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Comprehensive characterization of the transcriptional
response to COVID-19 in multiple organs reveals shared

signatures across tissues
The COVID Tissue Atlas Consortium*

Abstract

Infection by Coronavirus SARS-CoV2 is a severe and often deadly disease that has
implications for the respiratory system and multiple organs across the human body. While
the effects in the lung have been extensively studied, less is known about COVID-19’s
cellular impact across other organs. Here we contribute a single-nuclei RNA sequencing
atlas comprising six human organs across 20 autopsies where we analyzed the
transcriptional changes due to COVID-19 in multiple cell types. Computational cross-
organ analysis for endothelial cells and macrophages identified systemic transcriptional
changes in these cell types in COVID-19 samples. In addition, analysis of signaling
pathways from multiple datasets showed several systemic dysregulations of signaling
interaction in different cell types. Altogether, the COVID Tissue Atlas enables the
investigation of both cell type-specific and cross-organ transcriptional responses to
COVID-19, providing insights into the molecular networks affected by the disease and
highlighting novel potential targets for therapies and drug development.
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Introduction

One sentence summary: We applied single-nuclei transcriptomics to investigate the
molecular response of human cells to SARS-Cov-2 across the body.

COVID-19 (Coronavirus Disease 2019) is the most devastating infectious disease in recent
history. The pandemic has impacted all parts of the globe and resulted in nearly 500 million
infections and over 6,000,000 deaths (Dong, Du, and Gardner 2020). Approximately 14% of
infected unvaccinated individuals develop a severe clinical disease that requires hospitalization
(Wu and McGoogan 2020). While the primary organ affected by severe COVID-19 is the lung,
many other organs, including the heart, liver, and kidney, are also affected (Mokhtari et al. 2020;
Xie et al. 2022; X. Wang et al. 2021). In addition, long-COVID has become an important and
common sequela in those who recover from infection. Long-COVID often affects multiple organs
and is more common in patients with a severe initial infection (Taquet et al. 2021).

The systemic effects of severe COVID-19 are largely mediated through the immune response to
SARS-CoV-2 infection and subsequent inflammatory response. Viral infection stimulates
macrophages to overproduce proinflammatory cytokines, including IL-6, leading to the “cytokine
storm” that results in systemic inflammatory response syndrome (Hu, Huang, and Yin 2021). This
heightened inflammatory state affects multiple organs, partly through effects on endothelial cells,
which can be directly injured in response to pro-inflammatory cytokines and produce a
procoagulant state leading to thrombosis (Fard et al. 2021). Improved understanding of the
cellular and molecular mechanisms that drive severe COVID-19 and lead to damage in specific
organs, as well as the development of long-COVID, requires a multi-organ approach.

We have previously shown that multi-organ, single-cell transcriptome-based approaches can
yield significant insights into organ biology and cross-organ signaling (Tabula Muris Consortium
et al. 2018; Tabula Sapiens Consortium* et al. 2022). In addition, several other studies have
recently applied a single cell-based approach to autopsy samples from patients with severe
COVID-19. These studies have yielded significant insights into how severe COVID-19 affects the
lung (Delorey et al. 2021; Melms et al. 2021) and the brain (A. C. Yang et al. 2021), but have not
described in detail the systemic and cross organ effects of severe COVID-19.

Here, we report a COVID single-nuclei RNA seq (snRNA-seq) atlas comprising six organs and
approximately 86,000 cells. We showed that transcriptional changes in severe COVID19
infections were not restricted to the lung, the most severely affected organ upon SARS-CoV-2
infection, but to multiple organs, such as the liver and heart. In addition, we found significant
changes in the transcriptional profiles of multiple cell types and identified a subset of recurrent
molecular pathways commonly upregulated in multiple cell types across organs. The COVID
Tissue Atlas (CTA) represents a comprehensive resource to investigate the transcriptional
changes resulting from COVID-19 in different tissues. Moreover, the scope of the CTA dataset
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61  enabled us to identify systemic transcriptional signatures that we would have missed by focusing
62 on anindividual organ. We anticipate our analysis and the CTA to be of significant value for future
63 research, including identifying molecular targets for drug development and therapeutic
64  applications.

65 Results
66

67 The COVID Tissue Atlas

68
69  We collected data from 20 different autopsies (17 males, 3 females) with an age range between
70 40 and 89 years old (median age = 68 years), of which 15 tested positive for COVID-19 (Figure
71 1A). The average time at which samples were collected was 63 hrs post-mortem. Ethnicities were
72  distributed as Hispanic (n=5), African American (n=2), Asian (n=1), and White (n=12). For COVID-
73 19 positive autopsies, the average positive test time before death was 20 days; however, not all
74  donors died due to COVID-19 complications (Supplementary Table 1). We optimized single-
75  nuclei RNA extraction and sequencing from frozen tissue for Biosafety Level 2 work. All samples
76  were sequenced at the Chan Zuckerberg Biohub using 10x genomics protocols. After quality
77  control, 85,376 cells (60,946 cells from COVID-19 samples and 24,430 cells from healthy donors)
78  were deemed high quality and used to form the CTA (Figure 1B, C). Single-nuclei RNA-seq is
79  prone to high levels of ambient RNA contamination, which we corrected by applying an
80 established correction algorithm (Fleming, Marioni, and Babadi 2019) along with filtering of
81  doublets (Methods). The total numbers of single cells for each organ were as follows: heart (6,092
82  healthy; 13,999 COVID-19), lung (9,684 healthy; 11,790 COVID-19), liver (6,768 healthy; 8,889
83 COVID-19), prostate (1,886 healthy; 8,986 COVID-19), kidney (4,060 COVID-19) and testis
84 (13,222 COVID-19) (Figure 1D, E). Additionally, small intestine, colon, and uninfected control
85  kidney specimens were processed but did not yield sufficient high-quality nuclei for inclusion. We
86  were not able to collect uninfected testis tissue.
87
88  We applied dimensionality reduction (PCA) and Leiden clustering for each organ while correcting
89  Dbatch effects across donors using scVI (Lopez et al. 2018). Finally, we visualized the resulting
90 clustering using UMAP (Mclnnes, Healy, and Melville 2018). For each organ, we identified cell
91  populations using the batch-corrected UMAP embedding by tissue experts based on the
92  expression of known gene markers (Methods). We were able to identify most major cell types in
93 each organ and verified that clusters with the same cell identity included both healthy and COVID+
94  cells, as an indication that batch effects were indeed removed (Figure 1 - Supplement figure 1-
95  2). Additionally, we verified that our single-nuclei data was statistically comparable to whole-cell
96  sequencing regarding the number of UMIs and detected genes (Figure 1 - Supplement figure
97 3).
98
99  Measurements of SARS-CoV-2 mRNA by RT-gPCR showed high to moderate expression in the
100  lung samples from COVID-19 donors (Figure 1 - Supplement figure 4A). While some of the
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101  COVID-19 associated genes such as ACE2, TMPRSS2, and NRP1 were expressed in multiple
102  organs (Figure 1 - Supplement figure 4C), we did not detect significant viral MRNA load by RT-
103  gPCRin the other organs processed (Figure 1 - Supplement figure 4A). The low detection rate
104  of viral mRNA could be attributed to the prolonged periods between initial infection and sample
105  collection for some donors (Deinhardt-Emmer et al. 2021) (Supplementary Table 1). Due to the
106  balanced representation of both healthy and COVID-19 donors for lung, heart, and liver, we
107  decided to focus our downstream analysis mainly on understanding the transcriptional responses
108  of cell types in these organs. For the kidney, we integrated our data with a healthy single-nuclei
109  atlas reference (Muto et al. 2021) and made the integrated object available (Data Availability).
110  The results for differential expression analysis between COVID-19 and healthy samples for lung,
111 heart, liver, kidney, and prostate are available as part of the CTA data release (Supplementary
112  Tables 2 and 3). Finally, our testis data, including only COVID-19 samples, is fully annotated and
113  publicly available as part of the CTA release.

114

115  Cell type population changes in the COVID-19 lung

116  The CTA lung dataset comprised 21,474 cells, of which 11,790 were collected from COVID
117  autopsies. After quality control and clustering (Methods), we identified ten distinct cell types,
118  including primary epithelial and immune cells (Figure 2 - Supplement Figure 1A, B). Several
119  lung single-nuclei and single-cell efforts have been published throughout the COVID-19 pandemic
120  (Delorey et al. 2021; J. Xu et al. 2020; Hasan et al. 2021; Melms et al. 2021). To assess the quality
121 and scope of the CTA, we compared our data to the comprehensive lung atlas generated by the
122  Broad Institute (Delorey et al. 2021). We applied anchor-based integration (Stuart et al. 2019) to
123  the lung samples from both datasets by including autopsies from the Broad atlas as additional
124 donors in the CTA (Methods). After integration, the harmonized UMAP embedding showed that
125  all major lung cell types integrated well across datasets (Figure 2A), with cells from the CTA and
126  the Broad atlas contributing to most clusters (Figure 2B). The alignment between datasets
127  showed that the CTA captured the expected diversity of cell types in the COVID-19 lung and that
128  the gene expression profiles are similar for the same cell types across datasets.

129

130  We next focused on the effects that COVID-19 has on the different lung cell populations. In
131 particular, significant epithelial cell damage resulting from COVID-19 is manifested as loss of
132  alveolar type 1 (AT1) and alveolar type 2 (AT2) cells (Melms et al. 2021; Delorey et al. 2021). To
133  investigate the changes in lung epithelial cells in COVID-19 autopsies in detail, we subset and re-
134  clustered the AT1, AT2, and basal cells to obtain a new UMAP embedding (Figure 2C). All three
135 cell types included healthy and COVID-19 cells (Figure 2 - Supplement Figure 1C) and
136  expressed the corresponding canonical gene markers (Figure - Supplement Figure 1D).
137  Consistent with previous studies (Delorey et al. 2021; Melms et al. 2021), we identified loss of
138 AT1 and AT2 cells in COVID-19 lungs relative to healthy controls (Figure 2D, Figure 2 -
139  Supplement Figure 1A), along with a significant expansion of basal cells (Figure 2D, Figure 2 -
140  Supplement Figure 1A).
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Figure 1. A human single-cell atlas enables identification of systemic responses to COVID-19
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142  Figure 1

143 A human single-cell atlas enables the identification of systemic responses to COVID-19.

144 (A) Tissue samples were collected from different organs and frozen, then dissociated into single nuclei.
145 Libraries for snRNA-seq were prepared using 10x Genomics Chromium Next GEM Single Cell 3' v.3.1kit,
146 followed by sequencing on various lllumina platforms. After quality control and clustering, cell types for each
147 organ were annotated by experts using literature gene markers. Differential gene expression and pathway
148  enrichment analysis were performed between COVID-19 and healthy samples for all cell types. Finally,
149  global transcriptional signatures were identified via a cross-organ analysis of differential expression. (B)
150 The COVID tissue atlas comprises approximately 85,000 cells from 6 different organs. (C) Cells in the
151 COVID tissue atlas cluster by cell identity rather than disease status. (D) Number of cells per donor grouped
152 by the organ of origin. (E) Number of cells per organ grouped by COVID-19 status.

153

154

155

156  The increase in basal cells could be explained by trans-differentiation from AT2 cells, via alveolar-
157  basal intermediates (ABIs), a phenomenon recently described in vitro that corresponds to cellular
158 changes in fibrotic human lungs (Kathiriya et al. 2022). To investigate if a similar phenomenon
159  occurs in the COVID-19 lungs, we integrated the CTA epithelial cells with a sc-RNA seq dataset
160  of lungs with idiopathic pulmonary fibrosis (IPF) that includes a population of ABIs/Transitional
161 AT2 (Habermann et al. 2020). After applying anchor-based integration (Methods), the
162 harmonized UMAP showed that epithelial cells from both datasets generally integrated well
163  (Figure 2E). Interestingly, a fraction of the ABIs/Transitional AT2s from (Habermann et al. 2020)
164 mapped to a specific cluster between the AT2 and basal cell populations from the CTA (Figure
165  2E - right). To verify if this cluster from the CTA indeed corresponds to ABIs, we compared the
166  expression profiles of single cells and clustered them by similarity (Figure 2F). As a result, we
167  found that a fraction of CTA basal cells clustered together with ABls/Transitional AT2s. Thus, our
168  data suggest that ABls (Kathiriya et al. 2022) are present in the COVID-19 lung, and the gain of
169 abnormal basal cells in the alveoli could be accounted for by their trans-differentiation from
170  endogenous AT2s, which are lost in COVID-19 lungs.

171

172  Alternatively, the Broad atlas identified a pre-alveolar Type 1 transitional cell state (PATS)
173 population in COVID-19 lungs (Delorey et al. 2021) that bears similarities to what was previously
174  described as ABls/Transitional AT2s/aberrant basaloid cells from IPF lungs (Adams et al. 2020;
175  Habermann et al. 2020; Kathiriya et al. 2022). We jointly analyzed the lung epithelial cells from
176  the CTA and the Broad atlas to find out if the PATS population was present in our data. We used
177  anchor-based integration (Stuart et al. 2019) and obtained a harmonized UMAP embedding which
178  recapitulated the three populations across datasets (Figure 2G). The PATS population mostly
179  overlapped with the principal AT1 cluster (Figure 2G - right), but no specific cluster from the CTA
180 mapped directly to the PATS cells. This analysis indicates that the PATS population (Delorey et
181  al. 2021) is likely to be attributed to patient-specific cellular heterogeneity (or sequencing method
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Figure 2. Cell composition changes in the COVID-19 lung
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183  Figure 2

184  Cell type composition changes in the COVID lung

185 (A) Integration of the CTA lung with the lung COVID atlas by the Broad Institute. A harmonized UMAP
186  shows that cells from both datasets integrate by their corresponding cell type annotation. (B) Integration of
187  two lung COVID atlas colored by the dataset of origin. (C) Sub-clustering and UMAP projection of the CTA
188 lung epithelial cells (AT1, AT2, and basal cells). (D) Relative cell composition in epithelial lung tissue from
189 control and COVID-19 autopsies (CTA data only). (E) Integration of CTA epithelial cells and epithelial cells
190 from (Habermann et al. 2020) (AT1, AT2, basal cells, and transitional ABIS/AT2 populations).
191 ABIs/Transitional AT2 from (Habermann et al. 2020) are shown in red (right). (F) Heatmap of scaled gene
192 expression of marker genes for all the different cell populations in E. (G) Joint embedding of CTA and
193 (Delorey et al. 2021) (AT1, AT2, basal, and PATS cells). The PATS cells identified by (Delorey et al. 2021)
194  are shown in red in the joint UMAP (right).

195

196

197  differences) and, therefore, was not detected in the CTA donors. Together, our results contribute
198 to our understanding of the multiple regenerative strategies involved in re-establishing alveolar
199  epithelial homeostasis in response to COVID-19 (Delorey et al. 2021).

200 Insulin signaling dysregulation in the liver

201  Across all six cell types identified in the liver (Figure 3A), hepatocytes comprised around 60% of
202  cells in the healthy samples and more than 80% in the COVID-19 samples (Figure 3B). However,
203 we observed an inverse trend for endothelial cells, where approximately 20% of the cells from
204 healthy samples were annotated as endothelial as opposed to less than 10% in COVID donors,
205 which may reflect recently reported endotheliopathy in COVID livers (McConnel et al. 2021, J
206  Hep). COVID-19 livers also contained lower proportions of most immune cell populations than
207  controls (Figure 3B).

208

209 To identify differentially expressed genes for each cell type in the liver, we applied a negative-
210  binomial model implemented in MAST (Finak et al. 2015) that corrects for differences in
211 sequencing depth across samples. Across all cell types, hepatocytes, endothelial cells, and
212  macrophages showed the largest number of differentially expressed (DE) genes in COVID-19
213  donors (more than 200 upregulated genes with an average log2 Fold-Change >2 and adjusted-
214  p< 1e-6; Figure 3C). In contrast, fibroblasts, intrahepatic cholangiocytes, and natural killer cells
215  showed only a fraction of DE genes in comparison (fewer than 50 upregulated genes; Figure 3C).
216  Samples from COVID livers generally comprised lower numbers of counts per cell (Figure 3 -
217  Supplement Figure 1); while we corrected for this difference when computing DE genes
218 (Methods), we decided to focus on COVID-19 over-expressed genes to minimize potential
219  artifacts in down-regulation resulting from lower sequencing depth.

220

221

222

223

224

225
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Figure 3. Transcriptional changes and dysregulation of signaling pathways in the COVID-19 liver
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227 Figure 3

228  Transcriptional changes and dysregulation of cell signaling in the COVID liver

229  (A) UMAP plot showing all cells from liver samples (n = 6 donors) colored by COVID-19 status. Cell type
230  annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped by COVID-19
231 status. (C) Number of differentially expressed genes found using MAST (Finak et al. 2015) (negative
232 binomial model, correcting for the number of detected genes, p < 1e-6 and log2 FC >2). (D) The top
233  enriched signaling pathways found for each cell type based on the DE genes shown in C. (E) Heatmap of
234 log2 Fold-Change for the top differentially expressed genes. A few relevant genes are highlighted with a
235  textlegend.

236

237

238 Next, we applied pathway enrichment using PathFindR, an algorithm that identifies significant
239 sets of genes based on both a reference pathway database and a protein-protein interaction
240 network (Ulgen, Ozisik, and Sezerman 2019). We identified dysregulated signaling pathways in
241 COVID-19 livers using four different reference pathway databases: KEGG (Kanehisa et al. 2016),
242  BioCarta (Nishimura 2001), GO (Mi et al. 2019), and Reactome (Griss et al. 2020). We found
243  known COVID-19 related gene sets in hepatocytes and macrophages (“Coronavirus disease -
244  COVID-19" in the KEGG database), including TMPRSS2, EGFR, PLCG2, MAPK14, FOS, JUN,
245 IFNAR1, C5AR1, CFB, C8G, MASP1, FGA, FGB, FGG in addition to multiple ribosomal-related
246  transcripts, p < 1e-6) (Supplementary Table 3). The expression of known COVID-19 genes
247 indicates general agreement between our data and previous studies (Harrison, Lin, and Wang
248  2020).

249

250 Several pathways were enriched in multiple cell types in the liver across all four databases,
251 including Insulin, HIF-1, Notch, MAPK, and FoxO signaling (Figure 3D, Supplementary Table
252  3). We found dysregulation in the insulin signaling pathway in hepatocytes, macrophages, and
253 endothelial cells from COVID-19 livers (Supplementary Table 3; p < 1e-6). Specifically, we
254  observed upregulation of genes involved in insulin response, including INSR, PIK3R1, PIK3CB,
255 GSK3B, PPP1CB, PHKA2, PRKAR1A, SORBS1, CBL, CBLB, ACACA, HK1, PRKAG2, RPS6,
256 RHEB, PTPN1 (Figure 3E, Supplementary Table 2). Patients with type-2 diabetes have worse
257  outcomes with severe COVID-19 infection (Xie and Al-Aly 2022) and clinical studies show
258 aberrant glucose levels in SARS-Cov2 infected patients with type-2 diabetes (Reiterer et al.
259  2021). Thus, our data suggest that dysregulated insulin signaling —especially in hepatocytes,
260  which play a critical role in maintaining glucose homeostasis_(Klover PJ 2004)— might explain
261  why SARS-Cov2 infected patients with type-2 diabetes have uncontrolled glucose homeostasis
262 and are comorbid (Mishra and Dey 2021)) and why COVID-19 infection could lead to the
263  development of type-2 diabetes (Barrett et al. 2022).

264 Signaling in the heart in response to COVID-19

265

266  COVID-19 can lead to cardiac involvement and injury via the following possible mechanisms: (1)
267 indirect injury due to increased cytokines and immune-inflammatory response, (2) direct invasion
268  of cardiomyocytes by SARS-CoV-2, and (3) respiratory damage from the virus causing hypoxia
269 leading to oxidative stress and injury to cardiomyocytes (Tahir et al. 2020). To understand the
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270 transcriptional changes induced by COVID-19 in the heart, we analyzed differential gene
271 expression across cell types and identified the critical signaling pathways dysregulated as a
272  response to COVID-19.

273

274  Heart samples yielded 20,091 cells after quality control (n = 11 donors) (Figure 4A). Across the
275  eight cell types identified, the large majority of cells corresponded to endothelial cells (>40% in
276  COVID-19 samples, 13% in healthy samples), cardiomyocytes (25% in COVID-19 samples, 28%
277  in healthy samples), and fibroblasts (15% in COVID-19 samples, 45% in healthy samples) (Figure
278  4B). In addition, we found significant transcriptional changes in cardiomyocytes, endothelial cells,
279 and macrophages based on the number of DE genes in COVID-19 samples (Figure 4C).
280 Considering the top DE genes for each cell type, we then focused on understanding how COVID-
281 19 affects heart cells in terms of gene regulatory pathways.

282

283  We first confirmed that our results agreed with current gene sets associated with COVID-19
284  (KEGG: Coronavirus disease - COVID19 pathway in fibroblasts and macrophages, p <1e-5;
285 Reactome: Influenza infection enriched in fibroblasts, p < 1e-5; Supplementary Table 3). In
286  addition, multiple genes and GO pathways related to protein translation and ribosome activity
287  (RNA polymerase Il cis-regulatory region sequence-specific DNA binding) along with signaling
288 and transcription factor activity (intracellular signal transduction, transcription cis-regulatory
289  region binding, transcription factor binding), were enriched in multiple COVID-19 heart cell types
290 (Supplementary Table 3).

291

292  Similar to the liver, we observed insulin pathway enrichment in cardiomyocytes from COVID-19
293 samples (Figure 4C). Heart failure is associated with generalized insulin resistance. Moreover,
294  insulin-resistant states such as type 2 diabetes mellitus and obesity increase the risk of heart
295 failure even after adjusting for traditional risk factors (Riehle and Dale Abel 2016). In agreement
296  with our data, other studies found that COVID-19 triggers insulin resistance in patients, causing
297  chronic metabolic disorders that were non-existent before infection (Govender et al. 2021).
298  Additionally, we observed significant changes in Notch, Hippo, and MAPK signaling pathways in
299 cardiomyocytes from COVID-19 samples (Figure 4D). Conversely, the BMP and TGFp signaling
300 pathways showed specific down-regulation in endothelial cells from COVID-19 hearts, including
301  down-regulation of BMPR1A, BMPR1B, SMADG, and BMP6 (Supplementary Table 3).

302

303 Interestingly, Notch signaling has been proposed as a target to prevent SARS-CoV-2 infection
304 and interfere with the progression of COVID-19- associated heart and lung disease (Rizzo et al.
305 2020). Hippo signaling also appeared as one of the top signaling terms for cardiomyocytes
306 (Figure 4D). Recent studies indicate that Hippo signaling is involved in the development of many
307 diseases caused by viruses. Whether virus-induced diseases, specifically COVID-19, can be
308 ameliorated by modulating the Hippo signaling pathway is worth pursuing (Z. Wang et al. 2019).
309 Finally, TGF signaling is linked to the response of endothelial cells to inflammation in COVID-19
310  (Yoshimatsu and Watabe 2022). Together, these results build on previously reported evidence to
311 show that multiple signaling pathways in the heart undergo both cell type-specific and systemic
312  changes in response to COVID-19.
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Figure 4. Transcriptional changes and dysregulation of signaling pathways in the COVID-19 heart
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314  Figure 4

315  Transcriptional changes and dysregulation of cell signaling in the COVID heart

316  (A) UMAP plot showing all cells from heart samples (n = 11 donors) colored by COVID-19 status. Cell type
317  annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped by COVID-19
318  status. (C) Number of differentially expressed genes found using MAST (Finak et al. 2015) (negative
319  binomial model, correcting for the number of detected genes, p < 1e-6 and log2 FC >2). (D) The top
320  signaling pathways found for each cell type using the genes in C. (E) Heatmap of log2 Fold-Change for the
321 top differentially expressed genes. A few relevant genes are highlighted with a text legend.

322

323 Shared transcriptional responses across organs

324  The CTA provides a unique opportunity to identify systemic transcriptional responses across
325 organs. As an indication of a systemic response to COVID-19, we found enrichment of the same
326  signaling pathways in multiple cell types and across organs, including HIF-1, insulin, and Notch
327 signaling (Figure 3D, 4D). Therefore, we decided to quantify the cross-organ transcriptional
328 changes in COVID-19 autopsies by finding overlapping sets of differentially expressed genes and
329  signaling pathways across organs.

330

331 In macrophages, we found a significant overlap in DE genes across organs compared to random
332 sampling expectations (Figure 5A). Specifically, we found a set of 89 DE genes in COVID-19
333  macrophages from all three organs, including PLCG2, HIF1A, ACTB, and JUND. There were also
334  many overlapping DE genes in pairs of organs, with macrophages from the liver and lung showing
335 the highest overlap with 124 shared DE genes (Figure 5A, Supplementary Table 4). We
336 performed the same analysis for endothelial cells and similarly found sets of overlapping DE
337 genes; the highest overlap occurring between endothelial cells from the liver and lung (Figure 5
338 - Supplement figure 1 and Supplementary Table 4).

339

340 To further analyze these data, we defined the shared transcriptional response (STR) for a cell
341  type as the set of genes that show differential expression in at least three organs from COVID-19
342  donors (p<1e-4 and log2 FC >1). We restricted the analysis to macrophages, endothelial cells,
343 and stromal cells, which appear in multiple organs, and calculated the correlation between the
344  log-FC values of all genes in the STR across pairs of organs (Figure 5 B-E). Generally, we saw
345  high correlation coefficients, indicating coordination in the COVID-19 induced STR across organs.
346  For example, among the genes with the highest log-FC across organs, we found HIF1A (in
347  macrophages from liver, lung, and heart; Figure 5B-C), JUND (in macrophages from liver and
348  heart; Figure 5C), and PLCG2 (in endothelial cells from liver and heart; Figure 5D).

349

350 To identify the cell types with high coordination in their STR across organs, we defined a
351  coordination score by considering pairs of organs and the fraction of genes in the STR that
352  showed the same direction in DE (up-regulated in both or down-regulated in both; Figure 5F).
353  Finally, we generated a null distribution for the expected coordination by shuffling the log-FC
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354  across genes (Figure 5F; Methods) and computed a z-score between the null distribution and
355 the observed coordination for each cell type and pairs of organs (Figure 5G).

356

357 The STR of endothelial cells from COVID-19 samples showed the highest coordination across
358 multiple pairs of organs (Figure 5G). These results are consistent with previous studies focused
359  on the effect of COVID-19 on endothelial tissues (Ruhl et al. 2021; Huertas et al. 2020). We also
360 found significant coordination in macrophages across the liver, lung, and heart (z-score > 5;
361 Figure 5G). Macrophages from the lung showed lower coordination scores compared to the heart
362 and liver, an indication of lung-specific transcriptional regulation (Figure 5G and Figure 5B off-
363 diagonal quadrants). In contrast, the STR of fibroblasts and stromal cells showed no significant
364  coordination compared to the randomized control, possibly due to the low number of overlapping
365 DE genes (Figure 5G and Figures 3C, 4C). Together, these results indicate that COVID-19
366 infection induces coordinated transcriptional regulation in macrophages and endothelial cells
367  across multiple organs.

368

369 Systemic transcriptional responses in endothelial cells and macrophages

370 To investigate the relevance of the COVID-19 STR in macrophages and endothelial cells, we
371  identified enriched pathways considering the sets of genes that showed coordinated DE in at least
372  three organs (diagonal quadrants in Figure 5B-E, Supplementary Table 4). We visualized the
373 results as a matrix of pathways vs. organs, including the top pathway terms (p < 1e-3, Fold
374  Enrichment > 3) that appeared in at least two organs for macrophages (Figure 6A) and
375 endothelial cells (Figure 6B). Multiple signaling pathways were enriched in the STR of
376  macrophages across organs (Figure 6A). The HIF-1 pathway showed high Fold Enrichment
377 across all organs (Figure 6A), suggesting a pivotal role of macrophages in the systemic response
378  to oxygen homeostasis in COVID-19. The Notch pathway was also enriched in macrophages from
379 all three organs (Figure 6A), confirming that Notch signaling has a crucial role in the systemic
380 response to COVID-19 (Breikaa and Lilly 2021; Farahani et al. 2022).

381

382 The STR consists of shared DE genes across multiple organs, however, the magnitude of the
383 differential expression of a given gene, in terms of log-FC and p-value, can vary across organs
384  (Figure 5B-E, Supplementary Table 4). Therefore, when performing pathway analysis, some
385  signaling pathways showed statistically significant enrichment only in subsets of tissues. For
386 example, in macrophages, Interleukin-4/13 showed significant enrichment only in the liver and
387  heart) and the adherens junction pathway only in the liver and the lung (Figure 6A). Similarly, a
388 few gene pathways showed organ-specific enrichment (Supplementary Table 5), indicating that
389 genes in the SRT, while simultaneously differentially expressed across organs, might also
390 modulate some cellular processes in organ-specific ways, due to quantitative DE differences.
391

392 Inthe coordinated STR of endothelial cells, we found multiple enriched pathways, including Notch
393 and Ephrin signaling in the lung, liver, and heart (Figure 6B). Specifically, several Notch-related
394  genes were up-regulated in COVID-19 samples for all three organs, including HDAC9, a selective
395  regulator of Notch, FBXW?7, a regulator of angiogenesis through Notch (Izumi et al. 2012), and
396 TBLR1, an indirect Notch regulator through degradation (Perissi et al. 2008). Additionally, we
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Figure 5. A shared transcriptional response in macrophages and endothelial cells across organs
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398 Figure 5

399 A shared transcriptional response in macrophages and endothelial cells across organs

400 (A) Overlap of differentially expressed genes in COVID-19 macrophages across organs. The gray shaded
401 area indicates the expected overlap for each organ combination (green circles) under a null hypothesis of
402 random sampling (we computed the p values against this null model). The white bars indicate the number
403 of genes that showed DE in a single organ. The names of the top genes DE in all three organs are shown
404 based on their log2 Fold Enrichment. (B) Scatter plot comparing the log2 FC for DE genes in COVID-19
405 macrophages from lung and heart. (C) Same as B but comparing DE genes in COVID-19 macrophages
406  from the liver and heart. (D) log2 Fold-Change for COVID-19 endothelial cells from the liver and heart. (E)
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407 log2 Fold-Change for COVID-19 stromal cells from the liver and kidney. (F) A fully coordinated
408 transcriptional signature would imply that all genes lie in the bottom-left and top-right quadrants (red
409  squares). We define the coordination score as the number of DE genes that show the same direction (up-
410 up, down-down) for the two organs, divided by the number of shared DE genes (A). Gray bars show the
411 score expectation when sampling DE genes randomly from each organ. (G) Coordination scores for
412 different cell types across all pairs of organs. The dotted line indicates a significance threshold of z-score
413 > 5 standard deviations compared to the expectation by chance.

414

415

416  found enrichment for VEGF signaling in liver and heart (p < 1e-3, and lung p < 1e-2;
417  Supplementary Table 6). Interestingly, despite up-regulation of the VEGF signaling pathway in
418  multiple organs, some pathway genes showed organ-specific regulation. For example, AKT3 was
419  enriched in the liver and lung, whereas PXN contributed to VEGF signaling enrichment only in the
420 heart and lung (Supplementary Table 6). A recent study using measurements of growth factors
421  and cytokines in serum identified VEGF-D as the most predictive indicator for the severity of
422  COVID-19 (Kong et al. 2020). Similarly, VEGF was proposed as a promising therapeutic target
423  for suppressing inflammation during SARS-CoV-2 infection (Yin et al. 2020). Our results indicate
424  that changes in VEGF signaling in COVID-19 donors are not necessarily organ-specific but rather
425 part of a systemic response of endothelial cells and, therefore, of relevance for the development
426  of treatments and as potential drug targets.

427  Macrophage-Endothelial signaling interactions in COVID tissues

428  The enrichment of key cell-to-cell pathways such as Notch and Ephrin in the STR of endothelial
429 cells and macrophages due to COVID-19 suggests that these two cell types may be signaling to
430 each other. Therefore, we used CellPhoneDB (Efremova et al. 2020) to investigate potential
431  signaling interactions between these two cell types by finding over-represented expression ligand-
432  receptor pairs in COVID-19 samples compared to healthy donors (Methods).

433

434  Multiple enriched ligand-receptor pairs were identified between macrophages and endothelial
435 cells in all three organs from COVID-19 autopsies (23 ligand-receptor pairs in the heart, 13 in the
436 liver, and 7 in the lung, p < 1e-2; Figure 6C-E). Among the top signaling interactions, we found
437  expression of VEGF ligand-receptor pairs in the liver and heart (FLT4:VEGFC; VEGFA: KDR;
438 NRP2:VEGFA; VEGFA:FLT1). In the lung, we found expression of EGFR in endothelial cells and
439  expression of COPA and GRN in macrophages, suggesting another mechanism of cell-cell
440 signaling between these two cell types. In the heart, we found multiple Notch ligand-receptor
441  enriched pairs involving the expression of the DIl4 ligand in endothelial cells (Figure 6D).
442 Interestingly, the expression of Notch receptors was cell-type dependent: endothelial cells
443  expressed Notch4 and Notch1, whereas macrophages expressed Notch2 (Figure 6D). A DIl4-
444  dependent signaling mechanism involving endothelial cells and macrophages in the COVID-19
445 heart is potentially related to HIF-1 signaling since these pathways are known to cross-talk
446  through multiple mechanisms (Breikaa and Lilly 2021; Zheng et al. 2008).
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Figure 6. Identifying signaling interactions between endothelial cells and macrophages

B
Overlap in enriched pathways: Macrophages Overlap in enriched pathways: Endothelial cells

Interleukin—4 and Interleukin—13 signaling
positive regulation of peptidyl-serine phosphorylation
Platelet degranulation

Response to elevated platelet cytosolic Ca2+
Pathogen infection

Apoptosis

Thyroid hormone signaling pathway

Adherens junction

Arrhythmogenic right ventricular cardiomyopathy
Notch signaling

Rap1 signaling pathway

Regulation of actin cytoskeleton

EPHB diated forward si

trans-Golgi Network Vesicle Budding

IL-17 signaling pathway

Leukocyte transendothelial migration

Hypoxia HIF-1 pathway

Proteoglycans in cancer

Interleukin-3, Interleukin-5 and GM-CSF signaling
Signaling by SCF-KIT

Signaling by KIT in disease

Signaling by extracellular and kinase domain KIT mutants
PPARA activates gene expression

Regulation of lipid metabolism by PPARalpha
Chromatin organization

Netrin—1 signaling

1-phosphatidylinositol binding

FLT3 Signaling

Endocytosis

Transcriptional Regulation by MECP2

CD28 co-stimulation

cytoplasmic stress granule

Negative regulators of DDX58/IFIH1 signaling
Cytoprotection by HMOX1

Signaling by EGFR

N -

6 4 4 o value BMAL1:CLOCK NPAS2 activates circadian gene expression
%, b, ('/{9 910 P Signaling by VEGF
(o 01234586 BIOCARTA_PPARA_PATHWAY
circadian rhythm
Ephrin signaling
Rho-family GTPase signaling
Notch signaling
NR1H2 and NR1H3-mediated signaling
nuclear receptor binding
Heme signaling
ERBB signaling
Cell-cell junction
Circadian Clock
% //LQ /00 -log,, p-value
% & 012340
C D E
Ligand-receptor interactions Ligand-receptor interactions Ligand-receptor interactions
enriched in COV19 lung enriched in COV19 Heart enriched in COV19 Liver
CD55_ADGRE5 | . . . @ 0 é PLXNB2_SEMA4D ° C5AR1_RPS19 ° o 4
ANXAT_FPR3 ° :; < TFRC_TNFSF13B ° cossossrsh:i(é ° ,; ;
PECAM1 CD38 o .| ®3 5 HLA-DPB1_TNFSF13B ° 2 °| 82 3
- PLAUR_a4b1 complex Y CD44_HBEGF PY B
EGFR_COPA ] g C5AR1_RPS19 . o0 SEMA4A_PLXND1 )
EGFR_GRN ° 25 NOTCH2 DLL4! . . o - VEGFA_KDR ° _
JAM3_aMb2 ° I 08 GRN_SORT1 . e @ BMPR1A/BMPR2_BMP6 &
ANGPT2_TEK | @ 2z FLT4_PDGFC ° NRP2 VEGFA 1. @ - - '4 3
{: HLA-F_LILRB2 ° 0 oL FLT1 complex_VEGFA ° 0o 3
g << B EGFR_COPA ° :; g VEGFA_FLT1 . @ ° 4 6;
SO« o« TNFRSF1B_GRN ° o o3 g NRP2_SEMA3F | @ o
0w s = TNFRSF1A_GRN ° ° = NRP1_VEGFA . @ @ - @ =
EGFR_GRN ° _ COL18A1_a1b1 | @ .
JAM2_adb1 complex ° 8 6 < o <
FLT4_VEGFC | @ ' 0 3 w=w =
EPHA4_EFNB1 | @ -2?’1 R
EPHB4_EFNB1 | @ 49
TNFRSF10A_TNFSF10 | @ o
NOTCH4_DLL4 | @ =
NOTCH1_DLL4 | @
ACKR3_CXCL12 | @
NRP2_SEMA3F | @ °
FGF2_FGFR1 | @ o
‘L
R


https://doi.org/10.1101/2022.05.31.493925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.493925; this version posted May 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

448  Figure 6

449 Identifying interactions between endothelial cells and macrophages

450 (A) From the shared DE genes across organs, we identified the top enriched signaling pathways for COVID-
451 19 macrophages across the lung, liver, and heart. The value in the heatmap is the log10 p-value for the
452  gene pathway. Only pathways with Fold Enrichment > 3 and adjusted p-value < 1e-3 in at least two organs
453  are shown. (B) Enriched pathways in the shared transcriptional response of endothelial cells across lung,
454 liver, and heart (using the same significance thresholds as A). (C-E) Enriched expression of ligand-receptor
455  components in COVID-19 macrophages and endothelial cells in the lung (C), heart (D) and liver (E). The
456  x-axis indicates the pair of cell types considered (EC endothelial cells, MA macrophages). The y-axis
457 indicates all the enriched signaling interactions found, and the circles indicate the significance and
458 magnitude of enrichment. We calculated enrichment using CellPhoneDB on the raw sequencing counts.
459  Only ligand-receptor pairs with adjusted p-value < 1e-3 are shown.

460

461 Discussion

462  We generated the CTA, a single-cell atlas of six organs from autopsies of COVID patients. Our
463 analyses highlight that multiple organs are damaged by COVID-19 infection and allow for
464  assessing transcriptomic changes in multiple cell types across these organs. While the lung is the
465 primary organ affected by COVID infection, our data identified broad signaling changes across
466  multiple organs and cell types. Notably, we localize signaling changes in two affected organs, the
467  liver and heart, where we identified dysregulated insulin and HIF signaling and prominent
468 macrophage-endothelial interactions.

469  Through analysis of the CTA, we identified a shared transcriptional signature (STR) in COVID-19
470  autopsy specimens across tissues. This transcriptional signature was evident in macrophages
471  and endothelial cells in hearts and liver from COVID-19 tissue specimens compared to control
472  specimens. These shared signatures between macrophages and endothelial cells may be
473  mediated by the known effects of the dysregulated immune system in the context and sequelae
474  of COVID infection.

475 The effects of COVID-19 on the human body are yet to be fully understood, and we need
476  comprehensive maps of the changes at the transcriptional and proteomic levels. The CTA and
477  the corresponding analyses represent an integrated effort toward understanding the effects of this
478 disease from an organism-wide point of view. More generally, we expect some of the
479  computational analysis presented in this study to be generalized to other cell atlas datasets to
480 reveal systemic transcriptional signatures of disease by analyzing the responses of individual
481  cells while considering the global context of the human body. Our results may also have
482  implications for understanding the sequelae of COVID-19 across organs and increased risk for
483  diseases associated with COVID-19 infection. For example, insulin signaling dysregulation may
484  contribute to the development of diabetes in COVID-19 patients. Long COVID, which appears to
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485 be a complex set of symptoms with variable organ dysfunction, may also be informed by our
486  understanding of cellular changes across multiple tissues.

487  Overall, the CTA contributes to our molecular understanding of the effects of severe SARS-CoV2
488 infection across multiple organs and cell types.
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704 Figure captions

705  Figure 1

706 A human single-cell atlas enables the identification of systemic responses to COVID-19.
707  (A) Tissue samples were collected from different organs and frozen, then dissociated into single
708  nuclei. Libraries for shRNA-seq were prepared using 10x Genomics Chromium Next GEM Single
709  Cell 3' v.3.1kit, followed by sequencing on various lllumina platforms. After quality control and
710  clustering, cell types for each organ were annotated by experts using literature gene markers.
711 Differential gene expression and pathway enrichment analysis were performed between COVID-
712 19 and healthy samples for all cell types. Finally, global transcriptional signatures were identified
713  via a cross-organ analysis of differential expression. (B) The COVID tissue atlas comprises
714 approximately 85,000 cells from 6 different organs. (C) Cells in the COVID tissue atlas cluster by
715 cell identity rather than disease status. (D) Number of cells per donor grouped by the organ of
716  origin. (E) Number of cells per organ grouped by COVID-19 status.

717

718  Figure 2

719  Cell type composition changes in the COVID lung

720  (A) Integration of the CTA lung with the lung COVID atlas by the Broad Institute. A harmonized
721 UMAP shows that cells from both datasets integrate by their corresponding cell type annotation.
722  (B) Integration of two lung COVID atlas colored by the dataset of origin. (C) Sub-clustering and
723  UMAP projection of the CTA lung epithelial cells (AT1, AT2, and basal cells). (D) Relative cell
724  composition in epithelial lung tissue from control and COVID-19 autopsies (CTA data only). (E)
725 Integration of CTA epithelial cells and epithelial cells from (Habermann et al. 2020) (AT1, AT2,
726  basal cells, and transitional ABIs/AT2 populations). ABls/Transitional AT2 from (Habermann et
727  al. 2020) are shown in red (right). (F) Heatmap of scaled gene expression of marker genes for all
728  the different cell populations in E. (G) Joint embedding of CTA and (Delorey et al. 2021) (AT1,
729  AT2, basal, and PATS cells). The PATS cells identified by (Delorey et al. 2021) are shown in red
730 in the joint UMAP (right).

731

732  Figure 3

733  Transcriptional changes and dysregulation of cell signaling in the COVID liver

734  (A) UMAP plot showing all cells from liver samples (n = 6 donors) colored by COVID-19 status.
735  Cell type annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped
736 by COVID-19 status. (C) Number of differentially expressed genes found using MAST (Finak et
737  al. 2015) (negative binomial model, correcting for the number of detected genes, p < 1e-6 and
738 log2 FC >2). (D) The top enriched signaling pathways found for each cell type based on the DE
739 genes shown in C. (E) Heatmap of log2 Fold-Change for the top differentially expressed genes.
740 A few relevant genes are highlighted with a text legend.
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741  Figure 4

742  Transcriptional changes and dysregulation of cell signaling in the COVID heart

743  (A) UMAP plot showing all cells from heart samples (n = 11 donors) colored by COVID-19 status.
744  Cell type annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped
745 by COVID-19 status. (C) Number of differentially expressed genes found using MAST (Finak et
746  al. 2015) (negative binomial model, correcting for the number of detected genes, p < 1e-6 and
747  log2 FC >2). (D) The top signaling pathways found for each cell type using the genes in C. (E)
748 Heatmap of log2 Fold-Change for the top differentially expressed genes. A few relevant genes
749  are highlighted with a text legend.

750

751

752  Figure 5

753 A shared transcriptional response in macrophages and endothelial cells across organs
754  (A) Overlap of differentially expressed genes in COVID-19 macrophages across organs. The gray
755  shaded area indicates the expected overlap for each organ combination (green circles) under a
756  null hypothesis of random sampling (we computed the p values against this null model). The white
757  bars indicate the number of genes that showed DE in a single organ. The names of the top genes
758  DE in all three organs are shown based on their log2 Fold Enrichment. (B) Scatter plot comparing
759  the log2 FC for DE genes in COVID-19 macrophages from lung and heart. (C) Same as B but
760  comparing DE genes in COVID-19 macrophages from the liver and heart. (D) log2 Fold-Change
761  for COVID-19 endothelial cells from the liver and heart. (E) log 2 Fold-Change for COVID-19
762  stromal cells from the liver and kidney. (F) A fully coordinated transcriptional signature would
763  imply that all genes lie in the bottom-left and top-right quadrants (red squares). We define the
764  coordination score as the number of DE genes that show the same direction (up-up, down-down)
765  for the two organs, divided by the number of shared DE genes (A). Gray bars show the score
766  expectation when sampling DE genes randomly from each organ. (G) Coordination scores for
767  different cell types across all pairs of organs. The dotted line indicates a significance threshold of
768  z-score > 5 standard deviations compared to the expectation by chance.

769  Figure 6

770  Identifying interactions between endothelial cells and macrophages

771 (A) From the shared DE genes across organs, we identified the top enriched signaling pathways
772  for COVID-19 macrophages across the lung, liver, and heart. The value in the heatmap is the
773  log10 p-value for the gene pathway. Only pathways with Fold Enrichment > 3 and adjusted p-
774  value < 1e-3in at least two organs are shown. (B) Enriched pathways in the shared transcriptional
775  response of endothelial cells across lung, liver, and heart (using the same significance thresholds
776 as A). (C-E) Enriched expression of ligand-receptor components in COVID-19 macrophages and
777  endothelial cells in the lung (C), heart (D) and liver (E). The x-axis indicates the pair of cell types
778 considered (EC endothelial cells, MA macrophages). The y-axis indicates all the enriched
779 signaling interactions found, and the circles indicate the significance and magnitude of
780  enrichment. We calculated enrichment using CellPhoneDB on the raw sequencing counts. Only
781 ligand-receptor pairs with adjusted p-value < 1e-3 are shown.
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7e2  Methods

783 Sample collection

784  Organs from post-mortem control individuals and patients with COVID-19 were obtained from the
785  University of California, San Francisco Medical Center, and the Saarland University Hospital
786 Institute for Neuropathology, with approval from local ethics committees. Supplementary Table 1
787  presents all group characteristics.

788 Tissue processing

789  During the autopsy, tissue samples were stored in ice-cold Wisconsin solution for transportation,
790  then immediately processed as follows: tissues were rinsed twice with ice-cold PBS, then wiped
791 off. Next, tissues were pre-cut into 1-2 mm3 cubes, flash-frozen in dry ice, and then stored at -
792  80C for single-nuclei extraction and total RNA extraction.

793  COVID testing

794  COVID testing was performed on patients according to the testing procedure of host hospitals.
795  For sample testing, total RNA was extracted using a hybrid TRIzol (Life Technologies #15596026)
796 and RNeasy Mini kit (Qiagen #74104) protocol (Wolock, Lopez, and Klein 2019; Rodriguez-
797  Lanetty, Phillips, and Weis 2006). RT- gPCR test for SARS-CoV2 mRNA detection was performed
798  starting from 100 ng of total RNA using a one-Step RT-gPCR enzyme mix (QuantaBio, 94134-
799  500), with primers and probes specific for the SARS-CoV-2 Nucleocapsid N1 and N2 genes, and
800 for human gene ribonuclease PP30 which was used as an internal control (Integrated DNA
801  Technologies, 10006713). The absolute number of transcripts was calculated using a standard
802  curve generated with a positive control for the SARS-CoV2 Nucleocapsid sequence (Integrated
803 DNA Technologies, 10006625).

804

805 Nuclei dissociation

806

807  The protocol for nuclei isolation was performed in a BSL2+ biosafety cabinet for the lung and in a
808 BSL2 biosafety cabinet for all other organs wearing personal protective equipment (PPE). We
809 carried out all procedures on ice or at 4 °C. Single nuclei were generated from around 50 mg of
810 flash-frozen tissues using the SingulatorTM machine (S2Genomics, Livermore, CA), following the
811 manufacturer's recommendations. The extended protocol was used for the ileum and colon, and
812  the regular protocol was used for all other organs. After isolation, nuclei preparations were
813 cleaned as follows: nuclei were centrifuged at 500 g for 5 min and resuspended in 2 ml of cold
814  Storage Buffer (S2Genomics), then centrifuged again at 500g for 5 min, resuspended in 2 ml of
815  Storage Buffer, and filtered through a 40 um Flowmi Tip Strainer filter. After centrifugation, nuclei
816  were resuspended in 50 to 500 ul of Storage Buffer supplemented with 1 U/l of RNAse inhibitor
817  (Sigma Aldrich, cat: 3335402001) and counted using a LUNA-FL™ Dual Fluorescence Cell
818  Counter (Logo Biosystems, Anyang-si, South Korea).
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819 10x Genomics protocol

820  Fordroplet-based snRNA-seq, libraries were prepared using the Chromium Next GEM Single Cell
821  3' v.3.1 according to the manufacturer’s protocol (10x Genomics), targeting 10,000 nuclei per
822  sample after counting with a TC20 Automated Cell Counter (Bio-Rad). We performed 12 cycles
823  for cDNA amplification for all of the samples. To generate the final dual or single indexed 10X
824  libraries, 13 cycles were performed.

825 Library pooling and quality control

826  After library preparation, individual libraries were quality checked on an Agilent 4200 Tapestation
827  using D5000 screen tape. These libraries were pooled equal molar into a total of 7 pools ranging
828 from 4-15 nM final concentration and quality checked again on an Agilent 4200 Tapestation using
829 a D5000 screen tape, followed by gPCR on a BioRad CFX96 RT PCR thermal cycler using the
830  KAPA library quantification kit (# KK4923).

831 Sequencing

832 Individual pools of 10x 3’ gene expression libraries were sequenced on lllumina’s Nextseq 2000
833 P3, Novaseq S2 and/or NovaSeq S4 flow cells with a targeted sequencing read depth of 20,000
834  reads per cell. Sequencing parameters were as follows: 1.) for dual indexed libraries: Read 1= 28
835 cycles, Index 1= 10 cycles, Index 2= 10 cycles, Read 2= 90 cycles; 2.) for single indexed libraries:
836 Read 1= 28 cycles, Index 1= 8 cycles, Index 2= 0 cycles, Read 2= 91 cycles.

837  Alignment

838  Sequences were de-multiplexed using bcl2fastq version 2.20.0.4.22. Reads were aligned to an
839 extended Gencode Reference 30 (GRCh38) genome containing SARS-Cov2 genes (kindly
840 provided by Aviv Regev and Carly Ziegler) using CellRanger version 5.0.1, available from 10x
841 Genomics, with default parameters.

842 snRNA-seq quality control

843  The count matrices generated by CellRanger were pre-processed by removing contamination of
844  ambient RNA. We noticed high levels of contamination in single-nuclei data, which has been
845  reported before (S. Yang et al. 2020), and applied Cellbender version 0.1 (Fleming, Marioni, and
846  Babadi 2019) to generate decontaminated count matrices (FDR = 0.01 and default parameters).
847  For quality control, pre-processing, and clustering we used Scanpy (Wolf, Angerer, and Theis
848  2018). We applied quality control filters directly on the count matrices generated by Cellbender.
849  The minimum number of counts per cell we applied as a cut-off varied depending on the sample
850 and ranged between 300 - 800 counts per cell. We observed high mitochondrial content in some
851  of the samples and filtered out cells that exceeded the cut-off threshold (10-20% depending on
852 the sample). We also applied Scrublet for automated identification of potential doublets (Wolock,
853 Lopez, and Klein 2019).
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854 Data clustering

855  For each organ, we first integrated the samples from different donors into a harmonized UMAP
856 embedding using scVI (Lopez et al. 2018) release 0.11.0. For training the scVI's variational
857  autoencoder neural network, we used default parameters except for n_latent=64 and n_layers=2.
858  We allowed each gene to have its own variance parameter by setting dispersion="gene". We then
859  used the UMAP algorithm to visualize the resulting embedding in 2 dimensions. All UMAPs for
860 each organ shown in the manuscript were generated in the same way. The UMAPs generated
861 using scVI's latent space showed minimal batch effect and allowed for the identification of cell
862  populations based on known markers for each organ. For each organ, we first verified that
863 individual clusters expressed known gene markers for the expected cell types. Some clusters,
864  however, co-expressed multiple mutually exclusive markers, an indication of ambient RNA
865 contamination, so we labeled these cells as doublets. Clusters that either expressed gene
866  markers for multiple cell types (doublets) or did not express any markers for the cell types
867  expected in the organ (unidentifiable cells) were systematically removed from the dataset. Finally,
868 for each organ, we generated h5ad files with the cell type annotations and the harmonized UMAP.
869

870 Cell type annotation

871  We used the batch corrected UMAPs for cell-type annotation. In brief, tissue experts at either
872 UCSF or Stanford (from research labs focused on specific human tissues) analyzed the
873  expression of cell-type specific markers and assigned identities to the clusters. Confident
874  annotations for some clusters, however, were not possible due to high levels of RNA
875  contamination or low expression of marker genes. We therefore only considered clusters for which
876  a cell type identity was clearly defined. The second round of quality control was applied based on
877 feedback from tissue experts and their annotations. We increased the cut-off values for
878  mitochondrial genes and filtered out putative doublets (cells co-expressing gene markers for
879  mutually exclusive cell types). After the second round of review with the tissue experts, we
880 finalized the cell type annotations for all organs and used them for all downstream analyses. We
881 use the cell type label annotations as ground truth for Differential Expression (DE) analysis,
882 Pathway enrichment, and ligand-receptor enrichment analysis (see Signaling interactions
883  between cell types).

884

885 Integration with external datasets

886  For annotation of cell types in the kidney, we integrated our COVID samples with a single-nuclei
887  atlas of the kidney (Muto et al. 2021). We applied scANVI (C. Xu et al. 2021) for integration and
888  label transfer and confirmed that cell types from COVID donors integrated well with the kidney
889 atlas by inspection of cell-type specific markers (Figure 1 - Supplement figure 2C-E). We used
890 the integrated kidney object to compute DE genes and gene pathway enrichment. Additionally, to
891 increase the statistical significance of the identified DE genes, we integrated the COVID and
892  healthy lung single-nuclei samples with the lung data from the Tabula Sapiens dataset (The
893 Tabula Sapiens Consortium and Quake 2021). This integration allowed us to increase the number
894  of healthy cells in endothelial cells and macrophages for which we had not enough large
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895  populations in our healthy single-nuclei samples. We used scVI to integrate samples from the
896 COVID Tissue Atlas and Tabula Sapiens and verified that cell types independently identified on
897  each dataset clustered together in the harmonized embedding.

898

899  For the sub-clustering and analysis of lung epithelial cells, we independently integrated the CTA
900 lung samples with the COVID lung atlas published by the Broad Institute (Delorey et al. 2021) and
901  with the lung dataset (Kathiriya et al. 2022). For each data source, we considered only epithelial
902 cells (basal, AT1, and AT2) and performed integration using Seurat 3 (Stuart et al. 2019)
903 (correcting batch effect by donor). We kept the original annotations from each dataset to perform
904 comparisons. Within the integrated dataset, we set the default assay parameter to “RNA” to
905 compute the top ten differentially expressed genes. To investigate the transcriptomic differences
906 and similarities between (Kathiriya et al. 2022) and the CTA dataset, we generated a hierarchical
907 clustering heatmap by down sampling the datasets to 500 cells per population, using the top 20
908 genes in the signature gene sets developed in the control dataset. Heatmaps were generated
909 using the R package pheatmap v1.0.12 with the clustering algorithm set to ward.D2.

910 Differential gene expression

911  To identify differentially expressed (DE) genes between healthy and COVID samples, we used a
912  negative-binomial model using the zIm method as implemented by the MAST R package v1.20
913 (Finak et al. 2015). Following standard practices in single-cell DE, we corrected for the number of
914  detected genes as a potential confounding variable (Finak et al. 2015). Finally, to correct the p-
915  values for multiple testing, we applied Bonferroni correction and defined significant DE using an
916  adjusted p-value cut-off of 0.05 and a minimum absolute log2 fold-change of 1.

917

918 Gene set enrichment analysis

919  To identify gene sets enriched in COVID donors, we selected the top DE genes for each cell type
920 (COVID vs healthy) and used them as input for pathfindR (Ulgen, Ozisik, and Sezerman 2019), a
921  gene-set enrichment algorithm that includes the fold-change along with potential interactions
922  using a protein-protein interaction network. For selecting significant DE genes, we applied a
923  threshold of log2-FC > abs(1) & adjusted p-value < 0.001.

924  We used 4 different pathway databases as references for our analysis to be comprehensive,
925 KEGG, Reactome, GO, and BioCarta. We then manually curated the enriched pathways,
926  discussed them with tissue experts, and cross-validated them with existing literature to identify
927  the signatures enriched in COVID donors for each cell type and organ. We only considered
928  enriched pathways with a p-value < 0.001.

929

930 Coordination in transcriptional responses

931  To identify transcriptional coordination in COVID samples, we developed a custom analysis
932 method to quantify shared responses across organs. First, we examined the set of genes that
933  appear DE (adjusted p-value <0.001 & log2FC > abs(1) ) in at least two-thirds of the organs.
934  Some cell types appear in all organs whereas some only appear in two or three. We, therefore,
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935  applied the coordination analysis only for cell types that appear in at least 3 organs (macrophages,
936  fibroblasts, and endothelial cells).

937

938  For each cell type, we calculated a custom coordination score, which was defined as follows. For
939 a pair of organs, we took the set of shared DE genes common to both organs and computed the
940 sign of change for each gene in each organ (i.e., positive/negative for up/down-regulation,
941 respectively). For genes that possessed the same sign in both organs, we assigned a value of 1;
942  genes that possessed opposing signs were assigned a value of 0. The coordination score for the
943  pair of organs was then defined as the average value across shared DE genes (i.e., sum of values
944  divided by the number of genes). Thus, a coordination score of 1 indicates that all shared DE
945  genes are jointly up or down-regulated (i.e., perfect coordination), whereas a score of 0 indicates
946  that they are oppositely up or down-regulated (i.e., perfect anti-coordination). For each cell type
947  and for each pair of organs, we thus computed the coordination score.

948

949  As a negative control, we repeated this analysis with a computationally shuffled dataset. Here, for
950 each pair of organs for a particular cell type, we held the log2FC values per gene in one organ
951 fixed and randomly shuffled the log2FC values per gene in the second organ. We reasoned that
952  this shuffled dataset should possess near-zero coordination (i.e., a score of 0.5), with some small
953 random deviation due to the finite size of the shared gene list. For each pair of organs, we
954  generated N=1000 computationally shuffled datasets and calculated the resulting coordination
955  scores for each instance, producing a distribution of coordination scores as a negative control.
956  We then averaged the results and retained the mean and standard error, to be compared with the
957  coordination scores from the actual data.

958

959  We then used the shared responses as input for pathway enrichment (see above) considering
960 only the cell types that showed significant coordination compared to the random control
961 (macrophages and endothelial cells).

962

963 Signaling interactions between cell types

964 We applied CellPhoneDB (Efremova et al. 2020) and identified significant pairs of ligands and
965 receptors between macrophages and endothelial cells in COVID-19 tissues (adjusted p-value <
966  0.05). We first identified the significant ligand-receptor interactions in healthy and COVID samples
967 independently and considered only those that were enriched in COVID but not in healthy samples.
968

969 Data and code availability

970  Processed and annotated h5ad files for each organ, as used in this study along with links to raw
971  data, are available at the COVID Tissue Atlas portal [https://covid-tissue-atlas.ds.czbiohub.org].
972  All code used in this study including Jupyter notebooks for pre-processing, analysis, and
973  visualization is available on the COVID tissue atlas GitHub repository czbiohub/CovidTissueAtlas:
974  UCSF Covid Tissue Atlas (github.com).
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975 Supplementary tables

976  Supplementary Table 1: Patient characteristics

977

978  Supplementary Table 2: Differential gene expression COVID vs Healthy across all cell types in
979 the CTA

980

981  Supplementary Table 3: Pathway enrichment analysis for all cell types in CTA

982

983  Supplementary Table 4: Shared DGE signatures in macrophages and endothelial

984

985  Supplementary Table 5: Up-regulated pathways in the shared transcriptional response of
986  Macrophages

987

988  Supplementary Table 6: Up-regulated pathways in the shared transcriptional response of
989  Endothelial cells
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