

1 **A Chloroplast Protein Atlas Reveals Novel Structures and Spatial Organization of**
2 **Biosynthetic Pathways**

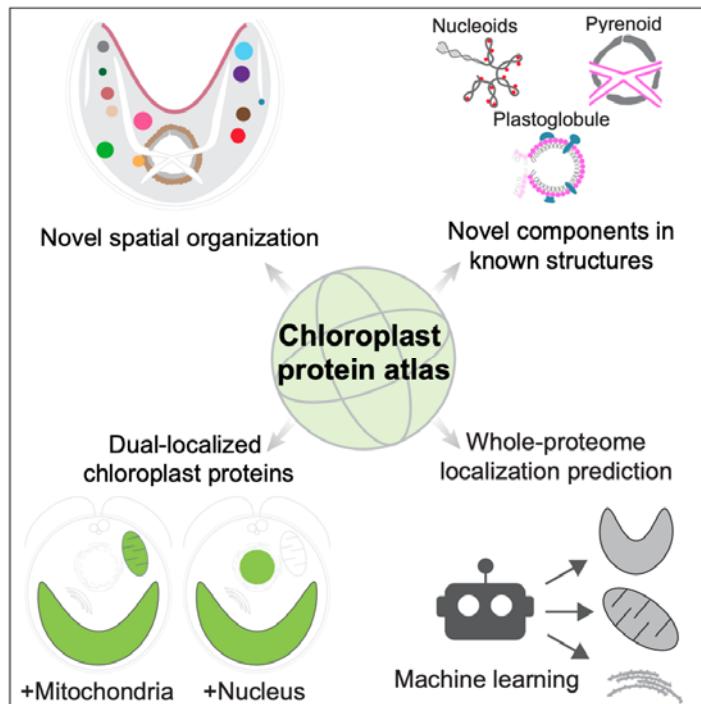
3

4 **Authors:**

5 Lianyong Wang¹, Weronika Patena¹, Kelly A. Van Baalen¹, Yihua Xie¹, Emily R. Singer¹, Sophia
6 Gavrilenko¹, Michelle Warren-Williams¹, Linqu Han^{2,3}, Henry R. Harrigan¹, Vivian Chen¹, Vinh
7 T.N.P. Ton¹, Saw Kyin¹, Henry H. Shwe¹, Matthew H. Cahn¹, Alexandra T. Wilson¹, Jianping
8 Hu^{2,3}, Danny J. Schnell², Claire D. McWhite¹, Martin Jonikas^{1,4*}

9

10 ¹Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA


11 ²Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA

12 ³MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA

13 ⁴Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA

14 * Correspondence: mjonikas@princeton.edu

15 **Graphical Abstract:**

16

17

18 **Highlights:**

19 • 1,032 candidate chloroplast proteins localized by fluorescent tagging.

20 • This protein atlas reveals novel chloroplast structures, functional regions, and

21 components.

22 • Prevalent dual-organelle localization suggests extensive cross-compartment

23 coordination.

24 • Atlas-trained machine learning predicts localizations of all *C. reinhardtii* proteins.

25 **Summary**

26 Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle.
27 Despite their importance, our understanding of their protein composition, function, and spatial
28 organization remains limited. Here, we determined the localizations of 1,032 candidate
29 chloroplast proteins by using fluorescent protein tagging in the model alga *Chlamydomonas*
30 *reinhardtii*. The localizations provide insights into the functions of hundreds of poorly-
31 characterized proteins, including identifying novel components of nucleoids, plastoglobules, and
32 the pyrenoid. We discovered and further characterized novel organizational features, including
33 eleven chloroplast punctate structures, cytosolic crescent structures, and diverse unexpected
34 spatial distributions of enzymes within the chloroplast. We observed widespread protein
35 targeting to multiple organelles, identifying proteins that likely function in multiple compartments.
36 We also used machine learning to predict the localizations of all *Chlamydomonas* proteins. The
37 strains and localization atlas developed here will serve as a resource to enable studies of
38 chloroplast architecture and functions.

39

40 **Keywords:**

41 Chloroplast, protein localization, fluorescent tagging, protein-protein interaction, affinity-
42 purification mass spectrometry, plastoglobule, nucleoid, pyrenoid, dual targeting, protein
43 localization prediction, *Chlamydomonas reinhardtii*

44 INTRODUCTION

45 The chloroplast is a hallmark organelle of eukaryotic photosynthetic organisms. Over 85% of
46 global biological light energy capture, CO₂ fixation, and O₂ production happens in a chloroplast,
47 driving the biochemistry of the biosphere (Behrenfeld et al., 2001; Rousseaux and Gregg, 2013).
48 In addition to performing photosynthesis, the chloroplast plays essential roles in key cellular
49 processes including amino acid synthesis (Hildebrandt et al., 2015), starch synthesis (Pfister
50 and Zeeman, 2016), lipid metabolism (Hölzl and Dörmann, 2019), isoprenoid synthesis (Lange
51 et al., 2000), purine/pyrimidine synthesis (Zrenner et al., 2006), and the immune response of
52 land plants (Nomura et al., 2012). Despite the chloroplast's importance, the mechanisms of its
53 function and regulation are still not well understood.

54 All chloroplasts are thought to have originated from a single primary endosymbiosis of a
55 free-living photosynthetic cyanobacterium by a host eukaryotic cell (Keeling, 2010). Over time,
56 the engulfed cyanobacterium lost its autonomy and transferred most of its genes to the nucleus.
57 In parallel, sophisticated communication evolved between the chloroplast and other organelles.
58 This endosymbiosis event is thought to have given rise to the *Archaeplastidia* eukaryotic
59 supergroup, which includes land plants, red algae, and green algae. Secondary endosymbiosis
60 of members of *Archaeplastidia* then produced the more complex chloroplasts found in other
61 eukaryotic supergroups including the coccolithophores and diatoms. Hereafter, we focus on the
62 chloroplast of *Archaeplastidia*, which remain dominant on a global scale, with land plants
63 performing the vast majority of photosynthesis on land and green algae contributing a significant
64 portion of photosynthesis in the oceans (Behrenfeld et al., 2001; Rousseaux and Gregg, 2013).

65 To understand the function and regulation of the chloroplast, we need to study its
66 proteins and its sub-organellar organization. While the chloroplast has retained a minimal
67 genome, the vast majority of its proteins are now encoded in the nucleus and are imported into
68 the chloroplast (Leister, 2003). Although hundreds of nuclear-encoded proteins have recently
69 been associated with the chloroplast through proteomics (Ferro et al., 2010; Terashima et al.,

70 2010), phylogenetics (Karpowicz et al., 2011), and bioinformatics studies (Emanuelsson et al.,
71 1999; Tardif et al., 2012), the protein composition of the chloroplast remains poorly defined.
72 Moreover, most chloroplast-associated proteins remain functionally uncharacterized (Hooper et
73 al., 2017; Leister, 2003; Leister and Kleine, 2008).

74 One promising starting point for understanding the functions of chloroplast-associated
75 proteins is the systematic determination of their cellular and sub-chloroplast localizations (Huh
76 et al., 2003; Thul et al., 2017). Existing knowledge of the chloroplast indicates that its functions
77 are highly spatially organized into distinct regions within the organelle (Engel et al., 2015). For
78 example, sub-chloroplast regions called nucleoids contain the chloroplast's DNA (Kobayashi et
79 al., 2002), chloroplast-traversing thylakoid membranes specialize in the photosynthetic capture
80 of light energy (Wise and Hoober, 2006), and thylakoid membrane-associated lipid droplets
81 called plastoglobules play roles in lipid metabolism (Ytterberg et al., 2006). Localizing a protein
82 of unknown function to such a functionally-specialized region would immediately suggest a
83 corresponding function for the protein.

84 Of the various approaches for determining subcellular protein localization, fluorescent
85 protein tagging provides significant advantages for the present application. Fluorescent protein
86 tagging is more accurate and has higher spatial resolution than proteome analysis of purified
87 organelles or bioinformatics-based localization predictions, and can also reveal localizations and
88 sub-organellar organization that were not previously known to exist (Mackinder et al., 2017).
89 Furthermore, tagged strains can be affinity-purified and subjected to mass spectrometry-based
90 proteomics to identify associating proteins that are other components of novel cellular structures.

91 To date, only a small subset of chloroplast proteins have been localized using
92 fluorescent tagging or immunofluorescence. A recent comprehensive survey (Hooper et al.,
93 2017) found that altogether only 582 of the ~3,000 bioinformatically-predicted chloroplast
94 proteins (Emanuelsson et al., 1999; Tardif et al., 2012) (~19%) have been experimentally
95 localized in the leading model land plant *Arabidopsis*. These numbers suggest that many

96 opportunities lie ahead for the discovery of novel chloroplast structures and protein functions
97 through systematic localization of fluorescently-tagged proteins.

98 The green alga *Chlamydomonas reinhardtii* (Chlamydomonas hereafter, Figure 1A) is a
99 powerful model system for studying the cell biology of photosynthetic eukaryotes. Its unicellular
100 nature and microbial lifestyle allow for higher throughput than land plant model systems,
101 enabling systematic large-scale analysis of gene and protein function (Fauser et al., 2022). As
102 an evolutionary relative of land plants (Gutman and Niyogi, 2004; Merchant et al., 2007),
103 Chlamydomonas has been a critical model system that has revealed conserved pathways and
104 key principles of chloroplast biology including electron transport (Iwai et al., 2010),
105 photosynthetic regulation (Depège et al., 2003), assembly of photosynthetic complexes (Minai
106 et al., 2006), and chloroplast genome segregation (Kobayashi et al., 2017). Thus, further study
107 of the Chlamydomonas chloroplast is likely to continue to shed light on the chloroplast biology of
108 land plants, including agriculturally important crop species.

109 In this study, we establish a comprehensive atlas of the subcellular localizations of 1,032
110 chloroplast candidate proteins in Chlamydomonas (Figure 1). Our results reveal novel
111 chloroplast structures and spatial organization, new components of known cellular structures,
112 and widespread dual localization of proteins. We also use this dataset to train a more accurate
113 Chlamydomonas protein localization predictor. These insights and the associated plasmid,
114 strain, and protein localization prediction resources open doors to the characterization of novel
115 proteins and spatial organization of the chloroplast in green algae and land plants.

116

117 RESULTS

118 Establishing a Framework for Mapping Chloroplast Protein Localization

119 In order to maximize the total number of proteins localized in or associated with the
120 chloroplast, we selected target proteins for fluorescent tagging from seven sources (Figure 1C
121 and S1A; Table S1): 1) proteins homologous to those identified in the *Arabidopsis thaliana*

122 chloroplast mass-spectrometry-based proteome (Ferro et al., 2010); 2) the Chlamydomonas
123 mass-spectrometry-based chloroplast proteome (Terashima et al., 2010); 3) the
124 Chlamydomonas mass-spectrometry-based pyrenoid proteome (Zhan et al., 2018); 4) proteins
125 predicted to localize to the chloroplast by the bioinformatics software PredAlgo (Tardif et al.,
126 2012); 5) GreenCut2 proteins (Karpowicz et al., 2011), which are a set of proteins conserved
127 exclusively in the green lineage; 6) proteins identified to be required for photosynthesis based
128 on Chlamydomonas mutant phenotypes (Li et al., 2019); and 7) other proteins we identified as
129 potentially associated with chloroplast functions based on protein domains or annotations (see
130 STAR Methods). To facilitate the classification of localizations, we included 29 proteins with
131 known localization to the chloroplast or to other organelles in Chlamydomonas (Figure S1B).

132 To determine protein localizations, we used a previously established system (Mackinder
133 et al., 2017) for expressing proteins tagged with the fluorescent protein Venus (see STAR
134 Methods). Specifically, we cloned the open reading frame of each gene into a vector that drives
135 expression from a constitutive promoter and appends a C-terminal fluorescent Venus tag (Nagai
136 et al., 2002) for localization and three copies of the FLAG epitope (Hopp et al., 1988) for affinity
137 purification of the tagged protein. We electroporated each construct into wild-type
138 Chlamydomonas cells, which produced stable insertions at random sites within the genome
139 (Zhang et al., 2014). We imaged the protein localizations in photoheterotrophically-grown live
140 cells by using confocal fluorescence microscopy. While localizations can be affected by protein
141 tags and non-native expression, we previously showed that such artifacts are rare with this
142 pipeline (Mackinder et al., 2017).

143

144 **Localization Dataset Validation**

145 We were successful in mapping the localization of 1,032 tagged proteins to 141 distinct
146 localization patterns across 17 major organelles/cellular sites (Figure 1D; Table S2 and S3). To
147 minimize experimenter bias in classifying the localization patterns, each localization image was

148 independently analyzed by two researchers. The organelles/cellular site with the most localized
149 proteins were the chloroplast (580 proteins), followed by the cytosol (238 proteins) (Figure 1D).
150 These numbers include dual-localized proteins, which we will discuss later.

151 Next we evaluated the reliability of our data. Given that fluorescent tagging could lead to
152 inaccurate protein localization due to either protein complex disruption or alteration of native
153 regulation, we first investigated the reproducibility and agreement of our results with protein
154 localizations from previous studies. Of the localized proteins, 62% were represented by at least
155 two independent strains (Figure 1E). The localizations observed in the independent strains for a
156 given protein agreed in >99% of the cases (Figure S1C and S1D). Furthermore, our
157 localizations matched previously published localizations for 27 of the 28 Chlamydomonas
158 proteins (96%) (Figure 1F; Table S4). The only exception was EZY1 (Cre06.g255750), which is
159 normally expressed exclusively in early diploid zygotes and participates in the uniparental
160 inheritance of the chloroplast genome (Armbrust et al., 1993). Since cells imaged in this study
161 were haploid cells, the mis-localization of EZY1 to mitochondria in our data (Table S2), could be
162 attributed to expression under non-native conditions, where the appropriate chloroplast targeting
163 machinery may not be available.

164 We also analyzed the localization enrichment of a set of previously well-characterized
165 proteins. All 32 known photosynthetic complex proteins and all 23 plastid ribosome proteins
166 represented in our dataset were enriched in the chloroplast (Figure S1E). Taken together, the
167 excellent agreement of our localization data with previous studies suggests that our dataset
168 provides reliable localizations for uncharacterized proteins.

169 Our fluorescence images are particularly effective in validating reported organelle
170 proteomics data and identifying potential contaminant proteins in those datasets (Figure 1G;
171 Table S2). Our localization data suggest that 26 out of the 233 proteins from the published
172 Chlamydomonas chloroplast proteome (Terashima et al., 2010) that are also represented in our
173 dataset are actually not in the chloroplast under our experimental conditions. Similarly, 10 out of

174 the 41 proteins previously detected in the pyrenoid proteome (Zhan et al., 2018), 56 out of the
175 81 proteins previously detected in the Chlamydomonas mitochondrial proteome (Atteia et al.,
176 2009), and 21 out of the 25 reported high confidence flagellar proteome proteins (Pazour et al.,
177 2005) do not match our localization data. We note that these numbers should not be interpreted
178 as reflecting the overall accuracy of the mitochondrial or flagellar proteomes: we only tagged the
179 subsets of these proteomes for which other omics evidence suggested a possible chloroplast
180 localization, which enriches our dataset for mitochondrial or flagellar proteome false-positives.

181 To validate our data in these cases, we investigated the localizations of three proteins
182 using antibodies to the native proteins by indirect immunofluorescence. The conserved histone-
183 arginine N-methyltransferase (PRM1/PRMT: Cre03.172550) (Scebba et al., 2007), which had
184 been previously detected in the chloroplast proteome (Terashima et al., 2010), was localized to
185 the ER/nucleus in our data (Figure 1H). Prohibitin 2 (PHB2: Cre12.g519350) (Wang et al., 2010),
186 which had been found in the mitochondrial proteome (Atteia et al., 2009), was localized to the
187 cytosol (Figure 1H). A GreenCut2 protein (SNE1: Cre01.g019250) (Major et al., 2005), which
188 had been previously detected in the flagellar proteome (Pazour et al., 2005), was localized to
189 nucleoplasm (Figure 1H). Consistent with our localization dataset, we detected the native PRM1,
190 PHB2, and SNE1 mainly in the ER/nucleus, cytosol, and nucleoplasm, respectively, by
191 immunofluorescence (Figure 1I).

192

193 **Protein Localization Reveals Eleven Novel Chloroplast Punctate Structures Suggestive of 194 Compartmentalized Biosynthetic Reactions**

195 We assigned the 580 chloroplast proteins we characterized to one or more of 30 sub-
196 chloroplast locations (Figure 1J). Among the most striking were 11 unique punctate localization
197 patterns that we could not associate with previously described structures within the chloroplast
198 (Figure 2 and S2; Table S2). The localization patterns differed in the number, diameter, and
199 position of puncta within the chloroplast, suggesting that they correspond to distinct structures

200 (Figure 2A, 2B, and 2C). We named the 7 previously-unnamed punctate-localized proteins
201 chloroplast punctate proteins (CPP1-7).

202 To further explore these 11 novel structures and to identify additional components of
203 each one, we performed immunoprecipitation-mass spectrometry on the tagged proteins. We
204 identified on average 5 high-confidence protein interactors per structure, for a total of 59
205 proteins associated with these novel chloroplast punctate structures (Figure 2E, 2H, 2K, and 2N;
206 Table S5). Many of the constituent proteins are conserved in land plants, suggesting the
207 possibility that at least some of these structures are broadly conserved.

208 A number of the tagged proteins or their interactors correspond to metabolic enzymes,
209 suggesting that these punctate structures may play functional roles in the spatial organization of
210 biosynthetic reactions. Two themes emerge from the data: 1) Typically, only some of the
211 enzymes of a pathway are localized to puncta, suggesting that the puncta enhance or regulate a
212 subset of the reactions. 2) In some cases, punctate localization of an enzyme may allow it to
213 perform its reaction at a location where its substrate is most available. These observations are
214 consistent with previous observations of metabolism associated with cellular condensates
215 (Castellana et al., 2014; Küken et al., 2018; O'Connell et al., 2012; Pareek et al., 2021). Below,
216 we illustrate what we have been able to glean about the composition and potential functions of
217 some of these novel structures:

218 **L-serine Biosynthesis:** The conserved predicted 3-phosphoglycerate dehydrogenase
219 Cre07.g344550 (Figure S3A), which catalyzes the commitment step of L-serine biosynthesis,
220 localized to puncta, most of which were directly adjacent to the pyrenoid (Figure 2D). Since the
221 pyrenoid is the site of production of 3-phosphoglycerate (3-PGA) by ribulose 1,5-bisphosphate
222 carboxylase/oxygenase (Rubisco), the localization of 3-phosphoglycerate dehydrogenase to
223 puncta next to the pyrenoid may enhance its activity through metabolic channeling. The
224 pyrenoid is surrounded by presumably impermeable starch plates that are only punctured in a
225 few places by thylakoid membranes (Engel et al., 2015); we speculate that the 3-

226 phosphoglycerate dehydrogenase puncta localize to these openings to capture exiting 3-
227 phosphoglycerate (Figure 2F). Cre07.g344550 co-precipitated with another predicted 3-
228 phosphoglycerate dehydrogenase encoded adjacent to it in the genome, Cre07.g344400
229 (Figure 2E), suggesting that both enzymes may function in these puncta. Based on these
230 observations, we propose to name these enzymes Pyrenoid-associated 3-Phosphoglycerate
231 Dehydrogenase PPGD1 and PPGD2, respectively, and the puncta glydehydrosomes.
232 **Chlorophyll Biosynthesis:** CHLP1 (Cre01.g050950), a conserved predicted geranylgeranyl
233 diphosphate reductase (Figure S3B) that catalyzes a series of reductions during the last step of
234 the biogenesis of the key photosynthetic pigment chlorophyll (Tanaka et al., 1999), formed the
235 most numerous puncta of all the novel structures we observed (Figure 2G). We did not observe
236 a punctate localization for any of the 8 other enzymes in the chlorophyll biosynthesis pathway
237 that we tagged and examined in our dataset (Table S2), suggesting that this is the only step of
238 chlorophyll biosynthesis that benefits from being performed in puncta. Since CHLP1 needs to
239 perform three separate reductions on its substrate (Figure 2I), we speculate that localization of
240 CHLP1 to puncta increases the enzyme's local concentration, allowing released product to more
241 efficiently re-bind a CHLP1 active site during these sequential reductions.

242 CHLP1 physically interacted with Cre03.g199535, a conserved early light-induced
243 protein with a chlorophyll *a/b* binding protein domain (Tanaka et al., 2010), and with the
244 conserved but poorly-characterized protein CGLD10 (Cre06.g273050) (Figure 2H). These
245 observations suggest that Cre03.g199535 and CGLD10 also play roles in chlorophyll
246 biosynthesis, possibly by enhancing CHLP1's function.

247 **Metabolic Regulation:** The punctate-localized conserved protein Cre06.g278195, which we
248 named CPP1 (Figure S3C), co-precipitated with two subunits of acetyl-CoA carboxylase, ACX1
249 (Cre12.g519100) and BCX1 (Cre12.g484000), and with the chloroplastic isocitrate
250 dehydrogenase IDH3 (Cre04.g214500) (Figure 2J and 2K). Both of these enzymes perform
251 essentially irreversible reactions downstream of citrate/acetyl-CoA. Thus, we hypothesize that

252 the puncta formed by CPP1 regulate the branching of metabolism between fatty acid synthesis,
253 which is downstream of acetyl-CoA carboxylase (Sasaki and Nagano, 2004), and the production
254 of glutamate, which is downstream of isocitrate dehydrogenase (Elias and Givan, 1977) (Figure
255 2L).

256 **Glyoxylate Cycle:** The conserved punctate-localized protein RBD3 (Cre24.g755197) (Figure
257 2M) contains a predicted Rubredoxin-like domain (Figure S3D), suggesting that it plays a role in
258 electron transfer. RBD3 physically interacted with the predicted isocitrate lyase ICL2
259 (Cre03.g149250) (Figure 2N), a key enzyme in the glyoxylate cycle, which allows cells to
260 metabolize two-carbon compounds such as acetate when simple sugars are not available
261 (Figure 2O). Intriguingly, the glyoxylate cycle is thought to occur in peroxisomes (Kong et al.,
262 2017) and was not previously thought to occur in the chloroplast. However, from our data and
263 the literature, there is evidence suggesting that the enzymes necessary for the cycle are also
264 present in the chloroplast. Specifically, we observed chloroplast localization of a malate
265 dehydrogenase MDH1 (Cre03.194850) and a citrate synthase (Cre13.g579050) (Table S2). In
266 addition, succinate dehydrogenase activity has been observed in spinach chloroplasts (Willeford
267 et al., 1989), and bioinformatics (Table S7) (Tardif et al., 2012) predicts the chloroplast targeting
268 of aconitases (Cre06.g252650 and Cre01.g004500), succinate dehydrogenase
269 (Cre12.g528450), and fumarase (Cre06.g272500). Our observations therefore help support the
270 possibility that chloroplasts are able to operate a glyoxylate cycle, which could increase the
271 cell's metabolic flexibility, and suggest that a portion of this cycle occurs in punctate structures.

272

273 **Punctate Structures Differ in their Exchange and Movement Dynamics**

274 Intriguingly, the novel punctate structures we observe exhibit different dynamics in terms of the
275 exchange of components with the chloroplast stroma and the movement of the structures within
276 the chloroplast. Puncta of the predicted muramyl amino acid ligase CPP2 (Cre12.g519900)
277 demonstrated rapid exchange of components with the stroma similar to the behavior of puncta

278 of the chloroplast DNA-binding nucleoid component HLP1, as examined by fluorescence
279 recovery after photobleaching (Figure 2V and 2W). In contrast, the punctate structure formed by
280 CPP1, which we associated with branching of metabolism between fatty acid synthesis and the
281 production of glutamate (Figure 2W), did not exhibit such rapid exchange. Moreover, whereas
282 most structures did not move significantly during a 10-minute image acquisition, puncta that
283 contained CPP7 (Cre15.g640650) showed rapid movement on the timescale of minutes (Figure
284 2X and Movie S1). We speculate that the rapid exchange of CPP2 and nucleoid components
285 with stroma, and the rapid movement of CPP7 are important to the function of these
286 compartments.

287

288 **Localization Data Reveals Novel Components of Chloroplast Substructures**

289 In addition to discovering novel structures, we identified novel components across different
290 known substructures within the chloroplast.

291 **Novel Nucleoid Components:** One of two previously known punctate structures in our dataset
292 were nucleoids (Figure 3A) (Kobayashi et al., 2017). Our dataset revealed two novel nucleoid
293 proteins (Figure 3B), both of which co-precipitated and colocalized with the previously-
294 characterized nucleoid protein HLP1 (Cre06.g285401) (Karcher et al., 2009) (Figure 3C and 3D).
295 One of these novel proteins, Cre16.g672300, which we called Nucleoid protein 1 (NUC1), is
296 conserved in land plants and contains two predicted high mobility group protein domains (Figure
297 S3E) that bind DNA (Mallik et al., 2018). The other protein, SND1B (Cre06.g256850), contains a
298 predicted histone-lysine N-methyltransferase and a SAND DNA-binding domain (Bottomley et
299 al., 2001). We hypothesize that these proteins mediate nucleoid function.

300 **Novel Plastoglobule Components:** The other previously-known site of protein localization
301 corresponded to plastoglobules, which are thylakoid membrane-associated lipid droplets
302 containing triacylglycerols, plastoquinone, phylloquinone, carotenoids, and proteins related to
303 their biosynthesis (Figure 3E) (Ytterberg et al., 2006). Our data revealed two novel

304 plastoglobule-localized proteins, Cre03.g197650 and Cre03.g145507, which we named
305 plastoglobule component 1 and 2 (PGC1 and PGC2). PGC1 contains a PAP fibrilin domain
306 found in structural proteins of plastoglobules (Deruere et al., 1994), which led us to hypothesize
307 that the puncta it formed (Figure 3F) corresponded to plastoglobules. PGC2 showed very similar
308 localization pattern to PGC1 (Figure 3F), co-localized with it (Figure 3G), and coprecipitated with
309 it (Figure 3H), suggesting that they are part of the same structure. Immunoprecipitation of these
310 two proteins pulled down six proteins whose homologs were previously found in the *Arabidopsis*
311 plastoglobule proteome (Figure 3H) (Lundquist et al., 2012; Ytterberg et al., 2006). These
312 proteins included the electron transport protein NAD5 (Cre16.g671000), the SOUL heme-
313 binding protein SOUL3 (Cre16.g666550) (Shanmugabalaji et al., 2020), two phylloquinone
314 biosynthesis related proteins UMM6 (Cre06.g286350) and COQ5 (Cre06.g286300) (Gross et al.,
315 2006; Lee et al., 1997), and the plastid lipid-associated protein PLPA9, which we
316 computationally predict forms a complex with COQ5 (Figure 3I). Based on this, we conclude
317 that PGC1 and PGC2 are novel plastoglobule proteins.

318 Interestingly, our immunoprecipitation experiments also identified enzyme involved in
319 processes not previously thought to occur at the plastoglobules. Specifically, we found DXS1
320 (Cre07.g356350), a conserved protein predicted to be a synthase for 1-deoxy-D-xylulose 5-
321 phosphate (Figure S3F), which generates a precursor for isoprenoid and vitamin B₁ and B₆
322 synthesis (Lois et al., 1998). We also found in the immunoprecipitation AOF8 (Cre13.g587500)
323 and AOF9 (Cre17.g719500), two conserved predicted flavin-containing amine oxidases that
324 catalyze the oxidative cleavage of alkylamines into aldehydes and ammonia. These findings
325 suggest that plastoglobules perform previously unappreciated functions in the metabolism of 1-
326 deoxy-D-xylulose 5-phosphate and alkylamines.

327 **Novel Pyrenoid Components:** The pyrenoid is a non-membrane-bound proteinaceous sub-
328 organelle of the chloroplast in which the rate of CO₂ fixation into organic carbon is enhanced by
329 supplying the CO₂-fixing enzyme Rubisco with a high concentration of CO₂ (Figure 4A) (Osafune

330 et al., 1990; Wunder et al., 2019). Within our dataset, we observed the localization of 18 novel
331 proteins localized to the pyrenoid periphery, matrix, tubules, or pyrenoid center (Table S2). Two
332 of the pyrenoid matrix-localized proteins, the predicted histone deacetylase HDA5
333 (Cre06.g290400) and uncharacterized protein Cre16.g648400, harbor predicted Rubisco-
334 binding motifs (Meyer et al., 2020), suggesting that they bind directly to Rubisco (Figure 4B).

335 MIND1 (Cre12.g522950), the *Chlamydomonas* homolog of the *Arabidopsis* chloroplast
336 division site regulator MinD1 (Fujiwara et al., 2017), was enriched at the pyrenoid periphery
337 (Figure 4C). MIND1 co-precipitated with plastid chaperonin 60 beta 1 subunit CPN60B1
338 (Cre17.g741450) (Figure 4D), whose *Arabidopsis* homolog has also been implicated in plastid
339 division (Suzuki et al., 2009), suggesting the conservation of this interaction in plastid division in
340 algae. Considering that the pyrenoid typically divides by fission during chloroplast division
341 (Freeman Rosenzweig et al., 2017), we hypothesize that MIND1's localization to the pyrenoid
342 periphery plays a role in coordinating pyrenoid fission with chloroplast division.

343 The predicted phosphoglycolate phosphatase CPLD2 (Cre03.g206550) (Schwarte and
344 Bauwe, 2007) was enriched in the pyrenoid matrix (Figure 4B). Phosphoglycolate phosphatase
345 consumes 2-phosphoglycolate, a competitive inhibitor of the Calvin-Benson cycle enzymes
346 triose phosphate isomerase (Wolfenden, 1969) and sedoheptulose 1,7-bisphosphate
347 phosphatase (Flügel et al., 2017). The localization of CPLD2 to the pyrenoid likely allows the
348 cell to consume 2-phosphoglycolate at its source near Rubisco before it can exit the pyrenoid
349 and inhibit the activity of key enzymes in the surrounding chloroplast stroma.

350 The pyrenoid tubules are modified thylakoid membranes that traverse the pyrenoid and
351 are thought to supply it with concentrated CO₂. We observed 9 proteins localizing to the
352 pyrenoid tubules, including two predicted peptidyl-prolyl cis-trans isomerases (CYN20:
353 Cre12.g544114 and CYN7: Cre12.g544150) (Figure 4B) and the predicted DegP-type protease
354 DEG8 (Cre01.g028350) (Figure 4E), which co-precipitated with another DegP-type protease,

355 DEG5 (Figure 4F). These observations suggest that tubules may have a role in protein folding,
356 degradation, and/or import of new proteins into the pyrenoid.

357 Finally, our data support a role for the pyrenoid in nucleic acid degradation in algae. The
358 bifunctional nuclease domain-containing protein Cre03.g183550, which we named pyrenoid
359 nuclease 1 (PNU1), localized to the pyrenoid center (Figure 4B). In plants, bifunctional
360 nucleases are responsible for the degradation of RNA and single-stranded DNA in several
361 biological processes (Pérez-Amador et al., 2000). Considering that oxidized RNA localizes to
362 the pyrenoid in Chlamydomonas (Zhan et al., 2015), we speculate that the pyrenoid may be a
363 site of degradation of oxidized RNA. Localizing RNA-degrading enzymes to the pyrenoid could
364 allow for increased specificity of degradation for damaged RNA.

365

366 **Calvin Cycle Enzymes are Enriched in the Stroma Surrounding the Pyrenoid**

367 The Calvin Cycle is the metabolic cycle that enables the assimilation of CO₂. It consists of the
368 CO₂-fixing enzyme Rubisco and 11 other enzymes that convert Rubisco's product,
369 phosphoglycerate, into its substrate, ribulose-1,5-bisphosphate, allowing the cycle to continue.
370 In Chlamydomonas and likely in all pyrenoid-containing algae, Rubisco is the only Calvin Cycle
371 enzyme present in the pyrenoid, while the other enzymes are all in the stroma (Figure 4G)
372 (Küken et al., 2018).

373 From our dataset, we observed that the Calvin Cycle enzyme sedoheptulose-1,7-
374 bisphosphatase SEBP1 and the Calvin Cycle regulatory protein CP12 were both enriched in a
375 region of the stroma immediately surrounding the pyrenoid (Figure 4H). This enrichment around
376 the pyrenoid had not been noticed in our previous study (Küken et al., 2018) because of the lack
377 of other stromal-localized proteins for comparison. Revisiting those data and reexamining the
378 localization of the proteins again under the current growth conditions, it is now apparent that the
379 Calvin Cycle enzymes phosphoglycerate kinase (PGK1), glyceraldehyde 3-phosphate
380 dehydrogenase (GAP1 and GAP3), fructose-1,6-bisphosphate aldolase (FBA3), sedoheptulose-

381 1,7-bisphosphatase (SEBP1), ribulose phosphate-3-epimerase (RPE1), and
382 phosphoribulokinase (PRK1) are all enriched in the region of the stroma immediately
383 surrounding the pyrenoid (Figure 4I and S4). The enrichment of these enzymes in the periphery
384 of the pyrenoid may enhance the activity of the Calvin Cycle, considering that Rubisco is
385 resident inside the pyrenoid and its substrates and products must therefore diffuse in and out of
386 the periphery of the pyrenoid. These observations motivate questions for future research,
387 including: how are these enzymes localized to the periphery of the pyrenoid and how does their
388 localization change under high CO₂, where some of the Rubisco dissolves into the stroma?

389

390 **Data Reveal Unexpected Thylakoid Associations and Protein Distributions**

391 Our data suggest the unexpected thylakoid association of several proteins, as well as reveal an
392 intriguing gradient distribution for one thylakoid protein. The thylakoid membranes are the site
393 where light energy is captured by chlorophyll pigments used to generate ATP and NADPH for
394 the cell. Of the proteins with non-homogeneous chloroplast localization in our dataset, 40
395 exhibited high localization overlap with chlorophyll (Figure 5A and 5B), while 31 exhibited low
396 overlap (Figure 5C). We interpret high localization overlap with chlorophyll as indicative of
397 thylakoid membrane association. Indeed, of the 71 proteins with non-homogeneous localization
398 patterns, all 11 proteins with transmembrane domains showed high chlorophyll overlap
399 (p=0.001, Fisher's exact test). Below, we illustrate how our observation of thylakoid membrane
400 association advances our understanding of protein functions.

401 In photosynthetic eukaryotes, fatty acids are made by fatty acid synthase in the
402 chloroplast stroma (Walker and Harwood, 1985), but the localization of the enzymes that
403 process the nascent fatty acids has not been completely defined. Interestingly, our data suggest
404 that the only predicted chloroplastic acyl-ACP thioesterase FAT1 (Cre06.g256750), which
405 releases fatty acids from fatty acid synthase (Hölzl and Dörmann, 2019), is associated with

406 thylakoid membranes (Figure 5D). This observation suggests that nascent fatty acids are
407 released in the proximity of thylakoid membranes, into which they may initially partition.

408 Our data also suggest that riboflavin kinase RFK2 (Cre01.g025250) is associated with
409 the thylakoid membrane (Figure 5E). Riboflavin kinase phosphorylates riboflavin to produce
410 flavin mononucleotide, an essential cofactor for a variety of enzymes including the thylakoid-
411 localized NADH dehydrogenase (Tsibris et al., 1966). However, the localization of riboflavin
412 kinase within the chloroplast was not previously known. The localization of RFK2 to the
413 thylakoid membrane suggests that flavin mononucleotide is produced in proximity to where it is
414 needed for assembly into NADH dehydrogenase.

415 In addition to the new proteins associated with the thylakoid, we also uncovered an
416 intriguing distribution of a known thylakoid-associated protein, PETO (Cre12.g558900). PETO
417 has been proposed to be important for photosynthetic cyclic electron flow, a poorly-understood
418 pathway of photosynthesis that pumps additional protons across the thylakoid membrane
419 without producing net reducing equivalents (Takahashi et al., 2016). In our dataset, PETO stood
420 out as the only protein that showed a gradient localization pattern across the chloroplast, with a
421 two-fold enrichment at the base of the chloroplast (Figure 5F, 5G, and S5A). While the specific
422 function of PETO in cyclic electron flow remains unknown, our observation that it is localized in
423 a gradient suggests the possibility that cyclic electron flow may be more active at the base of
424 the chloroplast. This activity could result in pumping of additional protons into the thylakoid
425 lumen in the proximity of the pyrenoid, where they are needed to drive the conversion of HCO_3^-
426 to CO_2 by carbonic anhydrase (Pronina and Semenenko, 1990; Raven, 1997).

427 Our immunoprecipitation and mass spectrometry data examining interactors confirm the
428 previously observed physical interaction of PETO with the cyclic electron flow regulator ANR1
429 (Cre03.g164000) (Takahashi et al., 2016) (Figure 5H). However, unlike PETO, ANR1 did not
430 show a gradient localization (Figure 5F) and affinity purification of ANR1 did not yield detectable
431 amounts of PETO (Figure 5H, Table S5), suggesting that only a fraction of ANR1 is associated

432 with PETO. In addition, ANR1 co-precipitated with Cytochrome *b*₆*f* subunit IV (PetD) and with
433 the cyclic electron flow regulator PGRL1 (Cre07.g340200) (Terashima et al., 2012) (Figure 5H),
434 supporting a possible direct role of ANR1 in the regulation of cyclic electron flow. The highest-
435 confidence interactor of ANR1 was the predicted NADH-dependent glutamate synthase GSN1
436 (Cre13.g592200), suggesting the possibility that ANR1 could be downregulating cyclic electron
437 flow in response to increased needs for NADPH by glutamate synthase.

438

439 **Chloroplast Envelope Localization Patterns Suggest Functionally Specialized Regions**

440 The chloroplast envelope, as the interface between the chloroplast and surrounding cytosol,
441 controls the exchange of ions, metabolites, proteins, and signals (Figure 5I). Surprisingly, out of
442 the 20 chloroplast envelope-localized proteins, only five showed a homogeneous localization
443 throughout the envelope (Figure 5J, 5K, and S5B), whereas all of the other 15 showed one of at
444 least three distinct heterogeneous localization patterns: patches (12 proteins), nucleus-facing
445 patches (2 proteins), and puncta (1 protein) (Figures 5K-M, 5O, and S5C-S5E; Table S2). It is
446 possible that the patches represent multiple distinct structures, as the proteins with these
447 localization patterns did not share any high-confidence protein interactions (Table S5). These
448 observations suggest that most proteins operate in specialized regions at the chloroplast
449 envelope. Below, we discuss protein functions associated with each localization pattern.

450 Proteins localized to patches along the chloroplast envelope included LMR1
451 (Cre09.g393765), which contains two predicted peptidoglycan-binding LysM domains (Mesnage
452 et al., 2014) (Figure 5L). While some chloroplasts are surrounded by peptidoglycan, as in the
453 moss *Physcomitrella patens* (Hirano et al., 2016), the apparent absence of most of the
454 peptidoglycan biosynthesis genes in the Chlamydomonas genome suggest that LMR1 instead
455 binds other glycans at the chloroplast envelope.

456 Proteins localized to nucleus-facing patches included the conserved protein
457 Cre03.g177350 (Figure 5M and S3G). This protein physically interacted with the cytosolic 80S

458 ribosomal protein L11 (Figure 5N), suggesting that Cre03.g177350 could be involved in the
459 cytosolic translation of chloroplast proteins prior to their import into the chloroplast.

460 The protein that localizes to puncta along the chloroplast envelope (Figure 5O) is the
461 conserved protein RRM16 (Cre03.g175800) (Figure S3H), which bears two ribosomal RNA
462 (rRNA) methyltransferase domains. This localization suggests that the chloroplast envelope
463 could also be a site where rRNA modification takes place. Consistent with this hypothesis, our
464 mass spectrometry data showed high-confidence interactions between RRM16 and several
465 chloroplast ribosome small subunit components, including rps4, PRPS17, rps2-1, rps14, and
466 PSRP3 (Figure 5P). The presence of a predicted chloroplast targeting sequence in RRM16
467 (Tardif et al., 2012) and its physical interactions with chloroplast-encoded ribosome subunits
468 suggest that RRM16 is acting on chloroplast rRNA rather than cytosolic rRNA. The localization
469 of chloroplast rRNA modification to the chloroplast envelope could provide an opportunity for
470 cytosolic signals to regulate the chloroplast ribosome.

471

472 **Many Proteins Have Unexpected Localizations to Multiple Compartments**

473 Localization of a single gene's protein products to multiple cellular compartments is a
474 widespread phenomenon (Carrie and Whelan, 2013; Krupinska et al., 2020; Thul et al., 2017),
475 which can enable signaling between organelles (Isemer et al., 2012a, 2012b) or increase the
476 number of coding products within a restricted genome size (Carrie et al., 2009).

477 We identified 341 proteins with multiple compartment localization (Figure 6A),
478 substantially more than the approximately 250 that have been identified across all previous
479 studies in plants to date (Carrie and Whelan, 2013). We observed multiple targeting in 87
480 distinct localization patterns (Figure 6B and Table S3), six times more distinct patterns than
481 seen previously in plants. Four proteins were multiply localized to 4 compartments (Figure 6A
482 and 6C).

483 Because of how we selected our proteins for localization, our dataset is particularly
484 enriched in proteins where one of the multiple sites of localizations is the chloroplast. Of the 341
485 multiple-localized proteins, 214 proteins were dual targeted to the chloroplast and one of 13
486 other regions, including the cytosol, mitochondria, endosome, lysosome, puncta/vesicles in the
487 cytoplasm, patches in the cytoplasm, crescent structures in the cytoplasm, uncategorized
488 shapes in the cytoplasm, the nuclear envelope, the nucleoplasm, the nucleolus, the plasma
489 membrane/cell wall, and the flagella (Figure 6B and S6A-S6U; Table S2).

490 **Chloroplast and Cytosol:** We observed 16 proteins with clear dual localizations to the
491 chloroplast and cytosol (Figure 6D, 6E, and S6A). Many of these proteins contained predicted
492 enzymatic domains (Figure 6D), suggesting that they are enzymes that function in both
493 compartments. In some cases, our observed dual localizations identify candidate enzymes for
494 activities that have been observed biochemically in those compartments. For example, the
495 activity of ribose-phosphate pyrophosphokinase, which catalyzes a key step in purine nucleotide
496 synthesis, has been detected in both the chloroplast and cytosol in spinach (Krath and Hove-
497 Jensen, 1999), but the protein responsible for the activity in the chloroplast has not previously
498 been identified. Our observation that the conserved ribose-phosphate pyrophosphokinase
499 RPPK2 (Cre09.g394550) (Figure S3I) shows dual localization to both the cytosol and
500 chloroplast suggests that this enzyme mediates the synthesis of phosphoribosyl diphosphate in
501 both compartments (Figure 6F).

502 We also observed 31 proteins with a primary fluorescence signal in the chloroplast and
503 relatively weak signal in the cytosol (Figure S6B). Some of these proteins are likely to be
504 functional only in the chloroplast, as they are components of the photosynthetic apparatus or of
505 the plastid ribosome (Table S2). The observation of these proteins in the cytosol may reflect a
506 longer cytosolic residence time before their import into chloroplast (Jarvis and Robinson, 2004),
507 or this could be an overexpression artifact of our system.

508 ***Chloroplast and Nucleus:*** Our dual localization data suggest that the chloroplast and nucleus
509 share nucleic acid processing and repair factors. We identified five proteins showing exclusively
510 chloroplast and nucleus localizations (Figure 6G, 6H, and S6E). These proteins all had
511 predicted functions related to nucleic acids. Of these five, the conserved predicted RNA
512 helicase CGLD3 (Cre03.g166650) and putative RNA splicing factor Cre06.g280700 both
513 localized to the nucleus and throughout the chloroplast (Figure 6H), suggesting that both
514 proteins act on RNA in both compartments. The conserved DNA repair exonuclease APEX1
515 (Cre03.g175850) (Figure S3J) localized to both the nucleus and chloroplast nucleoids (Figure
516 6H), and co-localized and co-precipitated with the nucleoid component HLP1 (Figure 6I and 6J),
517 suggesting that it contributes to the repair of both genomes.

518 ***Chloroplast and Endosome or Lysosome:*** We observed 6 proteins localized to the
519 chloroplast and either the endosome or the lysosome (Figure 6K, and S6K-S6M). For some of
520 these proteins, this dual localization likely reflects a functional role of the protein in both
521 compartments. For example, the conserved peptidyl-prolyl cis-trans isomerase CYN20-3
522 (Cre12.g495951) (Figure S3K) could isomerize prolines in both the chloroplast and in the
523 endosome (Figure 6K). However, other proteins showing dual chloroplast and endosome
524 localization, such as the light-harvesting protein LHCBM8 (Cre06.g284250) (Figure 6K), are
525 likely proteins that function in the chloroplast and are degraded in the lysosome by chlorophagy
526 (Ishida et al., 2008; Wolfe et al., 1997).

527 ***Chloroplast and Crescent Structures in the Cytoplasm:*** Among the most striking dual
528 localizations were proteins that localized to the chloroplast and crescent structures in the
529 cytoplasm, a localization pattern that has not been described previously to our knowledge
530 (Figure 6M). Depending on the localized protein, the crescent structures were either small (~1
531 μm) or medium-sized (~2 μm); these two sizes could represent either distinct structures or
532 different stages of development of the same structure. The structures did not appear to be Golgi

533 (Figure 6L), endosomes (Figure S1B and S6L), or lysosomes (Figure S6M), as the latter
534 organelles showed different localizations and morphologies.

535 The predicted domains of 9 out of 20 proteins that localize to these crescent structures
536 suggest that the crescent structures play roles in nucleotide and phosphate metabolism (Table
537 S2). These proteins included the predicted polynucleotide phosphatase/kinase Cre11.g467709
538 (Figure 6V), the predicted purine biosynthesis enzyme Cre17.g734100 (Figure S6N), and the
539 predicted phosphate transporter Cre07.g325740 (Figure S6V). Since cellular phosphate is
540 primarily used for nucleotide biosynthesis, it makes sense that these two functions would be
541 spatially co-localized.

542 The predicted functions, localization patterns, and size of the structures together suggest
543 that the crescent localizations correspond to the matrix of acidocalcisomes, poorly-characterized
544 vesicular structures that store phosphate as a single large spherical granule of polyphosphate
545 (Aksoy et al., 2014; Docampo et al., 2005; Komine et al., 2000; Ruiz et al., 2001). Fluorescently-
546 tagged proteins localizing to the matrix of acidocalcisomes would show a crescent structure due
547 to their exclusion from the spherical polyphosphate granule (Figure 6M, S6N, and S6V). Indeed,
548 the matrix of acidocalcisomes observed by electron microscopy (Aksoy et al., 2014) appeared
549 as crescents of similar size to the structures we observed by microscopy.

550 Acidocalcisomes are possibly the only organelle conserved from bacteria to plants and
551 humans (Docampo et al., 2005). They are essential for cellular survival under nutrient
552 deprivation, but we are only beginning to understand their protein composition in any organism
553 (Huang et al., 2014). Our identification of 20 candidate acidocalcisome proteins advances the
554 molecular characterization of these fascinating structures. Moreover, the relatively large number
555 (12) of proteins dual-localized to the chloroplast and these structures suggests that there could
556 be extensive interactions between chloroplasts and acidocalcisomes, with potential for cycling of
557 phosphate between the two compartments.

558 ***Chloroplast and Other Structures:*** We observed 27 proteins dual-localized to the chloroplast
559 and cytoplasmic puncta of one of three different diameters: small (~1 μ m), medium (~2 μ m), or
560 large (~3 μ m) (Figure 6N-6P and S6O-S6Q). All three classes of puncta contained proteins with
561 predicted enzymatic domains (Table S2), but contained no homologs of well-characterized
562 proteins, precluding us from conclusively assigning these localizations to known structures. We
563 also observed 12 proteins dual-localized to the chloroplast and small (~2 μ m diameter), medium
564 (~3.5 μ m), or large (~5 μ m) cytoplasmic patches (Figure 6Q-6S and S6R-S6T), or to one of
565 many other uncategorized shapes in the cytoplasm (Figure S6U). Future characterization of the
566 functions and spatial dynamics of these proteins is likely to provide novel insights into the cell
567 biology of plants and algae.

568

569 **Machine Learning Enables Proteome-Wide Protein Localization Predictions**

570 Machine learning provides an opportunity to expand the scope of the protein localization
571 findings of the present study to the genome-wide scale. The current state-of-the-art predictor for
572 Chlamydomonas protein localization, PredAlgo (Tardif et al., 2012), has been a tremendously
573 useful resource for the scientific community. However, it was trained on a relatively small
574 dataset of 152 proteins. The much larger number of protein localizations resulting from this
575 present work combined with advances in machine learning classification of protein sequences
576 allowed us to train a more accurate protein localization predictor.

577 We built our new predictor, PB-Chlamy, based on ProtBertBFD (Elnaggar et al., 2021), a
578 natural language processing model of protein features pre-trained on the BFD database
579 (Steinegger et al., 2019) containing 2.5 billion protein sequences from diverse organisms. We
580 trained three separate ProtBertBFD protein sequence classifiers on Chlamydomonas protein
581 localization data (Figure 7A): one each to recognize chloroplast, mitochondrial, and secretory
582 proteins. For each localization category we generated a combined dataset using the data in the
583 present work, our previous protein localization study (Mackinder et al., 2017), and the training

584 dataset assembled for PredAlgo (Tardif et al., 2012). Each dataset is composed of a set of
585 positives, i.e. proteins known to localize to a particular subcellular location, and negatives, i.e.
586 proteins found to not localize to the location. We split each dataset into training, validation, and
587 testing subsets with a 3:1:1 ratio (Table S7). We used the training set to train a linear classifier
588 to distinguish proteins that do or do not localize to a compartment, evaluating against the
589 validation set of proteins during training.

590 We evaluated the performance of PB-Chlamy in comparison to PredAlgo. To ensure that
591 neither of the predictors being compared had been trained on any of the proteins in the test sets,
592 we used testing datasets with proteins used to train PredAlgo excluded. PB-Chlamy reliably
593 performs better than PredAlgo on our test sets for proteins localized to the chloroplast,
594 mitochondria, and secretory pathway (Figure 7B and S7).

595 We proceeded to use PB-Chlamy to predict protein localizations for the entire
596 Chlamydomonas proteome (Figure 7C; Table S7), finding 2,245 putative chloroplast proteins,
597 725 putative mitochondrial proteins, and 2,755 putative secretory proteins. These numbers
598 include 70 proteins with predicted dual localizations, mostly chloroplast+mitochondria (Table
599 S7). Notably, we predict only two-thirds as many chloroplast proteins and one-quarter as many
600 mitochondrial proteins as PredAlgo (which predicts 3,375 chloroplast and 2,843 mitochondrial
601 proteins), providing a sharper view of the predicted proteome of these organelles.

602

603 **DISCUSSION**

604

605 **Insights into the Functions of Poorly-Characterized Proteins**

606 Our localization information is the first compendium of this kind in any photosynthetic organism.
607 The data are particularly useful for advancing the understanding of the molecular functions of
608 poorly-characterized proteins. The molecular functions of 702 (68%) of our localized proteins
609 are unknown and 459 (45%) of the localized proteins were previously unnamed (Figure S1F).

610 We provided examples of how our localization data give insights into the functions of such
611 poorly-characterized proteins, like the predicted DNA-binding protein SND1B, which we
612 localized to chloroplast nucleoids. We also illustrated of how the function of poorly-characterized
613 proteins can be elucidated by immunoprecipitation and mass spectrometry of our tagged strains,
614 as in the case of the poorly-characterized proteins PGC1 and PGC2 where our data allowed us
615 to assign them to plastoglobules. For proteins where we could not obtain experimental
616 localization data, our new PB-Chlamy classifier accurately predicts their localization. Together,
617 our localization data, protein-protein interactions, and computational predictions greatly narrow
618 down the possible functions of poorly-characterized proteins and facilitate generation of specific
619 hypotheses for their further characterization, accelerating the elucidation of chloroplast
620 organization and function.

621 The images and protein-protein interactions from this study can be browsed and
622 searched at <https://www.chlamylibrary.org/>. This site also provides links for ordering the
623 corresponding strains and plasmids from the Chlamydomonas Resource Center.

624

625 **Novel Organizational Features of the Chloroplast**

626 Our systematic survey of protein localizations revealed extensive spatial organization of the
627 chloroplast. This organization includes 11 novel punctate structures, which appear to be
628 metabolic hubs that enhance or regulate specific reactions such as the commitment step of L-
629 serine biosynthesis or the final step of chlorophyll biosynthesis. We observed the enrichment of
630 Calvin-Benson cycle enzymes in the proximity of the pyrenoid, which may enhance the cycle's
631 overall activity by localizing each enzyme to the site where its substrate is produced. We
632 observed extensive spatial organization of the thylakoid membrane and chloroplast envelope,
633 including distinct chloroplast envelope regions that appear to be specialized for interactions with
634 cytosolic ribosomes, and other regions that appear to be specialized for interactions with

635 chloroplast ribosomes. These discoveries open doors to characterizing the functions of these
636 organizational features and of the molecular bases that underlie their organization.

637

638 **Insights Into Dual Targeting**

639 Our study provides the largest-scale survey to date of proteins with multiple compartment
640 localization in any photosynthetic eukaryote, making it a resource for studying the biological
641 functions of this phenomenon, the mechanisms that underlie it, and its evolution. Whereas the
642 vast majority of previously-known dual-localized plant proteins were dual-localized to the
643 chloroplast and mitochondria (Carrie and Whelan, 2013), only two of our proteins showed this
644 localization and the vast majority of our dual-localized chloroplast proteins had a second
645 localization in a compartment other than mitochondria (Figure 6B and 6C; Table S2), making
646 our dataset a complementary resource. We observed dual localization to the chloroplast and a
647 broad range of other organelles, including previously un-described dual localizations to
648 crescent-shaped structures that we propose based on corroborating data to correspond to
649 acidocalcisomes. These observations suggest widespread sharing of functions between the
650 chloroplast and cytosolic organelles, and/or extensive cytosolic degradation of chloroplast
651 proteins. Our identification of these dual-localized proteins provides a starting point for future
652 characterization of the functional and regulatory interactions between the corresponding
653 organelles.

654

655 **Evolution of Chloroplast-Associated Protein Localizations and Interactions.**

656 Our study provides insights into both genes specific to the Chlorophyte green algal lineage and
657 genes conserved across the eukaryotic supergroup *Archaeplastidia*: 933 of the
658 Chlamydomonas proteins we localized are conserved in the green alga *Volvox carteri*, 696 are
659 conserved in the green alga *Coccomyxa subellipsoidea*, and 618 are conserved in the land
660 plant *Arabidopsis thaliana* (Figure S1G; Table S2). We observed similarities and differences in

661 protein localizations between Chlamydomonas and land plants for proteins that show single and
662 multiple localizations (Table S2). For example, the Chlamydomonas protein Cre12.g494250
663 localized to the chloroplast, cytosol, nucleus, and mitochondrion; and its Arabidopsis homolog
664 AT4G16060 showed a similar multiple localization to the chloroplast, cytosol, and mitochondrion
665 when expressed in tobacco leaves (Figure 6T, S6W, and S6X). These observations suggest
666 that our dataset provides a rich resource that will allow the study of the evolutionary principles of
667 protein localization and of dual targeting.

668

669 **Perspective**

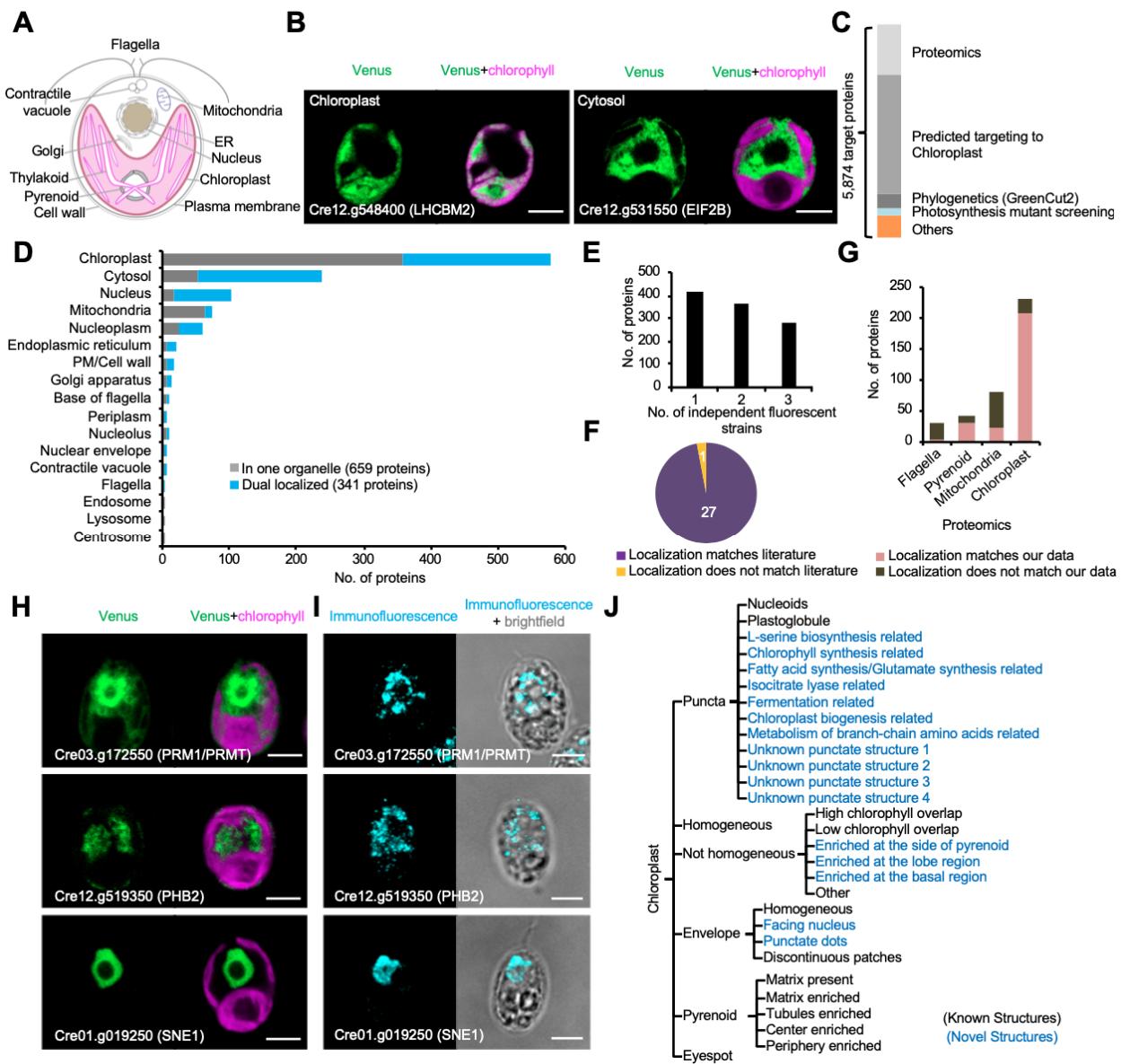
670 Climate change and the rising global population drive a pressing need to understand the basic
671 biology of photosynthetic organisms and to advance our ability to engineer them. Our study lays
672 the groundwork for understanding remaining mysteries of the chloroplast, the organelle at the
673 heart of photosynthetic organisms. Importantly, the systematic and comprehensive nature of the
674 present study allowed us to reach deep into the unknown, revealing organizational features that
675 would not have been readily accessible with traditional hypothesis-driven research. We hope
676 that further characterization by the research community of these data and strains will help
677 advance the understanding of the evolution of protein localization, the roles of poorly-
678 characterized chloroplast proteins, and the spatial organization of chloroplast functions.

679 **SUPPLEMENTAL INFORMATION**

680 Supplemental Information includes 7 figures, 8 tables, and 1 movie.

681

682 **AUTHOR CONTRIBUTIONS**


683 L.W. and M.C.J. conceived the project. L.W., K.A.V.B., Y.X., S.G., and H.H. performed
684 the gene cloning, generating fluorescently tagged strains, and confocal microscopy. M.W.
685 prepared materials for this large-scale work. L.W. and E.R.S. performed immunoprecipitation
686 and prepared the samples for analysis by mass spectrometry. S.K. and H.H.S conducted the
687 mass spectrometry. W.P. conducted bioinformatic prediction of protein localizations. C.D.M.,
688 V.C., and V.T. conducted the prediction of protein structure. L.W. performed indirect
689 immunofluorescence assay. L.H., D.J.S., C.B., and J.H. performed the protein localization in
690 Tobacco. M.H.C., W.P., L.W., and M.C.J. built the website to share the data and materials. All
691 authors analyzed the data. L.W., A.T.W., and M.C.J. wrote the manuscript with input from all
692 authors.

693

694 **ACKNOWLEDGMENTS**

695 We thank the Princeton University Confocal Microscopy manager Gary Laevsky for
696 instrumentation support; Princeton Institute for Computational Science and Engineering for
697 providing research computing resources; Laurent Couranc, Ben Engel, Ursula Goodenough,
698 Olivier Vallon, Christoph Benning, Ned Wingreen, Xiaobo Li, Silvia Ramundo, Luke C.M.
699 Mackinder, Moritz T. Meyer, Shan He, Alice Lunardon, Jessica H. Hennacy, Sabrina Ergun,
700 Yuliya Zubak, Moshe A. Kafri, Eric Franklin for discussions and feedback on the manuscript;
701 Marie Bao, as part of Life Science Editors, for help with editing the manuscript. The project was
702 funded by DOE grant DE-SC0020195, HHMI/Simons Foundation grant 55108535, and the
703 Lewis-Sigler Scholars Fund. Martin Jonikas is a Howard Hughes Medical Institute Investigator.

704

705

706 **Figure 1. We assigned 1,032 tagged proteins to diverse localization patterns in 17 major
707 compartments.**

708 (A) A diagram shows the cell structure of *Chlamydomonas reinhardtii*.

709 (B) Representative images of the Venus-tagged chloroplast protein Cre12.g548400
710 (LHCMB2) and cytosol protein Cre12.g531550 (EIF2B).

711 (C) A summary of target genes from various sources.

712 (D) The number of proteins per subcellular location is shown, including proteins observed in
713 one organelle (grey) and proteins observed in multiple organelles (blue).

714 (E) The number of independent strains imaged for determining the localization patterns.

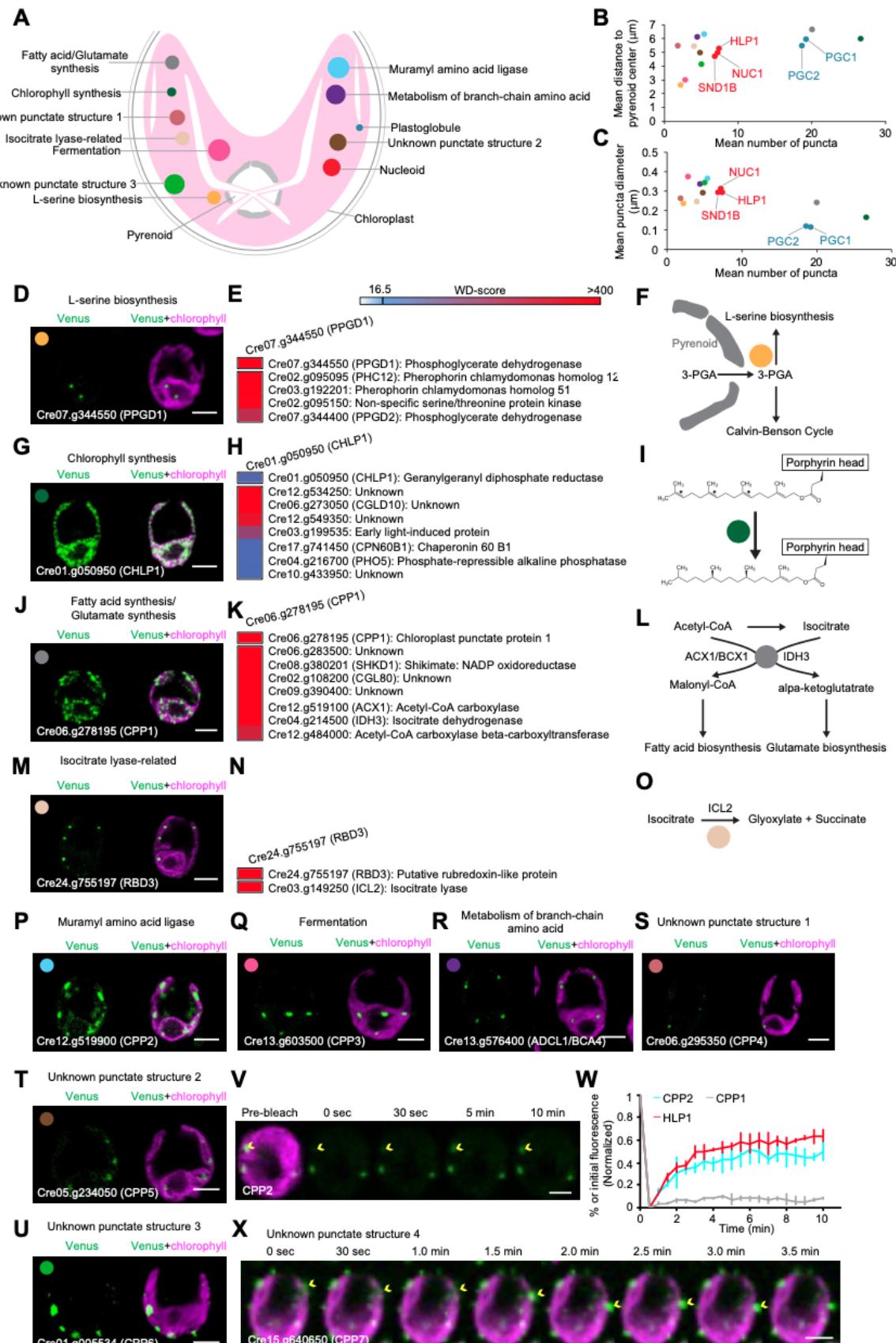
715 (F) Agreement of our data with localizations identified in previous literature.

716 (G) Comparison of our localizations with several proteomes in Chlamydomonas.

717 (H) Our data are shown for proteins whose localizations disagree with proteomics-based
718 localizations in Chlamydomonas. Cre03.g172550 (PRM/PRMT1) was previously found in
719 the chloroplast proteome, Cre12.g519350 (PHB2) was previously found in the
720 mitochondria proteome, and Cre01.g019250 (SNE1) was previously found in the flagella
721 proteome.

722 (I) Localizations of PRM1/PRMT, PHB2, and SNE1 in wild-type were assessed using
723 immunofluorescence.

724 (J) A decision tree for assigning chloroplast proteins to specific subcellular locations. Novel
725 structures are labeled in blue.


726 All scale bars are 5 μ m.

727

728

729

730

732 **Figure 2. The data revealed novel punctate structures in the chloroplast.**

733 (A) A diagram illustrates the 12 chloroplast puncta structures we observed, 10 of which are
734 novel. The relative size and approximate distance from the center of the pyrenoid are
735 represented; for simplicity, only one of each structure is shown. Each structure is
736 assigned a unique color that is used throughout this figure and Figure S2.

737 (B-C) Novel punctate structures showed differences in the average position, number, and
738 size of puncta. For each punctate structure, its mean distance to the pyrenoid center,
739 the average number of puncta, and the mean punctum size are shown. Mean values \pm
740 SD from five independent cells are shown in Figure S2.

741 (D) Representative images of Cre07.g344550 (PPGD1).

742 (E) High-confidence interacting proteins of PPGD1. WD-scores represent our confidence in
743 the interactions; scores greater than 16.5 correspond to the 3.7% highest-confidence
744 interactions (see STAR Methods).

745 (F) A diagram illustrates how the 3-phosphoglycerate dehydrogenase PPGD1 enhance its
746 activity by localizing adjacent to the pyrenoid

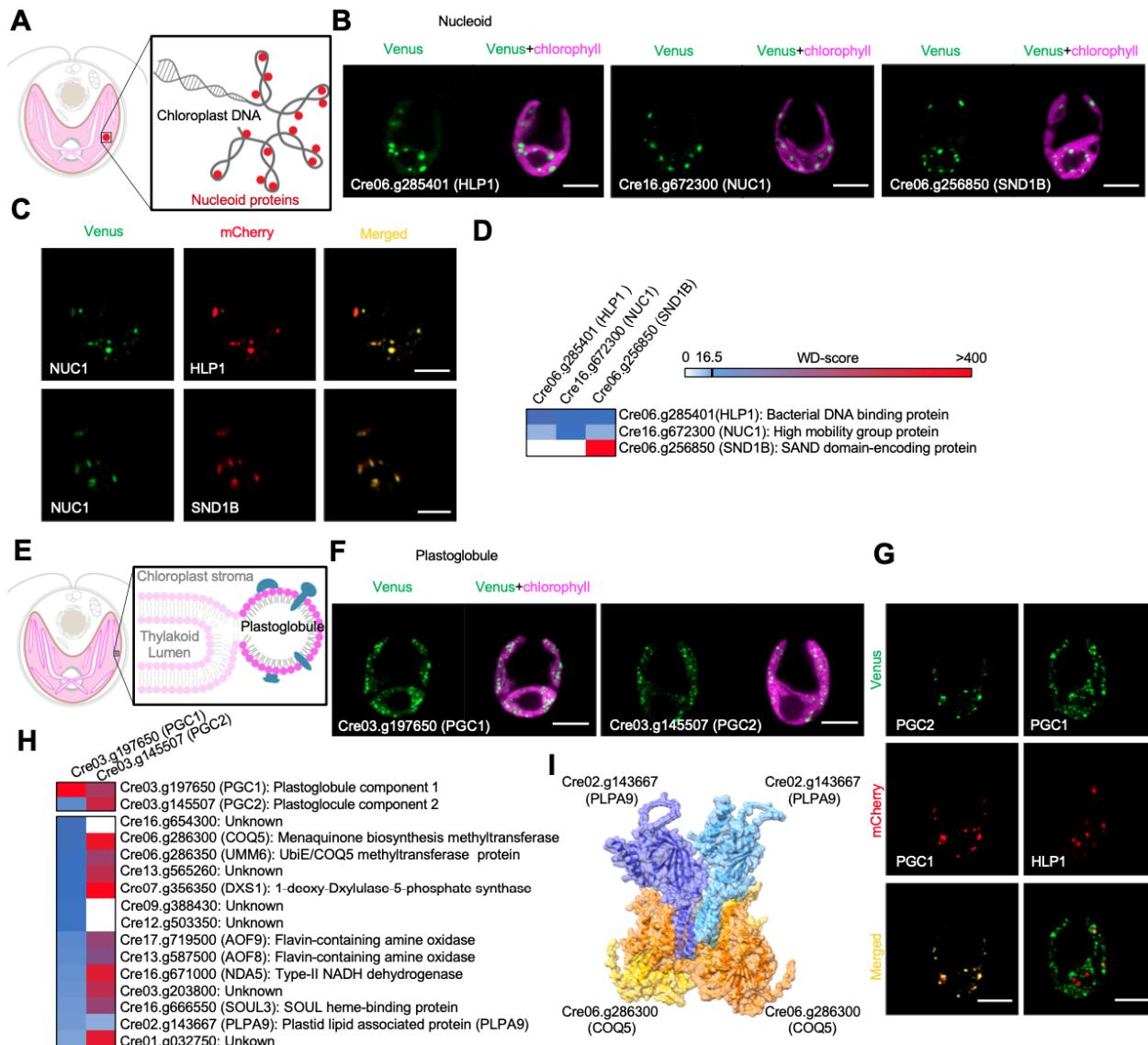
747 (G) Representative images of Cre01.g050950 (CHLP1).

748 (H) High-confidence interacting proteins of CHLP1.

749 (I) A diagram illustrates how the geranylgeranyl diphosphate reductase CHLP1 catalyzes
750 the last step of the biogenesis of chlorophyll.

751 (J) Representative images of Cre06.g278195 (CPP1).

752 (K) High-confidence interacting proteins of CPP1.


753 (L) A diagram illustrates how the CPP1 regulates the branching of metabolism between fatty
754 acid synthesis and production of glutamate.

755 (M) Representative images of Cre24.g755197 (RBD3).

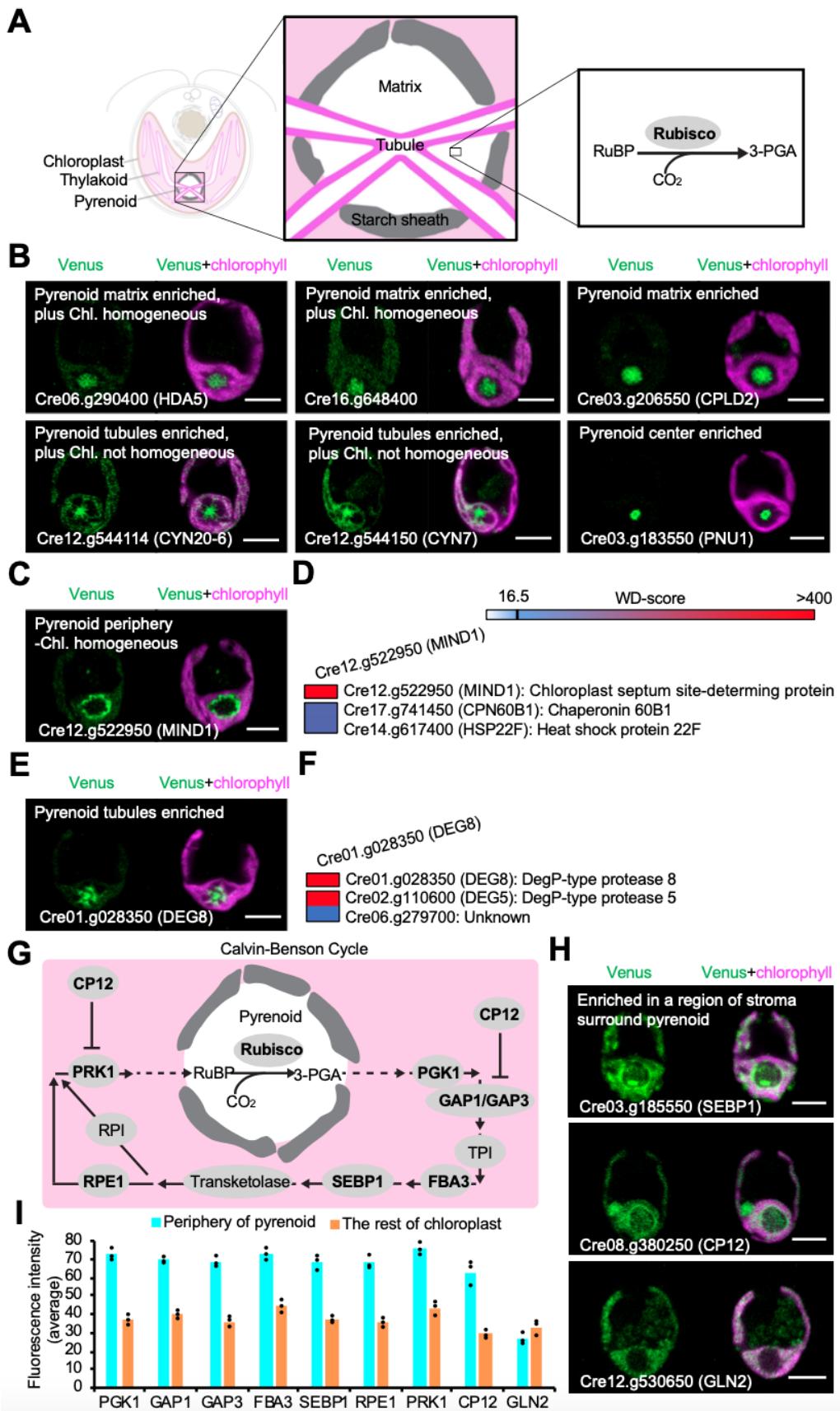
756 (N) High-confidence interacting proteins of RBD3.

757 (O) A diagram shows how the RBD3 supports the isocitrate lyase ICL2.

758 (P-U) Representative images of Cre12.g519900 (CPP2) (P), Cre13.g603500 (CPP3) (Q),
759 Cre13.g576400 (ADCL1/BCA4) (R), Cre06.g295350 (CPP4) (S), Cre05.g234050
760 (CPP5) (T), Cre01.g005534 (CPP6) (U).
761 (V) Fluorescence recovery of an CPP2-Venus punctum during 10 minutes after
762 photobleaching of the whole punctum. The yellow arrow indicates the bleached
763 punctum.
764 (W) Fluorescence recovery profile of puncta of CPP2, Cre06.g285401 (HLP1), , and CPP1.
765 Shown are the mean \pm SD of 3 different puncta for each protein.
766 (X) Representative images of Cre15.g640650 (CPP7) showing rapid movement of puncta.
767 The yellow arrows indicate one of the puncta rapidly moving along the lobe of
768 chloroplast.
769 All scale bars are 5 μ m.
770
771

772

773 **Figure 3. The data revealed novel components of nucleoids and plastoglobules in the**
774 **chloroplast.**


775 (A) A diagram of the chloroplast nucleoid, in which the chloroplast DNA is organized into
776 DNA-protein conglomerates.

777 (B) Representative images of fluorescently-tagged Cre06.g285401 (HLP1), Cre16.g672300
778 (NUC1), and Cre06.g256850 (SND1B).

779 (C) Dual tagging indicates the co-localization of HLP1, NUC1, and SND1B.

780 (D) Protein-protein interactions among HLP1, NUC1, and SND1B.

781 (E) Diagram of a plastoglobule, a thylakoid membrane-associated lipid droplet.
782 (F) Representative images of fluorescently-tagged Cre03.g197650 (PGC1) and
783 Cre03.g145507 (PGC2).
784 (G) Dual tagging indicates the co-localization of PGC1 and PGC2. PGC1 was not co-
785 localized with HLP1, indicating that they localize to distinct structures.
786 (H) High-confidence interacting proteins of PGC1 and PGC2.
787 (I) Structure modeling of Cre02.g143667 (PLPA9) and Cre06.g286300 (COQ5) by
788 Alphafold suggests a direct interaction between these two proteins.
789 All scale bars are 5 μ m.
790

792 **Figure 4. Our data revealed novel pyrenoid components and the enrichment of Calvin-
793 Benson cycle enzymes in the stroma around the pyrenoid.**

794 (A) A diagram of the pyrenoid highlights the starch sheath, pyrenoid tubules, and pyrenoid
795 matrix where most of the carbon-fixing enzyme Rubisco is located.

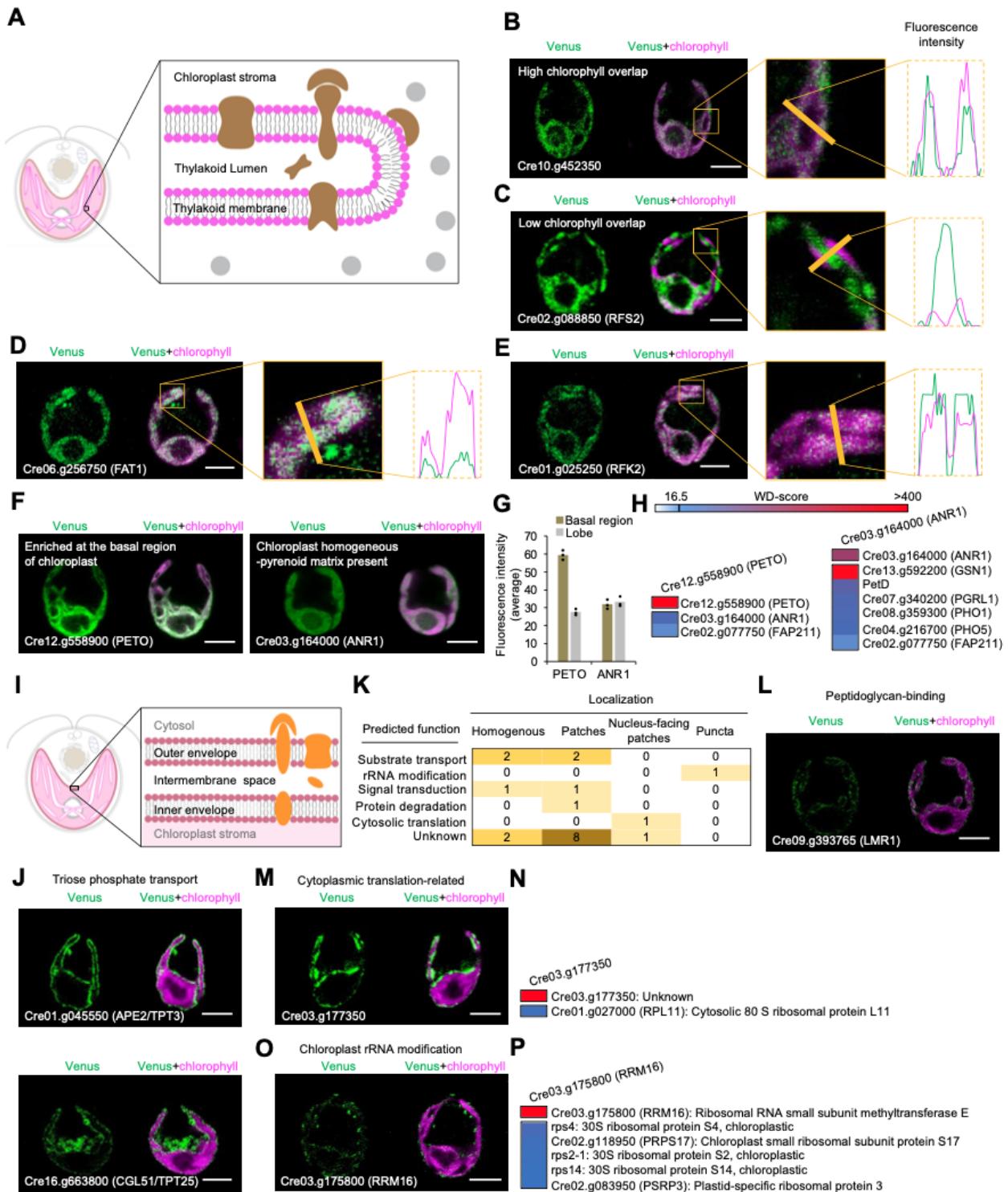
796 (B) Representative images of Cre06.g290400, Cre16.g648400, and Cre03.g206550
797 (CPLD2), enriched at the pyrenoid matrix; Cre12.g544114 (CYN20-6) and
798 Cre12.g544150 (CYN7) enriched in the pyrenoid tubules; and Cre03.g183550 (PNU1)
799 localized to the pyrenoid center.

800 (C) Representative images of Cre12.g522950 (MIND1) enriched at the pyrenoid periphery.

801 (D) High-confidence interacting proteins of MIND1.

802 (E) Representative images of Cre01.g028350 (DEG8) enriched in the pyrenoid tubules.

803 (F) High-confidence interacting proteins of DEG8.


804 (G) Simplified model of the Calvin-Benson cycle in Chlamydomonas.

805 (H) Representative images of Cre03.g185550 (SEBP1) and Cre08.g380250 (CP12)
806 enriched in a region of the stroma immediately surrounding the pyrenoid. For
807 comparison, Cre12.g530650 (GLN2, Glutamine synthetase), homogeneously localized
808 throughout the stroma.

809 (I) Calvin-Benson cycle enzymes showed 1.85-fold enrichment in the stroma around
810 pyrenoid. The measurement of fluorescence intensity was conducted with Fiji (ImageJ).
811 The measured value and mean from three independent cells are shown.

812 All scale bars are 5 μ m.

813

814

815 **Figure 5. Our data revealed thylakoid-associated enzymes, the enrichment of PETO at the**
 816 **base of the chloroplast, and regions of the chloroplast envelope specialized for different**
 817 **functions.**

818 (A) A diagram shows the thylakoid membrane, thylakoid-associated enzymes (brown), and
819 non-thylakoid-associated enzymes (grey).

820 (B) Representative images and line intensity profile of fluorescently-tagged Cre10.g452350,
821 which showed high overlap with chlorophyll. The measurement of fluorescence intensity
822 was conducted with Fiji (ImageJ).

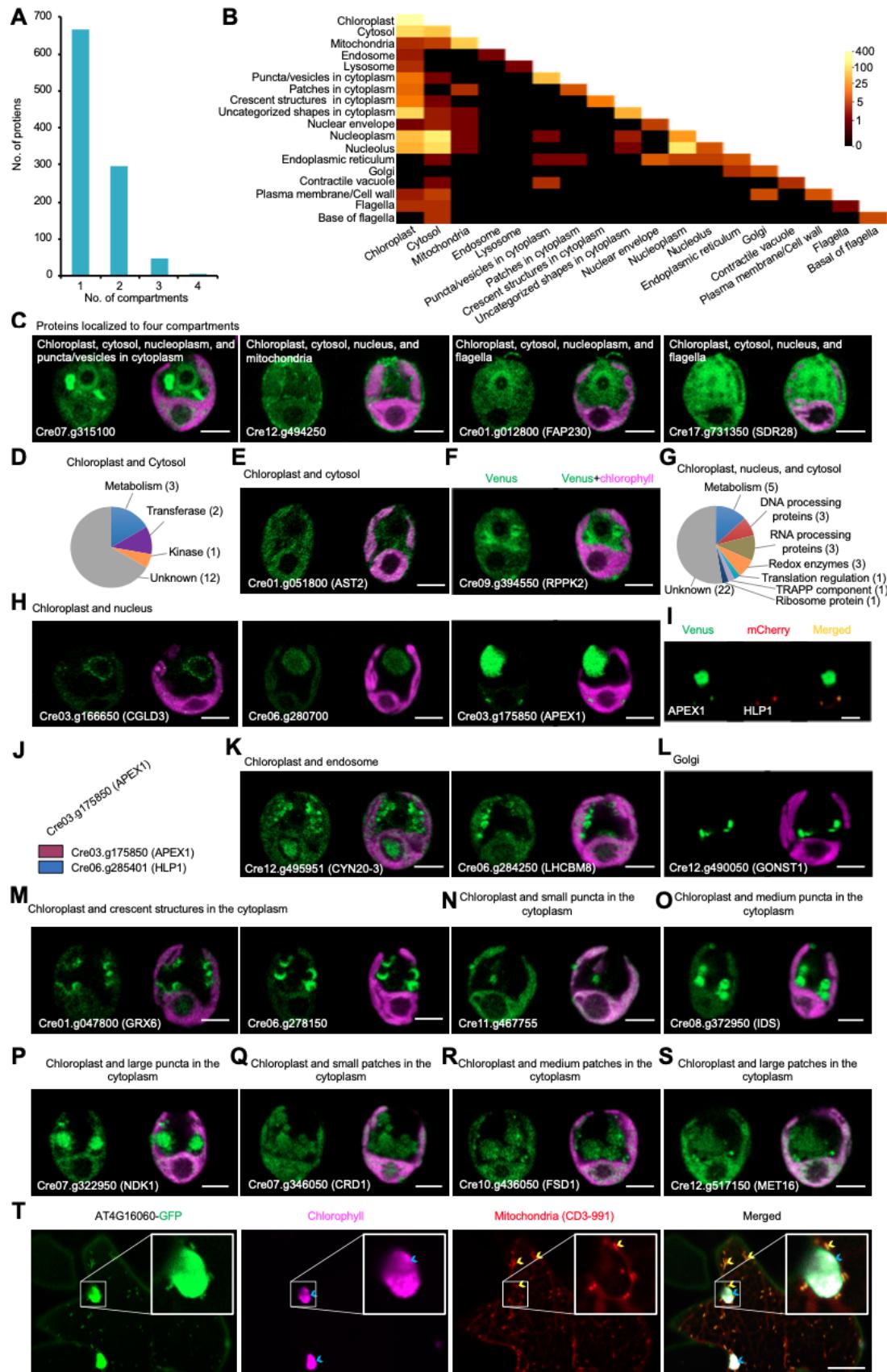
823 (C) Representative images and line intensity profile of Cre02.g088850 (RFS2), which
824 showed low overlap with chlorophyll.

825 (D) Representative images and line intensity profile of Cre06.g256750 (FAT1), which
826 showed high chlorophyll overlap.

827 (E) Representative images and line intensity profile of Cre01.g025250 (RFK2), which
828 showed high chlorophyll overlap.

829 (F) Representative images of Cre12.g558900 (PETO), which was enriched in the base of
830 the chloroplast. ANR1 (Cre03.g164000) homogeneously localized throughout the
831 chloroplast.

832 (G) PETO showed a 2-fold enrichment of average fluorescence intensity in basal region. The
833 average fluorescence intensity in the basal or lobe region are shown for three
834 independent cells; bars represent mean values.


835 (H) High-confidence interacting proteins of PETO and ANR1. GSN1, glutamate synthase;
836 PetD, cytochrome b6f subunit IV; PGRL1, proton-gradient related-like; PHO1 and PHO5,
837 alkaline phosphatases.

838 (I) A diagram of the chloroplast envelope highlights the outer membrane, intermembrane
839 space, inner membrane, and chloroplast envelope-associated proteins.

840 (J) Representative images of Cre01.g045550 (APE2/TPT3) and Cre16.g663800
841 (CGL51/TPT25), homogeneously localized throughout the chloroplast envelope.

842 (K) A heat map shows the observed localization and predicted function of 20 chloroplast
843 envelope proteins.

844 (L) Representative images of Cre09.g393765 (LMR1), which localized to patches along the
845 chloroplast envelope.
846 (M) Representative images of Cre03.g177350, which localized to the nucleus-facing portion
847 of the chloroplast envelope.
848 (N) High-confidence interacting proteins of Cre03.g177350.
849 (O) Representative images of Cre03.g175800 (RRM16), which localized as punctate dots
850 along the chloroplast envelope.
851 (P) High-confidence interacting proteins of Cre03.g175800 (RRM16).
852 All scale bars, 5 μ m.
853

855 **Figure 6. Many proteins localized to multiple compartments.**

856 (A) The number of proteins localized to 1, 2, 3, or 4 compartments is shown.

857 (B) A heat map shows observed dual localizations.

858 (C) Representative images of proteins localized to four compartments.

859 (D) Functional classification of 18 proteins dual-localized to the chloroplast and cytosol.

860 (E) Representative images of Cre01.g051800 (AST2), dual-localized to the chloroplast and

861 cytosol.

862 (F) Representative images of Cre09.g394550 (RPPK2), which localized to the chloroplast,

863 cytosol, and nucleoplasm.

864 (G) Functional classification of 39 proteins dual-localized to the chloroplast, nucleus, and

865 cytosol.

866 (H) Representative images of proteins dual-localized to the chloroplast and nucleus.

867 (I) Dual tagging revealed the co-localization of Cre03.g175850 (APEX1, a putative

868 exodeoxyribonuclease III), and HLP1 in the chloroplast.

869 (J) The IP-MS data revealed a high-confidence interaction between APEX1 and HLP1.

870 (K) Representative images of Cre12.g495951 (CYN20-3) and Cre06.g284250 (LHCBM8),

871 dual-localized to the chloroplast and endosome.

872 (L) Representative images of Cre12.g490050 (GONST1) whose homolog in Arabidopsis

873 (AT2G13650) is localized to the Golgi apparatus.

874 (M) Representative images of Cre01.g047800 (GRX6) and Cre06.g278150, dual-localized to

875 the chloroplast and crescent structures in the cytoplasm.

876 (N) Representative images of Cre11.g467755, dual-localized to the chloroplast and small

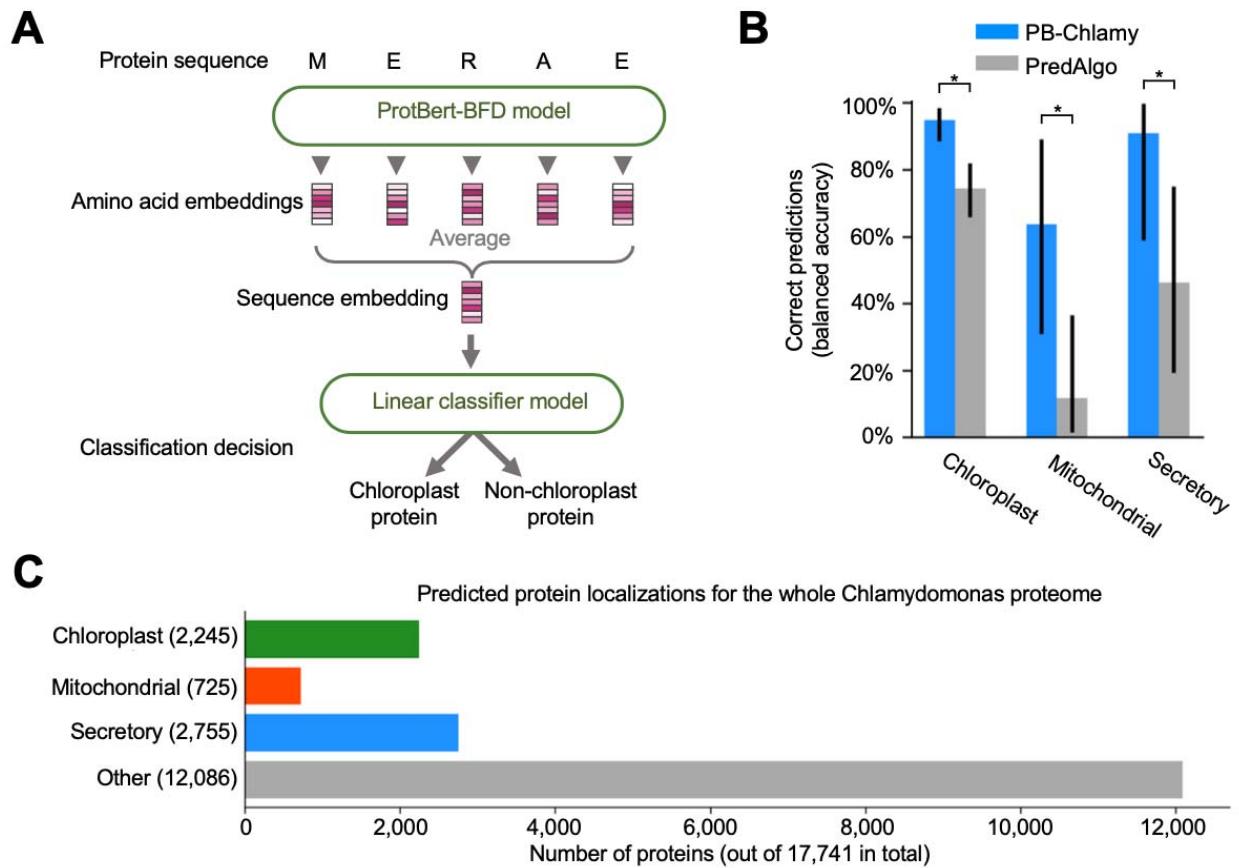
877 puncta in the cytoplasm.

878 (O) Representative images of Cre08.g372950 (IDS1), dual-localized to the chloroplast and

879 medium puncta in the cytoplasm.

880 (P) Representative images of Cre07.g322950 (NDK1), dual-localized to the chloroplast and
881 large puncta in the cytoplasm.

882 (Q) Representative images of Cre07.g346050 (CRD1), dual-localized to the chloroplast and
883 small patches in cytoplasm.


884 (R) Representative images of Cre10.g436050 (FSD1), dual-localized to the chloroplast and
885 medium patches in cytoplasm.

886 (S) Representative images of Cre12.g517150 (MET16), dual-localized to the chloroplast and
887 large patches in cytoplasm.

888 (T) Representative images of AT4G16060, the *Arabidopsis* homolog of Cre12.g494250, in
889 tobacco leaf cells. AT4G16060 was observed in the chloroplast, cytosol, and
890 mitochondria. The yellow arrows indicate mitochondria labeled by mitochondria mCherry
891 marker CD3-991. The blue arrows indicate chloroplasts.

892 All scale bars are 5 μ m.

893

894

895 **Figure 7. We predicted localizations of all proteins in *Chlamydomonas reinhardtii*.**

896 (A) The PB-Chlamy set of predictors was created based on a pre-trained ProtBertBFD
897 instance with second-stage supervised training using our protein localization dataset.
898 (B) PB-Chlamy displays improved accuracy compared to PredAlgo, the previous state-of-
899 the-art localization predictor for Chlamydomonas, on a test set randomly chosen from
900 our localized proteins and not used for training. The measure displayed is balanced
901 accuracy, an average of sensitivity (the % of real positives correctly classified) and
902 specificity (the % of real negatives correctly classified). Each separate localization
903 predictor had its own test set, with sizes as follows: 111 chloroplast and 97 non-
904 chloroplast proteins, 12 mitochondrial and 194 non-mitochondrial, 18 secretory and 149
905 non-secretory. The asterisk * indicates $p < 0.05$.

906 (C) PB-Chlamy was used to predict localizations for the whole Chlamydomonas proteome
907 (v5.6, primary transcripts only).
908

909 **STAR★METHODS**

910 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Goat anti-Rabbit IgG(H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Invitrogen	Cat# A11034
Rabbit polyclonal anti-Cre01.g028150	This paper	N/A
Rabbit polyclonal anti-Cre01.g013150	This paper	N/A
Rabbit polyclonal anti-Cre12.g519350	This paper	N/A
Rabbit polyclonal anti-Cre03.g172550	This paper	N/A
Rabbit polyclonal anti-Cre01.g019250	This paper	N/A
Chemicals, Peptides, and Recombinant proteins		
Digitonin, Water soluble cOmplete, EDTA-free Protease inhibitor	Research Products International Roche	Cat# 11024-24-1 Cat# 5056489001
Anti-FLAG M2 Magnetic Beads	Sigma-Aldrich	Cat# M8823
3xFLAG peptide	Sigma-Aldrich	Cat# F4799
4xLaemmli sample buffer	Bio-Rad	Cat# 1610747
Dimethyl sulfoxide	Sigma-Aldrich	Cat# 67-68-5
Betaine	Sigma-Aldrich	Cat# 107-43-7
Formaldehyde solution 4 %, pH6.9	Sigma-Aldrich	Cat# 1004960700
Bovine Serum Albumin VECTASHIELD Mounting Medium	Sigma-Aldrich Vector Laboratories	Cat# A3059 Cat# H-1300
UltraPure Low-Melting Point Agarose	Invitrogen	Cat# 16500100
4-15 % Criterion TGX Precast Midi Protein Gel	Bio-Rad	Cat# 5671084
MAX efficiency transformation Reagent for Algae	Invitrogen	Cat# A24229
DL-Dithiothreitol	Sigma-Aldrich	Cat# D0632
Trypsin Gold, Mass Spectrometry Grade	Promega	Cat# V5280
Critical Commercial Assays		
Phusion High-Fidelity DNA polymerase	New England BioLabs	Cat# M0530L
MinElute Gel Extraction Kit	QIAGEN	Cat# 28606
Gibson Assembly Master Mix	New England BioLabs	Cat# E2611L
Invitrogen Gateway Clonase II	Invitrogen	Cat#11791020
QIAprep Spin Miniprep Kit	QIAGEN	Cat# 27106
Experimental Models: Organisms/Strains		
<i>C.reinhardtii</i> : wild-type CC-4453	Chlamydomonas Resource Center	CC-4533 cw15
<i>E. coli</i> Stellar Competent Cells	Takara	Cat# 636763
Chlamydomonas strains expressing tagged proteins listed in Table S6	This paper, Chlamydomonas Resource Center	https://www.chlamycollection.org/
Oligonucleotides and Recombinant DNA		
pLM005	(Mackinder et al., 2016); GenBank	KX077945.1
pLM006	(Mackinder et al., 2016); GenBank	KX077949.1
pENTR223	ABRC	https://www.arabidopsis.org/
pEarleyGate 103	ABRC	https://www.arabidopsis.org/
Mitochondria marker (CD3-991)	ABRC	https://www.arabidopsis.org/
Plasmid constructs generated and listed in Table S1	This paper, Chlamydomonas Resource	https://www.chlamycollection.org/

Software and Algorithms		
Fiji	(Schindelin et al., 2012)	https://imagej.net/software/fiji/downloads
Thermo Proteome Discoverer 2.5	Thermo Scientific	Cat# OPTON-30945
<i>Continued</i>		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Scaffold 5	Proteome Software	https://www.proteomesoftware.com/products/scaffold-5
Others		
Electroporation Cuvette, 2mm gap	Bulldog Bio.	Cat# 12358-346
Ibidi USA μ-Slide 8 well, Glass bottom	Ibidi	Cat# NC0704855
Poly-L-lysine coated glass slides	Sigma-Aldrich	Cat# P0425
Kontes Duall #22 homogenizer	Kimble	Cat# KT885450-0022
Avanti J-26X with 8.1000 rotor	Beckman Coulter	N/A
Cryomill	Retsch	Part NO. 20.749.0001
Electroporator	NEPA GENE	NEPA21 type II
SP5 Confocal Microscope	Leica	TCS SP5
Singer Rotor HAD	Singer Instruments	Cat# ROT-001
Typhoon FLA9500 fluorescence scanner	GE Healthcare	N/A
Colony picker	Norgen Systems	Part NO.12461
Nikon Confocal laser scanning microscope	Nikon	A1Rsi
Nikon Confocal microscope	Nikon	A1R-STED

911

912 CONTACT FOR REAGENT AND RESOURCE SHARING

913 Further information and requests for resources and reagents should be directed to and will be
914 fulfilled by the Lead Contact, Martin C. Jonikas (mjonikas@princeton.edu)

915

916 EXPERIMENTAL MODEL AND SUBJECT DETAILS

917 Strains and culture conditions

918 The *Chlamydomonas reinhardtii* strain CC-4533 (cMJ030) was used for wild-type (hereafter
919 WT) in all experiments. All strains were maintained on Tris-acetate-phosphate (TAP) solid
920 medium with 1.5 % agar at 22 °C under dim light (<10 μmol photons m⁻² s⁻¹). All media used
921 revised trace element solution (Kropat et al., 2011).

922

923 METHOD DETAILS

924 Target genes selection

925 Target genes were selected from seven sources (Figure S1A), including 1,093 genes encoding
926 proteins identified in Arabidopsis chloroplast proteomics (Ferro et al., 2010), 644 genes

927 encoding proteins identified in *Chlamydomonas* chloroplast proteomics (Terashima et al., 2010),
928 154 genes encoding proteins identified in *Chlamydomonas* pyrenoid proteomics (Zhan et al.,
929 2018), 3,317 genes encoding PredAlgo predicted chloroplast proteins and 858 genes encoding
930 proteins with low PredAlgo score in non-chloroplast organelles (Tardif et al., 2012), 510 genes
931 encoding GreenCut2 proteins (Karpowicz et al., 2011), and 303 genes encoding candidate
932 proteins required for photosynthesis suggested in mutant screening (Li et al., 2019). In addition,
933 we also selected 777 genes because of their potential association with chloroplast function
934 suggested either in their Phytozome annotation (<https://phytozome-next.jgi.doe.gov/>) or in
935 related reports, such as the TEF proteins present in thylakoid enriched fraction (Allmer et al.,
936 2006) and FTT proteins interacting with well-known chloroplast proteins (Mackinder et al.,
937 2017). To avoid duplicating effort, we removed the overlapping genes across the seven sources
938 above and genes encoding proteins which had been localized in Mackinder et al., 2017.
939 Altogether, we obtained 5,874 target genes.

940

941 **Plasmid Construction and Cloning**

942 We designed our primers according to gene sequences present in the v5.5 *Chlamydomonas*
943 *reinhardtii* genome. Cross et al. (Cross, 2016) identified upstream ATGs in many of these gene
944 sequences, and supplementary data in Mackinder et al. 2017 indicate that for genes that include
945 such upstream ATGs, using the original ATG leads to lower localization success rates,
946 suggesting that the Cross et al. 2016 upstream ATGs more frequently correspond to the native
947 translation start site. Therefore, wherever an upstream ATG had been identified by Cross et al.,
948 we used this ATG instead of the one annotated in the genome, leading to our usage of a
949 corrected upstream ATG in 1,213 of our target genes (Table S1).

950 The cloning pipeline was based on that used in Mackinder et al. 2017, with some
951 modifications. The open reading fames were amplified from *Chlamydomonas* WT genomic DNA
952 by PCR using Phusion High-Fidelity DNA polymerase (New England BioLabs) with additives of

953 6 % DMSO (v/v) (Sigma-Aldrich) and 1 M Betaine (Sigma-Aldrich). The PCR products were gel
954 purified using MinElute Gel Extraction Kit (QIAGEN) and then cloned in-frame with a C-terminal
955 Venus-3xFLAG in pLM005 by Gibson assembly (New England BioLabs). Primers were
956 designed to amplify the open reading frame until but excluding the stop codon, and with
957 adaptors to allow efficient assembly into *HpaI*-cut pLM005. Considering the PCR limitations to
958 amplification of large genes, we mainly focused on genes smaller than 8 kb in this study. For
959 genes larger than 6 kb, we split them into multiple fragments (< 3 kb) for PCR amplification and
960 then reassembled the fragments together during the final Gibson assembly step. The fragment
961 size was verified by restriction enzyme digestion. A pilot study showed that 334/334 (100 %) of
962 genes had correct junctions as verified by Sanger sequencing.

963 Cloning of *Chlamydomonas* genes is known to be challenging due to high GC content,
964 repetitive sequences, and gene length (Mackinder et al., 2017). In total, we successfully cloned
965 3,116 genes (53 %) (Figure S1A), a similar fraction to the 48 % in Mackinder et al. 2017.
966 Interestingly, the cloning success of genes smaller than 500 bp is 66.2 %, which is lower than
967 86.5 % of genes with size between 1,000~2,000 bp (Figure S1H).

968

969 **Chlamydomonas transformation**

970 Constructs were linearized by *EcoRV*, *DraI*, *AfIII*, or *BsaI* prior to the electroporation into WT
971 *Chlamydomonas* strain CC-4533. WT cells were pre-cultured in TAP liquid medium at 22 °C
972 under light with a photon flux density of 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ until the cell density reached
973 to $\sim 2 \times 10^6$ cells mL⁻¹. For each transformation, 150 ng of cut plasmid was mixed with 60 μL of
974 2×10^8 cells mL⁻¹ suspended in MAX Efficiency Transformation reagent (Invitrogen) in an ice-cold
975 0.2 cm gap electroporation cuvette (Bulldog Bio.) and transformed into WT strains by
976 electroporation using a NEPA21 electroporator (NEPA GENE) (Yamano et al., 2013). The
977 settings were: Poring Pulse: 250.0 Volts, 8.0 ms pulse length, 50.0 ms pulse interval, 2 pulses,
978 10 % decay rate, + polarity; Transfer Pulse: 20.0 Volts, 50.0 ms pulse length), 50.0 ms pulse

979 interval), 10 pulses, 40 % decay rate), +/- polarity. For recovery, cells were transferred to 10 mL
980 TAP liquid medium plus 40 mM sucrose and incubated with gentle shaking under dim light (<10
981 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) overnight. The transformants were plated on TAP agar medium supplied
982 with 20 $\mu\text{g mL}^{-1}$ paromomycin under light (150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$). After 7 days incubation
983 under dim light (<10 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), 48 transformants from each plate were arrayed on a
984 new rectangular TAP agar PlusPlate (Singer Instruments) using a colony Picker (Norgren
985 Systems). The transformants were replicated manually onto a fresh TAP agar PlusPlate using a
986 96-Long pin pad (Singer Instruments). The TAP plates with arrayed transformants were
987 screened for fluorescence using a Typhoon FLA9500 fluorescence scanner (GE Healthcare)
988 with the following settings: Venus, 532 nm excitation with 555/20 nm emission. The colonies
989 with positive fluorescence signals were isolated and maintained in 96 arrays using a Singer
990 Rotor propagation robot (Singer Instruments).

991 Transformation of constructs and localization of proteins in *Chlamydomonas* are known
992 to be inefficient (Mackinder et al., 2017), possibly due to several mechanisms that fight foreign
993 DNA (Neupert et al., 2009; Zhang et al., 2014). Our transformation and localization success rate
994 (34 %) was lower than that in Mackinder et al. 2017 (49 %), possibly because the genes
995 targeted in the present study were overall expressed at lower levels. To generate dual-tag lines,
996 pLM006 harboring an mCherry-6xHIS tag was used as the backbone, and TAP agar medium
997 supplied with 20 $\mu\text{g mL}^{-1}$ hygromycin was used for selection.

998

999 Confocal Microscopy

1000 For confocal imaging, colonies were transferred to a 96-well microtiter plate with 100 μL TP
1001 liquid medium and 5 $\mu\text{g mL}^{-1}$ antibiotics in each well and then pre-cultured in air under 150 μmol
1002 $\text{photons m}^{-2} \text{s}^{-1}$ on an orbital shaker with gentle agitation of 600 RPM. After ~16 hr of growth, 10
1003 μL cells were transferred onto an μ -Slide 8-well glass-bottom plate (Ibidi) and 200 μL of 1 % TP
1004 low-melting-point agarose at ~35 °C was overlaid to restrict cell movement. All imaging except

1005 for Fluorescence Recovery After Photobleaching (FRAP) assays was conducted using a Leica
1006 SP5 confocal microscope with the following settings: Venus, 514 nm excitation with 530/10 nm
1007 emission; mCherry, 561 nm excitation with 610/30 nm emission; and chlorophyll, 514 nm
1008 excitation with 685/40 nm emission. All confocal microscopy images were analyzed using Fiji
1009 (Schindelin et al., 2012). For each strain, a confocal section through a cell showing the
1010 predominant localization pattern was captured and analyzed. To minimize the bias in
1011 determining the localization patterns, each localization image was independently analyzed by
1012 two researchers. Localization patterns for 31 proteins where there was clear disagreement or
1013 insufficient signal were categorized as Ambiguous.

1014 FRAP assays were performed using a Nikon A1R-STED confocal microscope with the
1015 following setting: Venus 514 nm excitation with 530/10 nm emission; and chlorophyll, 514
1016 excitation with 685/40 nm emission. One baseline image was acquired before FRAP was
1017 performed. The selected puncta were bleached by a high-intensity laser beam (514 nm
1018 wavelength). The recovery of fluorescence at the bleached puncta was imaged every 30 s for
1019 10 min.

1020

1021 **Indirect Immunofluorescence Assay**

1022 Indirect immunofluorescence was performed as described previously (Wang et al., 2016).
1023 Briefly, Cells were harvested by centrifugation and rinsed with PBS buffer twice. Then 100 µL of
1024 cells was spotted onto Poly-L-lysine coated glass slides (Sigma-Aldrich). Cells were fixed with 4
1025 % (w/v) formaldehyde (Sigma-Aldrich) in PBS for 20 min and then incubated with 100 % ice-
1026 cold methanol for 20 min to remove chlorophyll. Purified antibodies (Yenzyme) against
1027 Cre01.g028150, Cre01.g013150, Cre12.g519350, Cre03.g172550, and Cre01.g019250, were
1028 used at a dilution of 1:200. The purified antibodies were generated using the following peptides:
1029 C-Ahx-PDQPPRILTTRRE-amide (Cre01.g028150), C-Ahx-TWDVKAPINKHYNFH-cooh
1030 (Cre01.g013150), C-Ahx-YLPNTGNMLMQVNPNQ-cooh (Cre12.g519350), C-Ahx-

1031 RGQVKNTQQYRMR-cooh (Cre03.g172550), and C-Ahx-KGVDATKYSHSTIVQT-amide
1032 (Cre01.g019250). After washing the slides 4 times, each with 50 mL PBS-T (supplied with 0.1%
1033 Tween 20 (v/v)) in Coplin jar, Alexa Fluor 488 goat anti-rabbit IgG (H+L) Cross-Adsorbed
1034 Secondary Antibody (Invitrogen) was used at a dilution of 1:500. Then, washing the slides 4
1035 times, each with 50 mL PBS-T. Fluorescence and bright-field images were acquired using a
1036 confocal microscope (Leica, SP5).

1037

1038 **Protein Structure Modeling**

1039 Alphafold2.1 (Jumper et al., 2021) was used to screen for candidate multimeric structures of
1040 proteins identified in pull-down experiments of plastoglobule complex, using one NVIDIA A100
1041 GPU. Pairs of protein sequences were concatenated in silico with a 50-U linker sequence
1042 (Moriwaki, 2021), and structures were predicted with Alphafold-monomer model. Proteins found
1043 to dimerize were again compared to other proteins in the same pull-down experiment. ChimeraX
1044 (Pettersen et al., 2021) was used to visualize structures. The Alphafold2 predicted complex of
1045 Cre02.g143667 and Cre06.g286300 was deposited in Modelarchive
1046 (<https://www.modelarchive.org/>).

1047

1048 **Protein localization prediction**

1049 For each subcellular localization, we trained a protein language model to predict protein
1050 localization from protein sequence. Protein language models are first trained on large numbers
1051 of sequences, and then these pretrained models can be retrained for a specific prediction task,
1052 in this case subcellular location prediction (Figure 7A). For our pretrained model, we used
1053 ProtBertBFD, a protein language model pre-trained on billions of protein sequences (Elnaggar
1054 et al., 2021; https://huggingface.co/Rostlab/prot_bert_bfd). Given a protein sequence,
1055 ProtBertBFD outputs numeric vectors, or embeddings, that capture features of each amino acid
1056 in that sequence. These amino acid embeddings contain information on biochemical and

1057 structural properties (Elnaggar et al., 2021). To represent a protein sequence, we take an
1058 average of the embeddings of all of its amino acids, and use this representation as an input to a
1059 linear classifier to distinguish if a protein is localized to a particular cellular compartment or not.
1060 Specifically, we use the model architecture BertForSequenceClassification from the
1061 huggingface python package (Wolf et al., 2020). Our script for running training and evaluation is
1062 https://github.com/clairemcwhite/transformer_infrastructure/hf_classification.py. For each
1063 compartment (chloroplast, mitochondrial and secretory) we used proteins found to localize to
1064 the compartment as positive cases, and proteins not found to localize to the compartment as
1065 negative cases. We used a random 60% of these positive and negative cases to train the
1066 model, 20% for performance validation during training, and 20% as a fully withheld test set to
1067 evaluate model performance on unseen examples. These sets are listed in Table S7.

1068 The raw score distributions, PR and ROC curves and summary measures compared to
1069 PredAlgo are shown in Figure S11; for the purpose of comparisons with PredAlgo, we used the
1070 testing sets minus any proteins that were included in PredAlgo training data. We then used the
1071 trained models to predict protein localizations for the entire Chlamydomonas proteome (Table
1072 S7).

1073 We downloaded Chlamydomonas protein sequences from Phytozome
1074 (https://phytozome-next.jgi.doe.gov/info/Creinhardtii_v5_6, genome version 5.6); we only used
1075 primary transcripts for training and for localization prediction. We adjusted the protein
1076 sequences to use the new start codons described by Frederick Cross (Cross, 2016) - they are
1077 included in Table S7.

1078 The training command and environment setup for the chloroplast were as follows, with
1079 analogous commands for the other localizations:
1080 module load cudatoolkit
1081 bash make_hf-transformers_conda_env.sh
1082 conda activate hf-transformers

1083 python hf_classification.py -m prot_bert_bfd/ -tr chloro_train.csv -v chloro_val.csv -te
1084 chloro_test.csv -o results_chloro -maxl 1150 -n chloro -e 10 -tbsize 1 -vbsize 1 -s 3
1085
1086 The input files containing the training/validation/test sets were plaintext, formatted as follows:
1087 Entry_name,sequence,label
1088 Cre03.g155400,M H K T P C L H G G S S L S A G R A P L A R L C C A S Q R V R G P A P A
1089 Q A F W K Q S G A S A G K S G K A R P G A K A Q Q P K Q K A G G G K Q G G G G G G G G
1090 L M D S E V P V Y A E A F D I N K C V D L Y L R F F K W V S S P V T G G S G K
1091 K,Chloroplast
1092 The trained model files are available (<https://huggingface.co/wpatena/PB-Chlamy/tree/main>).
1093
1094 **Affinity Purification and Mass Spectrometry**
1095 Each affinity purification-mass spectrometry (AP-MS) experiment was performed twice from
1096 independently grown samples of the same strain. Cells expressing Venus-3xFLAG-tagged
1097 proteins were pre-cultured in 50 mL TAP medium with 5 μ g mL⁻¹ paromomycin until the cell
1098 density reach to \sim 2-4 \times 10⁶ cells mL⁻¹. Then, cells were harvested by centrifugation at 1,000 g for
1099 5 min and the pellets were suspended in 1,000 mL TP liquid medium. Cells were grown with air
1100 bubbling and constant stirring of 210 RPM under 150 μ mol photons m⁻² s⁻¹ light until the cell
1101 density reached \sim 2-4 \times 10⁶ cells mL⁻¹. Cells were collected by centrifugation at 3,000 g for 4 min
1102 in an Avanti J-26X centrifuge with an 8.1000 rotor (Beckman) at 4 °C. The pellets were washed
1103 in 35 mL ice-cold washing buffer (25 mM HEPES, 25 mM KOAc, 1 mM Mg(OAc)₂, 0.5 mM
1104 CaCl₂, 100 mM Sorbitol, 1mM NaF, 0.3 mM Na₃VO₄, and cOmplete EDTA-free protease
1105 inhibitor (1 tablet/500 mL)) and then resuspended in a 1:1 (v/w) ratio of ice-cold 2xIP buffer (50
1106 mM HEPES, 50 mM KOAc, 2 mM Mg(OAc)₂, 1 mM CaCl₂, 200 mM Sorbitol, 1mM NaF, 0.3 mM
1107 Na₃VO₄, and cOmplete EDTA-free protease inhibitor (1 tablet/50 mL)). 3 mL cell slurry was
1108 immediately added to liquid nitrogen to form small popcorn pellets which were stored at -80 °C

1109 until needed. Cells were lysed by cryogenic grinding using a Cryomill (Retsch) at frequency of
1110 25 oscillations per second for 20 min. The ground powder was defrosted on ice for 45 min and
1111 dounced 25 times on ice with a Kontes Duall #22 homogenizer (Kimble). 1mL homogenized
1112 cells of each sample was used for the following processes. Membrane proteins were solubilized
1113 by incrementally adding an equal volume of ice-cold 1×IP buffer plus 2 % digitonin (RPI)
1114 followed by an incubation of 45 min with nutation at 4 °C. The cell debris were removed by
1115 spinning at 12,700 g for 30 min at 4°C. The supernatant was then mixed with 50 µL anti
1116 3×FLAG magnetic beads (Sigma) which had been previously washed sequentially with 1×IP
1117 buffer 3 times and 1×IP buffer plus 0.1 % digitonin 2 times. The mixture was incubated with
1118 nutation at 4 °C for 1.5 hr, followed by the removal of supernatant. The beads were washed 4
1119 times with 1×IP buffer plus 0.1 % digitonin followed by a 30 min competitive elution with 45 µL of
1120 1×IP buffer plus 0.25 % digitonin and 2 µg/µL 3×FLAG peptide (Sigma-Aldrich). After elution, 30
1121 µL protein samples were mixed with 9.75 µL 4×SDS-PAGE buffer (Bio-Rad) containing 100 mM
1122 DTT (Sigma-Aldrich) followed by denaturation by heating at 70 °C for 10 min. Then, 30 µL
1123 denatured protein sample was loaded into a well of a 4-15 % Criterion TGX Precast Midi Protein
1124 Gel (BioRad) for electrophoresis at 50 V for 40 min until the protein front moved ~2.5 cm. ~2.0
1125 cm gel slice containing target proteins with molecular weight \geq 10 kDa (to exclude the 3xFLAG
1126 peptide) were excised and stored at 4 °C until processing for in-gel digestion. To decrease
1127 cross-contamination from samples in neighboring wells, samples were loaded in every other
1128 well. To further avoid carry-over contamination of mass spectrometry and contamination from
1129 sequential samples, we performed two biological repeats of AP-MS and changed the order of
1130 samples in the two biological repeats.

1131 In-gel digestion of protein bands using trypsin was performed as previously (Shevchenko
1132 et al., 2006). Trypsin digested samples were dried completely in a SpeedVac and resuspended
1133 with 20 µL of 0.1 % formic acid pH 3 in water. 2 µL (~ 360 ng) was injected per run using an
1134 Easy-nLC 1,200 UPLC system. Samples were loaded directly onto a 15 cm long, 75 µm inner

1135 diameter nanocapillary column packed with 1.9 μ m C18-AQ resin (Dr. Maisch, Germany) mated
1136 to a metal emitter in-line with an Orbitrap Fusion Lumos (Thermo Scientific, USA). The column
1137 temperature was set at 45 °C and a half-hour gradient method with 300 nL per minute flow was
1138 used. The mass spectrometer was operated in data dependent mode with a 120,000 resolution
1139 MS1 scan (positive mode, profile data type, AGC gain of 4e5, maximum injection time of 54 s
1140 and mass range of 375-1,500 m/z) in the Orbitrap followed by HCD fragmentation in ion trap
1141 with 35 % collision energy. A dynamic exclusion list was invoked to exclude previously
1142 sequenced peptides for 60s and a maximum cycle time of 3 s was used. Peptides were isolated
1143 for fragmentation using the quadrupole (1.2 m/z isolation window). The ion trap was operated in
1144 Rapid mode.

1145

1146 **Transient expression of *Arabidopsis* gene in Tobacco leaf**

1147 We first cloned the full-length cDNA of AT4g16060 into pENTR223 (ABRC). Then the
1148 AT4G16060 was cloned in-frame with a C-terminal GFP in pEarleyGate 103 by LR
1149 recombination reaction (Invitrogen Gateway Clonase II). The construct of AT4G16060-GFP and
1150 mitochondria mCherry marker CD3-991 (ABRC) were then separately transformed into
1151 *Agrobacterium tumefaciens* by heat shock. A mixture (OD600 = 0.125) of the *Agrobacterium*
1152 *tumefaciens* harboring At4G16060-GFP, the *Agrobacterium tumefaciens* carrying CD3-991, and
1153 the p19 protein of tomato bushy stunt virus (TBSV) in a 2:1:2 ratio co-infiltrated into 4-weeks old
1154 tobacco plants (*Nicotiana tabacum*) (Sainsbury et al., 2009). Three days after infiltration, the
1155 abaxial epidermis of the leaves were imaged using Nikon A1Rsi confocal laser scanning
1156 microscopy (CLSM) with Nikon 60x Apo (NA1.40) objective. The imaging was performed with
1157 the following setting: GFP, 488 nm excitation with 525/25 nm emission; mCherry, 561 nm
1158 excitation with 595/25 nm emission; and Chlorophyll, 647 nm excitation with 699/37 nm
1159 emission. Image acquisition and analysis were performed using the Nikon NIS Elements
1160 software (version 5.21.03).

1161

1162 QUANTIFICATION AND STATISTICAL ANALYSIS

1163 Peptide identification

1164 Raw files were searched using MSAmanda 2.0 (Dorfer et al., 2021) and Sequest HT algorithms
1165 (Eng et al., 1994) within the Proteome Discoverer 2.5.0 suite (Thermo Scientific, USA). 10 ppm
1166 MS1 and 0.4 Da MS2 mass tolerances were specified. Carbamidomethylation of cysteine was
1167 used as fixed modification, oxidation of methionine, deamidation of asparagine and glutamine
1168 were specified as dynamic modifications. Pyro glutamate conversion from glutamic acid and
1169 glutamine are set as dynamic modifications at peptide N-terminus. Acetylation was specified as
1170 dynamic modification at protein N-terminus. Trypsin digestion was selected with a maximum of
1171 2 missed cleavages allowed. Files were searched against the UP000006906 Chlamydomonas
1172 database downloaded from Uniprot.org (<https://www.uniprot.org/>).

1173 Scaffold (version Scaffold 5.1.0, Proteome Software Inc., Portland, OR) was used to
1174 validate MS/MS based peptide and protein identifications. Peptide identifications were accepted
1175 if they could be established at greater than 95.0 % probability by the Scaffold Local FDR
1176 algorithm. Protein identifications were accepted if they could be established at greater than 99.9
1177 % probability and contained at least 2 identified peptides. Protein probabilities were assigned by
1178 the Protein Prophet algorithm (Nesvizhskii et al., 2003).

1179

1180 Calculating WD-scores

1181 The WD-scores of MS data were calculated using the ComPASS method, which analyzes
1182 spectral counts based on the specificity of the prey, spectral count number and reproducibility
1183 (Sowa et al., 2009). Instead of using the spectral counts from two technical repeats, we used
1184 the spectral counts from two biological replicas with different neighbors for each sample. First,
1185 we generate a Stats table containing all the bait proteins and interactors as below,

Stats Table

	Bait 1	Bait2	Bait3	Bait4	Bait k	
Interactor 1	$X_{1,1}$	$X_{2,1}$	$X_{3,1}$	$X_{4,1}$	$X_{k,1}$	\bar{X}_1
Interactor 2	$X_{1,2}$	$X_{2,2}$	$X_{3,2}$	$X_{4,2}$	$X_{k,2}$	\bar{X}_2
Interactor 3	$X_{1,3}$	$X_{2,3}$	$X_{3,3}$	$X_{4,3}$	$X_{k,3}$	
Interactor 4	$X_{1,4}$	$X_{2,4}$	$X_{3,4}$	$X_{4,4}$	$X_{k,4}$	
Interactor m	$X_{1,m}$	$X_{2,m}$	$X_{3,m}$	$X_{4,m}$	$X_{k,m}$	\bar{X}_m

1186

1187 $X_{i,j}$ is the average spectral counts from two biological replicas for interactor j from bait i .

1188 m is the total number of unique prey proteins identified (8,067).

1189 k is the total number of unique bait (41).

1190

1191 We calculated the WD-scores using the equations ((Sowa et al., 2009)) below,

1192

$$1193 \quad WD_{i,j} = \sqrt{\left(\frac{k}{\sum_{j=1}^k f_{i,j}} \omega_j \right)^p X_{i,j}} \quad (\text{Equation S1})$$

1194

$$1195 \quad \omega_j = \begin{cases} \frac{\sigma_j}{\bar{X}_j}, & \text{if } \omega_j \leq 1 \Rightarrow \omega_j = 1 \\ \frac{\sum_{i=1, j=n}^k X_{i,j}}{k}, & \text{if } \omega_j > 1 \Rightarrow \omega_j = \omega_j \end{cases}, \quad n=1, 2, \dots, m$$

1196

$$1197 \quad f_{i,j} = \begin{cases} 1; X_{i,j} > 0 \\ X_{i,j} \end{cases}$$

1198

1199 p is the number of replicates runs in which the interactor is present $f_{i,j}$.

1200

1201 The minimum WD score values for high-confidence interactions will be different for each study

1202 because the WD score depends on the specific proteins and methods used in each study. In

1203 Mackinder et al., 2017, we set the high-confidence WD cut-off based on WD-scores of prey

1204 proteins that localized to a different compartment than the bait. Because all the baits in the
1205 present study localized to the same compartment (the chloroplast) we could not use the same
1206 approach to set the WD cut-off. We therefore set our WD cutoff at 3.7 % of all interactions
1207 based on the corresponding value in Mackinder et al., 2017 of 3.78 %. This rationale led to a
1208 WD cut-off for the present study of 16.567, with 297 of the 8,067 interactions above this
1209 threshold (Table S5). We defined high-confidence protein-protein interactions as those having a
1210 WD score above the cutoff of 16.567 and where the prey was detected in both biological
1211 repeats, which resulted in ~187 high-confidence protein-protein interactions (Table S5).

1212

1213 **Data visualization**

1214 The calculation of WD-score and assembly of bait-prey matrix were performed in Microsoft Excel.
1215 The alignment of amino acid sequence was conducted using Clustal Omega with default
1216 settings (<https://www.ebi.ac.uk/Tools/msa/clustalo/>). The protein structures were visualized
1217 using ChimeraX (<https://www.cgl.ucsf.edu/chimerax/>).

1218

1219 **Transmembrane prediction and Protein homology prediction**

1220 Protein transmembrane domains were predicted using TMHMM2.0
1221 (<https://services.healthtech.dtu.dk/service.php?TMHMM-2.0>). Protein homologies were
1222 predicted using Phyre2 (<http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index>)

1223

1224 **Statistical tests**

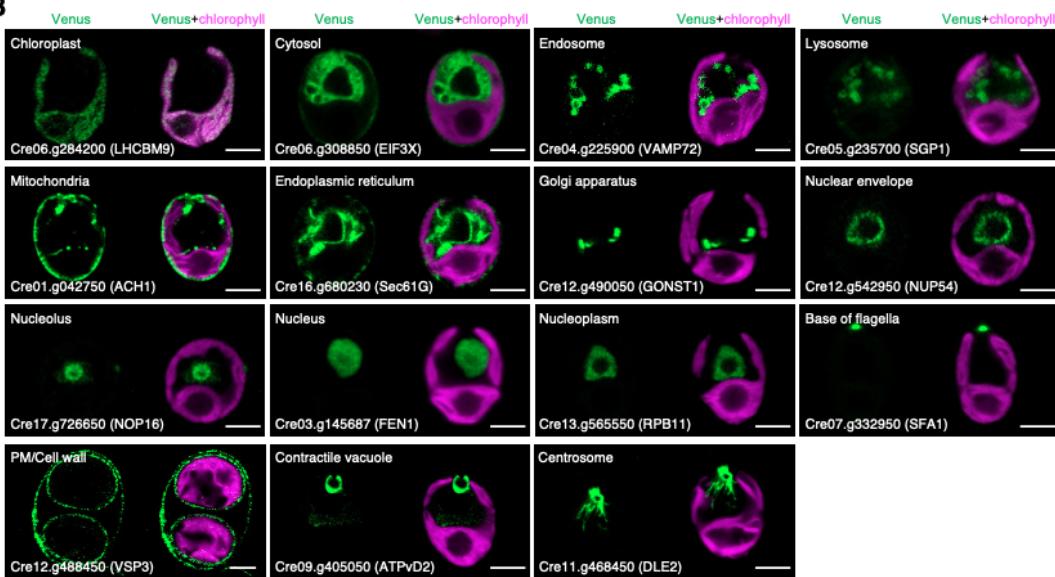
1225 Statistical tests comparing PredAlgo and PB-Chlamy were performed in Python using
1226 scipy.stats and rpy2. All other statistical tests were performed in Microsoft Excel.

1227

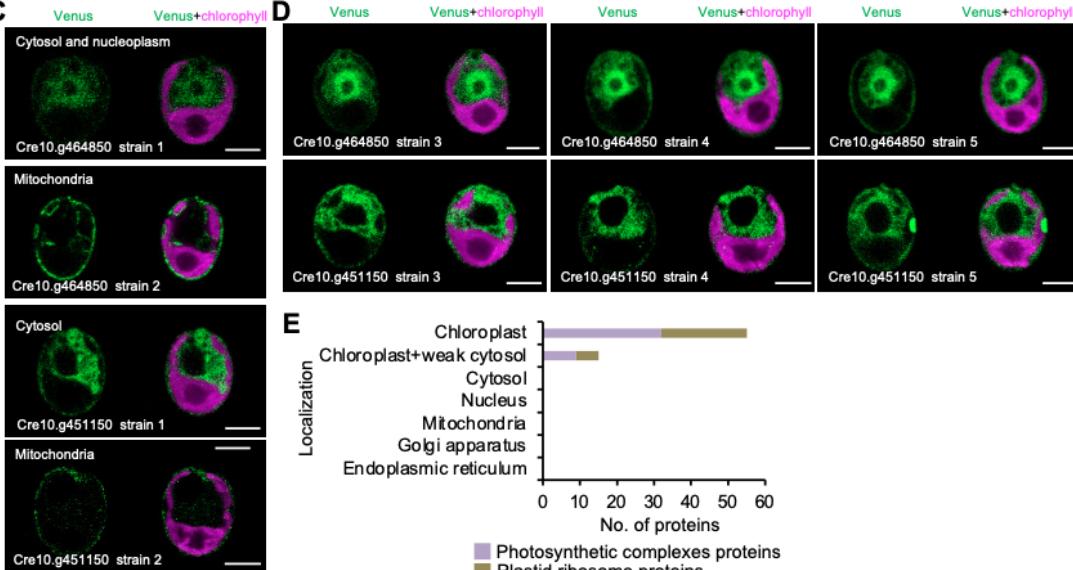
1228 **ADDITIONAL RESOURCES**

1229 Protein localization images are available at <https://www.chlamylibrary.org/>.

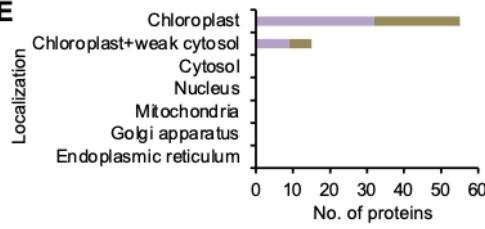
1230 Fluorescently tagged strains and plasmid constructs are available at
1231 <https://www.chlamycollection.org/>.

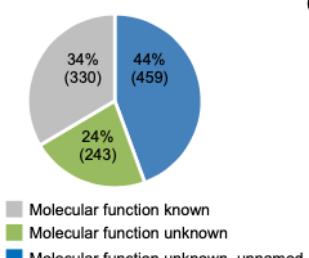

1232
1233

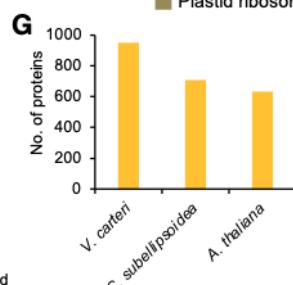
Supplemental Information

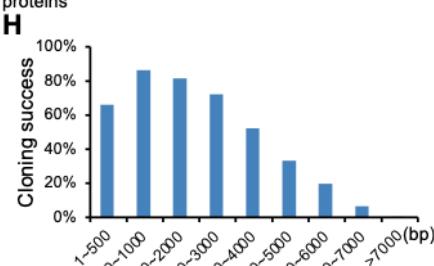

A

Order	Sources of candidate	Number of candidates	Number of cloned candidates	Number of localized candidates	References
(1) Chloroplast proteomics in <i>Arabidopsis thaliana</i>		1,093	516	295	Ferro <i>et al.</i> , 2010
(2) Chloroplast proteomics in <i>Chlamydomonas reinhardtii</i>		644	384	235	Terashima <i>et al.</i> , 2011
(3) Pyrenoid proteomics		154	80	44	Zhan <i>et al.</i> , 2018
(4) PredAlgo predicted chloroplast proteins		4,175	2,142	696	Tardif <i>et al.</i> , 2012
(5) GreenCut2 proteins		510	329	155	Karpowicz <i>et al.</i> , 2011
(6) Candidate proteins required for photosynthesis		303	132	47	Li <i>et al.</i> , 2019
(7) Others		777	554	200	-
In total		5,874	3,116	1,032	-


B


C


E


F

G

H

1235 **Figure S1. We localized 1,032 proteins from 5,874 target proteins.**

1236 **Related to Figure 1**

1237 (A) A summary of seven sources from which target genes were selected. The number of
1238 target genes, number of cloned genes, and number of successfully localized proteins are
1239 shown.

1240 (B) Representative images of organelle marker proteins that localized to different cellular
1241 locations.

1242 (C) Our localization data showed high reproducibility and chloroplast enrichment of
1243 photosynthetic complex proteins and plastid ribosome proteins. Out of 654 proteins for
1244 which we obtained two or more independent transformants, the localizations in the
1245 independent transformants disagreed for two proteins (<1%), Cre10.g464850 and
1246 Cre10.g451150. For each of these two proteins, representative images of the two
1247 independent transformants are shown.

1248 (D) Representative images of the localization of Cre10.g464850 and Cre10.g451150 in
1249 additional transformants, indicating that Cre10.g464850 is localized to cytosol and
1250 nucleoplasm; Cre10.g451150 is localized to cytosol. All scale bars are 5 μ m.

1251 (E) The localization enrichment of plastid ribosome proteins and photosynthetic complexes
1252 proteins in chloroplast.

1253 (F) Characterization status of our localized proteins.

1254 (G) Number of localized proteins conserved in *Volvox carteri*, *Coccomyxa subellipsoidea*, or
1255 *Arabidopsis thaliana*.

1256 (H) Correlation of cloning success with open reading frame size.

1257

1258

1259

Venus-tagged protein	Average number of puncta	Average distance to pyrenoid center (μm)	Average puncta size (μm, diameter)
Cre13.g576400	4.4 ± 0.5	6.11 ± 0.74	0.337 ± 0.10
Cre12.g519900	5.4 ± 0.9	6.33 ± 1.14	0.367 ± 0.10
Cre05.g234050	4.8 ± 0.8	5.00 ± 1.52	0.292 ± 0.06
Cre24.g755197	4.0 ± 0.7	5.44 ± 1.63	0.246 ± 0.06
Cre13.g603500	2.8 ± 0.8	2.99 ± 0.59	0.375 ± 0.07
Cre07.g344550	2.2 ± 0.4	2.63 ± 0.70	0.237 ± 0.07
Cre01.g005534	5.0 ± 1.0	4.13 ± 0.81	0.344 ± 0.13
Cre01.g050950	26.6 ± 3.2	5.99 ± 0.83	0.166 ± 0.06
Cre03.g145507	18.6 ± 0.9	5.48 ± 0.24	0.120 ± 0.03
Cre03.g197650	19.2 ± 3.4	5.95 ± 0.52	0.115 ± 0.09
Cre06.g256850	7.4 ± 1.7	5.30 ± 0.37	0.293 ± 0.09
Cre16.g672300	7.2 ± 1.5	4.98 ± 0.90	0.313 ± 0.06
Cre06.g285401	6.8 ± 1.6	4.73 ± 0.77	0.295 ± 0.05
Cre06.g295350	1.8 ± 0.4	5.50 ± 1.94	0.264 ± 0.11
Cre06.g278195	20.0 ± 4.0	6.68 ± 2.00	0.243 ± 0.08

1260

1261 **Figure S2. Novel chloroplast punctate structures showed difference in the number of**
1262 **puncta, puncta position, and puncta size.**

1263 **Related to Figure 2**

1264 Novel punctate structures showed differences in the average position, number, and size of
1265 puncta. For each punctate structure, its mean distance to the pyrenoid center, the average
1266 number of puncta, and the mean punctus size are shown. Mean values ± SD from five
1267 independent cells are shown. Each structure is assigned a unique color that is used in Figure 2.

1268

A

B

C

Cre06.g278195.t1.1 C.reinhardtii AT1G42960.1 A.thaliana	-----MSAMLRQQGLVSRPAAARSQQV-----RPAVARPRTAVV----- MASLSSTSLSLPKNSHQLHPSSGFLSLNPANCVSWSFGLNHSNKLHISAPRTKRILITIOS----- 33 60
Cre06.g278195.t1.1 C.reinhardtii AT1G42960.1 A.thaliana	-----VRAESRNSDSFVAGVVVGGVVFGALGFLFAPPQISKALLGDDQR-----LKLPRFLDEQ----- AYRDDDGSSTGFLFGGFLGGLIVGALGVYAPQISKAIAGADRKLMLRKLPKFIFYDEE----- 87 120
Cre06.g278195.t1.1 C.reinhardtii AT1G42960.1 A.thaliana	-----PKDPEQTKQDLIEKIAQLNASIDEVAAQLKVKEGDMKIEST-----P*----- -KALEKTRKVLAEKIAQLNSAIDDVSSQLKSEDTPNGAALSTDEIEATA*----- 130 168

D

Cre24.g755197.t1.1 C.reinhardtii AT5G51010.1 A.thaliana	-----MAALQKSFLGNKAGFKSAVRGSASRQSSV----- MAMQLPPTTLYAGRSSVVLPPPTTQLQRSSFLPYYSMRLLGNKKSLSK----- 29 48
Cre24.g755197.t1.1 C.reinhardtii AT5G51010.1 A.thaliana	-----Rubredoxin-like domain----- AVSALFQKTKATPKSAYVCLDCGYYLDEPTPFEV-KAYVCPVCNAPKRRFKELRGNKLT----- -SSAPRFSMRVSSQAYICRDCGYYLNDRTPDFKLPDNYPCPVCAAPKRRFRAYMPDVSK----- 88 107
Cre24.g755197.t1.1 C.reinhardtii AT5G51010.1 A.thaliana	-----RNDPKSMVT-RKEALRAQVEADGGNPDEGQNEFLIFSGLTAVAALAFLAYLNMPK*----- NVNDKDVKRKAELQR-DEAVGKAL-----PIGIAVGVLALAA--YFYVNSTS*----- 142 154

E

Cre16.g672300.t1.2 C.reinhardtii Eruve.1973s0006.1.p E.vesicaria	-----MLR---YAALRTVPRATAPIAPARRAMVIRSFSSESNDAAPPAKKATPKAAEKAPKAAEKAPV----- MKTAKGKGAKTTKEALKPVDDRKV-----GKRKA-PA-EKPSK--RETRKEKKAKK----- 57 48
Cre16.g672300.t1.2 C.reinhardtii Eruve.1973s0006.1.p E.vesicaria	-----high mobility group protein domain1----- EKPNAARAPSAYNLFYKAIFQOVRSENPDKK-VTELGSVVRDKWASISALERAPYEAQAA----- DPNPKRAPSAAFFVFLEDFQTFKKEPDVKAVSAVGKAGGQKWKMSMSQAEKAPYEEKAA----- 116 108
Cre16.g672300.t1.2 C.reinhardtii Eruve.1973s0006.1.p E.vesicaria	-----high mobility group protein domain2----- ARKKEVDAKRAEVLAAKKAPARPVAYIAFANAKRPEIKAQNPDKTMAQVASLLGSIWKG----- KRKAEYENQMDAYNKSLEEGSDESENLSLEVND-----EDEASE---EEEKVEKG----- 176 155
Cre16.g672300.t1.2 C.reinhardtii Eruve.1973s0006.1.p E.vesicaria	-----NSEEQQKPYRDQAKAANDAWKAKQQAOQSA*----- KARDDEDEDDDEDD-DD-DEDDEED*----- 206 179

1270

1271

F

1272

1273

G

Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	MQSL-TARGLPSAAPIAPSARLHVPVLASRGLGCQRVPLKVCRVATGS-AGAAEGVKEDV MAIAASCFFCVPTPNTAISESNLTWPHIASFP-----RL-SSSSFNGVISAKSISFN---	58 51
Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	PAVPVVPQLGGSDGNGVGKNNNGGGGGG---GGGNNGDGKEP---MDPKIVALLAA RRVPITPVLSASSGNGGSNDNGGLSGGGGGDGKNDGDGHGDEDRDRNRNEAMILLKE	109 111
Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	AGRSVDSFPADFKYGLLANKVTPPEILQRYFSFEANFIAKLVWIDGFRERLLADPSFFVK SGIELESPLPKDLAAIAEAGRIPGSVTRFLELQKSAVMRWMQFGGFREKLLADDFMAK	169 171
Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	LGIEIGIVVMKITAETYKRQENFAKEADFVFANTLMAIIFMFLTWLPAPTLSYRPRAT LAMECGVGIFTKTAEYERRRNFNFNELEVVFAVAMAIIFMFLYLPAPTVSLRPPLA	229 231
Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	ASGNALVNFFASCPCDNAFQKVPPGMEPPFLSQRQLGAILRNGSKLLGVGFCAASLIGVGVTN LTAGGISKFFHNCPCDNAFQVALSG-TSYTLQRLGAIATRNGAKLFAVGTTSSLVGTIAITN	289 290
Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	SLLFVRQQLDPTMAPPNAPQNVLATSAAYGVYMSVSSNLRYQIIAGIVEERGIEVLFKGN AFIKARKAVDQNSEGEVETVPIVSTSVAVGVYMAVSSNLRYQIVAGVIEQRLLEPMLHQH	349 350
Cre03_g177350_t1.1 C.reinhardtii AT5G12470.1 A.thaliana	HQLCHLLSFVARTGNTFLGSLLWVDFVRLCGMQKASAKPAEAH*392 KLALSALCFAVRTGNTFLGSLLWVDYARLIGIQKSH*-----386	

H

Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	MPAFHVVAWRAARSLASRRHDANSPLITIGRRRSHLQLCSHTSAAAPGSATAAPATDASEAA	60 0
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	SNAAWGEQAFSALQKKATSRLHRYFVVPQPLGPTPEPATLEALLGVAPSTTSTSAASTSTR MMRALAAASRP-----LFSDLPSLVRSLWLTSSFK	120 30
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	SGSSGSSSSGGSGSQAGPAADAPGKRRKAGSSTAAAAAASATADAATAAWAGSVAAG SFA-----TVSSPPSDLNLRNQSRG-----GLPRFFSDDLPSR	180 64
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	VPATLVLGEEARHAARALRLAAGDRVFLCDGRGNVAVGVTGTDKQRVWVSTEGAAASHQ KGGVVVRQGEFWHMAKVLRLKQEDRVELFNGKGLVEGCIQSIDKTGVDFIAQEDQKVI	240 124
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	RWSGPRWVLAVACTTLKGGRAEWLVEKATELGAFMLVPLVTERQSAGGKAKFRTSRSGGG LPQGMQWQVFAAFGTLKGGRADWLIEKCTELGASSVTPILLTERSPISE-----	300 173
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	GGGGGSDLDWGSDDGGGDDYQPGRLERVAIAATKQSLRPHALALVPPTPLADLLPLVRRA -----NRVDRLERVSFAAAKQCQRLHQMVNLNPPIKFGTLLDHILK-----	360 213
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	AAAGGGAAAASRAAGGAGGGGEGSVVGGVTOPGFSLVAVAGAPPLMSVQQLRSGSGVGC -----SKLCLVATAEKPLLNNAV-----	420 231
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	ASTDPGGCADSNPVAEAPPSSASSPAGOOGGAAAAASAAAAAAAANAVASNSPVRVLFVGP -----NSSAKESSGLLIVGP-----	480 246
Cre03_g175800_t1.1 C.reinhardtii AT1G50000.1 A.thaliana	EGDFTPAELAALVEAGAQPVGLGVNRLRTETAAIGLLSACLFSD*----- EGDFTKKEVEMMLEAGGTAVGLGLPFRRLVETATILLATLVMNDSQEMI*	524 296

1274

1275

I

Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	-----MAA----- MAAISPANATTAAASLSPQFSSTSSSLSSSSPSFLNFKTASVSNRCIKCGVRSLENHSG----- 3 60
Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	QNLAPALSTGEDFRT-----TNIEATQIPAALRKDCVLFYTPDTEELAQVAQQA----- HRSLDFLSNGDPISLINPNSSSPTMAAATSESGSKSSKRVCLFHSDETRDLAERIV-AK----- 54 119
Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	GGAITLGRWKKFADGFPDLFVENATSIRNRHVAFLASFTNPTVIFEQISIVIYALPRLF----- SDCIELRSINWKFDGGFPNLFIQNAQGIRGQHVAFLASFSSPAVIFEQLSVIYALPKLF----- 114 179
Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	VSSFTLVLPPFTGTMERVETEGDIATANTLARLLSNVPPSRGGPTSLVIFDIHALQERF----- VSSFTLVLPPFTGTSERMEDEGDVATAFTLARLILSNIPTSRRGGPTSLVTFDIHALQERF----- 174 239
Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	YFGDAVPLPFLESGVPLLLERLQLPDRDSITIAYPDEGAWKRPHYQFKSEGYPEVICTKV----- YFGDTILPCFESGIPPLKSLRQLSLPDSNDNISIAFPDDGAWKRPHQL--QHYPTIVCNKV----- 234 297
Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	RDGSXRIVRLKEGEPKDRHVVIVDDLVSGGTLIECHALLASIGAKHVSAAVTHGVFRNM----- RMGDKRIVRIKEGDAEGRHVIVDDLVSGGTLIECQKVLAAGAAKISAVVTHGIFPRS----- 294 357
Cre09_g394550.t1.2 C.reinhardtii AT1G10700.1 A.thaliana	SWVKFRADLGNQAQDGFRYFWLSDSCPQTVRDVRSKAPFEVLSLAGPIAAALQI*----- SWKRFKLDTKGDPAECLSYFWITDSCGMVKEVMNKKPFEVLSLAGSIASALQV*----- 348 411

J

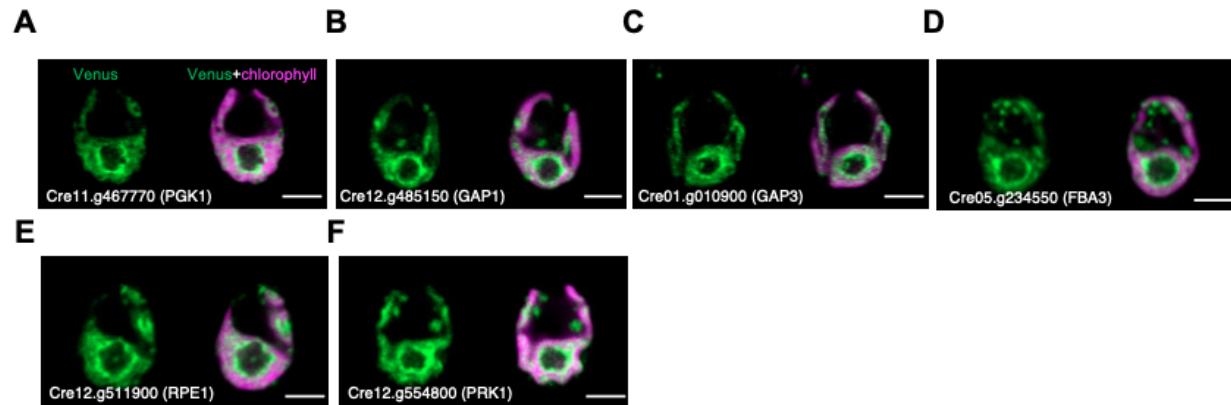
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	MLANLRSLPYCRRCVLLQSAAAQVQAAATKHIAGGQVRLAHNSRSRGSGLAGFGGS----- -MNNVLQFG-----LQSSAIYVA-----KFLVPLRSLRVGSSFVGVGVT----- 59 40
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	-----WGVSA-----CDQPRRSSTLTARALGASMKDDGTSAAK-----EEQAV----- RSFNKRLMSNATAFSINNSKRKELKIPGAAIDQNCNQMSDTRDEMGTLQDDRKETEAM----- 99 100
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	AAEPAAA-----AAPRGRGRKTPAGA-----GAEGAAATAKKSPAKGRG-----KAAAKEP----- TQVQELRSLRKLGVPVKRQKQELISTRHLHMDSNLDPQKETSSSTRSDSVTIKKRISNRE----- 146 160
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	EPESEEAAASECTAEGASEEAAPKRAAK-----RAKGAK-----TKTDAAGGEEEAQPKPAR----- EPTEDECTNSEAYDIEHGEKRVKQSTEKNLAKAKSAAKIAKEQKSLMRTGKQQIQSKEET----- 199 220
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	KARA-----TPAAKEAGAEAGAQAKPKAKRGAKEPAADLVQYTA-ALRKPAPPAGSTPLNILS----- SSTISSELLKTEEIISSPSQSEPWTVLAHKKPQKDWKAYNPKTMRPPPLPEGTKCVKVT----- 256 280
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	WNVAGLRLALLKTPDAVSSLVSREAAEVVCLQEHKLQANHQKEVEELLGLQGWHHWAFS----- WNVNGLRLKLLKFESFSAQLAQRENFDILCLQETKLQVVDVEEIKKTLIDGYDHFSWSCS----- 316 340
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	TAKLGYSGSVYHTRSPPSLSVYVGLGHGGPGAADPDPHEHEGEGRVVTVLEGLFLVNVYVP----- VSKLGYSGTAIISRIKPLSVRYGTGLSG-----HDTGRIIVFAEFDSTFYLINTYVP----- 376 391
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	NSCEGLKRLDYRVRGDGAFAAFLQGLQARQKPVVVTCDLNCAHEKEDIHAPKTNLKSAG----- NSGDGLKRLSYRIEWDRTLSNHIKELE-KSKPVVLTGDLNCAHEEIDIFNPAGNKRSG----- 436 450
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	FTPEERESFGRLLLAEGALADTFRRLYPDTVAYTYFTRRNCREKNKGWRLDYFLTSESM----- FTIEERQSFGANLL-DKGFDVTFRQHGPVVGTYWGYRHGRKTNKGWRLDYFLVSQSI----- 496 509
Cre03_g175850.t1.1 C.reinhardtii AT2G41460.1 A.thaliana	MPPELQQGEGAAAAAGPASAWAVYDTWIMQDVYGSDDHPLGLTCVRKAAA*----- AA-----NVHDSYIILPDINGSDHCPIGLILKL----- 547 536

1276

1277

K

Cre12.g495951.t2.1 C.reinhardtii AT5G13120.1 A.thaliana	----- MALRSITRVS ----- MATLSMTLSNPKSLAPPRLSPINTSAFTSTSFRLETKSSFDSISFSSSTPFSASSLLL 10 60
Cre12.g495951.t2.1 C.reinhardtii AT5G13120.1 A.thaliana	----- ARTACRAATAARRAAVTVRRAAHNPAAVTKVYFDVNICA --- NSAGRVVVIGLYG HTSYTCKRNHRCFSVQS--- N --- AEVVTEPQS KITHKVYFDISVGNPVGKLAGRIVIGLYG 61 115
Cre12.g495951.t2.1 C.reinhardtii AT5G13120.1 A.thaliana	----- NDVPDTVENFRALCTGEKGFGYKGSVFHRVIKQFMIQGGDFTAGNGTGGKSIYGARFNDE DDVPQTVENFRALCTGEKGFGYKGSTFHRVIRDFMIQGGDPEKGNGTGGKSVYGRITFKDE 121 175
Cre12.g495951.t2.1 C.reinhardtii AT5G13120.1 A.thaliana	----- NFKYKHTGPGLSMANAGPNTNGSQFFICTVATPWLDGRHVVFGEVVEGLDVVAKVENSP NFKLSHVGPGCVLSMANAGPNTNGSQFFICTIKTSWLDGRHVVFGQVIEGMEVVKLIEEQE 181 235
Cre12.g495951.t2.1 C.reinhardtii AT5G13120.1 A.thaliana	----- TGRGDRPVEPITIAACGEL* ----- TDRGDRPRKKVVIADCQQLPMSA* 200 259


1278

1279 **Figure S3. Amino acid alignment of conserved Chlamydomonas proteins with their
1280 homologs in land plants.**

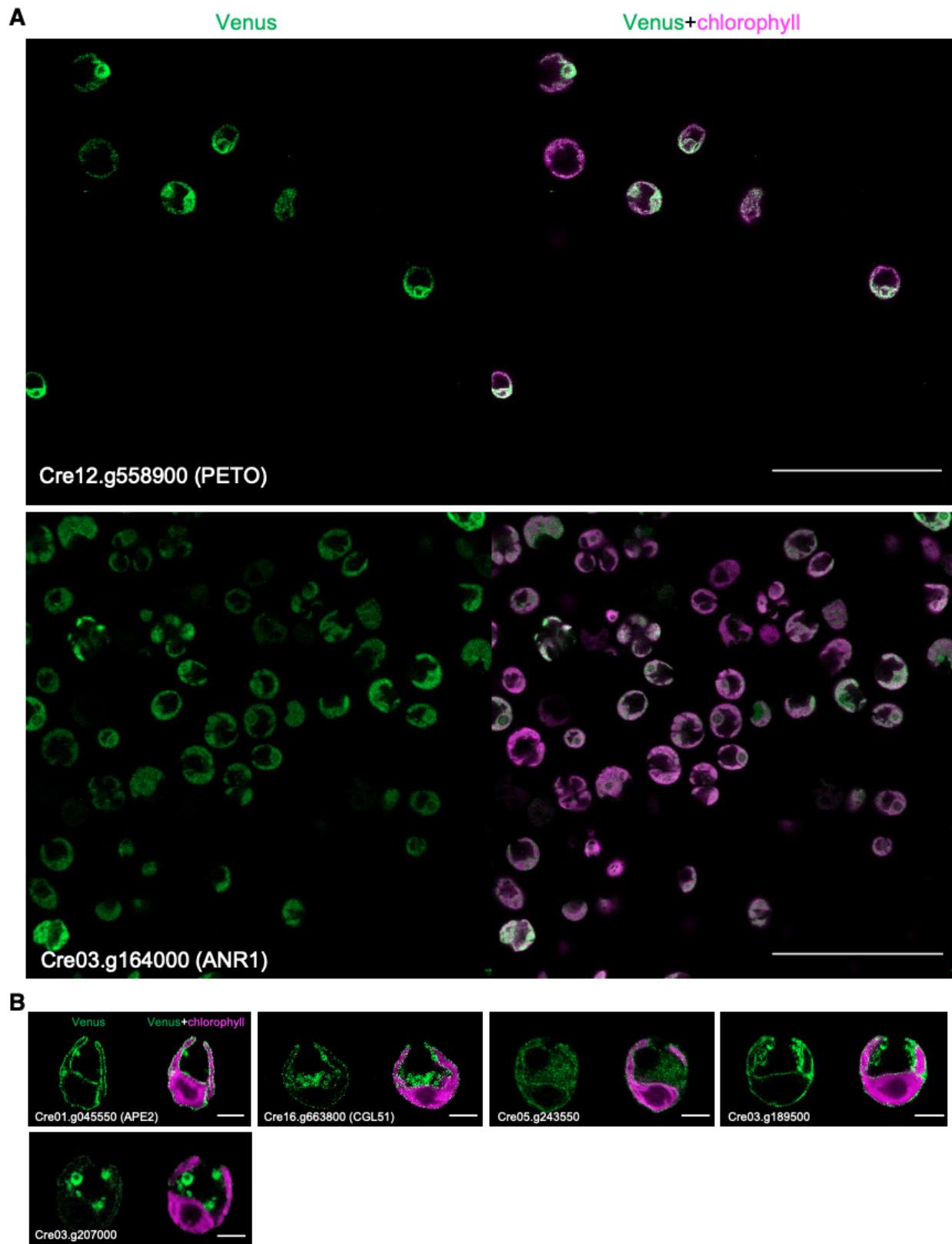
1281 **Related to Figure 2-4**

1282 The alignment was performed using the Clustal Omega. The colors indicate amino acids with
1283 different biochemical properties. (A) Cre07.g344550 and AT4G34200; (B) Cre01.g050950 and
1284 AT1G74470; (C) Cre06.g278195 and AT1G42960; (D) Cre24.g755197 and AT5G51010; (E)
1285 Cre16.g672300 and Eruve.1973s006; (F) Cre07.g356350 and AT4G15560; (G) Cre03.g177350
1286 and AT5G12470; (H) Cre03.g175800 and AT1G50000; (I) Cre09.g394550 and AT1G10700; (J)
1287 Cre03.g175850 and AT2G41460; (K) Cre12.g495951 and AT5G13120.

1288

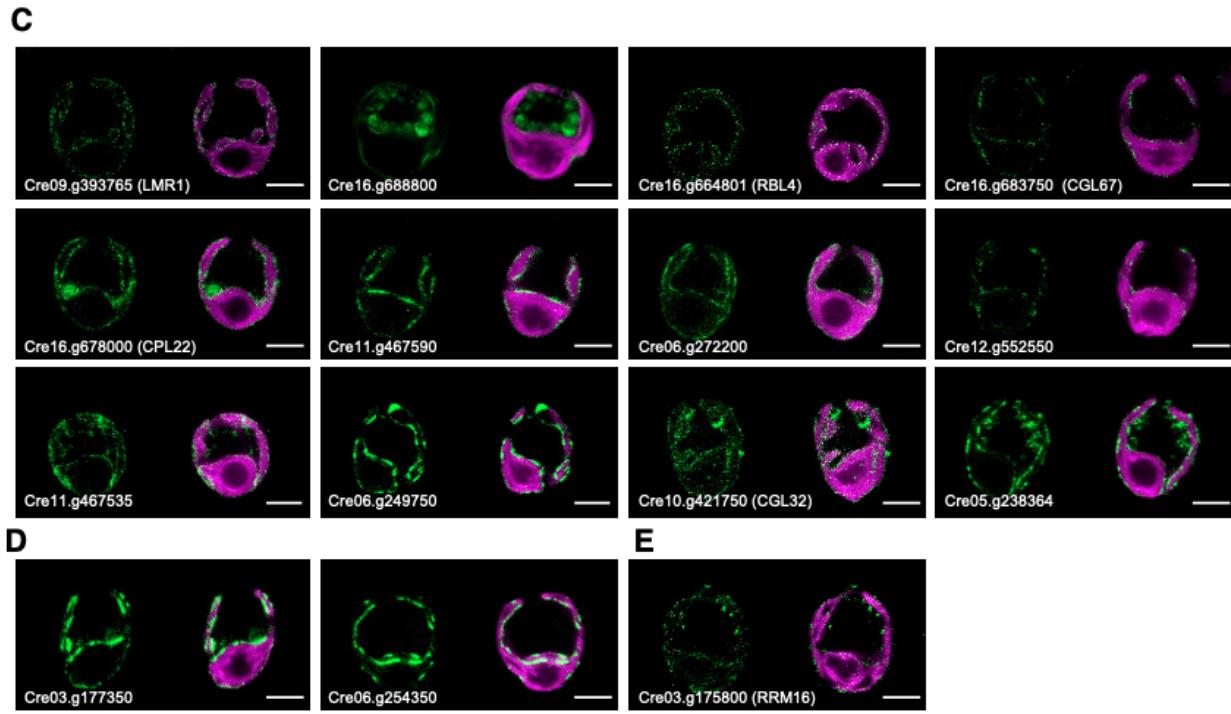
1289

1290 **Figure S4. The Calvin-Benson cycle enzymes showed enrichment around pyrenoid.**


1291 **Related to Figure 4**

1292 (A-F) Representative images of Cre11.g467770 (PGK1), Cre12.g485150 (GAP1),

1293 Cre01.g010900 (GAP3), Cre05.g234550 (FBA3), Cre12.g511900 (RPE1), and Cre12.g554800


1294 (PRK1) showing enrichment in the stroma around pyrenoid. All scale bars are 5 μ m.

1295

1296

1297

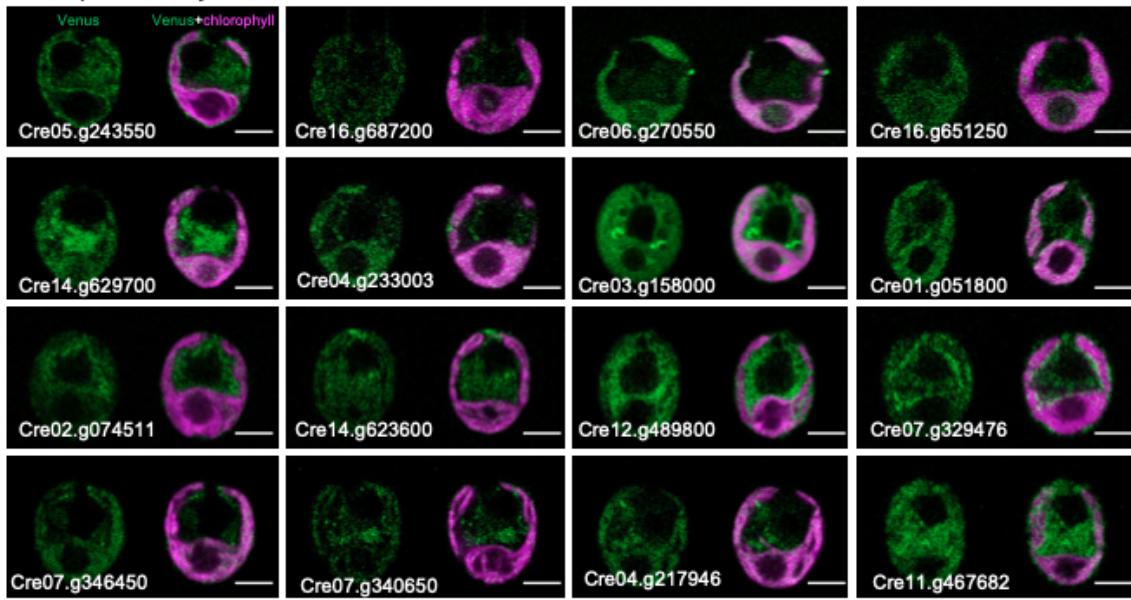
1299 **Figure S5. PETO showed different localization patterns from ANR1 and the diverse**
1300 **localizations of proteins localized to chloroplast envelope.**

1301 **Related to Figure 5**

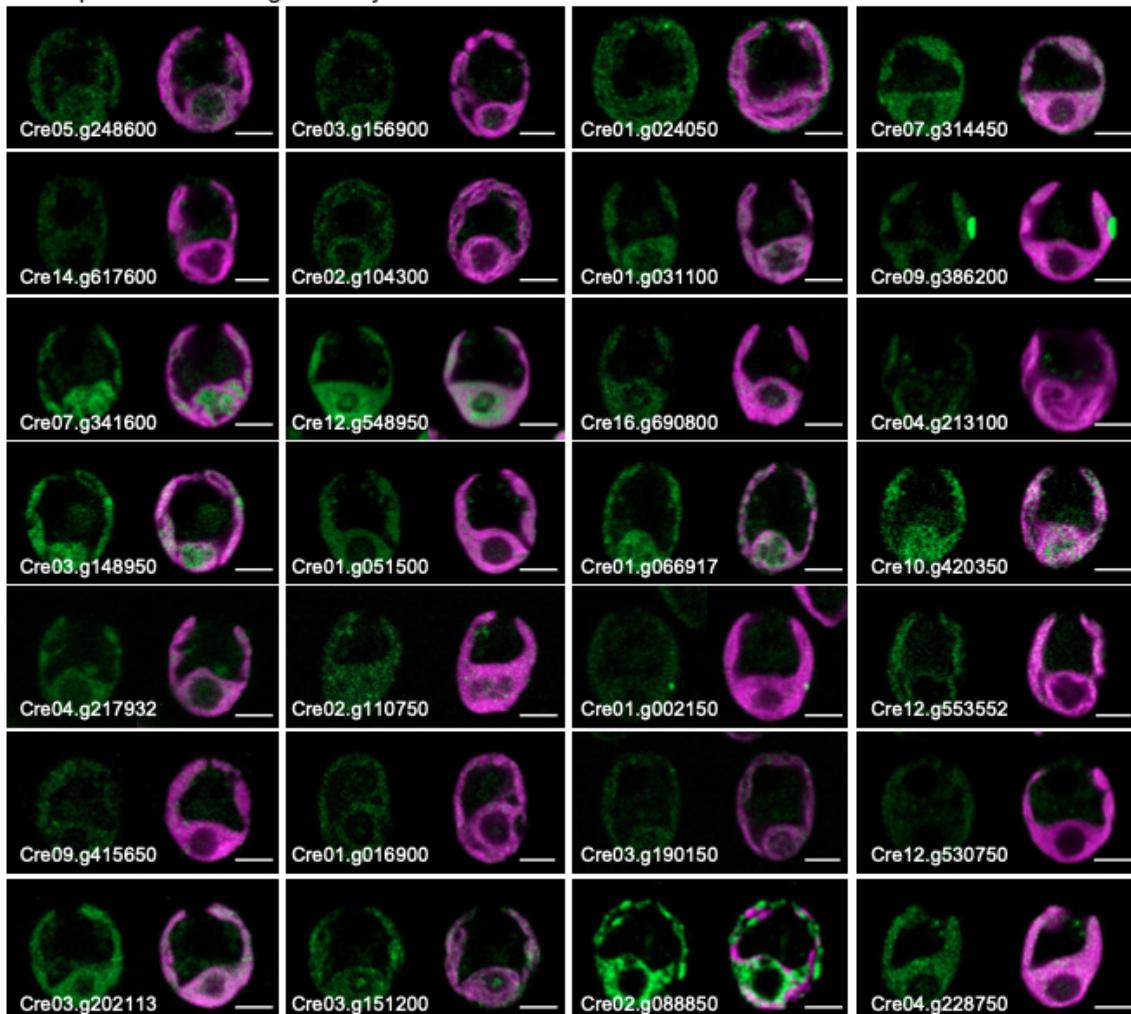
1302 (A) Representative localization images of PETO and ANR1. Scale bars, 50 μ m.

1303 (B) Representative images of proteins homogeneously localized throughout the chloroplast
1304 envelope. Scale bars, 5 μ m.

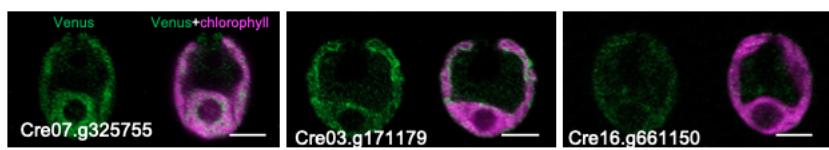
1305 (C) Representative images of proteins localized to patches along the chloroplast envelope.
1306 Scale bars, 5 μ m.


1307 (D) Representative images of proteins localized to nucleus-facing portion of the chloroplast
1308 envelope. Scale bars, 5 μ m.

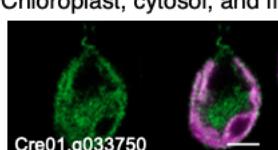
1309 (E) Representative images of protein localized as punctate dots along the chloroplast
1310 envelope. Scale bars, 5 μ m.


1311

1312


A Chloroplast and cytosol

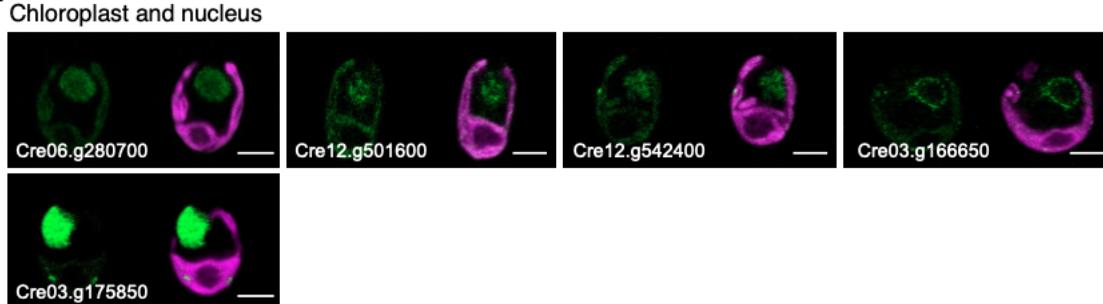
B Chloroplast and weak signals in cytosol



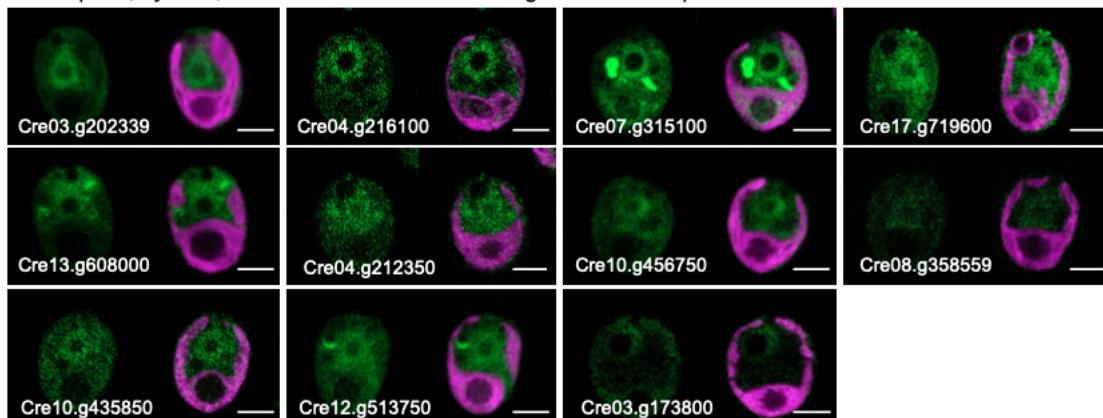
B *continued*

C

Chloroplast, cytosol, and flagella


D

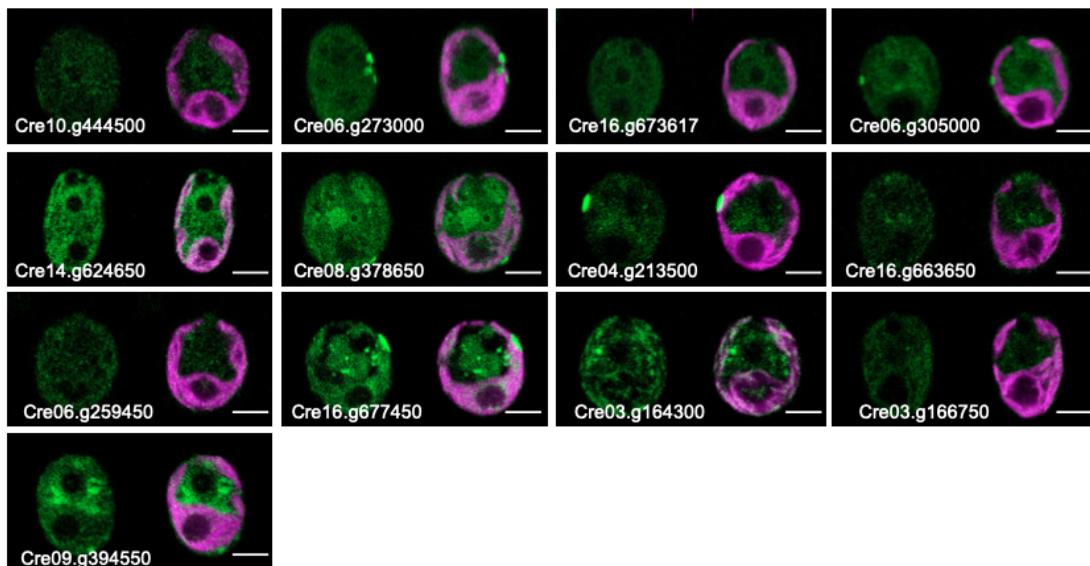
Chloroplast, cytosol, and PM/Cell wall


E

Chloroplast and nucleus

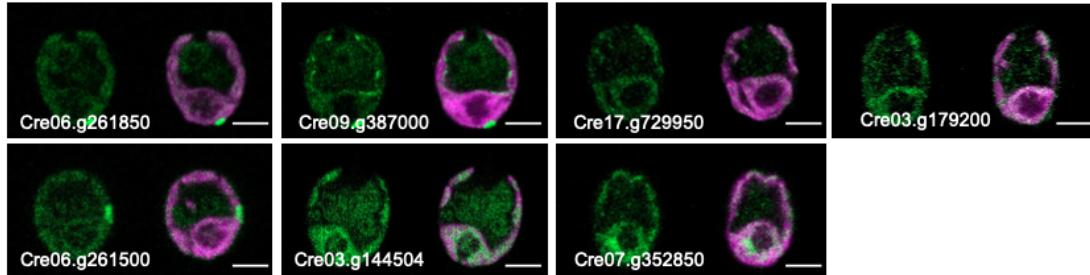
F

Chloroplast, cytosol, and nucleus with enriched signals in nucleoplasm

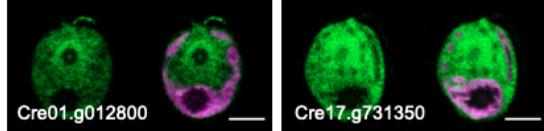


1314

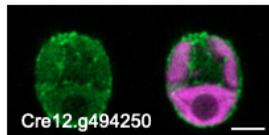
1315


G

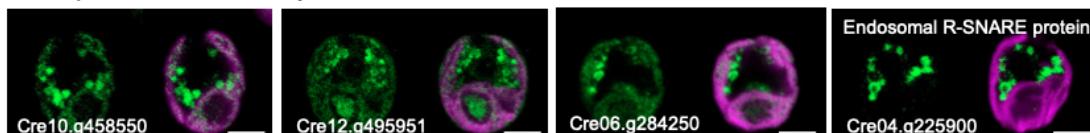
Chloroplast, cytosol, and nucleus with similar signals in chloroplast, cytosol, and nucleus


H

Chloroplast, cytosol, and nucleus with enriched signals in chloroplast

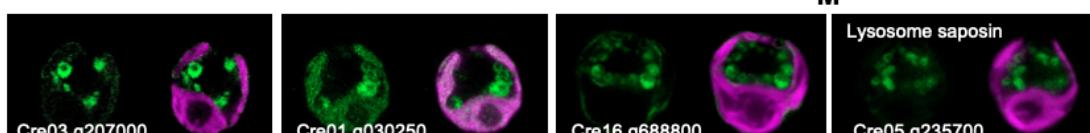

I

Chloroplast, cytosol, nucleus, and flagella

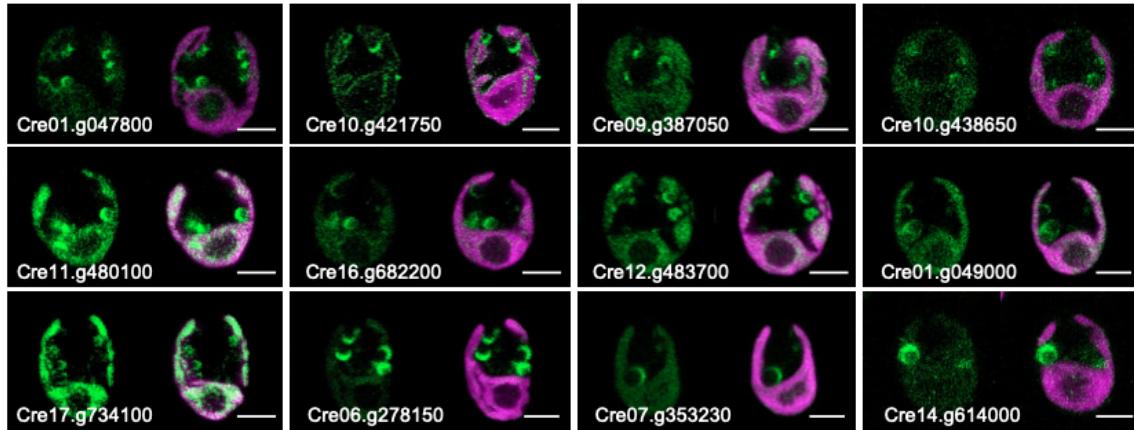

J

Chloroplast, cytosol, nucleus, and mitochondria

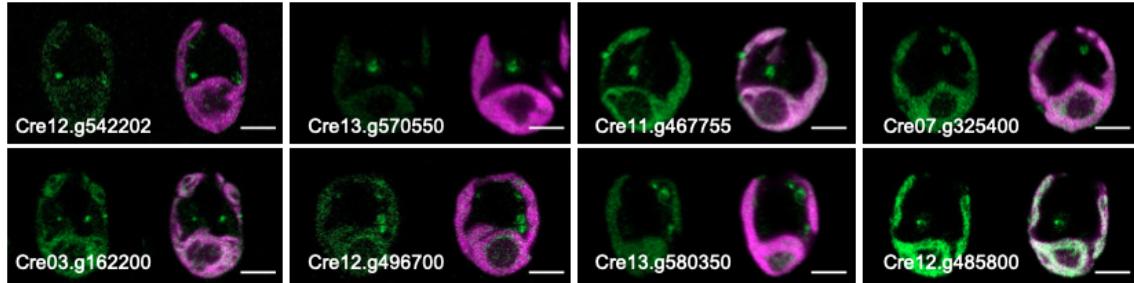
K


Chloroplast and endosome/lysosome

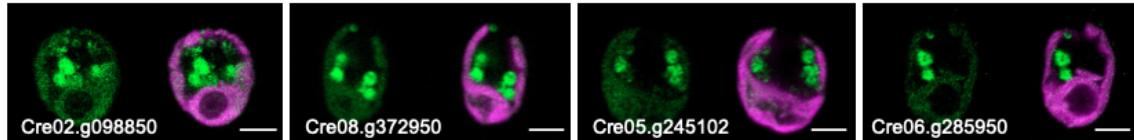
L



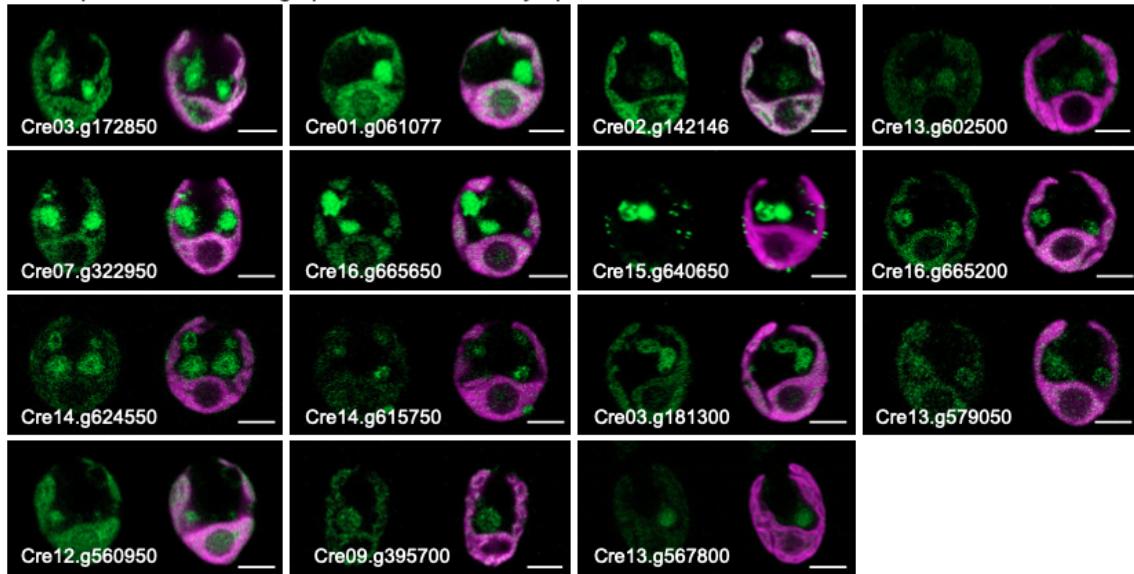
M

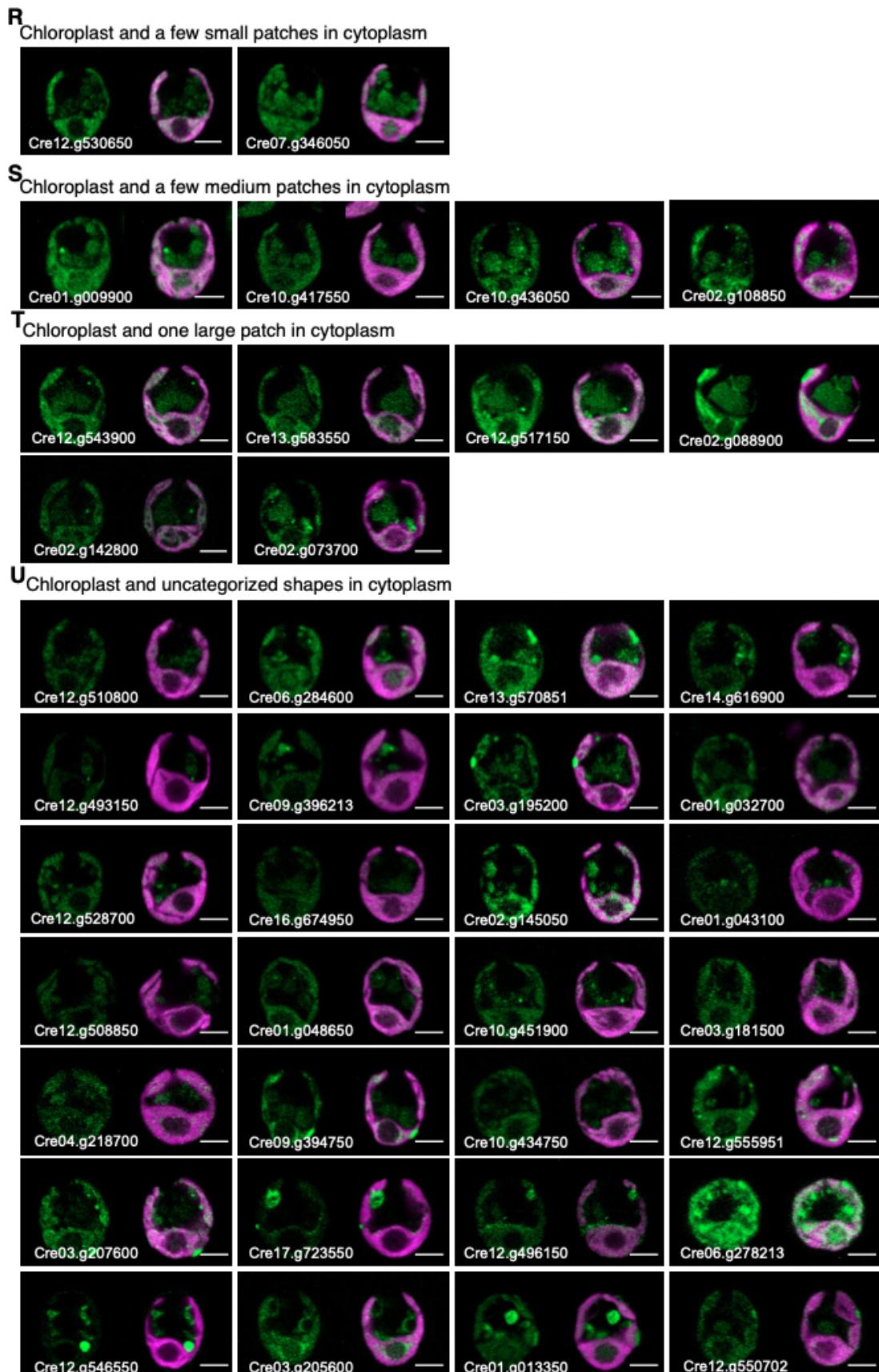

N

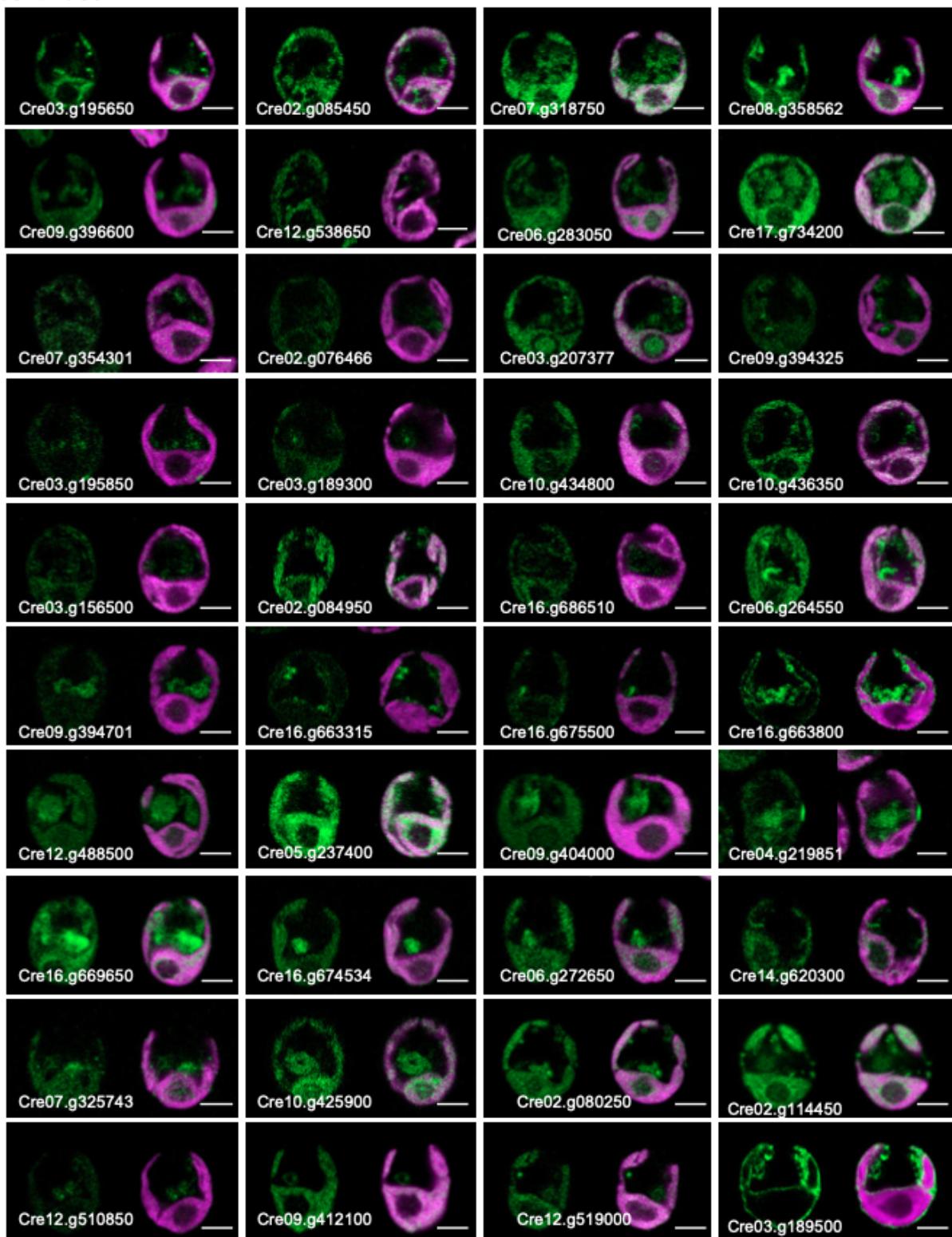
Chloroplast and crescent structures in cytoplasm


O

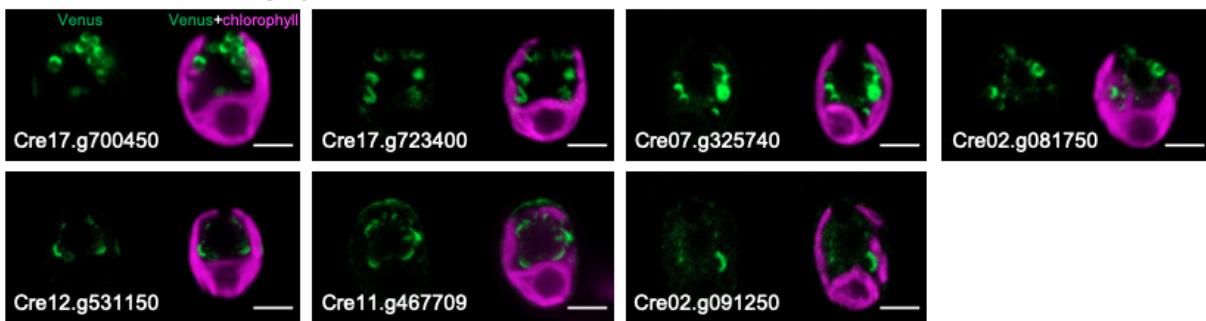
Chloroplast and one or two small puncta in cytoplasm


P

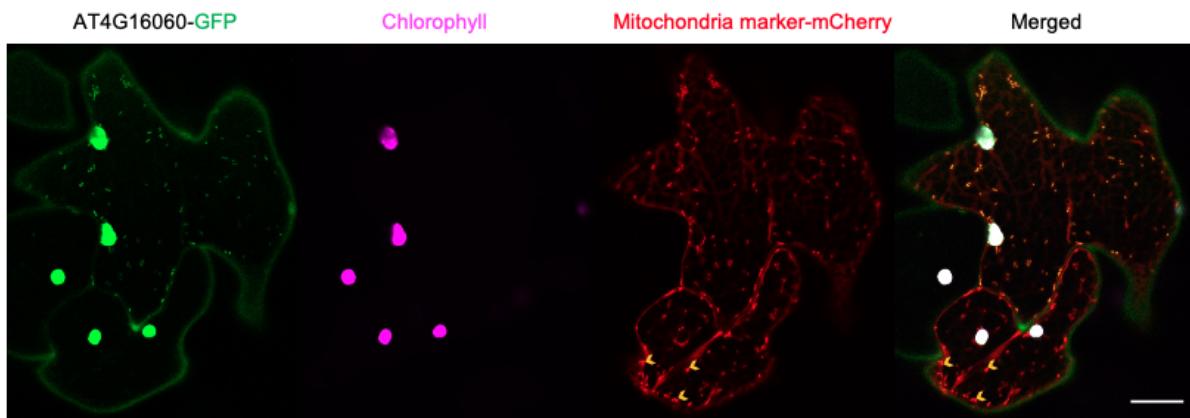

Chloroplast and a few medium puncta in cytoplasm


Q

Chloroplast and a few large puncta/vesicles in cytoplasm



U continued


V Crescent structure in cytoplasm

W

X

1320

1321 **Figure S6. Diverse localizations of proteins localized to chloroplast and other organelles.**

1322 **Related to Figure 6**

1323 (A) Representative images of proteins dual-localized to chloroplast and cytosol.

1324 (B) Representative images of proteins dual-localized to chloroplast and weak signals in
1325 cytosol.

1326 (C) Representative images of protein localized to chloroplast, cytosol, and flagella.

1327 (D) Representative images of protein localized to chloroplast, cytosol, and PM/Cell wall.

1328 (E) Representative images of proteins dual-localized to chloroplast and nucleus.

1329 (F) Representative images of proteins localized to chloroplast, nucleus, and cytosol with
1330 enriched fluorescence signals in nucleoplasm.

1331 (G) Representative images of proteins localized to chloroplast, nucleus, and cytosol with
1332 similar fluorescence signals between chloroplast and nucleus.

1333 (H) Representative images of proteins localized to chloroplast, nucleus, and cytosol with
1334 enriched fluorescence signals in chloroplast.

1335 (I) Representative images of proteins localized to chloroplast, nucleus, cytosol, and flagella.

1336 (J) Representative images of proteins localized to chloroplast, nucleus, cytosol, and
1337 mitochondria.

1338 (K) Representative images of proteins dual-localized to chloroplast and
1339 endosomes/lysosomes (many small puncta or vesicles in cytoplasm).

1340 (L) Representative images of endosomal R-SNARE protein localized to endosomes.

1341 (M) Representative images of lysosome saposin localized to lysosomes.

1342 (N) Representative images of proteins dual-localized to chloroplast and crescent structures
1343 in the cytoplasm.

1344 (O) Representative images of proteins dual-localized to chloroplast and one or two small
1345 puncta in the cytoplasm.

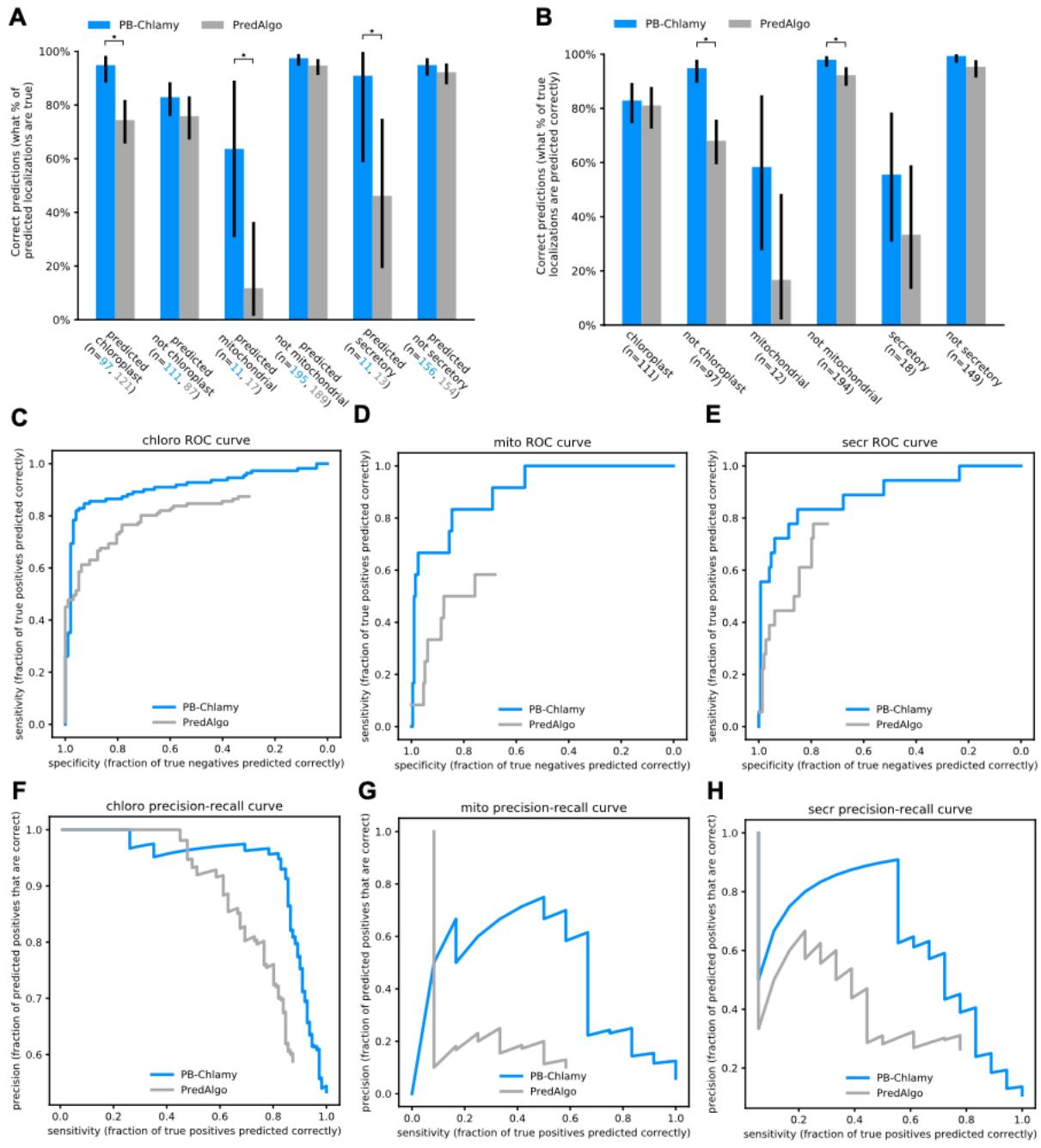
1346 (P) Representative images of proteins dual-localized to chloroplast and a few medium
1347 puncta in the cytoplasm.

1348 (Q) Representative images of proteins dual-localized to chloroplast and a few large
1349 puncta/vesicles in the cytoplasm.

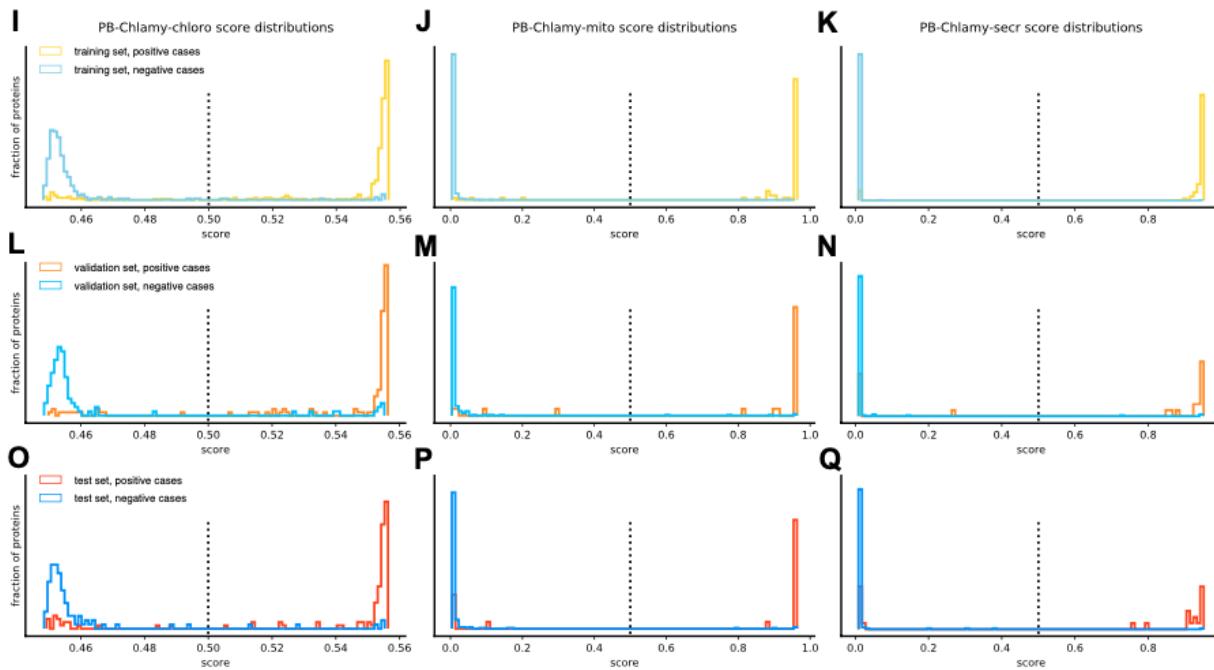
1350 (R) Representative images of proteins dual-localized to chloroplast and a few small patches
1351 in the cytoplasm.

1352 (S) Representative images of proteins dual-localized to chloroplast and a few medium
1353 patches in the cytoplasm.

1354 (T) Representative images of proteins dual-localized to chloroplast and one large patch in
1355 the cytoplasm.


1356 (U) Representative images of proteins dual-localized to chloroplast and uncategorized
1357 shapes in the cytoplasm.

1358 (V) Representative images of proteins exclusively to the crescent structures in the
1359 cytoplasm. All scale bars in (A)-(V) are 5 μ m.


1360 (W) Representative images of chloroplast in the tobacco leaf cells without infiltration with
1361 *Agrobacterium tumefaciens*.

1362 (X) Representative images of mitochondria mCherry marker (CD3-991) in the tobacco leaf
1363 cell without GFP expression. The yellow arrows indicate mitochondria. All scale bars in
1364 (W) and (X) are 20 μ m.

1365

1366
1367

1368

1369 **Figure S7. PB-Chlamy reliably predicts Chlamydomonas protein localizations.**

1370 **Related to Figure 7**

1371 (A) The percent of predicted positive and negative protein localizations that are correct, for PB-
1372 Chlamy and PredAlgo. Error bars represent binomial 90% confidence intervals. The number
1373 of proteins varies between PB-Chlamy and PredAlgo, as the two programs predict different
1374 numbers of positive and negative proteins. The p-values comparing PB-Chlamy and
1375 PredAlgo (using Fisher's exact test) are: chloroplast 0.000036, non-chloroplast 0.28,
1376 mitochondrial 0.010, non-mitochondrial 0.20, secretory 0.033, non-secretory 0.36. The
1377 asterisk * indicates p<0.05.

1378 (B) The percent of true positive and negative protein localizations that were correctly classified
1379 by PB-Chlamy and PredAlgo. Error bars represent binomial 90% confidence intervals. The
1380 p-values comparing PB-Chlamy and PredAlgo using Fisher's exact test are: chloroplast
1381 0.86, non-chloroplast 0.0000016, mitochondrial 0.089, non-mitochondrial 0.016, secretory
1382 0.31, non-secretory 0.067. The asterisk * indicates p<0.05.

1383 (C-E) ROC curves comparing PB-Chlamy and PredAlgo for each localization category.
1384 PredAlgo uses a static score cutoff for predictions, therefore ROC curves terminate at this
1385 cutoff and do not reach a sensitivity of 1.
1386 (F-H) Precision-recall curves comparing PB-Chlamy and PredAlgo for each localization
1387 category.
1388 (I-Q) The raw PB-Chlamy prediction score distributions, normalized, for each chloroplast (I, L,
1389 O), mitochondrial (J, M, P) and secretory (K, N, Q), showing the training (I, J, K), validation
1390 (L, M, N) and test (O, P, Q) sets, with true positives and true negatives overlaid. The dotted
1391 bar at 0.5 is the cutoff for positive vs negative predictions.

1392
1393
1394 **Table S1. List of the 5,784 target genes that we attempted to clone and localize in this**
1395 **study.** Related to Figure 1 and Star Methods.

1396 **Table S2. Localizations of 1,032 proteins localized in this study.** Related to Figure 1.

1397 **Table S3. Number of proteins exhibiting each of the 141 distinct localization patterns.**
1398 Related to Figure 1.

1399 **Table S4. Our localizations match previously-published localizations for 27 of the 28**
1400 **previously-localized Chlamydomonas proteins represented in our study.** Related to
1401 Figure 1.

1402 **Table S5. Whole list of protein-protein interactions identified in this study.** Related to
1403 Figure 1-6.

1404 **Table S6. Links for viewing the data on Chlamylibrary.org and information for ordering**
1405 **plasmids and strains from the Chlamydomonas Resource Center.** Related to Star
1406 Methods.

1407 **Table S7. Predicted localizations of Chlamydomonas proteins (genome v5.6) by**
1408 **PB-Chlamy.** Related to Figure 7.

1409 (All tables in the attached excel spreadsheet)

1410 **Movie S1. The puncta of Cre15.g640650 show rapid movement.** Related to Figure 2.

1411

1412

1413 **REFERENCES**

1414

1415 Aksoy, M., Pootakham, W., and Grossman, A.R. (2014). Critical Function of a *Chlamydomonas*
1416 *reinhardtii* Putative Polyphosphate Polymerase Subunit during Nutrient Deprivation. *Plant Cell*
1417 26, 4214–4229. <https://doi.org/10.1105/tpc.114.129270>.

1418 Allmer, J., Naumann, B., Markert, C., Zhang, M., and Hippler, M. (2006). Mass spectrometric
1419 genomic data mining: Novel insights into bioenergetic pathways in *Chlamydomonas reinhardtii*.
1420 *Proteomics* 6, 6207–6220. <https://doi.org/10.1002/pmic.200600208>.

1421 Armbrust, E.V., Ferris, P.J., and Goodenough, U.W. (1993). A mating type-linked gene cluster
1422 expressed in *Chlamydomonas* zygotes participates in the uniparental inheritance of the
1423 chloroplast genome. *Cell* 74, 801–811. [https://doi.org/10.1016/0092-8674\(93\)90460-8](https://doi.org/10.1016/0092-8674(93)90460-8).

1424 Atteia, A., Adrait, A., Brugiere, S., Tardif, M., van Lis, R., Deusch, O., Dagan, T., Kuhn, L.,
1425 Gontero, B., Martin, W., et al. (2009). A proteomic survey of *Chlamydomonas reinhardtii*
1426 mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of
1427 the -proteobacterial mitochondrial ancestor. *Mol. Biol. Evol.* 26, 1533–1548.
1428 <https://doi.org/10.1093/molbev/msp068>.

1429 Behrenfeld, M.J., Randerson, J.T., McClain, C.R., Feldman, G.C., Los, S.O., Tucker, C.J.,
1430 Falkowski, P.G., Field, C.B., Frouin, R., Esaias, W.E., et al. (2001). Biospheric primary
1431 production during an ENSO transition. *Science* 291, 2594–2597.
1432 <https://doi.org/10.1126/science.1055071>.

1433 Bottomley, M.J., Collard, M.W., Huggenvik, J.I., Liu, Z., Gibson, T.J., and Sattler, M. (2001). The
1434 SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. *Nat.*
1435 *Struct. Biol.* 8, 626–633. doi: 10.1038/89675.

1436 Carrie, C., and Whelan, J. (2013). Widespread dual targeting of proteins in land plants: When,
1437 where, how and why. *Plant Signal. Behav.* 8, e25034. <https://doi.org/10.4161/psb.25034>.

1438 Carrie, C., Giraud, E., and Whelan, J. (2009). Protein transport in organelles: Dual targeting of
1439 proteins to mitochondria and chloroplasts: Dual targeting of proteins. *FEBS J.* 276, 1187–1195.
1440 <https://doi.org/10.1111/j.1742-4658.2009.06876.x>.

1441 Castellana, M., Wilson, M.Z., Xu, Y., Joshi, P., Cristea, I.M., Rabinowitz, J.D., Gitai, Z., and
1442 Wingreen, N.S. (2014). Enzyme clustering accelerates processing of intermediates through
1443 metabolic channeling. *Nat. Biotechnol.* 32, 1011–1018. <https://doi.org/10.1038/nbt.3018>.

1444 Cross, F.R. (2016). Tying down loose ends in the *Chlamydomonas* genome: functional
1445 significance of abundant upstream open reading frames. *G3 (Bethesda)* 6, 435–446.
1446 <https://doi.org/10.1534/g3.115.023119>.

1447 Depège, N., Bellafiore, S., and Rochaix, J.-D. (2003). Role of chloroplast protein kinase Stt7 in
1448 LHCII phosphorylation and state transition in *Chlamydomonas*. *Science* 299, 1572–1575.
1449 <https://doi.org/10.1126/science.1081397>.

1450 Deruere, J., Romer, S., d'Harlingue, A., Backhaus, R.A., Kuntz, M., and Camara, B. (1994).
1451 Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular
1452 lipoprotein structures. *Plant Cell* 6, 119–133. doi: 10.1105/tpc.6.1.119.

1453 Docampo, R., de Souza, W., Miranda, K., Rohloff, P., and Moreno, S.N.J. (2005).
1454 Acidocalcisomes conserved from bacteria to man. *Nat. Rev. Microbiol.* 3, 251–261.
1455 <https://doi.org/10.1038/nrmicro1097>.

1456 Dorfer, V., Strobl, M., Winkler, S., and Mechtler, K. (2021). MS Amanda 2.0: Advancements in
1457 the standalone implementation. *Rapid Commun. Mass Spectrom.* 35: e9088
1458 <https://doi.org/10.1002/rcm.9088>.

1459 Elias, B.A., and Givan, C.V. (1977). Alpha-ketoglutarate supply for amino acid synthesis in
1460 higher plant chloroplasts: intrachloroplastic localization of NADP-specific isocitrate
1461 dehydrogenase. *Plant Physiol.* 59, 738–740. <https://doi.org/10.1104/pp.59.4.738>.

1462 Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T., Feher, T.,
1463 Angerer, C., Steinegger, M., et al. (2021). ProtTrans: Towards cracking the language of life's
1464 code through self-supervised deep learning and high performance computing. *IEEE Trans.*
1465 *Pattern Anal. Mach. Intell.* 14. <https://doi.org/10.1109/TPAMI.2021.3095381>.

1466 Emanuelsson, O., Nielsen, H., and Heijne, G.V. (1999). ChloroP, a neural network-based
1467 method for predicting chloroplast transit peptides and their cleavage sites. *Protein Sci.* 8, 978–
1468 984. <https://doi.org/10.1110/ps.8.5.978>.

1469 Eng, J.K., McCormack, A.L., and Yates, J.R. (1994). An approach to correlate tandem mass
1470 spectral data of peptides with amino acid sequences in a protein database. *J. Am. Soc. Mass*
1471 *Spectrom.* 5, 976–989. [https://doi.org/10.1016/1044-0305\(94\)80016-2](https://doi.org/10.1016/1044-0305(94)80016-2).

1472 Engel, B.D., Schaffer, M., Kuhn Cuellar, L., Villa, E., Plitzko, J.M., and Baumeister, W. (2015).
1473 Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron
1474 tomography. *eLife* 4, e04889. <https://doi.org/10.7554/eLife.04889>.

1475 Ferro, M., Brugiere, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., Ramus, C., Miras,
1476 S., Mellal, M., Le Gall, S., et al. (2010). AT_CHLORO, a comprehensive chloroplast proteome
1477 database with subplastidial localization and curated information on envelope proteins. *Mol. Cell*
1478 *Proteomics* 9, 1063–1084. doi: 10.1074/mcp.M900325-MCP200.

1479 Flügel, F., Timm, S., Arrivault, S., Florian, A., Stitt, M., Fernie, A.R., and Bauwe, H. (2017). The
1480 photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch
1481 accumulation in *Arabidopsis*. *Plant Cell* 29, 2537–2551. <https://doi.org/10.1105/tpc.17.00256>.

1482 Freeman Rosenzweig, E.S., Xu, B., Kuhn Cuellar, L., Martinez-Sanchez, A., Schaffer, M.,
1483 Strauss, M., Cartwright, H.N., Ronceray, P., Plitzko, J.M., Förster, F., et al. (2017). The
1484 eukaryotic CO₂-concentrating organelle is liquid-like and exhibits dynamic reorganization. *Cell*
1485 171, 148–162. <https://doi.org/10.1016/j.cell.2017.08.008>.

1486 Fujiwara, M.T., Yasuzawa, M., Sasaki, S., Nakano, T., Niwa, Y., Yoshida, S., Abe, T., and Itoh,
1487 R.D. (2017). The *Arabidopsis* minD mutation causes aberrant FtsZ1 ring placement and
1488 moderate heterogeneity of chloroplasts in the leaf epidermis. *Plant Signal. Behav.* 12, e1343776.
1489 <https://doi.org/10.1080/15592324.2017.1343776>.

1490 Gross, J., Cho, W.K., Lezhneva, L., Falk, J., Krupinska, K., Shinozaki, K., Seki, M., Herrmann,
1491 R.G., and Meurer, J. (2006). A plant locus essential for phylloquinone (Vitamin K1) biosynthesis

1492 originated from a fusion of four eubacterial genes. *J. Biol. Chem.* **281**, 17189–17196.
1493 <https://doi.org/10.1074/jbc.M601754200>.

1494 Gutman, B.L., and Niyogi, K.K. (2004). Chlamydomonas and Arabidopsis. A dynamic duo. *Plant*
1495 *Physiol.* **135**, 607–610. <https://doi.org/10.1104/pp.104.041491>.

1496 Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L., and Braun, H.-P. (2015). Amino acid
1497 catabolism in plants. *Mol. Plant* **8**, 1563–1579. <https://doi.org/10.1016/j.molp.2015.09.005>.

1498 Hirano, T., Tanidokoro, K., Shimizu, Y., Kawarabayasi, Y., Ohshima, T., Sato, M., Tadano, S.,
1499 Ishikawa, H., Takio, S., Takechi, K., et al. (2016). Moss chloroplasts are surrounded by a
1500 peptidoglycan wall containing D-amino acids. *Plant Cell* **28**, 1521–1532.
1501 <https://doi.org/10.1105/tpc.16.00104>.

1502 Hözl, G., and Dörmann, P. (2019). Chloroplast lipids and their biosynthesis. *Annu. Rev. Plant*
1503 *Biol.* **70**, 51–81. <https://doi.org/10.1146/annurev-arplant-050718-100202>.

1504 Hooper, C.M., Castle, I.R., Tanz, S.K., Aryamanesh, N., and Millar, A.H. (2017). SUBA4: the
1505 interactive data analysis centre for Arabidopsis subcellular protein locations. *Nucleic Acids Res.*
1506 **45**, D1064–D1074. <https://doi.org/10.1093/nar/gkw1041>.

1507 Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L., and
1508 Conlon, P.J. (1988). A short polypeptide marker sequence useful for recombinant protein
1509 identification and purification. *Nat. Biotechnol.* **6**, 1204–1210. <https://doi.org/10.1038/nbt1088-1204>

1511 Huang, G., Ulrich, P.N., Storey, M., Johnson, D., Tischer, J., Tovar, J.A., Moreno, S.N.J.,
1512 Orlando, R., and Docampo, R. (2014). Proteomic analysis of the acidocalcisome, an organelle
1513 conserved from bacteria to human cells. *PLoS Pathog.* **10**, e1004555.
1514 <https://doi.org/10.1371/journal.ppat.1004555>.

1515 Huh, W.-K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O’Shea,
1516 E.K. (2003). Global analysis of protein localization in budding yeast. *Nature* **425**, 686–691.
1517 <https://doi.org/10.1038/nature02026>.

1518 Isemer, R., Krause, K., Grabe, N., Kitahata, N., Asami, T., and Krupinska, K. (2012a). Plastid
1519 located WHIRLY1 enhances the responsiveness of Arabidopsis seedlings toward abscisic acid.
1520 *Front. Plant Sci.* **3**. <https://doi.org/10.3389/fpls.2012.00283>.

1521 Isemer, R., Mulisch, M., Schäfer, A., Kirchner, S., Koop, H.-U., and Krupinska, K. (2012b).
1522 Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. *FEBS Lett.*
1523 **586**, 85–88. <https://doi.org/10.1016/j.febslet.2011.11.029>.

1524 Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., Ohsumi, Y., Hanson,
1525 M.R., and Mae, T. (2008). Mobilization of Rubisco and stroma-localized fluorescent proteins of
1526 chloroplasts to the vacuole by an ATG gene-dependent autophagic process. *Plant Physiol.* **148**,
1527 142–155. <https://doi.org/10.1104/pp.108.122770>.

1528 Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., and Minagawa, J. (2010).
1529 Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. *Nature*
1530 464, 1210–1213. <https://doi.org/10.1038/nature08885>.

1531 Jarvis, P., and Robinson, C. (2004). Mechanisms of protein import and routing in chloroplasts.
1532 *Cur. Biol.* 14, R1064–R1077. <https://doi.org/10.1016/j.cub.2004.11.049>.

1533 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
1534 K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction
1535 with AlphaFold. *Nature* 596, 583–589. <https://doi.org/10.1038/s41586-021-03819-2>.

1536 Karcher, D., Köster, D., Schadach, A., Klevesath, A., and Bock, R. (2009). The *Chlamydomonas*
1537 chloroplast HLP protein is required for nucleoid organization and genome maintenance. *Mol.*
1538 *Plant* 2, 1223–1232. <https://doi.org/10.1093/mp/ssp083>.

1539 Karpowicz, S.J., Prochnik, S.E., Grossman, A.R., and Merchant, S.S. (2011). The GreenCut2
1540 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. *J. Biol.*
1541 *Chem.* 286, 21427–21439. <https://doi.org/10.1074/jbc.M111.233734>.

1542 Keeling, P.J. (2010). The endosymbiotic origin, diversification and fate of plastids. *Phil. Trans. R.*
1543 *Soc. B* 365, 729–748. <https://doi.org/10.1098/rstb.2009.0103>.

1544 Kobayashi, Y., Misumi, O., Odahara, M., Ishibashi, K., Hirono, M., Hidaka, K., Endo, M.,
1545 Sugiyama, H., Iwasaki, H., Kuroiwa, T., et al. (2017). Holliday junction resolvases mediate
1546 chloroplast nucleoid segregation. *Science* 356, 631–634.
1547 <https://doi.org/10.1126/science.aan0038>.

1548 Komine, Y., Eggink, L.L., Park, H., and Hoober, J.K. (2000). Vacuolar granules in
1549 *Chlamydomonas reinhardtii*: polyphosphate and a 70-kDa polypeptide as major components.
1550 *Planta* 210, 897–905. <https://doi.org/10.1007/s004250050695>.

1551 Kong, F., Liang, Y., Légeret, B., Beyly-Adriano, A., Blangy, S., Haslam, R.P., Napier, J.A.,
1552 Beisson, F., Peltier, G., and Li-Beisson, Y. (2017). *Chlamydomonas* carries out fatty acid β -
1553 oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. *Plant J.* 90, 358–371.
1554 <https://doi.org/10.1111/tpj.13498>.

1555 Krath, B.N., and Hove-Jensen, B. (1999). Organellar and Cytosolic Localization of Four
1556 Phosphoribosyl Diphosphate Synthase Isozymes in Spinach. *Plant Physiol.* 119, 497–506.
1557 <https://doi.org/10.1104/pp.119.2.497>.

1558 Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant,
1559 S.S., and Malasarn, D. (2011). A revised mineral nutrient supplement increases biomass and
1560 growth rate in *Chlamydomonas reinhardtii*. *Plant J.* 66, 770–780.
1561 <https://doi.org/10.1111/j.1365-313X.2011.04537.x>.

1562 Krupinska, K., Blanco, N.E., Oetke, S., and Zottini, M. (2020). Genome communication in plants
1563 mediated by organelle–nucleus-located proteins. *Phil. Trans. R. Soc. B* 375, 20190397.
1564 <https://doi.org/10.1098/rstb.2019.0397>.

1565 Küken, A., Sommer, F., Yaneva-Roder, L., Mackinder, L.C.M., Höhne, M., Geimer, S., Jonikas,
1566 M.C., Schröda, M., Stitt, M., Nikoloski, Z., et al. (2018). Effects of microcompartmentation on

1567 flux distribution and metabolic pools in *Chlamydomonas reinhardtii* chloroplasts. eLife 7, e37960.
1568 <https://doi.org/10.7554/eLife.37960>.

1569 Lange, B.M., Rujan, T., Martin, W., and Croteau, R. (2000). Isoprenoid biosynthesis: The
1570 evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 97,
1571 13172–13177. <https://doi.org/10.1073/pnas.240454797>.

1572 Lee, P.T., Hsu, A.Y., Ha, H.T., and Clarke, C.F. (1997). A C-methyltransferase involved in both
1573 ubiquinone and menaquinone biosynthesis: isolation and identification of the *Escherichia coli*
1574 ubiE gene. J. Bacteriol. 179, 1748–1754. <https://doi.org/10.1128/jb.179.5.1748-1754.1997>.

1575 Leister, D. (2003). Chloroplast research in the genomic age. Trends Genet. 19, 47–56.
1576 [https://doi.org/10.1016/S0168-9525\(02\)00003-3](https://doi.org/10.1016/S0168-9525(02)00003-3).

1577 Leister, D., and Kleine, T. (2008). Towards a comprehensive catalog of chloroplast proteins and
1578 their interactions. Cell Res. 18, 1081–1083. <https://doi.org/10.1038/cr.2008.297>.

1579 Li, X., Patena, W., Fauser, F., Jinkerson, R.E., Saroussi, S., Meyer, M.T., Ivanova, N.,
1580 Robertson, J.M., Yue, R., Zhang, R., et al. (2019). A genome-wide algal mutant library and
1581 functional screen identifies genes required for eukaryotic photosynthesis. Nat. Genet. 51, 627–
1582 635. <https://doi.org/10.1038/s41588-019-0370-6>.

1583 Lois, L.M., Campos, N., Putra, S.R., Danielsen, K., Rohmer, M., and Boronat, A. (1998). Cloning
1584 and characterization of a gene from *Escherichia coli* encoding a transketolase-like enzyme that
1585 catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid,
1586 thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA 95, 2105–2110.
1587 <https://doi.org/10.1073/pnas.95.5.2105>.

1588 Lundquist, P.K., Poliakov, A., Bhuiyan, N.H., Zyballov, B., Sun, Q., and van Wijk, K.J. (2012).
1589 The functional network of the *Arabidopsis* plastoglobule proteome based on quantitative
1590 proteomics and genome-wide coexpression analysis. Plant Physiol. 158, 1172–1192.
1591 <https://doi.org/10.1104/pp.111.193144>.

1592 Mackinder, L.C.M., Meyer, M.T., Mettler-Altmann, T., Chen, V.K., Mitchell, M.C., Caspari, O.,
1593 Freeman Rosenzweig, E.S., Pallesen, L., Reeves, G., Itakura, A., et al. (2016). A repeat protein
1594 links Rubisco to form the eukaryotic carbon-concentrating organelle. Proc. Natl. Acad. Sci. USA
1595 113, 5958–5963. <https://doi.org/10.1073/pnas.1522866113>.

1596 Mackinder, L.C.M., Chen, C., Leib, R.D., Patena, W., Blum, S.R., Rodman, M., Ramundo, S.,
1597 Adams, C.M., and Jonikas, M.C. (2017). A spatial interactome reveals the protein organization
1598 of the algal CO₂-concentrating mechanism. Cell 171, 133–147.e14.
1599 <https://doi.org/10.1016/j.cell.2017.08.044>.

1600 Major, L.L., Wolucka, B.A., and Naismith, J.H. (2005). Structure and function of GDP-mannose-
1601 3',5'-epimerase: an enzyme which performs three chemical reactions at the same active site. J.
1602 Am. Chem. Soc. 127, 18309–18320. <https://doi.org/10.1021/ja056490i>.

1603 Mallik, R., Kundu, A., and Chaudhuri, S. (2018). High mobility group proteins: the multifaceted
1604 regulators of chromatin dynamics. Nucleus 61, 213–226. <https://doi.org/10.1007/s13237-018-0257-4>.

1606 Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A.,
1607 Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., et al. (2007). The Chlamydomonas
1608 genome reveals the evolution of key animal and plant functions. *Science* 318, 245–250.
1609 <https://doi.org/10.1126/science.1143609>.

1610 Mesnage, S., Dellarole, M., Baxter, N.J., Rouget, J.-B., Dimitrov, J.D., Wang, N., Fujimoto, Y.,
1611 Hounslow, A.M., Lacroix-Desmazes, S., Fukase, K., et al. (2014). Molecular basis for bacterial
1612 peptidoglycan recognition by LysM domains. *Nat. Commun.* 5, 4269.
1613 <https://doi.org/10.1038/ncomms5269>.

1614 Meyer, M.T., Itakura, A.K., Patena, W., Wang, L., He, S., Emrich-Mills, T., Lau, C.S., Yates, G.,
1615 Mackinder, L.C.M., and Jonikas, M.C. (2020). Assembly of the algal CO₂-fixing organelle, the
1616 pyrenoid, is guided by a Rubisco-binding motif. *Sci. Adv.* 6, eabd2408. DOI:
1617 [10.1126/sciadv.abd2408](https://doi.org/10.1126/sciadv.abd2408)

1618 Minai, L., Wostrikoff, K., Wollman, F.-A., and Choquet, Y. (2006). Chloroplast biogenesis of
1619 photosystem II cores involves a series of assembly-controlled steps that regulate translation.
1620 *Plant Cell* 18, 159–175. <https://doi.org/10.1105/tpc.105.037705>.

1621 Moriwaki, Y. (@Ag_smith). Twitter post: AlphaFold2 can also predict heterocomplexes. all you
1622 have to do is input the two sequences you want to predict and connect them with a long linker.
1623 https://twitter.com/Ag_smith/status/1417063635000598528. 2021-07-19.
1624

1625 Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant of
1626 yellow fluorescent protein with fast and efficient maturation for cell-biological applications. *Nat.*
1627 *Biotechnol.* 20, 87–90. doi: [10.1038/nbt0102-87](https://doi.org/10.1038/nbt0102-87).

1628 Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. (2003). A statistical model for
1629 identifying proteins by tandem mass spectrometry. *Anal. Chem.* 75, 4646–4658.
1630 <https://doi.org/10.1021/ac0341261>.

1631 Neupert, J., Karcher, D., and Bock, R. (2009). Generation of Chlamydomonas strains that
1632 efficiently express nuclear transgenes. *Plant J.* 57, 1140–1150.
1633 <https://doi.org/10.1111/j.1365-313X.2008.03746.x>.

1634 Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T.,
1635 Takebayashi, K., Sugimoto, T., Sano, S., et al. (2012). Chloroplast-mediated activation of plant
1636 immune signalling in *Arabidopsis*. *Nat. Commun.* 3, 926.
1637 <https://doi.org/10.1038/ncomms1926>.

1638 O'Connell, J.D., Zhao, A., Ellington, A.D., and Marcotte, E.M. (2012). Dynamic reorganization of
1639 metabolic enzymes into intracellular bodies. *Annu. Rev. Cell Dev. Biol.* 28, 89–111.
1640 <https://doi.org/10.1146/annurev-cellbio-101011-155841>.

1641 Osafune, T., Yokota, A., Sumida, S., and Hase, E. (1990). Immunogold localization of ribulose-
1642 1,5-bisphosphate carboxylase with reference to pyrenoid morphology in chloroplasts of
1643 synchronized *Euglena gracilis* cells. *Plant Physiol.* 92, 802–808.
1644 <https://doi.org/10.1104/pp.92.3.802>.

1645 Pareek, V., Sha, Z., He, J., Wingreen, N.S., and Benkovic, S.J. (2021). Metabolic channeling:
1646 predictions, deductions, and evidence. *Mol. Cell* 81, 3775–3785.
1647 <https://doi.org/10.1016/j.molcel.2021.08.030>.

1648 Pazour, G.J., Agrin, N., Leszyk, J., and Witman, G.B. (2005). Proteomic analysis of a eukaryotic
1649 cilium. *J. Cell Biol.* 170, 103–113. <https://doi.org/10.1083/jcb.200504008>.

1650 Pérez-Amador, M.A., Abler, M.L., De Rocher, E.J., Thompson, D.M., van Hoof, A., LeBrasseur,
1651 N.D., Lers, A., and Green, P.J. (2000). Identification of BFN1, a bifunctional nuclease induced
1652 during leaf and stem senescence in *Arabidopsis*. *Plant Physiol.* 122, 169–180.
1653 <https://doi.org/10.1104/pp.122.1.169>.

1654 Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H.,
1655 and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators,
1656 and developers. *Protein Sci.* 30, 70–82. <https://doi.org/10.1002/pro.3943>.

1657 Pfister, B., and Zeeman, S.C. (2016). Formation of starch in plant cells. *Cell Mol. Life Sci.* 73,
1658 2781–2807. <https://doi.org/10.1007/s00018-016-2250-x>.

1659 Pronina, N.A., and Semenenko, V.E. (1990). Membrane-bound carbonic anhydrase takes part
1660 in CO₂ concentration in algal cells. *Curr. Res. Photosynth.* 4, 489–492. DOI: 10.1007/978-94-
1661 009-0511-5_739

1662 Raven, J.A. (1997). CO₂-concentrating mechanisms: a direct role for thylakoid lumen
1663 acidification? *Plant Cell Environ.* 20, 147–154. <https://doi.org/10.1046/j.1365-3040.1997.d01-67.x>.

1665 Rousseaux, C., and Gregg, W. (2013). Interannual variation in phytoplankton primary production
1666 at a global scale. *Remote Sens.* 6, 1–19. <https://doi.org/10.3390/rs6010001>.

1667 Ruiz, F.A., Marchesini, N., Seufferheld, M., Govindjee, and Docampo, R. (2001). The
1668 polyphosphate bodies of *Chlamydomonas reinhardtii* possess a proton-pumping
1669 pyrophosphatase and are similar to acidocalcisomes. *J. Biol. Chem.* 276, 46196–46203.
1670 <https://doi.org/10.1074/jbc.M105268200>.

1671 Sainsbury, F., Thuenemann, E.C., and Lomonossoff, G.P. (2009). pEAQ: versatile expression
1672 vectors for easy and quick transient expression of heterologous proteins in plants. *Plant*
1673 *Biotechnol. J.* 7, 682–693. <https://doi.org/10.1111/j.1467-7652.2009.00434.x>.

1674 Sasaki, Y., and Nagano, Y. (2004). Plant acetyl-CoA carboxylase: structure, biosynthesis,
1675 regulation, and gene manipulation for plant breeding. *Biosci. Biotechnol. Biochem.* 68, 1175–
1676 1184. <https://doi.org/10.1271/bbb.68.1175>.

1677 Scebba, F., De Bastiani, M., Bernacchia, G., Andreucci, A., Galli, A., and Pitto, L. (2007).
1678 PRMT11: a new *Arabidopsis* MBD7 protein partner with arginine methyltransferase activity.
1679 *Plant J.* 52, 210–222. <https://doi.org/10.1111/j.1365-313X.2007.03238.x>.

1680 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
1681 Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-
1682 image analysis. *Nat. Methods* 9, 676–682. <https://doi.org/10.1038/nmeth.2019>.

1683 Schwarte, S., and Bauwe, H. (2007). Identification of the photorespiratory 2-phosphoglycolate
1684 phosphatase, PGLP1, in *Arabidopsis*. *Plant Physiol.* *144*, 1580–1586.
1685 <https://doi.org/10.1104/pp.107.099192>.

1686 Shanmugabalaji, V., Grimm, B., and Kessler, F. (2020). Characterization of a plastoglobule-
1687 localized SOUL4 heme-binding protein in *Arabidopsis thaliana*. *Front. Plant Sci.* *11*, 2.
1688 <https://doi.org/10.3389/fpls.2020.00002>.

1689 Shevchenko, A., Tomas, H., Havli, J., Olsen, J.V., and Mann, M. (2006). In-gel digestion for
1690 mass spectrometric characterization of proteins and proteomes. *Nat. Protoc.* *1*, 2856–2860.
1691 <https://doi.org/10.1038/nprot.2006.468>.

1692 Sowa, M.E., Bennett, E.J., Gygi, S.P., and Harper, J.W. (2009). Defining the human
1693 deubiquitinating enzyme interaction landscape. *Cell* *138*, 389–403.
1694 <https://doi.org/10.1016/j.cell.2009.04.042>.

1695 Steinegger, M., Mirdita, M., and Söding, J. (2019). Protein-level assembly increases protein
1696 sequence recovery from metagenomic samples manyfold. *Nat. Methods* *16*, 603–606.
1697 <https://doi.org/10.1038/s41592-019-0437-4>.

1698 Suzuki, K., Nakanishi, H., Bower, J., Yoder, D.W., Osteryoung, K.W., and Miyagishima, S.
1699 (2009). Plastid chaperonin proteins Cpn60 α and Cpn60 β are required for plastid division in
1700 *Arabidopsis thaliana*. *BMC Plant Biol.* *9*, 38. <https://doi.org/10.1186/1471-2229-9-38>.
1701 <https://doi.org/10.1186/1471-2229-9-38>.

1702 Takahashi, H., Schmollinger, S., Lee, J.-H., Schröda, M., Rappaport, F., Wollman, F.-A., and
1703 Vallon, O. (2016). PETO Interacts with other effectors of cyclic electron flow in Chlamydomonas.
1704 *Mol. Plant* *9*, 558–568. <https://doi.org/10.1016/j.molp.2015.12.017>.

1705 Tanaka, R., Oster, U., Kruse, E., Rüdiger, W., and Grimm, B. (1999). Reduced activity of
1706 geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially
1707 geranylgeranylated chlorophyll in transgenic Tobacco plants expressing antisense RNA for
1708 geranylgeranyl reductase. *Plant Physiol.* *120*, 695–704. <https://doi.org/10.1104/pp.120.3.695>.

1709 Tanaka, R., Rothbart, M., Oka, S., Takabayashi, A., Takahashi, K., Shibata, M., Myouga, F.,
1710 Motohashi, R., Shinozaki, K., Grimm, B., et al. (2010). LIL3, a light-harvesting-like protein, plays
1711 an essential role in chlorophyll and tocopherol biosynthesis. *Proc. Natl. Acad. Sci. USA* *107*,
1712 16721–16725. <https://doi.org/10.1073/pnas.1004699107>.

1713 Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugiére, S., Hippler, M., Ferro, M.,
1714 Bruley, C., Peltier, G., et al. (2012). PredAlgo: A new subcellular localization prediction tool
1715 dedicated to green algae. *Mol. Biol. Evol.* *29*, 3625–3639.
1716 <https://doi.org/10.1093/molbev/mss178>.

1717 Terashima, M., Specht, M., Naumann, B., and Hippler, M. (2010). Characterizing the anaerobic
1718 response of *Chlamydomonas reinhardtii* by quantitative proteomics. *Mol. Cell Proteomics* *9*,
1719 1514–1532. doi: 10.1074/mcp.M900421-MCP200.

1720 Terashima, M., Petroutsos, D., Hudig, M., Tolstygina, I., Trompelt, K., Gabelein, P., Fufezan, C.,
1721 Kudla, J., Weinl, S., Finazzi, G., et al. (2012). Calcium-dependent regulation of cyclic

1722 photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc. Natl. Acad. Sci.
1723 USA 109, 17717–17722. <https://doi.org/10.1073/pnas.1207118109>.

1724 Thul, P.J., Åkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund,
1725 A., Björk, L., Breckels, L.M., et al. (2017). A subcellular map of the human proteome. Science
1726 356, eaal3321. <https://doi.org/10.1126/science.aal3321>.

1727 Tsibris, J.C., McCormick, D.B., and Wright, L.D. (1966). Studies on the binding and function of
1728 flavin phosphates with flavin mononucleotide-dependent enzymes. J. Biol. Chem. 241, 1138–
1729 1143. [https://doi.org/10.1016/S0021-9258\(18\)96813-4](https://doi.org/10.1016/S0021-9258(18)96813-4).

1730 Fauser, F., Vilarrasa-Blasi, J., Onishi, M., Ramundo, S., Patena, W., Milligan, M., Osaki, J.,
1731 Philp, C., Nemeth, M., Salomé, P.A., et al. (2022). Systematic characterization of gene function
1732 in a photosynthetic organism alga *Chlamydomonas reinhardtii*. Nat. Genet.
1733 <https://doi.org/10.1038/s41588-022-01052-9>.

1734 Walker, K.A., and Harwood, J.L. (1985). Localization of chloroplastic fatty acid synthesis *de*
1735 *novo* in the stroma. Biochem. J. 226, 551–556. <https://doi.org/10.1042/bj2260551>

1736 Wang, L., Yamano, T., Takane, S., Niikawa, Y., Toyokawa, C., Ozawa, S., Tokutsu, R.,
1737 Takahashi, Y., Minagawa, J., Kanesaki, Y., et al. (2016). Chloroplast-mediated regulation of
1738 CO₂-concentrating mechanism by Ca²⁺-binding protein CAS in the green alga *Chlamydomonas*
1739 *reinhardtii*. Proc. Natl. Acad. Sci. USA 113, 12586–12591.
1740 <https://doi.org/10.1073/pnas.1606519113>.

1741 Wang, Y., Ries, A., Wu, K., Yang, A., and Crawford, N.M. (2010). The *Arabidopsis* prohibitin
1742 gene *PHB3* functions in nitric oxide-mediated responses and in hydrogen peroxide-induced
1743 nitric oxide accumulation. Plant Cell 22, 249–259. <https://doi.org/10.1105/tpc.109.072066>.

1744 Willeford, K.O., Gombos, Z., and Gibbs, M. (1989). Evidence for chloroplastic succinate
1745 dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron
1746 transport Chains of *Chlamydomonas reinhardtii*. Plant Physiol. 90, 1084–1087.
1747 <https://doi.org/10.1104/pp.90.3.1084>.

1748 Wise, R.R., and Hoober, J.K. (2006). The Structure and Function of Plastids. Dordrecht:
1749 Springer 3–21.

1750 Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R.,
1751 Funtowicz, M., et al. (2020). HuggingFace's transformers: State-of-the-art natural language
1752 processing. arXiv:1910.03771 [cs.CL]. <https://doi.org/10.48550/arXiv.1910.03771>.

1753 Wolfe, G.R., Park, H., Sharp, W.P., and Hoober, J.K. (1997). Light-harvesting complex
1754 apoproteins in cytoplasmic vacuoles in *Chlamydomonas reinhardtii* (Chlorophyta). J. Phycol. 33,
1755 377–386. doi: 10.1111/j.0022-3646.1997.00377.x

1756 Wolfenden, R. (1969). Transition state analogues for enzyme catalysis. Nature 223, 704–705.
1757 <https://doi.org/10.1038/223704a0>.

1758 Wunder, T., Oh, Z.G., and Mueller-Cajar, O. (2019). CO₂-fixing liquid droplets: Towards a
1759 dissection of the microalgal pyrenoid. Traffic 20, 380–389. <https://doi.org/10.1111/tra.12650>.

1760 Yamano, T., Iguchi, H., and Fukuzawa, H. (2013). Rapid transformation of *Chlamydomonas*
1761 *reinhardtii* without cell-wall removal. *J. Biosci. Bioeng.* **115**, 691–694.
1762 <https://doi.org/10.1016/j.jbiosc.2012.12.020>.

1763 Ytterberg, A.J., Peltier, J.-B., and van Wijk, K.J. (2006). Protein profiling of plastoglobules in
1764 chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic
1765 enzymes. *Plant Physiol.* **140**, 984–997. <https://doi.org/10.1104/pp.105.076083>.

1766 Zhan, Y., Dhaliwal, J., Adjibade, P., Uniacke, J., Mazroui, R., and Zerges, W. (2015). Localized
1767 control of oxidized RNA. *J. Cell Sci* **128**, 4210–4219. <https://doi.org/10.1242/jcs.175232>.

1768 Zhan, Y., Marchand, C.H., Maes, A., Mauries, A., Sun, Y., Dhaliwal, J.S., Uniacke, J., Arragain,
1769 S., Jiang, H., Gold, N.D., et al. (2018). Pyrenoid functions revealed by proteomics in
1770 *Chlamydomonas reinhardtii*. *PLoS ONE* **13**, e0185039.
1771 <https://doi.org/10.1371/journal.pone.0185039>.

1772 Zhang, R., Patena, W., Armbruster, U., Gang, S.S., Blum, S.R., and Jonikas, M.C. (2014). High-
1773 throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion
1774 sites and endonucleolytic cleavage of transforming DNA. *Plant Cell* **26**, 1398–1409.
1775 <https://doi.org/10.1105/tpc.114.124099>.

1776 Zrenner, R., Stitt, M., Sonnewald, U., and Boldt, R. (2006). Pyrimidine and purine biosynthesis
1777 and degradation in plants. *Annu. Rev. Plant Biol.* **57**, 805–836.
1778 <https://doi.org/10.1146/annurev.applant.57.032905.105421>.

1779