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Summary 1 

Immune cells are critical determinants of solid tumour aetiology, but the diverse phenotypes of 2 

intra-tumoural immune cells remain incompletely characterised. We applied integrated single 3 

cell RNA sequencing (scRNA-Seq) and highly multiplexed protein epitope analysis to a cohort 4 

of breast cancer samples to resolve cell states within the tumour microenvironment. We reveal 5 

novel protein markers for resting and activated tumour infiltrating lymphocytes, and show that 6 

high expression of CD103 primarily marks exhausted CD8 rather than tissue resident CD8 T-7 

cells in human breast cancers. We identify two distinct states of activated CD4+ T follicular 8 

helper (Tfh) cells. A population resembling conventional Tfh (cTfh) cells were localised 9 

primarily to lymphoid aggregates by spatial transcriptomics. In contrast, cancer associated Tfh 10 

(caTfh) cells expressing markers of tissue residency and exhaustion co-localized with cancer foci 11 

and signalled to macrophages.  Importantly, increased caTfh : cTfh ratio associated with 12 

improved disease outcome and response to checkpoint immunotherapy.  13 

Keywords: Breast cancer, Tumour microenvironment, Phenotyping, Integrated proteogenomics,  14 

CITE-seq, T-follicular helper cells, cancer-associated T-follicular helper cells,Tfh, caTfh, Trm, 15 

Tissue residency, Exhaustion, CD103, CD49f 16 

Introduction 17 

Solid tumours constitute a diverse ecosystem of cells whose functions can be coordinated by 18 

malignant cells to promote their uncontrolled growth and spread (Hanahan & Weinberg, 2011). 19 

The successes of immune and stromal targeted therapies in certain cancer types and individuals 20 

but not others underscore the dynamic and variable intercellular relationships engaged by cancer 21 

cells to sustain malignancy(Bruni et al., 2020; Valkenburg et al., 2018). Comprehensive 22 

phenotyping of cell types in the tumour microenvironment (TME) is crucial to understand and 23 

manipulate tumour immunity for patient benefit. Although breast cancers are characterised by 24 

relatively low mutational load and lower immunogenicity, a role for tumour immune infiltration 25 

in disease outcome has nonetheless been shown(Ayse Bassez et al., 2021; P. Savas et al., 2016; 26 

Peter Savas et al., 2018; Wu et al., 2021; Y. Zhang et al., 2021). For example, the interplay 27 

between tumour infiltrating lymphocytes (TILs) and tumor associated macrophages (TAMs) has 28 
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been proposed to stratify patient prognosis and response to chemotherapy (Cassetta et al., 2019; 1 

M. Molgora et al., 2020). 2 

High-throughput single-cell RNA sequencing (scRNA-seq) is a powerful platform for 3 

characterising the cellular constituents of heterogeneous biological systems such as the TME 4 

(Azizi et al., 2018; Sijin Cheng et al., 2021). This method allows for the simultaneous 5 

measurement of thousands of mRNAs from thousands of single cells per sample(Sijin Cheng et 6 

al., 2021; La Manno et al., 2018; Svensson et al., 2018). However, scRNA-seq is limited by the 7 

sensitivity of RNA measurements at single-cell resolution, and RNA expression does not always 8 

correlate well with protein expression (Akan et al., 2012; Buccitelli & Selbach, 2020; 9 

Schwanhäusser et al., 2011). Cellular indexing of transcriptomes and epitopes by sequencing 10 

(CITE-Seq) combines scRNA-seq with detection of antibody-derived tags (ADT) as surrogates 11 

for cell surface protein levels (Peterson et al., 2017; Stoeckius et al., 2017). Proteogenomics via 12 

CITE-Seq permits the integration of transcriptome information with decades of immunological 13 

studies that have dissected immune subsets and activation states using protein readouts. CITE-14 

Seq has proven useful in improving upon scRNA-seq-based cellular profiling, mostly in blood 15 

samples (Hao et al., 2021; Triana et al., 2021). Here we demonstrate how cellular 16 

proteogenomics enhances stratification of cell types within solid tumour microenvironments, and 17 

allows identification of lymphocyte subsets with prognostic associations. Using a dataset of 7515 18 

cells from 6 breast cancer patients, we dissect TIL subsets that were indistinguishable when 19 

based on transcriptomics alone. We assign protein markers to phenotypes previously identified in 20 

scRNA-seq studies to play a vital role in tumour immunity, and highlight discrepancies with 21 

protein derived studies. We reveal patterns of RNA and protein co-expression across 22 

lymphocytes, and identify new protein markers of activated tissue resident T-cells and innate 23 

lymphoid cells (ILCs). We find that activated tumour-associated T follicular helper (Tfh) cells 24 

differentiate into two distinct states, demarcated by the expression of either IGFL2 and NMB or 25 

HAVCR2(TIM3), LAG3 and CD103 (ITGAE). Spatial transcriptomics reveals differential 26 

localization of these two Tfh cell subsets within the TME and unique signalling potential with 27 

neighbouring cells. Supporting the clinical importance of precise cellular phenotyping, we show 28 

that a signature of CD103+ Tfh cells associates with improved survival in breast cancer and 29 

correlates with improved response to anti-PD-1 therapy. These data underscore the value of 30 
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integrated cellular phenotyping in complex tissue environments to identify cell types and states 1 

integral to tumour biology and clinical outcome. 2 

Results 3 

Enhanced phenotyping of the tumour microenvironment through integrated RNA and 4 
Protein based clustering 5 

To better characterize the native tumour immune microenvironment of human breast cancer, we 6 

applied a CITE-Seq panel of 97-157 antibodies (157 in 5 samples, 97 in one; Table S1) to 6 7 

breast cancer samples, including at least one from each major clinical subtype: Luminal 8 

(Estrogen-positive (ER+) and Progesterone-positive/negative (PR+/-), human epidermal growth 9 

factor receptor positive (HER2+) and Triple negative breast cancer (TNBC) (Table S2). A total 10 

of 16,423 cells passed our quality filter threshold (Methods) (Figure S1A), with a variable 11 

number of ADT significantly enriched in each sample (MAST test; p_adj < 0.01) and a subset of 12 

32 ADTs common to all samples (Figure S1B). Cells were partitioned using a weighted nearest 13 

neighbour (WNN) approach that integrates RNA and surface protein expression (Hao et al., 14 

2021). A total of 52 clusters were identified through integrated clustering and each is labelled 15 

based on its most distinctive RNA and ADT (MAST test; p_adj < 0.01; Figure 1A-B). These 52 16 

cellular phenotypes collapsed into 27 clusters using RNA alone or 16 clusters using only ADT 17 

data for clustering (Figure 1C; Figure S1D-E). Despite moderate cell numbers and without 18 

employing a lineage specific sub-clustering analysis(S. Cheng et al., 2021; Mulder et al., 2021; 19 

Wu et al., 2021; Zheng et al., 2021), this strategy allowed us to differentiate monocytes and 20 

macrophages into 3 distinct groups each: C28-Mono:AIF1 ADT-CD32hi, C29-Mono:FCN1 21 

ADT-CR1 and C30-Mono:IFI30 ADT-CD16, and C24-Macro:CXCL10 ADT-CD69, C25-22 

Macro:SSP1 ADT-CD47, C26-Macro:SELENOP ADT-CD158e1 (Figure 1A-B), versus a single 23 

transcriptome-based cluster for each (Figure S1D). These clusters demarcate phenotypes 24 

previously found to be relevant to patient prognosis such as TREM2-high lipid associated 25 

macrophages (LAM) from CXCL10+ Macrophages (Cassetta et al., 2019; Wu et al., 2021), or 26 

inflammatory monocytes which exhibit cDC2-like profile from classical CD16+ monocytes(S. 27 

Cheng et al., 2021; Wu et al., 2021).  28 
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Increased density of tumour infiltrating lymphocytes (TILs) is generally associated with 1 

improved prognosis, and the success of immunotherapies is often attributed to the modulation of 2 

TIL activity towards an anti-tumour response (Bruni et al., 2020). Previous studies of the breast 3 

cancer TME have identified important T cell and innate lymphoid cell (ILC) populations using 4 

fluorescence-based protein assays that have yet to be identified in scRNA-seq studies (Azizi et 5 

al., 2018; Janssen et al., 2020; Ruffell et al., 2012; P. Savas et al., 2018; Wagner et al., 2019). 6 

We identified several CD3+ cell clusters in which protein data played a particularly large role in 7 

clustering (elevated protein modality weighting; Figure 1B - asterisk marked) and which have a 8 

low silhouette score, indicative of poor cluster distinction and stability when calculated using 9 

RNA alone (Rousseeuw, 1987)( Figure S1F-G).  The identification of such cell populations 10 

uniquely when using integrated analysis emphasises the utility of augmenting scRNAseq with 11 

proteomic measurements to enhance cellular phenotyping and delineate distinct cell populations. 12 

The elevated protein modality weighting in clustering of CD3+ cells suggest these cells would 13 

benefit the most from proteogenomic phenotyping, so we performed a targeted analysis of T cell 14 

and ILC populations. 15 

 16 

Targeted analysis of tumour-infiltrating lymphocytes identifies phenotypes which 17 
transcriptomics or proteomics alone cannot distinguish 18 

A total of 7515 T/ILC cells passed QC, comprising 21 clusters, with each cluster including cells 19 

from at least 3 patients (Figure 2A-C; Figure S2A). Clusters were first stratified by protein 20 

expression of CD3 and TCRαβ, with high or mid-levels designated as conventional or 21 

/unconventional T cells and those with low levels classified as either natural killer (NK) cells or 22 

ILCs, depending on additional marker expression (see Methods; Figure 2D-E; Figure S2B). 23 

Two clusters with mixtures of both CD3 and TCRαβ high and low expressing cells were labelled 24 

as Lymphocytes (Lymph; C14 & C20). All CD3+ T cells were segregated based on CD8 or CD4 25 

expression and assessed for expression of unconventional T cell markers or “NK-like” markers 26 

(see Methods; Figure 2D-E; Figure S2B). Top differentially expressed RNA and protein 27 

features for each cluster are shown in Figure 2E and Table S3. Each cluster was also scored for 28 

activity level (quiescent, low, mid or high) using a combination of published gene signatures 29 

(Szabo, Levitin, et al., 2019), total ADT abundance, RNA abundance, ribosomal content (Wolf et 30 
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al., 2020), and known markers of T cell activation such as CD69, IFNG, GZMB, ZNF683/Hobit, 1 

PD-1, CD45RO (Cano-Gamez et al., 2020) (Figure 2B-C). Lastly, we collated gene signatures 2 

of commonly described T cell states, sourced from previously published studies (Table S4), with 3 

the aim to associate the observed clusters with an established lymphocyte effector function 4 

(Figure S2J).  5 

Integrated analysis generated 7 additional lymphocyte clusters compared to analysis of RNA 6 

expression alone (Figure S2D-E). Three of these 7 clusters consist of CD3low TCRαβlow ILCs 7 

with a resting transcriptional profile, distinguishable by their expression of innate cell protein 8 

markers such as KLRG1, OX-40, cKIT, CD112 (PVR), IgG.Fc, or gamma-delta T cell receptor 9 

pairs (TCRgd), which are designated as C11-ILC:RPL37 ADT-IgG.Fc, C13-ILC-gdT:C6orf48 10 

ADT-KLRG1 and C17-ILC-gdT:RACK1 ADT-CD24 (Figure 2D-E; Figure S2B). These 11 

clusters are likely to reflect a genuine cell state as they show no abnormal gene contaminants 12 

from cells of other lineages, are low in mitochondrial genes, have nominal housekeeping gene 13 

expression, and show a negligible level of mouse transcript (ambient control) or isotype control 14 

ADTs (Figure S2H-I). We also identify an unconventional T cell cluster that is CD161high 15 

TCRVa7.2high ; canonical markers of mucosal associated invariant T cells (MAIT) which have 16 

previously been implicated in anti-tumour immunity (Petley et al., 2021), which we designated 17 

as C21-MAIT:HSP90AA1 ADT-TCRva7.2 (Figure 2E). These 4 clusters have a low RNA-18 

derived silhouette score and a high cluster similarity score, both of which reflect difficulty in 19 

identifying these phenotypes from transcriptomics alone (Figure S2F-G). Indeed, when these 20 

cell annotations were plotted onto UMAP space generated solely from RNA data, they were 21 

found to be dispersed, further supporting that transcriptomic data alone is insufficient for their 22 

demarcation (Figure 2F). 23 

Multi-omic integration also significantly enhanced our ability to phenotype CD4+ T cells and 24 

cell states characterised by low transcriptional activity (Figure 2C; Figure S2E-G ; Figure SJ). 25 

For instance, we were able to stratify CD4+ Treg:FOXP3 cells into transcriptionally active 26 

(TNFRSF9high ADT-4.1BBhigh) and resting (IKZF2high ADT-ICOSmid) clusters, which were found 27 

to exhibit a gene expression profile similar to "Suppressive” and “Resting” Tregs respectively 28 

(Guo et al., 2018)(Figure S2E), previously characterised using Smart-seq2 which provides 29 

greater gene depth per cell compared to 10X Chromium (Wang et al., 2021). Our analysis also 30 
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delineated CD4+ Th cells into 4 clusters of differing activation status, differentiated by their 1 

expression of T cell effector activation markers ADT-CD45RO and ADT-CD28, naïve markers 2 

such as CCR7 and IL7R and T cell resting enrichment scores (Figure S2E; Figure S2B-C). 3 

These were labelled, in order of low to high transcriptional activity: C02-CD4+Th:GPR183 4 

ADT-CD49fhi, C01-CD4+Th:TPT1 ADT-CCR4,  C19-CD4+Th:RACK1 ADT-CD7, C16-5 

CD4+T:GZMA ADT-CCR5. Integrated clustering also enabled us to separate a transcriptionally 6 

quiescent T cell cluster weakly positive for CD4 and CD8 transcripts (C04-T:N4BP2L2 ADT-7 

LE) into distinct CD4+ (C10-CD4+T:N4BP2L2 ADT-LE) and CD8+ (C12-CD8+T:N4BP2L2 8 

ADT-LE) clusters (Figure S2E). While both of these CD8+ and CD4+ N4BPL2high clusters lack 9 

any distinguishing protein markers outside of CD4 and CD8 expression (and are thus annotated 10 

as ADT-Low for “Low Expressing ADT”) (Figure 2E), they shared specific expression of long 11 

non-coding RNAs including MALAT1, KIAA1551 and N4BP2L2 and lack of expression of 12 

activation markers such as CXCR4, CD69 and NFKB1 (Figure S2B).  13 

Proteogenomic analysis allowed us to associate protein markers with gene expression profiles 14 

previously described in scRNA-seq studies to play an essential role in TIL biology. To assist 15 

with visualisation of these markers we have provided a binary decision tree roadmap using the 16 

most distinctive protein markers of each cluster (6 for ILC, 7 for CD4+ T-cells and 6 for CD8+ 17 

T-cells), and an array of ADT markers enriched in each respective cluster (Figure 2G).  18 

 19 

Proteogenomic profiling refines markers of T cell activation, exhaustion and tissue 20 
residency 21 

Experimental readouts typically provide a normative observation of feature expression; a feature 22 

is assigned as "high" or "low" in relationship to one another. Inconsistency can therefore arise 23 

when translating and/or integrating results across experimental assays or models where the 24 

features used to generate the comparative measurements are absent. We believe high-throughput 25 

cellular proteogenomics can provide a framework for a more standardised distribution of feature 26 

expression levels, particularly when performing cell type unbiased captures such as we have 27 

attempted with this dataset, and therefore improves standardisation of phenotyping. We first 28 

explored RNA and protein co-expression patterns of top differentiating cluster markers, 29 
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including hallmark TIL features which previously have been described in literature to play an 1 

important role in defining their phenotypes (See Methods). As circulating T-cells infiltrate 2 

tissues they are reported to acquire the expression of either CD69 and/or CD103, markers 3 

sometimes used interchangeably to identify CD8+ tissue resident memory T cells (Trm) (Cibrian 4 

& Sanchez-Madrid, 2017; Lianne Kok et al., 2021; Okla et al., 2021; Szabo, Miron, et al., 2019). 5 

In the breast cancer TME, we find CD69 to be expressed across most T cell and ILC clusters 6 

(Figure 3A; Figure S3A), with increasing expression correlating with RNA signatures of TIL 7 

activation (Figure 3B)(Cibrian & Sanchez-Madrid, 2017) and with CD48 and CD2, both 8 

markers previously found to be associated with lymphocyte activation outside the context of 9 

tumour biology (Figure 3A; Table S5)(Binder et al., 2020; McArdel et al., 2016). In contrast, 10 

CD103 was more restricted (but not exclusive) to CD8 T-cells cells, proliferating cells and NK 11 

cells (Figure 3A; Figure S3A). Furthermore, we find that CD103 only modestly correlates with 12 

CD69 expression (Figure 3A; r=0.29, p = <0.001) (Table S5), with the exception of NK cells 13 

(r=0.58, p = <0.001) and exhausted CD8 T-cells (r=0.59, p = <0.001). We further observed 14 

CD103 can inversely correlate with CD69 in certain CD4+ T-cell states such as with Th1-like 15 

CD4 IFNG+ expressing cells (C16 - CD4+ T : IFNG ADT-CCR5 - r=-0.57, p = <0.001). These 16 

data suggest that in human breast cancer TILs, CD69 and CD103 cannot be used interchangeably 17 

and may be markers of more complex T cell phenotypes or states. Instead, we found the 18 

expression of marker 2B4 to correlate most frequently with CD103 across all TILs (r=0.48 p = 19 

<0.001) (Figure 3A)(Table S5). 20 

Increased TIL density can be used as a metric of tumour immunological status and is generally 21 

associated with good prognosis and response to immunotherapies (Maibach et al., 2020; Peter 22 

Savas et al., 2016). However, the presence of certain types of TILs, such as bystander TILs not 23 

specific for tumour antigens, resting or quiescent TILs, is likely to be less indicative of a strong 24 

anti-tumor response than infiltration by active tumour-specific CTLs (Scheper et al., 2019; 25 

Simoni et al., 2018). Therefore, it is important to find markers that can discriminate tumour-26 

reactive TILs relevant to tumour immune status from inactive “passenger” T cells that can dilute 27 

the anti-tumor immune response. Unfortunately, lymphocytes with low transcriptional activity, 28 

such as resting T cells (clusters C04-T:N4BP2L2 ADT-LE & C12-CD8+T:N4BP2L2 ADT-LE) 29 

are challenging to phenotype with scRNA-seq (Figure 2; Figure S2F-G). This issue is 30 

exacerbated in tumours, where markers commonly used to identify antigen-naïve T-cells in 31 
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blood such as CD45RA or lymph node homing markers CCR7 and CD62L (Martin & 1 

Badovinac, 2018; Payne et al., 2020) can be found on tumour-reactive T-cells and activated T-2 

cells in ectopic lymphoid tissue(Ghorani et al., 2020; Wu et al., 2021; Zheng et al., 2021). 3 

Furthermore, some markers such as naive T cell marker CD44 are ubiquitously expressed at a 4 

high density across cell lineages and therefore challenging to use with cell-type unbiased CITE-5 

Seq (Saturates CITE-Seq cDNA library) (Buus et al., 2021). Conversely markers commonly 6 

employed to assess T cell activation and/or migration state can be degraded by tumour 7 

dissociation (Autengruber et al., 2012). We therefore examined whether we could identify new 8 

protein markers that are enriched on resting lymphocytes in the TME. We found stem cell 9 

marker CD49f to be highly expressed on both CD4+ and CD8+ T cell clusters characterised by 10 

low transcriptional activity, particularly those with an elevated “resting” module score 11 

(Methods). Indeed, CD49f correlates more strongly with gene expressions markers of naive T 12 

cells (or early activated T-cells)(Gueguen et al., 2021), such as IL7R, CCR7, TCF1 (encoded by 13 

TCF7) and transcription factor KLF2, which drives S1PR1 and CCR7 expression (L. Kok et al., 14 

2021; Skon et al., 2013; Wolf et al., 2020) than protein levels of naïve T-cell markers CD62L or 15 

CD45RA (Figure 3B). We also found the proportion of ribosomal content to be a valuable 16 

indicator of TIL activity that can be inferred by scRNA-seq (high in resting cells), as previously 17 

suggested for PBMC-derived T cells (Figure 3B) (Wolf et al., 2020).  18 

The measurement of both RNA and proteome has also provided us with a platform to directly 19 

evaluate phenotyping inconsistencies between transcriptomics and proteomics-based studies of 20 

breast cancer TILs, particularly relating to markers of tissue residency versus exhaustion. For 21 

example, a pan cancer T-cell analysis by Zeng et al. (Zheng et al., 2021) found naive CD8 T-22 

cells to transition into exhausted CD8 T-cells (Tex) through two broad pathways, one which 23 

constituted granzyme K+ (GZMK+) expressing effector memory CD8 T-cells (Tem), and the 24 

other through tissue resident memory CD8 T-cells (Trm), which are governed by the residency-25 

defining transcription factor Hobit (encoded by ZNF683+)(Park et al., 2019; Park & Mackay, 26 

2021). In our dataset we identify two similar clusters of CD8+ T-cells, GZMK+ (C03 - GZMK 27 

ADT-NKG2Dhi) and ZNF683+ (C08 - ZNF683 ADT-CD57hi), prior to the acquisition of an 28 

exhaustion profile (C15 - HAVCR2 ADT-CD103hi)  (Figure 3C; Figure S3B), which matches a 29 

phenotype described by others as dysfunctional (Figure 3C)(Li et al., 2019). Trm cells have 30 

been proposed by several studies across infectious disease and cancer models to be marked by 31 
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CD103 and CD69 expression, including studies in human tissues of breast cancers (Peter Savas 1 

et al., 2018). However, integrated analysis revealed ZNF683+ Trm cells to be 2 

CD103intermediate. Instead, Tex cells (C15 - HAVCR2 ADT-CD103hi) had the highest 3 

expression of CD103 (2x higher than ZNF638+ T-cell cluster) (Figure 3D). Indeed, analysis of 4 

signatures derived from bulk RNA-Seq analysis of FACS- sorted human breast cancer TIL 5 

subsets reveals CD103+ CD69+ to primarily mark C15 - CD8+ Tex and not C08 - ZNF683+ 6 

Trm cells (Figure 3E). Instead, if we take high expression of ZNF638+ to mark tissue resident 7 

cells, we find CD8 Trm cells to be more precisely marked by low expression of protein markers 8 

CD39 or ICOS and elevated expression of either NKG2D and/or CD57 in addition to 9 

intermediate CD103 expression (Figure S3C; Figure 2E). Taken together, our analysis shows 10 

how the direct measurement of both RNA and protein modalities may resolve a discrepancy in 11 

the literature for the demarcation of Trm cells and Tex cells in the TME.  12 

In summary, we find that integrated analysis of ADT and RNA co-expression is a valuable 13 

approach to nominate novel markers of the hallmark features associated with lymphocyte 14 

identity and activity in the tumour tissue context. Our dataset provides a rich resource to better 15 

associate cell surface protein expression with transcriptional patterns and cell states of TILs and 16 

can help clarify the functional consequences of established patterns of immune cell gene 17 

expression in the TME. 18 

 19 

 20 

Differentiated tissue resident T follicular helper cells can be classified by the expression of 21 
CD103 or IGFL2. 22 

Immune checkpoint inhibitors (ICI) targeting PD-1 have shown only a modest effect on survival 23 

in breast cancer patients compared to other cancer types such as melanoma, renal or lung cancer 24 

(Bruni et al., 2020; Wein et al., 2018). One of the primary therapeutic mechanisms of anti-PD-1 25 

therapy is thought to be through prolonged activity of anti-tumour CD8+PD-1+ T cells, which 26 

would otherwise be inhibited by PD-L1/L2 expression within the TME (Wei et al., 2018). In a 27 

recent breast cancer single-cell atlas study, we found Tfh cells to be the most abundant PD-1-28 

expressing cluster amongst all TILs across breast cancer samples (Wu et al., 2021), which 29 

remains consistent in this dataset (Figure 2E, C06−CD4+Tfh:CXCL13 ADT−PD1). The 30 
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association of abundance of Tfh cells with improved tumour immunity have recently been 1 

described in several cancers, including breast cancer (Hollern et al., 2019b; Voabil et al., 2021; 2 

Zheng et al., 2021), partially attributed to their expression of the chemokine CXCL13 of which 3 

Tfh cells are a major source of (Wu et al., 2021; Y. Zhang et al., 2021). Tfh cells are known for 4 

their role in regulating the formation and activity of germinal centres, physiological 5 

microstructures found in lymphoid tissues that are essential for the development of high affinity 6 

antibody-producing B cells (Crotty, 2014; Ma & Phan, 2017). How Tfh cells behave within the 7 

TME remains under investigation. Tfh cells can acquire distinct phenotypes depending on the 8 

cancer (Zheng et al., 2021). Therefore, we next investigated whether enhanced phenotyping by 9 

integrated analysis of CITE-Seq can dissect breast cancer Tfh cells into clinically relevant 10 

subtypes. 11 

After reclustering Tfh cells, we identified 3 clusters: CD4 Tfh:CXCR4, CD4 Tfh:CD103 and 12 

CD4 Tfh:IGFL2 (Figure S4A), all of which were enriched for expression of genes and pathways 13 

associated with Tfh cell features (Figure 4C ; Figure S4B-D). Interestingly, we found a subset 14 

of these Tfh cells exhibited an exhaustion phenotype, reminiscent of dysfunctional/exhausted 15 

CD8+ T cells(Li et al., 2019; Wu et al., 2021), characterised by upregulation of CD103, 2B4, and 16 

CD49b proteins and LAG3, CCL5, and HAVCR2 genes (Figure 4A-B; Figure S4E-F ; Figure 17 

3A). Surprisingly, GSEA of GO biological processes (n=6614 pathways, p < 0.05) shows 18 

CD103+ Tfh cells to correlate more strongly with CD8+ T exhausted cells than with other Tfh 19 

subsets (Figure 4D ; Figure S4C). In contrast, a population of Tfh cells lacking CD103 20 

expression were uniquely marked by elevated expression of the Neuromedin B (NMB) and 21 

Insulin growth factor ligand 2 (IGFL2) genes (Figure 4B; Figure S4E-F). IGFL2 belongs to a 22 

family of 4 genes with unclear biological function that have been found to be infrequently and 23 

lowly expressed in various tissues, particularly skin, but upregulated during inflammation 24 

(Emtage et al., 2006; Lobito et al., 2011). We employed pseudotime analysis to explore whether 25 

breast cancer Tfh cells could be partitioned into stable transcriptional cell states along a 26 

trajectory of differentiation. Three stable states (Figure 4E-F) were identified, suggesting that 27 

activated Tfh cells (CXCR4high BCL6high IL7Rhigh) can differentiate into either CD103+ Tfh 28 

(HAVCR2+ LAG3+), or IGFL2+ Tfh cells (NMBhigh CXCL13high) in the TME. When examining 29 

markers previously documented to be critical to the activity and differentiation of Tfh cell 30 

lineage, we find our segregated Tfh cell subsets have unique expression profiles, suggesting they 31 
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each have distinct physiological roles within the TME (Figure 4F-G; Figure S4F). For example, 1 

the CD103+ Tfh cell subset acquires elevated expression of multiple chemokines including 2 

CCL3, CCL4, and CCL5 known to be involved in the recruitment of inflammatory cells to the 3 

TME (Figure 4G)(Vilgelm & Richmond, 2019). This Tfh population also expresses higher 4 

levels of inflammatory mediators including IFNG, IL17A, PRF1, and GZMB, resembling Th1 or 5 

Th17 like Tfh which have been reported previously in different disease contexts including 6 

cancers (Morita et al., 2011; Singh et al., 2016; Zheng et al., 2021). In contrast, the IGFL2+ Tfh 7 

cell population showed specific upregulation of IL-10, BTLA, and CXCL13, markers important in 8 

the maintenance of GC reactions (Figure 4E; Figure S4F)(Cosgrove et al., 2020; Havenar-9 

Daughton et al., 2016; Mintz et al., 2019; Xin et al., 2018).  10 

Tissue CD103+ and IGFL2+ T follicular helper cells occupy distinct niches within the 11 
tumour microenvironment  12 

Given the significant differences in gene expression phenotypes of Tfh cell populations, we 13 

hypothesised that these Tfh cell subsets may reside in unique tissue niches. We employed spatial 14 

transcriptomic data from 5 previously published breast cancer samples (2 ER+, 3 TNBC; Figure 15 

S5A) (Wu et al., 2021) to identify the location of Tfh subsets and co-location with other cell 16 

types. We observed that IGFL2+ Tfh cells are preferentially localised to regions characterised by 17 

high levels of immune infiltration, based on morphological examination, while CD103+ Tfh 18 

cells are preferentially localised to regions adjacent to cancer cells (Figure 5A-B). Assessment 19 

of co-localisation of these populations with other immune cell types shows that IGFL2+ Tfh 20 

cells often co-localise with both naive and memory B cells and dendritic cells, whereas CD103+ 21 

Tfh cells co-localise with memory B cells and macrophages (Figure 5C; Figure S5B). Higher 22 

resolution spatial analysis suggests that CD103+ Tfh cells are more frequently in proximity to 23 

proliferating T-cells and TREM2+ lipid-associated macrophages (Figure S5C-D), which express 24 

elevated protein levels of PD-L1 and are enriched in patients with poor disease outcome (Martina 25 

Molgora et al., 2020; Wu et al., 2021). In contrast, IGFL2+ Tfh cells are found to be significantly 26 

enriched proximal to CCR7+ CD4 T-cells, B cells and LAMP3+ DCs (mReg: DCs (Ginhoux et 27 

al., 2022)), antigen-elicited DC found to engage and regulate tumour reactive T-cells (Maier et 28 

al., 2020) (Figure S5C-D).  29 
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To identify the signaling potential of Tfh cell subpopulations, we employed a receptor-ligand 1 

signalling pathway analysis. Using the expression of cognate receptors and ligands, signal events 2 

and directionality can be predicted using scRNA-seq data (Jin et al., 2021). A number of 3 

pathways were distinct between the two Tfh cell subsets (Figure 5D; Figure SD-F). 4 

Interestingly, the CD103+ Tfh cell subset had a unique CCL chemokine signalling profile 5 

reflecting elevated expression of CCL molecules and CSF1 (p < 0.01) (“sender” status, Figure 6 

5E; Supp Figure 5F). They shared this profile with LAG3+ CD8+ T cells, which with 7 

proliferating T cells were the sole T cell secretors of CSF1 (Figure 5D-E; Figure S5H). The 8 

dual production of CCL and CSF1, critical ligands for macrophages, and the proximity to 9 

macrophages suggest a potentially unique role for this Tfh subset in interacting with 10 

macrophages within the TME. This role is further supported by enrichment of the GO biological 11 

processes’ “Macrophage activation involved in immune response” and “Chronic inflammatory 12 

response" in this subset (Figure S5E).  In contrast, IGFL2+ cells have a significantly elevated 13 

engagement in BTLA signalling (Figure 5D, Figure S5F-G), a pathway active in restraining GC 14 

B cell selection and proliferation (Mintz et al., 2019). 15 

 16 

IGFL2+ Tfh cells are associated with poor prognosis in most cancers and enriched in anti-17 
PD-1 poor responders in breast cancer  18 

Previous studies associate the enrichment of Tfh cells with favourable prognosis across several 19 

cancers (Hollern et al., 2019a; P. Savas et al., 2018), and CXCL13-producing Tfh cells have 20 

been specifically implicated in survival and response to chemotherapy and immunotherapy 21 

(Ayse Bassez et al., 2021; Bindea et al., 2013; Gu-Trantien et al., 2013; Litchfield et al., 2021; 22 

Yuanyuan Zhang et al.).We therefore investigated whether one or more of the Tfh cell states 23 

identified in this study is specifically associated with clinical outcome. We generated a gene 24 

signature for each Tfh cell subset, based on the top differentially expressed genes in each 25 

population. Given their gene expression overlap with other T cells, we also included CD8+ Tex 26 

and Treg clusters in our analysis, in order to generate gene expression signatures unique to Tfh 27 

cell subsets (Figure S6A). Survival analysis shows the CD103+ Tfh cell expression signature to 28 

be significantly associated with improved survival in breast cancer (HR = 0.63, p = 0.0057) 29 
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when compared to that of IGFL2+ Tfh cells (HR=0.85, p = 0.34), despite IGFL2+ Tfh cells 1 

found to express 2x more CXCL13. 2 

As Tfh cells are one of the highest expressors of PD1, we reasoned that their activity may be 3 

influenced by therapies targeting PD1. We examined a scRNA-Seq dataset that explored the 4 

effect of anti-PD-1 checkpoint inhibitors on human breast cancers, in which patients were 5 

stratified by T cell clonal enrichment (expanders vs non-expanders) as a surrogate measure of 6 

anti-tumour activity levels (Ayse Bassez et al., 2021). We found that Tfh cells in this dataset 7 

could be similarly annotated based on either IGFL2/NMB (IGFL2+ Tfh) or LAG3/HAVCR2 8 

(CD103+ Tfh) expression (Figure S6B). Remarkably, the baseline abundance of both Tfh cell 9 

subsets was positively associated with response, with CD103+ Tfh cells showing a pronounced 10 

association with response, even greater than exhausted CD8 T cells, the presumptive target of 11 

anti-PD1 treatment (Figure 6B). When we explored the dynamics of Tfh subset abundance 12 

through treatment between non-expanders and expanders, we observed a significant increase of 13 

IGFL2+ Tfh abundance during anti-PD-1 treatment in patients who did not respond to treatment 14 

(NE; Figure 6C). Furthermore, we observed gene expression changes in IGFL2+ Tfh cells 15 

following anti-PD-1 treatment (Figure S6C), suggesting that anti-PD1 treatment may directly 16 

regulate their activity. Combined, these results indicate that the ratio of CD103+ Tfh to IGFL2+ 17 

Tfh cells is an indicator of ongoing tumour immunity, and that the ratio of Tfh cell subsets and 18 

their gene expression can be altered by anti-PD-1 checkpoint blockade. Therefore, although Tfh 19 

cells have been proposed as biomarkers of active anti-cancer immunity, we find a specific 20 

subpopulation of these cells associated with improved response to immunotherapy. 21 

 22 

Discussion 23 

The incorporation of proteomic data with gene expression into a joint single-cell analytical 24 

framework for cell classification presents a promising avenue for improving the study of cellular 25 

behaviour within tissues, particularly cancer environments. Immunology has historically relied 26 

on a handful of cell surface protein measurements to delineate cell types; however, with the 27 

advent of single-cell RNA sequencing, it has become apparent that the array of functional cell 28 

types and states in the immune system is much more complex than previously appreciated(S. 29 
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Cheng et al., 2021; Mulder et al., 2021; Triana et al., 2021; Zheng et al., 2021). Integrated 1 

proteogenomic resources like the one we report here allow for the precise linking of cellular 2 

transcriptomics to classical protein-based cell type dictionaries, such as those generated by the 3 

Immunological Genome Project (Aguilar et al., 2020). This approach thereby acts as a bridge to 4 

integrate a deep catalogue of classical immunological literature with cellular transcriptomic 5 

atlases. 6 

Integrated RNA and ADT analysis was very effective in cellular phenotyping of the TME, 7 

allowing us to identify cell types and states which could not be defined using transcriptomics 8 

alone (Figures 1-2) (Azizi et al., 2018; Janssen et al., 2020; Ruffell et al., 2012; P. Savas et al., 9 

2018; Wagner et al., 2019; Wu et al., 2021). The ability of transcriptomics alone to identify 10 

cellular subsets increases as a function of cell number, therefore integrated analysis provides 11 

substantial advantages in smaller studies using mid-throughput assays, for instance those using 12 

droplet partitioning which currently predominate in biomedical research. Integrated analysis 13 

particularly excelled in the phenotyping of cells with low transcriptional activity, such as ILCs 14 

and gamma-delta T cells, which lack defining gene expression modules but nonetheless express a 15 

discrete set of protein markers. The value of proteogenomic analysis in the identification of 16 

immune subsets appears to be in part a function of whether these cells are peripheral or TME-17 

localized, particularly for cell types with cytotoxic properties. For instance, MAIT cells are 18 

easily identified among PBMCs and some cancer types using RNA data alone (Hao et al., 2021; 19 

Li et al., 2020). However in this study, and those generated by others in breast cancer (Azizi et 20 

al., 2018; Ayse Bassez et al., 2021; P. Savas et al., 2018; Wu et al., 2021; Yuanyuan Zhang et al., 21 

2021), gene expression counts alone was insufficient to accurately distinguish MAIT cells from 22 

other CTLs (Figure 2F; Figure SD-E). Unconventional T cells and ILCs are increasingly shown 23 

to have an important role in regulating tumour immunity (Heinrich et al., 2022; Petley et al., 24 

2021), improving methodology for their identification is therefore important. We believe 25 

integrated proteogenomics will be a major contributor in this regard.  26 

TIL proteogenomics provided us with the tools to refine the protein markers commonly used for 27 

phenotyping using flow cytometry. We were able to explore new markers early along the 28 

trajectory of TIL activation, finding protein marker CD49f to be an alternative marker to CD62L 29 

or CCR7 for the identification of resting, naive-like or early activating tumour residing T-cells 30 
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and ILCs. CD49f correlated more strongly than CD62L or CD45RA with early genes of TIL 1 

activation and differentiation such as KLF2 (regulator of chemokine receptor expression and 2 

migration), TCF7 (encodes TCF1), IL7R, and CCR7 (Szabo, Levitin, et al., 2019; Wolf et al., 3 

2020).  CD49f (integrin a6) is a common stem cell marker, found on embryonic, mesenchymal, 4 

mammary, hematopoietic and cancer stem cells, and proposed to play an important role in self-5 

renewal and differentiation of stem cells (Krebsbach & Villa-Diaz, 2017).  6 

CD69 and CD103 are often used interchangeably to identify Trm cells despite both being 7 

imperfect markers for tissue residency (Lianne Kok et al., 2021). Previous studies have shown 8 

that Trm can lack the expression of CD69 and CD103, and their expression can also be found in 9 

circulating T-cells. We show that nearly all breast cancer TILs express some levels of CD69 10 

(Figure S3A), with elevated expression as they increase transcriptional activity (Figure 3B). We 11 

also find CD69 to correlate poorly with CD103, in fact they were inversely correlated in some 12 

cell types (Table S5). Instead, we identified the protein markers CD2 and CD48 to be 13 

significantly co-expressed with CD69 (Figure 3A), both markers upregulated by activated 14 

circulating lymphocytes (Binder et al., 2020; McArdel et al., 2016). These data suggest that 15 

CD69 primarily marks TIL activation in human breast tissues. However, CD103 expression is 16 

largely restricted to CD8+ T-cells and NK, but significantly elevated (~2X fold) by CD8+ Tex 17 

cells rather than ZNF683+ T-cells which are most likely to be Trms (Figure 3D; (Caushi et al., 18 

2021; Zheng et al., 2021). Instead, Trm were best identified by elevated expression of CD57 or 19 

NGK2D and an absence of CD39 or ICOS (Figure 2E; Figure S3C). This suggests that previous 20 

studies that relied on high CD103 expression for targeted analysis of Trm (Ganesan et al., 2017; 21 

L. Kok et al., 2021; Malik Brian et al., 2017; Nizard et al., 2017; Park et al., 2019; Peter Savas et 22 

al., 2018; Simoni et al., 2018) may have inadvertently included Tex cells, a population which we 23 

and others have found to have distinct expression of CD39 and resemble tumour-reactive CD8 T-24 

cells (Duhen et al., 2018; Li et al., 2019).  25 

Similar to FACS-based methods, a caveat regarding the application of this method is its reliance 26 

on individual markers for differentiating cell types. Additionally, performing CITE-Seq on 27 

dissociated tumour samples is technically challenging, and, as expected, we saw low signal-to-28 

noise ratios for several protein markers, particularly those that are lowly expressed (Buus et al., 29 

2020). This constraint may lead to inadequate differentiation of certain clusters in an 30 
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unsupervised manner and may be particularly true for cell types where only one or two markers 1 

are used for differentiation, such as gdT cells (Payne et al., 2020). Therefore, identifying 2 

additional markers to delineate such cell types is crucial for further immune cell atlas efforts. We 3 

also believe the restricted number of cells typically captured by droplet-based platforms, the 4 

underrepresentation of certain cell types such as neutrophils and the lack of information about 5 

cellular granularity and size together suggest that this method cannot yet entirely replace FACS-6 

based assays for phenotyping. Instead, we propose that ADT-derived cytometry complements 7 

FACS as a discovery tool for hypothesis generation, from which flow cytometric platforms can 8 

later be used to target cell types of interest for further analysis and quantitation. Our protein 9 

marker decision tree (Figure 2G) is a first step towards designing protein marker sets for FACS-10 

based cell type identification.  11 

Despite these limitations, CITE-Seq allowed us to generate new insights into the complex breast 12 

cancer immune TME. The canonical role for Tfh cells is to support B cells, yet we find a 13 

surprising abundance of Tfh cells in breast cancer relative to the proportion of B cells (B cells = 14 

222, Tfh cells = 483) (Figure 1). As Tfh cells are the dominant PD-1 expressing cell type in the 15 

TME, and as PD-1 is the target of the most successful checkpoint blockade therapy currently in 16 

the clinic, we hypothesised that integrated analysis might reveal previously undescribed Tfh cell 17 

states with functions additional to their canonical role in germinal centre formation and 18 

operation. Indeed, we were able to identify three subsets of Tfh cells in the breast cancer TME - 19 

a baseline (CXCR4high/BCL6high/ IL7Rhigh) state which differentiate into  NMBhigh/IGFL2high state 20 

and/or an exhausted-like HAVCR2high/LAG3high state. Using CITE-Seq we confirmed the 21 

expression of CD103 and 2B4 by this latter population, markers typically associated with CD8+ 22 

Trm and Tex (P. Savas et al., 2018; Scott et al., 2019). Spatially-resolved transcriptomics showed 23 

distinct niches within the TME for the IGFL2+ and CD103+ Tfh cell populations. The IGFL2+ 24 

population was found predominantly in lymphoid aggregates resembling tertiary lymphoid 25 

structures and associating with B cells, suggesting a location and function similar to the 26 

physiological role for Tfh cells; conventional Tfh (cTfh). In contrast, CD103+ Tfh were found 27 

disseminated throughout the tumour, particularly in proximity to cancer cells and macrophages; 28 

cancer-associated Tfh (caTfh). The potential for unique interactions with distinct immune cell 29 

types by Tfh subsets was further supported by the expression of signalling molecules including 30 

CCL-family chemokines and CSF1 by CD103+ Tfh cells (Figure 5). 31 
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Immune cell phenotype is heavily influenced by the immediate cellular environment, with 1 

cancers in particular presenting diverse milieus in which TILs reside and receive signals, 2 

potentially leading to their acquisition of “neophenotypes” not found in the corresponding 3 

classical cell state or lineage. In our dataset, LAG3+/CD103+ CD4 Tfh cells and 4 

LAG3+/CD103+ exhausted CD8 T cells expressed many RNA signatures and protein markers in 5 

common, supporting the proposition that the TME can influence lymphocytes to acquire 6 

neophenotypes outside common lineage-associated phenotypes (Figure 5). Given their shared 7 

inflammatory gene expression, including CCL chemokines and CSF1, and co-localisation with 8 

macrophages,  we hypothesise that both exhausted populations promote inflammation outside of 9 

lymphoid structures, which has recently been proposed in mouse models (Kersten et al., 2021). 10 

As both increased macrophage infiltration and increased exhaustion of T cells are strongly linked 11 

with patient prognosis (Cassetta et al., 2019; Foroutan et al., 2021), further studies on the 12 

downstream effect of exhaustion on adjacent immune cells within the TME is vital. 13 

Survival analysis demonstrated the proportion of Tfh subsets to be of clinical importance, with 14 

CD103+ Tfh cell enrichment associated with improved survival, and improved response to 15 

checkpoint blockade in a breast cancer cohort (Figure 6). Conversely, the relative proportion of 16 

IGFL2+ Tfh was enriched in patients with low T cell clonal expansion following anti-PD1 17 

treatment, a clinical feature associated with poor anti-tumour responses. The increased 18 

proportion of IGFL2+ cells, and changes in gene expression following treatment suggests that 19 

they are an important target of this immunotherapy. Recent reports have highlighted the 20 

importance of B cells and tertiary lymphoid structures (TLSs) in the response of diverse cancers 21 

to immunotherapy (Cabrita et al., 2020; Helmink et al., 2020).Our data provides the first 22 

evidence that Tfh subsets may make positive and negative contributions to the response to 23 

immunotherapy, warranting further investigation.  24 

Limitation of the Study 25 

Generating good quality CITE-Seq data from dissociated tumours is challenging, noise is 26 

introduced either through non-specific binding of antibody oligos from lysed cells post staining 27 

or the through encapsulation of ambient antibody oligos with cells during oil droplet partitioning. 28 

This in addition to the affect that enzymatic dissociation can have on several epitope targets of 29 
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antibodies, and the technical variation introduced by using a different antibody master mix for 1 

each capture. For the listed reasons, we believe the epitope data used in this study has a 2 

significant number of false negatives. Furthermore, as the sensitivity is reduced, we often opted 3 

to rely on cluster median or average expression when possible, rather than truly single-cell 4 

analysis. 5 

Breast cancer is a heterogenous disease and can manifest a diversity of spatially organised 6 

structures. We explored only five datasets (3 TNBC and 2 ER+) for co-localisation of Tfh cells 7 

subsets. We believe a larger cohort is required to comprehensively understand their role in the 8 

TME, and in their manifestation depending on breast cancer subtype. 9 
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Figure 1: Integrated proteogenomic analysis of the breast tumour microenvironment 1 

enhances clustering resolution when compared to ADT or RNA derived clustering. (A) 2 

UMAP of RNA and ADT integrated clustering analysis identified 52 cell clusters within 6 3 

human breast cancer samples. Violin plots on the right display the relative contribution of ADT 4 

markers to the definition of each cluster (“protein weighting”; (Hao et al., 2021)) and the dashed 5 

line marks the median value across all clusters (0.246). (B) Differentially enriched ADT (top) 6 

and RNA (bottom) features for each cluster (MAST test; p_adj < 0.05), with defining RNA and 7 

ADT features labelled on the right. Top annotation dendrogram indicates the cluster relationship 8 

derived from integrated RNA and ADT PCA values. Top bar annotations provide the mean 9 

silhouette score and median weighted protein weighting for each cluster. (C) Alluvial plot 10 

visualising the relationship of assigned cell clusters when defined based on RNA alone (left, 27 11 

clusters), integrated RNA and ADT (center, 52 clusters), or ADT alone (right, 16 clusters). 12 
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Figure 2: Targeted proteogenomic analysis of T and innate lymphocyte cells improves 1 

characterisation of TILs and identifies cell types which cannot be identified by RNA or 2 

protein modalities alone. (A) UMAP visualisation of integrated clustering of T and innate 3 

lymphoid cells derived from 6 human breast cancer samples. Clusters are numbered in order of 4 

decreasing cell number. (B) Protein weighting score, indicating the weighted proportion of ADT-5 

derived features which contributed to the nearest neighbour calculation for the partitioning of 6 

cells into clusters. Increasing scores indicate increasing ‘weight’ of protein markers in the 7 

definition of a given cluster. Dashed red line indicates the median protein weighting score across 8 

clusters (0.451). Boxplots middle line marks the median value, the lower and upper hinges mark 9 

the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the 10 

black dot’s mark outliers. (C) UMAP plots of cells in (A) colored by the following from left to 11 

right: patient sample, broad cell lineage and transcriptional activity score (see Methods). (D) 12 

Expression of lineage-defining ADT markers across T/ILC clusters, colored by assigned lineage 13 

and ordered by cluster size for each respective lineage subset. Boxplots middle line marks the 14 

median value, the lower and upper hinges mark the 25% and 75% quantile, the whiskers 15 

correspond to the 1.5 times the interquartile range, the black dot’s mark outliers. (E) Dotplot of 16 

expression (cluster average) of the RNA and ADT markers used to annotate each cluster. (F) 17 

WNN-derived annotations of clusters C11-ILC, C13-ILC/gdT, C17-ILC/gdT, and C21-CD8+ 18 

MAIT cells (red) projected onto the UMAP generated solely by RNA data. (G) Protein selection 19 

decision tree towards profiling of identified gene expression profile. ‘Low protein’ marks 20 

clusters which have have low enrichment of ADT-derived UMIs, ‘High protein’ marks cluster 21 

which have a high number of ADT-derived UMIs enriched. 22 
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Figure 3: The expression of protein and RNA features of TIL activation and tissue 1 

residency markers in breast cancers. (A) Pearson correlation coefficient values of select 2 

pairing of ADT markers stratified by cell cluster. The global Pearson coefficient value for each 3 

ADT pair is provided, please see Table S5 for Pearson coefficient values for each cluster. (B) 4 

RNA & ADT co-expression heatmap of features (rows) known to be relevant to activation, 5 

migration, exhaustion and tissue residency of T cells. Red text highlights ADT markers and 6 

green text highlights RNA markers. Boxplots at the top of the heatmap show the protein 7 

expression of CD49f grouped by T cell activity (see Methods), sorted from high to low (left to 8 

right). Boxplots middle line marks the median value, the lower and upper hinges mark the 25% 9 

and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black 10 

dot’s mark outliers. Percent_ribo refers to the proportion of ribosomal counts relative to all other 11 

expressed genes. “CD4/CD8 rest” is a published signature score based on (Szabo, Levitin, et al., 12 

2019) that reflects enrichment of genes associated with inactive/resting CD4 & CD8 T cells. (C) 13 

AUCell enrichment score of signatures derived from Zemin et al. (Zheng et al., 2021) pan cancer 14 

CD8+ T-cell exhausted (Tex) and Li et al. (Li et al., 2019) dysfunctional CD8 T-cell, sorted from 15 

high to low (left to right). The top 50 differentially expressed genes were used towards 16 

calculating enrichment score. Red line indicates the median signature score value across all 17 

clusters. Red text indicates populations discussed in the text. Boxplots middle line marks the 18 

median value, the lower and upper hinges mark the 25% and 75% quantile, the whiskers 19 

correspond to the 1.5 times the interquartile range, the black dot’s mark outliers. (D) Log 20 

normalised expression of ADT markers CD103 and CD69 across T-cell and ILC clusters, sorted 21 

from high to low (left to right). Box plots are coloured by broad lymphocyte lineage. Red line 22 

indicates the median expression for each marker across clusters. Red text indicates populations 23 

discussed in the text. Boxplots middle line marks the median value, the lower and upper hinges 24 

mark the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, 25 

the black dot’s mark outliers. (E) Enrichment scores of gene signatures derived from Savas et al. 26 

study (Peter Savas et al., 2018) mapped into integrated CD8 T cell clusters. AUCell enrichment 27 

scores calculated from top 50 differentially expressed genes derived from bulk RNA-seq analysis 28 

of CD8 T-cells sorted by Flowcytometry into CD103+ CD69+ (left) or CD103- CD69+ (right). 29 

Boxplots are sorted from high to low (left to right) for each cluster. Red line indicates the median 30 

signature score value across all clusters. Red text indicates populations discussed in the text. 31 
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Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and 1 

75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black dot’s 2 

mark outliers.  3 
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Figure 4: Integrated ADT and RNA clustering reveals novel subsets of  Tfh cells in breast 1 

cancers. (A) Exhausted CD8+ Trm module score overlaid on the T cell/ILC WNN-derived 2 

UMAP (see Figure 2A). (B) Tfh cells divided into the 3 identified subclusters are plotted for, 3 

from left to right, exhaustion module score, normalised gene expression of CXCR4 or IGFL2, 4 

and normalised protein expression of ADT-CD103. A two-sided t-test comparison between each 5 

cluster was performed, p-values are denoted by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001 and 6 

****p < 0.0001). Boxplots middle line marks the median value, the lower and upper hinges mark 7 

the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the 8 

black dot’s mark outliers. (C) Gene set enrichment analysis boxplots for the GO biological 9 

process pathway “GO_GERMINAL_CENTRE_FORMATION” across T cells & ILCs, sorted 10 

from high to low (left to right). Red line indicates the median expression value across all clusters. 11 

Red text marks Tfh populations. Boxplots middle line marks the median value, the lower and 12 

upper hinges mark the 25% and 75% quantile, the whiskers correspond to the 1.5 times the 13 

interquartile range, the black dot’s mark outliers. (D) Pearson correlation heatmap of GO 14 

biological process pathways found to be significantly enriched (n=6614 , p < 0.05) for each 15 

cluster. Red text marks Tfh populations. Red boxes highlight populations of interest outlined in 16 

text. (E) UMAP projections of pseudotime analysis using R package Monocle3 (Cao et al., 2019) 17 

depicting the bifurcation of CXCR4+ Tfh cells (Node 1) into either the CD103+ exhausted-like 18 

state (Node 2) or an IGFL2+ state (Node 3). (F) RNA and ADT density kernel expression of 19 

known Tfh-relevant markers overlaid on UMAP projections derived from monocle3 pseudotime 20 

analysis (C) (G) Expression of known Tfh-relevant transcription factors, cytokines, chemokines 21 

and markers of subset differentiation within this study, stratified by subcluster, along the axis of 22 

pseudotime differentiation trajectory. 23 
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Figure 5: Localisation and signalling of tumour residing CD103+ and IGFL2+ Tfh subsets 1 

in breast cancers. (A)  Enrichment scores for B cells, IGFL2 Tfh, CD103 Tfh and Dendritic 2 

cells (DC) overlaid on representative H&E images with pathological annotation shown for 3 

reference. (B) Heatmap of the enrichment (row scaled) of spatially deconvoluted cell types by 4 

pathological annotation as categorised by distinct morphological regions. The median value 5 

across 5 breast cancer samples from Wu et al. (Wu et al., 2021)(3 TNBC, 2 ER+) were used. (C) 6 

Pearson correlation heatmap of spatially deconvoluted cell pairs of interest. Red text marks 7 

populations of interest described in text. (D) CCL, CSF and BTLA signalling pathway network 8 

characterization across immune cell clusters. ‘Sender’ and ‘Receiver’ status reflects direct 9 

expression of ligands and receptors (agonistic or antagonistic). ‘Mediator’ and ‘Influencer’ 10 

quantifies the potential role in controlling receptor-ligand expression flow of the pathway within 11 

the system (here TME). Red text marks Tfh populations. (E) Chord Diagram representing the 12 

inferred cell-cell signalling of the CSF1-CSF1R pathway across all immune cells in the dataset. 13 

Red text marks populations of interest described in text. 14 
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Figure 6: Tfh survival analysis and enrichment analysis of an anti-PD-1 breast cancer 1 

cohort. (A) Kaplan–Meier plots showing the associations between CD103+ Tfh and IGFL2+ Tfh 2 

signatures with survival in the TCGA cohort across all BRCA. The median group cutoff was 3 

used. P values were calculated using the log-rank test. The Hazard ratio was calculated as per 4 

cox proportional-hazards model. Dotted lines show 95% confidence interval. (B) Fold change in 5 

proportion of T cell subsets in pre-treated breast cancer patient samples classified as Non-6 

expander (patients with low T clonal expansion) or Expander (patients with high T-cell clonal 7 

expansion), derived from Bassez et al. (2021), refined with Tfh subsetting. P-values calculated 8 

from non-parametric t-test (n=29) using package R package Speckle(Phipson et al., 2021). (C) 9 

Enrichment comparison of Bassez et al. (2021) breast cancer tumours sampled prior to (baseline) 10 

or during PD-1 treatment for none expanders (patients with low T clonal expansion) vs 11 

expanders (patients with high T-cell clonal expansion). Change of T-cell fraction of CD8 Tex, 12 

Tfh CD103 and Tfh IGFL2 subsets is shown. P-values are calculated from non-parametric t-test 13 

using R package Speckle (Phipson et al., 2021), see Table S6 for n sampled for each condition or 14 

group. See Bassez et al. (2021) for further detail on the patient cohort (Ayse Bassez et al., 2021). 15 

Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and 16 

75% quantile, the whiskers correspond to the 1.5 times the interquartile range and dot’s mark 17 

outliers.  18 
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STAR Methods 1 

LEAD CONTACT 2 

For any further information and requests should be directed to and fulfilled by the lead contact, 3 

Alexander Swarbrick (a.swarbrick@garvan.org.au). 4 

 5 

Data and Code Availability 6 

The scRNA-seq data processed in this study is available to be explored and downloaded using 7 

the Broad Single-Cell portal at https://singlecell.broadinstitute.org/single_cell/study/SCP1793. 8 

All scripts used to process data and perform statistical analysis are available on 9 

https://github.com/Swarbricklab-code/BrCa_Integrated_proteogenomics. Raw FASTQ data can 10 

be accessed from the NCBI Gene Expression Omnibus database GSE199219. Any code used to 11 

visualise data is available from the corresponding authors upon reasonable request. 12 

Experimental model and subject details 13 

Patient material, ethics approval and consent for publication 14 

The human breast cancer samples used in this study were collected following protocols x13-15 

0133, x16-018, x17-155, x19-0496. Ethical approval for this study was acquired by the Sydney 16 

Local Health Districts Ethics committee, St Vincent’s hospital Ethics Committee, and Royal 17 

Prince Alfred Hospital zone. Consent for the use of samples in this study was obtained from all 18 

patients prior to collection of tissue, and data were de-identified as per approved protocol. 19 

 20 

Method Details 21 

Single-cell suspension generation of samples 22 

Breast tissue was enzymatically and mechanically dissociated as per the Human Tumor 23 

Dissociation Kit (Miltenyi Biotec) protocol. The dissociated breast sample was then passed 24 
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through a 100 µm MACS Smart Strainers (Miltenyi Biotec), topped up with RPMI 1640 10% 1 

FCS then centrifuged at 300 x g for 5 min. Supernatant was discarded, red blood cells were lysed 2 

using RBC lysing buffer (Becton Dickinson) for 5 minutes, then washed twice in PBS 10% FCS. 3 

All samples were cryopreserved in 10% DMSO, 40% RPMI 1640 and 50 % FBS solution then 4 

stored in liquid nitrogen until day of experiment, when samples were thawed in a 37oC liquid 5 

bath for 2 minutes, washed twice in RPMI 1640 10% FBS media, passed through a 100 µm 6 

strainer then resuspended in 100ul PBS 10% FCS media. 7 

Sample preparation and CITE-Seq antibody staining 8 

TotalSeq-A antibodies (Biolegend, USA) compatible with 10X Chromium 3’ mRNA platform 9 

were used. The list of antibodies used for each sample are provided in the Supplement (Table 10 

S1). CITE-Seq was performed as previously described by Stoeckius et. al (Stoeckius et al., 2017) 11 

with the following modifications: Approximately 1 million cells per sample were resuspended in 12 

95 ul of cell staining buffer (Biolegend, USA) with 5 ul of Fc receptor Block (TrueStain FcX, 13 

Biolegend, USA) for 15 min. Cells were then centrifuged at 350 x g for 5 min, supernatant 14 

discard, then 100ul of CITE-Seq mastermix (0.5ug of each Antibody) which was prepared earlier 15 

in that day with staining buffer (Biolegend, USA) was added to palleted samples. Cells were 16 

incubated for 30 min on ice, then washed three times. Approximately 3% 3T3 Mouse cells were 17 

then spiked into each sample as control, to estimate ambient RNA and ADT. 18 

Single-cell capture using 10x genomics chromium and sequencing 19 

Cells for each sample were counted and confirmed to have > 80% viability using 20 

haemocytometer. Recovery of a total of 4000 to 6000 cells was the aim for each sample. Single-21 

cell captures were performed using 10X Chromium Single-Cell 3’ v3 with exception to one 22 

breast tissue sample where Single-cell 3’ v2 kit was used (Table S1). Sample CID4676, 23 

CID4660, CID4664 were captured as one pool (multiplexed). Manufacturers protocol was 24 

followed in the preparation of RNA and ADT cDNA libraries. The cDNA libraries generated for 25 

each respective modality were sequenced separately on Illumina NextSeq 500. The following 26 

cycle settings were used for RNA cDNA libraries 28bp (Read 1), 91bp (Read 2) and 8bp (Index) 27 

and we aimed for 50,000 reads per cell. The following cycle settings were used for ADT cDNA 28 

libraries 28bp (Read 1), 24bp (Read 2) and 8bp (Index) and we aimed for 35,000 reads per cell. 29 
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 1 

Single-cell RNA data processing 2 

10x Genomics Cell Ranger (v3.0.4) was used to demultiplex BCL files to FASTQs, cell barcode 3 

demultiplexing, genome reference alignment (GRCh38 and mm10) towards generation of unique 4 

molecule identifier (UMI) count matrices. The CellRanger UMI counts from the “filtered 5 

barcode” list were used. All cells that have greater than 25% mitochondrial content and/or 6 

between 10% and 95% mouse mm10 aligned UMI’s were discarded as doublets, low quality 7 

cells, or as cells with increased ambient contamination. All mouse UMI counts except those 8 

expressed by the top 100 genes were removed prior to analysis. Samples CID4676, CID4660, 9 

CID4664 were demultiplexed using method “Souporcell” (Heaton et al., 2020) as instructed by 10 

developers and using default parameters. Genotype information for demultiplexing was 11 

generated by running UK Biobank Axiom array (ThermoFisher Scientific, Catalogue 902502) on 12 

each patient PBMC. The R package Seurat v4.0.4 was used for normalising, scaling, 13 

dimensionality reduction and cluster assignment using default parameters with two deviations, 14 

the first 40 principle components (PC) were used for dimensional reduction and to generate 15 

nearest neighbour graph, and an increased resolution of ‘1’ was used for clustering. Sample 16 

CID4676 was removed from all downstream analysis as it contained less than 50 cells. 17 

 18 

 CITE-Seq data processing 19 

The FASTQ demultiplexed reads for ADT libraries were assigned to each cell and antibody 20 

using package CITE-Seq count (v1.4.3, https://github.com/Hoohm/CITE-seq-Count), using the 21 

authors’ recommended parameters. Briefly, a cell barcode whitelist obtained from Cell Ranger 22 

“filtered” out for each sample was used for cell demultiplexing. A cell barcode levenshtein 23 

distance of 1 (--bc_collapsing_dist 1) and UMI distance of 2 (--umi_collapsing_dist 2) was allowed 24 

to be collapsed. The Antibody barcode list for TotalSeq-A (Biolegend, USA) used to demultiplex 25 

ADT is provided in Table S1. A levenshtein distance of 3 was permitted for ADT barcode 26 

demultiplexing (--max-error 3).  27 
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ADT counts were normalised using Seurat v4’s inbuilt centered-log ratio (CLR) transformation 1 

within cells (Margin 2). To determine which antibodies were enriched, we first constructed a 2 

nearest neighbour graph (‘FindNeigbours”), clustered cells on RNA (‘FindClusters’) at 1.2 3 

resolution, the median absolute deviation of cells from each cluster was calculated and any cells 4 

that had 10-fold total ADT counts were discarded. To determine which antibodies are enriched 5 

within each sample, Seurat’s ‘FindAllMarkers’ across all clusters at 1.2 resolution after 6 

excluding mouse cells, was run for each individual sample. Only ADT features found to be 7 

enriched were used in the PC analysis, from which then the first 20 PCs were used towards 8 

dimensional reduction, graph construction and clustering analysis. 9 

 10 

Batch correction and Integration of RNA and CITE-Seq data 11 

RNA and ADT assays were both first batch corrected across patients within each respective 12 

assay using Seurat v4 (4.0.4) prior to integration across assays. For RNA, the default parameters 13 

were used with the following deviation: the top 5000 anchor features were used in the step 14 

“FindIntegrationAnchors”, and the top 40 PC dimensions were used for the “IntegrateData” step. 15 

The top 40 PCs were similarly used for all subsequent steps; nearest neighbourhood calculation, 16 

cluster determination, UMAP calculation. ADT assay was processed similarly to RNA however 17 

only the top 20 PCs were used, and all ADT features (except Isotype controls) were used as 18 

anchors. The Batch corrected RNA and ADT matrices were then integrated using SeuratV4’s 19 

weighted-nearest neighbour (WNN), an approach which allows for simultaneous clustering of 20 

cells based on RNA and surface protein expression (ADT) (Hao et al., 2021). Integration was 21 

performed with developer recommended (default) parameters (k = 20) with the following 22 

modifications: The first 50 PC dimensions were used for RNA, and the first 20 PCs for ADT, in 23 

step "FindMultiModalNeighbors”. A resolution of 3.2 and algorithm 3 (SLM - smart local 24 

moving) was used for “FindClusters”. The majority of clusters were found to be present in most 25 

or all samples, with the exception of neoplastic epithelial cell clusters (C47-51) and clusters 26 

containing fewer than 50 cells, such as cluster C32-Mast:TPSB2 ADT-cKIT and C33-27 

Endo:SEMA3G ADT-4.1BBL (Figure S1C). 28 

 29 
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Silhouette score and cluster probability calculation 1 

The silhouette coefficient was calculated using R package cluster 2.1.0. An euclidean distance 2 

matrix was generated from the first 40 PCs calculated from RNA assay alone, the same PCs 3 

which were used for dimensionality reduction and clustering as described above for processing 4 

RNA counts. The cell annotations were derived from the WNN approach, calculated from RNA 5 

and ADT assays as described above and shown for all cell lineages as in Figure 1 or targeted 6 

TIL analysis in Figure 2.To calculate the cluster probability, we used an approach previously 7 

described by Lun et al. ((Lun et al., 2016) Scran 8 

https://bioconductor.org/packages/devel/bioc/vignettes/scran/inst/doc/scran.html) which 9 

measures how many cells were partitioned into the same cluster after bootstrapping. We took the 10 

PCAs generated by Seurat’s v4 RNA assay analysis however with cell assignments to clusters set 11 

as per WNN of ADT and RNA modalities as described above. R Package Scran v1.18 was then 12 

used to bootstrap clusters (‘bootstrapCluster’) and to generate shared nearest neighbour graphs, 13 

and the paired co-assignment probability of cells to the same partition was evaluated using 14 

package igraph v1.2.6 function ‘cluster_walktrap’.  15 

 16 

Differential expression analysis, gene signature score modules, GO enrichment analysis. 17 

Differential gene expression analysis was performed using R package Seurat v4.0.4 function 18 

‘FindAllMarkers’, using MAST v1.16.0 test (Finak et al., 2015). Module scoring for each gene 19 

signature was calculated using Seurat’s ‘AddModulScore’. The list of signatures used and their 20 

scource are available in Table S4. The cluster median module score of each signature was scaled 21 

0-1 then visualised using spider plots using R package fmsb v0.7.0 (CRAN). R Package VISION 22 

v2.1 (DeTomaso et al., 2019) was employed to calculate enrichment of Gene ontology (GO) 23 

biological process’s, using immunological signature gene sets (c7.all.v7.2.symbols.gmt) derived 24 

from Molecular Signatures Database (MSigDB)(Subramanian et al., 2005). Either Complex 25 

Heatmap v2.7.11(Gu et al., 2016) or pheatmap v1.0.12 (CRAN) were used to visualise 26 

differentially expressed ADT, RNA, module scores and GO results. Seurat’s ‘DotPlot” function 27 

was used to visualise all dot plots. R package AUCell v1.12 (Aibar et al., 2017) was used to 28 

score CD8 T-cell Bulk RNA-seq signatures from Savas et al (P. Savas et al., 2018). 29 
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T cell subsetting 1 

Clusters were first stratified by their protein expression level of CD3 or TCRαβ, with high-mid 2 

levels designated as conventional/unconventional T-cells, and low levels classified as either 3 

Natural killer (NK) cells or ILCs, depending on expression of the markers ADT-NKP46, ADT-4 

CD56, ADT-KLRG1, ADT-cKIT, ADT-TCRgd, GNLY and TRDC (Figure 2D-E; Figure 5 

S2B). Two clusters with mixtures of both innate and adaptive lineages were simply labelled 6 

Lymphocyte (Lymph). All CD3+ T cells were segregated based on CD8 or CD4 expression, 7 

assessed for expression of unconventional T cell markers such as ADT-CD161, ADT-TCRVa7.2 8 

and ADT-TCRγδ, or markers that may signify “NK-like” features such as elevated ADT-9 

NKG2D and ADT-CD57, TRDC, KLRD1, or GNLY (Figure 2D-E; Figure S2B). Top 10 

differentially expressed features for each cluster are shown in Figure 2E and Table S3. Each 11 

cluster was also scored for activity level (quiescent, low, mid or high) using previously described 12 

attributes of lymphocyte activation status such as published gene signatures (Szabo, Levitin, et 13 

al., 2019), total ADT abundance expressed by cell, RNA abundance and ribosomal content (Wolf 14 

et al., 2020), and known markers of T cell activation such as CD69, IFNG, GZMB, 15 

ZNF683/Hobbit, PD-1,CD45RO (Cano-Gamez et al., 2020) (Figure 2B-C). Lastly, we collated 16 

gene signatures of commonly described T cell states, sourced from previous published studies 17 

(Table S4), with the aim to associate the observed clusters with a previously ascribed 18 

lymphocyte effector function (Figure S2J). 19 

 20 

Spatial transcriptomic analysis 21 

Visium patient sample counts and pathology notes were sourced from Wu et al. study (Wu et al., 22 

2021). The single-cell dataset used towards deconvolution was similarly taken from Wu et al. 23 

study (Wu et al., 2021) however further processed to stratify Tfh cluster into CD103 Tfh and 24 

IGFL2 Tfh. To integrate the single-cell and spatial transcriptomics data (Visium), we used the 25 

software stereoscope v. 0.3.1 (Andersson et al., 2020). As input, the method takes raw UMI 26 

count data from the single cell and spatial transcriptomics experiments, together with cell type 27 

annotations for the former. From this, a single proportion matrix is produced. The matrix gives 28 

the proportion of each cell type (defined in the single cell data) at every spatial location. To 29 

improve the performance of stereoscope, we used a curated set of highly variable genes. 30 
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 1 

In order to reduce the runtime, we employed a subsampling strategy similar to that proposed in the 2 

original stereoscope manuscript. More specifically, we first defined a lower and upper bound 3 

(here, 25 and 250 respectively). Next, cells were sampled according to the following scheme:  if a 4 

cell type had fewer members than the lower bound, we excluded it from the analysis; if a cell type 5 

had more or the same number of members as the lower bound, but fewer or the same number of 6 

members as the upper bound, we used all cells within the cell type; if a cell type had more members 7 

than the upper bound, we randomly sampled #[upper bound] cells from the cell type (without 8 

replacement). 9 

stereoscope was run with the following parameter settings:  batch size - 2048,  number of epochs 10 

- 50000, These settings were used in both steps of stereoscope, i.e., the parameter inference step 11 

and the proportion estimation step. Default values were used for all other parameters. 12 

Highly variable genes were extracted by applying a sequence of three functions from the scanpy 13 

suite (v. 1.7.2) to the single cell data. First, we normalized the gene expression data, then, the 14 

normalized values were log-transformed (using pseudocount 1), finally, the highly variable genes 15 

were identified from the transformed values. The exact function calls were: 16 

scanpy.pp.normalize_per_cell(...,10e4) 17 

scanpy.pp.log1p(...) 18 

scanpy.pp.highly_variable_genes(...,n_top_genes=5000)  19 

Where “...” represents an anndata object containing the relevant data. 20 

 21 

Trajectory analysis & Receptor-Ligand analysis 22 

R package Monocle3 v 1.0 (Cao et al., 2019) was used to generate the pseudo-trajectory analysis 23 

involved with the characterisation of T follicular helper cells. Briefly, the RNA batch corrected 24 

and integrated matrix generated by Seurat v4 (4.0.4) were exported to build the CellDataSet 25 

object. Pseudotemporal analysis was then performed using default parameters as instructed by 26 

developers in their vignette. 27 

 28 
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The R package Slingshot v1.6.1 (Street et al., 2018) was used to generate the pseudo-trajectory 1 

analysis of CD8 T-cells. Default parameters were used, and UMAP input was derived from batch 2 

corrected RNA matrix values as generated by Seurat v4 (4.0.4). Trajectory overlay was mapped 3 

on cells clustered and annotated by Seurat v4 (4.0.4). 4 

 5 

Ligand-Receptor analysis was performed using R package “CellChat” (Jin et al., 2021). Analysis 6 

was executed using default parameters as recommended by developers, as described by their 7 

vignettes. 8 

 9 
 10 

RNA and protein co-expression patterns of hallmark tumour infiltrating lymphocyte states 11 
and meta module analysis 12 

Immune cell phenotype is heavily influenced by the immediate cellular environment, with 13 

cancers in particular presenting diverse milieus in which TILs reside and receive signals, 14 

potentially leading to their acquisition of “neophenotypes” not found in the corresponding 15 

classical cell state or lineage. As current immunotherapies primarily rely on cell surface 16 

expression of target proteins as biomarkers and therapeutic targets, it is important to better 17 

understand the TIL phenotypes that correlate with specific, often nonclassical, surface protein 18 

markers in the context of the TME. Thus, we explored the landscape of RNA and protein co-19 

expression across our dataset in order to link hallmark gene expression features associated with 20 

functional lymphocyte commitment to ADT marker expression, independent of lineage.   21 

We used a semi-supervised data-driven approach to choose the most informative features to 22 

define T cell and ILC phenotype meta states; grouping cells by greatest variance (and 23 

similarities) into broad categories of TIL effector function. This included the top 5 differentially 24 

expressed genes plus all ADTs enriched in each cluster (MAST test; p_adj < 0.05, n = 178 genes; 25 

n = 63 ADTs), this included a curated panel of 30 differentially enriched (MAST test; p_adj 26 

<0.01) master transcription factors and/or genes previously associated with hallmark regulation 27 

of lymphocyte development, activation, and function in the TME such as TBX21(T-Bet), 28 

GATA3, EOMES, TOX, TCF1, TGFB1, BATF, and STAT3/5. Each feature value was scaled 29 

(Z-scored) for each respective assay then merged. An euclidean approach (sqrt(sum((x_i - 30 

y_i)^2) was applied to generate the dissimilarity matrix, which was then clustered using 31 
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Ward.D2 using R package ComplexHeatmap v2.7.11. R Package igraph v1.2.6 was used to 1 

visualise the distances between each feature using a phylogenetic dendrogram. The partitioning 2 

of RNA and ADT features into clusters were generated using a centroid k-means approach. The 3 

appropriate number of selected k (number of clusters) was estimated by gap statistics using 4 

package fmsb v0.7.0. R package clustree v0.4.3 (https://doi.org/10.1093/gigascience/giy083) was 5 

used to visualise the impact of different k resolutions on cluster assignment. Clustering with this 6 

set of features revealed thirteen functional meta states defined by co-expressed genes and protein 7 

markers (Figure S7A-E). We observed trends consistent with the literature, such as the 8 

association between the expression of CD103 with GZMB and exhaustion gene HAVCR2, or 9 

between CD39 surface expression and genes upregulated by immunosuppressive T cells such as 10 

FOXP3+ Tregs (Supp Figure 7D-E). We also interrogated the co-clustering patterns of RNA 11 

and its cognate protein. We identify a few genes whose RNA and protein levels cluster closely 12 

irrespective of lineage, suggesting that either measurement is sufficient to capture robust 13 

expression information for these markers. Examples include PDCD1 and PD-1, IL2RA and 14 

CD25, CD4 and CD4 and CD8A and CD8A/B (Supp Figure 7D-E). However, the majority of 15 

genes tend to demonstrate poor correlation between RNA and protein. Importantly, numerous 16 

mRNAs are poorly detected despite high expression of their cognate protein, such as ADT-CD57 17 

and ADT-CD7, as well as the group of ADTs that represent the primary cluster drivers of resting 18 

ILC cells, indicating that the assessment of such cell types with transcriptional methods alone 19 

will remain challenging.  20 

 21 

Survival analysis and patient cell type proportion analysis 22 

Survival analysis of was performed using ‘GEPIA’, using the TCGA BRCA cohort 23 

http://gepia2.cancer-pku.cn/#index (Tang et al., 2017). The top 10 differentially expressed genes 24 

of each Tfh subset of interest were used and the median value was used as group cutoff. The 25 

hazards ratio was calculated as per cox proportional-hazards model and the p-value was 26 

calculated using log-rank test statistics. 27 

R package speckle (0.0.2) (Phipson et al., 2021) was used to calculate statistical significance in 28 

the change of cell type proportion between patient groups or conditions. All Beassez et al. 29 
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patients (A. Bassez et al., 2021) which were not assigned either as Expander (E) or Non-1 

expander (NE) were removed from analysis (two patients' pre-post samples were excluded). 2 

Change in composition was visualised by calculating the fraction of each cell type within each 3 

patient. A non-parametric t-test (n=29) was used to calculate the p-value of baseline change of 4 

composition between Expanders and Non-expanders. A non-parametric t-test was used to 5 

calculate p-value between each respective group comparison, n sample used for each comparison 6 

shown in Figure 6C can be found in Table S6. See Bassez et al. for further detail on patient 7 

cohort (A. Bassez et al., 2021). 8 

Statistics and reproducibility 9 

No statistical method was used to predetermine sample size. The statistical significance for all 10 

differentially expressed genes or ADT were determined using MAST(Finak et al., 2015), and 11 

adjusted bonferroni corrected values were used. The Box plot centre line depicts the median 12 

value, the first and third line mark the 25% and 75% quantile, the whiskers correspond to 1.5x 13 

the interquartile range (IQR), and dots mark outliers. Details for any statistical tests performed 14 

are present in figure legends and in relevant method sections.  15 

  16 
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KEY RESOURCES TABLE  1 

 2 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Antibodies   

CITE-Seq antibody 
panel 

BioLegend Table S1 

Human TruStain FcX BioLegend Cat #422302 

Chemicals, 
Peptides, and 
Recombinant 
Proteins 

  

FBS Bovogen Cat # SFBS-AU 

PBS Gibco Cat # 10010023 

DNase ThermoFisher Scientific Cat # EN0521 

Red blood lysis 
buffer 

eBioscience Cat # 00-4300-54 

RPMI 1640 Gibco Cat # SFBS-AU 

Critical commercial 
assays 

  

Chromiun Controller 
and the Single Cell 
Reagent kit 3′ v2 

10X Genomics Cat# 120237 

Chromiun Controller 
and the Single Cell 
Reagent kit 3′ v3 

10X Genomics Cat# 1000075 

UK Biobank Axiom 
array 

ThermoFisher Scientific Cat# 902502 

gentleMACS 
Dissociator 

Miltenyi Cat# 130-093-235 
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Tumor Dissociation 
Kit, human 

Miltenyi Cat # 130-095-929 

Biological samples   

Breast cancer 
samples 

This study Table S2 

Deposited data   

Raw FASTQS & 
counts data for 
primary breast 
cancer 

NCBI Gene Expression 
Omnibus 

GEO: GSE199219 

Processed counts & 
metadata 

Single-cell Portal (Broad 
Institute) 

https://singlecell.broadinstitute.org/singl
e_cell/study/SCP1793 

Data pre-processing Swarbrick Lab github https://github.com/Swarbricklab-
code/BrCa_Integrated_proteogenomics  

Breast cancer 
neoadjuvant anti-
PD1 cohort 

Basez_et_al 
10.1038/s41591-021-
01323-8 

https://lambrechtslab.sites.vib.be/en/dat
a-access 

Spatial dataset Wu et al. 
https://doi.org/10.1038/s41
588-021-00911-1  

https://doi.org/10.5281/zenodo.3957257 

Experimental 
models: Cell lines 

  

Mouse: NIH/3T3  NA CRL-1658 

Software and 
algorithms 

  

R  4.0.3 R Core https://cran.r-project.org/ 

Seurat 4.0.4 10.1016/j.cell.2021.04.048 https://satijalab.org/seurat/index.html 

Cell Ranger 3.0.2 10X Genomics https://support.10xgenomics.com/single-
cell-gene-
expression/software/pipelines/latest/wha
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t-is-cell-ranger 

Python 3.9 Python Software 
Foundation 

https://www.python.org/ 

CITE-Seq count 
1.4.3 

NA https://github.com/Hoohm/CITE-seq-
Count 

stereoscope 0.3.1 https://doi.org/10.1038/s42
003-020-01247-y 

https://github.com/almaan/stereoscope 

CellChat 1.1.0 https://doi.org/10.1038/s41
467-021-21246-9 

https://github.com/sqjin/CellChat 

GEPIA2  https://doi.org/10.1093/nar/
gkz430 

http://gepia2.cancer-pku.cn/#index 

Speckle 0.0.2 https://www.biorxiv.org/cont
ent/10.1101/2021.11.28.47
0236v1 

https://github.com/Oshlack/speckle 

Monocle3 1.0.0 https://doi.org/10.1038/s41
586- 

https://github.com/cole-trapnell-
lab/monocle3 

Slingshot 1.6.1 https://doi.org/10.1186/s12
864-018-4772-0. 

https://bioconductor.org/packages/relea
se/bioc/html/slingshot.html 

Scanpy 1.7.2 https://doi.org/10.1186/s13
059-017-1382-0 

https://scanpy.readthedocs.io/en/stable/ 

ggplot2 3.3.3 Wickham, Hadley. ggplot2: 
elegant graphics for data 
analysis. springer, 2016. 

https://ggplot2.tidyverse.org 

Dplyr  1.0.6 Wickham, Hadley et al. 
Welcome to the Tidyverse 

https://cloud.r-
project.org/web/packages/dplyr/index.ht
ml 

complexheatmap 
2.7.11 

10.1093/bioinformatics/btw
313  

https://www.bioconductor.org/packages/
release/bioc/html/ComplexHeatmap.htm
l 

pheatmap v1.0.12 N/A https://rdrr.io/cran/pheatmap/ 

MAST 1.16.0 https://doi.org/10.1186/s13
059-015-0844-5 

https://github.com/RGLab/MAST/ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494081doi: bioRxiv preprint 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://www.python.org/
https://github.com/Hoohm/CITE-seq-Count
https://github.com/Hoohm/CITE-seq-Count
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1093/nar/gkz430
http://gepia2.cancer-pku.cn/%23index
https://doi.org/10.1038/s41586-
https://doi.org/10.1038/s41586-
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://scanpy.readthedocs.io/en/stable/
https://ggplot2.tidyverse.org/
https://cloud.r-project.org/web/packages/dplyr/index.html
https://cloud.r-project.org/web/packages/dplyr/index.html
https://cloud.r-project.org/web/packages/dplyr/index.html
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://rdrr.io/cran/pheatmap/
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1101/2022.05.31.494081
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

fmsb 0.7.0 NA https://cran.r-
project.org/web/packages/fmsb/index.ht
ml 

AUCell 1.12 https://www.nature.com/arti
cles/nmeth.4463 

https://github.com/aertslab/AUCell 

VISION 2.1 https://doi.org/10.1038 https://github.com/YosefLab/VISION 

Scran 1.18 10.12688/f1000research.95
01.2 

https://bioconductor.org/packages/relea
se/bioc/html/scran.html 

igraph 1.2.6 https://igraph.org/ https://cran.r-
project.org/web/packages/igraph/index.
html 

clustree 0.4.3 https://doi.org/10.1093/giga
science/giy083 

https://cran.r-
project.org/web/packages/clustree/index
.html 

Adobe Illustrator Adobe www.adobe.com 

 1 
  2 
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Supplementary Figure 1: Quality control metrics and cluster information of CITE-seq 

data derived from 6 breast cancer samples. (A) Number of genes and UMI counts for both 

ADT and RNA assays, and mitochondrial content proportion for each sample, information of 

patient sample disease are available in Supplementary Table 2. (B) UpSet plot of CITE-seq 

antibodies found to be commonly enriched across samples. (C) UMAP of cells grouped by 

patient sample, and the proportion of each cluster derived from each patient. (D) UMAP of 

all cell clusters derived solely from RNA analysis. (E) UMAP of all cell clusters derived 

solely from ADT sequencing. (F) Silhouette score of each cluster for the evaluation of cluster 

stability. (G) Cluster stability matrix indicates the probability that a random cell from each 

paired cluster would be re-assigned to the same cluster following bootstrapping. High 

probability means paired clusters contain more related cells than not.  
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Supplementary Figure 2: Supplementary information for RNA and protein Integrated 

clustering analysis across T cell and ILC populations. (A) Proportion of patient cells from 

each sample belonging to each T/ILC cluster. (B) Dotplot visualisation of the expression of 

RNA and ADT markers of interest on a z-score normalised scale. (C) Log normalised 

expression of factors associated with lymphocyte activity and naïve/memory activation 

status. Bar plots are coloured by lymphocyte lineage. nUMI refers to the number of unique 

molecular identifiers derived from the RNA assay, and nGene refers to the number of genes 

identified. Heat shock/Hypoxia and Cytoxic enrichment scores were calculated using Seurats 

“ModuleScore” using genes listed in Table S4. Red line indicates the median expression for 

each marker across clusters. (D) UMAP of the T cell/ILC dataset when clustered on RNA 

features alone. (E) Alluvial plot visualising the relationship of assigned cell clusters when 

derived from RNA alone versus RNA and ADT integration. (F) Cluster stability matrix 

shows the probability that a random cell from each paired cluster would be re-assigned to the 

same cluster following bootstrapping. High probability means paired clusters contain more 

related cells than not. (G) Silhouette score of each WNN-derived cluster calculated from 

RNA alone. Negative values indicate instability. (H) Violin plot showing normalised 

expression values of canonical markers of lymphocytes, myeloid, epithelial, and 

mesenchymal lineages. (I) Expression levels of isotype controls and mouse spike-in. Red line 

indicates the median expression. (J) Radar plot projecting the gene signature module scores, 

scaled 0-1, for each respective cluster. Grey silhouette marks the module score profile when 

averaged across all clusters combined.  
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Supplementary Figure 3
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Supplementary Figure 3: The expression of tissue resident and exhausted T-cell Protein 

markers and supplementary information for CD8+ T-cell phenotyping. (A) Log 

normalised expression of CD69 and CD103, sorted from high to low (left to right). Bar plots 

are coloured by broad lineage. Red line marks the median value of each respective feature 

across all clusters. Boxplots middle line marks the median value, the lower and upper hinges 

mark the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile 

range, the black dot’s mark outliers. (B) Pseudotemporal analysis of CD8+ T-cells using 

slingshot. Analysis was performed on RNA values only. (C) Log normalised expression of 

ADT markers CD49a and CD39 across T-cell and ILC clusters, sorted from high to low (left 

to right). Box plots are coloured by lymphocyte lineage. Red line indicates the median 

expression for each marker across clusters. Boxplots middle line marks the median value, the 

lower and upper hinges mark the 25% and 75% quantile, the whiskers correspond to the 1.5 

times the interquartile range, the black dot’s mark outliers. (D) AUCell enrichment score of 

signatures derived from Savas et al. (Peter Savas et al., 2018) human breast cancer CD8+ 

Tissue resident memory T cells (Trm). Red line indicates the median signature score value 

across all clusters. Boxplots are sorted from high to low (left to right) for each cluster. 

Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and 

75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black dot’s 

mark outliers. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494081doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494081
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 Supplement
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Supplement Figure 4 (continued)
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Supplementary Figure 4: Tfh cells cluster analysis and supplementary phenotyping 

information of Tfh subsets. (A) UMAP of Tfh subsets derived from WNN of ADT and 

RNA data (B) Boxplots of enrichment of GO biological process pathways 

“GO_GERMINAL_CENTRE_FORMATION”and “GO_B_CELL_CHEMOTAXIS” across 

T cells & ILCs, sorted from high to low (left to right). Red line indicates the median 

expression across clusters. Box plots are coloured by lymphocyte lineage. Red line indicates 

the median expression for each marker across clusters. Boxplots middle line marks the 

median value, the lower and upper hinges mark the 25% and 75% quantile, the whiskers 

correspond to the 1.5 times the interquartile range, the black dot’s mark outliers. (C) 

Heatmap of top 5 differentially enriched GO biological process pathways for each cluster 

based on transcriptome. (D) Expression of Tfh cell markers (RNA) across all T-cell and ILC 

clusters. (E) Hierarchical clustering of differentially expressed genes between 3 identified 

Tfh states. (F) Dotplots visualising the expression of z-scaled RNA and ADT markers of 

interest on a across Tfh subsets. 
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Supplementary Figure 5 (continued)
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Supplementary Figure 5 (continued)
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Supplementary Figure 5 (continued)
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Supplementary Figure 5: Supplementary data for analysis of Tfh cell subsets spatial co-

localisation and cell-cell signalling. (A) UMAP of T cells and ILCs from Wu et al. (Wu et 

al.) with refined annotation of CD4 Tfh cells. (B) Pearson correlation heatmap of spatially 

deconvoluted cell pairs co-localised with CD4 Tfh subsets using Wu et al. data with refined 

annotations. (C) Pearson correlation heatmap of spatially deconvoluted cell pairs co-localised 

with CD4 Tfh subsets at a more granular resolution. (D) Dotplot of Pearson correlation 

values for spatially deconvoluted cells from (C). (E) Gene set enrichment analysis boxplots 

of GO biological process pathways “GO_B_CELL_CHEMOTAXIS”and 

“GO_ENDOTHELIAL_CELL_CHEMOTAXIS” across T cells and ILCs, sorted from high 

to low (left to right). Red line indicates the median expression. Box plots are coloured by 

lymphocyte lineage. Red line indicates the median expression for each marker across clusters. 

Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and 

75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black dot’s 

mark outliers. (F) Relative information flow contribution of signalling pathways (the sum of 

total R-L communication probability found with each signalling pathway) to be differentially 

enriched in CD4 Tfh cell subsets. Bar plots visualise the weighted variance in contribution 

when comparing CD103+ Tfh to IGFL2+ Tfh when scaled 0-1. Pathways found to be 

significant (p < 0.05) are coloured either blue if enriched in IGFL2 Tfh cells, or red if 

enriched in CD103 Tfh. (G) CCL, CSF and BTLA signalling pathway network information 

flow across all clusters. ‘Sender’ and ‘Receiver’ reflects direct expression of ligands and 

receptors (agonistic or antagonistic), ‘Mediator’ and ‘Influencer’ quantifies clusters' potential 

role in controlling receptor-ligand expression flow of the pathway within the system (TME). 

(H) Dotplot visualising receptor-ligand signalling information differentially increased or 

decreased in expression by CD103 Tfh and IGFL2 Tfh clusters. Red text highlights signalling 

pathways of interest. 
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Figure 6 Supplement
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Supplementary Figure 6: Supplementary data for analysis of Tfh cell subsets clinical 

relevance. (A) Heatmap of top differentiating RNA features from each identified Tfh state in 

our dataset  along with CD8+ Exhausted T cells and Tregs (MAST test; p_adj < 0.05). (B) 

UMAP of Bassez et al. (Ayse Bassez et al., 2021) breast cancer anti-PD-1 cohort T cell 

dataset. The top plot shows the Tfh redefined annotation used for all downstream analysis in 

our study. The bottom plot is a UMAP using the Bassez et al. original annotations (Ayse 

Bassez et al.) (C) Volcano plot marking top differentially expressed genes, comparing 

IGFL2+ Tfh cells of non-expander patients when sampled at baseline vs during treatment. 
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Supplementary Figure 7 (continued)
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Supplementary Figure 7: Supplementary data on the co-expression of RNA and ADT 

features found to drive TIL phenotypes. (A) Top PCA of differentially expressed RNA and 

ADT features, and their contribution to each WNN cluster. (B) Scree plot of optimal number 

of k clusters. (C) Cluster tree visualising the k-means partitions formed, and their 

relationship, for every increase in k clusters (D) Heatmap of top differentiating RNA and 

ADT features, z-normalised to -4 to +4. Top annotation bar corresponds with, from top to 

bottom: Median silhouette score of cluster, median protein weighting of cluster, k-means 

assigned meta state and broad lineage. (E) Phylogenetic tree projecting the correlation/co-

expression distance of top differentiating RNA and ADT features, irrespective of cluster 

association. Branch colouring depicts grouping derived from calculated k clusters. 
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