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Abstract

Motivation: While it has been well established that drugs affect and help patients differently, personalized
drug response predictions remain challenging. Solutions based on single omics measurements have been
proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how
to integrate the wealth of information contained in multiple omics layers still poses a complex problem.
Results: We present DrDimont, Drug response prediction from Differential analysis of multi-omics
networks. It allows for comparative conclusions between two conditions and translates them into differential
drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific
networks from correlation within an omics layer that are then reduced and combined into heterogeneous,
multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative
conclusions. Differential predictions are derived from comparing the condition-specific integrated networks.
DrDimont’s predictions are explainable, i.e., molecular differences that are the source of high differential
drug scores can be retrieved. We predict differential drug response in breast cancer using transcriptomics,
proteomics, phosphosite, and metabolomics measurements and contrast estrogen receptor positive and
receptor negative patients. DrDimont performs better than drug prediction based on differential protein
expression or PageRank when evaluating it on ground truth data from cancer cell lines. We find proteomic
and phosphosite layers to carry most information for distinguishing drug response.
Availability: DrDimont is available on CRAN: https://cran.r-project.org/package=DrDimont.
Contact: katharina.baum@hpi.de

1 Introduction
Personalized prediction of suitable medication is still a key task for
computational approaches in clinical research. Meta-studies have shown
that many drugs only work effectively in a fraction of patients (Leucht
et al., 2015), and consequences of failing treatment and adverse drug
events can be severe. In recent years, more and more multi-omics
profiles have become available that characterize disease phenotypes on
a molecular level, especially in cancer, for example via the TCGA
consortium (Chang et al., 2013). Multiple layers of molecular data provide
different perspectives and a higher resolution. Thus, a more fine-grained
distinction between subgroups of patients is possible. At the same time,
these data present the challenge of how to integrate them in order to derive
meaningful predictions.

Different methods of omics integration have been proposed,
distinguished frequently by when the omics layers are combined as well
as by the goal of the analysis – molecular mechanism, patient clustering,

or other predictions such as drug response (Bersanelli et al., 2016; Huang
et al., 2017; Picard et al., 2021). Thereby, a genuine joint integration
of the different layers has been considered advantageous (Picard et al.,
2021; Cantini et al., 2021). Joint dimensionality reduction, e.g., via ICA or
MOFA (Sompairac et al., 2019; Argelaguet et al., 2018), has been proposed
to find relevant features from combined multi-omics data. They have been
benchmarked for use with cancer data (Cantini et al., 2021). However, the
reduced meta-genes are difficult to interpret and hinder direct conclusions
on drug action.

The fact that molecules do not act separately, but in their network
context led to an alternative joint integration strategy: Network-based
approaches enable consideration of interactions between entities and have
been specifically applied to multi-omics data (Recanatini and Cabrelle,
2020; Yugi et al., 2016; Lee et al., 2019; Demirel et al., 2021). Networks
other than purely molecular heterogeneous networks have been proposed,
containing, e.g., diseases, drugs, or cell lines as nodes (Zhang et al.,
2018a; Stanfield et al., 2017), and patient similarity networks derived
from molecular data (Wang et al., 2014). A plethora of methods have
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been suggested to establish and use molecular networks to find relevant
disease genes (Ogris et al., 2021; Dimitrakopoulos et al., 2018; Schulte-
Sasse et al., 2021; Peng et al., 2017). Moreover, interactions between
molecules are one of the key readouts of drug action: drugs interfere most
frequently with the function of the targets they bind to, hampering their
ability to interact with other molecular players instead of affecting their
overall abundance (Pinto et al., 2014). Therefore, considering interactions
in molecular networks (Bartel et al., 2015; Koh et al., 2019; Sambaturu
et al., 2020) is highly promising for drug response prediction.

Systematic drug response measurements are available, especially for
cancer cell lines (Rees et al., 2015; Yang et al., 2013; Barretina et al.,
2012), and therefore, drug response prediction has been performed for this
in vitro setting (Ding et al., 2018; Zhang et al., 2018a; Park et al., 2022).
The question remains how these results can be transferred to clinically
relevant predictions for patients. Some transfer learning approaches have
been proposed (Geeleher et al., 2017; Webber et al., 2018), but these
still rely on prior systematic measurements of drug response in conditions
comparable to the condition of interest. Methods of artificial intelligence
are being advanced (Azuaje, 2019), but the explanation of their results is
frequently challenging. A viable strategy is to assess differential response
to a baseline patient group phenotype. This technique has been proposed to
query differential co-expression (Matsui et al., 2021; Bhuva et al., 2019),
gene ranking (Richard et al., 2020), or networks or paths (Ideker and
Krogan, 2012; Sambaturu et al., 2020), but not differential drug response
yet.

Here, we present our new approach for Drug response prediction from
Differential analysis of multi-omics networks, DrDimont, that unites the
following key points: (i) multi-omics data is jointly integrated, including
data such as metabolomics, (ii) condition-specific molecular networks are
built, (iii) prior and domain-specific knowledge on molecular interactions
can be leveraged, (iv) the focus is on interactions between molecules as
the most common mode of drug action, (v) differential analysis between
conditions enables unsupervised predictions in clinically relevant settings,
and (vi) the predictions are explainable as their underlying molecular
characteristics can be retrieved.

We describe DrDimont and apply it to a breast cancer dataset
combining transcriptomics, proteomics, phosphosite, and metabolomics
measurements. We compare DrDimont’s differential drug response
predictions to ground truth from cell line measurements, and to alternative
approaches. We investigate the impact of different measurement layers on
the prediction quality. Finally, we showcase an example of how DrDimont
explains results down to the molecular level.

2 Methods

2.1 Differential predictions with DrDimont

DrDimont provides a framework to leverage condition-specific, weighted
heterogeneous networks for differential analysis between two conditions.
It builds purely molecular networks with nodes encoding entities within
a cell, such as proteins, mRNAs, metabolites, and their interactions
from both multi-omics data and prior information on interactions from
databases.

An overview of the pipeline provided in the DrDimont framework
is shown in Figure 1. DrDimont requires quantified molecular data such
as RNAseq or protein data of several samples as input. For differential
analysis, data for two different groups of samples or patients (‘conditions’)
are needed. Each molecular data input layer is transformed into condition-
specific weighted, single-layer networks by correlation of the molecular
entities. Then, based on a user-defined structural requirement (see Single-
layer network generation), the networks are reduced keeping edges with
high weights only. As shown for an example in Figure 1B, the single-layer
networks are combined into multi-layer networks based on user-defined
inter-layer connections. Thereby, prior knowledge on interactions from
databases can be incorporated. The two condition-specific multi-layer
networks are further integrated by computing integrated interaction scores,
as shown in Figure 1C. These propagate local neighborhood information
to the edge weights and thus avoid too strong of an impact of single
edges. From the two integrated networks a differential network is computed
by contrasting the edge weights of the condition-specific networks. The
differential network is employed to calculate differential drug response

Fig. 1. DrDimont’s pipeline for integrated, network-based analysis. (A) Multiple molecular data layers for two conditions are compared, e.g., cancer data (1). They are used to derive
condition-specific correlation-based single-layer networks (2) that are combined into integrated molecular networks using prior information (3). The differential network is derived from the
condition-specific networks (4) and captures altered interaction strengths. Differences, e.g., in drug response, are predicted from the differential network (5). (B) Example for the generation
of an integrated, multi-layer weighted network with the protein network as central layer. Within-layer interactions are correlation-based from measurements. Different layers are connected
by prior information, its type is encoded by the dashed lines. Red denotes negative edge weights, black positive edge weights, thicker lines indicate larger edge weights. (C) Integrated
interaction scores. Edge weights are replaced by the average over the strengths of alternative paths, thus generating a local enhancement exploiting network structure (see Equation 1). For
example, for the edge connecting nodes u and v, a selection of alternative paths is marked by blue edges: paths of length two (left), or paths of length three (right).
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scores based on the differential edges in vicinity to a drug’s targets. We
will describe details for each step in the following.

2.1.1 Single-layer network generation
For each data layer and each group, complete weighted networks are
generated where each node represents one type of molecules, e.g., one
specific mRNA or protein. The weight of an edge between any two
nodes of one layer is derived from the correlation between the abundance
measurements for the nodes over all samples in the group, e.g., using
Spearman’s or Pearson’s correlation. If not stated otherwise, we employed
Spearman’s correlation in order to avoid strong impact of outliers and to
account for non-linearity in abundance relationships. In case of missing
values, pairwise complete observations were used for correlation.

The correlation-based networks are reduced and only the edges with
the largest absolute weights are kept. Reduction thresholds are determined
(i) by a desired average degree of the network nodes, (ii) by a desired
average network density, or (iii) by maximizing the scale-freeness of the
network (WGCNA, pickHardthreshold function (Langfelder and Horvath,
2008)). If not stated otherwise, we used this latter topological criterion
here and adapted the goodness of fit to a scale-free network, R2, to have
similar-sized networks for the compared groups. See the Supplement for
the impact of Alternative reduction methods.

2.1.2 Heterogeneous multi-layer network construction
DrDimont connects single-layer networks for each group separately based
on the node names (see Figure 1B). First, nodes from different layers
with identical names can be connected with edges of the same user-
defined weight (e.g., of value one). This allows exploiting the dogma of
gene expression, i.e., connecting an mRNA to its corresponding protein,
or a protein to its corresponding phosphosites. Representing further
relationships is possible such as methylated promoter regions on the DNA
to the corresponding target genes or mRNAs. Second, pairs of node names
from two different layers can be entered by the user. These nodes will then
be connected. The edge weights can be again fixed or derived from prior
information, for example, to connect the protein and the metabolite layer
using data from a database such as STITCH (Szklarczyk et al., 2016) (see
Supplement, Metabolite-protein interactions from STITCH for details).

2.1.3 Integrated interaction scores
DrDimont uses a novel, semi-local integration scheme to reduce the impact
of single edge weights in the condition-specific networks. Thereby, the
weights of alternative paths between nodes are taken into account (see
Figure 1C). Edge weights in the heterogeneous multi-layer network can be
replaced by their integrated interaction scores, that is, the average strength
of these alternative paths. For an edge connecting nodesu, v, we define this
score, su,v , as the sum of average strengths of alternative paths connecting
u and v over the considered path lengths, i.e.,

su,v =

L∑
l=1

1

|pathl|u,v |
∑

k∈pathl|u,v

∏
e∈k

weight(e). (1)

Thereby, pathl|u,v is the set of paths of length l between nodes u and v,
L is the maximal length of considered paths, and weight(e) is the edge
weight of an edge e. For a path k of length l that is connecting nodes
x0, ..., xl in this order, k is determined by its set of contributing edges
k = {(x0, x1), (x1, x2), ...(xl−1, xl)}, and all their edge weights are
multiplied to determine the path strength of k. For edge weights ranging
from−1 to 1 as in usual correlation measures, integrated interaction scores
can range from−L toL. If not stated otherwise, we usedL = 3. In order to
reduce DrDimont’s run time for large networks, the integrated interaction
scores are only computed for edges incident to user-provided drug targets
by default (see also Differential drug response score).

2.1.4 Differential network
DrDimont generates the differential network by computing the difference
between integrated interaction scores of all edges of the group-specific
heterogeneous multi-layer networks. Edges that only appear in one of the
group’s networks are considered to have a weight of zero in the other
networks and will be part of the differential network. Nodes that are part
of any of the two networks are thus included in the differential network.

2.1.5 Differential drug response score
The differential network is used for DrDimont’s differential drug response
prediction. To derive a prediction for a drug, drug targets have to be known.
The drug targets are identified within the differential network. The absolute
value of the mean (default, or the median) of the weights of all edges
incident to the drug targets is used as a drug’s differential drug response
score. The differential drug response score is the main output of DrDimont
and provides a prioritization (ranking) of the drugs. If not stated otherwise,
we used proteins as drug targets. However, in principle, nodes from any
input molecular layer can be defined as drug targets.

DrDimont’s implementation details and its settings for heterogeneous
network construction are provided in the Supplement.

2.2 Molecular breast cancer dataset preparation

We used a breast cancer dataset from patient tumors with mRNA (measured
via RNAseq) from TCGA, proteomics and phosphosites (measured via
mass spectrometry) from CPTAC (Mertins et al., 2016). We combined
these data with metabolite data from two other studies (Budczies et al.,
2013; Terunuma et al., 2014). The mRNA data and clinical annotations
were downloaded from TCGA via RTCGA (Kosinski and Biecek, 2021).
We obtained the estrogen receptor status, negative (ER-) or positive (ER+),
for each sample from the clinical annotations (for sample counts, see
Supplement, Table S1).

We disregarded mRNAs with more than 90% of zero measurements
over the samples within a condition. Proteins and phosphosites with more
than 20% of missing values over the samples of a condition were removed.
There were no missing values for the metabolite data as imputation had
been done by the respective authors prior to publication of the data. If not
stated otherwise, the genetic features (mRNA, protein, phosphosites) were
reduced to a subset of 5579 known cancer-related genes (Repana et al.,
2019) and drug targets from DrugBank (Wishart et al., 2017).

2.3 Drug targets, drug response ground truth, performance

We retrieved data for 40 breast cancer cell lines (26 ER-, 14 ER+) from
the Cancer Therapeutics Response Portal (CTRP) (Rees et al., 2015), in
particular drug sensitivity, compound data and drug target information for
481 drugs. We used estrogen receptor status annotation from the DepMap
portal (DepMap, Broad, 2021). We employed data for a drug if it was
measured at least three times for each condition. We determined the
differential drug response between ER+ and ER- for each drug by Mann-
Whitney-U tests comparing sensitivity in ER+ cell lines vs. sensitivity in
ER- cell lines obtaining ground truth for 477 drugs with the p-value as
ranking (see Supplement, Figure S1, for the effect size instead of p-value).
For performance assessment, we report Spearman’s correlation between
predicted and ground truth drug ranking, and the p-value of the correlation.
Only drugs for that the analysis in question delivered a prediction were
used; their numbers are indicated accordingly. In particular, drugs lacking
known drug targets were disregarded.

Receiver operating characteristic (ROC) curves were generated
by comparing prediction-derived to ground-truth derived binary drug
classifications (see Supplement for details). We indicate which fixed
ground-truth threshold was employed. We report the area under the ROC
curve (AUC). For partial AUC (pAUC), we compute the AUC for false

.CC-BY-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.493964doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.493964
http://creativecommons.org/licenses/by-nd/4.0/


4 Hiort et al.

positive rates between 0 and 0.1. High pAUC values signify enriched true
predictions among the top ranked drugs.

Data preparation, visualization and result analysis was performed using
R, version 4.0.1 (R Core Team, 2021).

2.4 Alternative prediction methods

To assess DrDimont’s performance, we implemented two alternative
differential drug response prediction approaches.

2.4.1 PageRank of drug targets in the differential network
We used igraph (Csardi and Nepusz, 2006) to compute the weighted
PageRank (Brin and Page, 1998) of all potential drug targets in the
undirected differential network from DrDimont. Therein, we employed
the absolute differential edge weights (and not differential integrated
interactions scores). The mean weighted PageRank over all drug targets
generated the differential drug response ranking.

2.4.2 Differential protein expression
We employed the Differential Enrichment analysis of Proteomics data
(DEP) pipeline (Zhang et al., 2018b) to assess differential protein
expression between ER+ and ER- conditions. Therein, after a variance-
stabilizing transformation, limma is applied. This single-layer approach
delivered a ranking of the drugs with respect to differential drug prediction
from differential protein expression of all drug targets of a drug using the
minimal multiple-testing adjusted p-value.

3 Results
We will now showcase results of DrDimont for a multi-omics dataset and
assess its performance with measured ground truth. Then, we will compare
it to two alternative differential drug response prediction approaches.
Furthermore, we will describe the impact of including different data
layers in DrDimont’s analysis, and end with an illustration of the level
of explainability that DrDimont provides.

3.1 Evaluation of DrDimont on breast cancer stratified by
estrogen receptor status

Breast cancer is one of the most common cancers. We investigated
molecular data of breast cancer patients stratified by estrogen receptor
status. The ER status is highly prognostic, with ER+ patients having a
better prognosis than ER- patients.

We first considered a multi-omics dataset that provides ER-stratified
patient data containing transcriptomics measurements via RNAseq (from
TCGA), and proteomics and phosphosite data from mass spectrometry-
based measurements (from CPTAC, (Mertins et al., 2016)). We also
included metabolomics data from other studies later (Budczies et al.,
2013; Terunuma et al., 2014). We show the properties of the differential
integrated network generated with DrDimont for this dataset (without
metabolomics) in Figure 2A. The differential integrated interaction scores
are correlated with the differential edge weights, but the former allow
for broader distributions. They are taking alternative paths into account
and thereby propagate the information from the local neighborhood to the
respective edges. In particular, the edges derived from prior information
(mRNA-protein, protein-phosphosite) benefit from this procedure: Their
edge weights are not condition-specific and therefore, their differential
edge weights cluster around minus one, zero, and one. In contrast, their
differential integrated interaction scores are spread out and differences
between conditions are resolved in greater detail.

For our dataset, DrDimont provides drug response scores for 275 drugs
with drug targets from CTRP (Rees et al., 2015) (see Figure 2B), the
majority were differentially predicted to some degree. Only seven drugs

Fig. 2. DrDimont’s integrated interaction scores and differential drug response predictions
for the breast cancer dataset. (A) Differential edge weights are compared to the differential
integrated interaction scores of DrDimont for each of the five edge types (colored). We
contrasted ER- vs. ER+, i.e., negative scores correspond to stronger inhibitory interactions
or less strong positive interactions in ER- compared to ER+. Integrated interaction scores
enable distinguishing edges that have a zero differential edge weight, but overall, they show
a high correlation (Spearman’s ρ 0.967). (B) Histogram of DrDimont’s differential drug
response scores of 275 drugs for which drug targets occur in our multi-layer networks. Half
of the drugs are predicted with a differential response of varying value.

have a drug response score of one or higher. Top differentially predicted
drugs were SB-743921, that is known to have a stronger effect in ER- cell
lines (Zhu et al., 2016), ibrutinib, and tamatinib.

We compared the results of DrDimont for our dataset to the ground
truth of the drugs from CTRP in a receiver operating characteristic (ROC)
performance analysis (see Figure 3A). DrDimont’s drug response scores
were used as drug ranking for computation of true and false positive rates
of the prediction. The area under the ROC curve (AUC) for a ground truth
threshold of 0.01 was 0.67 (see legend of Figure 3A) which is considerably
higher than for random prediction (AUC 0.5). DrDimont’s multi-omics
data-based drug response scores showed a significant correlation to the
CTRP-based ground truth (Spearman’s ρ -0.19, p-value 0.001). The
correlation is negative since the ground truth is based on p-values, i.e.,
lower values correspond to a likelier differential response. What is more,
the partial AUC (pAUC) that takes only highly ranked drugs into account
gives values decisively higher than expected from a random prediction (up
to 0.014 compared to 0.005). Thus, we find DrDimont to be predictive of
differential drug response, and it especially enriches positive hits among
the top ranked results.

3.2 Comparison to alternative differential drug prediction
approaches

DrDimont’s approach focuses on differential interactions of drug targets in
the molecular network for differential drug response predictions. However,
frequently, rather the node properties are considered for predictions.
Therefore, we compare DrDimont’s performance to two alternative
approaches for deriving differential drug response: (i) using the weighted
PageRank algorithm in DrDimont’s differential network to score drug
targets, and (ii) differential expression of drug targets. PageRank detects
nodes with high importance in a network (hubs) and could thus identify
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drug targets that are particularly altered between conditions from the
differential network. Differential expression has been considered relevant
for drug action and has been used especially for predictions of drug
responsiveness of different tissues. We based our estimations on the
differential protein expression of a drug’s targets because most frequently
these are the drug’s binding partners rather than, e.g., mRNA molecules.

Fig. 3. ROC curves for DrDimont’s and alternative methods’ prediction performance on
the breast cancer dataset. (A) DrDimont’s differential drug response. Different ground truth
thresholds were used where drugs below the threshold were considered as true positives and
the others as true negatives. For 275 drugs, DrDimont provided differential drug response
scores that were used for drug ranking and comparison to ground truth classification.
(B) Weighted PageRank of drug targets for differential drug response prediction, for 275
drugs, computed on DrDimont’s differential network. (C) Differential expression of drug
target proteins for differential drug response prediction. The differential expression yielded
predictions for 274 drugs. In the legends, values in brackets denote AUCs, pAUCs at given
ground truth thresholds. The respective Spearman’s ρ and the p-value are given at the top
of each figure. Black dotted lines indicate theoretical ROC curves for random predictions.

For our breast cancer dataset, the weighted PageRank for drug targets
yielded predictions better than random, especially for stringent ground-
truth thresholds (AUCs > 0.5, Figure 3B). Spearman’s correlation with
the ground-truth ranking was less pronounced than for predictions with
DrDimont and not significant (-0.06, p-value 0.27), and pAUCs were below
random (pAUC < 0.005). The predictions based on differential protein
expression were close to random classification (AUC ≤ 0.5). Also the
correlation between prediction and ground truth ranking was small and
insignificant (Spearman’s ρ -0.03, p-value 0.5, see Figure 3C). Thus, both
the PageRank-based and the differential expression-based drug response
predictions performed worse than DrDimont on the breast cancer dataset.

3.3 Influence of different molecular layers

We analyzed which molecular layers are most relevant for DrDimont’s
drug response prediction performance. Therefore, we considered mRNA,
protein, phosphosite data as before, as well as the two metabolomics
datasets (see Table 1, and Supplement, Figure S4, for the ROC curves).
DrDimont performed best according to AUC and Spearman’s correlation
when employing only the proteomic layer in the analysis. However,
DrDimont could only provide predictions for 116 drugs in this setting; the
remaining drugs lacked edges for all of their drug targets in the network
thereby resulting in no drug response score (see Supplement, Figure S5, for
a further characterization). Compared to the default setting with all three
data layers (no metabolomics), using protein and phosphosite data together
resulted in only slight changes in AUC and correlation, but more than
doubled the pAUC from 0.01 to 0.024 (best value). DrDimont performed
worst in terms of AUC and correlation when using only the mRNA and
the protein layers together. Applying DrDimont using only the phosphosite
layer resulted in a relatively high pAUC of 0.017. Surprisingly, adding the
two different metabolite datasets to the analysis with DrDimont showed
consistently worse results than without metabolites, but affected the results
for the setting containing all other three data layers least. We conclude that
the proteomic and phosphosite data layers contribute most to DrDimont’s
differential drug response prediction for this dataset.

Table 1. Influence of different molecular data layers on DrDimont’s
drug response prediction performance. T: Terunuma metabolomics, B:
Budczies metabolomics. The respective number of drugs with differential
drug response predictions can change between approaches because the
established molecular networks differ and drugs without any edges
incident to their drug targets do not receive a differential drug response
score. We indicate the AUC and pAUC for a ground truth threshold of
0.01, and Spearman’s correlation (corr.) and its p-value (p).

included layers #drugs AUC pAUC corr. p

mRNA, proteins, phosphosites 275 0.670 0.010 -0.193 0.001
+ metabolites B 275 0.634 0.009 -0.179 0.003
+ metabolites T 275 0.634 0.007 -0.172 0.004

mRNA, proteins 275 0.552 0.008 -0.058 0.338
mRNA 216 0.574 0.001 -0.114 0.093
proteins, phosphosites 190 0.668 0.024 -0.188 0.009

+ metabolites B 213 0.626 0.008 -0.156 0.023
+ metabolites T 194 0.643 0.007 -0.145 0.034

proteins 116 0.677 0.021 -0.253 0.006
+ metabolites B 178 0.479 0.008 -0.035 0.639
+ metabolites T 136 0.509 0.008 -0.058 0.439

phosphosites 115 0.585 0.017 -0.179 0.055
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Fig. 4. DrDimont delivers explainable predictions. Given a drug (example: dinaciclib), the
differential drug response score derived from DrDimont can be traced back to the input
layers. (A) Dinaciclib’s drug targets (CDK1, CDK2, CDK5, CDK9) are identified in the
differential network. (B) The distribution of differential integrated interaction scores of
the drug targets’ incident edges can be retrieved (stacked histogram). Many edges that are
differential occur for CDK2 and CDK5. (C) The differential integrated interaction score of
an edge can be related to the interaction strength in each condition (here: ER+ vs. ER-, for
CDK1 and CDK2). Bars to the sides resolve edge counts. Boxes and arrows mark respective
values in (B) and (C) for three selected edges incident to CDK1. Different edge types are
marked by colors.

3.4 Explainable results

An asset of DrDimont is that predictions can be directly associated to
molecular differences between subgroups. Given a specific drug response
score for a certain drug, it can be traced back which drug target is especially
different between the compared conditions, as well as which connections
of the drug targets are the cause of the observed differences. We show
this in an example for the drug dinaciclib, see Figure 4. Dinaciclib’s four
reported drug targets CDK1, CDK2, CDK5, CDK9 and their incident
edges can be identified both in the differential network as well as in the
network for each condition. We find that CDK2 (and CDK5, not shown)
has stronger interactions with other proteins in ER- than in ER+, whereas
the interactions between proteins and their phosphosites are equally strong
or stronger for CDK1 and CDK2 in the ER+ group. CDK9 shows no
interaction differences between conditions. Specific differently interacting
proteins and phosphosites can be also retrieved. This allows a deeper
investigation by domain experts.

4 Discussion
We introduce DrDimont as a flexible framework for network-based
differential analysis and drug response prediction. It builds condition-
specific molecular networks from multi- or single-omics, and no matched
samples are required. In addition, DrDimont outperforms differential
expression-based and PageRank-based approaches for drug response
prediction. It provides an explainable framework to trace contributions
of single molecular alterations.

We find the protein and phosphosite layers to be most informative for
drug prediction, especially for identifying top ranked drugs. Biologically,

this seems reasonable because drugs mainly act on proteins where they
interfere with their cellular functions (Pinto et al., 2014). Further, these
functions are frequently modulated by post-translational modifications
such as phosphorylations (Dittmar et al., 2019). Despite insights on the
relevance of metabolomics in combination with other omics data for
disease and in particular for cancer (Ortmayr et al., 2019; Pinu et al.,
2019), we do not find evidence supporting that in our analyses. A possible
reason could be that while all other omics data are from the same study
and experimental conditions, the metabolomics measurements stem from
different studies possibly adding extra noise to the integrated results. In
addition, reliable measurement of metabolite abundances is more difficult
in a patient treatment setting because metabolites are degraded extremely
rapidly also within extracted tumor biopsies. Besides improvements in data
quality and matched samples, further improvement may be achieved by
reducing the number of the other layers’ features (nodes) for better balance
of their sizes. Also alternative connection approaches might be a viable
option to explore this further within the flexible framework of DrDimont.

DrDimont’s combined molecular networks can be retrieved and
employed for the user’s own analysis approaches, for example using
network embedding (Pio-Lopez et al., 2021), exploration by random walks
(Valdeolivas et al., 2019), or diffusion-based methods (Di Nanni et al.,
2020). A strength of DrDimont is that its networks can also be tracked
to provide molecular explanations for the predictions and thereby enable
targeted biological follow-ups for in-depth investigation. In addition,
DrDimont allows the inclusion of molecules with unknown function and
low abundances. This makes the approach particularly interesting also for
less well characterized organisms such as fungi.

Applying DrDimont to compare more refined subgroups would be
interesting, for example, resolving effects of other hormone receptors in
breast cancer such as progesterone or HER2. Other groups to compare
could be pre- and post-chemotherapeutic patients (Park et al., 2020), or
applying general sample classification before analysis with DrDimont.

A limitation of our network-based drug response prediction is that
it relies on the quality of known drug targets. Some drugs are less
well characterized than others. Taking this uncertainty into account and
increasing the resolution on the mode of action of drugs for the input data
(Parvizi et al., 2020) could be opportunities for improving DrDimont’s
prediction results. Moreover, real ground truth for our case is difficult to
obtain: applying different drugs to patients and monitoring their outcome
cannot be performed, of course, due to ethical reasons and standard of
care. Here, we use cell line measurements as a surrogate that differ in
quality, taking trade-offs into account. Overall, differential drug response
prediction is a difficult problem that also results in contradicting ground
truth measurements (see Supplement, Figure S6), and thus, comparably
low AUCs are not surprising. The partial AUC that measures enrichment
of correct predictions in top-differential drugs achieves high values. Other
directions such as relying on extended patient-derived xenograft-based
drug response studies and analyses (Gao et al., 2015) could be taken.

DrDimont is a flexible tool for subgroup-specific and comparative
predictions with an explainable framework, and we envision that it
contributes with its proof-of-principle to improving the clinical decision
process in the future.
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1 Details on methods and settings
For general data analysis and visualization, we used R, version 4.1.0 (R Core Team, 2021). In addition, we employed the R packages ggplot2 (Wickham,
2016), ggextra (Attali and Baker, 2022), dplyr (Wickham et al., 2021), tidyr (Wickham and Girlich, 2022), and Hmisc (Harrell Jr, 2021).

1.1 DrDimont’s implementation details

DrDimont is implemented as an R package and employs python (Python Core Team, 2021). The package was tested with R version 4.1.3 and python
3.9.6. R packages employed by DrDimont include igraph (Csardi and Nepusz, 2006), WGCNA (Langfelder and Horvath, 2008), dplyr (Wickham et al.,
2021), tibble (Müller and Wickham, 2021), tidyr (Wickham and Girlich, 2022), stringr (Wickham, 2019), Rfast (Papadakis et al., 2022), readr (Wickham
et al., 2022), magrittr (Bache and Wickham, 2022), rlang (Henry and Wickham, 2022), rmarkdown (Allaire et al., 2022), knitr (Xie, 2022), utils, and
stats. Python packages used are numpy (version 1.20.3) (Harris et al., 2020), tqdm (da Costa-Luis et al., 2021), python-igraph (version 0.9.9) (Csardi and
Nepusz, 2006) and ray (version 1.6.0) (Moritz et al., 2018).

1.2 DrDimont’s settings for heterogeneous network construction

For the analysis of our datasets, DrDimont combined the mRNA, protein and phosphosite layers based on the gene names using edge weights of 1, i.e., an
mRNA was linked to its protein, and a protein was linked to its phosphosites. The metabolites were linked to the proteins employing STITCH (Szklarczyk
et al., 2016) interactions with confidence scores as edge weights (see Metabolite-protein interactions from STITCH).

1.3 Metabolite-protein interactions from STITCH

Since combining the metabolite and protein or other genetic layers is not as straightforward, we downloaded all chemical-protein interactions from
STITCH (Szklarczyk et al., 2016) for Homo sapiens. We restricted them to high-confidence interactions with a STITCH combined score > 900 and the
sum of STITCH sub-scores for database and experimental evidence> 800. Interaction weights between proteins and metabolites were set as the combined
STITCH score divided by 1000, and interactions were assigned a negative weight if they were identified as inhibition. We identified an interaction as
inhibition if high-confidence evidence (score > 800) was given in the STITCH table of mode of actions. If both activation and inhibition were indicated
for an interaction, we used the mode with a higher confidence. For the proteins, we mapped the STITCH ensembl_peptide_id to gene symbols using
biomaRt. We used the aliases file from STITCH for identifying metabolites in our datasets based on Pubchem IDs, ChEBI IDs, KEGG IDs and metabolite
names (in that order). The thus identified stereo chemical IDs for the aliases were used to match the chemical IDs of the STITCH interactions to the
metabolite names given in the case study datasets.

1.4 Performance assessment via ROC, AUC, pAUC

For receiver operating characteristic (ROC) analysis, a threshold for the ground truth ranking was applied to define a binary classification of drugs that
have a differential response (low p-value, true positives) or have no differential response (high p-value, true negatives) in the ER- vs. ER+ cell lines. For
the ROC curves of a predicted drug ranking, thresholds were varied to obtain predicted binary drug classifications. These were compared with the ground
truth binary classification to derive false positive and true positive rates. The area under the ROC curve (AUC) was computed by numerical integration.
The partial AUC (pAUC) was computed as area under the ROC curve between false positive rates of 0 and 0.1. Thus, random predictions yield pAUCs
of 0.005. High pAUC values signify enriched true predictions among the top ranked drugs.
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1.5 Sample counts, network sizes, reduction thresholds

Table S1. Number of samples, nodes, reduced edges and DrDimont settings for network reduction per dataset, group and molecular layer. The network reduction
parameters used in DrDimont were applied to both groups that we compared respectively. ‘red. TCGA’ denotes the TCGA + CPTAC dataset with reduced genetic
features (our default) and ‘TCGA’ the unreduced dataset. The other two datasets, Krug (Krug et al., 2020) and cell lines (Li et al., 2019; Nusinow et al., 2020; Iorio
et al., 2016), are described further in section Performance for unreduced and other datasets. The datasets Budczies (Budczies et al., 2013) and Terunuma (Terunuma
et al., 2014) are the metabolomics datasets.

Group red. TCGA TCGA Krug Cell lines Budczies Terunuma

mRNA

samples ER- 237 237 34 38 - -
samples ER+ 806 806 78 20 - -
nodes ER- 4120 18321 21015 18272 - -
nodes ER+ 4120 18321 20747 17938 - -
reduced edges ER- 21630 262787 86283 61703 - -
reduced edges ER+ 25036 138134 30498 34941 - -
R2 both 0.85 0.85 0.87 0.89 - -
WGCNA threshold range both 0.4-0.8 0.55-0.8 0.56-0.8 0.55-0.9 - -

protein

samples ER- 36 36 34 23 - -
samples ER+ 68 68 78 9 - -
nodes ER- 2917 8430 9018 7443 - -
nodes ER+ 2920 8459 9011 7157 - -
reduced edges ER- 17634 81777 40621 83959 - -
reduced edges ER+ 6073 151712 55639 74741 - -
R2 both 0.84 0.84 0.86 0.85 - -
WGCNA threshold range both 0.7-0.8 0.7-0.85 0.65-0.8 0.7-0.95 - -

phosphosites

samples ER- 36 36 34 - - -
samples ER+ 67 67 78 - - -
nodes ER- 4942 12290 18222 - - -
nodes ER+ 4942 12223 17885 - - -
reduced edges ER- 15109 34377 57845 - - -
reduced edges ER+ 80674 10960 23468 - - -
R2 both 0.95 0.94 0.97 - - -
WGCNA threshold range both 0.7-0.95 0.85-0.95 0.7-0.9 - - -

metabolites

samples ER- - - - 30 41 34
samples ER+ - - - 18 143 33
nodes ER- - - - 225 162 342
nodes ER+ - - - 225 162 307
reduced edges ER- - - - 1723 2192 8639
reduced edges ER+ - - - 1322 2335 6031
R2 both - - - 0.6 0.7 0.7
WGCNA threshold range both - - - 0.6-0.8 0.2-0.95 0.2-0.95
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2 Additional analyses - Supplementary Figures

2.1 Effect size for the ground truth

In the manuscript, we derived the ground truth by contrasting breast drug response measurements from multiple ER-stratified cancer cell lines from CTRP
(Rees et al., 2015) with a Mann-Whitney-U test. We used the p-value as ground truth readout: the smaller the p-value, the more differential the drug
response between conditions. Here, we investigated the impact of using the effect size instead of the p-value. The effect size is defined as |z|/

√
N , with

N the sample size, i.e. the number of measured breast cancer cell lines for a drug, and z the z-score of the test statistic. We performed ROC analysis for
DrDimont’s predictions, prediction by PageRank, or by differential protein expression for different thresholds on the effect size (see Figure S1). Overall,
conclusions remain the same as for the original ground truth by p-values (compare Fig. 3 in the main text), with DrDimont performing better than the
other two methods, and being predictive especially for top-ranked drugs.
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Fig. S1. ROC curves for DrDimont’s and alternative methods’ prediction performance on the breast cancer dataset. Average effect size was used for ground truth drug ranking. (A)
DrDimont’s differential drug response (275 drugs). (B) Weighted PageRank of drug targets for differential drug response prediction (275 drugs). (C) Differential expression of drug target
proteins for differential drug response prediction (274 drugs). In the legends, the values in brackets denote AUCs and pAUCs at given ground truth thresholds. The respective Spearman’s ρ
and the p-value are given at the top of each figure. Black dotted lines indicate theoretical ROC curves for random predictions.
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2.2 Alternative reduction methods

DrDimont performs a reduction of the single-layer networks (see Methods, Single-layer network generation). By default, networks are reduced to maximize
their scale-freeness, setting a goodness-of-fit threshold, R2 (together with considerations on allowed network sizes). Other options implemented in
DrDimont’s framework are reductions by an approximate network density or average edge count. This means that the weakest network edges are removed
until a specific density,

d =
|E|

|V |·(|V |−1)
,

that is the ratio of existing edges to possible edges in the network, or a specific mean number of edges per node

e =
|E|
|V |

are reached. Here, E is the set of edges, V the set of vertices, and | · | denotes the cardinality of these sets. We investigated the effect of these alternative
reduction schemes on DrDimont’s performance for the TCGA + CPTAC dataset (see Figure S2). We find that for certain network densities d and average
numbers of edges per node e, prediction results are comparable to the R2-based reduction on scale-freeness. However, we observe that the prediction
performance in terms of AUC and Spearman’s correlation to the ground truth decreases for sparse (e = 5, d = 0.001) networks, but also for very densely
connected networks (e = 20, d = 0.007).
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Fig. S2. Effect of single-layer network reduction settings on DrDimont’s performance. AUCs vs. Spearman’s correlation for reduction upon (A) different average number of edges (5, 8,
10, 15, 20), (B) different network densities (0.001 - 0.007), compared to the prediction for reduction based on scale-freeness (R2). A ground truth threshold of 0.01 was used for AUC
computation.
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2.3 Integrated interaction score settings and differential drug prediction method

By default, we propagate local edge information in the integrated interaction scores by considering alternative paths up to a length of L = 3. Larger path
lengths are computationally difficult due to the extremely high number of possible paths. For smaller path lengths, we observe reduced performance,
especially in terms of the correlation between prediction and ground truth (symbols in Figure S3, TCGA+CPTAC breast cancer dataset). This shows that
the local merging scheme we devised is beneficial.
Furthermore, we examined the effect of summarizing the edge information around drug targets for drug prediction (see Differential drug response in the
Methods of the main text). By default, we employ the arithmetic mean of edge weights in the differential network over all edges that are incident to the
drug’s targets as differential drug response score of the drug (‘mean (difference)’). This results in the fact that strong interactions that are present only in
one of the contrasted groups can be balanced by alternative strong interactions to other nodes in the other group. Alternatively, we here consider other
measures: (i) the median (instead of mean) over those edge weights (‘median (difference)’), or (ii) absolute edge weights with mean (‘mean (absolute
difference)’), or (iii) median (‘median (absolute difference)’) (colors in Figure S3). We find that our default measure performs decisively better than the
other three, both in terms of AUC and correlation. Thereby, both measures that do not consider edge weights in absolute terms are better, and taking the
mean is (at least slightly) better than taking the median.
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Fig. S3. Integrated interaction score settings and differential drug computation. We examined DrDimont’s performance, AUC vs. correlation between prediction and ground truth (CTRP),
on the TCGA + CPTAC dataset for different settings. We consider (i) the path length for computing the integrated interaction score: 3 (default, square), 2 (triangle), 1 (no propagation of
local information, circle), and (ii) the summarizing scheme for edge weights incident to a drug’s targets in the differential network: mean of absolute differential edge weights (red), mean
of differential edge weights (default, green), median of absolute differential edge weights (blue), and median of differential edge weights (purple).
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2.4 ROC curves for data layer ablation study

We here provide ROC curves for the data layer ablation study on the breast cancer patient dataset (from TCGA and CPTAC) with performance indicators
from Table 1 from the main text. Default setting was to include the mRNA, protein, phosphosite layers (red in all plots in Figure S4). Apart from different
combinations of these three layers, we assessed the impact of including data from one of two metabolomics studies (Budczies et al., 2013; Terunuma
et al., 2014). Please refer to the main text for the description of the results.
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Fig. S4. ROC curves for the performance of DrDimont when supplied different combinations of data layers for the TCGA + CPTAC breast cancer dataset. The default setting with mRNA,
protein, phosphosite layers is given in each plot (red). (A) Addition of metabolomics, or removal of phosphosite data. (B) Single-layer prediction. (C) Protein and phosphosite layer, combined
with metabolomics. (D) Protein layer, combined with metabolomics. Comparison against ground truth from CTRP; AUC and pAUC for a ground truth threshold of 0.01. B: Budczies dataset
(Budczies et al., 2013), T: Terunuma dataset (Terunuma et al., 2014). Please refer to Table 1 (main text) for numbers of drugs with predictions in each setting.
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2.5 Drugs lacking predictions for data layers

We examined in more detail which drugs can be predicted as differential by DrDimont depending on the data layers that were provided. We focus on the
case of using the protein layer only (best performing) or using the protein plus mRNA layers (strong decrease in performance). In particular, when using
only the protein layer, we find that 159 of 275 drugs from CTRP that had drug targets in our molecular networks could not be predicted as differential or
not by DrDimont. This happens if there are no edges incident to drug targets in either of the two compared conditions. Some of the most differential drugs
(as indicated by CTRP ground truth) were among those (see Figure S5A). In contrast, when adding the mRNA layer, all 275 proteins receive DrDimont
scores, but all but three of the ones without predictions for the protein layer only are zero (see Figure S5C). For drugs with DrDimont predictions in both
settings, results are very similar (see Figure S5D).
The four drugs with highest differential predictions in both settings were AZ-3146, tamatinib, SB-743921, ibrutinib. The three drugs with high differential
ground truth were AZ-D7762, MK1775, GSK461364. The drug with highest differential response in ground truth that received differential predictions in
both settings was momelotinib (DrDimont’s drug response scores: 0.66 (protein), 0.63 (protein + mRNA)).
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Fig. S5. Effects of using only the protein layer or protein and mRNA layers on DrDimont’s predictions. (A) Histogram of ground truth predictions for CTRP (negative log10 of the
Mann-Whitney-U p-values) for 275 drugs. The color distinguishes whether DrDimont could derive predictions for the drug from the protein layer only (116 drugs, blue) or not (159 drug,
red). (B) DrDimont’s differential drug response score using only the protein layer vs. CTRP ground truth differential drug score predictions for 116 drugs. (C) DrDimont’s differential drug
response score using the protein and mRNA layers vs. CTRP ground truth differential drug score predictions for all 275 drugs. Color indicates whether DrDimont could derive predictions
from the protein layer only (as in A). (D) DrDimont’s differential drug response scores using the protein layer and mRNA layers vs. using only the protein layer for 116 drugs.
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2.6 Alternative ground truth measurements from GDSC

In our analyses, we focused on CTRP (Rees et al., 2015) as differential drug response ground truth because it delivered values for many drugs (490
measured, 275 with predictions in our framework). In order to assess the impact of this selected ground truth, we also employed the processed GDSC drug
sensitivity dataset (Yang et al., 2013) that delivers data for 42 breast cancer cell lines (29 ER-, 13 ER+) and 198 drugs. From that, we used the area under
the drug response curves (AUC) as drug sensitivity information. We retrieved the drug target information from the compound annotation file and matched
protein names or target descriptions to Gene Symbols using the GeneCards resource. We only employed data for a drug if it was measured at least three
times for each ER+ and ER- cell lines. We determined the differential drug response between ER+ and ER- for each drug by a Mann-Whitney-U test
comparing sensitivity in ER+ cell lines vs. sensitivity in ER- cell lines. Thus, we obtained ground truth for 190 drugs from GDSC. For the dataset with
TCGA mRNA, CPTAC proteomics and phosphosites, DrDimont predicted differential response for 101 drugs. A comparison between the ground truth
from GDSC and CTRP and performance of DrDimont for them is shown in Figure S6. It becomes clear that the ground truths do not overlap very well.
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Fig. S6. CTRP vs. GDSC ground truth for differential drug response. (A) Differential response ground truth negative logarithmized p-values for 57 drugs that overlap in the datasets from
CTRP and GDSC. Solid lines indicate p-values of 0.05. (B) DrDimont’s drug response scores for the TCGA + CPTAC breast cancer dataset (mRNA, protein, phosphosites) for 53 drugs
overlapping between CTRP and GDSC. Different scores stem from different drug target definitions, 4 of the 57 drugs from (A) did not have drug targets in our network. (C) DrDimont’s
drug response scores compared to CTRP ground truth for 275 drugs. Dataset as in B. Performance at a 0.01 ground-truth threshold: AUC 0.67, pAUC 0.01; Spearman’s ρ -0.193, p-value
0.001. (D) DrDimont’s drug response scores compared to GDSC ground truth for 101 drugs. Dataset as in B. Performance at a 0.01 ground-truth threshold: AUC 0.4, pAUC 0; Spearman’s
ρ 0.01, p-value 0.9.
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2.7 Performance for unreduced and other datasets

In addition to the TCGA + CPTAC dataset, we applied DrDimont to two other datasets for ER+ vs. ER- breast cancer: (i) a second independent breast
cancer patient study with mRNA, protein, phosphosites (Krug et al., 2020) (‘Krug’), and (ii) cell line data from the Cancer Cell Line Encyclopedia
(CCLE) with mRNA, proteins and metabolomics (Li et al., 2019; Nusinow et al., 2020). The mRNA, protein and phosphosite data for the Krug dataset
was derived from the Supplementary Table 2 of Krug et al. (Krug et al., 2020). The breast cancer cell line data was downloaded from the CCLE (Iorio
et al., 2016; Nusinow et al., 2020; Li et al., 2019).
For the Krug dataset, we only employed samples with tumor purity (according to the metadata) > 0.5; the ER status of the samples was reported in the
metadata file (Krug et al., 2020). For the cell line data, we used estrogen receptor status annotation from the CCLE resource.
Both mRNA datasets stem from RNAseq. We neglected mRNAs with more than 90% of zero measurements over the samples within a condition. Proteins
and phosphosites with more than 20% of missing values over the samples of a condition were removed. DrDimont’s performance was compared to
predictions derived from differential protein expression analysis (see Methods, Differential protein expression).
In addition, we re-analyzed the TCGA + CPTAC (‘TCGA’) dataset without genetic feature reduction, and no genetic feature selection was performed for
the other two datasets either. See Table S1 for DrDimont’s settings, sample sizes for each subgroup of the datasets, and generated network sizes.
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Fig. S7. DrDimont’s differential drug prediction results for three different datasets, compared to prediction by differential expression (‘DE’): breast cancer cell lines (‘cell lines’), an
alternative breast cancer patient study (‘Krug’), and TCGA + CPTAC breast cancer patients (’TCGA’). Genetic features were not reduced. ROC analysis was performed with a ground-truth
threshold of 0.01 for the CTRP ground truth. The AUC, pAUC and Spearman’s ρ and its significance (p-value) are described in the legend. Predictions are derived for 278 drugs in the cell
lines dataset, 295 drugs in the Krug dataset, and 292 drugs in the entire TCGA dataset.

For the cell line data, DrDimont’s prediction showed a performance close to random in terms of AUC (0.492), but elevated pAUC (0.007 vs. 0.005 expected
for random predictions) and also a small correlation to the ground truth prediction (Spearman’s ρ -0.093, p-value 0.12). The drug response prediction by
differential expression performed worse with even lower correlation (-0.034) and decisively lower pAUC (0.003). Reasons for the bad performance on
the cell line dataset could be the decisively lower sample size that characterizes each subgroup. In addition, we lack the phosphosite layer for this dataset
that had shown to confer robustness to the results in our TCGA + CPTAC dataset.
For the Krug dataset, DrDimont’s predictions yielded an AUC of 0.61 and an insignificant Spearman’s ρ of -0.07 (p-value 0.255). Top-ranked results
were not retrieved particularly frequently (pAUC 0.003). For differential drug response by differential protein expression in the Krug dataset, lower AUC
(0.538), but significant correlation (-0.14, p-value 0.017) and a higher pAUC than expected by random predictions (0.009) were obtained. Therefore, in
this dataset, it seems that differential protein expression is a better marker for differential drug response than network-based interaction analysis. This
suggests that including differential expression into the analysis approaches might be beneficial under certain circumstances.
DrDimont’s drug response scores of the unreduced TCGA dataset resulted in slightly worse predictions than for the reduced dataset (AUC 0.63 for
ground-truth threshold 0.01, Spearman’s ρ -0.11, p-value 0.062), and especially lacked enrichment of positive predictions for top-ranked results (pAUC
0.004). Thus, feature selection seems beneficial for differential drug response.
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