limbic network-FC, all of which have been noted to have
268  arelationship with major depressive disorder’>'2, A previous study investigating the role of PLCE1
269  in major depressive disorder patients has demonstrated an association with antidepressant remission in
270  female patients, together with other genes within the calcium/calmodulin-dependent protein kinase
271  (CaMK) pathway’'. NOC3L eQTLs in the cerebellum and nucleus accumbens have previously been
272 demonstrated to associate with depression severity and antidepressant response®’, and one of the

273  substrates of CYP2CS is clinically prescribed as treatment for major depressive disorder (phenelzine)*.
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274  These results seem to suggest that major depressive disorder and antidepressant response involve
275  processes that are impacted by genetic variation in limbic network-FC.

276 In addition to RSN-FC specific effects, we find evidence of shared genetic signal in FC across
277  different RSNs using several approaches. Specifically, we observe a genetically correlated and common
278  genome-wide significant locus for both somatomotor and frontoparietal network-FC near PAXS. PAXS
279  regulates multiple genes involved in the production of thyroid hormone®, an interesting result
280  considering that both somatomotor and frontoparietal network-FC have been linked to (subclinical)
281  hypothyroidism***'. Additionally, we detect genetically correlating loci between all RSN-FC and a
282  genome-wide genetic correlation between ventral attention and default mode network-FC. The ventral
283 attention network supports salience processing®’, whereas the default mode network includes areas
284  widespread over the brain and supports emotional processing, self-referential mental activity, and
285  recollection of prior experiences®. Increased FC within these two RSNs has been associated with
286  bulimia nervosa® and contributes to episodic memory retrieval®. Altogether, the shared genetic
287  underpinnings of different RSN-FC that we present here could give a possible explanation how multiple
288  disorders are associated with more than one RSN.

289 We report considerable heritability estimates for RSN-SC (ranging from 10.00% to 15.40%)
290  and identify nine genes that suggest a role for synaptic transmission in the genetics of visual network-
291  SC. For example, STRN encodes for a calmodulin-binding protein that is mostly found in dendritic
292  spines playing a role in Ca2+-signaling®, the transcript of FAMI75B is a component of a
293 deubiquitylation enzyme complex that has been suggested play a role in synaptic transmission and
294 synaptic plasticity®, and SEMA34 is known as an axonal guidance gene during development®. The
295  SEMA3A protein has been shown to be upregulated in schizophrenia patients and is suggested to
296  contribute to the developmentally induced impairment of synaptic connectivity in the disorder’’. Visual

3859 and related to visual

297  network functional hyperconnectivity has been observed in schizophrenia
298  hallucinations™, but future studies should investigate the equivalent SC component in more detail given
299  our findings.

300 When investigating the genetic relationship between SC and FC within each RSN, we find no

301  significant genome-wide or local genetic correlations. Since the estimation of genetic correlations is
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302  dependent on sample size and the heritability estimates of both traits®, studies with increased power
303  are needed to examine the robustness of these results. Future studies could additionally incorporate
304  recent insights that indirect structural connections supporting direct functionally connected regions
305  complicate simple structure to function mapping®'. Our study focussed on direct structural connections
306  within RSNs. The possibility that the genetics of RSN-FC overlap with that of indirect pathways that
307  structurally connect brain regions within RSNs via a route beyond the borders of that RSN could
308 therefore be subject to future research.

309 Several limitations must be considered while interpreting our results. It is known that rsfMRI
310  measures can be noisy and subject to motion distortion, which raises the possibility of differences in
311  measurement error between RSN-FC and RSN-SC. However, given our stringent pre-processing and
312 quality control to enable noise minimization and additional use of rsfMRI-specific covariates in GWAS,
313 we were able to find heritability estimates for RSN-FC that are concordant with previous studies'’.
314 Second, even though UK Biobank provides genetic and uniform MRI data at unprecedented sample
315  sizes, itis evident that even larger sample sizes are needed for discovering the often small genetic effects
316  of polygenic traits®®. The null results observed for some RSN-FC/SC GWAS, partitioned heritability
317  and gene-set analyses might be explained by the multiple comparison correction for the number of
318  phenotypes analysed, in conjunction with insufficient statistical power. Third, some other sample
319  characteristics, such as the European ancestry, age-class and socioeconomic status of subjects, may
320  limit the generalizability of our findings. While we corrected for age and Townsend deprivation index
321  (a proxy of socio-economic status) in our GWAS to reduce this bias, larger and more diverse imaging-
322 genetics datasets are undoubtedly needed.

323 This study examines the specificity and overlap in genetic architecture of RSNs — structurally
324  and functionally. We observe several genetic effects that seem to be specific to certain RSNs and
325  highlight relevant biological processes for brain connectivity and related brain disorders. The
326  complexity of structure-function coupling within RSNs is illustrated by the observation that, despite
327  genetic overlap of RSNs within the functional domain, genetic overlap is less apparent within the

328  structural domain and between the functional and structural domains. Altogether, this study advances
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329  the understanding of the complex functional organisation of the brain and its structural underpinnings
330  from a genetics viewpoint.

331

332 Methods

333 A flowchart that describes all Methods used in this manuscript is displayed in Supplementary Figure 1.
334

335  Sample

336 The UK Biobank (UKB) is a resource with genomic and imaging data of volunteer participants®. The
337  National Research Ethics Service Committee North West—Haydock ethically approved this initiative
338  (reference 11/NW/0382) and data were accessed under application #16406. Combined SNP-genotypes
339  and neuroimaging data of N = 40,682 participants have been available since January 2020. From all
340  new subjects ID’s in the latest neuroimaging release (January 2020), we randomly assigned 5,000
341  subjects to a holdout set for validation. Subsetting the total sample to subjects with all neuroimaging
342  data necessary to construct our phenotypes as described below, resulted in Nrc = 37,017 and Ngc =
343 36,645. We only included subjects for which the projected ancestry principal component score was
344 closest to and < 6 SD from the average principal component score of the European 1000 Genomes
345  sample based on Mahalanobis distance. This procedure has been described in previous publications by
346 our group® and the number of non-European exclusions are displayed in Supplementary Table 10.
347 Other exclusion criteria were withdrawn consent, UKB-provided relatedness, discordant sex or sex
348  aneuploidy (Supplementary Table 10). Further quality control on genomic and neuroimaging data is
349  described below and resulted in the sample sizes and sample characteristics as displayed in
350  Supplementary Table 11.

351

352  Genotype data

353  The genotype data used in this study were obtained from the UK BiobankTM Axiom and the UK
354  BILEVE Axiom arrays. These Affymetrix arrays cover 812,428 unique genetic markers and overlap
355  95% in SNP content. This number of SNPs was increased to 92,693,895 by imputation carried out by

356  UKB. Variants were imputed using the Haplotype Reference Consortium and the UK10K haplotype
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357  panel as reference. We applied our in-house quality control pipeline in addition to quality control
358  performed by UKB. This procedure excluded SNPs with low imputation scores (INFO<0.9), low minor
359  allele frequency (MAF<0.005) or high missingness (>0.05), multiallelic SNPs, indels, and SNPs
360  without unique rs-identifiers. A total of 9,380,668 SNPs passed quality control and were converted to
361  hard call SNPs using a certainty threshold of 0.9 for further analyses.

362

363  Neuroimaging data

364  Pre-processing & connectome reconstruction

365 The UKB scanning protocol and processing pipeline is described in the UKB Brain Imaging
366  Documentation®. For this study, we made use of the available resting-state functional brain images
367  (rsfMRI) and multiband diffusion brain images (DWI) together with T1 surface model files and
368  structural segmentation from FreeSurfer®. These three types of data were used as input for the structural
369  and functional pipeline of CATO (Connectivity Analysis TOolbox)"’. Prior to this, UKB performed
370  pre-processing on DWI and rsfMRI data as described in the UKB Brain Imaging Documentation®.
371 In CATO’s structural pipeline, additional pre-processing of DWI files was performed in FSL®®
372 by computing a DWI reference image based on the corrected diffusion-unweighted (b0) volumes,
373  computing the registration matrix between DWI reference image and the anatomical T1 image, and
374  registering the Freesurfer segmentation to the DWI reference image. The surface was parcellated based
375  on the Cammoun sub-parcellations of the Desikan-Killiany atlas including 250 cortical regions®. We
376  reconstructed the diffusion signal with diffusion tensor imaging (DTI), a deterministic method that is
377  robust and relatively simple compared with more advanced diffusion reconstruction methods®’. In
378  CATO, the Fiber Assignment by Continuous Tracking (FACT) algorithm’® is used to reconstruct fibers
379  and fractional anisotropy (FA) was used as weights of reconstructed fibers. FA is a robust measure of
380  white matter integrity and has been found to be sensitive to changes in connectivity'® and correlates
381  with axon density, size and myelination”'. The structural connectivity matrix was built out of all fiber
382  segments that connected two regions in the atlas. Additional filters were applied, namely a minimal FA

383  of 0.1, minimal length of 30 mm and having 2 or more number of streamlines.
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384 The functional pipeline in CATO consisted of similar steps. First, we computed a rsfMRI
385  reference image by averaging all rsfMRI frames in FSL and subsequently registered this reference
386  image and the T1 image in FreeSurfer. Second, we parcellated the surface based on the same atlas as in
387  the structural pipeline (to enable structure-function comparison in downstream analyses) and we
388  registered the T1 parcellation to the rsfMRI image. Third, motion metrics were estimated, and time-
389  series were corrected for covariates (linear trends and first order drifts of motion parameters and the
390  mean signal intensity of voxels in white matter and cerebrospinal fluid and of all voxels in the brain)
391 by regression. Fourth, time-series were passed through band-pass filtering (frequencies 0.01 to 0.1) and
392  scrubbing (max FD = 0.25, max DVARS = 1.5, min violations = 2, backward neighbours = 1, forward
393 neighbours = 0). Fifth, the functional connectivity matrix was computed by the Pearson’s correlation
394 coefficient of the average signal intensity of every pair of brain regions across the frames that survived
395 filtering.

396

397  Quality control

398  The UKB scanning and pre-processing protocol includes filters for outliers based on manual QC and
399  an advanced classifier described elsewhere’”. We excluded a small number of subjects that UKB
400  identified as outliers and placed in an “unusable” folder. The UKB main documentation® suggests a
401  second set of UKB data fields that can be used as outlier criteria. Outlier subjects are defined as subjects
402  that score for any of the values > 3 interquartile ranges above the upper quartile or below the lower
403  quartile. Outlier criteria included measures that describe the discrepancy between the T1-weighted,
404  rsfMRI and DWI images and the population average template after LINEAR and NON-LINEAR
405  alignment, the amount of nonlinear warping necessary to map a subject to the standard template, the
406  signal to noise ratio in rsfMRI, the mean rfMRI head motion averaged across space and time points and
407  the total number of outlier slices in DWI volumes. We extended this recommended list with connectome
408  specific measures, including the average prevalence of all connections present and absent in the
409  reconstructed brain network of a subject (low average prevalence scores indicate the presence of odd

410 connections and high values indicate the absence of common connections), the sum of number-of-
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411  streamlines and average FA of all connections in the reconstructed brain network of a subject. The
412 number of exclusions can be viewed in Supplementary Table 10.

413

414 Phenotype reconstruction

415  In this study, the phenotypes of interest were the functional and structural connectivity (FC;SC) within
416  seven resting-state networks (RSNs) that previously have been identified® and are commonly used in
417  (clinical) neuroimaging studies: the default mode network, ventral attention network, dorsal attention
418 network, visual network, limbic network, somatomotor network and frontoparietal network. Each of
419  the 250 cortical regions of the reconstructed structural and functional connectomes were assigned the
420  ratio to what extent they belonged to each of these seven RSNs, using a mask created and validated
421  elsewhere (see Supplementary Information of Wei et a/**). Each connection was then weighted by
422 multiplying the ratios of the two regions involved in the particular RSN. FC and SC within the RSNs
423 were respectively calculated as the mean correlation and mean fractional anisotropy of the connections
424 within the RSN. We also computed two global FC and SC phenotypes as the mean correlation and mean
425  fractional anisotropy of all available connections, to be able to correct for connectivity that is non-
426  specific to RSNs in downstream analyses.

427

428  Statistical analyses

429  SNP-based GWAS

430  To identify common genetic variants involved in FC within each of the seven RSN, we performed seven
431 SNP-based GWAS in PLINK2". Also, for the SC within each of the seven RSN, a SNP-based GWAS
432 was performed. It is common practice to include a global FC or SC estimate as covariate in GWAS to
433 capture associations that are driven by the level of connectivity within an RSN irrespective of the level
434 of connectivity throughout the whole brain. It has become apparent that this risks the introduction of
435  collider bias (inducing false-positives)’*. Here we build upon recent developments in statistical genetics
436  that have provided multiple methods that allow for post-GWAS analyses conditional on global
437  connectivity. Therefore, we used the global FC and global SC phenotypes to run two additional SNP-

438  based GWAS, for which the summary statistics were used for conditional downstream analyses. The
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439  total amount of GWAS was therefore sixteen. In order to correct for population stratification during
440  GWAS, a principal component analysis was performed in FlashPCA2" using only independent (7 <
441  0.1), common (MAF > 0.01) and genotyped SNPs or SNPs with very high imputation quality (INFO=1).
442 The first 30 principal components were used as covariates in all GWAS, together with sex, age,
443 genotype array, Townsend deprivation index (a proxy of socio-economic status), general neuroimaging
444 confounders as well as FC/SC specific covariates (recommended by Alfaro-Almagro and colleagues’®).
445  The general set included handedness, scanning site, the use of T2 FLAIR in Freesurfer processing,
446  intensity scaling of T1, intensity scaling of T2 FLAIR, scanner lateral (X), transverse (Y) and
447  longitudinal (Z) brain position, and Z-coordinate of the coil within the scanner. FC-specific and SC-
448  specific covariates were respectively intensity scaling and echo time of rsfMRI, and intensity scaling
449  of DWI. For reasons of collinearity, we ran principal component analysis on all covariates (excluding
450  the population stratification principal components) and retained those principal components that
451  explained > 99% of variance. Rare variants (MAF < 0.005) and SNPs with high missingness (>5%)
452  were excluded from GWAS and male X variants were counted as 0/1. The genome-wide significance
453  threshold was a = (0.05/1,000,000/16 =) 3.13x10” according to the Bonferroni correction for multiple
454 testing.

455

456  SNP-based heritability

457  SNP-based (hZyp; or narrow-sense) heritability represents the proportion of phenotypic variance that
458  can be explained by common additive variation. In contrast, broad-sense heritability captures the total
459  genetic contribution to the phenotype and is often based on family studies’’. We applied Linkage
460  Disequilibrium Score regression (LDSC) on the SNP-based GWAS summary statistics of all sixteen
461  phenotypes to estimate hZyp using precomputed LD scores from 1000 Genomes EUR, as provided by
462  the LDSC developers.

463

464  Functional annotation

465 FUMA is a web-based platform that can be used to functionally map and annotate SNPs that appear

466  significant during GWAS. We uploaded summary statistics to FUMA if GWAS identified at least one
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467  genome-wide significant SNP. Candidate SNPs were defined as all SNPs in LD /*>0.6 with an
468  independent genome-wide significant SNPs (7°<0.6). Annotation was subsequently performed using
469  ANNOVAR’, RegulomeDB" score and ChromHMM®. Lead SNPs were defined as independent SNPs
470 #°<0.1. Genomic loci were constructed by taking all independent significant SNPs 7* < 0.1 with LD
471  blocks within 250 kb distance and independent significant SNPs * > 0.1. Within every locus, SNPs
472  were mapped to genes using three methods: positional mapping, eQTLs mapping or chromatin
473  interaction mapping. SNPs were positionally mapped to genes if their physical distance was <10 kb.
474  Mapping based on eQTLs relied on known associations between SNPs and the gene-expression of genes
475  within a IMb window, from BRAINEAC®' (frontal, occipital, temporal, cerebral cortex), GTEx v8*
476  cerebral cortex and xQTLServer®® dorsolateral prefrontal cortex. Chromatin interaction mapping was
477  based on established 3D DNA-DNA interactions between SNP and gene regions from Hi-C databases
478  in cortex tissue (PsychENCODE®, Giusti-Rodriguez et al*, and GSE87112%). To restrict chromatin
479  interaction mapping to plausible biological interactions, we only included interactions where one region
480  overlapped with an enhancer (as predicted by the Roadmap Epigenomics project®’ in cortex tissue) and
481  the other region overlapped with a promoter (250 bp upstream to 500 bp downstream of the transcription
482  start site as well as predicted by the Roadmap Epigenomics project in cortex tissue). A FDR threshold
483  of 1x10” was used, as recommended in previous literature®.

484

485  Gene-based GWAS

486  Performing GWAS on the level of genes has been suggested to be more powerful than GWAS on the
487  level of SNPs®. Therefore, the sixteen SNP-based GWAS summary statistics were used to perform
488  sixteen gene-based GWAS in MAGMA (Multi-marker Analysis of GenoMic Annotation) v1.08%. A
489  mean SNP-wise model was applied (with the UKB European population serving as an ancestry
490  reference group) to test the joint association of all SNPs within 18,850 genes with RSN-FC/RSN-SC.
491  The genome-wide significance threshold was adjusted for multiple testing to a = (0.05/18,850)/16 =
492 1.66 x107.

493
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494 Genome-wide genetic correlations

495  To assess the overlap in genetic architecture between FC/SC within RSNs while taking the influence of
496  global FC/SC into account, we designed a genetic correlation (r) analysis pipeline. This pipeline
497  consisted of three steps. 1) In the first step, genome-wide r; between 42 combinations of RSNs were
498  estimated using LDSC (a= (0.05/42=) 1.19x107). The summary statistics of SNP-based GWAS were
499  used as input for LDSC. We excluded FC-VN, because both the lambda (<1.02) and ratio (>0.20) values
500  were out of bound for LDSC. 2) For all RSNs included in a significant bivariate r,, additional r, with
501  global FC/SC were calculated in LDSC. 3) If one or both RSN from the significant bivariate r, showed
502  additional significant », with global FC/SC, we recalculated of the genome-wide r, between the two
503  RSNs with global FC/SC taken into account. Since such residual genome-wide r,; analyses are not
504  implemented in LDSC, we applied Genomic Structural Equation Modelling (genomic SEM)¥.
505  Genomic SEM is a method that enables to model the multivariate genetic architecture and covariance
506  structure of complex traits using GWAS summary statistics and allows for sample overlap. We
507  modelled residual covariance between RSN as the covariance between the residual variance of the two

508  RSNs involved after taking the global factor into account (Figure 6). A confirmatory factor analysis

FC-VAN,

glOb al FCg residual 7,

510  Figure 6. Path diagram of genomic SEM model. The summary statistics of two RSNs that have shown to

509

511 significantly correlate with global connectivity will be used as input together with summary statistics of the global
512 connectivity GWAS. In this way, ¢ between the two RSNs can be estimated while taking global connectivity into
513 account.

514  was then ran using Diagonally Weighted Least Square estimation.

515
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516  Local genetic correlations

517  The genome-wide r,’s described above are an average correlation of genetic effects across the genome,
518  implicating that contrasting local r;’s are possibly cancelling each other out. Running 7, analysis on a
519  locus level has the potential to uncover loci that show genetic similarity between traits. For this purpose,
520  we adopted a three-step local », analysis pipeline similar to the genome-wide 7, analysis approach
521  described above. All three steps were performed in LAVA®, a local 7, analysis tool, using SNP-based
522 GWAS summary statistics as input. We followed the suggested sample overlap procedure (as described
523 on https://github.com/josefin-werme/LAVA) to enable LAV A to model shared variance due to sample
524  overlap as residual covariance and consequently remove upward bias in local 7, estimates®. Since our
525  GWASs included European samples, the 1,000 Genomes Phase 3 European data served as genotype
526  reference and formed the basis of the locus definition file. For every locus, the first step of our pipeline
527  consisted of estimating local bivariate 7, between 49 combinations of RSNs. However, RSNs that were
528  devoid of heritable signal (p > 1x10) in the locus were excluded from local bivariate r, analysis to
529  ensure interpretability and reliability. A total of 774 bivariate tests were performed across 337 loci,
530 leading to an adjusted significance threshold of a= (0.05/774=) 6.46x107. In the second step, RSNs
531  that showed significant local 7, were additionally tested for 7, in that locus with global FC/SC. Note
532 that if this was not possible, because global FC/SC showed no significant heritability in that locus, the
533 local bivariate r; between RSNs could not be biased by global FC/SC. If one or both RSNs did show
534  additional significant 7, with global FC/SC, we ran a partial local 7, between the RSNs conditioned on
535  the SC-global and/or FC-global phenotype in step three. If the partial local ; between the RSNs no
536  longer remained significant, we concluded that the initial 7, was driven by global FC/SC and did not
537  reflect genetic overlap specific for these RSNs.
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