
 

Comprehensive characterization of the transcriptional 1 

response to COVID-19 in multiple organs reveals shared 2 

signatures across tissues  3 

The COVID Tissue Atlas Consortium*  4 
 5 

Abstract 6 

 7 

Infection by Coronavirus SARS-CoV2 is a severe and often deadly disease that has 8 

implications for the respiratory system and multiple organs across the human body. While 9 

the effects in the lung have been extensively studied, less is known about COVID-19’s 10 

cellular impact across other organs. Here we contribute a single-nuclei RNA sequencing 11 

atlas comprising six human organs across 20 autopsies where we analyzed the 12 

transcriptional changes due to COVID-19 in multiple cell types. Computational cross-13 

organ analysis for endothelial cells and macrophages identified systemic transcriptional 14 

changes in these cell types in COVID-19 samples. In addition, analysis of signaling 15 

pathways from multiple datasets showed several systemic dysregulations of signaling 16 

interaction in different cell types. Altogether, the COVID Tissue Atlas enables the 17 

investigation of both cell type-specific and cross-organ transcriptional responses to 18 

COVID-19, providing insights into the molecular networks affected by the disease and 19 

highlighting novel potential targets for therapies and drug development.   20 
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Introduction  21 

One sentence summary: We applied single-nuclei transcriptomics to investigate the 22 

molecular response of human cells to SARS-Cov-2 across the body. 23 

 24 

COVID-19 (Coronavirus Disease 2019) is the most devastating infectious disease in recent 25 
history. The pandemic has impacted all parts of the globe and resulted in nearly 500 million 26 
infections and over 6,000,000 deaths (Dong, Du, and Gardner 2020). Approximately 14% of 27 
infected unvaccinated individuals develop a severe clinical disease that requires hospitalization 28 
(Wu and McGoogan 2020). While the primary organ affected by severe COVID-19 is the lung, 29 
many other organs, including the heart, liver, and kidney, are also affected (Mokhtari et al. 2020; 30 
Xie et al. 2022; X. Wang et al. 2021). In addition, long-COVID has become an important and 31 
common sequela in those who recover from infection. Long-COVID often affects multiple organs 32 
and is more common in patients with a severe initial infection (Taquet et al. 2021). 33 
 34 
The systemic effects of severe COVID-19 are largely mediated through the immune response to 35 
SARS-CoV-2 infection and subsequent inflammatory response. Viral infection stimulates 36 
macrophages to overproduce proinflammatory cytokines, including IL-6, leading to the “cytokine 37 
storm” that results in systemic inflammatory response syndrome (Hu, Huang, and Yin 2021). This 38 
heightened inflammatory state affects multiple organs, partly through effects on endothelial cells, 39 
which can be directly injured in response to pro-inflammatory cytokines and produce a 40 
procoagulant state leading to thrombosis (Fard et al. 2021). Improved understanding of the 41 
cellular and molecular mechanisms that drive severe COVID-19 and lead to damage in specific 42 
organs, as well as the development of long-COVID, requires a multi-organ approach. 43 
 44 
We have previously shown that multi-organ, single-cell transcriptome-based approaches can 45 
yield significant insights into organ biology and cross-organ signaling (Tabula Muris Consortium 46 
et al. 2018; Tabula Sapiens Consortium* et al. 2022). In addition, several other studies have 47 
recently applied a single cell-based approach to autopsy samples from patients with severe 48 
COVID-19. These studies have yielded significant insights into how severe COVID-19 affects the 49 
lung (Delorey et al. 2021; Melms et al. 2021) and the brain (A. C. Yang et al. 2021), but have not 50 
described in detail the systemic and cross organ effects of severe COVID-19. 51 
 52 
Here, we report a COVID single-nuclei RNA seq (snRNA-seq) atlas comprising six organs and 53 
approximately 86,000 cells. We showed that transcriptional changes in severe COVID19 54 
infections were not restricted to the lung, the most severely affected organ upon SARS-CoV-2 55 
infection, but to multiple organs, such as the liver and heart. In addition, we found significant 56 
changes in the transcriptional profiles of multiple cell types and identified a subset of recurrent 57 
molecular pathways commonly upregulated in multiple cell types across organs. The COVID 58 
Tissue Atlas (CTA) represents a comprehensive resource to investigate the transcriptional 59 
changes resulting from COVID-19 in different tissues. Moreover, the scope of the CTA dataset 60 
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enabled us to identify systemic transcriptional signatures that we would have missed by focusing 61 
on an individual organ. We anticipate our analysis and the CTA to be of significant value for future 62 
research, including identifying molecular targets for drug development and therapeutic 63 
applications.  64 

Results  65 

 66 

The COVID Tissue Atlas 67 

 68 
We collected data from 20 different autopsies (17 males, 3 females) with an age range between 69 
40 and 89 years old (median age = 68 years), of which 15 tested positive for COVID-19 (Figure 70 
1A). The average time at which samples were collected was 63 hrs post-mortem. Ethnicities were 71 
distributed as Hispanic (n=5), African American (n=2), Asian (n=1), and White (n=12). For COVID-72 
19 positive autopsies, the average positive test time before death was 20 days; however, not all 73 
donors died due to COVID-19 complications (Supplementary Table 1). We optimized single-74 
nuclei RNA extraction and sequencing from frozen tissue for Biosafety Level 2 work. All samples 75 
were sequenced at the Chan Zuckerberg Biohub using 10x genomics protocols. After quality 76 
control, 85,376 cells (60,946 cells from COVID-19 samples and 24,430 cells from healthy donors) 77 
were deemed high quality and used to form the CTA (Figure 1B, C). Single-nuclei RNA-seq is 78 
prone to high levels of ambient RNA contamination, which we corrected by applying an 79 
established correction algorithm (Fleming, Marioni, and Babadi 2019) along with filtering of 80 
doublets (Methods). The total numbers of single cells for each organ were as follows: heart (6,092 81 
healthy; 13,999 COVID-19), lung (9,684 healthy; 11,790 COVID-19), liver (6,768 healthy; 8,889 82 
COVID-19), prostate (1,886 healthy; 8,986 COVID-19), kidney (4,060 COVID-19) and testis 83 
(13,222 COVID-19) (Figure 1D, E). Additionally, small intestine, colon, and uninfected control 84 
kidney specimens were processed but did not yield sufficient high-quality nuclei for inclusion. We 85 
were not able to collect uninfected testis tissue.  86 
 87 
We applied dimensionality reduction (PCA) and Leiden clustering for each organ while correcting 88 
batch effects across donors using scVI (Lopez et al. 2018). Finally, we visualized the resulting 89 
clustering using UMAP (McInnes, Healy, and Melville 2018). For each organ, we identified cell 90 
populations using the batch-corrected UMAP embedding by tissue experts based on the 91 
expression of known gene markers (Methods). We were able to identify most major cell types in 92 
each organ and verified that clusters with the same cell identity included both healthy and COVID+ 93 
cells, as an indication that batch effects were indeed removed (Figure 1 - Supplement figure 1-94 
2). Additionally, we verified that our single-nuclei data was statistically comparable to whole-cell 95 
sequencing regarding the number of UMIs and detected genes (Figure 1 - Supplement figure 96 
3).  97 
 98 
Measurements of SARS-CoV-2 mRNA by RT-qPCR showed high to moderate expression in the 99 
lung samples from COVID-19 donors (Figure 1 - Supplement figure 4A). While some of the 100 
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COVID-19 associated genes such as ACE2, TMPRSS2, and NRP1 were expressed in multiple 101 
organs (Figure 1 - Supplement figure 4C), we did not detect significant viral mRNA load by RT-102 
qPCR in the other organs processed (Figure 1 - Supplement figure 4A). The low detection rate 103 
of viral mRNA could be attributed to the prolonged periods between initial infection and sample 104 
collection for some donors (Deinhardt-Emmer et al. 2021) (Supplementary Table 1). Due to the 105 
balanced representation of both healthy and COVID-19 donors for lung, heart, and liver, we 106 
decided to focus our downstream analysis mainly on understanding the transcriptional responses 107 
of cell types in these organs.  For the kidney, we integrated our data with a healthy single-nuclei 108 
atlas reference (Muto et al. 2021) and made the integrated object available (Data Availability). 109 
The results for differential expression analysis between COVID-19 and healthy samples for lung, 110 
heart, liver, kidney, and prostate are available as part of the CTA data release (Supplementary 111 
Tables 2 and 3). Finally, our testis data, including only COVID-19 samples, is fully annotated and 112 
publicly available as part of the CTA release.  113 
 114 

Cell type population changes in the COVID-19 lung  115 

The CTA lung dataset comprised 21,474 cells, of which 11,790 were collected from COVID 116 
autopsies. After quality control and clustering (Methods), we identified ten distinct cell types, 117 
including primary epithelial and immune cells (Figure 2 - Supplement Figure 1A, B). Several 118 
lung single-nuclei and single-cell efforts have been published throughout the COVID-19 pandemic 119 
(Delorey et al. 2021; J. Xu et al. 2020; Hasan et al. 2021; Melms et al. 2021). To assess the quality 120 
and scope of the CTA, we compared our data to the comprehensive lung atlas generated by the 121 
Broad Institute (Delorey et al. 2021). We applied anchor-based integration (Stuart et al. 2019) to 122 
the lung samples from both datasets by including autopsies from the Broad atlas as additional 123 
donors in the CTA (Methods). After integration, the harmonized UMAP embedding showed that 124 
all major lung cell types integrated well across datasets (Figure 2A), with cells from the CTA and 125 
the Broad atlas contributing to most clusters (Figure 2B). The alignment between datasets 126 
showed that the CTA captured the expected diversity of cell types in the COVID-19 lung and that 127 
the gene expression profiles are similar for the same cell types across datasets.   128 
 129 
We next focused on the effects that COVID-19 has on the different lung cell populations. In 130 
particular, significant epithelial cell damage resulting from COVID-19 is manifested as loss of 131 
alveolar type 1 (AT1) and alveolar type 2 (AT2) cells (Melms et al. 2021; Delorey et al. 2021). To 132 
investigate the changes in lung epithelial cells in COVID-19 autopsies in detail, we subset and re-133 
clustered the AT1, AT2, and basal cells to obtain a new UMAP embedding (Figure 2C). All three 134 
cell types included healthy and COVID-19 cells (Figure 2 - Supplement Figure 1C) and 135 
expressed the corresponding canonical gene markers (Figure - Supplement Figure 1D). 136 
Consistent with previous studies (Delorey et al. 2021; Melms et al. 2021), we identified loss of 137 
AT1 and AT2 cells in COVID-19 lungs relative to healthy controls (Figure 2D, Figure 2 - 138 
Supplement Figure 1A), along with a significant expansion of basal cells (Figure 2D, Figure 2 - 139 
Supplement Figure 1A). 140 
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Figure 1  142 

A human single-cell atlas enables the identification of systemic responses to COVID-19. 143 
(A) Tissue samples were collected from different organs and frozen, then dissociated into single nuclei. 144 
Libraries for snRNA-seq were prepared using 10x Genomics Chromium Next GEM Single Cell 3ʹ v.3.1kit, 145 
followed by sequencing on various Illumina platforms. After quality control and clustering, cell types for each 146 
organ were annotated by experts using literature gene markers. Differential gene expression and pathway 147 
enrichment analysis were performed between COVID-19 and healthy samples for all cell types. Finally, 148 
global transcriptional signatures were identified via a cross-organ analysis of differential expression. (B) 149 
The COVID tissue atlas comprises approximately 85,000 cells from 6 different organs. (C) Cells in the 150 
COVID tissue atlas cluster by cell identity rather than disease status. (D) Number of cells per donor grouped 151 
by the organ of origin. (E) Number of cells per organ grouped by COVID-19 status.  152 
 153 

 154 

 155 
The increase in basal cells could be explained by trans-differentiation from AT2 cells, via alveolar-156 
basal intermediates (ABIs), a phenomenon recently described in vitro that corresponds to cellular 157 
changes in fibrotic human lungs (Kathiriya et al. 2022). To investigate if a similar phenomenon 158 
occurs in the COVID-19 lungs, we integrated the CTA epithelial cells with a sc-RNA seq dataset 159 
of lungs with idiopathic pulmonary fibrosis (IPF) that includes a population of ABIs/Transitional 160 
AT2 (Habermann et al. 2020). After applying anchor-based integration (Methods), the 161 
harmonized UMAP showed that epithelial cells from both datasets generally integrated well 162 
(Figure 2E). Interestingly, a fraction of the ABIs/Transitional AT2s from (Habermann et al. 2020) 163 
mapped to a specific cluster between the AT2 and basal cell populations from the CTA (Figure 164 
2E - right). To verify if this cluster from the CTA indeed corresponds to ABIs, we compared the 165 
expression profiles of single cells and clustered them by similarity (Figure 2F). As a result, we 166 
found that a fraction of CTA basal cells clustered together with ABIs/Transitional AT2s. Thus, our 167 
data suggest that ABIs (Kathiriya et al. 2022) are present in the COVID-19 lung, and the gain of 168 
abnormal basal cells in the alveoli could be accounted for by their trans-differentiation from 169 
endogenous AT2s, which are lost in COVID-19 lungs. 170 
  171 
Alternatively, the Broad atlas identified a pre-alveolar Type 1 transitional cell state (PATS) 172 
population in COVID-19 lungs (Delorey et al. 2021) that bears similarities to what was previously 173 
described as ABIs/Transitional AT2s/aberrant basaloid cells from IPF lungs (Adams et al. 2020; 174 
Habermann et al. 2020; Kathiriya et al. 2022). We jointly analyzed the lung epithelial cells from 175 
the CTA and the Broad atlas to find out if the PATS population was present in our data. We used 176 
anchor-based integration (Stuart et al. 2019) and obtained a harmonized UMAP embedding which 177 
recapitulated the three populations across datasets (Figure 2G). The PATS population mostly 178 
overlapped with the principal AT1 cluster (Figure 2G - right), but no specific cluster from the CTA 179 
mapped directly to the PATS cells. This analysis indicates that the PATS population (Delorey et 180 
al. 2021) is likely to be attributed to patient-specific cellular heterogeneity (or sequencing method  181 
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Figure 2 183 

Cell type composition changes in the COVID lung  184 
(A) Integration of the CTA lung with the lung COVID atlas by the Broad Institute. A harmonized UMAP 185 
shows that cells from both datasets integrate by their corresponding cell type annotation. (B) Integration of 186 
two lung COVID atlas colored by the dataset of origin.  (C) Sub-clustering and UMAP projection of the CTA 187 
lung epithelial cells (AT1, AT2, and basal cells). (D) Relative cell composition in epithelial lung tissue from 188 
control and COVID-19 autopsies (CTA data only). (E) Integration of CTA epithelial cells and epithelial cells 189 
from (Habermann et al. 2020) (AT1, AT2, basal cells, and transitional ABIs/AT2 populations). 190 
ABIs/Transitional AT2 from (Habermann et al. 2020) are shown in red (right). (F) Heatmap of scaled gene 191 
expression of marker genes for all the different cell populations in E. (G) Joint embedding of CTA and 192 
(Delorey et al. 2021) (AT1, AT2, basal, and PATS cells). The PATS cells identified by (Delorey et al. 2021) 193 
are shown in red in the joint UMAP (right).  194 
 195 
 196 
differences) and, therefore, was not detected in the CTA donors. Together, our results contribute 197 
to our understanding of the multiple regenerative strategies involved in re-establishing alveolar 198 
epithelial homeostasis in response to COVID-19 (Delorey et al. 2021). 199 

Insulin signaling dysregulation in the liver 200 

Across all six cell types identified in the liver (Figure 3A), hepatocytes comprised around 60% of 201 
cells in the healthy samples and more than 80% in the COVID-19 samples (Figure 3B). However, 202 
we observed an inverse trend for endothelial cells, where approximately 20% of the cells from 203 
healthy samples were annotated as endothelial as opposed to less than 10% in COVID donors, 204 
which may reflect recently reported endotheliopathy in COVID livers (McConnel et al. 2021, J 205 
Hep). COVID-19 livers also contained lower proportions of most immune cell populations than 206 
controls (Figure 3B). 207 
  208 
To identify differentially expressed genes for each cell type in the liver, we applied a negative-209 
binomial model implemented in MAST (Finak et al. 2015) that corrects for differences in 210 
sequencing depth across samples. Across all cell types, hepatocytes, endothelial cells, and 211 
macrophages showed the largest number of differentially expressed (DE) genes in COVID-19 212 
donors (more than 200 upregulated genes with an average log2 Fold-Change >2 and adjusted-213 
p< 1e-6; Figure 3C). In contrast, fibroblasts, intrahepatic cholangiocytes, and natural killer cells 214 
showed only a fraction of DE genes in comparison (fewer than 50 upregulated genes; Figure 3C). 215 
Samples from COVID livers generally comprised lower numbers of counts per cell (Figure 3 - 216 
Supplement Figure 1); while we corrected for this difference when computing DE genes 217 
(Methods), we decided to focus on COVID-19 over-expressed genes to minimize potential 218 
artifacts in down-regulation resulting from lower sequencing depth. 219 
   220 
 221 
 222 
 223 
 224 
 225 
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Figure 3 227 

Transcriptional changes and dysregulation of cell signaling in the COVID liver  228 
(A) UMAP plot showing all cells from liver samples (n = 6 donors) colored by COVID-19 status. Cell type 229 
annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped by COVID-19 230 
status. (C) Number of differentially expressed genes found using MAST (Finak et al. 2015) (negative 231 
binomial model, correcting for the number of detected genes, p < 1e-6 and log2 FC >2). (D) The top 232 
enriched signaling pathways found for each cell type based on the DE genes shown in C. (E) Heatmap of 233 
log2 Fold-Change for the top differentially expressed genes. A few relevant genes are highlighted with a 234 
text legend.  235 
 236 
 237 
Next, we applied pathway enrichment using PathFindR, an algorithm that identifies significant 238 
sets of genes based on both a reference pathway database and a protein-protein interaction 239 
network (Ulgen, Ozisik, and Sezerman 2019). We identified dysregulated signaling pathways in 240 
COVID-19 livers using four different reference pathway databases: KEGG (Kanehisa et al. 2016), 241 
BioCarta (Nishimura 2001), GO (Mi et al. 2019), and Reactome (Griss et al. 2020). We found 242 
known COVID-19 related gene sets in hepatocytes and macrophages (“Coronavirus disease - 243 
COVID-19” in the KEGG database), including TMPRSS2, EGFR, PLCG2, MAPK14, FOS, JUN, 244 
IFNAR1, C5AR1, CFB, C8G, MASP1, FGA, FGB, FGG in addition to multiple ribosomal-related 245 
transcripts, p < 1e-6) (Supplementary Table 3). The expression of known COVID-19 genes 246 
indicates general agreement between our data and previous studies (Harrison, Lin, and Wang 247 
2020). 248 
 249 
Several pathways were enriched in multiple cell types in the liver across all four databases, 250 
including Insulin, HIF-1, Notch, MAPK, and FoxO signaling (Figure 3D, Supplementary Table 251 
3). We found dysregulation in the insulin signaling pathway in hepatocytes, macrophages, and 252 
endothelial cells from COVID-19 livers (Supplementary Table 3; p < 1e-6). Specifically, we 253 
observed upregulation of genes involved in insulin response, including INSR, PIK3R1, PIK3CB, 254 
GSK3B, PPP1CB, PHKA2, PRKAR1A, SORBS1, CBL, CBLB, ACACA, HK1, PRKAG2, RPS6, 255 
RHEB, PTPN1 (Figure 3E, Supplementary Table 2). Patients with type-2 diabetes have worse 256 
outcomes with severe COVID-19 infection (Xie and Al-Aly 2022) and clinical studies show 257 
aberrant glucose levels in SARS-Cov2 infected patients with type-2 diabetes (Reiterer et al. 258 
2021). Thus, our data suggest that dysregulated insulin signaling especially in hepatocytes, 259 

which play a critical role in maintaining glucose homeostasis (Klover PJ 2004) might explain 260 
why SARS-Cov2 infected patients with type-2 diabetes have uncontrolled glucose homeostasis 261 
and are comorbid (Mishra and Dey 2021)) and why COVID-19 infection could lead to the 262 
development of type-2 diabetes (Barrett et al. 2022). 263 

Signaling in the heart in response to COVID-19 264 

 265 
COVID-19 can lead to cardiac involvement and injury via the following possible mechanisms: (1) 266 
indirect injury due to increased cytokines and immune-inflammatory response, (2) direct invasion 267 
of cardiomyocytes by SARS-CoV-2, and (3) respiratory damage from the virus causing hypoxia 268 
leading to oxidative stress and injury to cardiomyocytes (Tahir et al. 2020). To understand the 269 
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transcriptional changes induced by COVID-19 in the heart, we analyzed differential gene 270 
expression across cell types and identified the critical signaling pathways dysregulated as a 271 
response to COVID-19.  272 
 273 
Heart samples yielded 20,091 cells after quality control (n = 11 donors) (Figure 4A). Across the 274 
eight cell types identified, the large majority of cells corresponded to endothelial cells (>40% in 275 
COVID-19 samples, 13% in healthy samples), cardiomyocytes (25% in COVID-19 samples, 28% 276 
in healthy samples), and fibroblasts (15% in COVID-19 samples, 45% in healthy samples) (Figure 277 
4B). In addition, we found significant transcriptional changes in cardiomyocytes, endothelial cells, 278 
and macrophages based on the number of DE genes in COVID-19 samples (Figure 4C). 279 
Considering the top DE genes for each cell type, we then focused on understanding how COVID-280 
19 affects heart cells in terms of gene regulatory pathways.  281 
 282 
We first confirmed that our results agreed with current gene sets associated with COVID-19 283 
(KEGG: Coronavirus disease - COVID19 pathway in fibroblasts and macrophages, p <1e-5; 284 
Reactome: Influenza infection enriched in fibroblasts, p < 1e-5; Supplementary Table 3). In 285 
addition, multiple genes and GO pathways related to protein translation and ribosome activity 286 
(RNA polymerase II cis-regulatory region sequence-specific DNA binding) along with signaling 287 
and transcription factor activity (intracellular signal transduction, transcription cis-regulatory 288 
region binding, transcription factor binding), were enriched in multiple COVID-19 heart cell types 289 
(Supplementary Table 3).   290 
 291 
Similar to the liver, we observed insulin pathway enrichment in cardiomyocytes from COVID-19 292 
samples (Figure 4C). Heart failure is associated with generalized insulin resistance. Moreover, 293 
insulin-resistant states such as type 2 diabetes mellitus and obesity increase the risk of heart 294 
failure even after adjusting for traditional risk factors (Riehle and Dale Abel 2016). In agreement 295 
with our data, other studies found that COVID-19 triggers insulin resistance in patients, causing 296 
chronic metabolic disorders that were non-existent before infection (Govender et al. 2021). 297 
Additionally, we observed significant changes in Notch, Hippo, and MAPK signaling pathways in 298 
cardiomyocytes from COVID-19 samples (Figure 4D). Conversely, the BMP and TGFβ signaling 299 
pathways showed specific down-regulation in endothelial cells from COVID-19 hearts, including 300 
down-regulation of BMPR1A, BMPR1B, SMAD6, and BMP6 (Supplementary Table 3).   301 
 302 
Interestingly, Notch signaling has been proposed as a target to prevent SARS-CoV-2 infection 303 
and interfere with the progression of COVID-19- associated heart and lung disease (Rizzo et al. 304 
2020). Hippo signaling also appeared as one of the top signaling terms for cardiomyocytes 305 
(Figure 4D). Recent studies indicate that Hippo signaling is involved in the development of many 306 
diseases caused by viruses. Whether virus-induced diseases, specifically COVID-19, can be 307 
ameliorated by modulating the Hippo signaling pathway is worth pursuing (Z. Wang et al. 2019). 308 
Finally, TGFβ signaling is linked to the response of endothelial cells to inflammation in COVID-19 309 
(Yoshimatsu and Watabe 2022). Together, these results build on previously reported evidence to 310 
show that multiple signaling pathways in the heart undergo both cell type-specific and systemic 311 
changes in response to COVID-19.  312 
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Figure 4 314 

Transcriptional changes and dysregulation of cell signaling in the COVID heart 315 
(A) UMAP plot showing all cells from heart samples (n = 11 donors) colored by COVID-19 status. Cell type 316 
annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped by COVID-19 317 
status. (C) Number of differentially expressed genes found using MAST (Finak et al. 2015) (negative 318 
binomial model, correcting for the number of detected genes, p < 1e-6 and log2 FC >2). (D) The top 319 
signaling pathways found for each cell type using the genes in C. (E) Heatmap of log2 Fold-Change for the 320 
top differentially expressed genes. A few relevant genes are highlighted with a text legend.  321 

 322 

Shared transcriptional responses across organs 323 

The CTA provides a unique opportunity to identify systemic transcriptional responses across 324 
organs. As an indication of a systemic response to COVID-19, we found enrichment of the same 325 
signaling pathways in multiple cell types and across organs, including HIF-1, insulin, and Notch 326 
signaling (Figure 3D, 4D). Therefore, we decided to quantify the cross-organ transcriptional 327 
changes in COVID-19 autopsies by finding overlapping sets of differentially expressed genes and 328 
signaling pathways across organs.  329 
 330 
In macrophages, we found a significant overlap in DE genes across organs compared to random 331 
sampling expectations (Figure 5A). Specifically, we found a set of 89 DE genes in COVID-19 332 
macrophages from all three organs, including PLCG2, HIF1A, ACTB, and JUND. There were also 333 
many overlapping DE genes in pairs of organs, with macrophages from the liver and lung showing 334 
the highest overlap with 124 shared DE genes (Figure 5A, Supplementary Table 4). We 335 
performed the same analysis for endothelial cells and similarly found sets of overlapping DE 336 
genes; the highest overlap occurring between endothelial cells from the liver and lung (Figure 5 337 
- Supplement figure 1 and Supplementary Table 4). 338 
 339 
To further analyze these data, we defined the shared transcriptional response (STR) for a cell 340 
type as the set of genes that show differential expression in at least three organs from COVID-19 341 
donors (p<1e-4 and log2 FC >1). We restricted the analysis to macrophages, endothelial cells, 342 
and stromal cells, which appear in multiple organs, and calculated the correlation between the 343 
log-FC values of all genes in the STR across pairs of organs (Figure 5 B-E). Generally, we saw 344 
high correlation coefficients, indicating coordination in the COVID-19 induced STR across organs. 345 
For example, among the genes with the highest log-FC across organs, we found HIF1A (in 346 
macrophages from liver, lung, and heart; Figure 5B-C), JUND (in macrophages from liver and 347 
heart; Figure 5C), and PLCG2 (in endothelial cells from liver and heart; Figure 5D).  348 
 349 
To identify the cell types with high coordination in their STR across organs, we defined a 350 
coordination score by considering pairs of organs and the fraction of genes in the STR that 351 
showed the same direction in DE (up-regulated in both or down-regulated in both; Figure 5F). 352 
Finally, we generated a null distribution for the expected coordination by shuffling the log-FC 353 
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across genes (Figure 5F; Methods) and computed a z-score between the null distribution and 354 
the observed coordination for each cell type and pairs of organs (Figure 5G).  355 
 356 
The STR of endothelial cells from COVID-19 samples showed the highest coordination across 357 
multiple pairs of organs (Figure 5G). These results are consistent with previous studies focused 358 
on the effect of COVID-19 on endothelial tissues (Ruhl et al. 2021; Huertas et al. 2020). We also 359 
found significant coordination in macrophages across the liver, lung, and heart (z-score > 5; 360 
Figure 5G). Macrophages from the lung showed lower coordination scores compared to the heart 361 
and liver, an indication of lung-specific transcriptional regulation (Figure 5G and Figure 5B off-362 
diagonal quadrants). In contrast, the STR of fibroblasts and stromal cells showed no significant 363 
coordination compared to the randomized control, possibly due to the low number of overlapping 364 
DE genes (Figure 5G and Figures 3C, 4C). Together, these results indicate that COVID-19 365 
infection induces coordinated transcriptional regulation in macrophages and endothelial cells 366 
across multiple organs.  367 
 368 

Systemic transcriptional responses in endothelial cells and macrophages 369 

To investigate the relevance of the COVID-19 STR in macrophages and endothelial cells, we 370 
identified enriched pathways considering the sets of genes that showed coordinated DE in at least 371 
three organs (diagonal quadrants in Figure 5B-E, Supplementary Table 4). We visualized the 372 
results as a matrix of pathways vs. organs, including the top pathway terms (p < 1e-3, Fold 373 
Enrichment > 3) that appeared in at least two organs for macrophages (Figure 6A) and 374 
endothelial cells (Figure 6B). Multiple signaling pathways were enriched in the STR of 375 
macrophages across organs (Figure 6A). The HIF-1 pathway showed high Fold Enrichment 376 
across all organs (Figure 6A), suggesting a pivotal role of macrophages in the systemic response 377 
to oxygen homeostasis in COVID-19. The Notch pathway was also enriched in macrophages from 378 
all three organs (Figure 6A), confirming that Notch signaling has a crucial role in the systemic 379 
response to COVID-19 (Breikaa and Lilly 2021; Farahani et al. 2022).  380 
 381 
The STR consists of shared DE genes across multiple organs, however, the magnitude of the 382 
differential expression of a given gene, in terms of log-FC and p-value, can vary across organs 383 
(Figure 5B-E, Supplementary Table 4). Therefore, when performing pathway analysis, some 384 
signaling pathways showed statistically significant enrichment only in subsets of tissues. For 385 
example, in macrophages, Interleukin-4/13 showed significant enrichment only in the liver and 386 
heart) and the adherens junction pathway only in the liver and the lung (Figure 6A). Similarly, a 387 
few gene pathways showed organ-specific enrichment (Supplementary Table 5), indicating that 388 
genes in the SRT, while simultaneously differentially expressed across organs, might also 389 
modulate some cellular processes in organ-specific ways, due to quantitative DE differences.  390 
 391 
In the coordinated STR of endothelial cells, we found multiple enriched pathways, including Notch 392 
and Ephrin signaling in the lung, liver, and heart (Figure 6B). Specifically, several Notch-related 393 
genes were up-regulated in COVID-19 samples for all three organs, including HDAC9, a selective 394 
regulator of Notch, FBXW7, a regulator of angiogenesis through Notch (Izumi et al. 2012), and 395 
TBLR1, an indirect Notch regulator through degradation (Perissi et al. 2008). Additionally, we  396 
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 397 

Figure 5 398 

A shared transcriptional response in macrophages and endothelial cells across organs  399 
(A) Overlap of differentially expressed genes in COVID-19 macrophages across organs. The gray shaded 400 
area indicates the expected overlap for each organ combination (green circles) under a null hypothesis of 401 
random sampling (we computed the p values against this null model). The white bars indicate the number 402 
of genes that showed DE in a single organ. The names of the top genes DE in all three organs are shown 403 
based on their log2 Fold Enrichment.  (B) Scatter plot comparing the log2 FC for DE genes in COVID-19 404 
macrophages from lung and heart. (C) Same as B but comparing DE genes in COVID-19 macrophages 405 
from the liver and heart. (D) log2 Fold-Change for COVID-19 endothelial cells from the liver and heart. (E) 406 
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log2 Fold-Change for COVID-19 stromal cells from the liver and kidney. (F) A fully coordinated 407 
transcriptional signature would imply that all genes lie in the bottom-left and top-right quadrants (red 408 
squares). We define the coordination score as the number of DE genes that show the same direction (up-409 
up, down-down) for the two organs, divided by the number of shared DE genes (A). Gray bars show the 410 
score expectation when sampling DE genes randomly from each organ. (G) Coordination scores for 411 
different cell types across all pairs of organs. The dotted line indicates a significance threshold of z-score 412 
> 5 standard deviations compared to the expectation by chance.  413 
 414 
 415 
found enrichment for VEGF signaling in liver and heart (p < 1e-3, and lung p < 1e-2; 416 
Supplementary Table 6). Interestingly, despite up-regulation of the VEGF signaling pathway in 417 
multiple organs, some pathway genes showed organ-specific regulation. For example, AKT3 was 418 
enriched in the liver and lung, whereas PXN contributed to VEGF signaling enrichment only in the 419 
heart and lung (Supplementary Table 6). A recent study using measurements of growth factors 420 
and cytokines in serum identified VEGF-D as the most predictive indicator for the severity of 421 
COVID-19 (Kong et al. 2020). Similarly, VEGF was proposed as a promising therapeutic target 422 
for suppressing inflammation during SARS-CoV-2 infection (Yin et al. 2020). Our results indicate 423 
that changes in VEGF signaling in COVID-19 donors are not necessarily organ-specific but rather 424 
part of a systemic response of endothelial cells and, therefore, of relevance for the development 425 
of treatments and as potential drug targets. 426 

Macrophage-Endothelial signaling interactions in COVID tissues  427 

The enrichment of key cell-to-cell pathways such as Notch and Ephrin in the STR of endothelial 428 
cells and macrophages due to COVID-19 suggests that these two cell types may be signaling to 429 
each other. Therefore, we used CellPhoneDB (Efremova et al. 2020) to investigate potential 430 
signaling interactions between these two cell types by finding over-represented expression ligand-431 
receptor pairs in COVID-19 samples compared to healthy donors (Methods). 432 
  433 
Multiple enriched ligand-receptor pairs were identified between macrophages and endothelial 434 
cells in all three organs from COVID-19 autopsies (23 ligand-receptor pairs in the heart, 13 in the 435 
liver, and 7 in the lung, p < 1e-2; Figure 6C-E). Among the top signaling interactions, we found 436 
expression of VEGF ligand-receptor pairs in the liver and heart (FLT4:VEGFC; VEGFA: KDR; 437 
NRP2:VEGFA; VEGFA:FLT1). In the lung, we found expression of EGFR in endothelial cells and 438 
expression of COPA and GRN in macrophages, suggesting another mechanism of cell-cell 439 
signaling between these two cell types. In the heart, we found multiple Notch ligand-receptor 440 
enriched pairs involving the expression of the Dll4 ligand in endothelial cells (Figure 6D). 441 
Interestingly, the expression of Notch receptors was cell-type dependent: endothelial cells 442 
expressed Notch4 and Notch1, whereas macrophages expressed Notch2 (Figure 6D). A Dll4-443 
dependent signaling mechanism involving endothelial cells and macrophages in the COVID-19 444 
heart is potentially related to HIF-1 signaling since these pathways are known to cross-talk 445 
through multiple mechanisms (Breikaa and Lilly 2021; Zheng et al. 2008). 446 
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Figure 6 448 

Identifying interactions between endothelial cells and macrophages  449 
(A) From the shared DE genes across organs, we identified the top enriched signaling pathways for COVID-450 
19 macrophages across the lung, liver, and heart. The value in the heatmap is the log10 p-value for the 451 
gene pathway. Only pathways with Fold Enrichment > 3 and adjusted p-value < 1e-3 in at least two organs 452 
are shown. (B) Enriched pathways in the shared transcriptional response of endothelial cells across lung, 453 
liver, and heart (using the same significance thresholds as A). (C-E) Enriched expression of ligand-receptor 454 
components in COVID-19 macrophages and endothelial cells in the lung (C), heart (D) and liver (E). The 455 
x-axis indicates the pair of cell types considered (EC endothelial cells, MA macrophages). The y-axis 456 
indicates all the enriched signaling interactions found, and the circles indicate the significance and 457 
magnitude of enrichment.  We calculated enrichment using CellPhoneDB on the raw sequencing counts. 458 
Only ligand-receptor pairs with adjusted p-value < 1e-3 are shown. 459 

 460 

Discussion  461 

We generated the CTA, a single-cell atlas of six organs from autopsies of COVID patients. Our 462 
analyses highlight that multiple organs are damaged by COVID-19 infection and allow for 463 
assessing transcriptomic changes in multiple cell types across these organs. While the lung is the 464 
primary organ affected by COVID infection, our data identified broad signaling changes across 465 
multiple organs and cell types. Notably, we localize signaling changes in two affected organs, the 466 
liver and heart, where we identified dysregulated insulin and HIF signaling and prominent 467 
macrophage-endothelial interactions. 468 

Through analysis of the CTA, we identified a shared transcriptional signature (STR) in COVID-19 469 
autopsy specimens across tissues. This transcriptional signature was evident in macrophages 470 
and endothelial cells in hearts and liver from COVID-19 tissue specimens compared to control 471 
specimens. These shared signatures between macrophages and endothelial cells may be 472 
mediated by the known effects of the dysregulated immune system in the context and sequelae 473 
of COVID infection. 474 

The effects of COVID-19 on the human body are yet to be fully understood, and we need 475 
comprehensive maps of the changes at the transcriptional and proteomic levels. The CTA and 476 
the corresponding analyses represent an integrated effort toward understanding the effects of this 477 
disease from an organism-wide point of view. More generally, we expect some of the 478 
computational analysis presented in this study to be generalized to other cell atlas datasets to 479 
reveal systemic transcriptional signatures of disease by analyzing the responses of individual 480 
cells while considering the global context of the human body. Our results may also have 481 
implications for understanding the sequelae of COVID-19 across organs and increased risk for 482 
diseases associated with COVID-19 infection. For example, insulin signaling dysregulation may 483 
contribute to the development of diabetes in COVID-19 patients. Long COVID, which appears to 484 
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be a complex set of symptoms with variable organ dysfunction, may also be informed by our 485 
understanding of cellular changes across multiple tissues. 486 

Overall, the CTA contributes to our molecular understanding of the effects of severe SARS-CoV2 487 
infection across multiple organs and cell types.  488 
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Figure captions  704 

Figure 1  705 

A human single-cell atlas enables the identification of systemic responses to COVID-19. 706 
(A) Tissue samples were collected from different organs and frozen, then dissociated into single 707 
nuclei. Libraries for snRNA-seq were prepared using 10x Genomics Chromium Next GEM Single 708 
Cell 3ʹ v.3.1kit, followed by sequencing on various Illumina platforms. After quality control and 709 
clustering, cell types for each organ were annotated by experts using literature gene markers. 710 
Differential gene expression and pathway enrichment analysis were performed between COVID-711 
19 and healthy samples for all cell types. Finally, global transcriptional signatures were identified 712 
via a cross-organ analysis of differential expression. (B) The COVID tissue atlas comprises 713 
approximately 85,000 cells from 6 different organs. (C) Cells in the COVID tissue atlas cluster by 714 
cell identity rather than disease status. (D) Number of cells per donor grouped by the organ of 715 
origin. (E) Number of cells per organ grouped by COVID-19 status.  716 
 717 

Figure 2 718 

Cell type composition changes in the COVID lung  719 
(A) Integration of the CTA lung with the lung COVID atlas by the Broad Institute. A harmonized 720 
UMAP shows that cells from both datasets integrate by their corresponding cell type annotation. 721 
(B) Integration of two lung COVID atlas colored by the dataset of origin.  (C) Sub-clustering and 722 
UMAP projection of the CTA lung epithelial cells (AT1, AT2, and basal cells). (D) Relative cell 723 
composition in epithelial lung tissue from control and COVID-19 autopsies (CTA data only). (E) 724 
Integration of CTA epithelial cells and epithelial cells from (Habermann et al. 2020) (AT1, AT2, 725 
basal cells, and transitional ABIs/AT2 populations). ABIs/Transitional AT2 from (Habermann et 726 
al. 2020) are shown in red (right). (F) Heatmap of scaled gene expression of marker genes for all 727 
the different cell populations in E. (G) Joint embedding of CTA and (Delorey et al. 2021) (AT1, 728 
AT2, basal, and PATS cells). The PATS cells identified by (Delorey et al. 2021) are shown in red 729 
in the joint UMAP (right).  730 
 731 

Figure 3 732 

Transcriptional changes and dysregulation of cell signaling in the COVID liver  733 
(A) UMAP plot showing all cells from liver samples (n = 6 donors) colored by COVID-19 status. 734 
Cell type annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped 735 
by COVID-19 status. (C) Number of differentially expressed genes found using MAST (Finak et 736 
al. 2015) (negative binomial model, correcting for the number of detected genes, p < 1e-6 and 737 
log2 FC >2). (D) The top enriched signaling pathways found for each cell type based on the DE 738 
genes shown in C. (E) Heatmap of log2 Fold-Change for the top differentially expressed genes. 739 
A few relevant genes are highlighted with a text legend.  740 
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Figure 4 741 

Transcriptional changes and dysregulation of cell signaling in the COVID heart 742 
(A) UMAP plot showing all cells from heart samples (n = 11 donors) colored by COVID-19 status. 743 
Cell type annotations are indicated for each cluster. (B) Fraction of cells for each cell type grouped 744 
by COVID-19 status. (C) Number of differentially expressed genes found using MAST (Finak et 745 
al. 2015) (negative binomial model, correcting for the number of detected genes, p < 1e-6 and 746 
log2 FC >2). (D) The top signaling pathways found for each cell type using the genes in C. (E) 747 
Heatmap of log2 Fold-Change for the top differentially expressed genes. A few relevant genes 748 
are highlighted with a text legend.  749 
 750 
 751 

Figure 5 752 

A shared transcriptional response in macrophages and endothelial cells across organs  753 
(A) Overlap of differentially expressed genes in COVID-19 macrophages across organs. The gray 754 
shaded area indicates the expected overlap for each organ combination (green circles) under a 755 
null hypothesis of random sampling (we computed the p values against this null model). The white 756 
bars indicate the number of genes that showed DE in a single organ. The names of the top genes 757 
DE in all three organs are shown based on their log2 Fold Enrichment.  (B) Scatter plot comparing 758 
the log2 FC for DE genes in COVID-19 macrophages from lung and heart. (C) Same as B but 759 
comparing DE genes in COVID-19 macrophages from the liver and heart. (D) log2 Fold-Change 760 
for COVID-19 endothelial cells from the liver and heart. (E) log 2 Fold-Change for COVID-19 761 
stromal cells from the liver and kidney. (F) A fully coordinated transcriptional signature would 762 
imply that all genes lie in the bottom-left and top-right quadrants (red squares). We define the 763 
coordination score as the number of DE genes that show the same direction (up-up, down-down) 764 
for the two organs, divided by the number of shared DE genes (A). Gray bars show the score 765 
expectation when sampling DE genes randomly from each organ. (G) Coordination scores for 766 
different cell types across all pairs of organs. The dotted line indicates a significance threshold of 767 
z-score > 5 standard deviations compared to the expectation by chance.  768 

Figure 6 769 

Identifying interactions between endothelial cells and macrophages  770 
(A) From the shared DE genes across organs, we identified the top enriched signaling pathways 771 
for COVID-19 macrophages across the lung, liver, and heart. The value in the heatmap is the 772 
log10 p-value for the gene pathway. Only pathways with Fold Enrichment > 3 and adjusted p-773 
value < 1e-3 in at least two organs are shown. (B) Enriched pathways in the shared transcriptional 774 
response of endothelial cells across lung, liver, and heart (using the same significance thresholds 775 
as A). (C-E) Enriched expression of ligand-receptor components in COVID-19 macrophages and 776 
endothelial cells in the lung (C), heart (D) and liver (E). The x-axis indicates the pair of cell types 777 
considered (EC endothelial cells, MA macrophages). The y-axis indicates all the enriched 778 
signaling interactions found, and the circles indicate the significance and magnitude of 779 
enrichment.  We calculated enrichment using CellPhoneDB on the raw sequencing counts. Only 780 
ligand-receptor pairs with adjusted p-value < 1e-3 are shown.  781 
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Methods  782 

Sample collection  783 

Organs from post-mortem control individuals and patients with COVID-19 were obtained from the 784 
University of California, San Francisco Medical Center, and the Saarland University Hospital 785 
Institute for Neuropathology, with approval from local ethics committees. Supplementary Table 1 786 
presents all group characteristics.  787 

Tissue processing 788 

During the autopsy, tissue samples were stored in ice-cold Wisconsin solution for transportation, 789 
then immediately processed as follows: tissues were rinsed twice with ice-cold PBS, then wiped 790 
off. Next, tissues were pre-cut into 1-2 mm3 cubes, flash-frozen in dry ice, and then stored at -791 
80C for single-nuclei extraction and total RNA extraction. 792 

COVID testing 793 

COVID testing was performed on patients according to the testing procedure of host hospitals. 794 
For sample testing, total RNA was extracted using a hybrid TRIzol (Life Technologies #15596026) 795 
and RNeasy Mini kit (Qiagen #74104) protocol (Wolock, Lopez, and Klein 2019; Rodriguez-796 
Lanetty, Phillips, and Weis 2006). RT- qPCR test for SARS-CoV2 mRNA detection was performed 797 
starting from 100 ng of total RNA using a one-Step RT-qPCR enzyme mix (QuantaBio, 94134-798 
500), with primers and probes specific for the SARS-CoV-2 Nucleocapsid N1 and N2 genes, and 799 
for human gene ribonuclease PP30 which was used as an internal control (Integrated DNA 800 
Technologies, 10006713). The absolute number of transcripts was calculated using a standard 801 
curve generated with a positive control for the SARS-CoV2 Nucleocapsid sequence (Integrated 802 
DNA Technologies, 10006625). 803 

 804 

Nuclei dissociation  805 

 806 
The protocol for nuclei isolation was performed in a BSL2+ biosafety cabinet for the lung and in a 807 
BSL2 biosafety cabinet for all other organs wearing personal protective equipment (PPE). We 808 
carried out all procedures on ice or at 4 °C. Single nuclei were generated from around 50 mg of 809 
flash-frozen tissues using the SingulatorTM machine (S2Genomics, Livermore, CA), following the 810 
manufacturer's recommendations. The extended protocol was used for the ileum and colon, and 811 
the regular protocol was used for all other organs. After isolation, nuclei preparations were 812 
cleaned as follows: nuclei were centrifuged at 500 g for 5 min and resuspended in 2 ml of cold 813 
Storage Buffer (S2Genomics), then centrifuged again at 500g for 5 min, resuspended in 2 ml of 814 
Storage Buffer, and filtered through a 40 µm Flowmi Tip Strainer filter. After centrifugation, nuclei 815 
were resuspended in 50 to 500 ul of Storage Buffer supplemented with 1 U/µl of RNAse inhibitor 816 
(Sigma Aldrich, cat: 3335402001) and counted using a LUNA-FL™ Dual Fluorescence Cell 817 
Counter (Logo Biosystems, Anyang-si, South Korea). 818 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.493925doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.493925
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10x Genomics protocol 819 

For droplet-based snRNA-seq, libraries were prepared using the Chromium Next GEM Single Cell 820 
3ʹ v.3.1 according to the manufacturer’s protocol (10x Genomics), targeting 10,000 nuclei per 821 
sample after counting with a TC20 Automated Cell Counter (Bio-Rad). We performed 12 cycles 822 
for cDNA amplification for all of the samples. To generate the final dual or single indexed 10X 823 
libraries, 13 cycles were performed.  824 

Library pooling and quality control  825 

After library preparation, individual libraries were quality checked on an Agilent 4200 Tapestation 826 
using D5000 screen tape. These libraries were pooled equal molar into a total of 7 pools ranging 827 
from 4-15 nM final concentration and quality checked again on an Agilent 4200 Tapestation using 828 
a D5000 screen tape, followed by qPCR on a BioRad CFX96 RT PCR thermal cycler using the 829 
KAPA library quantification kit (# KK4923). 830 

Sequencing  831 

Individual pools of 10x 3’ gene expression libraries were sequenced on Illumina’s Nextseq 2000 832 
P3, Novaseq S2 and/or NovaSeq S4 flow cells with a targeted sequencing read depth of 20,000 833 
reads per cell. Sequencing parameters were as follows: 1.) for dual indexed libraries: Read 1= 28 834 
cycles, Index 1= 10 cycles, Index 2= 10 cycles, Read 2= 90 cycles; 2.) for single indexed libraries: 835 
Read 1= 28 cycles, Index 1= 8 cycles, Index 2= 0 cycles, Read 2= 91 cycles.  836 

Alignment  837 

Sequences were de-multiplexed using bcl2fastq version 2.20.0.4.22. Reads were aligned to an 838 
extended Gencode Reference 30 (GRCh38) genome containing SARS-Cov2 genes (kindly 839 
provided by Aviv Regev and Carly Ziegler) using CellRanger version 5.0.1, available from 10x 840 
Genomics, with default parameters. 841 

snRNA-seq quality control   842 

The count matrices generated by CellRanger were pre-processed by removing contamination of 843 
ambient RNA. We noticed high levels of contamination in single-nuclei data, which has been 844 
reported before (S. Yang et al. 2020), and applied Cellbender version 0.1 (Fleming, Marioni, and 845 
Babadi 2019) to generate decontaminated count matrices (FDR = 0.01 and default parameters). 846 
For quality control, pre-processing, and clustering we used Scanpy (Wolf, Angerer, and Theis 847 
2018). We applied quality control filters directly on the count matrices generated by Cellbender. 848 
The minimum number of counts per cell we applied as a cut-off varied depending on the sample 849 
and ranged between 300 - 800 counts per cell. We observed high mitochondrial content in some 850 
of the samples and filtered out cells that exceeded the cut-off threshold (10-20% depending on 851 
the sample). We also applied Scrublet for automated identification of potential doublets (Wolock, 852 
Lopez, and Klein 2019). 853 
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Data clustering 854 

For each organ, we first integrated the samples from different donors into a harmonized UMAP 855 
embedding using scVI (Lopez et al. 2018) release 0.11.0. For training the scVI’s variational 856 
autoencoder neural network, we used default parameters except for n_latent=64 and n_layers=2. 857 
We allowed each gene to have its own variance parameter by setting dispersion="gene". We then 858 
used the UMAP algorithm to visualize the resulting embedding in 2 dimensions. All UMAPs for 859 
each organ shown in the manuscript were generated in the same way. The UMAPs generated 860 
using scVI’s latent space showed minimal batch effect and allowed for the identification of cell 861 
populations based on known markers for each organ. For each organ, we first verified that 862 
individual clusters expressed known gene markers for the expected cell types. Some clusters, 863 
however, co-expressed multiple mutually exclusive markers, an indication of ambient RNA 864 
contamination, so we labeled these cells as doublets. Clusters that either expressed gene 865 
markers for multiple cell types (doublets) or did not express any markers for the cell types 866 
expected in the organ (unidentifiable cells) were systematically removed from the dataset. Finally, 867 
for each organ, we generated h5ad files with the cell type annotations and the harmonized UMAP. 868 
 869 

Cell type annotation 870 

We used the batch corrected UMAPs for cell-type annotation. In brief, tissue experts at either 871 
UCSF or Stanford (from research labs focused on specific human tissues) analyzed the 872 
expression of cell-type specific markers and assigned identities to the clusters. Confident 873 
annotations for some clusters, however, were not possible due to high levels of RNA 874 
contamination or low expression of marker genes. We therefore only considered clusters for which 875 
a cell type identity was clearly defined. The second round of quality control was applied based on 876 
feedback from tissue experts and their annotations. We increased the cut-off values for 877 
mitochondrial genes and filtered out putative doublets (cells co-expressing gene markers for 878 
mutually exclusive cell types). After the second round of review with the tissue experts, we 879 
finalized the cell type annotations for all organs and used them for all downstream analyses. We 880 
use the cell type label annotations as ground truth for Differential Expression (DE) analysis, 881 
Pathway enrichment, and ligand-receptor enrichment analysis (see Signaling interactions 882 
between cell types).  883 
 884 

Integration with external datasets  885 

For annotation of cell types in the kidney, we integrated our COVID samples with a single-nuclei 886 
atlas of the kidney (Muto et al. 2021). We applied scANVI (C. Xu et al. 2021) for integration and 887 
label transfer and confirmed that cell types from COVID donors integrated well with the kidney 888 
atlas by inspection of cell-type specific markers (Figure 1 - Supplement figure 2C-E). We used 889 
the integrated kidney object to compute DE genes and gene pathway enrichment. Additionally, to 890 
increase the statistical significance of the identified DE genes, we integrated the COVID and 891 
healthy lung single-nuclei samples with the lung data from the Tabula Sapiens dataset (The 892 
Tabula Sapiens Consortium and Quake 2021). This integration allowed us to increase the number 893 
of healthy cells in endothelial cells and macrophages for which we had not enough large 894 
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populations in our healthy single-nuclei samples. We used scVI to integrate samples from the 895 
COVID Tissue Atlas and Tabula Sapiens and verified that cell types independently identified on 896 
each dataset clustered together in the harmonized embedding. 897 
 898 
For the sub-clustering and analysis of lung epithelial cells, we independently integrated the CTA 899 
lung samples with the COVID lung atlas published by the Broad Institute (Delorey et al. 2021) and 900 
with the lung dataset (Kathiriya et al. 2022). For each data source, we considered only epithelial 901 
cells (basal, AT1, and AT2) and performed integration using Seurat 3 (Stuart et al. 2019) 902 
(correcting batch effect by donor). We kept the original annotations from each dataset to perform 903 
comparisons. Within the integrated dataset, we set the default assay parameter to “RNA” to 904 
compute the top ten differentially expressed genes. To investigate the transcriptomic differences 905 
and similarities between (Kathiriya et al. 2022) and the CTA dataset, we generated a hierarchical 906 
clustering heatmap by down sampling the datasets to 500 cells per population, using the top 20 907 
genes in the signature gene sets developed in the control dataset. Heatmaps were generated 908 
using the R package pheatmap v1.0.12 with the clustering algorithm set to ward.D2.  909 

Differential gene expression  910 

To identify differentially expressed (DE) genes between healthy and COVID samples, we used a 911 
negative-binomial model using the zlm method as implemented by the MAST R package v1.20 912 
(Finak et al. 2015). Following standard practices in single-cell DE, we corrected for the number of 913 
detected genes as a potential confounding variable (Finak et al. 2015). Finally, to correct the p-914 
values for multiple testing, we applied Bonferroni correction and defined significant DE using an 915 
adjusted p-value cut-off of 0.05 and a minimum absolute log2 fold-change of 1.  916 
 917 

Gene set enrichment analysis 918 

To identify gene sets enriched in COVID donors, we selected the top DE genes for each cell type 919 
(COVID vs healthy) and used them as input for pathfindR (Ulgen, Ozisik, and Sezerman 2019), a 920 
gene-set enrichment algorithm that includes the fold-change along with potential interactions 921 
using a protein-protein interaction network. For selecting significant DE genes, we applied a 922 
threshold of log2-FC > abs(1) & adjusted p-value < 0.001.  923 
We used 4 different pathway databases as references for our analysis to be comprehensive, 924 
KEGG, Reactome, GO, and BioCarta. We then manually curated the enriched pathways, 925 
discussed them with tissue experts, and cross-validated them with existing literature to identify 926 
the signatures enriched in COVID donors for each cell type and organ. We only considered 927 
enriched pathways with a p-value < 0.001.  928 
 929 

Coordination in transcriptional responses  930 

To identify transcriptional coordination in COVID samples, we developed a custom analysis 931 
method to quantify shared responses across organs. First, we examined the set of genes that 932 
appear DE (adjusted p-value <0.001 & log2FC > abs(1) ) in at least two-thirds of the organs. 933 
Some cell types appear in all organs whereas some only appear in two or three. We, therefore, 934 
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applied the coordination analysis only for cell types that appear in at least 3 organs (macrophages, 935 
fibroblasts, and endothelial cells).  936 
 937 
For each cell type, we calculated a custom coordination score, which was defined as follows. For 938 
a pair of organs, we took the set of shared DE genes common to both organs and computed the 939 
sign of change for each gene in each organ (i.e., positive/negative for up/down-regulation, 940 
respectively). For genes that possessed the same sign in both organs, we assigned a value of 1; 941 
genes that possessed opposing signs were assigned a value of 0. The coordination score for the 942 
pair of organs was then defined as the average value across shared DE genes (i.e., sum of values 943 
divided by the number of genes). Thus, a coordination score of 1 indicates that all shared DE 944 
genes are jointly up or down-regulated (i.e., perfect coordination), whereas a score of 0 indicates 945 
that they are oppositely up or down-regulated (i.e., perfect anti-coordination). For each cell type 946 
and for each pair of organs, we thus computed the coordination score. 947 
 948 
As a negative control, we repeated this analysis with a computationally shuffled dataset. Here, for 949 
each pair of organs for a particular cell type, we held the log2FC values per gene in one organ 950 
fixed and randomly shuffled the log2FC values per gene in the second organ. We reasoned that 951 
this shuffled dataset should possess near-zero coordination (i.e., a score of 0.5), with some small 952 
random deviation due to the finite size of the shared gene list. For each pair of organs, we 953 
generated N=1000 computationally shuffled datasets and calculated the resulting coordination 954 
scores for each instance, producing a distribution of coordination scores as a negative control. 955 
We then averaged the results and retained the mean and standard error, to be compared with the 956 
coordination scores from the actual data. 957 
 958 
We then used the shared responses as input for pathway enrichment (see above) considering 959 
only the cell types that showed significant coordination compared to the random control 960 
(macrophages and endothelial cells). 961 
 962 

Signaling interactions between cell types 963 

We applied CellPhoneDB (Efremova et al. 2020) and identified significant pairs of ligands and 964 
receptors between macrophages and endothelial cells in COVID-19 tissues (adjusted p-value < 965 
0.05). We first identified the significant ligand-receptor interactions in healthy and COVID samples 966 
independently and considered only those that were enriched in COVID but not in healthy samples.  967 
 968 

Data and code availability  969 

Processed and annotated h5ad files for each organ, as used in this study along with links to raw 970 
data, are available at the COVID Tissue Atlas portal [https://covid-tissue-atlas.ds.czbiohub.org].   971 
All code used in this study including Jupyter notebooks for pre-processing, analysis, and 972 
visualization is available on the COVID tissue atlas GitHub repository czbiohub/CovidTissueAtlas: 973 
UCSF Covid Tissue Atlas (github.com).   974 
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Supplementary Table 2: Differential gene expression COVID vs Healthy across all cell types in 978 
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 980 
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 982 
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 984 
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