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ABSTRACT

Here, we report the de novo assembly of a cattle genome using ultra-long-read nanopore
sequencing in conjunction with other advanced technologies. The assembled genome
contains only 145 contigs (N50 ~ 74.0 Mb). Compare to the current reference cattle

genome ARS-UCD1.2, 154 gaps are closed, and 467 scaffolds are further placed in our
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assembly. Importantly, except two remained gaps in the T-cell receptor a/6 (TRA/TRD)
region, the gene loci of other TRs and immunoglobulins (IGs) are seamlessly assembled
and exquisitely annotated. With the characterization of 258 IG genes and 626 TR genes
that distributed in seven genomic loci, we illustrate the highest immune gene diversity
in mammals to our knowledge. Moreover, the gene structures of major
histocompatibility complex (MHC) are integrally depicted with properly phased
haplotypes. Thus, our work not only reports a cattle genome with the most continuity
and completeness, but also provide a comprehensive view of the complex immune-

genome.

KEYWORDS
Cattle genome assembly, ultra-long sequencing, T cell receptor, immunoglobulin, MHC,

Immune-genome

INTRODUCTION

The immune system possesses the biggest source of genetic variation, and the
prodigious diversity and complexity of the immune system ensure the host to precisely
distinguish non-self from self and to effectively response to the persistent but
unpredictable environmental challenges (Schultze and Aschenbrenner, 2021; Sette and

Crotty, 2021). At the DNA level, T cells and B cells represent the typical examples of
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the genetic variations (Imkeller and Wardemann, 2018; Kumar et al., 2018). The
somatic rearrangement of the V, (D) and J gene segments from the TR or B cell receptor
(BCR, also known as IG) gene loci give rise to millions of different T- and B-cell
receptors (Nielsen and Boyd, 2018). Each T- or B-cell, as characterized by the uniquely
expressed TR or IG gene, can response to a specific antigen. The TR and IG genes, in
together, encode a major part of the immune repertoire (Arunkumar and Zielinski, 2021;
Chi et al., 2020). Another example is the MHC gene locus, which contains many genes
that involve in the immune defenses and shows the highest diversity among population
(Petersdorf and O'HUigin, 2019). Because of the structural complexity of these
immunogenetic loci, a comprehensive description of these alleles remains a challenge.
The complete assembly and annotation of the immunogenomic loci will provide
fundamental and accurate descriptive data for immunology studies. Excitingly, using
nanopore sequencing technology, human MHC gene locus was completely assembled
and phased with ultra-long reads (Jain et al., 2018a).

The average cost of de novo assembly of a genome has dramatically decreased
because of the improved next generation sequencing (NGS) technologies such as
[llumina(Hu et al., 2021). More importantly, the third-generation sequencing
technologies, which can produce long reads that exceeds dozens of kilobases, have led
to a paradigm shift in whole-genome assembly, not only in experimental methods but
also in algorithms (van Dijk et al.,, 2018). Pacific Biosciences (PacBio) ‘single-

molecule real time (SMRT)’ methods can generate ~10 Kb long HiFi reads with 99%
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accuracy (Ardui et al., 2018). Oxford Nanopore Technologies (ONT) recently
developed an ultra-long read method that can produce reads with an average length of
~50 Kb, and the longest reads can be hundreds of kilobases or even over mega-bases
(Jain et al., 2018a; Nurk et al., 2022). The incredible technical progress has promoted
a prosperity of genome assemblies from animals to plants. For human genome,
assembly of a centromere on the Y chromosome(Jain et al., 2018b), telomere-to-
telomere assembly of specific chromosome (Logsdon et al., 2021; Miga et al., 2020),
and a real gapless assembly of all 22 autosomes plus X chromosome (Nurk et al., 2022)
have been reported recently. These advances provided detailed data and the panoramic
view of all genomic variants, especially the immunogenetic diversity of humans.

As one of the most important livestock, cows made important historically
contributions and are continuing contribute to the basic and applied immunology
(Guzman and Montoya, 2018; Vlasova and Saif, 2021). The basis of vaccination began
from the protection against smallpox by inoculation with cowpox (Pead, 2003), and
CD205 was firstly identified as dendritic cell marker in cattle (Naessens and Howard,
1993). Cattle also showed privileges in studying human infectious diseases over mouse
models such as tuberculosis (Waters et al., 2011) and respiratory syncytial virus (RSV)
(Taylor, 2017), as human and bovine share higher similarities in immunity. Moreover,
recent investigations of cattle immune responses provided novel insights into the
relationships between microbes and host (Gomez et al., 2019). For example, the long

third heavy chain complementary determining regions (CDRH3) in cattle has been
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shown to be capable of rapid elicitation of broad-neutralizing antibodies against Human
Immunodeficiency Virus (HIV) (Sok et al., 2017). However, the insufficient
understanding of cattle immune system hinders the studies of this important model farm
animal. A high-quality reference genome is crucial to facilitate research on cattle
immunity.

Besides the current official cattle genome, ARS-UCD1.2, de novo assembly of the
cattle genome has been tried with PacBio SMRT method (Rosen et al., 2020). Two
genome assembly studies of water buffalo and Simmental cattle have also been reported
recently (Heaton et al., 2021; Low et al., 2019). All the above assemblies showed
limited genome continuity and completeness, and none of them used ONT ultra-long
read method. In this study, we report a new assembly for the cattle genome with a
combination of several advanced sequencing methods, in particular, the ONT ultra-long
read sequencing technology. Our data significantly surpassed the continuity and
accuracy of ARS-UCDI1.2, and enabled the gapless assembly and refined annotation of

the immunogenetic loci, including TR, IG and MHC.

RESULTS

De novo Assembly of a Cattle Genome.

To assemble a most accurate genome version of cattle, we carried out a whole genome
sequencing of female cattle embryonic fibroblasts using ONT ultra-long read sequence

technology in conjunction with PacBio circular consensus sequencing (HiF1), [llumina
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NGS, Hi-C and BioNano optical maps. 237.8 Gb ultra-long reads were produced with
an N50 length of 70.4 Kb, and the longest read was 872.5 Kb. The ONT data exhibited
a great advantage in read-length compared to that of PacBio and Illumina methods
(Figures S1A-C).

Using NextDenovo, we performed the de novo assembly of the ultra-long reads
(Figure S1D). The assembly comprised only 145 primary contigs with an N50 contig
size of 74.01 Mb and a total length of 2.68 Gb. The contigs were then polished and
corrected with PacBio HiFi reads and Illumina reads, anchored with BioNano optical
maps and Hi-C interaction matrix into a final version genome with excellent continuity
(Figure S1E). The N50 scaffold size was improved to 74.72 Mb and the final genome
size was 2.71 Gb, and we named our assembly as NCBA1.0 (Figure 1A). To evaluate
the completeness and accuracy of the NCBA1.0, we aligned all the reads back to this
new assembled genome, and 99% of the whole genome had a minimum coverage of 36
X by ultra-long reads, 4 X by PacBio HiFireads and 64 X by Illumina reads (Figures
1B and SIF). The ultra-long reads showed significant low-bias on GC contents of
genomic regions compared to that of Illumina reads and HiFi reads, especially at GC-
poor regions (Figure S1G). This result exhibited the outstanding performance of ultra-
long reads in genome assembly, as heterochromatins consists of AT-rich repeats,

especially at the telomeres and acrocentric regions.

Gap Filling on the Reference Genome ARS-UCD1.2
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The NCBA1.0 assembly showed tremendous sequence integrity compared to the
current cattle reference genome, ARS-UCD1.2, and other cattle genomes (Figure S1H).
Of the 30 chromosomes, 12 chromosomes were packaged by one single contig (Figure
1A). The g-arms of seven chromosomes were ended with a minimum of 15 Kb
(TTAGGG), telomere repeats, among which five chromosomes (chromosome 17, 20,
22, 26 and 28) were gapless centromere-to-telomere assemblies (Figure 1A). The gap-
remaining regions were mainly localized at the acrocentric regions of p-arms and the
chromosome X. Further, we assessed whether the remained gaps in ARS-UCD1.2 can
be filled using our assembly. The reference cattle genome ARS-UCD1.2 contains 30
chromosomes and 2180 unplaced scaffolds. There are 386 gaps that denoted as Ns and
315 gaps of which were localized on chromosomes. With our assembly, 154 gaps on
chromosomes were filled (Figures 1A-B). Additionally, 420 scaffolds and 47 partial
scaffolds, with a total length of 24.89 Mb, can be properly placed back in the new
genome (Figure S2). The scaffolds placed ranged from Kb to Mb and the largest
scaffold was 4.3 Mb in chromosome X.

We further annotated the newly assembled genome. Transposable element repeats
(TE) were account for 46.53% of NCBA1.0 and the total ratio of repeat sequences were
47.30% (Figure 1C). 20,288 genes were predicted with an average length of 40.4 Kb,
which showed close consistency with bovine and other proximal species (Figures 1D
and S3A-F). Functional annotations of the genes among databases, including

Benchmarking Universal Single-Copy Orthologs (BUSCO, 95.25% overall alignment
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rate), KEGG, GO, KOG, NR and Swiss-Prot, showed both high coverage and
intersection ratios (Figures S4A-C). We also validated the expression of the predicted
genes by RNA-Seq and confirmed the expression of 89.7% of these genes (Figure 1D).

These data demonstrated the reliability of the genome annotation of NCBA1.0.

Immunoglobin Gene Loci Annotation
The assembly of a cattle genome with the most continuity and completeness allowed
us to depict the detailed gene structures of the complex immunogenomic loci. We
mainly looked into the IG, TR and MHC gene clusters, which localized on six different
chromosomes (Figure S5). IG genes or B cell receptors are composed by three gene
loci, immunoglobin heavy chain (IGH), lambda chain (IGL) and kappa chain (IGK).
All IG-related gene loci were covered with gapless contigs and were well annotated in
NCBA1.0, while in genome ARS-UCD1.2, IGH is missing, and IGL region remains six
gaps (Figures 2A-D and S5). Detailed gene structure and functionality annotations of
IG/TR loci were performed mainly following the IMGT criteria (Figures S6A and S6B).
The IGH was 616.0 Kb in size and was located in the end of the g-arm of
chromosome 21 (Figures 2A, 2B and S7A). During the maturation of IG, a process
called V(D)J recombination takes place. This process combines randomly selected one
segment from each of the preexisting variable (V), diversity (D), and joining (J) gene
clusters and give rise to the tremendous diversity of IGs on mature B cells (Nielsen and

Boyd, 2018). In the NCBA1.0, the IGH locus consists of 48 IGHV genes (11 functional)
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belonging to 3 IGHV subgroups, and 17 IGHD genes (all functional), 12 IGHJ genes
(3 functional) and 10 IGHC genes (8 functional) (Figure 2B). A previous study
assembled IHG locus by sequencing seven BAC clones and generated an IHG gene
structure containing three tandem [[GHDP-IGHV3-(IGHDv),] repeats (Ma et al., 2016).
In contrast, there are only two tandem repeats [I[GHDP-IGHV3-(IGHDv),] in IGH
locus of NCBA1.0, and the repeat regions as well as the adjacent gene loci were fully
covered with multiple ultra-long reads longer than 100 Kb, demonstrating the accuracy
and reliability of sequence assembly in our study (Figures S7B and S8 A-B). In addition,
compared to the above work, two extra IGHV genes in the V region were identified
(Figure 2B). Thus, our data suggested that the IGH locus were organized as: (IGHV )46-
(IGHDv)s-(IGHJ)s-IGHM1-[IGHDP-IGHV3-(IGHDV)x]2-(IGH))s- IGHM2-IGHD-
IGHG3-IGHG1-IGHG2-IGHE-IGHA (Figures 2A and 2B). 10% of cattle IGs contain
ultra-long complementarity determining region (CDR3) that were composed of
IGHV1-7 and IGHDS (Deiss et al., 2019; Haakenson et al., 2018). We identified one
unique gene locus of IGHV1-7 and one unique IGHDS in the global IGH gene locus.
We renamed these gene loci as IGHV1-6 and IGHDS8-2 according to their position in
NCBAL1.0 (Figure 2B).

The IGL locus spanned 643.9 Kb at g-arm of reverse strand on chromosome 17.
By filling the remained six gaps in the IGL locus of ARS-UCD1.2, total 125 IGLV
genes (37 functional) were annotated, among which 51 IGLV genes were newly

recognized (Figures 2C and S9A). We also corrected the repeat numbers of IGLJ-IGLC
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clusters from nine to six (Figures 2C and S9A-B). The whole IGL genome locus was
covered with an average depth of 13 by ultra-long reads longer than 100 Kb, and four
ultra-long reads span over the entire IGLC region (Figure S10), giving incontrovertible
evidence for the genome assembly and annotation in IGL locus. These results illustrated
that the IGL genes are organized as: (IGLV)125-(IGLJ-IGLC)e.

The IGK is the smallest gene locus of IG and spans 214.3 Kb between 47.2 and
47.4 Mb on chromosome 11 (Figures 2D and S11). IGK consists of 28 V genes (7
functional), 5 J genes (1 functional) and 1 C gene in NCBA1.0 and 3 new V genes were
found compared to the previous genome version, ARS-UCD1.2 (Figure S11). Our data

suggested that the IGK locus is organized as (IGKV)2s-(IGKJ)s-IGKC.

T Cell Receptor Gene Loci Annotation

The T cell receptors of cattle are composed by four gene subgroups, TRA, TRB, TRD
and TRG, that localized at four genomic loci (Figure S5). TRA and TRD form the most
complicated immunogenomic locus together that ranges over 3.3 Mb on the reverse
strand of chromosome 10 (Figures 3A and S12). The entire TRD resides within the
genetic region of TRA (Figures 3A and 3B). Surprisingly, the V region of TRA/TRD
spanned over 3 Mb, which was more than 90% of the total TRA/TRD region. In
NCBAL1.0, we annotated 281 TRAV genes (148 functional) and 57 TRDV genes (46
functional), while in ARS-UCD1.2, only 183 TRAV genes (85 functional) and 39

TRDYV genes (31 functional) were defined. In line with ARS-UCD1.2, the D-J-C cluster
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consisted of 60 TRAJ genes, 1 TRAC gene, 9 TRDD genes, 4 TRDJ genes and 1 TRDC
gene (Figure 3B). Therefore, our data suggested that the TRA(D) genomic structures
were organized as [TRA(D)V]a-(TRDD)o-(TRDJ)4-TRDC-TRDV3-(TRAJ)s0-TRAC.

The TRB genomic locus was assembled without gap in NCBA1.0. It spanned 667.3
Kb between 105.4 Mb and 106.2 Mb in chromosome 4, and consisted of 153 TRBV
genes (87 functional), 3 TRBD genes (all functional), 19 TRBJ genes (15 functional)
and 3 functional TRBC genes (Figures 4A and 4B). Our data closed the previously
remained two gaps in ARS-UCD1.2 (Figures 4A and S13A). The TRBD, TRBJ and
TRBC genes were organized into three tandem D-J-C cassettes, followed by one
functional TRBV gene (TRBV30) in inverted orientation (Figure 4B). Thus, the TRB
genomic structures were organized as: (TRBV);52-[TRBD-(TRBJ),-TRBC]3-TRBV30.

The TRG genes were localized in two separate loci on chromosome 4 which were
on different strands and were 30 Mb apart from each other (Figures 4C and S13B).
TRG1 spanned 229.3 Kb and comprised four tandem V-J-C cassettes, while TRG2
spanned 106.0 Kb and comprised three tandem V-J-C cassettes (Figure 4C). In total,
TRG was consisted of 18 TRGV genes (17 functional), 10 TRGJ genes (8 functional)
and 7 TRGC genes (all functional), and TRG genes were organized as [(TRGV),-
(TRGJ)n-TRGC]4 for TRG1 and [(TRGV)a-(TRGJ)s-TRGC]3 for TRG2.

In summary, the cattle genome NCBA1.0 consisted of a total number of 884 1G
and TR genes (258 IG and 626 TR) that were localized in seven major loci and

distributed in 710 V, 29 D, 116 J and 29 C genes (Table 1). The elaborate annotations
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of NCABI1.0 greatly enriched the gene sequence diversities compared to that in IMGT
database, especially in TR genes (Figure S14). Although there are still two gaps
remained in the TRA/TRD region in our assembly, our work provided important data

revealing the dramatic diversity of cattle immune repertoire.

Phylogenetic Analysis of V Genes

Next, we performed a phylogenetic analysis of V genes across species. Gene diversities
statistics of species with detailed IG/TR annotations showed that NCBA1.0 has the
highest gene number among known species, especially TR genes (Figure S15).
Phylogenetic trees were constructed with all functional IG and TR V genes from human,
mouse and cattle (NCBA1.0). Our data showed that all the V genes were well clustered
according to their subgroups, except that TRAV genes were clustered into two separate
groups (Figure 5A). This result demonstrated the evolutionary conservation of IG and
TR gene subgroups among species. The gene number analysis also showed a significant
deviation: both human and mouse had much more IG V genes than TR V genes, while
cattle showed an opposite tendency that the TR V genes were three times more than IG
V genes (Figure 5B). We also evaluated the sequence similarities among the three
species. The cattle are more similar to human than mouse by both IG and TR V genes,
while human is more similar to mouse by IG V genes and more similar to cattle by TR

V genes (Figure 5C).
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MHC Gene Annotation

The MHC plays a crucial role in determining immune responsiveness and is referred as
the bovine leukocyte antigen (BoLA) in cattle. In NCBA1.0 assembly, chromosome 23,
which contains the BoLA genetic region, was composed by one single contig and the
BoLA ranged 3.38 Mb (Figures 6A and S16A). The MHC genes mainly contain two
clusters, MHC class I and MHC class II (Petersdorf and O'HUigin, 2019), and by
acquiring the seamless sequence of this gene locus, we were able to annotate the MHC
genes coordinately. The cattle contain six classical MHC I genes (BoLA 1-6) with high
polymorphism and ten non-classical MHC I genes (NCI1-10) that show limited
polymorphism (Plasil et al., 2022). Classical MHC 1 genes located at the 3’end of the
entire BoLA region. The non-classical MHC I genes NC6-10 were adjacent to classical
MHC I genes and genes NC2-5 were 600 Kb upstream away (Figure 6B). For MHC II
genes, there were only DQ and DR gene pairs that were organized in adjacent sequential
order (Figure 6C), unlike human MHC II that harboring an additional DP gene pair. We
also annotated other genes located within the BoLA region, including C2, IL17, CTLA4,
TNF and TRIM families (Figure 6B and 6C).

To better understand the gene organizations of BoLA region, haplotypes were
phased with ONT ultra-long reads combined with heterozygous SNPs called using
[llumina data and HiFi reads. The N50 length of haplotype 1 and haplotype 2 were
198.5 Kb and 200.6 Kb, respectively (Figures 6D and 6E). Of the 3.38 Mb BoL A region,

3.17 Mb were successfully assembled into haplotypes and both haplotypes showed high
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continuity (Figure S16B). The contigs of each haplotype showed delicate differences
of gene structures in both MHC I and MHC 1II (Figure 6F), demonstrating the
polymorphism and polygeny of BoLA among individuals. For example, there were two
DQB genes within haplotype 1, while only one DQB gene were identified in haplotype
2. Likewise, the classical MHC I genes vary in terms of both gene types and numbers
between two haplotypes (Figure 6F). These data highlighted the power of ONT ultra-
long technology in resolving haplotypes of huge intricate gene clusters. Taken together,
the BoLA was assembled and phased over its full length in a diploid cattle genome for

the first time.

Characterization of Telomere Repeats and Satellite DNA (satDNA)

Heterochromatin, such as centromeres, normally contain long arrays of tandem
repeated DNA sequences, known as satDNAs (Escudeiro et al., 2019a; Miga, 2019).
Similarly, the telomeres are genomic regions at the end of chromosomes and consist of
highly repeated hexanucleotide sequence, TTAGGG (Shay and Wright, 2019). The
genomic structure of these repetitive regions in cattle remained elusive due to the lack
of investigations of cattle genome with advanced ultra-long sequencing techniques.
Thus, we further looked into the telomeres and acrocentric satDNA repeats of the cattle
genome NCBA1.0. We identified 1429 ultra-long reads with minimum length of 50 Kb
that contains telomere TTAGGG tandem repeats and successfully assembled telomere

regions of g-arms of seven chromosomes, and the telomere arrays ranged dozens of
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kilobases and the longest one spanned over 70 Kb (Figure 7A). As all autosomes of
cattle genome are acrocentric (Frohlich et al., 2017), no telomere of p-arms was
assembled due to the genomic structures of satDNA arrays in the centromere, which
located right beside the telomeres.

We next analyzed the distributions of satDNAs in NCBA1.0. Eight types of cattle
satDNAs have been reported previously (Ashari et al., 2012) (Escudeiro et al., 2019a;
Escudeiro et al., 2019b). In our data, FIVE types of satDNAs, SATI, SATIII, SATIV,
SAT1.711a and SAT1.711b, constituted the majority of the satDNA regions (Figure 7B).
We also identified thousands of copies of a 23-mer arrays, which accounted for the
highest abundance of all the satDNA repeats (Figures 7B and 7C). Interestingly, one
type of the satDNAs, SAT1.711b arrays, were sparsely distributed along the whole
genome, while other satDNAs were located mainly within the acrocentric regions of p-
arms (Figures 7B and S17). Collectively, we provided important information for

telomeric and satDNA array organizations of cattle genome.

DISCUSSION

Sequencing-technology progress, especially the emerging of ONT ultra-long
sequencing, has achieved great success in the complete human genome assembly, T2T-
CHM13, which obtained gapless sequences for all chromosomes except Y (Nurk et al.,
2022). As the immune system possesses the biggest source of genetic variation,

depicting the immune genomic loci was almost impossible several years ago, let alone
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population genomic diversity studies of the immune system. A completely assembled
genome, or at least completely assembled immune genomic loci, is the cornerstone for
the in-depth understanding of the immune system of a given species. In this study by
taking advantage of the ONT ultra-long sequencing method, we presented a new cattle
genome assembly that exhibited remarkable improvement over existing assemblies. We
illustrated the advances of our new assembly in gap filling and scaffold assignment.
Importantly, we delineated the complex genomic structures of TR, IG and MHC loci,
which provides fundamental immunogenomic data for further immune studies in cattle.

Our work affords the most precise roadmap of cattle immune-genome up to now.
We corrected the tandem repeat regions within the IGH locus from three to two, and
filled 13 gaps within the IG and TR genomic regions. 710 V genes were annotated in
NCBAL1.0, while only 524 V genes are currently collected in IMGT database (Table 1
and Figure S14). The cattle MHC region was also seamlessly packaged and properly
phased, which is the first intact MHC assembly beside human to our knowledge (Jain
etal.,2018a).

Cattle showed distinct characteristics in both IG and TR immune repertoire. For
IGH genes, there were only 48 V genes, which was significantly fewer than human and
mouse. The relatively low diversity of IG in cattle was likely compensated by the
ultralong CDRH3s that can be found in approximately 10% of the immunoglobins
(Haakenson et al., 2018). CDRH3s allow cattle antibodies to bind a wider range of

antigens and was showed to play a key role in neutralizing HIV spike protein during
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the immune response (Deiss et al., 2019; Sok et al., 2017; Wang et al., 2013). These
cattle ultralong CDRH3s almost exclusively used the same V gene segment (IGHV1-7)
that contains an eight-nucleotide duplication “TACTACTG” at its 3’ end, and the same
D gene segment (IGHDS8-2) that is known as the longest D gene (Deiss et al., 2019).
Both IGHV1-7 and IGHDS-2 gene loci were clearly depicted in NCBA1.0. Based on
our data, the V-D rearrangements between these two loci can be further investigated,
for instance, their histone modifications and chromatin accessibility.

Cattle possess the highest TR gene diversities among all species that were annotated
with detailed V(D)J gene structures (Figure S15). We identified 509 TR V genes in
NCBAL1.0, which was three times more than human TR V genes. The reason why cattle
genome contains much more TR V genes than IG V genes remains indistinct. This is
probably related with the gut-associated mucosal tissue that contacts with a great
diversity of food and microbial antigens, as mucosal T cells play a central role in
distinguishing dietary proteins and commensal bacteria from harmful pathogens (Chase
and Kaushik, 2019). It is worth mentioning that the remarkably abundant TR repertoire
in cattle may serve as a natural resource pool for the screening of specific TRs with
extraordinary therapeutic activity against human diseases, such as cancer. Moreover,
cattle have a large proportion of y8 T cells that showed regulatory and antigen-
presenting functions (Guzman et al., 2012). Further studies of cattle T cells shall shed
light on the understanding of yd T cells, which remains elusive in humans due to their

low abundance (Guzman et al., 2014) .
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Limited studies in cattle centromeres and telomeres have been done (Escudeiro et
al., 2019b; Ilska-Warner et al., 2019). Despite the telomere length is associated with
productive lifespan and fitness. In this study, we captured telomere repeats in seven
chromosomes and for the first time precisely evaluated the telomere length in cattle.
Evaluation of satDNAs based on the new assembly revealed sequence ranges and
composition ratio of satDNAs, as well as the specific patterns of how different satDNAs
were organized that have never been revealed before.

In summary, the new assembly, NCBA1.0, represented a more complete and
accurate reference of cattle genome, as well as the immune genome, thereby facilitating
further investigations of the immune system in cattle, and perhaps other mammals.
These data can be a blueprint for the final gapless telomere-to-telomere cattle genome

assembly in the near future.
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FIGURE TITLES and LEGENDS

Figure 1. A Global Picture of the de novo Cattle Genome Assembly

(A) Ideograph of cattle genome assembly NCBA1.0. Chromosomes composed of a
single contig are in dark blue, satDNAs are in orange and telomeres are in purple.
Closed gaps and properly placed scaffolds of ARS-UCD1.2 are depicted as red
triangles and yellow strips.

(B) Read coverage of cattle genome NCBA1.0. Lane 1-3: read coverages by ONT
ultra-long reads, PacBio HiFi reads and Illumine NGS reads. Lane 4-5: remaining
gaps in NCBA1.0 and ARS-UCD1.2.

(C) Composition ratio of repeat elements in NCBA1.0.

(D) Gene annotations of NCBA1.0. There were 20288 genes predicted in total, and the
ratio of genes with functional annotation, overlapped with BUSCO and validated with

RNA-Seq were indicated.
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Figure 2. The Cattle Inmunoglobin Loci

(A) Genomic organization of IGH locus in KT723008, ARS-UCD1.2 and NCBA1.0.
Repeated regions were drawn as blue rectangles, and ONT ultra-long reads that longer
than 100 Kb and the mapping to the genomic region were drawn.

(B) Detailed diagram of IGH gene structure and annotation in NCBA1.0. Two
repeated regions were labeled as blue rectangles (repl-1 and rep1-2). IGHV1-6 and
IGHDS-2 consists of the ultralong CDRH3 were marked with green triangles.

(C-D) Genomic organization of IGL and IGK loci in ARS-UCDI1.2 and NCBA1.0.
Genomic gaps in ARS-UCD1.2 were depicted beneath the genes according to their
coordinates and ONT ultra-long reads that longer than 100 Kb and the mapping to the

genomic region were drawn.

Figure 3. The Cattle TRA/TRD Loci

(A) General organization of TRA/TRD loci in ARS-UCD1.2 and NCBA1.0. Genomic
gaps in ARS-UCDI1.2 and NCBA1.0 were depicted beneath the genes according to
their coordinates. ONT ultra-long reads that longer than 100 Kb and the mapping to
the genomic region were drawn.

(B) The detailed genetic map of TRA/TRD loci in NCBAT1.0. Labels of TRD genes

starts with “D” and all TRD genes reside within the TRA genomic region.
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Figure 4. The Cattle TRB and TRG Loci

(A) The genomic organization of TRB locus in ARS-UCD1.2 and NCBA1.0.
Genomic gaps in ARS-UCDI1.2 were depicted beneath the genes according to their
coordinates. ONT ultra-long reads that longer than 100 Kb and the mapping to the
genomic region were drawn.

(B) The detailed diagram of TRB gene structure in NCBA1.0.

(C) The genomic organization of TRG loci in NCBA1.0. ONT ultra-long reads that

longer than 100 Kb and the mapping to the genomic region were drawn.

Figure S. Phylogenetic Analysis of V Genes

(A) Phylogenetic tree of all functional IG and TR V genes. V genes of human, mouse
and cattle were merged together and clustered well according to their biological classes.
(B) Bar plot of V gene numbers of cattle, human and mouse.

(C) Sequence similarities of functional V genes between cattle, human and mouse. Y
axis indicates alignment identities of each V gene to the genes of the other two species

that share the most similarity.

Figure 6. MHC Gene Locus and Haplotyping
(A) Genomic coordinates of MHC locus in chromosome 23. Chromosome 23 consists
of only one contig and MHC contains two separate genomic regions.

(B-C) Detailed gene organizations of MHC class I (B) and class II (C). MHC genes
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were labeled in red.
(D-F) Haplotyping of MHC genomic region. Genomic locations of two haplotigs within
the MHC region (D). Length distributions of two haplotigs (E). Gene organization

variation of two haplotigs (F).

Figure 7. Telomere Length and satDNA Distributions

(A) Lengths of telomere repeats in g-arms of seven chromosomes.

(B) Genome-wide distributions of cattle satDNAs. satDNAs mainly localized within
the acrocentric regions except satl.711b.

(C) Composition chart of satDNAs in NCBA1.0 assembly.

TABLES with TITLES and LEGENDS
Table 1. Gene Numbers of Each Immune Locus in NCBA 1.0 Assembly
Functional annotation for each gene of IGs and TRs was performed based on the

IMGT criteria (Figure S6), and gene numbers were collected and listed in the table.

Types IGH IGK IGL TRA TRB TRD TRG1 TRG2 Sum
v 48 28 125 281 153 57 14 4 710
(F/P/ORF) (11/37/0) (711912) (37/80/8) (148/108/25) (87/55/11) (46/7/4)  (13/1/0)  (4/0/0)  (353/307/50)
D 17 3 9 29

NA NA NA NA NA
(F/P/ORF) (17/0/0) (3/0/0) (6/0/3) (26/0/3)
J 12 5 6 60 19 4 5 5 116
(F/P/ORF) (3/1/8) (1/0/4) (4/012) (53/2/5) (15/1/3) (3/0/1) (5/0/0)  (3/0/2) (87/4125)
c 10 1 6 1 3 1 4 3 29
(F/P/ORF) (8/2/0) (1/0/0) (3/3/0) (1/0/0) (3/0/0) (1/0/0) (4/0/0)  (3/0/0) (24/5/0)
Sum 87 34 137 342 178 71 23 12

(F/P/ORF) (39/40/8) (9/19/6) (44/83/10)  (202/110/30) (108/56/14) (56/7/8)  (22/1/0)  (10/0/2)
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MATERIALS AND METHODS

Sample Collection and Genomic DNA Isolation

The holstein cattle of high genetic merit were mated to produce an elite fetus that was
recovered at day 60. The cattle fibroblast cells were isolated from this fetus via
disaggregation of all tissue excluding the viscera and limbs, and cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM; Gibco, Grand Island, New York, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco, Grand Island, New York,
USA) at 37.5 <C in an atmosphere of 5% CO2 and humidified air. The genomic DNA
was extracted using the QIAGEN Genomic-tips kit (QIAGEN, Valencia, CA, USA)

according to the manufacturers’ instructions.

Ultra-long Library Construction and Sequencing

To obtain ultra-long reads, only the large DNA fragments were recovered with
BluePippin, followed with end repair and dA-tailing (NEBNext Module, MA, USA).
After careful purification, the adapter ligation was performed with SQK-LSK109
ligation kit (Oxford Nanopore Technologies, Oxford, UK) and the final product was
quantified by fluorometry (Qubit) to ensure >500 ng DNA was retained, and sequenced
on the Oxford Nanopore PromethION platform. ONT ultra-long reads were generated

by Grandomics Biosciences company and only reads with a minimum mean quality
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score of 7 were kept for the following assembly.

Hi-C Library Construction and Sequencing

The Hi-C experiment was performed exactly following the in situ Hi-C method (Rao et
al., 2014). Briefly, the cross-linked cells were lysed and digested with Mbol, filled with
biotin-dATP, ligated with T4 DNA ligase and reverse crosslinked. Then the biotin-
labeled DNA was enriched and sequenced with Illumina sequencing platforms
following the manufacturer’s instructions. The read mapping, quality control and

matrix building were performed with HiC-Pro (Servant et al., 2015).

De Novo Genome Assembly
The de novo assembly of ONT ultra-long reads was performed with NextDenovo

(https://github.com/Nextomics/NextDenovo). The reads were first self-corrected to

generate consensus sequences with NextCorrect module and then assembled into

preliminary assembly with NextGraph module. To correct the preliminary assembly,

the original ONT reads and PacBio CCS reads were mapped with minimap?2 (Li, 2018)

and corrected with Racon (Vaser et al., 2017) with default parameters for three

iterations. Then the Illumina reads were used to polish the corrected assembly with

NextPolish (Hu et al., 2020) for 4 iterations to generate the final polished genome

assembly. The polished assembly was used as reference for the de novo assembly of

BioNano data to generate scaffolds. For Hi-C data, LACHESIS (Burton et al., 2013)
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was used to cluster, order and direct the scaffolds to generate the final chromosomal

level genome assembly.

Assembly Evaluation

BUSCO 3.1.0 (-l mammalia_odb9 -g genome) (Manni et al., 2021) was used to evaluate
the genome completeness based on included gene numbers, and CEGMA v2 (Parra et
al., 2007) was used to assess the assembly based on included eukaryotic protein core
families with default parameters. Sequence accuracy was assessed by total number of
homozygous SNPs identified by Illumina reads mapped to the assembly. Exogenous

pollution was assessed based on the distributions of GC-depth and reads coverage.

Genome Annotation

For repeated sequences, TRF (Benson, 1999) was used to identify tandem repeats and
RepeatMasker (Tarailo-Graovac and Chen, 2009) was used to identify transposon-
based elements. For gene structures, PASA (Haas et al., 2003)was used to predict gene
coordinates based on Illumina RNA-Seq data, GeMoMa (Keilwagen et al., 2018) was
used to predict gene coordinates based on protein sequences of proximal species, and
GeneMark-ST (Lomsadze et al., 2005) was used to predict genes from de novo. The
three gene sets were integrated into an initial gene set with EVM (Haas et al., 2008)

and finally to a clean gene set by removing (http://transposonpsi.sourceforge.net/).

For further gene function annotation, the protein sequences of the predicted gene set
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were searched against several databases to predict their functions, including Non-
Redundant Protein Database (NR), Kyoto Encyclopedia of Gene and Genome (KEGG),
Eukaryotic Orthologous Groups of protein (KOG), InterProScan GO database, and

Swiss-Prot.

Genome Comparison and Gap filling

Genome sequence comparison between ARS-UCDI1.2 and the new assembly was
performed with LASTZ (Harris, 2007) at chromosomal level. To fill the gaps of ARS-
UCD1.2, 10 kb sequences up and downstream of the gap sites in chromosomes were
fetched and aligned to the new assembly with minimap2 (Li, 2018). Only alignments
with >90% identity were kept and the alignment results of pair of gap sequences were
manually checked to ensure the gap loci were within one contig. The unplaced scaffolds
were first split up at gap loci and then aligned to the new assembly with minimap2. The

scaffolds were reported if > 50% alignment identity and located within one contig.

Telomeres and satDNA Annotation

To get the loci and lengths of telomeres, all short tandem repeats were identified with
TRF (Benson, 1999) with in the new assembly. Then short tandem repeats of TTAGGG
were identified and only these located at the end of chromosomes were kept as
telomeres. To annotate satDNAs, 57 nucleotide sequences belong to 8 satDNA classes

were collected from NCBI and a blast database were built containing these 57


https://doi.org/10.1101/2022.05.31.493931
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.493931; this version posted June 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

sequences. The sequence similarities among these 57 sequences were analyzed with
blast (Johnson et al., 2008). Then all short tandem repeats were identified with TRF,
and their pattern sequences were cleaned up to a fasta file and then blasted against the
satDNA database. The alignments were filtered with >80% sequence identity and the

locations and copy numbers were merged from TRF results.

IG and TCR Gene Annotation

All cattle IG and TCR gene sequences were downloaded from IMGT database (Lefranc
et al., 2015). The gene sequences were aligned to the new assembly with bowtie2
(Langmead and Salzberg, 2012), and the alignment results were merged and manually
checked according to their subgroups (IGH, IGK, IGL, TRA, TRB, TRD and TRG) to
make sure the gene clusters were seamlessly assembled. For each locus, all candidate
variable (V), diversity (D), joining (J), and constant (C) genes were manually annotated
according to the following criteria (Figure S6). Manual annotations were validated by

four irrelevant people.

Phylogenetic Analysis of V Genes

Functional IG and TR V gene sequences of human and mouse were downloaded from
IMGT database (Lefranc et al., 2015). Functional cattle V genes were retrieved from
NCBAL1.0. Multiple sequence alignment was performed with Clustal Omega (Larkin et

al., 2007), and the outputs were visualized using the Interactive Tree of Life software
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(Letunic and Bork, 2019).

MHC Gene Annotation and Haplotyping
Totally 713 BoLA gene allele sequences were downloaded from IPD-MHC database

(https://www.ebi.ac.uk/ipd/mhc/). The BoLA gene sequences were aligned to the new

assembly with bowtie2 (Langmead and Salzberg, 2012), and the genomic location and
order of MHC Class I/Il genes were manually conformed with alignments > MAPQ 20.
For haplotyping, PacBio HiFi reads that mapped to MHC region were retrieved and
used for variant calling, followed with SNP genotyping with WhatsHap (Patterson et
al., 2015). Then the genotyped reads were separately retrieved and assembled into

haplotypes with Canu pacbio-hifi mode (Koren et al., 2017).

Statistical Analysis
Quantification methods and statistical analysis for each of the separate and integrated

analyses are described and referenced in their respective Method Details subsections.

Data and Code Availability
The relevant data reported in this paper are available from the corresponding authors
upon reasonable request. The related codes and figures for reproducible research are

stored at GitHub (https://github.com/Tintingli/cattleGenome).
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SUPPLEMENTAL INFORMATION TITLES and LEGENDS

Figure S1. Data Summary of Cattle Genomic Assembly

(A) Read length distributions of ONT ultra-long and PacBio HiFi methods. Each bar
indicates a separate sequencing flow cell.

(B) Read yield distributions of ONT ultra-long and PacBio HiFi methods. Each bar
indicates a separate sequencing flow cell.

(C) Length distribution of the total ONT ultra-long reads.

(D) Flow chart of the genome assembly pipeline.

(E) Continuity of ultra-long reads assembled contigs.

(F) Read coverage of NCBA1.0 by ONT ultra-long reads and HiFi reads.

(G) Influence of GC content on genome coverage of three sequencing methods.

(H) Summary of recently assembled genomes related to bovine.

Figure. S2. Properly Placed Scaffolds of ARS-UCD1.2 in NCBA1.0
Top fifty scaffolds of ARS-UCD1.2 according to their sequence length were shown.

Information of all properly placed scaffolds were stored in Table S7.

Figure S3. Gene Length Distributions of Five Species
(A) Distribution of the gene lengths of five species.
(B) Distribution of the CDS lengths of five species.

(C) Distribution of the exon lengths of five species.
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(D) Distribution of the exon numbers per gene of five species.
(E) Distribution of the intron lengths of five species.

(F) Distribution of the intron numbers per gene of five species.

Figure S4. Functional Annotation of Predicted Genes in NCBA1.0
(A) GO annotation of predicted genes.
(B) KEGG Ortholog annotation of predicted genes.

(C) Venn diagram of genes annotated to KOG, GO, KEGG, NR and Swiss-Prot.

Figure SS. Immune Gene Loci in NCBA1.0 Assembly
The IG, TR and MHC genomic loci dispersed in six chromosomes. The genomic
coordinates for each locus were labeled and the gaps between contigs were annotated

too. All immune loci were seamlessly assembled except the two gaps within the

TRA/TRD region.

Figure S6. Criteria For Gene Structure and Functionality Annotation,

(A) Sequence conservation logos were created with recombination signal sequences
of all functional cattle genes from IMGT by WebLogo software.

(B) Criteria for determining the functionality of an IG/TR gene. The functionality of
an IG/TR gene is defined as functional (F), Open Reading Frame (ORF) or

Pseudogene (P) based on the sequence analysis.
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Figure S7. Ultra-long Reads Coverage of IGH Locus
(A) Global view of the IGH locus covered by ONT ultra-long reads.
(B) Enlarged tandem repeat regions of IGH locus. The repeated regions were

represented as blue and red rectangles in KT723008 and NCBA1.0, respectively.

Figure S8. Dot Plots between Two IGH Genomic Sequences

(A) Dot plot of the IGH genomic sequence in NCBA1.0 assembly. The repeated
regions were labeled as repl-1 and rep1-2.

(B) Pairwise alignment between IGH in NCBA1.0 and previously reported IGH
sequence (KT723008). The three tandem repeats in KT723008 were labeled as rep2-

1, rep2-2 and rep2-3.

Figure S9. Detailed Annotation Map of IGL Locus
(A) Elaborate gene structures of IGL locus in NCBA1.0 assembly.

(B) Read coverage by ONT ultra-long reads in the IGL genomic region.

Figure S10. Enlarged Alignment Map of IGL J-C Cluster Region
ONT ultra-long reads that longer than 100 Kb were aligned back to the IGL locus, and
four separate ONT ultra-long reads that span over the entire IJL J-C cluster region

were labeled with asterisk.
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Figure S11. Detailed Annotation Map of IGK Locus
Genomic coordinate and organization of IGK locus were depicted. ONT ultra-long

reads that longer than 100 Kb and the mapping to the genomic region were drawn.

Figure S12. Global Genetic Map of TRA/TRD loci
Genomic coordinate and organization of TRA/TRD loci were annotated. ONT ultra-
long reads that longer than 100 Kb and the mapping to the genomic region were

drawn. The remaining two gaps within the TRA/D V gene region were depicted too.

Figure S13. Global Alignment Map of TRB and TRG Loci

(A) Genetic map of TRB locus in chromosome 4. TRB locus resides within contig23
and ONT ultra-long reads that mapped to the genomic region were drawn.

(B) Genetic map of TRG locus in chromosome 4. TRG contains two separate gene
clusters: TRG1 and TRG2, that are 32 Mb distant away from each other. ONT ultra-

long reads that mapped to the genomic region were drawn.

Figure S14. Gene Statistics of Cattle for Each Immune Locus in IMGT
Table was drawn based on cattle gene numbers of IG and TR collected from IMGT

database.
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Figure S15. IG and TR Statistics of Different Species in IMGT
Table was drawn based on gene numbers of IG and TR of different species collected

from IMGT database.

Figure S16. Genomic Assembly and Haplotyping of MHC Locus

(A) Genomic coordinate and annotation of MHC I and MHC II. ONT ultra-long reads
that mapped to the genomic region were drawn.

(B) Sequence alignments between two haplotigs and the MHC genomic region.

Colors indicate the sequence identity of the alignments.

Figure S17. Distributions of satDNAs in Scaffolds

Genomic loci of satDNAs within the scaffolds of NCBA1.0 were drawn.
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Figure 1. A Global Picture of de novo Cattle Genome Assembly
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Figure 2. The Cattle Inmunoglobin Loci

A

E 38 B 38 E 38
3 ;“% 8 g a ] 3 o
N
Lot i e wwewwrewrprnreprnnn n [ | [T I I i [ I I |
KT723008 IGH (KT723008: OMb - 0.67Mb) T
'UMb 0A1'Mb O,Z'Mb O.S'MD 0.4’Mb 0.5’Mb O.GI\;Ib
ARS-UCD 1.2 empty 98 o 5o
3 _z& 2 PO
1GHV (46) 3 5325 285 o 2ho3%o 8 5 ¥ g«
5 B8Boe OoF © o7 3000 & © & 80
L (O O N R O | a0 I nnnn
NCBA 1.0 IGH (chr21: 70.01Mb - 70.67Mb) IGH

B

Aligned reads
(> 100 Kb)

— IGHV1-48
— IGHV2-47
— IGHV3-46
— IGHV1-45
— IGHV2-44

g T5 g 38 5 8 83
(2] - N (2 - N (2] (2] - N
> > > > > > > > >>
I I I I I I I I T
&) 0o o s © o ©o
[ [ 1 | 1| I 1l

70.67Mb 70.62Mb

= |GHV1-33

IGHV2-32
= IGHV2-31
= IGHV3-30
= IGHV1-29
— IGHV1-28
= IGHV2-27
= |GHV1-26
— IGHV2-25
= IGHV3-24
— IGHV1-23
— IGHV2-22
— IGHV3-21
= IGHV1-20
= IGHV2-19
= IGHV2-18

70.57Mb 70.52Mb

~ own < (52 o

DT Y A e Qe I 9
& & & b £ < =& = d b
> >> = 2 >> >> >> >> > >
I IT I I IT IT IT IT I I
© 00 © O 00 Q0 9] 0 O O
L e Y I I [

70.47Mb 70.42Mb 70.37Mb
T T 3T by T o© N gy T QR Q9D
- N o< = - - © T N DO O TN ONOO
[a ) [a)a] [a] = o) = [alalalala) e ~lalalalala)
I I I T I I I I I T ITITT I T I IIITT
0o 0o 5 80 O 1GHM1 |GHDP1 [CECRCRTICIY) IGHDP2 0 VO VYLD
[ (M mreamd rept-t 1IN L] rept-2 LI
T T T T
70.32Mb 70.27Mb 70.22Mb 70.17Mb
2 39
3 g9
I IT
Sl 99CY |GHM2 IGHD IGHG3 IGHG1 IGHG2 IGHE IGHA
i mrinil ] mi ] il il
T T T 1
70.12Mb 70.07Mb 70.02Mb 69.99Mb
IGLV (74) (IGLUIGLC)*5 (IGLJ/IGLC)*3
TIOEIOE FREEE e i e PO e e e v e e ne rnen e
7—F ~/—f 7F a -
ARS-UCD 1.2 IGL (chr17: 70.67Mb - 71.19Mb) T
T T T T T T
70.67Mb 70.77Mb 70.87Mb 70.97Mb 71.07Mb 71.17Mb
IGLV (125) (IGLJ/IGLC)*6
L L R T e L R Ry ot T e e
NCBA 1.0 IGL (chr17: 72.0Mb - 72.7Mb
72Mb 72.1Mb 72.2Mb 72.3Mb 72.4Mb 72.5Mb 72.6Mb 72.7Mb |GL
| |

Aligned reads
(> 100 Kb)

D

0.1Mb

IGKYV (25) IGKJ/IGKC
TR LI N T
ARS-UCD 1.2 IGK (chr11: 47.1Mb - 47.32Mb) T
7.0 472 473 I Functional gene
IGKV (28) IGKJ IGKC
T A T TN T TR Y I Pseudogene
NCBA 1.0

T T T
47.2Mb 47.3Mb 47.4Mb

T
47.1Mb

Aligned reads
(> 100 Kb)

Repeat region

asw |[GK
Ultralong CDRH3 genes

plus strand alignment
minus strand alignment


https://doi.org/10.1101/2022.05.31.493931
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3. The Cattle TRA/TRD Loci
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Figure 4. The Cattle TRB and TRG Loci
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Figure 5. Phylogenetic Analysis of V Genes
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Figure 6. MHC Gene Locus and Haplotyping
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Figure 7. Telomere Length and satDNAs Distributions
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Table 1. Gene Numbers of Each Immune Locus in NCBA 1.0 Assembly

Types IGH IGK IGL TRA TRB TRD TRG1 TRG2 Sum
v 48 28 125 281 153 57 14 4 710
(FIPIORF)  (11/37/0)  (7/19/2)  (37/80/8)  (148/108/25)  (87/55/11)  (46/7/4)  (13/1/0) (4/0/0)  (353/307/50)
D 17 3 9 29
NA NA NA NA NA
(FIPIORF)  (17/0/0) (3/0/0) (6/0/3) (26/0/3)
J 12 5 6 60 19 4 5 5 116
(FIPIORF) (3/1/8) (1/0/4) (4/0/2) (53/2/5) (15/1/3) (3/0/1) (5/0/0) (3/0/2) (87/4/25)
c 10 1 6 1 3 1 4 3 29
(FIPIORF)  (8/2/0) (1/0/0) (3/3/0) (1/0/0) (3/0/0) (1/0/0) (4/0/0) (3/0/0) (24/5/0)
Sum 87 34 137 342 178 71 23 12
(FIPIORF)  (39/40/8)  (9/19/6)  (44/83/10) (202/110/30) (108/56/14)  (56/7/8)  (22/1/0)  (10/0/2)




Figure S1. Data Summary of Cattle Genomic Assembly, Related to Figure 1
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Figure S2. Properly Placed Scaffolds of ARS-UCD1.2 In NCBA1.0, Related to Figure 1
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Figure S3. Gene Length Distributions of Five Species, Related to Figure 1
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Figure S4.

Percentage of genes (%)

Functional Annotation of Predicted Genes In NCBA1.0, Related to Figure 1
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Figure S5. Immune Gene Loci in NCBA1.0 Assembly, Related to Figure 2-4
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Figure S6. Criteria For Gene Structure and Functionality Annotation, Related to Figure 2-4

A IG TR
V-heptamer V-nonamer V-heptamer V-nonamer
C
CACAGTG ACAAAAACC  CACAGIG ACAZAAACC
D-5’-nonamer D-5’- heptamer D-5’-nonamer D-5’- heptamer
1G4 CACGGIG & GI CASIGIG
GGTTTEIGA CACG G
D-3’- heptamer D-3’-nonamer D-3’- heptamer D-3’-nonamer
CACAGTG A4CASAAACC  CACGSLG ACAsAALGE
J-nonamer J-heptamer J-nonamer J-heptamer
GGLTTTTGL CACAGTG  GGITILIGL SACIGIG
B
Functional .
gene L-PART Gene body RS signal
* L-1 starts with ATG; . .
’ o st rd nd._| h
* Length of (L1 + L2) is 3N; 12-CYS in the 231 AA, 20-CYS in the 104t _AA’ « Canonical nonamer and heptamer
and TRP in the 41t AA (or a nearby position); ) . )
* Length of V-Intron < 500 nt; . with no more than 1 mismatch;
V * No stop codon(except the last codon in CDR3 . o
* No stop codon; region): no frameshift; * The size variation of X-Spacer
" L-1 donor spllce.sne .IS GT ; ., *No Ioﬁg deletions in bDR1/2 region length less than 3
« L-2 acceptor splice site is “AG
» Canonical nonamer and heptamer
) with no more than 1 mismatch;
D NA * No requirement * The size variation of X-Spacer
length less than 3
» Canonical nonamer and heptamer
J NA * FGXG motif in light chain and WGXG motif in with no more than 1 mismatch;
heavy chain, * The size variation of X-Spacer
length less than 3
C NA * No stop codon and no frameshift NA
Pseudogene L-PART Gene body RS signal
« Stop codon or frameshift;
"Nol-1 orl-2; « Stop codon or frameshift;
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* No L1 donor splice site;
* No L2 acceptor splice site
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C NA « Stop codon or frameshift NA
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Gene body
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« Noncanonical nonamer and/or
heptamer;

site; in the 41th AA (or a nearby position); « Unexpected X-Spacer lenath:
» Unexpected V-Intron length * Deletion of more than 3AA in V-region P P gt
» Noncanonical nonamer and/or
D NA NA heptamer;
* Unexpected X-Spacer length;
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Figure S7. Ultra-long Reads Coverage of IGH Locus, Related to Figure 2
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Figure S8. Dot Plots between Two IGH Genomic Sequences, Related to Figure 2
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Figure S9. Detailed Annotation Map of IGL Locus, Related to Figure 2
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Figure S10. Enlarged Alignment Map of IGL J-C Cluster Region, Related to Figure 2
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Figure S11. Detailed Annotation Map of IGK Locus, Related to Figure 2
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Figure S12. Global Genetic Map of TRA(D) Loci, Related to Figure 3
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Figure S14. Gene Statistics of Cattle for Each Immune Loci in IMGT, Related to Figure 2-4

Types IGH IGK IGL TRA TRB TRD TRG1 TRG2 Sum
) 183
v 47 25 a5 (1992 123 55 13 4 504
(FIPIORF) (12/35/0)  (6/17/2) 74-87114-  (62/52/9)  (45/5/5) (13/0/0) (4/0/0)
5/44-47) 2)
D 23 3 9
(F/PIORF) (2021 NA NA NA (3/0/0) (6/0/3) NA NA 35
0/2-3)
J 12 5 8 (52?504,4_ 19 4 4 5 17
(FIPIORF)  (3/2/7)  (1/0/4)  (5/0/3) o) (51/3) (30011 (4/0/0) (5/0/0)
C 11 1 9 1 3 1 4 3 a3
FpioRe)  BB0)  (100)  (4/500) (1/0/0) (3/0/0) (1/0/0) (3/1/0) (3/0/0)
Sum 93 31 91 244 148 69 21 12




Figure S15. IG and TR Statistics of Different Species in IMGT, Related to Figure 5

loci human  mouse cattle NCBA1.0 sheep dog rabbit  chicken cat horse
Vv 123-129 152 47 48 10 89 69 94 NA 104
D 27 17-20 23 17 4 6 11 4 NA 44
IGH
J 9 4 12 12 6 6 6 1 NA 9
C 11 8-9 11 10 6 8 17 3 NA 11
Vv 73-74 8 74 125 121 261 43 34 8 NA
IGL J 7-11 5 8 6 2 9 4 1 12 NA
C 7-11 4 9 6 2 9 6 1 12 NA
Vv 76 174 25 28 18 25 68 NA 18 66
IGK J 5 5 5 5 4 5 8 NA 5 5
C 1 1 1 1 1 1 2 NA 1 1
Vv 54 98 183 281 277 58 62 NA 63 NA
TRA J 61 60 60 60 79 59 58 NA 64 NA
C 1 1 1 1 1 1 1 NA 1 NA
Vv 64-67 35 123 153 94 36 77 NA 27 NA
D 2 2 & & 3 2 2 NA 2 NA
TRB
J 14 14 19 19 19 12 12 NA 12 NA
C 2 2 & & 3 2 2 NA 2 NA
Vv 8 16 55 57 70 5 4 NA 10 NA
D 3 2 9 9 9 2 2 NA 2 NA
TRD
J 4 2 4 4 4 4 3 NA 5 NA
C 1 1 1 1 1 1 1 NA 1 NA
Vv 12-15 7 17 18 13 16 11 NA 12 NA
TRG J 5 4 9 10 13 16 2 NA 12 NA
C 2 4 7 7 6 8 1 NA 6 NA




Figure S16. Genomic Assembly and Haplotyping of MHC Locus, Related to Figure 6
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Figure S17. Distributions of satDNAs in Scaffolds, Related to Figure 7
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