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ABSTRACT

Long non-coding RNAs (lncRNAs) play a crucial role
in numbers of biological processes and have received wide
attention during the past years. Meanwhile, the rapid
development of high-throughput transcriptome sequencing
technologies (RNA-seq) lead to a large amount of RNA data,
it is urgent to develop a fast and accurate coding potential
predictor. Many computational methods have been proposed
to alleviate this issue, they usually exploit information on
open reading frame (ORF), k-mer, evolutionary signatures,
or known protein databases. Despite the effectiveness, these
methods still have much room to improve. Indeed, none of
these methods exploit the context information of sequence,
simple measures that are calculated with the continuous
nucleotides are not enough to reflect global sequence order
information. In view of this shortcoming, here, we present
a novel alignment-free method, CPPVec, which exploits the
global sequence order information of transcript for coding
potential prediction for the first time, it can be easily
implemented by distributed representation (e.g., doc2vec)
of protein sequence translated from the longest ORF. Tests
on human, mouse, zebrafish, fruit fly and Saccharomyces
cerevisiae datasets demonstrate that CPPVec is an accurate
coding potential predictor and significantly outperforms
existing state-of-the-art methods.

INTRODUCTION

Recently, long non-coding RNAs (lncRNAs, >200nt) receive
more and more attention for their participation in numbers
of important biological processes (e.g., gene regulation and
expression (1), cell cycle regulation (2)). The mutations
and dysregulations in lncRNAs can cause human diseases
(3), such as cancers. It is still a challenging task to
discriminate lncRNAs from mRNAs, this is because 1) they
often have very similar features, such as poly(A) tails,
splicing and approximate sequence length (4); 2) lncRNAs
may contain small open reading frame (sORF) that encodes
micropeptides (5), which could induce false positives; 3)
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there are considerable indel errors (6) during the process of
sequencing and assembly.

Many computational methods have been proposed to
discriminate lncRNAs from mRNAs in the past years (7,
8, 9, 10). These methods mainly exploit five kinds of
information: 1) open reading frame (ORF). The longest ORF
of an RNA sequence is often extracted because it is likely
to be the correct ORF where a protein is translated (11),
then the ORF length, ORF integrity and ORF coverage are
selected as ORF features that are effective and widely used
by current methods. CPAT indicates that ORF length is
the most important feature for coding potential prediction.
However, ORF features are more likely to be correct when
no sequencing or assembly errors occur, and hence are not
suitable for platforms with indel errors, e.g., Roche (454)
(12). 2) protein sequence. The physicochemical properties
of the protein sequence translated from the longest ORF
can also carry information for coding potential prediction.
CPC2 uses isoelectric point, and CPPred adds the other two
properties (e.g., gravy and instability) mentioned by CPC2.
3) k-mer (e.g., codon usage (3-mer), hexamer usage (6-
mer)). k-mer features are often calculated by counting the
frequency of fixed-length words (k-mer) that occur in an
RNA sequence, or using its variant, e.g., usage frequency
of adjoining nucleotide triplets (ANT) in CNCI (13). k-mer
features are effective, and even robust (overlapping k-mer
in PLEK (7)) for coding potential prediction for the fact
that the distribution over k-mer is significantly different in
mRNAs to lncRNAs. Despite the effectiveness, they are too
short to reflect global sequence order information of RNA
sequence, e.g., the position information of k-mer. Moreover,
the increase of k leads to a very long and sparse feature
vector, which not only induce noise, but also computational
burden in real cases (14). 4) evolutionary signatures. This
information is based on the sequence conservation that
RNAs belongs to the same class often have similar sequence
composition (e.g., base composition, transition, motifs)
during the evolutionary process. CONC (15) uses amino
acid composition and sequence entropy. CPPred employs
CTD (composition (C), transition (T) and distribution (D))
features (16), they indicate that CTD features are particularly
important for coding potential prediction of sORF. However,
evolutionary signatures that these methods use are also simple
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Figure 1. Pipeline of CPPVec. Multiple features are extracted from three kinds of sequence: the RNA sequence, the longest ORF extracted from the RNA
sequence, and protein sequence translated from the longest ORF, and finally integrated into a SVM classifier for coding potential prediction. Note that the
difference between CPPVec and CPPred lies in that the additional feature of doc2vec and the fixed feature of hexamer score.

statistics between the continuous nucleotides, and lose global
sequence order information. 5) known protein database. As
for alignment-based methods using known protein database,
it is often computational expensive and also not suitable for
species without annotation reference genome (7).

Based on the above analysis, we here explore how to exploit
the global sequence order information of RNA sequence to
enhance the performance of coding potential prediction. We
developed an accurate coding potential predictor, CPPVec,
which exploits the global sequence order information of RNA
sequence based on distributed representation (e.g., doc2vec
(17)) of protein sequence translated from the longest ORF.
Tests on human, mouse, zebrafish, fruit fly and Saccharomyces
cerevisiae datasets demonstrate that CPPVec significantly
outperforms existing state-of-the-art methods. To our best
knowledge, this is the first attempt to introduce distributed
representation to coding potential prediction.

MATERIALS AND METHODS

Datasets
We here adopt the datasets strictly selected by CPPred
to test our proposed model. Two models are built for
coding potential prediction, Human-model and Integrated-
model. For Human-model, human (Homo sapiens) samples
are selected as training set and human, mouse (Mus musculus),
zebrafish (Danio rerio), fruit fly (Drosophila melanogaster),
S. cerevisiaeare selected as test sets. For Integrated-model,
samples across many species, including human, mouse,
zebrafish, fruit fly, S. cerevisiae, nematode (Caenorhabditis
elegans) and thale cress (Arabidopsis thaliana) are selected
as training set and test set. CD-hit (18) is used to remove
redundancy between the test set and training set for two
models. The details can be found in (10).

Distributed representation of protein sequence
Representation learning plays an important role in machine
learning methods (19). A proper representation usually
achieves good result for a machine learning task. In the past

years, distributed representation has been proved to be a
successful data representation approach in natural language
processing. Compared with one-hot encoding, distributed
representation contains more semantic information about
language context and more suitable for tasks such as sentiment
classification (20), text classification (21). Indeed, biological
sequences (e.g., DNA, RNA and protein sequences) have
many similar characteristics with natural language. For one
thing, they are both symbol sequences that elements in the
sequence are arranged in a specified order, on the other
hand, they contain a lot of semantic information, many
biologists believe that biological sequences are not merely
one-dimensional string of symbols, but encode a lot of
useful information about molecular structure and functions
in themselves (22). Hence, it is a natural idea to introduce
distributed representation in natural language processing to
biological sequence analysis. It is firstly introduced by (23)
to protein family classification and a prediction accuracy of
99% is achieved, then it is pervasive in a wide range of
applications for biological sequences analysis, e.g., protein
secondary structure prediction (24), RNA-protein binding
sites prediction (25, 26).

In this paper, we introduce the distributed representation
to coding potential prediction for RNA sequence. To attain
this goal, we are faced with three problems: 1) which kind
of sequence should we choose to encode, RNA sequence,
the longest ORF extracted from RNA sequence, or protein
sequence extracted from the longest ORF? 2) how to build
a corpus from the chosen sequences? and 3) how to train the
corpus and get a distributed representation for each sequence?
In our opinion, our application is concerned with coding
potential of RNA sequence, and hence we should pay more
attention to protein sequence extracted from RNA sequence.
Moreover, just as a word in natural language, the basic unit of a
protein is “word” called codon (corresponding to acid amine),
and hence we consider the distributed representation of protein
sequence extracted from the longest ORF, we employ the
popular framework, doc2vec to generate a feature vector
(embedding) of an RNA sequence. To be specific, for all
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the translated protein sequences, we first adopt the following
splitting strategy to generate a “document” for each protein
sequence:

MNFLLSWVHWSLALLLY L. . .→
MNF,LLS,WV H,WSL,ALL,LY L,. . .

where a protein sequence is split in a non-overlapping manner
with word length of 3. Second, a corpus is built from all the
“documents” and trained with the distributed memory model
of paragraph vectors (PV-DM), and finally the feature vector
(embedding) of each protein sequence is generated and used
to train a SVM classifier for coding potential prediction.

It is worth noting that in our recent paper (27), we use one-
hot encoding to capture global sequence order information
of biological sequence for protein coding regions prediction,
however, it is not suitable for coding potential prediction
for two reasons: 1) protein sequence translated from the
longest ORF has a variable length but most of machine
learning methods only receive a fixed-length input. 2) one-
hot encoding is too low-level to reflect high-level semantic
information of biological sequence. Distributed representation
elegantly alleviates the above problems, e.g., doc2vec not only
naturally converts a variable-length sequence to a fixed-length
vector, but also contains a lot of context information of RNA
sequence.

Performance evaluation of CPPVec
To evaluate the performance of CPPVec, we use the standard
performance metrics, such as sensitivity (SN), specificity (SP),
accuracy (ACC), precision (PRE), F-score, AUC and MCC.
These metrics can be calculated as follows:

SN=
TP

TP+FN

SP =
TN

FP+TN

PRE=
TP

TP+FP

ACC=
TP+TN

TP+TN+FP+FN

F−score= 2∗PRE∗SN
PRE+SN

MCC=

TP ∗TN–FP ∗FN

(TP+FN)∗(TP+FP )∗(TN+FP )∗(TN+FN)

All the above metrics are based on the notions of TP, FP,
TN, and FN, which correspond to number of true positives,
false positives, true negatives, and false negatives. The MCC
is an overall measurement of performance and another
objective assessment index. AUC is the area under the receiver
operating characteristic curve, it can be calculated by using the
trapezoidal areas created between each ROC points.

RESULTS AND DISCUSSION

Pipeline of CPPVec
We used the libsvm (28) for predicting mRNAs and lncRNAs
based on 138 dimensional feature vector (see Figure 1),
including 100 dimensional distributed feature vector trained
from protein sequence using doc2vec, and 38 features used in
CPPred. All the above features are fed into a SVM classifier
for coding potential prediction. The radial basis function is
selected as the kernel function. The parameters of C=300 and
gamma =0.4.

Performance of CPPVec
In order to verify the effectiveness of our proposed method,
we compared our proposed method, CPPVec, with existing
state-of-the-art methods, including CPPred, CPAT, CPC2, and
PLEK. All the methods are trained and tested with the same
datasets used in CPPred for a fair comparison. Human-model
is test on human, mouse, zebrafish, S. cerevisiae and fruit fly
and Integrated-model is test on Integrated-Testing.

From Table 1 to 3, it is observed that CPPVec performs the
best among the existing state-of-the-art methods on all the test
datasets. The MCCs of CPPVec are 0.953, 0.972 and 0.961
on Human-Testing, Mouse-Testing and Integrated-Testing,
respectively, an improvement of 0.018 over the second best
result achieved by PLEK on Human-Testing, 0.046 over
the second best results achieved by CPPred on Mouse-
Testing and 0.042 over the second best result achieved by
CPPred on Integrated-Test, respectively. Moreover, CPPVec
also achieved consistent results when testing with zebrafish,
S. cerevisiae and fruit fly (Supplementary Tables S1–3).

Performance of distributed representation
In order to prove the effectiveness of distributed representation
of protein sequence extracted from RNA sequence, we
conducted an ablation study to separate the features used
in CPPVec and observe the performance improvement that
distributed feature vector contributes. To be specific, we
use OVEC to denote the method that only use the 100
dimensional feature vector generated from doc2vec, we use
NVEC to denote the method that use features of CPPVec
except distributed features. All the methods are trained on
Integrated-training and test on Integrated-test. As shown in
Supplementary Table S4, OVEC achieves MCC with 0.925,
which even outperform CPPred that use multiple features.
This result demonstrates that distributed representation of
protein sequence is effective for coding potential prediction.

Performance of fixed hexamer score
Note that in CPPred, the hexamer score is calculated with
the first reading frame of the longest ORF instead of RNA
sequence in CPPred. We fixed this feature for the fact that
the first reading frame of the longest ORF is likely to be the
correct reading frame (11).

In order to prove the effectiveness of fixed hexamer
score, we compared the prediction performance of NVEC
and CPPred on Integrated-Test to observe the performance
improvement of fixed hexamer score. From Supplementary
Table S4, NVEC shows much better prediction performance
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Table 1. Comparison of CPPVec (Human-Model) and CPPred, CPAT, CPC2, PLEK on Human-Testing

Method SP SN PRE ACC F-score AUC MCC
(%) (%) (%) (%)

PLEK 98.10 95.42 98.11 96.73 0.967 0.993 0.935
CPC2 95.30 90.92 95.26 93.07 0.930 0.982 0.862
CPAT 94.07 94.58 94.30 94.33 0.944 0.984 0.887
CPPred 97.04 95.44 97.10 96.23 0.963 0.992 0.925
CPPVec 98.69 96.67 98.71 97.65 0.977 0.997 0.953

Table 2. Comparison of CPPVec (Human-Model) and CPPred, CPAT, CPC2, PLEK on Mouse-Testing

Method SP SN PRE ACC F-score AUC MCC
(%) (%) (%) (%)

PLEK 93.43 87.61 95.41 89.88 0.913 0.969 0.796
CPC2 95.86 95.86 97.30 95.61 0.964 0.991 0.909
CPAT 96.65 96.10 97.81 96.32 0.970 0.993 0.923
CPPred 97.70 95.57 98.48 96.40 0.970 0.993 0.926
CPPVec 99.07 98.36 99.40 98.64 0.989 0.999 0.972

than CPPred with MCC of 0.935 versus 0.919, which proves
the significance of fixed hexamer score.

CONCLUSION

In this paper, we proposed a novel coding potential predictor
(CPPVec) based on a distributed representation (e.g., doc2vec)
of protein sequence translated from the longest ORF of
RNA sequence, which effectively exploit the global sequence
order information of protein sequence. Tests on human,
mouse, fruit fly, zebrafish and S.cerevisiae demonstrates
that CPPVec consistently outperforms existing state-of-the-
art methods, which proves that distributed representation of
protein sequence is an effective feature for coding potential
prediction.
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