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Summary

Immune cells are critical determinants of solid tumour aetiology, but the diverse phenotypes of
intra-tumoural immune cells remain incompletely characterised. We applied integrated single
cell RNA sequencing (scRNA-Seq) and highly multiplexed protein epitope analysis to a cohort
of breast cancer samples to resolve cell states within the tumour microenvironment. We reveal
novel protein markers for resting and activated tumour infiltrating lymphocytes, and show that
high expression of CD103 primarily marks exhausted CD8 rather than tissue resident CD8 T-
cells in human breast cancers. We identify two distinct states of activated CD4+ T follicular
helper (Tth) cells. A population resembling conventional Tth (cTth) cells were localised
primarily to lymphoid aggregates by spatial transcriptomics. In contrast, cancer associated Tth
(caTth) cells expressing markers of tissue residency and exhaustion co-localized with cancer foci
and signalled to macrophages. Importantly, increased caTth : cTth ratio associated with

improved disease outcome and response to checkpoint immunotherapy.

Keywords: Breast cancer, Tumour microenvironment, Phenotyping, Integrated proteogenomics,
CITE-seq, T-follicular helper cells, cancer-associated T-follicular helper cells,Tth, caTth, Trm,
Tissue residency, Exhaustion, CD103, CD49f

Introduction

Solid tumours constitute a diverse ecosystem of cells whose functions can be coordinated by
malignant cells to promote their uncontrolled growth and spread (Hanahan & Weinberg, 2011).
The successes of immune and stromal targeted therapies in certain cancer types and individuals
but not others underscore the dynamic and variable intercellular relationships engaged by cancer
cells to sustain malignancy(Bruni et al., 2020; Valkenburg et al., 2018). Comprehensive
phenotyping of cell types in the tumour microenvironment (TME) is crucial to understand and
manipulate tumour immunity for patient benefit. Although breast cancers are characterised by
relatively low mutational load and lower immunogenicity, a role for tumour immune infiltration
in disease outcome has nonetheless been shown(Ayse Bassez et al., 2021; P. Savas et al., 2016;
Peter Savas et al., 2018; Wu et al., 2021; Y. Zhang et al., 2021). For example, the interplay

between tumour infiltrating lymphocytes (TILs) and tumor associated macrophages (TAMs) has
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been proposed to stratify patient prognosis and response to chemotherapy (Cassetta et al., 2019;

M. Molgora et al., 2020).

High-throughput single-cell RNA sequencing (scRNA-seq) is a powerful platform for
characterising the cellular constituents of heterogeneous biological systems such as the TME
(Azizi et al., 2018; Sijin Cheng et al., 2021). This method allows for the simultaneous
measurement of thousands of mRNAs from thousands of single cells per sample(Sijin Cheng et
al., 2021; La Manno et al., 2018; Svensson et al., 2018). However, scRNA-seq is limited by the
sensitivity of RNA measurements at single-cell resolution, and RNA expression does not always
correlate well with protein expression (Akan et al., 2012; Buccitelli & Selbach, 2020;
Schwanhdusser et al., 2011). Cellular indexing of transcriptomes and epitopes by sequencing
(CITE-Seq) combines scRNA-seq with detection of antibody-derived tags (ADT) as surrogates
for cell surface protein levels (Peterson et al., 2017; Stoeckius et al., 2017). Proteogenomics via
CITE-Seq permits the integration of transcriptome information with decades of immunological
studies that have dissected immune subsets and activation states using protein readouts. CITE-
Seq has proven useful in improving upon scRNA-seq-based cellular profiling, mostly in blood
samples (Hao et al., 2021; Triana et al., 2021). Here we demonstrate how cellular
proteogenomics enhances stratification of cell types within solid tumour microenvironments, and
allows identification of lymphocyte subsets with prognostic associations. Using a dataset of 7515
cells from 6 breast cancer patients, we dissect TIL subsets that were indistinguishable when
based on transcriptomics alone. We assign protein markers to phenotypes previously identified in
scRNA-seq studies to play a vital role in tumour immunity, and highlight discrepancies with
protein derived studies. We reveal patterns of RNA and protein co-expression across
lymphocytes, and identify new protein markers of activated tissue resident T-cells and innate
lymphoid cells (ILCs). We find that activated tumour-associated T follicular helper (Tfh) cells
differentiate into two distinct states, demarcated by the expression of either /GFL2 and NMB or
HAVCR2(TIM3), LAG3 and CD103 (ITGAE). Spatial transcriptomics reveals differential
localization of these two Tth cell subsets within the TME and unique signalling potential with
neighbouring cells. Supporting the clinical importance of precise cellular phenotyping, we show
that a signature of CD103+ Tth cells associates with improved survival in breast cancer and

correlates with improved response to anti-PD-1 therapy. These data underscore the value of
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integrated cellular phenotyping in complex tissue environments to identify cell types and states

integral to tumour biology and clinical outcome.

Results

Enhanced phenotyping of the tumour microenvironment through integrated RNA and
Protein based clustering

To better characterize the native tumour immune microenvironment of human breast cancer, we
applied a CITE-Seq panel of 97-157 antibodies (157 in 5 samples, 97 in one; Table S1) to 6
breast cancer samples, including at least one from each major clinical subtype: Luminal
(Estrogen-positive (ER+) and Progesterone-positive/negative (PR+/-), human epidermal growth
factor receptor positive (HER2+) and Triple negative breast cancer (TNBC) (Table S2). A total
of 16,423 cells passed our quality filter threshold (Methods) (Figure S1A), with a variable
number of ADT significantly enriched in each sample (MAST test; p_adj < 0.01) and a subset of
32 ADTs common to all samples (Figure S1B). Cells were partitioned using a weighted nearest
neighbour (WNN) approach that integrates RNA and surface protein expression (Hao et al.,
2021). A total of 52 clusters were identified through integrated clustering and each is labelled
based on its most distinctive RNA and ADT (MAST test; p_adj <0.01; Figure 1A-B). These 52
cellular phenotypes collapsed into 27 clusters using RNA alone or 16 clusters using only ADT
data for clustering (Figure 1C; Figure S1D-E). Despite moderate cell numbers and without
employing a lineage specific sub-clustering analysis(S. Cheng et al., 2021; Mulder et al., 2021;
Wu et al., 2021; Zheng et al., 2021), this strategy allowed us to differentiate monocytes and
macrophages into 3 distinct groups each: C28-Mono:A/F1 ADT-CD32hi, C29-Mono:FCN1
ADT-CR1 and C30-Mono:/FI30 ADT-CD16, and C24-Macro:CXCL10 ADT-CD69, C25-
Macro:SSP1 ADT-CD47, C26-Macro:SELENOP ADT-CD158el (Figure 1A-B), versus a single
transcriptome-based cluster for each (Figure S1D). These clusters demarcate phenotypes
previously found to be relevant to patient prognosis such as TREM2-high lipid associated
macrophages (LAM) from CXCL10+ Macrophages (Cassetta et al., 2019; Wu et al., 2021), or
inflammatory monocytes which exhibit cDC2-like profile from classical CD/6+ monocytes(S.
Cheng et al., 2021; Wu et al., 2021).
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Increased density of tumour infiltrating lymphocytes (TILs) is generally associated with
improved prognosis, and the success of immunotherapies is often attributed to the modulation of
TIL activity towards an anti-tumour response (Bruni et al., 2020). Previous studies of the breast
cancer TME have identified important T cell and innate lymphoid cell (ILC) populations using
fluorescence-based protein assays that have yet to be identified in sScRNA-seq studies (Azizi et
al., 2018; Janssen et al., 2020; Ruffell et al., 2012; P. Savas et al., 2018; Wagner et al., 2019).
We identified several CD3+ cell clusters in which protein data played a particularly large role in
clustering (elevated protein modality weighting; Figure 1B - asterisk marked) and which have a
low silhouette score, indicative of poor cluster distinction and stability when calculated using
RNA alone (Rousseeuw, 1987)( Figure S1F-G). The identification of such cell populations
uniquely when using integrated analysis emphasises the utility of augmenting scRNAseq with
proteomic measurements to enhance cellular phenotyping and delineate distinct cell populations.
The elevated protein modality weighting in clustering of CD3+ cells suggest these cells would
benefit the most from proteogenomic phenotyping, so we performed a targeted analysis of T cell

and ILC populations.

Targeted analysis of tumour-infiltrating lymphocytes identifies phenotypes which
transcriptomics or proteomics alone cannot distinguish

A total of 7515 T/ILC cells passed QC, comprising 21 clusters, with each cluster including cells
from at least 3 patients (Figure 2A-C; Figure S2A). Clusters were first stratified by protein
expression of CD3 and TCRap, with high or mid-levels designated as conventional or
/unconventional T cells and those with low levels classified as either natural killer (NK) cells or
ILCs, depending on additional marker expression (see Methods; Figure 2D-E; Figure S2B).
Two clusters with mixtures of both CD3 and TCRop high and low expressing cells were labelled
as Lymphocytes (Lymph; C14 & C20). All CD3+ T cells were segregated based on CD8 or CD4
expression and assessed for expression of unconventional T cell markers or “NK-like” markers
(see Methods; Figure 2D-E; Figure S2B). Top differentially expressed RNA and protein
features for each cluster are shown in Figure 2E and Table S3. Each cluster was also scored for
activity level (quiescent, low, mid or high) using a combination of published gene signatures

(Szabo, Levitin, et al., 2019), total ADT abundance, RNA abundance, ribosomal content (Wolf et
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al., 2020), and known markers of T cell activation such as CD69, IFNG, GZMB, ZNF683/Hobit,
PD-1, CD45RO (Cano-Gamez et al., 2020) (Figure 2B-C). Lastly, we collated gene signatures
of commonly described T cell states, sourced from previously published studies (Table S4), with
the aim to associate the observed clusters with an established lymphocyte effector function

(Figure S2J).

Integrated analysis generated 7 additional lymphocyte clusters compared to analysis of RNA
expression alone (Figure S2D-E). Three of these 7 clusters consist of CD3°" TCRop°" ILCs
with a resting transcriptional profile, distinguishable by their expression of innate cell protein
markers such as KLRG1, OX-40, cKIT, CD112 (PVR), IgG.Fc, or gamma-delta T cell receptor
pairs (TCRgd), which are designated as C11-ILC:RPL37 ADT-IgG.Fc, C13-ILC-gdT:C6orf48
ADT-KLRGI and C17-ILC-gdT:RACKI ADT-CD24 (Figure 2D-E; Figure S2B). These
clusters are likely to reflect a genuine cell state as they show no abnormal gene contaminants
from cells of other lineages, are low in mitochondrial genes, have nominal housekeeping gene
expression, and show a negligible level of mouse transcript (ambient control) or isotype control
ADTSs (Figure S2H-I). We also identify an unconventional T cell cluster that is CD161"eh
TCRVa7.2"e" ; canonical markers of mucosal associated invariant T cells (MAIT) which have
previously been implicated in anti-tumour immunity (Petley et al., 2021), which we designated
as C21-MAIT:HSP90AA1 ADT-TCRva7.2 (Figure 2E). These 4 clusters have a low RNA-
derived silhouette score and a high cluster similarity score, both of which reflect difficulty in
identifying these phenotypes from transcriptomics alone (Figure S2F-G). Indeed, when these
cell annotations were plotted onto UMAP space generated solely from RNA data, they were
found to be dispersed, further supporting that transcriptomic data alone is insufficient for their

demarcation (Figure 2F).

Multi-omic integration also significantly enhanced our ability to phenotype CD4+ T cells and
cell states characterised by low transcriptional activity (Figure 2C; Figure S2E-G ; Figure SJ).
For instance, we were able to stratify CD4+ Treg: FOXP3 cells into transcriptionally active
(TNFRSF9"&h ADT-4.1BB"&") and resting (IKZF2"e" ADT-ICOS™) clusters, which were found
to exhibit a gene expression profile similar to "Suppressive” and “Resting” Tregs respectively
(Guo et al., 2018)(Figure S2E), previously characterised using Smart-seq2 which provides
greater gene depth per cell compared to 10X Chromium (Wang et al., 2021). Our analysis also
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delineated CD4+ Th cells into 4 clusters of differing activation status, differentiated by their
expression of T cell effector activation markers ADT-CD45R0O and ADT-CD28, naive markers
such as CCR7 and IL7R and T cell resting enrichment scores (Figure S2E; Figure S2B-C).
These were labelled, in order of low to high transcriptional activity: C02-CD4+Th:GPR183
ADT-CD49fhi, C01-CD4+Th:TPT1 ADT-CCR4, C19-CD4+Th:RACKI1 ADT-CD7, C16-
CD4+T:GZMA ADT-CCRS. Integrated clustering also enabled us to separate a transcriptionally
quiescent T cell cluster weakly positive for CD4 and CDS transcripts (C04-T:N4BP2L2 ADT-
LE) into distinct CD4+ (C10-CD4+T:N4BP2L2 ADT-LE) and CD8+ (C12-CD8+T:N4BP2L2
ADT-LE) clusters (Figure S2E). While both of these CD8+ and CD4+ N4BPL2"e" clusters lack
any distinguishing protein markers outside of CD4 and CDS expression (and are thus annotated
as ADT-Low for “Low Expressing ADT”) (Figure 2E), they shared specific expression of long
non-coding RNAs including MALATI, KIAA1551 and N4BP2L2 and lack of expression of
activation markers such as CXCR4, CD69 and NFKBI1 (Figure S2B).

Proteogenomic analysis allowed us to associate protein markers with gene expression profiles
previously described in scRNA-seq studies to play an essential role in TIL biology. To assist
with visualisation of these markers we have provided a binary decision tree roadmap using the
most distinctive protein markers of each cluster (6 for ILC, 7 for CD4+ T-cells and 6 for CD8+

T-cells), and an array of ADT markers enriched in each respective cluster (Figure 2G).

Proteogenomic profiling refines markers of T cell activation, exhaustion and tissue
residency

Experimental readouts typically provide a normative observation of feature expression; a feature
is assigned as "high" or "low" in relationship to one another. Inconsistency can therefore arise
when translating and/or integrating results across experimental assays or models where the
features used to generate the comparative measurements are absent. We believe high-throughput
cellular proteogenomics can provide a framework for a more standardised distribution of feature
expression levels, particularly when performing cell type unbiased captures such as we have
attempted with this dataset, and therefore improves standardisation of phenotyping. We first

explored RNA and protein co-expression patterns of top differentiating cluster markers,
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including hallmark TIL features which previously have been described in literature to play an
important role in defining their phenotypes (See Methods). As circulating T-cells infiltrate
tissues they are reported to acquire the expression of either CD69 and/or CD103, markers
sometimes used interchangeably to identify CD8+ tissue resident memory T cells (Trm) (Cibrian
& Sanchez-Madrid, 2017; Lianne Kok et al., 2021; Okla et al., 2021; Szabo, Miron, et al., 2019).
In the breast cancer TME, we find CD69 to be expressed across most T cell and ILC clusters
(Figure 3A; Figure S3A), with increasing expression correlating with RNA signatures of TIL
activation (Figure 3B)(Cibrian & Sanchez-Madrid, 2017) and with CD48 and CD2, both
markers previously found to be associated with lymphocyte activation outside the context of
tumour biology (Figure 3A; Table SS)(Binder et al., 2020; McArdel et al., 2016). In contrast,
CD103 was more restricted (but not exclusive) to CD8 T-cells cells, proliferating cells and NK
cells (Figure 3A; Figure S3A). Furthermore, we find that CD103 only modestly correlates with
CD69 expression (Figure 3A; r=0.29, p = <0.001) (Table S5), with the exception of NK cells
(r=0.58, p =<0.001) and exhausted CD8 T-cells (r=0.59, p = <0.001). We further observed
CD103 can inversely correlate with CD69 in certain CD4+ T-cell states such as with Th1-like
CD4 IFNG+ expressing cells (C16 - CD4+ T : IFNG ADT-CCRS - r=-0.57, p = <0.001). These
data suggest that in human breast cancer TILs, CD69 and CD103 cannot be used interchangeably
and may be markers of more complex T cell phenotypes or states. Instead, we found the
expression of marker 2B4 to correlate most frequently with CD103 across all TILs (1=0.48 p =
<0.001) (Figure 3A)(Table S5).

Increased TIL density can be used as a metric of tumour immunological status and is generally
associated with good prognosis and response to immunotherapies (Maibach et al., 2020; Peter
Savas et al., 2016). However, the presence of certain types of TILs, such as bystander TILs not
specific for tumour antigens, resting or quiescent TILs, is likely to be less indicative of a strong
anti-tumor response than infiltration by active tumour-specific CTLs (Scheper et al., 2019;
Simoni et al., 2018). Therefore, it is important to find markers that can discriminate tumour-
reactive TILs relevant to tumour immune status from inactive “passenger” T cells that can dilute
the anti-tumor immune response. Unfortunately, lymphocytes with low transcriptional activity,
such as resting T cells (clusters C04-T:N4BP2L2 ADT-LE & C12-CD8+T:N4BP2L2 ADT-LE)
are challenging to phenotype with scRNA-seq (Figure 2; Figure S2F-G). This issue is

exacerbated in tumours, where markers commonly used to identify antigen-naive T-cells in
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blood such as CD45RA or lymph node homing markers CCR7 and CD62L (Martin &
Badovinac, 2018; Payne et al., 2020) can be found on tumour-reactive T-cells and activated T-
cells in ectopic lymphoid tissue(Ghorani et al., 2020; Wu et al., 2021; Zheng et al., 2021).
Furthermore, some markers such as naive T cell marker CD44 are ubiquitously expressed at a
high density across cell lineages and therefore challenging to use with cell-type unbiased CITE-
Seq (Saturates CITE-Seq cDNA library) (Buus et al., 2021). Conversely markers commonly
employed to assess T cell activation and/or migration state can be degraded by tumour
dissociation (Autengruber et al., 2012). We therefore examined whether we could identify new
protein markers that are enriched on resting lymphocytes in the TME. We found stem cell
marker CD49f to be highly expressed on both CD4+ and CD8+ T cell clusters characterised by
low transcriptional activity, particularly those with an elevated “resting” module score
(Methods). Indeed, CD49f correlates more strongly with gene expressions markers of naive T
cells (or early activated T-cells)(Gueguen et al., 2021), such as IL7R, CCR7, TCFI (encoded by
TCF7) and transcription factor KLF2, which drives S1PRI and CCR7 expression (L. Kok et al.,
2021; Skon et al., 2013; Wolf et al., 2020) than protein levels of naive T-cell markers CD62L or
CD45RA (Figure 3B). We also found the proportion of ribosomal content to be a valuable
indicator of TIL activity that can be inferred by scRNA-seq (high in resting cells), as previously
suggested for PBMC-derived T cells (Figure 3B) (Wolf et al., 2020).

The measurement of both RNA and proteome has also provided us with a platform to directly
evaluate phenotyping inconsistencies between transcriptomics and proteomics-based studies of
breast cancer TILs, particularly relating to markers of tissue residency versus exhaustion. For
example, a pan cancer T-cell analysis by Zeng et al. (Zheng et al., 2021) found naive CDS8 T-
cells to transition into exhausted CD8 T-cells (Tex) through two broad pathways, one which
constituted granzyme K+ (GZMK+) expressing effector memory CD8 T-cells (Tem), and the
other through tissue resident memory CD8 T-cells (Trm), which are governed by the residency-
defining transcription factor Hobit (encoded by ZNF683+)(Park et al., 2019; Park & Mackay,
2021). In our dataset we identify two similar clusters of CD8+ T-cells, GZMK+ (C03 - GZMK
ADT-NKG2Dhi) and ZNF683+ (C08 - ZNF683 ADT-CD57hi), prior to the acquisition of an
exhaustion profile (C15 - HAVCR2 ADT-CD103hi) (Figure 3C; Figure S3B), which matches a
phenotype described by others as dysfunctional (Figure 3C)(Li et al., 2019). Trm cells have

been proposed by several studies across infectious disease and cancer models to be marked by
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CD103 and CD69 expression, including studies in human tissues of breast cancers (Peter Savas
et al., 2018). However, integrated analysis revealed ZNF683+ Trm cells to be
CD103intermediate. Instead, Tex cells (C15 - HAVCR2 ADT-CD103hi) had the highest
expression of CD103 (2x higher than ZNF638+ T-cell cluster) (Figure 3D). Indeed, analysis of
signatures derived from bulk RNA-Seq analysis of FACS- sorted human breast cancer TIL
subsets reveals CD103+ CD69+ to primarily mark C15 - CD8+ Tex and not CO8 - ZNF683+
Trm cells (Figure 3E). Instead, if we take high expression of ZNF638+ to mark tissue resident
cells, we find CD8 Trm cells to be more precisely marked by low expression of protein markers
CD39 or ICOS and elevated expression of either NKG2D and/or CD57 in addition to
intermediate CD103 expression (Figure S3C; Figure 2E). Taken together, our analysis shows
how the direct measurement of both RNA and protein modalities may resolve a discrepancy in

the literature for the demarcation of Trm cells and Tex cells in the TME.

In summary, we find that integrated analysis of ADT and RNA co-expression is a valuable
approach to nominate novel markers of the hallmark features associated with lymphocyte
identity and activity in the tumour tissue context. Our dataset provides a rich resource to better
associate cell surface protein expression with transcriptional patterns and cell states of TILs and
can help clarify the functional consequences of established patterns of immune cell gene

expression in the TME.

Differentiated tissue resident T follicular helper cells can be classified by the expression of
CD103 or IGFL2.

Immune checkpoint inhibitors (ICI) targeting PD-1 have shown only a modest effect on survival
in breast cancer patients compared to other cancer types such as melanoma, renal or lung cancer
(Bruni et al., 2020; Wein et al., 2018). One of the primary therapeutic mechanisms of anti-PD-1
therapy is thought to be through prolonged activity of anti-tumour CD8+PD-1+ T cells, which
would otherwise be inhibited by PD-L1/L2 expression within the TME (Wei et al., 2018). In a
recent breast cancer single-cell atlas study, we found Tth cells to be the most abundant PD-1-
expressing cluster amongst all TILs across breast cancer samples (Wu et al., 2021), which

remains consistent in this dataset (Figure 2E, C06—CD4+Tth:CXCL13 ADT-PD1). The

10
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association of abundance of Tth cells with improved tumour immunity have recently been
described in several cancers, including breast cancer (Hollern et al., 2019b; Voabil et al., 2021;
Zheng et al., 2021), partially attributed to their expression of the chemokine CXCL13 of which
Tth cells are a major source of (Wu et al., 2021; Y. Zhang et al., 2021). Tth cells are known for
their role in regulating the formation and activity of germinal centres, physiological
microstructures found in lymphoid tissues that are essential for the development of high affinity
antibody-producing B cells (Crotty, 2014; Ma & Phan, 2017). How Tth cells behave within the
TME remains under investigation. Tth cells can acquire distinct phenotypes depending on the
cancer (Zheng et al., 2021). Therefore, we next investigated whether enhanced phenotyping by
integrated analysis of CITE-Seq can dissect breast cancer Tth cells into clinically relevant

subtypes.

After reclustering Tth cells, we identified 3 clusters: CD4 Tth:CXCR4, CD4 Tth:CD103 and
CD4 Tth:IGFL2 (Figure S4A), all of which were enriched for expression of genes and pathways
associated with Tth cell features (Figure 4C ; Figure S4B-D). Interestingly, we found a subset
of these Tth cells exhibited an exhaustion phenotype, reminiscent of dysfunctional/exhausted
CD8+ T cells(Li et al., 2019; Wu et al., 2021), characterised by upregulation of CD103, 2B4, and
CDA49b proteins and LAG3, CCL5, and HAVCR?2 genes (Figure 4A-B; Figure S4E-F ; Figure
3A). Surprisingly, GSEA of GO biological processes (n=6614 pathways, p < 0.05) shows
CD103+ Tth cells to correlate more strongly with CD8+ T exhausted cells than with other Tth
subsets (Figure 4D ; Figure S4C). In contrast, a population of Tth cells lacking CD103
expression were uniquely marked by elevated expression of the Neuromedin B (VNMB) and
Insulin growth factor ligand 2 (/IGFLZ2) genes (Figure 4B; Figure S4E-F). IGFL2 belongs to a
family of 4 genes with unclear biological function that have been found to be infrequently and
lowly expressed in various tissues, particularly skin, but upregulated during inflammation
(Emtage et al., 2006; Lobito et al., 2011). We employed pseudotime analysis to explore whether
breast cancer Tth cells could be partitioned into stable transcriptional cell states along a
trajectory of differentiation. Three stable states (Figure 4E-F) were identified, suggesting that
activated Tth cells (CXCR4"e" BCL6MeM IL7RME) can differentiate into either CD103+ Tth
(HAVCR2+ LAG3+), or IGFL2+ Tth cells (NMB"e" CXCL13"2") in the TME. When examining
markers previously documented to be critical to the activity and differentiation of Tth cell

lineage, we find our segregated Tth cell subsets have unique expression profiles, suggesting they

11


https://doi.org/10.1101/2022.05.31.494081
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494081; this version posted May 31, 2022. The copyright holder for this preprint (which

O ©O© 00 N O g »~» W N =

-_—

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

each have distinct physiological roles within the TME (Figure 4F-G; Figure S4F). For example,
the CD103+ Tth cell subset acquires elevated expression of multiple chemokines including
CCL3, CCL4, and CCL5 known to be involved in the recruitment of inflammatory cells to the
TME (Figure 4G)(Vilgelm & Richmond, 2019). This Tth population also expresses higher
levels of inflammatory mediators including IFNG, IL17A4, PRF1, and GZMB, resembling Th1 or
Th17 like Tth which have been reported previously in different disease contexts including
cancers (Morita et al., 2011; Singh et al., 2016; Zheng et al., 2021). In contrast, the IGFL2+ Tth
cell population showed specific upregulation of /L-10, BTLA, and CXCL13, markers important in
the maintenance of GC reactions (Figure 4E; Figure S4F)(Cosgrove et al., 2020; Havenar-
Daughton et al., 2016; Mintz et al., 2019; Xin et al., 2018).

Tissue CD103+ and IGFL2+ T follicular helper cells occupy distinct niches within the
tumour microenvironment

Given the significant differences in gene expression phenotypes of Tth cell populations, we
hypothesised that these Tth cell subsets may reside in unique tissue niches. We employed spatial
transcriptomic data from 5 previously published breast cancer samples (2 ER+, 3 TNBC; Figure
S5A) (Wu et al., 2021) to identify the location of Tth subsets and co-location with other cell
types. We observed that IGFL2+ Tth cells are preferentially localised to regions characterised by
high levels of immune infiltration, based on morphological examination, while CD103+ Tth

cells are preferentially localised to regions adjacent to cancer cells (Figure SA-B). Assessment
of co-localisation of these populations with other immune cell types shows that IGFL2+ Tth

cells often co-localise with both naive and memory B cells and dendritic cells, whereas CD103+
Tth cells co-localise with memory B cells and macrophages (Figure 5C; Figure S5B). Higher
resolution spatial analysis suggests that CD103+ Tth cells are more frequently in proximity to
proliferating T-cells and TREM2+ lipid-associated macrophages (Figure SSC-D), which express
elevated protein levels of PD-L1 and are enriched in patients with poor disease outcome (Martina
Molgora et al., 2020; Wu et al., 2021). In contrast, IGFL2+ Tth cells are found to be significantly
enriched proximal to CCR7+ CD4 T-cells, B cells and LAMP3+ DCs (mReg: DCs (Ginhoux et
al., 2022)), antigen-elicited DC found to engage and regulate tumour reactive T-cells (Maier et

al., 2020) (Figure S5C-D).
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To identify the signaling potential of Tth cell subpopulations, we employed a receptor-ligand
signalling pathway analysis. Using the expression of cognate receptors and ligands, signal events
and directionality can be predicted using scRNA-seq data (Jin et al., 2021). A number of
pathways were distinct between the two Tth cell subsets (Figure SD; Figure SD-F).
Interestingly, the CD103+ Tth cell subset had a unique CCL chemokine signalling profile
reflecting elevated expression of CCL molecules and CSF1 (p <0.01) (“sender” status, Figure
S5E; Supp Figure 5F). They shared this profile with LAG3+ CD8+ T cells, which with
proliferating T cells were the sole T cell secretors of CSF1 (Figure SD-E; Figure SSH). The
dual production of CCL and CSF1, critical ligands for macrophages, and the proximity to
macrophages suggest a potentially unique role for this Tth subset in interacting with
macrophages within the TME. This role is further supported by enrichment of the GO biological
processes’ “Macrophage activation involved in immune response” and “Chronic inflammatory
response" in this subset (Figure SSE). In contrast, IGFL2+ cells have a significantly elevated
engagement in BTLA signalling (Figure SD, Figure S5F-G), a pathway active in restraining GC
B cell selection and proliferation (Mintz et al., 2019).

IGFL2+ Tth cells are associated with poor prognosis in most cancers and enriched in anti-
PD-1 poor responders in breast cancer

Previous studies associate the enrichment of Tth cells with favourable prognosis across several
cancers (Hollern et al., 2019a; P. Savas et al., 2018), and CXCL13-producing Tth cells have
been specifically implicated in survival and response to chemotherapy and immunotherapy
(Ayse Bassez et al., 2021; Bindea et al., 2013; Gu-Trantien et al., 2013; Litchfield et al., 2021;
Yuanyuan Zhang et al.). We therefore investigated whether one or more of the Tth cell states
identified in this study is specifically associated with clinical outcome. We generated a gene
signature for each Tth cell subset, based on the top differentially expressed genes in each
population. Given their gene expression overlap with other T cells, we also included CD8+ Tex
and Treg clusters in our analysis, in order to generate gene expression signatures unique to Tth
cell subsets (Figure S6A). Survival analysis shows the CD103+ Tth cell expression signature to

be significantly associated with improved survival in breast cancer (HR = 0.63, p = 0.0057)
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when compared to that of IGFL2+ Tth cells (HR=0.85, p = 0.34), despite IGFL2+ Tth cells
found to express 2x more CXCLI13.

As Tth cells are one of the highest expressors of PD1, we reasoned that their activity may be
influenced by therapies targeting PD1. We examined a scRNA-Seq dataset that explored the
effect of anti-PD-1 checkpoint inhibitors on human breast cancers, in which patients were
stratified by T cell clonal enrichment (expanders vs non-expanders) as a surrogate measure of
anti-tumour activity levels (Ayse Bassez et al., 2021). We found that Tth cells in this dataset
could be similarly annotated based on either IGFL2/NMB (IGFL2+ Tth) or LAG3/HAVCR?2
(CD103+ Tth) expression (Figure S6B). Remarkably, the baseline abundance of both Tth cell
subsets was positively associated with response, with CD103+ Tth cells showing a pronounced
association with response, even greater than exhausted CD8 T cells, the presumptive target of
anti-PD1 treatment (Figure 6B). When we explored the dynamics of Tth subset abundance
through treatment between non-expanders and expanders, we observed a significant increase of
IGFL2+ Tth abundance during anti-PD-1 treatment in patients who did not respond to treatment
(NE; Figure 6C). Furthermore, we observed gene expression changes in IGFL2+ Tth cells
following anti-PD-1 treatment (Figure S6C), suggesting that anti-PD1 treatment may directly
regulate their activity. Combined, these results indicate that the ratio of CD103+ Tth to IGFL2+
Tth cells is an indicator of ongoing tumour immunity, and that the ratio of Tth cell subsets and
their gene expression can be altered by anti-PD-1 checkpoint blockade. Therefore, although Tth
cells have been proposed as biomarkers of active anti-cancer immunity, we find a specific

subpopulation of these cells associated with improved response to immunotherapy.

Discussion

The incorporation of proteomic data with gene expression into a joint single-cell analytical
framework for cell classification presents a promising avenue for improving the study of cellular
behaviour within tissues, particularly cancer environments. Immunology has historically relied
on a handful of cell surface protein measurements to delineate cell types; however, with the
advent of single-cell RNA sequencing, it has become apparent that the array of functional cell

types and states in the immune system is much more complex than previously appreciated(S.
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Cheng et al., 2021; Mulder et al., 2021; Triana et al., 2021; Zheng et al., 2021). Integrated
proteogenomic resources like the one we report here allow for the precise linking of cellular
transcriptomics to classical protein-based cell type dictionaries, such as those generated by the
Immunological Genome Project (Aguilar et al., 2020). This approach thereby acts as a bridge to
integrate a deep catalogue of classical immunological literature with cellular transcriptomic

atlases.

Integrated RNA and ADT analysis was very effective in cellular phenotyping of the TME,
allowing us to identify cell types and states which could not be defined using transcriptomics
alone (Figures 1-2) (Azizi et al., 2018; Janssen et al., 2020; Ruffell et al., 2012; P. Savas et al.,
2018; Wagner et al., 2019; Wu et al., 2021). The ability of transcriptomics alone to identify
cellular subsets increases as a function of cell number, therefore integrated analysis provides
substantial advantages in smaller studies using mid-throughput assays, for instance those using
droplet partitioning which currently predominate in biomedical research. Integrated analysis
particularly excelled in the phenotyping of cells with low transcriptional activity, such as ILCs
and gamma-delta T cells, which lack defining gene expression modules but nonetheless express a
discrete set of protein markers. The value of proteogenomic analysis in the identification of
immune subsets appears to be in part a function of whether these cells are peripheral or TME-
localized, particularly for cell types with cytotoxic properties. For instance, MAIT cells are
easily identified among PBMCs and some cancer types using RNA data alone (Hao et al., 2021;
Li et al., 2020). However in this study, and those generated by others in breast cancer (Azizi et
al., 2018; Ayse Bassez et al., 2021; P. Savas et al., 2018; Wu et al., 2021; Yuanyuan Zhang et al.,
2021), gene expression counts alone was insufficient to accurately distinguish MAIT cells from
other CTLs (Figure 2F; Figure SD-E). Unconventional T cells and ILCs are increasingly shown
to have an important role in regulating tumour immunity (Heinrich et al., 2022; Petley et al.,
2021), improving methodology for their identification is therefore important. We believe

integrated proteogenomics will be a major contributor in this regard.

TIL proteogenomics provided us with the tools to refine the protein markers commonly used for
phenotyping using flow cytometry. We were able to explore new markers early along the
trajectory of TIL activation, finding protein marker CD49f to be an alternative marker to CD62L

or CCR7 for the identification of resting, naive-like or early activating tumour residing T-cells
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and ILCs. CD49f correlated more strongly than CD62L or CD45RA with early genes of TIL
activation and differentiation such as KLF2 (regulator of chemokine receptor expression and
migration), TCF7 (encodes TCF1), IL7R, and CCR7 (Szabo, Levitin, et al., 2019; Wolf et al.,
2020). CDA49f (integrin a6) is a common stem cell marker, found on embryonic, mesenchymal,

mammary, hematopoietic and cancer stem cells, and proposed to play an important role in self-

renewal and differentiation of stem cells (Krebsbach & Villa-Diaz, 2017).

CD69 and CD103 are often used interchangeably to identify Trm cells despite both being
imperfect markers for tissue residency (Lianne Kok et al., 2021). Previous studies have shown
that Trm can lack the expression of CD69 and CD103, and their expression can also be found in
circulating T-cells. We show that nearly all breast cancer TILs express some levels of CD69
(Figure S3A), with elevated expression as they increase transcriptional activity (Figure 3B). We
also find CD609 to correlate poorly with CD103, in fact they were inversely correlated in some
cell types (Table S5). Instead, we identified the protein markers CD2 and CD48 to be
significantly co-expressed with CD69 (Figure 3A), both markers upregulated by activated
circulating lymphocytes (Binder et al., 2020; McArdel et al., 2016). These data suggest that
CD69 primarily marks TIL activation in human breast tissues. However, CD103 expression is
largely restricted to CD8+ T-cells and NK, but significantly elevated (~2X fold) by CD8+ Tex
cells rather than ZNF683+ T-cells which are most likely to be Trms (Figure 3D; (Caushi et al.,
2021; Zheng et al., 2021). Instead, Trm were best identified by elevated expression of CD57 or
NGK2D and an absence of CD39 or ICOS (Figure 2E; Figure S3C). This suggests that previous
studies that relied on high CD103 expression for targeted analysis of Trm (Ganesan et al., 2017,
L. Kok et al., 2021; Malik Brian et al., 2017; Nizard et al., 2017; Park et al., 2019; Peter Savas et
al., 2018; Simoni et al., 2018) may have inadvertently included Tex cells, a population which we
and others have found to have distinct expression of CD39 and resemble tumour-reactive CD8 T-

cells (Duhen et al., 2018; Li et al., 2019).

Similar to FACS-based methods, a caveat regarding the application of this method is its reliance
on individual markers for differentiating cell types. Additionally, performing CITE-Seq on
dissociated tumour samples is technically challenging, and, as expected, we saw low signal-to-
noise ratios for several protein markers, particularly those that are lowly expressed (Buus et al.,

2020). This constraint may lead to inadequate differentiation of certain clusters in an
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unsupervised manner and may be particularly true for cell types where only one or two markers
are used for differentiation, such as gdT cells (Payne et al., 2020). Therefore, identifying
additional markers to delineate such cell types is crucial for further immune cell atlas efforts. We
also believe the restricted number of cells typically captured by droplet-based platforms, the
underrepresentation of certain cell types such as neutrophils and the lack of information about
cellular granularity and size together suggest that this method cannot yet entirely replace FACS-
based assays for phenotyping. Instead, we propose that ADT-derived cytometry complements
FACS as a discovery tool for hypothesis generation, from which flow cytometric platforms can
later be used to target cell types of interest for further analysis and quantitation. Our protein
marker decision tree (Figure 2G) is a first step towards designing protein marker sets for FACS-

based cell type identification.

Despite these limitations, CITE-Seq allowed us to generate new insights into the complex breast
cancer immune TME. The canonical role for Tth cells is to support B cells, yet we find a
surprising abundance of Tth cells in breast cancer relative to the proportion of B cells (B cells =
222, Tth cells = 483) (Figure 1). As Tth cells are the dominant PD-1 expressing cell type in the
TME, and as PD-1 is the target of the most successful checkpoint blockade therapy currently in
the clinic, we hypothesised that integrated analysis might reveal previously undescribed Tth cell
states with functions additional to their canonical role in germinal centre formation and
operation. Indeed, we were able to identify three subsets of Tth cells in the breast cancer TME -
a baseline (CXCR4"e/BCL6"M "/ IL7RMeM) state which differentiate into NMB™8/IGFL2"h state
and/or an exhausted-like HAVCR2""/LLAG3"¢" state. Using CITE-Seq we confirmed the
expression of CD103 and 2B4 by this latter population, markers typically associated with CD8+
Trm and Tex (P. Savas et al., 2018; Scott et al., 2019). Spatially-resolved transcriptomics showed
distinct niches within the TME for the IGFL2+ and CD103+ Tth cell populations. The IGFL2+
population was found predominantly in lymphoid aggregates resembling tertiary lymphoid
structures and associating with B cells, suggesting a location and function similar to the
physiological role for Tth cells; conventional Tth (cTth). In contrast, CD103+ Tth were found
disseminated throughout the tumour, particularly in proximity to cancer cells and macrophages;
cancer-associated Tth (caTth). The potential for unique interactions with distinct immune cell
types by Tth subsets was further supported by the expression of signalling molecules including
CCL-family chemokines and CSF1 by CD103+ Tth cells (Figure 5).
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Immune cell phenotype is heavily influenced by the immediate cellular environment, with
cancers in particular presenting diverse milieus in which TILs reside and receive signals,
potentially leading to their acquisition of “neophenotypes” not found in the corresponding
classical cell state or lineage. In our dataset, LAG3+/CD103+ CD4 Tth cells and
LAG3+/CD103+ exhausted CDS8 T cells expressed many RNA signatures and protein markers in
common, supporting the proposition that the TME can influence lymphocytes to acquire
neophenotypes outside common lineage-associated phenotypes (Figure 5). Given their shared
inflammatory gene expression, including CCL chemokines and CSF1, and co-localisation with
macrophages, we hypothesise that both exhausted populations promote inflammation outside of
lymphoid structures, which has recently been proposed in mouse models (Kersten et al., 2021).
As both increased macrophage infiltration and increased exhaustion of T cells are strongly linked
with patient prognosis (Cassetta et al., 2019; Foroutan et al., 2021), further studies on the

downstream effect of exhaustion on adjacent immune cells within the TME is vital.

Survival analysis demonstrated the proportion of Tth subsets to be of clinical importance, with
CD103+ Tth cell enrichment associated with improved survival, and improved response to
checkpoint blockade in a breast cancer cohort (Figure 6). Conversely, the relative proportion of
IGFL2+ Tth was enriched in patients with low T cell clonal expansion following anti-PD1
treatment, a clinical feature associated with poor anti-tumour responses. The increased
proportion of IGFL2+ cells, and changes in gene expression following treatment suggests that
they are an important target of this immunotherapy. Recent reports have highlighted the
importance of B cells and tertiary lymphoid structures (TLSs) in the response of diverse cancers
to immunotherapy (Cabrita et al., 2020; Helmink et al., 2020).Our data provides the first
evidence that Tth subsets may make positive and negative contributions to the response to

immunotherapy, warranting further investigation.

Limitation of the Study

Generating good quality CITE-Seq data from dissociated tumours is challenging, noise is
introduced either through non-specific binding of antibody oligos from lysed cells post staining
or the through encapsulation of ambient antibody oligos with cells during oil droplet partitioning.

This in addition to the affect that enzymatic dissociation can have on several epitope targets of
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antibodies, and the technical variation introduced by using a different antibody master mix for
each capture. For the listed reasons, we believe the epitope data used in this study has a
significant number of false negatives. Furthermore, as the sensitivity is reduced, we often opted
to rely on cluster median or average expression when possible, rather than truly single-cell
analysis.

Breast cancer is a heterogenous disease and can manifest a diversity of spatially organised
structures. We explored only five datasets (3 TNBC and 2 ER+) for co-localisation of Tth cells
subsets. We believe a larger cohort is required to comprehensively understand their role in the

TME, and in their manifestation depending on breast cancer subtype.
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Figure 1: Integrated proteogenomic analysis of the breast tumour microenvironment
enhances clustering resolution when compared to ADT or RNA derived clustering. (A)
UMAP of RNA and ADT integrated clustering analysis identified 52 cell clusters within 6
human breast cancer samples. Violin plots on the right display the relative contribution of ADT
markers to the definition of each cluster (“protein weighting”; (Hao et al., 2021)) and the dashed
line marks the median value across all clusters (0.246). (B) Differentially enriched ADT (top)
and RNA (bottom) features for each cluster (MAST test; p_adj < 0.05), with defining RNA and
ADT features labelled on the right. Top annotation dendrogram indicates the cluster relationship
derived from integrated RNA and ADT PCA values. Top bar annotations provide the mean
silhouette score and median weighted protein weighting for each cluster. (C) Alluvial plot
visualising the relationship of assigned cell clusters when defined based on RNA alone (left, 27

clusters), integrated RNA and ADT (center, 52 clusters), or ADT alone (right, 16 clusters).
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Figure 2: Targeted proteogenomic analysis of T and innate lymphocyte cells improves
characterisation of TILs and identifies cell types which cannot be identified by RNA or
protein modalities alone. (A) UMAP visualisation of integrated clustering of T and innate
lymphoid cells derived from 6 human breast cancer samples. Clusters are numbered in order of
decreasing cell number. (B) Protein weighting score, indicating the weighted proportion of ADT-
derived features which contributed to the nearest neighbour calculation for the partitioning of
cells into clusters. Increasing scores indicate increasing ‘weight’ of protein markers in the
definition of a given cluster. Dashed red line indicates the median protein weighting score across
clusters (0.451). Boxplots middle line marks the median value, the lower and upper hinges mark
the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the
black dot’s mark outliers. (C) UMAP plots of cells in (A) colored by the following from left to
right: patient sample, broad cell lineage and transcriptional activity score (see Methods). (D)
Expression of lineage-defining ADT markers across T/ILC clusters, colored by assigned lineage
and ordered by cluster size for each respective lineage subset. Boxplots middle line marks the
median value, the lower and upper hinges mark the 25% and 75% quantile, the whiskers
correspond to the 1.5 times the interquartile range, the black dot’s mark outliers. (E) Dotplot of
expression (cluster average) of the RNA and ADT markers used to annotate each cluster. (F)
WNN-derived annotations of clusters C11-ILC, C13-ILC/gdT, C17-ILC/gdT, and C21-CD8+
MAIT cells (red) projected onto the UMAP generated solely by RNA data. (G) Protein selection
decision tree towards profiling of identified gene expression profile. ‘Low protein’ marks
clusters which have have low enrichment of ADT-derived UMIs, ‘High protein’ marks cluster

which have a high number of ADT-derived UMIs enriched.
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Figure 3: The expression of protein and RNA features of TIL activation and tissue
residency markers in breast cancers. (A) Pearson correlation coefficient values of select
pairing of ADT markers stratified by cell cluster. The global Pearson coefficient value for each
ADT pair is provided, please see Table S5 for Pearson coefficient values for each cluster. (B)
RNA & ADT co-expression heatmap of features (rows) known to be relevant to activation,
migration, exhaustion and tissue residency of T cells. Red text highlights ADT markers and
green text highlights RNA markers. Boxplots at the top of the heatmap show the protein
expression of CD49f grouped by T cell activity (see Methods), sorted from high to low (left to
right). Boxplots middle line marks the median value, the lower and upper hinges mark the 25%
and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black
dot’s mark outliers. Percent ribo refers to the proportion of ribosomal counts relative to all other
expressed genes. “CD4/CD8 rest” is a published signature score based on (Szabo, Levitin, et al.,
2019) that reflects enrichment of genes associated with inactive/resting CD4 & CD8 T cells. (C)
AUCell enrichment score of signatures derived from Zemin et al. (Zheng et al., 2021) pan cancer
CD8+ T-cell exhausted (Tex) and Li et al. (Li et al., 2019) dysfunctional CD8 T-cell, sorted from
high to low (left to right). The top 50 differentially expressed genes were used towards
calculating enrichment score. Red line indicates the median signature score value across all
clusters. Red text indicates populations discussed in the text. Boxplots middle line marks the
median value, the lower and upper hinges mark the 25% and 75% quantile, the whiskers
correspond to the 1.5 times the interquartile range, the black dot’s mark outliers. (D) Log
normalised expression of ADT markers CD103 and CD69 across T-cell and ILC clusters, sorted
from high to low (left to right). Box plots are coloured by broad lymphocyte lineage. Red line
indicates the median expression for each marker across clusters. Red text indicates populations
discussed in the text. Boxplots middle line marks the median value, the lower and upper hinges
mark the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range,
the black dot’s mark outliers. (E) Enrichment scores of gene signatures derived from Savas et al.
study (Peter Savas et al., 2018) mapped into integrated CD8 T cell clusters. AUCell enrichment
scores calculated from top 50 differentially expressed genes derived from bulk RNA-seq analysis
of CD8 T-cells sorted by Flowcytometry into CD103+ CD69+ (left) or CD103- CD69+ (right).
Boxplots are sorted from high to low (left to right) for each cluster. Red line indicates the median

signature score value across all clusters. Red text indicates populations discussed in the text.
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1 Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and
2 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black dot’s

3 mark outliers.
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Figure 4: Integrated ADT and RNA clustering reveals novel subsets of Tfh cells in breast
cancers. (A) Exhausted CD8+ Trm module score overlaid on the T cell/ILC WNN-derived
UMAP (see Figure 2A). (B) Tth cells divided into the 3 identified subclusters are plotted for,
from left to right, exhaustion module score, normalised gene expression of CXCR4 or IGFL?2,
and normalised protein expression of ADT-CD103. A two-sided t-test comparison between each
cluster was performed, p-values are denoted by asterisks: *p <0.05, **p <0.01, ***p <0.001 and
**%%p <0.0001). Boxplots middle line marks the median value, the lower and upper hinges mark
the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the
black dot’s mark outliers. (C) Gene set enrichment analysis boxplots for the GO biological
process pathway “GO_GERMINAL CENTRE FORMATION” across T cells & ILCs, sorted
from high to low (left to right). Red line indicates the median expression value across all clusters.
Red text marks Tth populations. Boxplots middle line marks the median value, the lower and
upper hinges mark the 25% and 75% quantile, the whiskers correspond to the 1.5 times the
interquartile range, the black dot’s mark outliers. (D) Pearson correlation heatmap of GO
biological process pathways found to be significantly enriched (n=6614, p < 0.05) for each
cluster. Red text marks Tth populations. Red boxes highlight populations of interest outlined in
text. (E) UMAP projections of pseudotime analysis using R package Monocle3 (Cao et al., 2019)
depicting the bifurcation of CXCR4+ Tth cells (Node 1) into either the CD103+ exhausted-like
state (Node 2) or an IGFL2+ state (Node 3). (F) RNA and ADT density kernel expression of
known Tth-relevant markers overlaid on UMAP projections derived from monocle3 pseudotime
analysis (C) (G) Expression of known Tfh-relevant transcription factors, cytokines, chemokines
and markers of subset differentiation within this study, stratified by subcluster, along the axis of

pseudotime differentiation trajectory.
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Figure 5: Localisation and signalling of tumour residing CD103+ and IGFL2+ Tfh subsets
in breast cancers. (A) Enrichment scores for B cells, IGFL2 Tth, CD103 Tth and Dendritic
cells (DC) overlaid on representative H&E images with pathological annotation shown for
reference. (B) Heatmap of the enrichment (row scaled) of spatially deconvoluted cell types by
pathological annotation as categorised by distinct morphological regions. The median value
across 5 breast cancer samples from Wu et al. (Wu et al., 2021)(3 TNBC, 2 ER+) were used. (C)
Pearson correlation heatmap of spatially deconvoluted cell pairs of interest. Red text marks
populations of interest described in text. (D) CCL, CSF and BTLA signalling pathway network
characterization across immune cell clusters. ‘Sender’ and ‘Receiver’ status reflects direct
expression of ligands and receptors (agonistic or antagonistic). ‘Mediator’ and ‘Influencer’
quantifies the potential role in controlling receptor-ligand expression flow of the pathway within
the system (here TME). Red text marks Tth populations. (E) Chord Diagram representing the
inferred cell-cell signalling of the CSF1-CSF1R pathway across all immune cells in the dataset.

Red text marks populations of interest described in text.
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Figure 6: Tfh survival analysis and enrichment analysis of an anti-PD-1 breast cancer
cohort. (A) Kaplan—Meier plots showing the associations between CD103+ Tth and IGFL2+ Tth
signatures with survival in the TCGA cohort across all BRCA. The median group cutoff was
used. P values were calculated using the log-rank test. The Hazard ratio was calculated as per
cox proportional-hazards model. Dotted lines show 95% confidence interval. (B) Fold change in
proportion of T cell subsets in pre-treated breast cancer patient samples classified as Non-
expander (patients with low T clonal expansion) or Expander (patients with high T-cell clonal
expansion), derived from Bassez et al. (2021), refined with Tth subsetting. P-values calculated
from non-parametric t-test (n=29) using package R package Speckle(Phipson et al., 2021). (C)
Enrichment comparison of Bassez et al. (2021) breast cancer tumours sampled prior to (baseline)
or during PD-1 treatment for none expanders (patients with low T clonal expansion) vs
expanders (patients with high T-cell clonal expansion). Change of T-cell fraction of CDS8 Tex,
Tth CD103 and Tth IGFL2 subsets is shown. P-values are calculated from non-parametric t-test
using R package Speckle (Phipson et al., 2021), see Table S6 for n sampled for each condition or
group. See Bassez et al. (2021) for further detail on the patient cohort (Ayse Bassez et al., 2021).
Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and
75% quantile, the whiskers correspond to the 1.5 times the interquartile range and dot’s mark

outliers.
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STAR Methods

LEAD CONTACT

For any further information and requests should be directed to and fulfilled by the lead contact,

Alexander Swarbrick (a.swarbrick@garvan.org.au).

Data and Code Availability

The scRNA-seq data processed in this study is available to be explored and downloaded using
the Broad Single-Cell portal at https://singlecell.broadinstitute.org/single cell/study/SCP1793.

All scripts used to process data and perform statistical analysis are available on
https://github.com/Swarbricklab-code/BrCa_Integrated proteogenomics. Raw FASTQ data can
be accessed from the NCBI Gene Expression Omnibus database GSE199219. Any code used to

visualise data is available from the corresponding authors upon reasonable request.

Experimental model and subject details

Patient material, ethics approval and consent for publication

The human breast cancer samples used in this study were collected following protocols x13-
0133, x16-018, x17-155, x19-0496. Ethical approval for this study was acquired by the Sydney
Local Health Districts Ethics committee, St Vincent’s hospital Ethics Committee, and Royal
Prince Alfred Hospital zone. Consent for the use of samples in this study was obtained from all

patients prior to collection of tissue, and data were de-identified as per approved protocol.

Method Details

Single-cell suspension generation of samples

Breast tissue was enzymatically and mechanically dissociated as per the Human Tumor

Dissociation Kit (Miltenyi Biotec) protocol. The dissociated breast sample was then passed
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through a 100 um MACS Smart Strainers (Miltenyi Biotec), topped up with RPMI 1640 10%
FCS then centrifuged at 300 x g for 5 min. Supernatant was discarded, red blood cells were lysed
using RBC lysing buffer (Becton Dickinson) for 5 minutes, then washed twice in PBS 10% FCS.
All samples were cryopreserved in 10% DMSO, 40% RPMI 1640 and 50 % FBS solution then
stored in liquid nitrogen until day of experiment, when samples were thawed in a 37°C liquid
bath for 2 minutes, washed twice in RPMI 1640 10% FBS media, passed through a 100 um
strainer then resuspended in 100ul PBS 10% FCS media.

Sample preparation and CITE-Seq antibody staining

TotalSeqg-A antibodies (Biolegend, USA) compatible with 10X Chromium 3° mRNA platform
were used. The list of antibodies used for each sample are provided in the Supplement (Table
S1). CITE-Seq was performed as previously described by Stoeckius et. al (Stoeckius et al., 2017)
with the following modifications: Approximately 1 million cells per sample were resuspended in
95 ul of cell staining buffer (Biolegend, USA) with 5 ul of Fc receptor Block (TrueStain FcX,
Biolegend, USA) for 15 min. Cells were then centrifuged at 350 x g for 5 min, supernatant
discard, then 100ul of CITE-Seq mastermix (0.5ug of each Antibody) which was prepared earlier
in that day with staining buffer (Biolegend, USA) was added to palleted samples. Cells were
incubated for 30 min on ice, then washed three times. Approximately 3% 3T3 Mouse cells were

then spiked into each sample as control, to estimate ambient RNA and ADT.

Single-cell capture using 10x genomics chromium and sequencing

Cells for each sample were counted and confirmed to have > 80% viability using
haemocytometer. Recovery of a total of 4000 to 6000 cells was the aim for each sample. Single-
cell captures were performed using 10X Chromium Single-Cell 3’ v3 with exception to one
breast tissue sample where Single-cell 3’ v2 kit was used (Table S1). Sample CID4676,
CID4660, CID4664 were captured as one pool (multiplexed). Manufacturers protocol was
followed in the preparation of RNA and ADT ¢cDNA libraries. The cDNA libraries generated for
each respective modality were sequenced separately on Illumina NextSeq 500. The following
cycle settings were used for RNA cDNA libraries 28bp (Read 1), 91bp (Read 2) and 8bp (Index)
and we aimed for 50,000 reads per cell. The following cycle settings were used for ADT cDNA
libraries 28bp (Read 1), 24bp (Read 2) and 8bp (Index) and we aimed for 35,000 reads per cell.
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Single-cell RNA data processing

10x Genomics Cell Ranger (v3.0.4) was used to demultiplex BCL files to FASTQs, cell barcode
demultiplexing, genome reference alignment (GRCh38 and mm10) towards generation of unique
molecule identifier (UMI) count matrices. The CellRanger UMI counts from the “filtered
barcode” list were used. All cells that have greater than 25% mitochondrial content and/or
between 10% and 95% mouse mm10 aligned UMI’s were discarded as doublets, low quality
cells, or as cells with increased ambient contamination. All mouse UMI counts except those
expressed by the top 100 genes were removed prior to analysis. Samples CID4676, CID4660,
CID4664 were demultiplexed using method “Souporcell” (Heaton et al., 2020) as instructed by
developers and using default parameters. Genotype information for demultiplexing was
generated by running UK Biobank Axiom array (ThermoFisher Scientific, Catalogue 902502) on
each patient PBMC. The R package Seurat v4.0.4 was used for normalising, scaling,
dimensionality reduction and cluster assignment using default parameters with two deviations,
the first 40 principle components (PC) were used for dimensional reduction and to generate
nearest neighbour graph, and an increased resolution of ‘1’ was used for clustering. Sample

CID4676 was removed from all downstream analysis as it contained less than 50 cells.

CITE-Seq data processing

The FASTQ demultiplexed reads for ADT libraries were assigned to each cell and antibody
using package CITE-Seq count (v1.4.3, https://github.com/Hoohm/CITE-seq-Count), using the

authors’ recommended parameters. Briefly, a cell barcode whitelist obtained from Cell Ranger
“filtered” out for each sample was used for cell demultiplexing. A cell barcode levenshtein
distance of 1 (--bc_collapsing_dist 1) and UMI distance of 2 (--umi_collapsing_dist 2) was allowed
to be collapsed. The Antibody barcode list for TotalSeq-A (Biolegend, USA) used to demultiplex
ADT is provided in Table S1. A levenshtein distance of 3 was permitted for ADT barcode

demultiplexing (--max-error 3).
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ADT counts were normalised using Seurat v4’s inbuilt centered-log ratio (CLR) transformation
within cells (Margin 2). To determine which antibodies were enriched, we first constructed a
nearest neighbour graph (‘FindNeigbours”), clustered cells on RNA (‘FindClusters’) at 1.2
resolution, the median absolute deviation of cells from each cluster was calculated and any cells
that had 10-fold total ADT counts were discarded. To determine which antibodies are enriched
within each sample, Seurat’s ‘FindAllMarkers’ across all clusters at 1.2 resolution after
excluding mouse cells, was run for each individual sample. Only ADT features found to be
enriched were used in the PC analysis, from which then the first 20 PCs were used towards

dimensional reduction, graph construction and clustering analysis.

Batch correction and Integration of RNA and CITE-Seq data

RNA and ADT assays were both first batch corrected across patients within each respective
assay using Seurat v4 (4.0.4) prior to integration across assays. For RNA, the default parameters
were used with the following deviation: the top 5000 anchor features were used in the step
“FindIntegrationAnchors”, and the top 40 PC dimensions were used for the “IntegrateData” step.
The top 40 PCs were similarly used for all subsequent steps; nearest neighbourhood calculation,
cluster determination, UMAP calculation. ADT assay was processed similarly to RNA however
only the top 20 PCs were used, and all ADT features (except Isotype controls) were used as
anchors. The Batch corrected RNA and ADT matrices were then integrated using SeuratV4’s
weighted-nearest neighbour (WNN), an approach which allows for simultaneous clustering of
cells based on RNA and surface protein expression (ADT) (Hao et al., 2021). Integration was
performed with developer recommended (default) parameters (k = 20) with the following
modifications: The first 50 PC dimensions were used for RNA, and the first 20 PCs for ADT, in
step "FindMultiModalNeighbors”. A resolution of 3.2 and algorithm 3 (SLM - smart local
moving) was used for “FindClusters”. The majority of clusters were found to be present in most
or all samples, with the exception of neoplastic epithelial cell clusters (C47-51) and clusters
containing fewer than 50 cells, such as cluster C32-Mast:TPSB2 ADT-cKIT and C33-
Endo:SEMA3G ADT-4.1BBL (Figure S1C).
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Silhouette score and cluster probability calculation

The silhouette coefficient was calculated using R package cluster 2.1.0. An euclidean distance
matrix was generated from the first 40 PCs calculated from RNA assay alone, the same PCs
which were used for dimensionality reduction and clustering as described above for processing
RNA counts. The cell annotations were derived from the WNN approach, calculated from RNA
and ADT assays as described above and shown for all cell lineages as in Figure 1 or targeted
TIL analysis in Figure 2.To calculate the cluster probability, we used an approach previously
described by Lun et al. ((Lun et al., 2016) Scran

https://bioconductor.org/packages/devel/bioc/vignettes/scran/inst/doc/scran.html) which

measures how many cells were partitioned into the same cluster after bootstrapping. We took the
PCAs generated by Seurat’s v4 RNA assay analysis however with cell assignments to clusters set
as per WNN of ADT and RNA modalities as described above. R Package Scran v1.18 was then
used to bootstrap clusters (‘bootstrapCluster’) and to generate shared nearest neighbour graphs,
and the paired co-assignment probability of cells to the same partition was evaluated using

package igraph v1.2.6 function ‘cluster walktrap’.

Differential expression analysis, gene signature score modules, GO enrichment analysis.

Differential gene expression analysis was performed using R package Seurat v4.0.4 function
‘FindAllMarkers’, using MAST v1.16.0 test (Finak et al., 2015). Module scoring for each gene
signature was calculated using Seurat’s ‘AddModulScore’. The list of signatures used and their
scource are available in Table S4. The cluster median module score of each signature was scaled
0-1 then visualised using spider plots using R package fmsb v0.7.0 (CRAN). R Package VISION
v2.1 (DeTomaso et al., 2019) was employed to calculate enrichment of Gene ontology (GO)
biological process’s, using immunological signature gene sets (c7.all.v7.2.symbols.gmt) derived
from Molecular Signatures Database (MSigDB)(Subramanian et al., 2005). Either Complex
Heatmap v2.7.11(Gu et al., 2016) or pheatmap v1.0.12 (CRAN) were used to visualise
differentially expressed ADT, RNA, module scores and GO results. Seurat’s ‘DotPlot” function
was used to visualise all dot plots. R package AUCell v1.12 (Aibar et al., 2017) was used to
score CD8 T-cell Bulk RNA-seq signatures from Savas et al (P. Savas et al., 2018).
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T cell subsetting

Clusters were first stratified by their protein expression level of CD3 or TCRaf, with high-mid
levels designated as conventional/unconventional T-cells, and low levels classified as either
Natural killer (NK) cells or ILCs, depending on expression of the markers ADT-NKP46, ADT-
CD56, ADT-KLRGI1, ADT-cKIT, ADT-TCRgd, GNLY and TRDC (Figure 2D-E; Figure
S2B). Two clusters with mixtures of both innate and adaptive lineages were simply labelled
Lymphocyte (Lymph). All CD3+ T cells were segregated based on CD8 or CD4 expression,
assessed for expression of unconventional T cell markers such as ADT-CD161, ADT-TCRVa7.2
and ADT-TCRyd, or markers that may signify “NK-like” features such as elevated ADT-
NKG2D and ADT-CD57, TRDC, KLRD1, or GNLY (Figure 2D-E; Figure S2B). Top
differentially expressed features for each cluster are shown in Figure 2E and Table S3. Each
cluster was also scored for activity level (quiescent, low, mid or high) using previously described
attributes of lymphocyte activation status such as published gene signatures (Szabo, Levitin, et
al., 2019), total ADT abundance expressed by cell, RNA abundance and ribosomal content (Wolf
et al., 2020), and known markers of T cell activation such as CD69, IFNG, GZMB,
ZNF683/Hobbit, PD-1,CD45RO (Cano-Gamez et al., 2020) (Figure 2B-C). Lastly, we collated
gene signatures of commonly described T cell states, sourced from previous published studies
(Table S4), with the aim to associate the observed clusters with a previously ascribed

lymphocyte effector function (Figure S2J).

Spatial transcriptomic analysis

Visium patient sample counts and pathology notes were sourced from Wu et al. study (Wu et al.,
2021). The single-cell dataset used towards deconvolution was similarly taken from Wu et al.
study (Wu et al., 2021) however further processed to stratify Tth cluster into CD103 Tth and
IGFL2 Tth. To integrate the single-cell and spatial transcriptomics data (Visium), we used the
software stereoscope v. 0.3.1 (Andersson et al., 2020). As input, the method takes raw UMI
count data from the single cell and spatial transcriptomics experiments, together with cell type
annotations for the former. From this, a single proportion matrix is produced. The matrix gives
the proportion of each cell type (defined in the single cell data) at every spatial location. To

improve the performance of stereoscope, we used a curated set of highly variable genes.
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In order to reduce the runtime, we employed a subsampling strategy similar to that proposed in the
original stereoscope manuscript. More specifically, we first defined a lower and upper bound
(here, 25 and 250 respectively). Next, cells were sampled according to the following scheme: if a
cell type had fewer members than the lower bound, we excluded it from the analysis; if a cell type
had more or the same number of members as the lower bound, but fewer or the same number of
members as the upper bound, we used all cells within the cell type; if a cell type had more members
than the upper bound, we randomly sampled #[upper bound] cells from the cell type (without

replacement).

stereoscope was run with the following parameter settings: batch size - 2048, number of epochs
- 50000, These settings were used in both steps of stereoscope, i.e., the parameter inference step

and the proportion estimation step. Default values were used for all other parameters.

Highly variable genes were extracted by applying a sequence of three functions from the scanpy
suite (v. 1.7.2) to the single cell data. First, we normalized the gene expression data, then, the
normalized values were log-transformed (using pseudocount 1), finally, the highly variable genes

were identified from the transformed values. The exact function calls were:
scanpy.pp.normalize per cell(...,10e4)

scanpy.pp.loglp(...)
scanpy.pp.highly variable genes(...,n_top genes=5000)

Where “...” represents an anndata object containing the relevant data.

Trajectory analysis & Receptor-Ligand analysis

R package Monocle3 v 1.0 (Cao et al., 2019) was used to generate the pseudo-trajectory analysis
involved with the characterisation of T follicular helper cells. Briefly, the RNA batch corrected
and integrated matrix generated by Seurat v4 (4.0.4) were exported to build the CellDataSet
object. Pseudotemporal analysis was then performed using default parameters as instructed by

developers in their vignette.
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The R package Slingshot v1.6.1 (Street et al., 2018) was used to generate the pseudo-trajectory
analysis of CD8 T-cells. Default parameters were used, and UMAP input was derived from batch
corrected RNA matrix values as generated by Seurat v4 (4.0.4). Trajectory overlay was mapped

on cells clustered and annotated by Seurat v4 (4.0.4).

Ligand-Receptor analysis was performed using R package “CellChat” (Jin et al., 2021). Analysis
was executed using default parameters as recommended by developers, as described by their

vignettes.

RNA and protein co-expression patterns of hallmark tumour infiltrating lymphocyte states
and meta module analysis

Immune cell phenotype is heavily influenced by the immediate cellular environment, with
cancers in particular presenting diverse milieus in which TILs reside and receive signals,
potentially leading to their acquisition of “neophenotypes” not found in the corresponding
classical cell state or lineage. As current immunotherapies primarily rely on cell surface
expression of target proteins as biomarkers and therapeutic targets, it is important to better
understand the TIL phenotypes that correlate with specific, often nonclassical, surface protein
markers in the context of the TME. Thus, we explored the landscape of RNA and protein co-
expression across our dataset in order to link hallmark gene expression features associated with
functional lymphocyte commitment to ADT marker expression, independent of lineage.

We used a semi-supervised data-driven approach to choose the most informative features to
define T cell and ILC phenotype meta states; grouping cells by greatest variance (and
similarities) into broad categories of TIL effector function. This included the top 5 differentially
expressed genes plus all ADTs enriched in each cluster (MAST test; p_adj < 0.05, n = 178 genes;
n = 63 ADTs), this included a curated panel of 30 differentially enriched (MAST test; p_adj
<0.01) master transcription factors and/or genes previously associated with hallmark regulation
of lymphocyte development, activation, and function in the TME such as TBX21(T-Bet),
GATA3, EOMES, TOX, TCF1, TGFBI1, BATF, and STAT3/5. Each feature value was scaled
(Z-scored) for each respective assay then merged. An euclidean approach (sqrt(sum((x_i -

y _1)"2) was applied to generate the dissimilarity matrix, which was then clustered using
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Ward.D2 using R package ComplexHeatmap v2.7.11. R Package igraph v1.2.6 was used to
visualise the distances between each feature using a phylogenetic dendrogram. The partitioning
of RNA and ADT features into clusters were generated using a centroid k-means approach. The
appropriate number of selected k (number of clusters) was estimated by gap statistics using
package fmsb v0.7.0. R package clustree v0.4.3 (https://doi.org/10.1093/gigascience/giy083) was
used to visualise the impact of different & resolutions on cluster assignment. Clustering with this
set of features revealed thirteen functional meta states defined by co-expressed genes and protein
markers (Figure S7TA-E). We observed trends consistent with the literature, such as the
association between the expression of CD103 with GZMB and exhaustion gene HAVCR?2, or
between CD39 surface expression and genes upregulated by immunosuppressive T cells such as
FOXP3+ Tregs (Supp Figure 7D-E). We also interrogated the co-clustering patterns of RNA
and its cognate protein. We identify a few genes whose RNA and protein levels cluster closely
irrespective of lineage, suggesting that either measurement is sufficient to capture robust
expression information for these markers. Examples include PDCD1 and PD-1, IL2RA and
CD25, CD4 and CD4 and CD8SA and CD8A/B (Supp Figure 7D-E). However, the majority of
genes tend to demonstrate poor correlation between RNA and protein. Importantly, numerous
mRNAs are poorly detected despite high expression of their cognate protein, such as ADT-CD57
and ADT-CD7, as well as the group of ADTs that represent the primary cluster drivers of resting
ILC cells, indicating that the assessment of such cell types with transcriptional methods alone

will remain challenging.

Survival analysis and patient cell type proportion analysis

Survival analysis of was performed using ‘GEPIA’, using the TCGA BRCA cohort
http://gepia2.cancer-pku.cn/#index (Tang et al., 2017). The top 10 differentially expressed genes

of each Tth subset of interest were used and the median value was used as group cutoff. The
hazards ratio was calculated as per cox proportional-hazards model and the p-value was

calculated using log-rank test statistics.

R package speckle (0.0.2) (Phipson et al., 2021) was used to calculate statistical significance in

the change of cell type proportion between patient groups or conditions. All Beassez et al.
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patients (A. Bassez et al., 2021) which were not assigned either as Expander (E) or Non-
expander (NE) were removed from analysis (two patients' pre-post samples were excluded).
Change in composition was visualised by calculating the fraction of each cell type within each
patient. A non-parametric t-test (n=29) was used to calculate the p-value of baseline change of
composition between Expanders and Non-expanders. A non-parametric t-test was used to
calculate p-value between each respective group comparison, n sample used for each comparison
shown in Figure 6C can be found in Table S6. See Bassez et al. for further detail on patient

cohort (A. Bassez et al., 2021).

Statistics and reproducibility

No statistical method was used to predetermine sample size. The statistical significance for all
differentially expressed genes or ADT were determined using MAST(Finak et al., 2015), and
adjusted bonferroni corrected values were used. The Box plot centre line depicts the median
value, the first and third line mark the 25% and 75% quantile, the whiskers correspond to 1.5x
the interquartile range (IQR), and dots mark outliers. Details for any statistical tests performed

are present in figure legends and in relevant method sections.
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1 KEY RESOURCES TABLE

2
REAGENT or SOURCE IDENTIFIER
RESOURCE
Antibodies
CITE-Seq antibody BioLegend Table S1
panel
Human TruStain FcX | BioLegend Cat #422302
Chemicals,
Peptides, and
Recombinant
Proteins
FBS Bovogen Cat # SFBS-AU
PBS Gibco Cat # 10010023
DNase ThermoFisher Scientific Cat # EN0521
Red blood lysis eBioscience Cat # 00-4300-54
buffer
RPMI 1640 Gibco Cat # SFBS-AU

Critical commercial
assays

Chromiun Controller
and the Single Cell
Reagent kit 3' v2

10X Genomics

Cat# 120237

Chromiun Controller
and the Single Cell
Reagent kit 3' v3

10X Genomics

Cat# 1000075

UK Biobank Axiom
array

ThermoFisher Scientific

Cat# 902502

gentleMACS
Dissociator

Miltenyi

Cat# 130-093-235
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samples

Tumor Dissociation Miltenyi Cat # 130-095-929
Kit, human

Biological samples

Breast cancer This study Table S2

Deposited data

Raw FASTQS &
counts data for
primary breast
cancer

NCBI Gene Expression
Omnibus

GEO: GSE199219

Processed counts &
metadata

Single-cell Portal (Broad
Institute)

https://singlecell.broadinstitute.org/singl
e cell/study/SCP1793

Data pre-processing

Swarbrick Lab github

https://github.com/Swarbricklab-
code/BrCa Integrated proteogenomics

Breast cancer
neoadjuvant anti-
PD1 cohort

Basez et al
10.1038/s41591-021-
01323-8

https://lambrechtslab.sites.vib.be/en/dat
a-access

Spatial dataset

Wu et al.
https://doi.org/10.1038/s41

588-021-00911-1

https://doi.org/10.5281/zenodo0.3957257

Experimental
models: Cell lines

Mouse: NIH/3T3 NA CRL-1658

Software and

algorithms

R 4.0.3 R Core https://cran.r-project.org/

Seurat 4.0.4 10.1016/j.cell.2021.04.048 | https://satijalab.org/seurat/index.html

Cell Ranger 3.0.2

10X Genomics

https://support.10xgenomics.com/single-

cell-gene-
expression/software/pipelines/latest/wha
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https://singlecell.broadinstitute.org/single_cell/study/SCP1793
https://github.com/Swarbricklab-code/BrCa_Integrated_proteogenomics
https://github.com/Swarbricklab-code/BrCa_Integrated_proteogenomics
https://doi.org/10.1038/s41591-021-01323-8
https://doi.org/10.1038/s41591-021-01323-8
https://doi.org/10.1038/s41591-021-01323-8
https://lambrechtslab.sites.vib.be/en/data-access
https://lambrechtslab.sites.vib.be/en/data-access
https://doi.org/10.1038/s41588-021-00911-1
https://doi.org/10.1038/s41588-021-00911-1
https://doi.org/10.5281/zenodo.3957257
https://cran.r-project.org/
https://doi.org/10.1016/j.cell.2021.04.048
https://satijalab.org/seurat/index.html
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
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t-is-cell-ranger

Python 3.9 Python Software https://www.python.org/
Foundation
CITE-Seq count NA https://github.com/Hoohm/CITE-seq-

1.4.3

Count

stereoscope 0.3.1

https://doi.org/10.1038/s42
003-020-01247-y

https://github.com/almaan/stereoscope

CellChat 1.1.0 https://doi.org/10.1038/s41 | https://github.com/sqjin/CellChat
467-021-21246-9

GEPIA2 https://doi.org/10.1093/nar/ | http://gepia2.cancer-pku.cn/#index
akz430

Speckle 0.0.2 https://www.biorxiv.org/cont | https://github.com/Oshlack/speckle

ent/10.1101/2021.11.28.47
0236v1

Monocle3 1.0.0

https://doi.org/10.1038/s41
586-

https://github.com/cole-trapnell-
lab/monocle3

Slingshot 1.6.1

https://doi.orq/10.1186/s12
864-018-4772-0.

https://bioconductor.org/packages/relea
se/bioc/html/slingshot.html

Scanpy 1.7.2 https://doi.org/10.1186/s13 | https://scanpy.readthedocs.io/en/stable/
059-017-1382-0

ggplot2 3.3.3 Wickham, Hadley. ggplot2: | https://ggplot2.tidyverse.org
elegant graphics for data
analysis. springer, 2016.

Dplyr 1.0.6 Wickham, Hadley et al. https://cloud.r-

Welcome to the Tidyverse

project.org/web/packages/dplyr/index.ht
ml

complexheatmap
2.7.1

10.1093/bioinformatics/btw

https://www.bioconductor.org/packages/

313

release/bioc/html/ComplexHeatmap.htm
|

pheatmap v1.0.12

N/A

https://rdrr.io/cran/pheatmap/

MAST 1.16.0

https://doi.org/10.1186/s13
059-015-0844-5

https://github.com/RGLab/MAST/
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https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1093/nar/gkz430
http://gepia2.cancer-pku.cn/%23index
https://doi.org/10.1038/s41586-
https://doi.org/10.1038/s41586-
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://scanpy.readthedocs.io/en/stable/
https://ggplot2.tidyverse.org/
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fmsb 0.7.0 NA https://cran.r-
project.org/web/packages/fmsb/index.ht
ml
AUCell 1.12 https://www.nature.com/arti | https://qithub.com/aertslab/AUCell
cles/nmeth.4463
VISION 2.1 https://doi.org/10.1038 https://github.com/YosefLab/VISION
Scran 1.18 10.12688/f1000research.95 | https://bioconductor.org/packages/relea
01.2 se/bioc/html/scran.html
igraph 1.2.6 https://igraph.org/ https://cran.r-
project.org/web/packages/igraph/index.
html
clustree 0.4.3 https://doi.org/10.1093/giga | https://cran.r-
science/qiy083 project.org/web/packages/clustree/index
.html
Adobe lllustrator Adobe www.adobe.com

N —
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Supplementary Figure 1: ¢RI @Rt méehfd AT R tHiTormation of CITE-seq
data derived from 6 breast cancer samples. (A) Number of genes and UMI counts for both
ADT and RNA assays, and mitochondrial content proportion for each sample, information of
patient sample disease are available in Supplementary Table 2. (B) UpSet plot of CITE-seq
antibodies found to be commonly enriched across samples. (C) UMAP of cells grouped by
patient sample, and the proportion of each cluster derived from each patient. (D) UMAP of
all cell clusters derived solely from RNA analysis. (E) UMAP of all cell clusters derived
solely from ADT sequencing. (F) Silhouette score of each cluster for the evaluation of cluster
stability. (G) Cluster stability matrix indicates the probability that a random cell from each
paired cluster would be re-assigned to the same cluster following bootstrapping. High

probability means paired clusters contain more related cells than not.
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Supplement Figure 2 (Continued)
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Supplement Figure 2 (Continued)

J

C01-CD4+ Th : TPT1 CCR4

bloRxwﬁ'e rint doi: https://doi.org/10.1101/2022.05.31.494081, this version posted M%M 2022. The copyright holder for this preprint (which

eliiied by peer review) is tagdUtHOMAIder, who has granted pse to display the prep{gmelhzﬁér"ﬂwpm It is made

kva})Lgbie underaCC-BY-NC-ND4.0 m;} gatuomlehwnse

Th17 Y Fr STemra
Tfh .~ 0 . R-Temra
Restin_g S-Tem
cTLi \R-Tem
Tn © HsSP
Tem 7 Prolif
Tem : IFN_Resp
Exhausted P "I'ConK
Trm GIuD

Tod Nk NK‘F reg

C05-CD4+ Treg : TNFRSF9 ADT-4.1BB

Th1
Reslde‘lr-\hz 1, Amlwfpoxia
Th17‘ T ... S-Temra
Tth 7 R-Temra

Resting ' . S-Tem

CTL ;. i R-Tem
Tn i HSP
Tem -/ Prolif
Tem . . Y,VI'FN_Resp
Exhausted. TCytoK
Trm_ e
Tod Nk NkTTe9
C09-NK : TYROBP ADT-NKP46
Th2 ThAntijnf
Resu:ient 1, " 'I—Typoxm
Th17 - .. S-Temra
Tth R-Temra
Resting S-Tem
CTL L/ R-Tem
Tn HSP
Tem*, Prolif
Tem ™. ../ IFN_Resp
Exhausted_\ /7 % W TCytoK

Trm

C13-ILC-gdT : C6orf48 ADT-KLRG1

Th1
ResldeI\?z 1, Ann'—!ypoxla
Th17 .- i, S-Temra
.05 -

Tth R-Temra
Restin_g -, 8-Tem

R-Tem
- HSP

/ Prolif

'FN_Resp
TCytoK

Exhausted’

Trm_ e
Tod k- NKTTe9

C17-ILC-gdT : RACK1 ADT-CD24
Th2 TMAntiI_r']f )
lypoxia

Resldent X
Th17 7. S-Temra
Tth 51075 . R-Temra
Resting ~. S-Tem
cTL. \R-Tem
Tn i HSP
Tem ¢ Prolif
Tem - . » v,l’FN_Resp
Exhausted. /i 7 TCytoK
Trm_ “" GluD
Tod e e

C21-CD8+ MAIT : HSP90AA1 ADT-TCRVa7.2

Th2 ThAntijnf

Resu:ient 1, n“Wypoxm

Th17 . ... S-Temra
1075 S

Tfh . - R-Temra

Restin_g" ’ . S-Tem
et/ .R-Tem
Tn - HSP
Tom 7 Prolf
Tem ™. . ; ’ ) I?NiResp
Exhausted’ Froefee 'i'CytoK

Trm -
9 NK NKTT®9

C02-CD4+ Th : GPR183 ADT-CD49fhi

Th17

T
Resting :

CTL

RTemra
. s-Tem
i R-Tem
i HSP
/ 7 Prolif
. :f'FN_Resp
Exhau;ted' i s S "'Vl'CytoK

Tm_ " = GluD
Tod Nk NKTTe9

C06-CD4+ Tfh : CXCL13 ADT-PD1
Th1
Residi Trt‘z Ant||_r|1f
Th17 o _S-Temra
Th L0754 /
Resting’

cTLi 3 i7" RTem

7 Prolif
_ AFN_Resp

Exhausted /" ‘TCytoK

Trm_ T
Tod Nk NKTTe9

C10-CD4+ T : NABP2L2 ADT-Low
Th2 Th1Antijf
ReS|dent . " II-'i'ypoxla
Th17 o - S-Temra
Tth A0S R-Temra
Restingh y

":_S-Tem
v \R-Tem
i HSP
. / Prolif
Tem . . f B ) i AFN_Resp

Exhausted “TCytoK
Trm

4 Nk NKT 9

C14-Prolif Lymph : MKI67

Th2 Th1Antinf
Resident 1, nll-?ypona

.. S-Temra
- R-Temra

Exhausted’ Wan; “TCytoK

Trm —
Tad Nk NKTTe9

C18-T HSP/Hypo : FOSB ADT-Low

Th1
Reslde.mz A”"|—'|‘f
Th7 [ep 8 Temra
Tfh L R-Temra
Restin_g ] 7 8-Tem
CTL! i R-Tem
Tn HSP
Tem  Prolif
Tem y .IFN_Resp
Exhausted. Y ‘TCytoK
Tm_ " “ GlubD

Tod Nk NKTTe9

C03-CD8+ CTL : GZMK ADT-NKG2Dhi

Tth . .R-Temra

Resnng . .S-Tem
CTL R-Tem
™ i HSP
Tem p . Prolif
Tem ' ¥ ke IFN_Resp
Exhausted /i L TCytoK
Trm_ “" GluD
T9d Nk NKTTe9

C07-CD4+ Treg : IKZF2 ADT-ICOSmid

Th1
R(-Jslde.lr-\h2 A”"Lﬁ‘f
Th17 .
T
Resting
cTL;
Tn o
Tem " Proif
Tem - _IFN_Resp
Exhausted. /7 % 7 TCytoK
Trm_ bt GluD
T9d Nk NKT™9
C11-ILC : RPL38 ADT-IgG.Fc
Th2 Th1Antijnf
Resndent 1. " 'I—T poxia
Th17 . .. S-Temra
T ,10.75 i
Resting
et/ \R-Tem
Tn © HSP
Tem 7 prolif
Tem - . . ,IFNiResp
Exhausted TCytoK

Trm

9 Nk NKT 9

C15-CD8+ Tex : HAVCR2 CITE-CD103hi

Th1
Resids;lr;rt12 A”"l—’«‘f

Th7
Th -

{~.R-Temra

Restin_g ' : . S-Tem
cTLi \R-Tem
Tn { HSP
Tem / Prolif
Tem \ ,I'FN_Resp
Exhausted’ "TCytoK
Trm_ et Glu
Tod k- NKTT9
C19-CD4+ Th : RACK1 ADT-CD7
Th1
Reslde.ll;rt]2 1 A""M‘f
Th17 .
Tth
Resting "

7 Proif
S . ,I?N_Resp
Exhausted. ST 7 TCytoK
Tm_ ~ GluD
Tod e icfres

C04-CD8+ CTL : METRNL ADT-NKG2Dmid

.. S-Temra

0.75.1.

Tfh .~ ~.R-Temra
Resting’ " ) X S-Tem
el - ‘R-Tem
Tn ¢ : HSP
Tem 7 Prolif

Tem K . " AFN_Resp
Exhauétéd e TCytoK

Trm_ GluD
Tad e icfred

C08-CD8+ CTL : ZNF683 ADT-CD57hi
Th1
Reslde‘l’wrt‘2 Amll-?fpox a
Th17
Tth

Resting ™

C12-CD8+ T : N4BP2L2 ADT-Low
Th2 Th1Anti|nf
4, I'T

Resndent poxia
Th17 ) . S Temra
Th ’ "0'75 i " R-Temra
P :0:5-
Resting ™ S-Tem
cTL; .R-Tem
Tn : HSP
Tem 7 Prolif
Tem I'FNiResp
Exhausted. . " TCytoK
Trm_ = Glub
9 Nk NKTTe9
C16-CD4+ T : IFNG ADT-CCR5
Th1
Res:demz 1, Am'l-'i‘)f/poxia
Th7 . . S-Temra
Tth 045 R-Temra
Resting o -, S-Tem
CTL ;. ! R-Tem
Tn © HsP
Tem 7 Prolif
Tem & ,fFN_Resp
Exhausted . " TCytoK
Trm et GluD
T9d k- Nk
C20-Lymph : OASL ADT-NA
Th1
Reslde‘lr;rt‘2 Anti L'I‘f ypoxia
Th17 o {7, S-Temra
Tth DTS4 e ReTemra
Resting i ~. S-Tem
et/ . R-Tem
Tn ¢ HSP
7 Prolif

Exhausted B
Trm_ GIuD
Tod e e


https://doi.org/10.1101/2022.05.31.494081
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494081; this version posted May 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Supplementary Figure 2: SaAppieieiar§ ifol il tHoR TP REA'End protein Integrated
clustering analysis across T cell and ILC populations. (A) Proportion of patient cells from
each sample belonging to each T/ILC cluster. (B) Dotplot visualisation of the expression of
RNA and ADT markers of interest on a z-score normalised scale. (C) Log normalised
expression of factors associated with lymphocyte activity and naive/memory activation
status. Bar plots are coloured by lymphocyte lineage. nUMI refers to the number of unique
molecular identifiers derived from the RNA assay, and nGene refers to the number of genes
identified. Heat shock/Hypoxia and Cytoxic enrichment scores were calculated using Seurats
“ModuleScore” using genes listed in Table S4. Red line indicates the median expression for
each marker across clusters. (D) UMAP of the T cell/ILC dataset when clustered on RNA
features alone. (E) Alluvial plot visualising the relationship of assigned cell clusters when
derived from RNA alone versus RNA and ADT integration. (F) Cluster stability matrix
shows the probability that a random cell from each paired cluster would be re-assigned to the
same cluster following bootstrapping. High probability means paired clusters contain more
related cells than not. (G) Silhouette score of each WNN-derived cluster calculated from
RNA alone. Negative values indicate instability. (H) Violin plot showing normalised
expression values of canonical markers of lymphocytes, myeloid, epithelial, and
mesenchymal lineages. (I) Expression levels of isotype controls and mouse spike-in. Red line
indicates the median expression. (J) Radar plot projecting the gene signature module scores,
scaled 0-1, for each respective cluster. Grey silhouette marks the module score profile when

averaged across all clusters combined.
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Supplementary Figure 3
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Supplementary Figure 3: YHESRPIERToE T tiduEHeaERIA G & hausted T-cell Protein
markers and supplementary information for CD8+ T-cell phenotyping. (A) Log
normalised expression of CD69 and CD103, sorted from high to low (left to right). Bar plots
are coloured by broad lineage. Red line marks the median value of each respective feature
across all clusters. Boxplots middle line marks the median value, the lower and upper hinges
mark the 25% and 75% quantile, the whiskers correspond to the 1.5 times the interquartile
range, the black dot’s mark outliers. (B) Pseudotemporal analysis of CD8+ T-cells using
slingshot. Analysis was performed on RNA values only. (C) Log normalised expression of
ADT markers CD49a and CD39 across T-cell and ILC clusters, sorted from high to low (left
to right). Box plots are coloured by lymphocyte lineage. Red line indicates the median
expression for each marker across clusters. Boxplots middle line marks the median value, the
lower and upper hinges mark the 25% and 75% quantile, the whiskers correspond to the 1.5
times the interquartile range, the black dot’s mark outliers. (D) AUCell enrichment score of
signatures derived from Savas et al. (Peter Savas et al., 2018) human breast cancer CD8+
Tissue resident memory T cells (Trm). Red line indicates the median signature score value
across all clusters. Boxplots are sorted from high to low (left to right) for each cluster.
Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and
75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black dot’s

mark outliers.
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Supplement Figure 4 (continued)
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Supplementary Figure 4: Tfh cells cluster analysis and supplementary phenotyping
information of Tfh subsets. (A) UMAP of Tth subsets derived from WNN of ADT and
RNA data (B) Boxplots of enrichment of GO biological process pathways
“GO_GERMINAL CENTRE FORMATION”and “GO B _CELL CHEMOTAXIS” across
T cells & ILCs, sorted from high to low (left to right). Red line indicates the median
expression across clusters. Box plots are coloured by lymphocyte lineage. Red line indicates
the median expression for each marker across clusters. Boxplots middle line marks the
median value, the lower and upper hinges mark the 25% and 75% quantile, the whiskers
correspond to the 1.5 times the interquartile range, the black dot’s mark outliers. (C)
Heatmap of top 5 differentially enriched GO biological process pathways for each cluster
based on transcriptome. (D) Expression of Tth cell markers (RNA) across all T-cell and ILC
clusters. (E) Hierarchical clustering of differentially expressed genes between 3 identified
Tth states. (F) Dotplots visualising the expression of z-scaled RNA and ADT markers of

interest on a across Tth subsets.
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Supplementary Figure 5: SApPiM8Aary ai e Por CAUATFEI8O TR cell subsets spatial co-
localisation and cell-cell signalling. (A) UMAP of T cells and ILCs from Wu et al. (Wu et
al.) with refined annotation of CD4 Tth cells. (B) Pearson correlation heatmap of spatially
deconvoluted cell pairs co-localised with CD4 Tth subsets using Wu et al. data with refined
annotations. (C) Pearson correlation heatmap of spatially deconvoluted cell pairs co-localised
with CD4 Tth subsets at a more granular resolution. (D) Dotplot of Pearson correlation
values for spatially deconvoluted cells from (C). (E) Gene set enrichment analysis boxplots
of GO biological process pathways “GO B _CELL CHEMOTAXIS”and
“GO_ENDOTHELIAL CELL CHEMOTAXIS” across T cells and ILCs, sorted from high
to low (left to right). Red line indicates the median expression. Box plots are coloured by
lymphocyte lineage. Red line indicates the median expression for each marker across clusters.
Boxplots middle line marks the median value, the lower and upper hinges mark the 25% and
75% quantile, the whiskers correspond to the 1.5 times the interquartile range, the black dot’s
mark outliers. (F) Relative information flow contribution of signalling pathways (the sum of
total R-L communication probability found with each signalling pathway) to be differentially
enriched in CD4 Tth cell subsets. Bar plots visualise the weighted variance in contribution
when comparing CD103+ Tth to IGFL2+ Tth when scaled 0-1. Pathways found to be
significant (p < 0.05) are coloured either blue if enriched in IGFL2 Tth cells, or red if
enriched in CD103 Tth. (G) CCL, CSF and BTLA signalling pathway network information
flow across all clusters. ‘Sender’ and ‘Receiver’ reflects direct expression of ligands and
receptors (agonistic or antagonistic), ‘Mediator’ and ‘Influencer’ quantifies clusters' potential
role in controlling receptor-ligand expression flow of the pathway within the system (TME).
(H) Dotplot visualising receptor-ligand signalling information differentially increased or
decreased in expression by CD103 Tth and IGFL2 Tth clusters. Red text highlights signalling

pathways of interest.
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Supplementary Figure 6: SAppieMe s aied PotAUATGLIbI T cell subsets clinical
relevance. (A) Heatmap of top differentiating RNA features from each identified Tth state in
our dataset along with CD8+ Exhausted T cells and Tregs (MAST test; p_adj < 0.05). (B)
UMAP of Bassez et al. (Ayse Bassez et al., 2021) breast cancer anti-PD-1 cohort T cell
dataset. The top plot shows the Tth redefined annotation used for all downstream analysis in
our study. The bottom plot is a UMAP using the Bassez et al. original annotations (Ayse
Bassez et al.) (C) Volcano plot marking top differentially expressed genes, comparing

IGFL2+ Tth cells of non-expander patients when sampled at baseline vs during treatment.
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Supplementary Figure 7: Supplementary data on the co-expression of RNA and ADT
features found to drive TIL phenotypes. (A) Top PCA of differentially expressed RNA and
ADT features, and their contribution to each WNN cluster. (B) Scree plot of optimal number
of k clusters. (C) Cluster tree visualising the k-means partitions formed, and their
relationship, for every increase in k clusters (D) Heatmap of top differentiating RNA and
ADT features, z-normalised to -4 to +4. Top annotation bar corresponds with, from top to
bottom: Median silhouette score of cluster, median protein weighting of cluster, k-means
assigned meta state and broad lineage. (E) Phylogenetic tree projecting the correlation/co-
expression distance of top differentiating RNA and ADT features, irrespective of cluster

association. Branch colouring depicts grouping derived from calculated & clusters.
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