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Bacteria have evolved sophisticated and diverse immunity mechanisms to protect
themselves against a nearly constant onslaught of bacteriophages' . Similar to how
eukaryotic innate immune systems sense foreign invaders through pathogen-associated
molecular patterns (PAMPs)*, many bacterial immune systems that respond to
bacteriophage infection require a phage-specific trigger to be activated. However, the
identities of such triggers and the mechanistic basis of sensing remain almost completely
unknown. Here, we discover and investigate the anti-phage function of a fused toxin-
antitoxin (TA) system called CapRel5’® that protects E. coli against diverse phages.
Through genetic, biochemical, and structural analysis, we demonstrate that the C-terminal
domain of CapRel>'*6 regulates the toxic N-terminal region, serving as both an antitoxin
element and a phage-infection sensor. Following infection by certain phages, the newly
synthesized major capsid protein binds directly to the C-terminal domain of CapRel5'#¢ to
relieve autoinhibition, enabling the toxin domain to then pyrophosphorylate tRNAs, which
blocks translation to restrict viral infection. Collectively, our results reveal the molecular
mechanism by which a bacterial immune system directly senses a conserved, essential
component of phages, suggesting a PAMP-like sensing model for TA-mediated innate
immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers
are engaged in a Red Queen conflict®, revealing a new front in the intense coevolutionary
battle being waged by phage and bacteria. With capsid proteins of some eukaryotic viruses
known to stimulate innate immune signaling in mammalian hosts® ', our results now
reveal an ancient, deeply conserved facet of immunity.

Innate immunity in eukaryotes relies on pattern recognition receptors that directly sense
pathogen-associated molecular patterns (PAMPs), which are conserved molecules like bacterial
lipopolysaccharide and flagellin, or viral RNA or DNA*. These innate immune signaling
pathways must remain silent prior to infection, but be poised for rapid activation to defend
against foreign invaders. Bacteria also encode innate immune systems to protect themselves
against diverse invading bacteriophages, but how they sense infection is poorly understood. One
exception is restriction-modification (RM) systems, which are effectively in constant
surveillance mode, using DNA methylation to distinguish self from non-self. Similarly, for
CRISPR-Cas systems, the adaptive immune system of some bacteria, guide RNAs enable a cell
to specifically target foreign DNA. Dozens of new bacterial defense systems have been
discovered in recent years!!~!°, but unlike RM and CRISPR-Cas, many of them must be
specifically activated upon phage infection. This is particularly critical for abortive infection
(Abi) systems in which a defense system uses a lethal effector to kill an infected cell and prevent
propagation of the virus through a population'¢. The phage-encoded triggers for such bacterial
immunity mechanisms are largely unknown.

Toxin-antitoxin (TA) systems are prevalent genetic elements in bacteria that are emerging as key
components of anti-phage innate immunity!>!%!7-13 often serving as abortive infection modules
that kill infected cells to prevent spread of phages through a population. How TA systems sense
and respond to phage infection remains poorly understood. For the foxIN system, toxin (ToxN)
activation relies on efficient, phage-induced shutoff of host transcription coupled to the
intrinsically fast turnover of the antitoxin foxI'*2!. However, toxI] is an RNA, whereas most TA
systems feature a protein antitoxin. For systems with a protein antitoxin, the mechanism of
activation is often assumed to arise through antitoxin degradation. Although protein antitoxins
are often more proteolytically unstable than their cognate toxins, their turnover may not be fast
enough to enable toxin activation on the time-scale of a phage infection??, suggesting the
existence of alternative mechanisms for TA activation. Bacterial retrons function as tripartite TA
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72 systems and can be activated by overexpressing various prophage genes®*, but whether these
73 activators function as such during phage infection is unknown.

74 CapRel®6 is a fused, anti-phage toxin-antitoxin system

75  To investigate the molecular basis of phage-induced activation of bacterial immunity, we

76  focused here on toxSAS TA systems, which feature toxins homologous to bacterial small

77  alarmone synthetases (SAS) that pyrophosphorylate purine nucleotides?*. While most

78  housekeeping alarmone synthetases produce the growth regulator (p)ppGpp>+¢, toxSAS toxins
79  can synthesize (p)ppApp to deplete ATP**?7 or pyrophosphorylate tRNAs to inhibit

80 translation?*?%. Their cognate antitoxins can either bind and neutralize the toxin or act as

81  hydrolases to reverse toxin-catalyzed pyrophosphorylation?*2%, One subfamily of translation-
82  inhibiting toxSAS is called CapRel based on their prevalence in Cyanobacteria, Actinobacteria,
83  and Proteobacteria and sequence similarity to the (p)ppGpp synthetase/hydrolase Rel. This

84  subfamily includes a number of representatives that are, in contrast to canonical bicistronic TA
85  systems, encoded by a single open reading frame, with an N-terminal domain homologous to
86  toxSAS toxins and a C-terminal domain homologous to the corresponding antitoxins?® (Fig. 1a
87 and Sla).

88  We selected a fused CapRel encoded by the Salmonella phage SJ46 and also encoded (with

89  100% amino acid sequence identity) in prophages of several E. coli strains (Fig. S1b). The toxin
90  and antitoxin-like regions of CapRel>**¢ are related to the PhRel toxSAS toxin and its antitoxin
91  ATphRel, respectively, from the mycobacterial temperate phage Phrann® (Fig. Sla). This

92  Phrann-encoded system can inhibit superinfection by other temperate mycophages*’, although
93  the molecular basis of PhRel activation is not known. To test if CapRel®**¢ is a fused TA system,
94  we cloned the N-terminal region containing the conserved alarmone synthetase domain and the
95  C-terminal region containing the putative antitoxin domain under the control of separate

96  inducible promoters. Expression of the N-terminal fragment alone was toxic, and its toxicity was
97  rescued in trans by co-expression with the C-terminal fragment (Fig. 1b), suggesting that

98  CapRel># is a fused TA system.

99  To determine whether fused CapRels can defend against phages, we transformed E. coli
100  MG1655 with three different systems expressed from their native promoters on low copy-
101  number plasmids, and then tested whether each conferred protection against a panel of 12 diverse
102 coliphages. In addition to CapRelS™*, we also tested CapRel®* from Enterobacter chengduensis
103 and CapRel®? from Klebsiella pneumoniae (Fig. 1¢ and S1b-c). CapRel>'*¢ decreased the
104  efficiency of plaquing (EOP) for T2, T4, T6, RB69, and SEC®27 by 10-1000-fold (Fig. 1c-d),
105  indicating that this system provides strong protection against phages. T4 phage formed smaller
106  plaques when plated onto CapRel>'*®-containing cells, and one-step growth curves confirmed
107  that CapRel%™* reduces the burst size of T4 by ~70% (Fig. 1e). CapRel®™ protected strongly
108  against T7 and CapRelXP protected, albeit less efficiently, against SEC®18 (Fig. 1f and Slc).

109  Next, we tested whether CapRel®*¢ provides direct immunity or functions through abortive

110  infection in which an infected cell dies, but prevents the production of mature virions, thereby
111 sparing uninfected cells in a population. To this end, we infected cells containing CapRel>'*® with
112 T4 at a multiplicity of infection (MOI) of either 10 or 0.001, and found that defense only

113 manifested at the low MOI indicating that CapRel>*® likely functions through abortive infection
114  (Fig. 1g). Phage protection by CapRel>**¢ depended on the predicted enzymatic activity of the N-
115  terminal synthetase domain, as substituting the conserved tyrosine (Y155A) in the G-loop that is
116  critical for substrate binding abolished phage protection’! (Fig. 1g). A similar catalysis-
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compromising substitution Y153A in CapRel®"® also abolished phage protection (Fig. 11).
Collectively, our results established that fused CapRels can provide anti-phage defense, with
variable phage specificity.

To understand what determines the specificity of phage protection by fused CapRels, we
compared CapRel®'*6 and CapRel®*. These two proteins share 70% amino acid identity overall,
but harbor significant differences in their C-terminal regions, which are only 47% identical (Fig.
2a). In addition, this region is the least conserved when we compared a more diverse set of fused
CapRel homologs (Fig. S2a). Because CapRel®**¢ and CapRel®™® protected against different
phages, we made a chimera in which the C-terminal region of CapRel>'*® was replaced by the
corresponding region of CapRelE®. This chimeric CapRel no longer protected against SECD27
and gained protection against T7 (Fig. 2b), manifesting as decreased EOP and smaller plaques.
This result indicates that the C-terminal region of CapRel is critical to phage specificity.

Structural analysis of CapRel5’*¢ reveals an autoinhibited and an active state

To further understand the mechanistic basis of anti-phage defense by CapRel®*®, we solved a
crystal structure to 2.3 A resolution (Fig. 2c and Table S1). CapRel!* contains a conserved, N-
terminal nucleotide pyrophosphokinase domain present in alarmone synthetases and tRNA-
pyrophospho-transferase enzymes, that mediates toxicity (toxSYNTH). The smaller C-terminal
antitoxin domain consists of a central antiparallel three-stranded -sheet with an a-helix
connecting B-strands B7 and B8 (Fig. 2¢, S2b-c). The antitoxin domain is topologically analogous
to the classical Zn-finger domain (ZFD), but is lacking the conserved cysteines (Fig. S2d); we
refer to this domain as a pseudo-ZFD. The pseudo-ZFD is connected to the toxSYNTH domain
via a-helices a7, a8, and 09 and has a C-terminal a-helical extension that anchors the domain to
a8 and 09 (Fig. S2b). In this structure the ATP donor nucleotide binding pocket and the
conserved G-loop Y155 of toxSYNTH are exposed (Fig. 2¢), indicating that this likely
represents the active, toxic conformation of CapRelS*6,

To explore the conformational dynamics of the enzyme, we used AlphaFold?? to predict possible
alternative structures of CapRel®#6. In addition to predicting the open conformation observed in
the crystal structure (Fig. S2e), AlphaFold also predicted a closed conformational state in which
the C-terminal domain folds back 110° onto the toxSYNTH central B-sheet and blocks the ATP-
binding site (Fig. 2d). Comparison of the two states suggests that a conserved YxxY motif (Fig.
S2a) located in the hinge connecting the two C-terminal a-helices in the open state morphs into a
short 31¢-helix in the closed state (Fig. 2¢). This 310-helix projects into the toxSYNTH active site
and intercalates between 1 R79 and B2 R116 to block the adenine coordination site (Fig. 2e-f).

We hypothesized that this closed-to-open switch underlies the activation of CapRel®'*®, with the
docking of the pseudo-ZFD onto toxSYNTH precluding substrate binding in the absence of
phage infection (Fig. 2f). To test this hypothesis, we made single substitutions to the YxxY motif
(Y352A and Y355A) and residues from the predicted interface that serves as a scaffold to orient
and stabilize the 310-helix (A77K, R116A, V338A, L339A, A341K, A351K), which are highly
conserved among diverse CapRel homologs (Fig. S2a and S2f). Whereas wild-type CapRel>#¢
was not toxic when expressed in cells, each of the substitutions predicted to disrupt the intra-
molecular recognition interface, on either the N- or C-terminal domain, rendered CapRel3'#6
toxic (Fig. 2g). These substitutions likely lead to constitutive activation of CapRel>'*® by
disrupting an autoinhibited state. As a control, we showed that substitutions in different
structural elements of the pseudo-ZFD but not pointing toward the interface did not lead to
constitutive activation (Fig. 2g). Collectively, our results indicate that the pseudo-ZFD docks
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onto the ATP-binding site of CapRel®**¢ to prevent switching to the open state captured in our
crystal structure. Conservation of the YxxY motif and the interface residues suggest that this
auto-inhibitory regulation is likely conserved in other CapRels.

Fused CapRel3¢ is activated by the major capsid protein of SEC®27

Because full-length, wild-type CapRel>'*® was not toxic when expressed in the absence of phage
infection, we inferred that it must somehow be activated by phage. The toxins of some TA
systems are activated by the degradation of the more labile antitoxin!'®*334, To test whether the
C-terminal antitoxin of CapRel>**¢ is proteolytically cleaved off and degraded upon phage
infection, we N-terminally tagged CapRel>#6 and first verified that the tagged protein still
defends against phage (Fig. S3a). We then tracked the size of CapRel>*¢ by immunoblotting
following infection with SEC®27. The overall protein levels of CapRel>**¢ remained constant
and we observed only the full-length product, suggesting that CapRel>'*® was not proteolytically
processed (Fig. 3a). Thus, we hypothesized that a specific phage product regulates the C-terminal
domain of CapRel>'* to relieve autoinhibition. To identify such a factor, we sought to identify
SEC®27 mutants that escape CapRel>*® defense. As no spontaneous escape mutants could be
isolated, we used an experimental evolution approach (Fig. 3b). Briefly, we infected cells
containing an empty vector or CapRel®**¢ with serial dilutions of phage in microtiter plates. After
overnight incubation, we collected and pooled the phages from cleared wells, which indicated
successful infection, and used these to seed the next round of infections. Initially, cells harboring
the empty vector were infected much better, but after 13 rounds, each phage population had
evolved to infect both empty vector and CapRel>**¢-containing cells similarly (Fig. 3¢). We
isolated 10 mutant SEC®27 clones from 5 independently evolved populations and sequenced
their genomes. Remarkably, all 10 clones contained a point mutation in the same gene that
encodes a hypothetical protein, Gp57, with 9 clones producing the same L114P substitution and
one clone yielding an I115F substitution (Fig. 3d).

The structure of the hypothetical protein Gp57 predicted by AlphaFold*? is highly similar (DALI
Z-score of ~17) to the HK97-fold commonly adopted by major capsid proteins of dSDNA viruses
including bacteriophages and Herpesviruses® (Fig. 3¢). By performing mass spectrometry on
wild-type and escape mutant SEC®27 phages, we identified this hypothetical protein as the most
abundant protein in mature virions, consistent with it being the major capsid protein of SECD27
(Fig. 3f and Table S2).

Our results suggested that wild-type Gp57 from SEC®27 activates CapRel>'*®, with the escape
mutants preventing activation while retaining the ability to form a capsid. To test this hypothesis,
we first examined whether Gp57 alone is sufficient to activate CapRel>#¢. Indeed, co-producing
wild-type Gp57 with wild-type CapRel>*® was highly toxic to cells in the absence of phage
infection, whereas neither evolved variant (L114P or I115F) of Gp57 had a measurable effect on
growth when co-produced with CapRel5'*® (Fig. 3g). As controls, we confirmed that expressing
the wild-type or either Gp57 variant was not toxic on its own or if co-produced with a
catalytically compromised CapRel>*¢ (Fig. S3b).

To examine the basis of CapRel>* toxicity we first co-produced it with wild-type or the L114P
variant of Gp57 and then measured the effects on bulk transcription and translation by pulse-
labeling with *H-uridine and **S-methionine/**S-cysteine, respectively. Active CapRel>'4¢
produced with wild-type Gp57 robustly inhibited translation but not transcription (Fig. 3h and
S3c), whereas no effect was seen with Gp57(L114P). Similar effects were seen when
overexpressing just the N-terminal domain of CapRel>#¢ (Fig. S3d). We also measured bulk
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207  translation and transcription following SEC®27 infection of CapRel>*¢-containing cells and
208  observed a decrease in translation but not transcription with wild-type SEC®27. No effect on
209 translation was seen with the evolved mutant phage producing Gp57(L114P) (Fig. 3i and S3e).

210  Next, we measured the ability of full-length CapRel>**¢ to affect translation in vifro using the
211  reconstituted in vitro transcription-translation system. Purified CapRel>'*® inhibited synthesis of a
212 control DHFR protein in the presence of the SEC®27 major capsid protein Gp57, whereas no
213 inhibition was seen for the L114P 1115F variant of Gp57 (Fig. 3j). We also incubated wild-type
214  Gp57 or the L114P I115F variant with [y->’P]-ATP and bulk E. coli tRNAs in the presence and
215  absence of purified CapRel>#¢. Wild-type Gp57 strongly stimulated the pyrophosphorylation of
216  tRNAs by CapRel>%, like the previously characterized toxSAS enzymes FaRel2 and PhRel2%®
217  (Fig. 3k). With the L114P I115F variant of Gp57, tRNA pyrophosphorylation was reduced to the
218  background levels seen with CapRel>'*® alone. Together, our results demonstrate that Gp57, the
219  major capsid protein of SEC®27, is both necessary and sufficient to activate CapRel>'#,

220  enabling it to pyrophosphorylate tRNAs and inhibit translation.

221  CapRel®8 directly binds to the major capsid protein of SEC®27

222 To test whether the SEC®27 major capsid protein directly binds CapRel>*, we first

223 immunoprecipitated CapRel>'**-FLAG from cells infected with wild-type phage or the mutant
224 that produces Gp57(L114P) after verifying the tag does not affect CapRel>*¢ function (Fig. S3a).
225  We detected Gp57 that had co-precipitated with CapRel>#¢ by mass spectrometry when cells
226  were infected with wild-type phage, with a significant reduction in the mutant phage (Fig. S4a-
227 b). In addition, we co-produced CapRel>**-FLAG and Gp57-HA and found that wild-type, but
228  not the L114P or I115F variant of the capsid protein, co-precipitated with CapRel>**-FLAG

229  (Fig. 4a and S4c). Finally, we purified both full-length CapRel®'*® and Gp57, and used

230  isothermal titration calorimetry to show that they interact directly with an affinity of 190 nM

231 (Fig. 4b).

232 Consistent with this tight-binding interaction, the ab initio AlphaFold prediction of the

233 CapRel¥*-Gp57 complex has a large contact interface of around 1800 A2 (Fig. 4c). In the

234 complex, CapRel®'*¢ adopts the same open state seen in our crystal structure (Fig. 2d), with the
235  pseudo-ZFD making extensive contacts with the B-sheet and spine a-helix of the peripheral (P)-
236  domain of Gp57 (Fig. 4c and S4d). Notably, this region of Gp57 contains the residues L114 and
237 1115 identified in our escape mutants. The complex predicted further interactions of pseudo-ZFD
238  B6-B7 loop with the f6-a5 and B8-f9 loops of the axial (A)-domain of Gp57. In this arrangement
239  Gp57 prevents the recoil of pseudo-ZFD to block the active site of the enzyme while stabilizing
240  the YxxY motif in the non-neutralizing hinge conformation.

241  Hydrogen-deuterium exchange (HDX) monitored by mass spectrometry strongly supported the
242 AlphaFold predictions. In the presence of Gp57, the pseudo-ZFD of CapRel>'*® became more
243  protected with the strongest protection mapping to a10, B8, and the C-terminal a-helical

244  extension (Fig. 4d-e and S4f-g). This overlaps the same region critical for phage specificity (Fig.
245  2b). The HDX data also confirmed the interface formed between Gp57 P-domain 5 and

246  CapRel5* pseudo-ZFD as well as the Gp57 A-domain B8-B9 loop and CapRel>*¢ B6-B7 loop.
247  Finally, we observed increased deuterium uptake in CapRel3# in residues 110-124 of B2 and
248  125-130 of a4 which are part of the adenine coordination pocket of toxSYNTH, thus confirming
249  that interaction with Gp57 exposes the active site of the enzyme (Fig. 4d-e and S4f-g).

250  To further validate the role of the pseudo-ZFD in binding and activating CapRel>'*®, we
251  performed error-prone PCR-based mutagenesis on this domain and screened for mutations that
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disrupted activation of CapRel>'*® when it was co-produced with the capsid protein Gp57. The
substitutions L280Q and L280P drastically reduced the toxicity of CapRel3**¢ in the presence of
wild-type Gp57 (Fig. 4f), and prevented CapRel>#¢ from protecting against SEC®27 infection
(Fig. 4g). Importantly, these CapRel>#¢ variants still protected E. coli against phage T2 and T4,
indicating that these variants retained structural integrity (Fig. S4e). The substitution L307A had
similar, but reduced, effects on CapRel>**¢ activity (Fig. 4f-g).

The crystal structure of CapRel>*¢ suggested that L280 and L307 in the wild-type protein
promote the open, active state, with L280 stabilizing one of the hinge regions involving the
pseudo-ZFD and L307 structuring the f6-B7 loop that interacts with Gp57 A-domain. The
L280Q and L280P variants of CapRel>* were unable to co-precipitate the major capsid protein
of SEC®27, and the L307A substitution significantly reduced binding in this assay (Fig. 4h). In
sum, our findings strongly support a model in which the C-terminal pseudo-ZFD of CapRel3#6
directly recognizes the major capsid protein of SEC®27, thereby triggering a relief of
autoinhibition of the N-terminal toxSYNTH domain.

CapRel®’® can be activated by capsid homologs of other phages

The pseudo-ZFD of CapRel®*, including residues 1280 and L307, is the least well conserved
portion of the protein (Fig. S2a and S2f). This variability may reflect a Red Queen dynamic, a
hallmark of many host-pathogen interfaces that arises from cycles of selective pressure on
pathogens to evade host immunity followed by selection on host immune factors to restore
recognition of a pathogen®. As triggers of the CapRel defense system, phage capsid proteins are
likely under pressure to diversify, while retaining the ability to form a capsid, leading to a
selective pressure on the pseudo-ZFD of CapRel to diversify and retain its interaction with the
capsid proteins. To test this hypothesis, we examined three phages from the BASEL collection3®
(Bas4, Bas5 and Bas8) that are closely related to SEC®27 and contain a close homolog of Gp57
called Gp8 (Fig. S5a). We first found that co-expressing the major capsid homologs from Bas5
and Bas8, but not that of Bas4, with CapRel®>**¢ rendered CapRel>'* toxic, as with the SEC®27
capsid protein. We then tested whether CapRel®* protects against these phages and found that it
protected strongly against Bas5 and Bas§8, but not Bas4 (Fig. 5b).

To validate that defense against Bas8 requires activation of CapRel>'*® by this phage's capsid
protein homolog, we isolated spontaneous mutants of Bas8 that escaped defense. Two mutant
clones of Bas8 were no longer defended against by CapRel®'*® and contained either an F120L or
I124F substitution in the major capsid homolog (Fig. 5¢). Both substitutions significantly
reduced the capsid protein's ability to activate CapRel>*® when co-produced (Fig. 5d). Notably,
these two positions were close to the positions of the escape mutants identified in SEC®27
Gp57, further confirming that this region in the major capsid protein is important for activating
CapRel®*¢ (Fig. 5Se).

Unlike Bas8, Bas4 was not defended against by CapRel>'*® and its capsid homolog did not
activate CapRel>#¢ despite being 98% identical to SEC®27 Gp57, with just 5 amino acid
differences between the two. However, one difference is at position 113, near the region that
likely binds to CapRel®*®. This residue is a phenylalanine in SEC®27, Bas5, and Bas8, but a
tyrosine in Bas4 (Fig. 5e). We tested whether this residue is critical for activation by making a
Y 113F substitution in the Bas4 capsid homolog and found that it gained the ability to activate
CapRel¥*® when coproduced (Fig. 5f). Conversely, a F113Y substitution in the SEC®27 capsid
protein abolished its ability to activate CapRel®>**6. Additionally, we mutated Bas4 phage such
that it produces major capsid protein harboring the Y113F substitution. This mutant phage could
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297  still produce mature virions, but was now defended against by CapRel>**¢ (Fig. 5g). These results
298  support the notion of a Red Queen dynamic between the pseudo-ZFD of CapRel and the phage
299  capsid proteins that directly bind and activate CapRel.

300 Conclusions

301  We propose the following model for CapRel>'*® activation by SEC®27 (Fig. 5h). Without phage
302  infection, CapRel>*® adopts an inactive, closed conformation in cells with its C-terminal

303  antitoxin domain autoinhibiting the N-terminal toxin domain. Upon infection, the major phage
304  capsid protein is produced and directly binds to CapRel>#¢ to stabilize the active, open state.

305  This open state enables CapRel®*¢ to pyrophosphorylate tRNAs and inhibit translation, leading to
306  an abortive infection that prevents propagation of phage through a population of cells.

307  Importantly, our results imply that type II TA systems, which feature protein antitoxins, can be
308 activated without proteolysis of the antitoxin, which is often asserted as their primary means of
309  activation.

310  Major capsid proteins, like Gp57 from SECD27, may be a common trigger for both TA systems
311  and other anti-phage defense systems. Prior studies found that a short peptide called Gol within
312 the major capsid protein Gp23 of T4 can activate the Lit protease in E. coli if both components
313 are overproduced®’8, For PifA, which allows the F plasmid to exclude T7, escape mutants

314  mapped to the major capsid protein, but this interaction has not been studied biochemically?°.
315  Recent work reported that mutations in the major capsid protein of TS5 allow it to overcome

316  Pycsar-mediated defense, but the capsid protein alone is insufficient to activate Pycsar*®. We
317 anticipate that major capsid proteins may emerge as common, direct triggers for a diverse range
318  of anti-phage defense systems. As with PAMPs in eukaryotes, relying on an essential, abundant
319  component of phages for activation may help ensure that an immune response is only mounted
320  following an infection. Notably, the capsid proteins of some eukaryotic viruses stimulate

321 mammalian innate immune pathways. For instance, HIV capsid protein is directly detected in the
322 host cell cytoplasm and nucleus by TRIMS and NONO, respectively, to trigger innate immune
323 activation”. Thus, our results suggest that similar principles of pathogen detection underlie the
324  function and molecular basis of innate immunity in all domains of life.
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Methods
Strains and growth conditions

All bacterial and phage strains used in this study are listed in Table S3. Escherichia coli strains
were routinely grown at 37 °C in Luria broth (LB) medium for cloning and maintenance. Phages
were propagated by infecting a culture of E. coli MG1655 at an ODgoo ~0.1-0.2 with a MOI of
0.1. Cleared cultures were pelleted by centrifugation to remove residual bacteria and filtered
through a 0.2 um filter. Chloroform was then added to phage lysates to prevent bacterial growth.
All phage infection experiments in liquid media and phage spotting experiments were performed
in LB medium at 25 °C, except for spotting of T2 and T4 on strains producing CapRel5/*6
variants, which was performed in M9 medium (6.4 g/L. Na2HPO4-7H20, 1.5 g/L. KH2PO4, 0.25
g/L NaCl, 0.5 g/L NH4Cl medium supplemented with 0.1% casamino acids, 0.4% glycerol, 0.4%
glucose, 2 mM MgSO4, and 0.1 mM CaCl2) at 30 °C. For liquid induction experiments from
pBAD33 vectors, bacterial cells were grown in M9 medium. Antibiotics were used at the
following concentrations (liquid; plates): carbenicillin (50 pg/mL; 100 pg/mL), chloramphenicol
(20 pg/mL; 30 pg/mL).

Plasmid construction

All plasmids are listed in Table S4. All primers and synthesized gene sequences are listed in
Table S5.

pBR322-capRel constructs: DNA encoding capRel*S, capRel?™, and capRel®? open reading
frames were codon-optimized for expression in E. coli and 100-200 bp of the upstream region
from the source organism was added in each case for native expression (TZ-1 to TZ-5). DNA
was commercially synthesized by Integrated DNA Technology as gBlocks and assembled into a
promoter-less backbone of pBR322 amplified with TZ-6 and TZ-7 by Gibson assembly.
Mutations that produce the single amino-acid substitutions CapRel>*(Y155A),
CapRel®(Y153A), CapRelS*¢(L280Q), CapRelS*(L280P) and CapRelS™¢(L307A) were
generated by site-directed mutagenesis using primers TZ-8 to TZ-11 and TZ49 to TZ-54. To add
an N-terminal Hise-tag or a C-terminal FLAG-tag to CapRel>#S, primers TZ41 and TZ-42 or
TZ45 and TZ46 were used to PCR-amplify pBR322-capRel5’*® followed by Gibson assembly.
pBR322-capRel-chimera was constructed by inserting capRel®"¢(270-339) that had been PCR-
amplified with TZ-22 and TZ-23 into pBR322-capRel*’*® linearized with TZ-20 and TZ-21
using Gibson assembly.

pBAD33-capRel5#S constructs: capRel>*°(1-272) or full-length capRel*’*® was PCR-amplified
with TZ14 and TZ15, or TZ14 and TZ24, respectively, and inserted into pBAD33 linearized with
TZ-12 and TZ-13 using Gibson assembly. pBAD33-capRel’*® variants (A77K, R116A, V338A,
L339A, A341K, A351K, Y352A or Y355A) were constructed by site-directed mutagenesis using
primers TZ25 to TZ40. pBAD33-capRel*’*% variants (R78A, K311A, R314A, E319A, K346A)
were constructed by site-directed mutagenesis using primers TZ75 to TZ84.

pEXT20-capRel>’*® construct: capRel’#5(273-373) was PCR-amplified with primers TZ-18 and
TZ-19, and then inserted into linearized pEXT20 with TZ-16 and TZ-17 using Gibson assembly.

pBAD33-gp57 constructs: wild-type or mutant variant (L114P or I115F) gp57 was PCR-
amplified from the corresponding wild-type or escape mutant SEC®27 phage using primers TZ-
43 and TZ-44, and inserted into linearized pPBAD33 using Gibson assembly. A C-terminal HA-
tag was added to wild-type or mutant gp57 using primers TZ-47 and TZ-48 to PCR-amplify the
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412 corresponding construct followed by Gibson assembly. The F113Y variant of gp57 was
413 generated by site-directed mutagenesis using primers TZ-63 and TZ-64.

414  pBAD33-gp8: the genes encoding the major capsid protein homologs Gp85**, Gp852°, and

415  Gp8Bs8 were PCR-amplified from the corresponding phage using primers TZ-55 to TZ-60 and
416  inserted into linearized pBAD33 by Gibson assembly. The Y113F variant of gp8%%* was

417  generated by site-directed mutagenesis using primers TZ-61 and TZ-62. The F120L and 1124F
418  variants of gp8%%¢ were cloned from the corresponding phage escape mutants using primers TZ-
419 59 and TZ-60.

420  pET-gp57 constructs: gp57 and gp57(L114P 1115F) fragments were PCR-amplified with primers
421  TZ-65 and TZ-66 and either TZ-67 template (for gp57) or TZ-68 (for gp57(L114P 1115F)).

422  Using Gibson assembly, the resultant linear DNA fragments were inserted into linearized

423 pET24d (without tag) using TZ-69 and TZ-70. Templates TZ-67 and TZ-68 we synthesized as
424  gBlocks by Integrated DNA Technology.

425  pET24d-His1o-SUMO-capRel#S constructs: capRel*’* ORF was PCR-amplified using primers
426  TZ-71 and TZ-72 as well as pBAD-capRel5*¢ as template, and, using Gibson assembly, inserted
427  into a linearized pET24d-His;o-SUMO plasmid using primers TZ-73 and TZ-74.

428 Strain construction

429  Plasmids described above were introduced into E. coli MG1655 or BW27783 by TSS
430  transformation or electroporation.

431  Bas4 mutant phage were generated using a CRISPR-Cas system for targeted mutagenesis as
432 described previously*!. Briefly, sequences for RNA guides to target Cas9-mediated cleavage
433 were designed using the toolbox in Geneious Prime 2021.2.2 and selected for targeting of gp85es#
434 but nowhere else in the Bas4 genome. The guides were inserted into the pCas9 plasmid and
435  tested for their ability to restrict Bas4. An efficient guide was selected and the pCas9-guide
436  plasmid was co-transformed into E. coli MG1655 with a high copy-number repair plasmid
437  containing gp82%?(Y113F) with the guide mutated to prevent self-cutting. The wild-type Bas4
438  phage was plated onto a strain containing both the pCas9-guide and the repair plasmid, and
439  single plaques were screened by Sanger Sequencing. Two clones that produce the Y113F

440  substituted Gp8 were propagated twice on strains containing only pCas9-guide for further
441  selection and genomes were sequence verified by Illumina sequencing as described below.

442  Toxicity assays on solid media

443 For producing the CapRel®** N- and C-terminal domains, single colonies of E. coli MG1655
444  containing pBAD33-capRel3’*°(1-272) and pEXT20-capRel*’#5(273-373) or the corresponding
445  empty vectors were grown for 6 hours at 37 °C in LB-glucose to saturation. 200 pL of each
446  saturated culture was then pelleted by centrifugation at 4000 g for 10 min, washed once in 1x
447  phosphate-buffered saline (PBS), and resuspended in 400 pL. 1x PBS. Cultures were then

448  serially-diluted 10-fold in 1x PBS and spotted on M9L plates (M9 medium supplemented with
449 5% LB (v/v)) further supplemented with 0.4% glucose, 0.2% arabinose or 0.2% arabinose and
450 100 uM IPTG. Plates were then incubated at 37 °C overnight before imaging.

451  For producing full-length CapRel®>*®, E. coli MG1655 containing pBAD33-capRel’*® or a
452  mutant form of capRel3’*% were grown to saturation and processed as above. Cultures were plated
453  onto 0.4% glucose and 0.2% arabinose and incubated at 37 °C overnight.
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454  For co-producing CapRel®>*¢ and the major capsid proteins from SEC®27, Bas4, Bas5, or Bas8,
455  E. coli MG1655 harboring pBR322-capRel*’# and pBAD33-capsid protein were grown to

456  saturation and processed as above. Cultures were plated onto 0.4% glucose and 0.2% arabinose
457  and incubated at 37 °C overnight.

458  For co-producing CapRel>#¢ and variants of the major capsid protein from Bas8, E. coli

459  BW27783 harboring pBR322-capRel5’*5 and pBAD33-gp85%¢ (wild-type or a mutant variant)
460  were grown to saturation and processed as above. Cultures were plated onto 0.4% glucose and
461  0.0002% arabinose and incubated at 37 °C overnight.

462  Phage spotting assays and efficiency of plaquing (EOP) measurements

463  Phage stocks isolated from single plaques were propagated in E. coli MG1655 at 37 °C in LB.
464  To titer phage, dilutions of stocks were mixed with E. coli MG1655 and melted LB + 0.5% agar
465  and spread on LB + 1.2% agar plates and incubated at 37 °C overnight. For phage spotting

466  assays, 40 pL of a bacterial strain of interest was mixed with 4 mL LB + 0.5% agar and spread
467  onan LB + 1.2% agar + antibiotic plate. Phage stocks were then serially diluted in 1x FM buffer
468 (20 mM Tris-HCI pH 7.4, 100 mM NaCl, 10 mM MgSOs4), and 2 pL of each dilution was spotted
469  on the bacterial lawn. Plates were then incubated at 25 °C overnight before imaging. Efficiency
470  of plaquing (EOP) was calculated by comparing the ability of the phage to form plaques on an
471  experimental strain relative to the control strain. Experiments were replicated 3 times

472  independently and representative images are shown.

473  For spotting phage T2 and T4 on strains producing CapRel>'*® variants, 40 uL of a bacterial

474  strain of interest was mixed with 4 mL M9 + 0.5% agar and spread on an M9 + 1.2% agar +
475  antibiotic plate. Phage were serially diluted and spotted as described above. Plates were then
476  incubated at 30 °C overnight before imaging.

477  Growth curves following phage infection in liquid culture

478  Single colonies of E. coli MG1655 pBR322-EV or pBR322-capRel5*6 or pBR322-

479  capRel3*%(Y1554) were grown in LB overnight. Cultures were then back-diluted to ODggo = 0.1
480  in fresh LB and 100 pL cells were added into each well of a 96-well plate. 10 pL of serial-

481  diluted T4 phage were added to each well at the indicated MOI and growth following phage
482  infection was measured at 15 min intervals with orbital shaking at 25 °C on a plate reader

483  (Biotek). Data reported are the mean and standard deviation of 8 plate replicates and the growth
484  curve experiment was replicated 3 times independently.

485  One-step growth curves

486  Single colonies of E. coli MG1655 pBR322-EV or pBR322-capRel5'*6 were grown overnight in
487  LB. Overnight cultures were back-diluted to ODsoo= 0.05 in 25 mL fresh LB and grown to

488  ODeoo ~ 0.3 at 25 °C. 10 mL of each culture were infected with T4 phage at an MOI of 0.05 in
489 LB at 25 °C and phages were allowed to adsorb for 10 min before serial dilution in LB three

490  times (1:100, 1:10, 1:10 serial dilution) to three flasks. Then, at indicated time points, 100 puL of
491  infected cells from the corresponding dilution flask were mixed with 100 pL of indicator cells
492  MGI1655 pBR322-EV (ODsoo ~ 0.3), and the mixtures were mixed with 4 mL of LB + 0.5% agar
493  and spread on LB + 1.2% agar plates. Plates were incubated overnight at 25 °C and plaques were
494  enumerated the following day. Plaque forming units (pfu/mL) were calculated based on the

495  dilution flask samples were taken from. Data reported are the mean and individual data points
496  from 3 biological replicates.
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497  Western blot of CapRel5!#6 after phage infection

498  Single colonies of E. coli MG1655 pBR322-Hiss-capRel5’*% were grown overnight in LB.

499  Overnight cultures were back-diluted to ODgoo = 0.05 in 25 mL fresh LB and grown to ODgoo =
500 0.2 at 25 °C. Cells were infected with phage SEC®27 at MOI = 100, and incubated at 25 °C

501  during the experiment. At each indicated time point (0, 10, 20, 40, 60 min), ODgoo was measured
502  and I mL of cells was pelleted at 21,000 g for 2 min at 4 °C. Supernatant was removed and

503  pellets were flash-frozen in liquid nitrogen. Pellets were thawed and resuspended in 1x Laemmli
504  sample buffer (Bio-Rad) supplemented with 2-mercaptoethanol with ODgoo normalized. Samples
505  were then boiled at 95 °C and analyzed by 12% SDS-PAGE and transferred to a 0.45 um PVDF
506  membrane. Anti-Hise antibody (Invitrogen) was used at a final concentration of 1:1000, and

507  SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher) was used to develop
508  the blots. Blots were imaged by a ChemiDoc Imaging system (Bio-Rad). Image shown is a

509 representative of 2 independent biological replicates.

510 TIsolation of phage escape mutants to infect CapRel5'4¢

511  The phage evolution experiment was conducted as described previously*?. Briefly, five

512 independent populations were evolved in a 96-well plate containing a sensitive host E. coli

513  MGI1655 pBR322-EV and a resistant host E. coli MG1655 pBR322-capRel>’*®. One control

514  population was evolved with only the sensitive host. Overnight bacterial cultures were back-

515  diluted to ODsoo = 0.1 in LB and 100 pL were seeded into each well. Cells were infected with
516  10-fold serial dilutions of SEC®27 phage with MOI from 100 to 10, with one well uninfected
517  to monitor for contamination. Plates were sealed with breathable plate seals and incubated at

518 25 °C for 6 hours in a plate shaker at 1000 rpm. Cleared wells from each population were pooled,
519  pelleted at 4000 g for 20 min to remove bacteria, and the supernatant lysates were transferred to
520  a 96 deep-well block with 40 pL chloroform added to prevent bacterial growth. Lysates were

521  spotted onto both sensitive and resistant hosts to check the defense phenotype. Thirteen rounds
522 of evolution were performed to allow all five populations to overcome CapRel>#¢ defense.

523  Evolved clones from each evolved population were isolated by plating to single plaques on lawns
524  of resistant host, and control clones from the control population were isolated on a lawn of the
525  sensitive host. Two clones from each population were propagated using the corresponding host
526  and sequenced as described below.

527  Bas8 escape mutants were isolated by plating a population of phage onto CapRel>**-containing
528  cells. 20 puL of 10! pfu/mL Bas8 phage mixed with 40 uL overnight culture of E. coli MG1655
529  pBR322-capRel%’*0 were added to 4 mL of LB + 0.5% agar and spread onto LB + 1.2% agar.
530  Plates were incubated at 25 °C overnight. Single plaques were isolated and propagated using the
531  same strain in LB at 25 °C. Amplified phage lysates were pelleted to remove bacteria, and then
532  plated to single plaques and propagated similarly for a second round of isolation to improve

533 purity and sequenced as described below.

534  Phage DNA extraction and Illumina sequencing

535  To extract phage DNA, high titer phage lysates (> 10° pfu/uL) were treated with DNase I (0.001
536  U/uL) and RNase A (0.05 mg/mL) at 37 °C for 30 min. 10 mM EDTA was used to inactivate the
537  nucleases. Lysates were then incubated with Proteinase K at 50 °C for 30 min to disrupt capsids
538 and release phage DNA. Phage DNA was isolated by ethanol precipitation. Briefly, NaOAc pH
539 5.2 was added to 300 mM followed by 100% ethanol to a final volume fraction of 70%. Samples
540  were incubated at -80 °C overnight, pelleted at 21,000 g for 20 min and supernatant removed.
541  Pellets were washed with 100 pL isopropanol and 200 pL. 70% (v/v) ethanol, and then aired
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dried at room temperature and resuspended in 25 pL 1x TE buffer (10 mM Tris-HCL, 0.1 mM
EDTA, pH = 8). Concentrations of extracted DNA were measured by NanoDrop (Thermo Fisher
Scientific).

To prepare [llumina sequencing libraries, 100-200 ng of genomic DNA was sheared in a
Diagenode Bioruptor 300 sonicator water bath for 20x 30 s cycles at maximum intensity.
Sheared genomic DNA was purified using AmpureXP beads, followed by end repair, 3'
adenylation, and adaptor ligation. Barcodes were added to both 5' and 3' ends by PCR with
primers that anneal to the [llumina adaptors. The libraries were cleaned by Ampure XP beads
using a double cut to elute fragment sizes matching the read-lengths of the sequencing run.
Libraries were sequenced on an Illumina MiSeq at the MIT BioMicro Center. Illumina reads
were assembled to the reference genomes using Geneious Prime 2021.2.2.

Mass spectrometry of phages

Wild-type or mutant (L114P in Gp57, evolved clone 1 from population 3) SEC®27 phage were
propagated in E. coli MG1655 for high titer stocks. Briefly, E. coli MG1655 (ODgoo= 0.2) in LB
were infected with phages at MOI = 0.1 and incubated at 37 °C for 4 hours. Cells were pelleted
at 4000 g for 10 min and supernatant lysates were filtered through 0.2 pum filters. 500 uL of
phage stocks (10'° pfu/uL) were further concentrated with Amicon Ultra filter (MW 100 kDa)
and washed twice with 1x FM buffer (20 mM Tris-HCI pH 7.4, 100 mM NaCl, 10 mM MgSOs).
Concentrated phage lysates were boiled to denature virions and run on 4-20% SDS-PAGE. Each
lane from the gel was excised. Proteins were reduced with 10 mM dithiothreitol (Sigma) for 1
hour at 56 °C and then alkylated with 20 mM iodoacetamide (Sigma) for 1 hour at 25 °C in the
dark. Proteins were then digested with 12.5 ng/uL modified trypsin (Promega) in 50 uL. 100
mM ammonium bicarbonate, pH 8.9 at 25 °C overnight. Peptides were extracted by incubating
the gel pieces with 50% acetonitrile/5% formic acid then 100 mM ammonium bicarbonate,
repeated twice followed by incubating the gel pieces with 100% acetonitrile then 100 mM
ammonium bicarbonate, repeated twice. Each fraction was collected, combined, and reduced to
near dryness in a vacuum centrifuge. Peptides were desalted using Pierce Peptide Desalting Spin
Columns (Thermo) and then lyophilized. The tryptic peptides were separated by reverse phase
HPLC (Thermo Ultimate 3000) using a Thermo PepMap RSLC C18 column over a 90 min
gradient before nano-electrospray using an Exploris mass spectrometer (Thermo). Solvent A was
0.1% formic acid in water and solvent B was 0.1% formic acid in acetonitrile. Detected peptides
were mapped to SEC®O27 protein sequences and the abundance of proteins were estimated by
number of spectrum counts/molecular weight (SC/MW) to normalize for protein sizes.

Co-immunoprecipitation (co-IP) analysis

For immunoprecipitation of CapRel>'*® after phage infection, E. coli MG1655 containing
pBR322-capRel5’*-FLAG were grown overnight in LB. Overnight cultures were back-diluted to
ODgoo=0.05 in 175 mL of LB and grown to ODgoo ~ 0.3 at 25 °C. Cells were infected with wild-
type or mutant (L114P in Gp57, evolved clone 1 from population 3) SEC®27 at MOI = 100 and
incubated at 25 °C. At the indicated time points (15 min or 40 min), ODsoo was measured and 50
mL of cells were pelleted at 6000 g for 5 min at 4 °C. Uninfected cells were harvested at 0 min
before phage infection. Supernatant was removed and cells were resuspended in 900 pL lysis
buffer (25 mM Tris-HCL, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 and 5% glycerol)
supplemented with protease inhibitor (Roche), 1 uL/mL Ready-Lyse™ Lysozyme Solution
(Lucigen) and 1 pL/mL benzonase nuclease (Sigma). Samples were lysed by two freeze-thaw
cycles, and lysates were normalized by ODeoo. Lysates were pelleted at 21,000 g for 10 min at 4
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°C, and 850 pL of supernatant were incubated with pre-washed anti-FLAG M2 magnetic beads
(Sigma) beads for 1 hour at 4 °C with end-over-end rotation. Beads were then washed 3 times
with lysis buffer containing 350 mM NaCl but free of detergent. On-bead reduction, alkylation
and digestion were performed. Proteins were reduced with 10 mM dithiothreitol (Sigma) for 1
hour at 56 °C and then alkylated with 20 mM iodoacetamide (Sigma) for 1 hour at 25 °C in the
dark. Proteins were then digested with modified trypsin (Promega) at an enzyme/substrate ratio
of 1:50 in 100 mM ammonium bicarbonate, pH 8 at 25 °C overnight. Trypsin activity was halted
by addition of formic acid (99.9 %, Sigma) to a final concentration of 5 %. Peptides were
desalted using Pierce Peptide Desalting Spin Columns (Thermo) then lyophilized. The tryptic
peptides were subjected to LC-MS/MS as described above. Experiments were performed 2 times
independently and spectral counts are reported. Ratio of spectral counts between Gp57 and
CapRel®'* were calculated and graphed for normalization.

For co-producing CapRel®>*¢ and Gp57, E. coli MG1655 containing pBR322-capRel*’*® or
pBR322-capRelS'*-FLAG (wild type or mutants) and pBAD33-gp57-HA (wild type or mutants)
were grown overnight in M9-glucose. Overnight cultures were back-diluted to ODgoo= 0.05 in
50 mL of M9 (no glucose) and grown to ODgoo ~ 0.3 at 37 °C. Cells were induced with 0.2%
arabinose for 30 min at 37 °C, then ODgoo was measured and cells were pelleted at 4000 g for 10
min at 4 °C. Supernatant was removed and cells were resuspended in 900 pL lysis buffer as
described above. Samples were lysed by two freeze-thaw cycles, and lysates were normalized by
ODeoo. Lysates were pelleted at 21,000 g for 10 min at 4 °C, and 850 pL of supernatant were
incubated with pre-washed anti-FLAG M2 magnetic beads (Sigma) beads for 1 hour at 4 °C with
end-over-end rotation. Beads were then washed 3 times with lysis buffer containing 350 mM
NaCl. 1x Laemmli sample buffer (Bio-Rad) supplemented with 2-mercaptoethanol was added to
beads directly to elute proteins. Samples were boiled at 95 °C and analyzed by 12% SDS-PAGE
and transferred to a 0.45 pm PVDF membrane. Anti-FLAG and anti-HA antibodies (Cell
Signaling Technology) were used at a final concentration of 1:1000, and SuperSignal West
Femto Maximum Sensitivity Substrate (ThermoFisher) was used to develop the blots. Blots were
imaged by a ChemiDoc Imaging system (Bio-Rad). Images shown are representatives of 3
independent biological replicates.

Incorporation assays

For co-producing CapRel®*¢ and Gp57, the SEC®27 major capsid protein, single colonies of E.

coli MG 1655 containing pBR322-capRel*’*® and pBAD33-gp57 (wild-type or L114P variant) or
corresponding empty vectors were grown overnight in M9-glucose. Overnight cultures were
back-diluted to ODgoo= 0.05 in 25 mL M9-glucose and grown to ODgoo ~ 0.3 at 37 °C. Cells
were pelleted at 4000 g for 5 min at 4 °C and washed once with M9 (no glucose), and then back-
diluted to ODgoo = 0.1 in 15 mL M9 (no glucose) and recovered for 45 min at 37 °C. At the
beginning of the experiment, cells were induced with 0.2% arabinose. At the indicated time
points (0, 10, 20, 30, 40 min), ODsoo was measured and an aliquot of 250 uL of cells was
transferred to microcentrifuge tube containing [5,6-*H]-uridine (PerkinElmer) (4 uCi/mL) for
transcription measurements or EasyTag™ EXPRESS-**S Protein Labeling Mix, [*°S]
(PerkinElmer) at 44 nCi/mL for translation measurements. Tubes were incubated at 37 °C for 2
min, then quenched by addition of nonradioactive uridine (1.5 mM) or cysteine and methionine
(15 mM each) and incubated for an additional 2 min. Samples were then added to ice cold
trichloroacetic acid (TCA) (10% w/v) and incubated at least 30 min on ice to allow for
precipitation. Resulting samples were vacuum filtered onto a glass microfiber filter (Whatman,


https://doi.org/10.1101/2022.05.30.493996
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.30.493996; this version posted May 30, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

632 1820-024) that had been pre-wetted with 5% w/v TCA. Filters were washed with 35x volume of
633 5% w/v TCA, then with 5x volume of 100% ethanol. Air dried filters were placed in tubes with
634  scintillation fluid and measured in a scintillation counter (PerkinElmer). CPM (Counts Per

635  Million) was normalized to ODeoo and percent incorporation at each time point was calculated by
636  normalizing to T = 0. Data reported are the mean and individual data points from three

637  independent biological replicates.

638  For producing the CapRel>'* N-terminal toxin domain, single colonies of E. coli MG1655

639  containing pBAD33-capRel**°(1-272) or an empty vector were grown overnight in M9-glucose.
640  Transcription and translation experiments were done as described above. Data reported are the
641  mean and individual data points from three independent biological replicates.

642  For phage infection experiments, single colonies of E. coli MG1655 harboring pBR322-EV or
643  pBR322-capRel**0 were grown overnight in LB. Overnight cultures were back-diluted to ODeoo
644  =0.051in 25 mL fresh LB and grown to ODsoo ~ 0.3 at 25 °C. Cells were then diluted to ODgoo =
645 0.1 in 10 mL LB and infected with wild-type or mutant (L114P in Gp57, evolved clone 1 from
646  population 3) SEC®27 at MOI = 100 and incubated at 25 °C. At the indicated time points (0, 15,
647 30,45, 60 min), ODgoo was measured and an aliquot of 250 pL of cells was transferred to a

648  microcentrifuge tube containing [5,6-°H]-uridine (PerkinElmer) (32 uCi/mL) for transcription
649  measurements or EasyTag™ EXPRESS-*S Protein Labeling Mix, [**S] (PerkinElmer) at 88
650  pCi/mL for translation measurements. Tubes were incubated at 25 °C for 4 min, then quenched
651 by addition of nonradioactive uridine (1.5 mM) or cysteine and methionine (15 mM) and

652  incubated for an additional 2 min. Samples were then processed same as above. Data reported
653  are the mean and individual data points from three independent biological replicates. Statistical
654  significance was determined by unpaired, two-tailed Student’s t-test (p<0.05).

655 Homology search, alignment, and conservation analysis

656  CapRel®* was identified in the sequence database from our previous bioinformatic survey of
657  RSH proteins®* that included gene neighborhood analysis to identify TA systems*. Bacterial
658  strains containing CapRelS'*¢ CapRelE® or CapRel*P with 100% amino acid identity were found
659  on NCBI database. Local genomic regions (+/- 10kb of CapRel) were extracted and annotated
660  for all coding sequences. Prophage genes and intact prophage regions were identified by

661  PHASTER*. Additional homologs of CapRel>#¢ were identified by ConSurf* using PSI-

662  BLAST (default settings) to search UniRef90 database, yielding 44 homologs. For Fig S1,

663  sequences were aligned with MAFFT L-INS-i v7.453 (Ref*) with manual curation of the C
664  terminal region guided by homology modeling of the stand-alone Phrann Gp30 antitoxin using
665  Swiss-Model*’, and with our CapRel>'*® predicted structure as a template. For Fig. S2, 52

666  homologs were used to generate the multiple sequence alignment by MAFFT and used as input
667  for ConSurf. Conservation scores were calculated using the Bayesian method and default

668  settings. An alignment of representative diverse sequences is shown and color-coded by percent
669 identity (Fig. S2a).

670  Homologs of the major capsid proteins in BASEL phages were identified by BLASTp*® searches
671  against each phage genome. Homologs of Gp57 (Gp8Bas*, Gp8PasS, Gp&B¥) were aligned by
672  MUSCLE® and colored by percent identity (Fig. S5a).

673  CapRel5* preparation for crystallization and HDX-MS

674  For the production of Hisio-SUMO-tagged CapRel®>'*¢ and CapRel3'*¢ variants, E. coli BL21
675  (DE3) cells were transformed with pET24d plasmids containing the gene of interest and grown
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676  in LB medium to ODggo of 0.6. Expression of the protein of interest was induced by addition of
677 0.5 mM IPTG, and cells were grown for 3 hours at 30 °C. The culture was then centrifuged, and
678  pellet was re-suspended in resuspension buffer (50 mM Tris-HCI pH 8.0, 1.5 M KCl, 2 mM
679  MgCly, 1 mM TCEP, 0,002% mellitic acid and 1 pastil of protease inhibitors cocktail (Roche)).

680  Cells were disrupted using a high-pressure homogenizer (Emulsiflex) and the supernatant was
681  separated from the pellet by centrifugation and filtered through 0.45 pm filters. Protein extracts
682  were loaded onto a gravity-flow column (Cytiva) packed with HisPur™ Nickel resin

683  (ThermoFisher Scientific), washed with buffer A (50 mM Tris-HCI pH 8, 500 mM NaCl, 500
684 mM KCI, I mM TCEP, 0.002% Melitic acid) and stepwise eluted in the resuspension buffer
685  supplemented with 500 mM imidazole. To remove remaining contaminants and imidazole, the
686  elution fraction was immediately transferred to a size exclusion chromatography (SEC) column
687  Superdex 200 PG column (GE Healthcare), previously equilibrated in the SEC buffer [SO0 mM
688  HEPES pH 7.5, 500 mM NacCl, 500 mM KCI, 2 mM MgClz, 1 mM TCEP, 0.002% mellitic acid
689  (and 1 mM MnCl; for all CapRel>'*® proteins)]. The fractions containing the protein were

690  concentrated to around 1 mg/mL and the His-tag was removed by incubating with Ulpl protease
691  (1:50 molar ratio) at 4 °C for 30 minutes. His1o-SUMO-tag and the protease were then removed
692 by passing the samples over a gravity-flow column (Cytiva) packed with HisPur™ Nickel resin
693  (ThermoFisher Scientific). Purity of the sample preparation was assessed spectrophotometrically
694  and by SDS-PAGE. For all the purified protein samples, OD260/OD2go ratio was below 0.6.

695  Samples were stored at -20 °C or concentrated to 7 mg/ml and used directly in crystallization
696  experiments.

697  For the purification of the Hisio-SUMO-CapRel>#¢ + His1o-SUMO-Gp57 complex E. coli BL21
698  (DE3) strain containing freshly transformed pET24d-Hiso-SUMO-capRel>*5(Y1554) and

699  pET2la-His;o-SUMO-gp57 were grown in LB medium to ODeoo of 0.2. This culture was then
700  diluted in fresh LB media and grown until ODeoo of 0.6. Expression of the protein of interest was
701  induced by addition of 0.5 mM IPTG, and cells were grown for overnight at 16 °C. The

702  subsequent purification, Sumo tag cleavage and purity assessment steps were identical to the

703  workflow described above for the all the CapRel>'*® protein variants.

704  Crystallization of CapRel5'4¢

705  The screening of crystallization conditions of CapRe was carried out using the sitting-drop
706  vapor-diffusion method. The drops were set up in Swiss (MRC) 96-well two-drop UVP sitting-
707  drop plates using the Mosquito HTS system (TTP Labtech). Drops of 0.1 uL protein and 0.1 pL
708  precipitant solution were equilibrated to 80 uL precipitant solution in the reservoir.

709  Commercially available screens LMB and SG1 (Molecular Dimensions) were used to test

710  crystallization conditions. The condition resulting in protein crystals (LMB screen position C9
711  for CapRel>#6) were repeated as 2 pL drops. Crystals were harvested using suitable cryo-

712 protecting solutions and vitrified in liquid N> for transport and storage before X-ray exposure. X-
713 ray diffraction data was collected at the SOLEIL synchrotron (Gif-sur-Yvette, Paris, France) on
714 the Proxima 1 (PX1) and Proxima 2A (PX2A) beamlines using an Eiger-X 16M detector.

715 Because of the high anisotropic nature of the data from all the crystals we performed anisotropic
716  cutoff and correction of the merged intensity data as implemented on the STARANISO server
717  (http://staraniso.globalphasing.org/) using the DEBYE and STARANISO programs. The analysis
718  of the data suggested a resolution of 2.31 A (with 2.31 A in a*, 2.85 A in b* and 2.72 A in c*).

ISJ46
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Structure determination

The data were processed with the XDS suite>® and scaled with Aimless. In all cases, the unit-cell
content was estimated with the program MATTHEW COEF from the CCP4 program suite’!.
Molecular replacement was performed with Phaser>2. The crystals of CapRel>* diffracted on
average to =2.3 A. We used the coordinates of RelzN™P as search model for the toxSYNTH
domain (PDBID 6S2T). The MR solution from Phaser was used in combination with Rosetta as
implemented in the MR-Rosetta>* suit from the Phenix package. After several iterations of
manual building with Coot>® and maximum likelihood refinement as implemented in
Buster/TNT>’, the model was extended to cover all the residues (R/Rgree 0f 21.5/26.0 %). Table
S1 details all the X-ray data collection and refinement statistics.

Isothermal titration calorimetry (ITC)

For all ITC measurements CapRel># samples were prepared from the pET24d-His 1o-SUMO-
capRel5’* as detailed above. In the case of Gp57, E. coli BL21 (DE3) cells were transformed
with pET21a-His;o-SUMO-gp57 and grown in LB medium to ODsoo of 0.2. This culture was then
diluted in fresh LB media and grown until ODsoo of 0.6. Expression of Hisio-SUMO-Gp57 was
induced by addition of 0.1 mM IPTG, and cells were grown for overnight at 16 °C. The
subsequent purification, SUMO-tag cleavage and purity assessment steps were identical to the
workflow described above for the all the CapRel>'*® protein variants. After removing the SUMO-
tag, samples were concentrated to 10 uM and used directly for ITC immediately after
purification.

All titrations were performed with an Affinity ITC (TA instruments) at 25 °C. For the titration,
CapRel®*® was loaded in the instrument syringe at 150 uM and Gp57 was used in the cell at 10
uM. The titration was performed in 50 mM HEPES pH 7.5; 500 mM KCI; 500 mM; NaCl; 10
mM MgCly; 1 mM TCEP; 0.002 % mellitic acid. Final concentrations were verified by the
absorption using a Nanodrop One (ThermoScientific). All ITC measurements were performed by
titrating 2 pL of CapRel>#¢ into Gp57 using a constant stirring rate of 75 rpm. All data were
processed, buffer-corrected and analysed using the NanoAnalyse and Origin software packages.

Hydrogen deuterium exchange mass spectrometry (HDX-MS)

Hydrogen Deuterium exchange mass spectrometry (HDX-MS) experiments were performed on
an HDX platform composed of a Synapt G2-Si mass spectrometer (Waters Corporation)
connected to a nanoAcquity UPLC system. Samples of CapRel># and CapRel>**¢ complexed
with Gp57 were prepared at a concentration of 20 to 50 uM. For each experiment 5 pL of sample
(CapRel>'# or CapRel>**6-Gp57) were incubated for 1 min, 5 min, 15 min or 60 min in 95 uL of
Labeling buffer L (50 mM HEPES, 500 mM KCI, 500 mM NaCl, 2 mM MgCl,, 1 mM TCEP,
0.002% mellitic acid, pH 7.5) at 20°C. The non-deuterated reference points were prepared by
replacing buffer L by Equilibration buffer E (50 mM HEPES, 500 mM KCl, 500 mM NacCl, 2
mM MgCl,, 1 mM TCEP, 0.002% mellitic acid, pH 7.5). After labeling, the samples are
quenched by mixing with 100 pL of pre-chilled quench buffer Q (1.2 % formic acid, pH 2.4). 70
nL of the quenched samples are directly transferred to the Enzymate BEH Pepsin Column
(Waters Corporation) at 200 pL/min and at 20°C with a pressure 8.5 kPSI. Peptic peptides were
trapped for 3 min on an Acquity UPLC BEH C18 VanGuard Pre-column (Waters Corporation) at
a 200 pL/min flow rate in water (0.1% formic acid in HPLC water pH 2.5) before eluted to an
Acquity UPLC BEH C18 Column for chromatographic separation. Separation was done with a
linear gradient buffer (7-40% gradient of 0.1% formic acid in acetonitrile) at a flow rate of 40
puL/min. Peptides identification and deuteration upatke analysis was performed on the Synapt
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G2Si in ESI+ - HDMSE mode (Waters Corporation). Leucine Enkephalin was applied for mass
accuracy correction and sodium iodide was used as calibration for the mass spectrometer.
HDMSE data were collected by a 20-30 V transfer collision energy ramp. The pepsin column
was washed between injections using pepsin wash buffer (1.5 M Gu-HCI, 4% (v/v) MeOH, 0.8%
(v/v) formic acid). A blank run was performed between each sample to prevent significant
peptide carry-over. Optimized peptide identification and peptide coverage for all samples was
performed from undeuterated controls (five replicates). All deuterium time points were
performed in triplicate.

Data treatment and statistical analysis of HDX-MS

The non-deuterated references points were analyzed by PLGS (ProteinLynx Global Server 2.5.1,
Waters) to identify the peptic peptides belonging CapRel>'*® or Gp57. Then, all the HDMSF data
including reference and deuterated samples were processed by DynamX 3.0 (Waters) for
deuterium uptake determination. We chose the following filtering parameters: minimum
intensity of 1000, minimum and maximum peptide sequence length of 5 and 20, respectively,
minimum MS/MS products of 3, minimum products per amino acid of 0.27, minimum score of
5, and a maximum MH+ error threshold of 15 p.p.m. Data were analyzed at peptidic and overall
level and manually curated by visual inspection of individual spectra. The overall level is based
on the relative fractional uptake (RFU) that can be calculated by the following formula:

Yat
MaxUptake, X D

RFU, (%) =

where y, ¢ is the deuterium uptake for peptide a at incubation time t, and MaxUptake, X D is
the theorical maximum uptake in deuterium value that peptide a can take. The ARFU compared
RFU value between two different experiments conditions, in this case, this is the comparison
between CapRel>'*® and CapRel># + Gp57. Heat maps have been generated in DynamX. All the
raw data can be accessed at: doi.org/10.6084/m9.figshare.19745089.

CapRel3*¢ expression and purification for biochemical assays

Full-length capRel*’*® was overexpressed in freshly transformed E. coli BL21(DE3) pET24d-N-
His 10-SUMO-capRel*’* pMG25-paSpo (VH-4) co-transformed with the plasmid encoding PaSpo
Small Alarmone Hydrolase (SAH) from Sa/monella phage SSUS that had been shown to
neutralize the toxicity of other toxSAS toxins?*. Fresh transformants were used to inoculate 800
mL of LB medium (final ODsoo of 0.03) supplemented with 50 pg/mL kanamycin, 20 pg/mL
chloramphenicol and 0.2% arabinose. Bacterial cultures were grown at 37 °C until an ODgoo of
0.4-0.5 and protein expression was induced with 0.1 mM IPTG (final concentration). Cells were
grown for additional 1 hour at 30 °C and the biomass was harvested by centrifugation (10,000
rpm, for 5 minutes, JLA-10.500 rotor (Beckman Coulter)).

Cell mass was resuspended in buffer A (750 mM KCl, 500 mM NacCl, 5 mM MgCl,, 40 uM
MnCl,, 40 uM Zn(OAc)>, 1 mM mellitic acid, 20 mM imidazole, 10% glycerol, 4 mM [3-
mercaptoethanol and 25 mM HEPES:KOH pH = 8) supplemented with 0.1 mM PMSF and 1
U/mL of DNase I, and lysed by one passage through a high-pressure cell disrupter (Stansted
Fluid Power, 150 MPa). Mellitic acid was added to buffers as it was earlier shown to stabilise
Thermus thermophilus Rel stringent factor>®. Cell debris was removed by centrifugation (25,000
rpm for 1 hour, JA-25.50 rotor (Beckman Coulter)), the clarified lysate was filtered through a
0.22 um syringe filter and loaded onto a HisTrap 5 ml HP column (Cytiva) pre-equilibrated in
buffer A. The column was washed with 5 column volumes (CV) of buffer A, and the protein was
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eluted using a combination of stepwise and linear gradient (5 CV with 0-100% buffer B) of
buffer B (750 mM KCI, 500 mM NaCl, 5 mM MgCl,, 40 uM MnCl,, 40 uM Zn(OAc)2, 1 mM
mellitic acid, 1 M imidazole, 10% glycerol, 4 mM B-mercaptoethanol, 25 mM HEPES:KOH pH
= 8). Fractions enriched in CapRel>**¢ (approximately 40% buffer B) were pooled, totalling
approximately 5 mL. The sample was loaded on a HiLoad 16/600 Superdex 200 PG column pre-
equilibrated with a high-salt buffer (buffer C; 2 M NaCl, 5 mM MgCl,, 10% glycerol, 4 mM f-
mercaptoethanol, 25 mM HEPES:KOH pH = 8). The fractions containing CapRel>*¢ were
pooled and applied on a HiPrep 10/26 desalting column (GE Healthcare) pre-equilibrated with
storage buffer (buffer D; 720 mM KCI, 5 mM MgCl,, 40 mM arginine, 40 mM glutamic acid,
10% glycerol, 4 mM B-mercaptoethanol, 25 mM HEPES:KOH pH = 8). Fractions containing
CapRel>'*® were collected (about 14 mL in total) and the Hisio-SUMO tag was cleaved off by
addition of 10 pg of Hise-Ulp1 per 1 mg CapRel®*¢ followed by a 30-minute incubation on ice.
After the His1o-SUMO tag was cleaved off, the protein was passed through a 5 mL HisTrap HP
pre-equilibrated with buffer D supplemented with 20 mM imidazole. Fractions containing
CapRel®*¢ in the flow-through were collected and concentrated on an Amicon Ultra (Millipore)
centrifugal filter device with a 10 kDa cut-off. The purity of protein preparations was assessed by
SDS-PAGE. Protein preparations were aliquoted, frozen in liquid nitrogen and stored at —80 °C.
Individual single-use aliquots were discarded after the experiment.

Cell-free translation

Experiments with PURExpress in vitro protein synthesis kit (NEB, E6800) were performed as
per the manufacturer’s instructions. All reactions were supplemented with 0.8 U/uL RNase
Inhibitor Murine (NEB, M0314S). Purified CapRel>**¢ protein was used at a final concentration
of 250 nM, with gp57 or gp57(L114P I115F) as template plasmid at 10 ng/uL. As a mock
control CapRel®**¢ was substituted for equal volume of HEPES:Polymix buffer, pH = 7.5. After a
10-minute incubation at 37 °C, a 1.34 pL aliquot of the reaction mixture was taken and quenched
by addition of 13.66 pL of 2x sample buffer (100 mM Tris:HCI pH = 6.8, 4% SDS, 0.02%
bromophenol blue, 20% glycerol, 20 mM DTT and 4% B-mercaptoethanol), and DHFR template
plasmid was added to the remaining reaction mixture at a final concentration of 20 ng/pL. After
further incubation at 37 °C for 1 hour, the reaction mixture was mixed with 9-fold volume of 2x
sample buffer and 5 pL of the mixture was resolved on 18% SDS-PAGE gel. The SDS-PAGE
gel was fixed by incubating for 5 min at room temperature in 50% ethanol solution supplemented
with 2% phosphoric acid, washed three times with water for 20 min at room temperature, and
stained with “blue silver” solution (0.12% Brilliant Blue G250 (Sigma-Aldrich, 27815), 10%
ammonium sulfate, 10% phosphoric acid, and 20% methanol) overnight at room temperature.
After washing with water for 3 hours at room temperature, the gel was imaged on an
Amersham™ ImageQuant 800 (Cytiva) imaging system. For tRNA pyrophosphorylation
experiments (see below), Gp57 and Gp57(L114P 1115F) were produced in similar reaction
mixture without CapRel>* and DHFR template at 37 °C for 2 hours.

tRNA pyrophosphorylation by CapRel5/46

The reaction mixture containing 5 pM tRNA from E. col/i MRE600 (Sigma-Aldrich,
10109541001), 500 uM y*?P-ATP, 250 nM CapRel>*¢ and 1/10 volume of either wild-type
Gp57 or Gp57(L114P 1115F) products from PUREsystem in HEPES:Polymix buffer, pH = 7.5
(5 mM Mg?"* final concentration) supplemented with | mM DTT was incubated at 37 °C for 10
min. To visualize phosphorylated tRNA, the reaction sample was mixed in 2 volumes of RNA
dye (98% formamide, 10 mM EDTA, 0.3% bromophenol blue and 0.3% xylene cyanol), tRNA
was denatured at 37 °C for 10 min and resolved on urea-PAGE in 1x TBE (8 M urea, 8%
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853  PAGE). The gel was stained with SYBR Gold (Life technologies, S11494) and exposed to an
854  imaging plate overnight. The imaging plate was imaged by a FLA-3000 (Fujifilm).

855
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Figure 1. Fused CapRel homologs are toxin-antitoxin systems that can provide E. coli with robust defense
against phages.

(a) Domain organization of long RSH (RelA-SpoT Homologs), SAS (Small Alarmone Synthetases), toxSAS, and
the fused subclass of toxSAS TA systems including CapRel>**. (b) Cell viability assessed by serial dilutions for
strains expressing the N-terminal toxin domain of CapRel®'*® alone or with the C-terminal antitoxin domain. (c)
Efficiency of plaquing (EOP) data for the phages indicated when infecting cells producing CapRel%'*%, CapRel™, or
CapRel®?. (d) Serial dilutions of the phages indicated spotted on lawns of cells harboring CapRel>**° or an empty
vector (EV). (e) One-step growth curve measuring plaque forming units (pfu/mL) during the first round of infection
by T4 of cells harboring CapRel>**¢ or an empty vector. (f) Serial dilutions of T7 phage spotted on lawns of cells
harboring CapRel®*°, CapRel™(Y153A), or an empty vector. (g) Growth of cells producing CapRel>*#¢ or

CapRelS%(Y155A), or harboring an empty vector, following infection with T4 at a multiplicity of infection (MOI)
of 10 (left) or 0.001 (right).
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Figure 2. The pseudo-zinc finger antitoxin domain of CapRel confers phage specificity.

(a) Sequence alignment of CapRel**® and CapRelt™, with the more variable pseudo-zinc finger domain (pseudo-
ZFD) labeled. (b) Serial dilutions of the phages indicated spotted on lawns of cells harboring the CapRel constructs
indicated and diagrammed (lef?). (¢) Cartoon representation of the structure of CapRel®'*® with active site G-loop
Y155 and the ATP-coordination residues R79 and R116 highlighted in red. Structural elements (toxSYNTH,
pseudo-ZFD and the anchors) are coloured as in (a). (d) Closed conformation of CapRel®*¢ predicted by AlphaFold
and coloured as (c). (e) Superposition of the active (open, light purple) and inactive (closed, dark purple) states of
CapRelS™0 as observed in the crystal structure and predicted by AlphaFold. (f) Details of the autoinhibited active site
of CapRel®'* in the closed state. In this conformation, the YxxY neutralization motif of the pseudo-ZFD blocks the
adenine coordination site, preventing catalysis. (g) Serial dilutions of cells expressing the indicated variant of
CapRelS** from an arabinose-inducible promoter on media containing glucose (/ef?) or arabinose (right).
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Figure 3. CapRel>* is activated by the major capsid protein of SEC®27 to pyrophosphorylate tRNAs and
block translation.

(a) Immunoblot of Hiss-CapRel®*¢ following infection with SEC®27 (MOI = 100) compared to an uninfected
control. (b) Schematic of experimental evolution approach used to identify SEC®27 escape mutants that can infect
cells harboring CapRelS**®. (¢) Serial dilutions of 5 independently evolved populations of SEC®27 phage and a
control population spotted on cells harboring an empty vector (leff) or CapRel>*® (right). (d) Summary of escape
mutants identified, all of which map to a hypothetical protein encoded by gene 57 of SEC®27. (e) AlphaFold-
predicted structure of Gp57 compared to the major capsid protein Gp5 from phage HK97, which has the eponymous
HK97-fold. (f) Mass spectrometry analysis of SEC®27 phage lysates, indicating that the hypothetical protein Gp57
has the highest spectrum count for both WT and an escape mutant producing the L114P variant. (g) Serial dilutions
on media containing glucose (leff) or arabinose (right) of cells expressing CapRel>**° from its native promoter and
expressing the indicated variant of Gp57 from an arabinose-inducible promoter. (h) Cells harboring CapRel%'*¢ and
expressing the wild-type or L114P variant of Gp57 from an arabinose-inducible promoter or harboring an empty
vector were pulse-labeled with 33S-Cys/Met at the times indicated post-addition of arabinose. (i) Same as (h) but for
cells carrying CapRel3**¢ or an empty vector and at times post-infection with SEC®27 (top) or the SECD27 escape
mutant with the L114P variant of Gp57 (bottom) at MOI = 100. Asterisks indicate p < 0.05 (unpaired two-tailed t-
test). (j) In vitro transcription-translation (PURExpress) assays using DHFR production from a DNA template as the
readout of expression activity. Purified CapRel>**® was added to each reaction along with a template for also
producing Gp57 (wild-type or the L114P I115F variant). (k) Autoradiography of reactions in which purified
CapRel>* was incubated with [y->*P]-ATP, bulk E. coli tRNAs, and Gp57 (WT or the L114P 1115F variant). SYBR
Gold staining of bulk tRNAs serves as a loading control.
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Figure 4. The SEC®27 major capsid protein Gp57 binds directly to the pseudo-ZFD of CapRel5'¢,

(a) From cells expressing CapRel>*-FLAG and Gp57-HA (wild-type or mutant variant), the CapRel>*6-FLAG was
immunoprecipitated and probed for the presence of the indicated variant of Gp57-HA. Lysates used as input for the
IP were probed as controls for expression levels. (b) Binding of CapRel>*® to Gp57 monitored by isothermal
titration calorimetry (ITC). (¢) Structural model of the CapRel>**®-Gp57 complex predicted by AlphaFold.
According to the model, the P-domain of Gp57 (in pink) recognizes the pseudo-ZFD (in orange) and anchor regions
(in green) of CapRel®*®, This interaction prevents the recoil of pseudo-ZFD to the active site and activates the
enzyme. (d) AHDX between CapRel* and CapRel3'*°-Gp57 displayed as a difference heat map. Red indicates
elevated deuteration of CapRel3*®in the presence of Gp57; blue signifies lower deuteration. (e) Topological
representation of CapRel3'* colored according to the AHDX. The active site of the enzyme is marked by a black
dashed outline and the catalytic toxSYNTH domain and the phage-recognition pseudo-ZFD are shadowed in light
yellow and light orange. (f) Serial dilutions on media containing glucose (/eff) or arabinose (right) of cells
expressing the indicated mutant of CapRel**® from its native promoter and the wild-type Gp57 from an arabinose-
inducible promoter. (g) Serial dilutions of SEC®27 phage spotted on cells expressing the indicated mutant of
CapRelS* or an empty vector. (h) Same as in (a) but with the indicated mutants of FLAG-CapRel3'#,
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Figure 5. Evidence for the coevolution of CapRel>*® and the major capsid protein of SEC®27 and related
phages.

(a) Serial dilutions on media containing glucose (/eff) or arabinose (right) of cells expressing CapRel* from its
native promoter and the major capsid protein homolog from the phage indicated via an arabinose-inducible
promoter. (b) Serial dilutions of the phages indicated spotted on lawns of cells harboring CapRel3'*® or an empty
vector. (c¢) Serial dilutions of wild-type Bas8 phage or the escape mutants bearing the major capsid mutations
indicated spotted on lawns of cells harboring CapRel>*® or an empty vector. (d) Serial dilutions on media containing
glucose (left) or arabinose (right) of cells expressing CapRel'*® from its native promoter or harboring an empty
vector and producing the indicated variant of the Bas8 major capsid protein from an arabinose-inducible promoter.
(e) Alignment of the region of the major capsid protein in SEC®27, Bas5, and Bas$ that triggers CapRel>'*, along
with Bas4 which has a tyrosine at position 113 instead of phenylalanine. (f) Serial dilutions on media containing
glucose (left) or arabinose (right) of cells expressing CapRel3'*® from its native promoter and the Bas4 or SEC®27
major capsid protein variant indicated from an arabinose-inducible promoter. (g) Serial dilutions of wild-type Bas4
or two mutant clones containing Y 113F in the major capsid protein Gp8 spotted on lawns of cells harboring
CapRel3* or an empty vector. (h) Model for the direct activation of CapRel'* by the major capsid protein of
SEC®27 and related phages. After genome injection, the production of the major capsid protein triggers relief of
autoinhibition by the C-terminal antitoxin of CapRel%'*¢, leading to pyrophosphorylation of tRNAs by activated
CapRelS*, which inhibits translation and restricts viral infection.
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Figure S1. Analysis of CapRel homologs.

(a) Sequence alignment comparing fused CapRel systems with related, unfused systems. Alignment of toxSAS
PhRel and ATphRel from the Mycobacterium phage Phrann, non-fused CapRel and ATcapRel from Mycobacterium
terramassilience, and the three fused systems CapRel®**¢, CapRel®® and CapRel*P. The N-terminal region of fused
CapRel systems is a toxSAS toxin domain, while the C-terminal region is homologous to the antitoxins of the PhRel
and unfused CapRel TA systems. Substituted sites of CapRel>'*® (see Fig. 2g) are indicated with black arrowheads.
The inset diagram summarises the homologous regions of the bicistronic toxin-antitoxin and fused toxin-antitoxin
systems considered here. (b) Genome maps of native locations of CapRel'*%, CapRel®*® and CapRel*? (+/- 10kb)
with predicted flanking prophage and phage genes. (¢) Serial dilutions of the phages indicated spotted on lawns of
cells producing CapRel3**, CapRel®*, or CapRel*P or harboring an empty vector (EV).
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Figure S2. Structural analysis of CapRelS’*¢,

(a) Alignment of CapRel>'* and diverse fused CapRel homologs, with labels indicating that pseudo-ZFD and
location of substitutions that render CapRel*® constitutively active or unable to be activated by Gp57, the SEC®27
major capsid protein. (b) Topology of CapRel®**®. The toxSYNTH domain is colored in light yellow, the pseudo-
ZFD in dark gold and the regions that anchor pseudo-ZFD to toxSYNTH are in green. The adenine coordinating
R79 and R116 are shown as red dots and the G-loop is colored in red. (¢) Superposition of the toxSYNTH domain of
CapRel3* (colored in light yellow) onto RelQ (PDBID: SDEC, colored in light orange) from Bacillus subtilis. (d)
Superposition of the pseudo-ZFD of CapRel>*® (colored in dark gold) onto the ZFD transcription factor of
Acidianus hospitalis (2LVH, colored in purple). (e) Superposition of the crystal structure of CapRel3'* (colored in
light yellow) onto the structure of the open state predicted by AlphaFold (colored in green). (f) Structures of the
open (left; from crystal structure) or closed (right; AlphaFold prediction) conformations of CapRelS'* color coded
by the conservation score of each amino acid calculated by ConSurf. Substitutions that render CapRelS*
constitutively active mutants or unable to be activated by Gp57 are labeled as spheres.
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Figure S3. Gp57 from SEC®27 triggers CapRel%’*¢ to inhibit translation, not transcription.

(a) Serial dilutions of phage SEC®27 spotted on lawns of cells producing CapRel%**®, Hiss-CapRelS'¢, or
CapRel*5-FLAG, or harboring an empty vector (EV). (b) Serial dilutions on media containing glucose (leff) or
arabinose (right) of cells expressing capRel%#¢(Y1554) from its native promoter or an empty vector and expressing
the indicated variant of Gp57 from an arabinose-inducible promoter. (¢) Cells harboring CapRel®¢ and producing
the wild-type or L114P mutant of Gp57 (expressed from an arabinose-inducible promoter) or harboring an empty
vector were pulse-labeled with *H-uridine at the times indicated post-addition of arabinose. (d) Cells producing the
CapRel>**¢ N-terminal toxin domain (expressed from an arabinose-inducible promoter) or harboring an empty vector
were pulse-labeled with ¥3S-Cys/Met (lef?) or 3H-uridine (right) at the times indicated post-addition of arabinose. (e)
Same as (d) but for cells carrying CapRel®™ or an empty vector and at times post-infection with SEC®27 at MOI =

100.
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Figure S4. Characterization of the CapRel***¢-Gp57 interaction.

(a) Immunoprecipitation of CapRel3***-FLAG from cells infected with wild-type SEC®27 or mutant phage that
produces Gp57(L114P), followed by mass spectrometry. Spectrum counts (SC) of Gp57 that had co-precipitated
with CapRel*® were normalized to the spectrum counts of CapRel>. (b) Same as in (a) but showing spectrum
counts of CapRel®**® and Gp57 in two independent replicates. (¢) Serial dilutions on media containing glucose (/ef?)
or arabinose (right) of cells producing CapRel>*® or CapRel>*6-FLAG, each expressed from its native promoter, and
the indicated variant of untagged or HA-tagged version of Gp57, expressed from an arabinose-inducible promoter.
(d) Topology and cartoon representation of SEC®27 Gp57. The P-domain is colored in pink and the A-domain in
violet. (e) Serial dilutions of T2 and T4 phage spotted on cells producing the indicated mutant of CapRel>*¢ or
harboring an empty vector. (f) Heat maps representing the HDX of CapRel3*® (top) and CapRel3*0-Gp57 complex
(center) and the AHDX (bottom). Regions involved in strong uptake such as residues 115-145 and 225-235 (which
includes the active site B-strand 2 and the G-loop) are shaded in red and regions involved in strong protection 240-
268 and 288-366 (which include both anchors and the pseudo-ZFD) are shaded in blue. (g) Heat map representing
the HDX of Gp57 in the complex with CapRel3'*. Shaded regions highlight areas of variable HDX signal that
indicate these regions are involved in the CapRel®*®-Gp57 interface.
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Figure S5. The major capsid protein from multiple, related phages activate CapRel%’*¢,

(a) Multiple sequence alignment of the major capsid proteins from phages SEC®27, Bas4, Bas5 and BasS.
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