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Abstract 16 

The functional connectivity and dynamics of resting-state networks (RSN-FC) are vital for cognitive 17 

functioning. RSN-FC is heritable and partially translates to the anatomical architecture of white matter, 18 

but the genetic component of structural connections of RSNs (RSN-SC) and their potential genetic 19 

overlap with RSN-FC remains unknown. Here we perform genome-wide association studies 20 

(Ndiscovery=24,336; Nreplication=3,412) and in silico annotation on RSN-SC and RSN-FC. We identify the 21 

first genes for visual network-SC, that are involved in axon guidance and synaptic functioning and show 22 

that genetic variation in RSN-FC impacts biological processes related to brain disorders that have 23 

previously been associated with FC alterations in those same RSNs. Correlations of the genetic 24 

components of RSNs are mostly observed within the functional domain, whereas less overlap is 25 

observed within the structural domain and between the functional and structural domains. This study 26 

advances the understanding of the complex functional organization of the brain and its structural 27 

underpinnings from a genetics viewpoint.  28 
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Introduction 29 

Structural (SC) and functional connectivity (FC) are vital for healthy cognitive behaviour1. Brain 30 

regions that show temporally synchronized activity form functionally specialized resting-state networks 31 

(RSNs)2, including primary networks (such as the visual or somatomotor network) and higher-order 32 

cognitive networks (such as the frontoparietal network, salience network, or default mode network)3. 33 

Many psychiatric and neurological disorders have been associated with disruptions within specific 34 

RSNs4 and improving our understanding of the biological principles underlying the concept SC and FC 35 

of RSNs (RSN-SC/FC) could help elucidate the neural basis of human cognition and disorders 36 

associated with disruptions in brain connectivity. 37 

 Studies have shown that genetic factors significantly contribute to RSN-FC (H2 = 20-40%)5–10. 38 

Genome-wide association studies (GWAS) on FC graph theory measures11 and extrinsic and intrinsic 39 

functional organization12 of RSNs have identified the first genetic variants and genes that make up this 40 

genetic component (mean ℎ!"#$  = 13.3%11), and show genetic overlap between FC and psychiatric 41 

disorders13. RSNs were traditionally discovered based on FC2 and correlate with the structural 42 

connectivity (SC) architecture of white matter in the brain14–16 to varying degrees across RSNs17. The 43 

genetic architecture of RSNs-SC has not been investigated to date, but the substantial heritability of 44 

multiple properties of major white matter tracts (mean ℎ!"#$  25.18% - 34.9%)18–20 suggests the 45 

importance of genetic factors for the anatomical backbone of RSNs. Describing the genetic architecture 46 

of both RSN-FC and RSN-SC as well as annotation and interpretation of the genetic signal can give 47 

insight into a biological substrate relevant to a wide variety of neurological and psychiatric disorders21 48 

and additionally enables us to estimate to which degree RSN-SC relates to RSN-FC based on a shared 49 

genetic source. 50 

In this study, we aim to characterise the genetic architecture of RSNs, both structurally and 51 

functionally. Large-scale (discovery NFC = 24,336 and NSC = 23,985; replication NFC =  3,408 and NSC 52 

= 3,412) GWAS are performed on the SC and FC within seven well-known RSNs2. We estimate and 53 

partition the SNP-based heritability and examine the convergence of the polygenic signal from these 54 

GWAS onto genes and biological pathways, with the purpose of aiding the biological interpretation of 55 
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results and providing meaningful starting points for functional follow-up experiments22. We examine 56 

genetic correlations both between different RSNs, as well as across structural and functional domains. 57 

These genetic correlation analyses are extended to the locus level to facilitate the prioritisation of 58 

possible pleiotropic loci for future studies23. Altogether, we focus on the translation of RSN-associated 59 

genetic loci into biological interpretation and provide insights into the genetic specificity and overlap 60 

of RSN-FC and RSN-SC. 61 

 62 

Results 63 

GWAS of RSN-SC and RSN-FC identify six genome-wide significant loci 64 

Following previously described procedures24, we started our analysis by grouping cortical areas into 65 

seven RSN as defined by Yeo et al2 (visual, somatomotor, limbic, dorsal attention, ventral attention, 66 

frontoparietal, and default-mode network; Supplementary Figure 1) and calculating the mean functional 67 

and structural connectivity within the RSNs in UK Biobank subjects (discovery NFC = 24,336 and NSC 68 

= 23,985; replication NFC = 3,408 and NSC = 3,412). RSN functional connectivity was measured as the 69 

average correlation between the activation signals of brain regions within each RSN over time, RSN 70 

structural connectivity was measured as the average fractional anisotropy (FA) of white matter tracts 71 

between brain regions within each RSN (see Methods). Discovery GWAS were performed for the FC 72 

and SC within every RSN and identified 518 genome-wide significant SNPs (p < 5×10–8/16 = 3.13×10–73 

9) located in six genomic loci: three for visual network-SC, one for limbic network-FC, and a shared 74 

locus for frontoparietal network-FC and somatomotor network-FC (Supplementary Table 1). These loci 75 

seem to show RSN specific genetic effects rather than simply being driven by overall connectivity, 76 

given that none of these six loci showed a genome-wide significant association with global FC or SC.  77 

SNP-based heritability (ℎ!"#$ ) estimates for RSN-SC (M = 13.59%, SD = 1.79%) were 78 

moderately higher than those observed for RSN-FC (M = 6.71%, SD = 3.36%; Supplementary Table 79 

2). We did not find evidence for enrichments of ℎ!"#$  in functional genomic categories after Bonferroni-  80 
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81 

82 
Figure 1. Multitrait Manhattan plots of SNP-based GWAS for a) RSN-FC and b) RSN-SC. The light grey dashed 83 
horizontal line indicates traditional genome-wide significance (p < 5×10-8), whereas the red dashed horizontal line 84 
indicates genome-wide significance after additional correction for the number of traits tested (p < 3.13×10-9). SNPs 85 
with p > 0.01 are omitted for visualisation purposes. Manhattan plots per RSN are provided as Supplementary 86 
Figure 3a (FC) and 4a (SC). 87 
 88 

correction (Supplementary Methods 1.1 and Supplementary Table 3). The LD Score Regression (LDSC) 89 

intercept approached one for all phenotypes, indicating limited bias from population stratification. The 90 

robustness of discovery GWAS results is illustrated by polygenic score prediction and lead SNP 91 

validation (Supplementary Methods 1.3-1.4) in a replication sample (Supplementary Results 2.2-2.3). 92 

 93 

Axon guidance and synaptic functioning genes implicated in visual network-SC GWAS 94 

We continued by examining the possible functional consequences of the SNPs involved in RSN-FC 95 

and RSN-SC. SNPs in linkage disequilibrium (LD; r2 ≥ 0.6) with the Bonferroni-corrected genome-96 
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wide significant SNPs from the GWAS which also had suggestive p-values (< 1×10−5) and a minor 97 

allele frequency (MAF) > 0.005 were annotated in FUMA v1.3.725. A detailed overview of the 98 

functional annotation of all candidate SNPs is displayed in Supplementary Table 4, whereas the mapped 99 

genes that resulted from positional, expression quantitative trait loci (eQTL) and chromatin interaction 100 

mapping in FUMA are listed in Supplementary Table 5.  101 

For visual network-SC, an exonic nonsynonymous (ExNS) SNP located in exon 1 of 102 

AC007382.1 (rs711244, p = 1.42×10-12, CADD = 10.39) was among the candidate SNPs in the locus 103 

on chromosome 2. The function of AC007382.1 is unknown, but it has been associated with amygdala 104 

volume previously26. Within the loci on chromosome 10 and 7, exonic synonymous SNPs were found 105 

in exon 7 and exon 12 of FAM175B and SEMA3A respectively. The transcript of FAM175B is a 106 

component of the BRISC enzyme complex that deubiquitinates Lys-63 linked chains in order to control 107 

protein function27. Experimental studies have suggested that such deubiquitination can regulate synaptic 108 

transmission and synaptic plasticity28. SEMA3A contained multiple intronic SNPs associated with visual 109 

network-SC with high CADD scores (11 SNPs with CADD > 12.37), which are usually considered 110 

reducing organismal fitness and correlating with molecular functionality and pathogenicity29. The 111 

product of SEMA3A is known as a key regulator of axon outgrowth during the establishment of correct 112 

pathways in the developing nervous system30.  113 

We additionally mapped 46 visual network-SC candidate SNPs to METTL10, because of their 114 

established eQTL associations in fetal and adult cerebral cortex tissue as well as through chromatin 115 

interaction mapping. METTL10 encodes a methyltransferase that catalyses the trimethylation of eEF1A 116 

at Lys-318 – a key regulator of ribosomal translation31. Visual network-SC SNPs were also mapped to 117 

the METTL10-FAM53B readthrough (RP11-12J10.3) and FAM53B gene, because of known chromatin 118 

interaction in fetal and adult cerebral cortex tissue (Figure 2a). FAM53B is required for Wnt signaling, 119 

a pathway important for cell regeneration32. Lastly, positional mapping of candidate SNPs within a 120 

10kb window of a gene resulted in the identification of VIT, STRN, and HEATR5B genes for visual 121 

network-SC (Supplementary Table 5).  122 
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123 

Figure 2. a) Visual network-SC SNPs were mapped to METTL10, FAM53B and METTL10-FAM53B readthrough 124 

(RP11-12J10.3) through chromatin interaction mapping (orange). METTL10 was additionally mapped by 46 SNPs 125 

because of their eQTL associations in cerebral cortex tissue. b) FUMA gene mapping, based on established eQTL 126 

associations (green) in human temporal cortex, link eight limbic network-FC SNPs on chromosome 10 to 127 

CYP2C8. 128 

 129 

Annotation of specific and shared loci across RSN-FC 130 

We observed two ExNS SNPs in exon 19 (rs2274224, p = 1.771×10−10) and 25 (rs2274223, p = 1.22×10-131 

5) of the PLCE1 gene to be associated with limbic network-FC. The PLCE1 gene encodes for the 132 

phospholipase C ϵ1, which mediates the production of two second messengers that regulate cell growth, 133 

differentiation, and gene expression33. The high CADD scores (17.35 and 17.48 respectively) suggest 134 

deleteriousness of these two ExNS SNPs. Additionally, four intergenic SNPs within the same locus 135 

were located near the NOC3L gene.  136 

 On chromosome 10, eight SNPs associated with limbic network-FC were eQTLs for the 137 

CYP2C8 gene (Figure 2b). Expression of CYP2C8 results in an enzyme important for drug 138 

metabolism34. One of CYP2C8 substrates, the non-selective monoamine oxidase inhibitor phenelzine, 139 

is known to target the nervous system and is clinically prescribed as treatment for major depressive 140 

disorder35. A large body of research has verified the association between major depressive disorder and 141 

a)       b) 

Visual Network-SC                Limbic Network-FC 
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changes in limbic network functional connectivity, as well as with other RSNs (see Kaiser et al36 for a 142 

meta-analysis). 143 

 The annotation of SNPs in the locus that was shared between frontoparietal and somatomotor 144 

network-FC revealed only intergenic candidate SNPs (enrichment = 2.15, p = 5.09×10-9), which 145 

convolutes biological interpretation but is a common observation for complex traits37. The nearest genes 146 

to the candidate SNPs in this locus were PAX8 and IGKV1OR2-108 (respectively 29 and 53 kb 147 

distance). PAX8 encodes a transcription factor that is considered to regulate the expression of genes 148 

important for thyroid development38 and the production of thyroid hormone39. FC within both the 149 

somatomotor and frontoparietal network is reduced in individuals with subclinical40 and clinical 150 

hypothyroidism41.  151 

 152 

Default mode network-FC genes associated with Alzheimer’s disease 153 

We next performed gene-based GWAS for the FC and SC within every RSN using MAGMA 154 

(Supplementary Table 5). We detected two Bonferroni-corrected genome-wide significant genes 155 

additional to the FUMA mapped genes by combining information from neighbouring variants within a 156 

single gene in MAGMA (Figure 3, Supplementary Table 6). Visual network-FC was associated with 157 

APOC1 (z = 5.15, p = 1.31×10-7), and for default mode network-FC APOE was found to be associated 158 

(z = 5.13, p = 1.43×10-7). APOC1 and APOE are both located within the 19q13.2 locus and are well-159 

known risk factors for Alzheimer’s disease42. Additionally, gene-set analysis results are provided in 160 

Supplementary Methods 1.2 and Supplementary Results 2.1. 161 

In order to determine whether there is genetic overlap between Alzheimer’s disease43 and 162 

default mode network-FC, we performed local genetic correlation (rg) analysis using LAVA (see 163 

Methods; Supplementary Table 7). For default mode network-FC, we detected two loci on chromosome 164 

12 (BP 64,403,858-66,114,643) and 19 (BP 45,040,933-45,893,307) which showed significant local rg 165 

at p < (0.05/71=) 7.04×10-4 with Alzheimer’s disease (Supplementary Figure 5). Given the negligible 166 

heritability of global FC in these loci (univariate p = 0.27 and p = 0.01 respectively, whereas p = 167 

1.30×10-5 and p = 1.62×10-8 for default mode network-FC) we conclude that these local genetic 168 

associations with Alzheimer’s disease are not driven by total brain connectivity. The locus on  169 
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 170 

 171 
Figure 3. Multitrait Manhattan plots of gene-based GWAS for a) FC and b) SC within RSNs. The light grey 172 
dashed horizontal line indicates significance after correcting for the number of genes tested per trait (p < 2.65×10-173 
6), whereas the red dashed horizontal line indicates significance after an additional correction for the number of 174 
traits tested (p < 1.66×10-7). Manhattan plots per RSN are provided as Supplementary Figure 3b (FC) and 4b (SC). 175 
 176 

chromosome 12 showed a positive rg (𝜌) between Alzheimer’s disease and default mode network-FC 177 

(BP 64,403,858-66,114,643, 𝜌 = 0.69, 95% CI = 0.35 – 1.00, p = 3.25×10-4). Interestingly, this locus 178 

has been identified in a previous GWAS for hippocampal atrophy, a biological marker of Alzheimer’s 179 

disease44. Negative rg between Alzheimer’s disease and FC within DMN was observed in the locus on 180 

chromosome 19 (BP 45,040,933-45,893,307, 𝜌 = -0.56, 95% CI = -0.82 – -0.38, p = 9.23×10-9), 181 

indicating that lower default mode network-FC was associated with higher genetic risk of Alzheimer’s 182 

disease. Note that this larger defined locus showed weak heritability (p = 0.014) for visual network-FC 183 

despite the significance of APOC1 in the gene-based GWAS, which would make genetic correlation 184 

APOE APOC1 

METTL10 

SEMA3B FAM53B 
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 9 

estimates with Alzheimer’s disease unreliable and uninterpretable23. Therefore, Alzheimer’s disease 185 

seems to show genetic overlap specifically with default mode network-FC. 186 

 187 

Examining overlap between structure and function per RSN through genetic correlations 188 

As SC strength has been noted to correlate with FC strength on the phenotypic level16, we sought to 189 

investigate the correlations between FC and SC within each RSN on a genetic level. Genome-wide 190 

genetic correlations (rg) were estimated in LDSC using SNP-based summary statistics (Figure 4). We 191 

observed no nominally significant genome-wide rg’s between SC and FC in any of the RSNs 192 

(Supplementary Table 8). Genome-wide rg estimates ranged from -0.19 (SE = 0.15, p = 0.19) in the 193 

dorsal attention network (DAN) and 0.23 (SE = 0.23, p = 0.30) in the frontoparietal network (FPN).  194 

Strongly localized or opposing local rg’s possibly may go undetected, since genome-wide rg’s 195 

are an average of the shared genetic association signal across the genome. We examined whether such 196 

relationships between SC and FC within any given RSN exist by performing local rg analysis using 197 

LAVA23, though we did not identify any significant rg on a locus level either (Supplementary Table 9). 198 

 199 

Genome-wide and local genetic correlations within the functional and structural domain 200 

We examined the shared genetic signal across RSNs within the same domain by conducting genome-201 

wide rg analyses using LDSC (Figure 5; Supplementary Table 8). For functional connectivity, a positive 202 

Bonferroni significant genome-wide rg was observed between the default mode and ventral attention 203 

 204 
Figure 4. Global rg (±SE) between FC and SC within the same RSN as performed in LDSC do not show estimates 205 
significantly different from zero (Supplementary Table 8). Additional estimation of local rg did not yield 206 
significant overlapping loci between SC and FC within each RSN either (Supplementary Table 9). 207 
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network (rg = 0.52, SE = 0.16, p = 1.00×10-3). This association was not driven by global FC as neither 208 

default mode nor ventral attention network-FC were genetically correlated with global FC (rg = 0.19, 209 

SE = 0.18, p = 0.29; rg = 0.26, SE = 0.19, p = 0.18 respectively). Note that this positive rg does not 210 

imply simultaneous functional activation of these two RSNs or their involvement in similar cognitive 211 

tasks (which would contradict previous research45), but suggests that variants that influence default 212 

mode network-FC generally tend to influence ventral attention network-FC in the same direction. 213 

For structural connectivity, we observed multiple significant genome-wide rg’s (p < 1.19×10-3) 214 

between RSNs, though many of these were also correlated with global SC (Supplementary Table 6). To 215 

determine whether the correlations between the structural RSNs could be accounted for by global SC, 216 

we used genomic SEM to compute residual rg estimates between the structural RSNs while taking 217 

global SC into account (see Methods). As none of the residual rg estimates remained significant, we 218 

conclude that global SC likely accounts for the observed relations between the RSN-SC. 219 

We extended our investigation into shared genetic signal across RSNs beyond the global to the 220 

local scale. Eighteen loci showed Bonferroni corrected significant rg’s when comparing RSNs within 221 

the functional domain (Table 1). These were all highly positive (mean 𝜌 = 0.84, SD = 0.09) and were 222 

not confounded by global FC. When comparing RSNs within the structural domain, local rg analysis 223 

 224 
Figure 5. Genome-wide rg between (a) RSN-FC and (b) RSN-SC. If one of the two RSNs showing significant 225 
LDSC rg showed additional significant rg with global FC/SC, we instead report the residual rg (rg between the two 226 
RSNs while taking global FC/SC into account in Genomic SEM; see Methods and Figure 6). The significant rg 227 
that survived correction for multiple testing (p < 1.19×10-3) is indicated with an asterisk (*). 228 

* 

a)      b) 
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 11 

with LAVA revealed only one positively correlated locus between SC within DAN and FPN 229 

(15:39238841:40604780, local rg (𝜌) = 0.85, p = 9.51×10-7; Table 1). A complete overview of LAVA 230 

local rg results can be found in Supplementary Table 9. 231 

 232 

Table 1. 233 

Loci with Bonferroni-corrected significant (p < (0.05/774=) 6.46×10-5) rg (𝜌 with lower and upper limit of 234 

95% confidence interval) between RSN-FC or RSN-SC as performed in LAVA. Within these loci, global FC 235 
or SC did not show significant univariate h2 or rg with either of the two RSNs. See Supplementary Table 9 236 
for all local rg summary statistics. SMN = somatomotor network, VN = visual network, DMN = default mode 237 
network, FPN = frontoparietal network, VAN = ventral attention network, DAN = dorsal attention network, 238 
LN = limbic network. 239 

Chr Start Stop RSN 1 RSN 2 𝜌 95% CI p-value 
1 2,215,496 2,983,519 FC SMN FC VN 0.77 0.47 1.00 3.39×10-5 
1 18,427,821 19,238,924 FC DMN FC FPN 0.72 0.45 1.00 9.48×10-6 
1 211,082,893 212,3475,82 FC VAN FC SMN 1.00 0.74 1.00 1.75×10-7 
2 113,930,669 115,203,835 FC FPN FC SMN 0.88 0.64 1.00 3.42×10-7 
2 207,726,595 208,674,588 FC FPN FC VN 0.97 0.72 1.00 1.02×10-6 
5 4,636,543 5,828,694 FC DMN FC DAN 0.73 0.47 1.00 2.72×10-5 
5 68,006,994 71,468,651 FC VAN FC SMN 0.79 0.53 1.00 2.05×10-5 
5 75,959,516 77,290,255 FC DMN FC DAN 0.91 0.65 1.00 3.42×10-6 
6 10,416,551 11,790,671 FC VAN FC SMN 0.83 0.55 1.00 2.49×10-5 
7 50,894,509 51,951,647 FC LN FC VN 0.88 0.57 1.00 5.12×10-6 
8 64,215,359 66,018,204 FC DMN FC VN 0.86 0.59 1.00 1.09×10-5 
9 93,441,051 94,175,374 FC FPN FC SMN 0.90 0.61 1.00 1.73×10-5 
9 93,441,051 94,175,374 FC FPN FC VN 0.87 0.62 1.00 4.58×10-6 
10 89,971,629 91,021,321 FC VAN FC VN 0.96 0.67 1.00 1.23×10-6 
15 39,238,841 40,604,780 SC DAN SC FPN 0.85 0.53 1.00 9.51×10-7 
17 13,648,447 14,508,610 FC DMN FC LN 0.89 0.69 1.00 3.50×10-9 
18 2,839,843 3,722,828 FC DMN FC DAN 0.70 0.45 1.00 2.66×10-5 
19 17,045,964 17,750,518 FC LN FC DAN 0.73 0.47 1.00 2.34×10-6 
19 17,045,964 17,750,518 FC DMN FC DAN 0.79 0.53 1.00 1.43×10-5 

 240 

Discussion 241 

Mapping the genetic components of resting state networks (RSNs) may provide insight into the 242 

aetiology of brain function and brain disorders. RSNs are typically defined using functional 243 

connectivity (FC), and structural connectivity (SC) correlates to FC in varying degrees across RSNs17. 244 

The genetic component of RSN-SC has been less studied and as one of the fundamental goals in 245 
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neuroscience is to understand the relationship between structure and function within the brain, the aim 246 

of this study was to gain more insight into the genetic underpinnings of structural and functional 247 

connectivity (SC; FC) within a framework that respects the brain’s hierarchical functional architecture. 248 

With the use of GWAS and in silico annotation we identify the first genes for visual network-SC, that 249 

are involved in axon guidance and synaptic functioning. We further observe that genetic variation in 250 

RSN-FC (e.g. limbic network-FC and default mode network-FC) impacts biological processes related 251 

to brain disorders (major depressive disorder and Alzheimer’s disease respectively) that have previously 252 

been associated with FC alterations in those same RSN. The genetic component of RSNs overlaps 253 

mostly within the functional domain, whereas less overlap is observed within the structural domain and 254 

between the functional and structural domains. 255 

For FC within RSNs (RSN-FC), we detect biologically interpretable results that are specific to 256 

default mode and limbic network-FC. For default mode network-FC, we observe APOE as a genome-257 

wide significant gene. The default mode network is hypothesized to relate to Alzheimer’s disease 258 

through the role of default model network-FC in memory consolidation46 and through the spreading of 259 

cortical atrophy over time, which follows the pattern of default mode network regions47. Here, we 260 

complement earlier phenotypic observations that link Alzheimer’s disease to default mode network-261 

FC48 by now also showing genetic correlations in two loci between Alzheimer’s disease and default 262 

mode network-FC. Functional follow up would be necessary to investigate how the variants and genes 263 

in these loci affect default mode network-FC. The limbic network is commonly known for its 264 

involvement in emotion regulation, episodic memory, and action–outcome learning49 and has been 265 

associated with mood disorders, such as major depression disorder and bipolar depression50. The genes 266 

PLCE1, NOC3L and CYP2C8 were related to limbic network-FC, all of which have been noted to have 267 

a relationship with major depressive disorder35,51,52. A previous study investigating the role of PLCE1 268 

in major depressive disorder patients has demonstrated an association with antidepressant remission in 269 

female patients, together with other genes within the calcium/calmodulin-dependent protein kinase 270 

(CaMK) pathway51. NOC3L eQTLs in the cerebellum and nucleus accumbens have previously been 271 

demonstrated to associate with depression severity and antidepressant response52, and one of the 272 

substrates of CYP2C8 is clinically prescribed as treatment for major depressive disorder (phenelzine)35. 273 
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These results seem to suggest that major depressive disorder and antidepressant response involve 274 

processes that are impacted by genetic variation in limbic network-FC. 275 

In addition to RSN-FC specific effects, we find evidence of shared genetic signal in FC across 276 

different RSNs using several approaches. Specifically, we observe a genetically correlated and common 277 

genome-wide significant locus for both somatomotor and frontoparietal network-FC near PAX8. PAX8 278 

regulates multiple genes involved in the production of thyroid hormone39, an interesting result 279 

considering that both somatomotor and frontoparietal network-FC have been linked to (subclinical) 280 

hypothyroidism40,41. Additionally, we detect genetically correlating loci between all RSN-FC and a 281 

genome-wide genetic correlation between ventral attention and default mode network-FC. The ventral 282 

attention network supports salience processing53, whereas the default mode network includes areas 283 

widespread over the brain and supports emotional processing, self-referential mental activity, and 284 

recollection of prior experiences54. Increased FC within these two RSNs has been associated with 285 

bulimia nervosa55 and contributes to episodic memory retrieval53. Altogether, the shared genetic 286 

underpinnings of different RSN-FC that we present here could give a possible explanation how multiple 287 

disorders are associated with more than one RSN.  288 

We report considerable heritability estimates for RSN-SC (ranging from 10.00% to 15.40%) 289 

and identify nine genes that suggest a role for synaptic transmission in the genetics of visual network-290 

SC. For example, STRN encodes for a calmodulin-binding protein that is mostly found in dendritic 291 

spines playing a role in Ca2+-signaling56, the transcript of FAM175B is a component of a 292 

deubiquitylation enzyme complex that has been suggested play a role in synaptic transmission and 293 

synaptic plasticity28, and SEMA3A is known as an axonal guidance gene during development30. The 294 

SEMA3A protein has been shown to be upregulated in schizophrenia patients and is suggested to 295 

contribute to the developmentally induced impairment of synaptic connectivity in the disorder57. Visual 296 

network functional hyperconnectivity has been observed in schizophrenia58,59 and related to visual 297 

hallucinations59, but future studies should investigate the equivalent SC component in more detail given 298 

our findings. 299 

When investigating the genetic relationship between SC and FC within each RSN, we find no 300 

significant genome-wide or local genetic correlations. Since the estimation of genetic correlations is 301 
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dependent on sample size and the heritability estimates of both traits60, studies with increased power 302 

are needed to examine the robustness of these results. Future studies could additionally incorporate 303 

recent insights that indirect structural connections supporting direct functionally connected regions 304 

complicate simple structure to function mapping61. Our study focussed on direct structural connections 305 

within RSNs. The possibility that the genetics of RSN-FC overlap with that of indirect pathways that 306 

structurally connect brain regions within RSNs via a route beyond the borders of that RSN could 307 

therefore be subject to future research. 308 

Several limitations must be considered while interpreting our results. It is known that rsfMRI 309 

measures can be noisy and subject to motion distortion, which raises the possibility of differences in 310 

measurement error between RSN-FC and RSN-SC. However, given our stringent pre-processing and 311 

quality control to enable noise minimization and additional use of rsfMRI-specific covariates in GWAS, 312 

we were able to find heritability estimates for RSN-FC that are concordant with previous studies13. 313 

Second, even though UK Biobank provides genetic and uniform MRI data at unprecedented sample 314 

sizes, it is evident that even larger sample sizes are needed for discovering the often small genetic effects 315 

of polygenic traits62. The null results observed for some RSN-FC/SC GWAS, partitioned heritability 316 

and gene-set analyses might be explained by the multiple comparison correction for the number of 317 

phenotypes analysed, in conjunction with insufficient statistical power. Third, some other sample 318 

characteristics, such as the European ancestry, age-class and socioeconomic status of subjects, may 319 

limit the generalizability of our findings. While we corrected for age and Townsend deprivation index 320 

(a proxy of socio-economic status) in our GWAS to reduce this bias, larger and more diverse imaging-321 

genetics datasets are undoubtedly needed. 322 

This study examines the specificity and overlap in genetic architecture of RSNs – structurally 323 

and functionally. We observe several genetic effects that seem to be specific to certain RSNs and 324 

highlight relevant biological processes for brain connectivity and related brain disorders. The 325 

complexity of structure-function coupling within RSNs is illustrated by the observation that, despite 326 

genetic overlap of RSNs within the functional domain, genetic overlap is less apparent within the 327 

structural domain and between the functional and structural domains. Altogether, this study advances 328 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494125doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494125
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

the understanding of the complex functional organisation of the brain and its structural underpinnings 329 

from a genetics viewpoint. 330 

 331 

Methods 332 

A flowchart that describes all Methods used in this manuscript is displayed in Supplementary Figure 1. 333 

 334 

Sample 335 

The UK Biobank (UKB) is a resource with genomic and imaging data of volunteer participants63. The 336 

National Research Ethics Service Committee North West–Haydock ethically approved this initiative 337 

(reference 11/NW/0382) and data were accessed under application #16406. Combined SNP-genotypes 338 

and neuroimaging data of N = 40,682 participants have been available since January 2020. From all 339 

new subjects ID’s in the latest neuroimaging release (January 2020), we randomly assigned 5,000 340 

subjects to a holdout set for validation. Subsetting the total sample to subjects with all neuroimaging 341 

data necessary to construct our phenotypes as described below, resulted in NFC = 37,017 and NSC = 342 

36,645. We only included subjects for which the projected ancestry principal component score was 343 

closest to and < 6 SD from the average principal component score of the European 1000 Genomes 344 

sample based on Mahalanobis distance. This procedure has been described in previous publications by 345 

our group64 and the number of non-European exclusions are displayed in Supplementary Table 10. 346 

Other exclusion criteria were withdrawn consent, UKB-provided relatedness, discordant sex or sex 347 

aneuploidy (Supplementary Table 10). Further quality control on genomic and neuroimaging data is 348 

described below and resulted in the sample sizes and sample characteristics as displayed in 349 

Supplementary Table 11. 350 

 351 

Genotype data 352 

The genotype data used in this study were obtained from the UK BiobankTM Axiom and the UK 353 

BiLEVE Axiom arrays. These Affymetrix arrays cover 812,428 unique genetic markers and overlap 354 

95% in SNP content. This number of SNPs was increased to 92,693,895 by imputation carried out by 355 

UKB. Variants were imputed using the Haplotype Reference Consortium and the UK10K haplotype 356 
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panel as reference. We applied our in-house quality control pipeline in addition to quality control 357 

performed by UKB. This procedure excluded SNPs with low imputation scores (INFO<0.9), low minor 358 

allele frequency (MAF<0.005) or high missingness (>0.05), multiallelic SNPs, indels, and SNPs 359 

without unique rs-identifiers. A total of 9,380,668 SNPs passed quality control and were converted to 360 

hard call SNPs using a certainty threshold of 0.9 for further analyses. 361 

 362 

Neuroimaging data 363 

Pre-processing & connectome reconstruction 364 

The UKB scanning protocol and processing pipeline is described in the UKB Brain Imaging 365 

Documentation65. For this study, we made use of the available resting-state functional brain images 366 

(rsfMRI) and multiband diffusion brain images (DWI) together with T1 surface model files and 367 

structural segmentation from FreeSurfer66. These three types of data were used as input for the structural 368 

and functional pipeline of CATO (Connectivity Analysis TOolbox)67. Prior to this, UKB performed 369 

pre-processing on DWI and rsfMRI data as described in the UKB Brain Imaging Documentation65. 370 

In CATO’s structural pipeline, additional pre-processing of DWI files was performed in FSL68 371 

by computing a DWI reference image based on the corrected diffusion-unweighted (b0) volumes, 372 

computing the registration matrix between DWI reference image and the anatomical T1 image, and 373 

registering the Freesurfer segmentation to the DWI reference image. The surface was parcellated based 374 

on the Cammoun sub-parcellations of the Desikan-Killiany atlas including 250 cortical regions69. We 375 

reconstructed the diffusion signal with diffusion tensor imaging (DTI), a deterministic method that is 376 

robust and relatively simple compared with more advanced diffusion reconstruction methods67. In 377 

CATO, the Fiber Assignment by Continuous Tracking (FACT) algorithm70 is used to reconstruct fibers 378 

and fractional anisotropy (FA) was used as weights of reconstructed fibers. FA is a robust measure of 379 

white matter integrity and has been found to be sensitive to changes in connectivity18 and correlates 380 

with axon density, size and myelination71. The structural connectivity matrix was built out of all fiber 381 

segments that connected two regions in the atlas. Additional filters were applied, namely a minimal FA 382 

of 0.1, minimal length of 30 mm and having 2 or more number of streamlines. 383 
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The functional pipeline in CATO consisted of similar steps. First, we computed a rsfMRI 384 

reference image by averaging all rsfMRI frames in FSL and subsequently registered this reference 385 

image and the T1 image in FreeSurfer. Second, we parcellated the surface based on the same atlas as in 386 

the structural pipeline (to enable structure-function comparison in downstream analyses) and we 387 

registered the T1 parcellation to the rsfMRI image. Third, motion metrics were estimated, and time-388 

series were corrected for covariates (linear trends and first order drifts of motion parameters and the 389 

mean signal intensity of voxels in white matter and cerebrospinal fluid and of all voxels in the brain) 390 

by regression. Fourth, time-series were passed through band-pass filtering (frequencies 0.01 to 0.1) and 391 

scrubbing (max FD = 0.25, max DVARS = 1.5, min violations = 2, backward neighbours = 1, forward 392 

neighbours = 0). Fifth, the functional connectivity matrix was computed by the Pearson’s correlation 393 

coefficient of the average signal intensity of every pair of brain regions across the frames that survived 394 

filtering. 395 

 396 

Quality control 397 

The UKB scanning and pre-processing protocol includes filters for outliers based on manual QC and 398 

an advanced classifier described elsewhere72. We excluded a small number of subjects that UKB 399 

identified as outliers and placed in an “unusable” folder. The UKB main documentation65 suggests a 400 

second set of UKB data fields that can be used as outlier criteria. Outlier subjects are defined as subjects 401 

that score for any of the values > 3 interquartile ranges above the upper quartile or below the lower 402 

quartile. Outlier criteria included measures that describe the discrepancy between the T1-weighted, 403 

rsfMRI and DWI images and the population average template after LINEAR and NON-LINEAR 404 

alignment, the amount of nonlinear warping necessary to map a subject to the standard template, the 405 

signal to noise ratio in rsfMRI, the mean rfMRI head motion averaged across space and time points and 406 

the total number of outlier slices in DWI volumes. We extended this recommended list with connectome 407 

specific measures, including the average prevalence of all connections present and absent in the 408 

reconstructed brain network of a subject (low average prevalence scores indicate the presence of odd 409 

connections and high values indicate the absence of common connections), the sum of number-of-410 
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streamlines and average FA of all connections in the reconstructed brain network of a subject. The 411 

number of exclusions can be viewed in Supplementary Table 10. 412 

 413 

Phenotype reconstruction 414 

In this study, the phenotypes of interest were the functional and structural connectivity (FC;SC) within 415 

seven resting-state networks (RSNs) that previously have been identified2 and are commonly used in 416 

(clinical) neuroimaging studies: the default mode network, ventral attention network, dorsal attention 417 

network, visual network, limbic network, somatomotor network and frontoparietal network. Each of 418 

the 250 cortical regions of the reconstructed structural and functional connectomes were assigned the 419 

ratio to what extent they belonged to each of these seven RSNs, using a mask created and validated 420 

elsewhere (see Supplementary Information of Wei et al24). Each connection was then weighted by 421 

multiplying the ratios of the two regions involved in the particular RSN. FC and SC within the RSNs 422 

were respectively calculated as the mean correlation and mean fractional anisotropy of the connections 423 

within the RSN. We also computed two global FC and SC phenotypes as the mean correlation and mean 424 

fractional anisotropy of all available connections, to be able to correct for connectivity that is non-425 

specific to RSNs in downstream analyses. 426 

 427 

Statistical analyses 428 

SNP-based GWAS 429 

To identify common genetic variants involved in FC within each of the seven RSN, we performed seven 430 

SNP-based GWAS in PLINK273. Also, for the SC within each of the seven RSN, a SNP-based GWAS 431 

was performed. It is common practice to include a global FC or SC estimate as covariate in GWAS to 432 

capture associations that are driven by the level of connectivity within an RSN irrespective of the level 433 

of connectivity throughout the whole brain. It has become apparent that this risks the introduction of 434 

collider bias (inducing false-positives)74. Here we build upon recent developments in statistical genetics 435 

that have provided multiple methods that allow for post-GWAS analyses conditional on global 436 

connectivity. Therefore, we used the global FC and global SC phenotypes to run two additional SNP-437 

based GWAS, for which the summary statistics were used for conditional downstream analyses. The 438 
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total amount of GWAS was therefore sixteen. In order to correct for population stratification during 439 

GWAS, a principal component analysis was performed in FlashPCA275 using only independent (r2 < 440 

0.1), common (MAF > 0.01) and genotyped SNPs or SNPs with very high imputation quality (INFO=1). 441 

The first 30 principal components were used as covariates in all GWAS, together with sex, age, 442 

genotype array, Townsend deprivation index (a proxy of socio-economic status), general neuroimaging 443 

confounders as well as FC/SC specific covariates (recommended by Alfaro-Almagro and colleagues76). 444 

The general set included handedness, scanning site, the use of T2 FLAIR in Freesurfer processing, 445 

intensity scaling of T1, intensity scaling of T2 FLAIR, scanner lateral (X), transverse (Y) and 446 

longitudinal (Z) brain position, and Z-coordinate of the coil within the scanner. FC-specific and SC-447 

specific covariates were respectively intensity scaling and echo time of rsfMRI, and intensity scaling 448 

of DWI. For reasons of collinearity, we ran principal component analysis on all covariates (excluding 449 

the population stratification principal components) and retained those principal components that 450 

explained > 99% of variance. Rare variants (MAF < 0.005) and SNPs with high missingness (>5%) 451 

were excluded from GWAS and male X variants were counted as 0/1. The genome-wide significance 452 

threshold was α  =  (0.05/1,000,000/16 =) 3.13×10-9 according to the Bonferroni correction for multiple 453 

testing. 454 

 455 

SNP-based heritability 456 

SNP-based (ℎ!"#$ ; or narrow-sense) heritability represents the proportion of phenotypic variance that 457 

can be explained by common additive variation. In contrast, broad-sense heritability captures the total 458 

genetic contribution to the phenotype and is often based on family studies77. We applied Linkage 459 

Disequilibrium Score regression (LDSC) on the SNP-based GWAS summary statistics of all sixteen 460 

phenotypes to estimate ℎ!"#$  using precomputed LD scores from 1000 Genomes EUR, as provided by 461 

the LDSC developers. 462 

 463 

Functional annotation 464 

FUMA is a web-based platform that can be used to functionally map and annotate SNPs that appear 465 

significant during GWAS. We uploaded summary statistics to FUMA if GWAS identified at least one 466 
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genome-wide significant SNP. Candidate SNPs were defined as all SNPs in LD r2>0.6 with an 467 

independent genome-wide significant SNPs (r2<0.6). Annotation was subsequently performed using 468 

ANNOVAR78, RegulomeDB79 score and ChromHMM80. Lead SNPs were defined as independent SNPs 469 

r2<0.1. Genomic loci were constructed by taking all independent significant SNPs r2 < 0.1 with LD 470 

blocks within 250 kb distance and independent significant SNPs r2 ≥ 0.1. Within every locus, SNPs 471 

were mapped to genes using three methods: positional mapping, eQTLs mapping or chromatin 472 

interaction mapping. SNPs were positionally mapped to genes if their physical distance was <10 kb. 473 

Mapping based on eQTLs relied on known associations between SNPs and the gene-expression of genes 474 

within a 1Mb window, from BRAINEAC81 (frontal, occipital, temporal, cerebral cortex), GTEx v882 475 

cerebral cortex and xQTLServer83 dorsolateral prefrontal cortex. Chromatin interaction mapping was 476 

based on established 3D DNA-DNA interactions between SNP and gene regions from Hi-C databases 477 

in cortex tissue (PsychENCODE84, Giusti-Rodriguez et al85, and GSE8711286). To restrict chromatin 478 

interaction mapping to plausible biological interactions, we only included interactions where one region 479 

overlapped with an enhancer (as predicted by the Roadmap Epigenomics project87 in cortex tissue) and 480 

the other region overlapped with a promoter (250 bp upstream to 500 bp downstream of the transcription 481 

start site as well as predicted by the Roadmap Epigenomics project in cortex tissue). A FDR threshold 482 

of 1×10-5 was used, as recommended in previous literature86. 483 

 484 

Gene-based GWAS 485 

Performing GWAS on the level of genes has been suggested to be more powerful than GWAS on the 486 

level of SNPs88. Therefore, the sixteen SNP-based GWAS summary statistics were used to perform 487 

sixteen gene-based GWAS in MAGMA (Multi-marker Analysis of GenoMic Annotation) v1.0888. A 488 

mean SNP-wise model was applied (with the UKB European population serving as an ancestry 489 

reference group) to test the joint association of all SNPs within 18,850 genes with RSN-FC/RSN-SC. 490 

The genome-wide significance threshold was adjusted for multiple testing to α  = (0.05/18,850)/16 = 491 

1.66 ×10-7. 492 

  493 
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Genome-wide genetic correlations 494 

To assess the overlap in genetic architecture between FC/SC within RSNs while taking the influence of 495 

global FC/SC into account, we designed a genetic correlation (rg) analysis pipeline. This pipeline 496 

consisted of three steps. 1) In the first step, genome-wide rg between 42 combinations of RSNs were 497 

estimated using LDSC (α = (0.05/42=) 1.19×10-3). The summary statistics of SNP-based GWAS were 498 

used as input for LDSC. We excluded FC-VN, because both the lambda (<1.02) and ratio (>0.20) values 499 

were out of bound for LDSC. 2) For all RSNs included in a significant bivariate rg, additional rg with 500 

global FC/SC were calculated in LDSC. 3) If one or both RSNs from the significant bivariate rg showed 501 

additional significant rg with global FC/SC, we recalculated of the genome-wide rg between the two 502 

RSNs with global FC/SC taken into account. Since such residual genome-wide rg analyses are not 503 

implemented in LDSC, we applied Genomic Structural Equation Modelling (genomic SEM)89. 504 

Genomic SEM is a method that enables to model the multivariate genetic architecture and covariance 505 

structure of complex traits using GWAS summary statistics and allows for sample overlap. We 506 

modelled residual covariance between RSN as the covariance between the residual variance of the two 507 

RSNs involved after taking the global factor into account (Figure 6). A confirmatory factor analysis  508 

 509 

Figure 6. Path diagram of genomic SEM model. The summary statistics of two RSNs that have shown to 510 
significantly correlate with global connectivity will be used as input together with summary statistics of the global 511 
connectivity GWAS. In this way, rg between the two RSNs can be estimated while taking global connectivity into 512 
account. 513 
was then ran using Diagonally Weighted Least Square estimation. 514 

  515 

global FCg

FC-VANg

FC-DMNg

uFC-VAN
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Local genetic correlations 516 

The genome-wide rg’s described above are an average correlation of genetic effects across the genome, 517 

implicating that contrasting local rg’s are possibly cancelling each other out. Running rg analysis on a 518 

locus level has the potential to uncover loci that show genetic similarity between traits. For this purpose, 519 

we adopted a three-step local rg analysis pipeline similar to the genome-wide rg analysis approach 520 

described above. All three steps were performed in LAVA23, a local rg analysis tool, using SNP-based 521 

GWAS summary statistics as input. We followed the suggested sample overlap procedure (as described 522 

on https://github.com/josefin-werme/LAVA) to enable LAVA to model shared variance due to sample 523 

overlap as residual covariance and consequently remove upward bias in local rg estimates23. Since our 524 

GWASs included European samples, the 1,000 Genomes Phase 3 European data served as genotype 525 

reference and formed the basis of the locus definition file. For every locus, the first step of our pipeline 526 

consisted of estimating local bivariate rg between 49 combinations of RSNs. However, RSNs that were 527 

devoid of heritable signal (p > 1×10-4) in the locus were excluded from local bivariate rg analysis to 528 

ensure interpretability and reliability. A total of 774 bivariate tests were performed across 337 loci, 529 

leading to an adjusted significance threshold of α = (0.05/774=) 6.46×10-5. In the second step, RSNs 530 

that showed significant local rg were additionally tested for rg in that locus with global FC/SC. Note 531 

that if this was not possible, because global FC/SC showed no significant heritability in that locus, the 532 

local bivariate rg between RSNs could not be biased by global FC/SC. If one or both RSNs did show 533 

additional significant rg with global FC/SC, we ran a partial local rg between the RSNs conditioned on 534 

the SC-global and/or FC-global phenotype in step three. If the partial local rg between the RSNs no 535 

longer remained significant, we concluded that the initial rg was driven by global FC/SC and did not 536 

reflect genetic overlap specific for these RSNs. 537 
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