

1 **Direct activation of an innate immune system in bacteria by a viral**
2 **capsid protein**

3
4
5
6
7 Tong Zhang¹, Hedvig Tamman², Kyo Coppieters't Wallant³, Tatsuaki Kurata⁴, Michele LeRoux¹,
8 Sriram Srikant¹, Tetiana Brodiazhenko⁵, Albinas Cepauskas², Ariel Talavera², Chloe Martens³,
9 Gemma C. Atkinson⁴, Vasili Hauryliuk^{4,5,*}, Abel Garcia-Pino^{2,6,*}, Michael T. Laub^{1,7,*}

10
11
12
13 ¹Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

14 ²Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles,
15 (ULB), Boulevard du Triomphe, Building BC, (1C4 203), 1050 Brussels, Belgium

16 ³Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB),
17 Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium

18 ⁴Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden

19 ⁵University of Tartu, Institute of Technology, 50411 Tartu, Estonia

20 ⁶WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium

21 ⁷Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA
22 02139, USA

23 *to whom correspondence should be addressed

24

25 **Bacteria have evolved sophisticated and diverse immunity mechanisms to protect**
26 **themselves against a nearly constant onslaught of bacteriophages¹⁻³. Similar to how**
27 **eukaryotic innate immune systems sense foreign invaders through pathogen-associated**
28 **molecular patterns (PAMPs)⁴, many bacterial immune systems that respond to**
29 **bacteriophage infection require a phage-specific trigger to be activated. However, the**
30 **identities of such triggers and the mechanistic basis of sensing remain almost completely**
31 **unknown. Here, we discover and investigate the anti-phage function of a fused toxin-**
32 **antitoxin (TA) system called CapRel^{SJ46} that protects *E. coli* against diverse phages.**
33 **Through genetic, biochemical, and structural analysis, we demonstrate that the C-terminal**
34 **domain of CapRel^{SJ46} regulates the toxic N-terminal region, serving as both an antitoxin**
35 **element and a phage-infection sensor. Following infection by certain phages, the newly**
36 **synthesized major capsid protein binds directly to the C-terminal domain of CapRel^{SJ46} to**
37 **relieve autoinhibition, enabling the toxin domain to then pyrophosphorylate tRNAs, which**
38 **blocks translation to restrict viral infection. Collectively, our results reveal the molecular**
39 **mechanism by which a bacterial immune system directly senses a conserved, essential**
40 **component of phages, suggesting a PAMP-like sensing model for TA-mediated innate**
41 **immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers**
42 **are engaged in a Red Queen conflict⁵, revealing a new front in the intense coevolutionary**
43 **battle being waged by phage and bacteria. With capsid proteins of some eukaryotic viruses**
44 **known to stimulate innate immune signaling in mammalian hosts⁶⁻¹⁰, our results now**
45 **reveal an ancient, deeply conserved facet of immunity.**

46 Innate immunity in eukaryotes relies on pattern recognition receptors that directly sense
47 pathogen-associated molecular patterns (PAMPs), which are conserved molecules like bacterial
48 lipopolysaccharide and flagellin, or viral RNA or DNA⁴. These innate immune signaling
49 pathways must remain silent prior to infection, but be poised for rapid activation to defend
50 against foreign invaders. Bacteria also encode innate immune systems to protect themselves
51 against diverse invading bacteriophages, but how they sense infection is poorly understood. One
52 exception is restriction-modification (RM) systems, which are effectively in constant
53 surveillance mode, using DNA methylation to distinguish self from non-self. Similarly, for
54 CRISPR-Cas systems, the adaptive immune system of some bacteria, guide RNAs enable a cell
55 to specifically target foreign DNA. Dozens of new bacterial defense systems have been
56 discovered in recent years¹¹⁻¹⁵, but unlike RM and CRISPR-Cas, many of them must be
57 specifically activated upon phage infection. This is particularly critical for abortive infection
58 (Abi) systems in which a defense system uses a lethal effector to kill an infected cell and prevent
59 propagation of the virus through a population¹⁶. The phage-encoded triggers for such bacterial
60 immunity mechanisms are largely unknown.

61 Toxin-antitoxin (TA) systems are prevalent genetic elements in bacteria that are emerging as key
62 components of anti-phage innate immunity^{13,14,17,18}, often serving as abortive infection modules
63 that kill infected cells to prevent spread of phages through a population. How TA systems sense
64 and respond to phage infection remains poorly understood. For the *toxIN* system, toxin (ToxN)
65 activation relies on efficient, phage-induced shutoff of host transcription coupled to the
66 intrinsically fast turnover of the antitoxin *toxI*¹⁹⁻²¹. However, *toxI* is an RNA, whereas most TA
67 systems feature a protein antitoxin. For systems with a protein antitoxin, the mechanism of
68 activation is often assumed to arise through antitoxin degradation. Although protein antitoxins
69 are often more proteolytically unstable than their cognate toxins, their turnover may not be fast
70 enough to enable toxin activation on the time-scale of a phage infection²², suggesting the
71 existence of alternative mechanisms for TA activation. Bacterial retrons function as tripartite TA

72 systems and can be activated by overexpressing various prophage genes²³, but whether these
73 activators function as such during phage infection is unknown.

74 **CapRel^{SJ46} is a fused, anti-phage toxin-antitoxin system**

75 To investigate the molecular basis of phage-induced activation of bacterial immunity, we
76 focused here on toxSAS TA systems, which feature toxins homologous to bacterial small
77 alarmone synthetases (SAS) that pyrophosphorylate purine nucleotides²⁴. While most
78 housekeeping alarmone synthetases produce the growth regulator (p)ppGpp^{25,26}, toxSAS toxins
79 can synthesize (p)ppApp to deplete ATP^{24,27} or pyrophosphorylate tRNAs to inhibit
80 translation^{24,28}. Their cognate antitoxins can either bind and neutralize the toxin or act as
81 hydrolases to reverse toxin-catalyzed pyrophosphorylation^{24,28}. One subfamily of translation-
82 inhibiting toxSAS is called CapRel based on their prevalence in Cyanobacteria, Actinobacteria,
83 and Proteobacteria and sequence similarity to the (p)ppGpp synthetase/hydrolase Rel. This
84 subfamily includes a number of representatives that are, in contrast to canonical bicistronic TA
85 systems, encoded by a single open reading frame, with an N-terminal domain homologous to
86 toxSAS toxins and a C-terminal domain homologous to the corresponding antitoxins²⁹ (Fig. 1a
87 and S1a).

88 We selected a fused CapRel encoded by the *Salmonella* phage SJ46 and also encoded (with
89 100% amino acid sequence identity) in prophages of several *E. coli* strains (Fig. S1b). The toxin
90 and antitoxin-like regions of CapRel^{SJ46} are related to the PhRel toxSAS toxin and its antitoxin
91 ATphRel, respectively, from the mycobacterial temperate phage Phrann³⁰ (Fig. S1a). This
92 Phrann-encoded system can inhibit superinfection by other temperate mycophages³⁰, although
93 the molecular basis of PhRel activation is not known. To test if CapRel^{SJ46} is a fused TA system,
94 we cloned the N-terminal region containing the conserved alarmone synthetase domain and the
95 C-terminal region containing the putative antitoxin domain under the control of separate
96 inducible promoters. Expression of the N-terminal fragment alone was toxic, and its toxicity was
97 rescued *in trans* by co-expression with the C-terminal fragment (Fig. 1b), suggesting that
98 CapRel^{SJ46} is a fused TA system.

99 To determine whether fused CapRel can defend against phages, we transformed *E. coli*
100 MG1655 with three different systems expressed from their native promoters on low copy-
101 number plasmids, and then tested whether each conferred protection against a panel of 12 diverse
102 coliphages. In addition to CapRel^{SJ46}, we also tested CapRel^{Ebc} from *Enterobacter chengduensis*
103 and CapRel^{Kp} from *Klebsiella pneumoniae* (Fig. 1c and S1b-c). CapRel^{SJ46} decreased the
104 efficiency of plaquing (EOP) for T2, T4, T6, RB69, and SECΦ27 by 10-1000-fold (Fig. 1c-d),
105 indicating that this system provides strong protection against phages. T4 phage formed smaller
106 plaques when plated onto CapRel^{SJ46}-containing cells, and one-step growth curves confirmed
107 that CapRel^{SJ46} reduces the burst size of T4 by ~70% (Fig. 1e). CapRel^{Ebc} protected strongly
108 against T7 and CapRel^{Kp} protected, albeit less efficiently, against SECΦ18 (Fig. 1f and S1c).

109 Next, we tested whether CapRel^{SJ46} provides direct immunity or functions through abortive
110 infection in which an infected cell dies, but prevents the production of mature virions, thereby
111 sparing uninfected cells in a population. To this end, we infected cells containing CapRel^{SJ46} with
112 T4 at a multiplicity of infection (MOI) of either 10 or 0.001, and found that defense only
113 manifested at the low MOI indicating that CapRel^{SJ46} likely functions through abortive infection
114 (Fig. 1g). Phage protection by CapRel^{SJ46} depended on the predicted enzymatic activity of the N-
115 terminal synthetase domain, as substituting the conserved tyrosine (Y155A) in the G-loop that is
116 critical for substrate binding abolished phage protection³¹ (Fig. 1g). A similar catalysis-

117 compromising substitution Y153A in CapRel^{Ebc} also abolished phage protection (Fig. 1f).
118 Collectively, our results established that fused CapRels can provide anti-phage defense, with
119 variable phage specificity.

120 To understand what determines the specificity of phage protection by fused CapRels, we
121 compared CapRel^{SJ46} and CapRel^{Ebc}. These two proteins share 70% amino acid identity overall,
122 but harbor significant differences in their C-terminal regions, which are only 47% identical (Fig.
123 2a). In addition, this region is the least conserved when we compared a more diverse set of fused
124 CapRel homologs (Fig. S2a). Because CapRel^{SJ46} and CapRel^{Ebc} protected against different
125 phages, we made a chimera in which the C-terminal region of CapRel^{SJ46} was replaced by the
126 corresponding region of CapRel^{Ebc}. This chimeric CapRel no longer protected against SECΦ27
127 and gained protection against T7 (Fig. 2b), manifesting as decreased EOP and smaller plaques.
128 This result indicates that the C-terminal region of CapRel is critical to phage specificity.

129 **Structural analysis of CapRel^{SJ46} reveals an autoinhibited and an active state**

130 To further understand the mechanistic basis of anti-phage defense by CapRel^{SJ46}, we solved a
131 crystal structure to 2.3 Å resolution (Fig. 2c and Table S1). CapRel^{SJ46} contains a conserved, N-
132 terminal nucleotide pyrophosphokinase domain present in alarmone synthetases and tRNA-
133 pyrophospho-transferase enzymes, that mediates toxicity (toxSYNTH). The smaller C-terminal
134 antitoxin domain consists of a central antiparallel three-stranded β-sheet with an α-helix
135 connecting β-strands β7 and β8 (Fig. 2c, S2b-c). The antitoxin domain is topologically analogous
136 to the classical Zn-finger domain (ZFD), but is lacking the conserved cysteines (Fig. S2d); we
137 refer to this domain as a pseudo-ZFD. The pseudo-ZFD is connected to the toxSYNTH domain
138 via α-helices α7, α8, and α9 and has a C-terminal α-helical extension that anchors the domain to
139 α8 and α9 (Fig. S2b). In this structure the ATP donor nucleotide binding pocket and the
140 conserved G-loop Y155 of toxSYNTH are exposed (Fig. 2c), indicating that this likely
141 represents the active, toxic conformation of CapRel^{SJ46}.

142 To explore the conformational dynamics of the enzyme, we used AlphaFold³² to predict possible
143 alternative structures of CapRel^{SJ46}. In addition to predicting the open conformation observed in
144 the crystal structure (Fig. S2e), AlphaFold also predicted a closed conformational state in which
145 the C-terminal domain folds back 110° onto the toxSYNTH central β-sheet and blocks the ATP-
146 binding site (Fig. 2d). Comparison of the two states suggests that a conserved YxxY motif (Fig.
147 S2a) located in the hinge connecting the two C-terminal α-helices in the open state morphs into a
148 short 3₁₀-helix in the closed state (Fig. 2e). This 3₁₀-helix projects into the toxSYNTH active site
149 and intercalates between β1 R79 and β2 R116 to block the adenine coordination site (Fig. 2e-f).

150 We hypothesized that this closed-to-open switch underlies the activation of CapRel^{SJ46}, with the
151 docking of the pseudo-ZFD onto toxSYNTH precluding substrate binding in the absence of
152 phage infection (Fig. 2f). To test this hypothesis, we made single substitutions to the YxxY motif
153 (Y352A and Y355A) and residues from the predicted interface that serves as a scaffold to orient
154 and stabilize the 3₁₀-helix (A77K, R116A, V338A, L339A, A341K, A351K), which are highly
155 conserved among diverse CapRel homologs (Fig. S2a and S2f). Whereas wild-type CapRel^{SJ46}
156 was not toxic when expressed in cells, each of the substitutions predicted to disrupt the intra-
157 molecular recognition interface, on either the N- or C-terminal domain, rendered CapRel^{SJ46}
158 toxic (Fig. 2g). These substitutions likely lead to constitutive activation of CapRel^{SJ46} by
159 disrupting an autoinhibited state. As a control, we showed that substitutions in different
160 structural elements of the pseudo-ZFD but not pointing toward the interface did not lead to
161 constitutive activation (Fig. 2g). Collectively, our results indicate that the pseudo-ZFD docks

162 onto the ATP-binding site of CapRel^{SJ46} to prevent switching to the open state captured in our
163 crystal structure. Conservation of the YxxY motif and the interface residues suggest that this
164 auto-inhibitory regulation is likely conserved in other CapRelS.

165 **Fused CapRel^{SJ46} is activated by the major capsid protein of SECΦ27**

166 Because full-length, wild-type CapRel^{SJ46} was not toxic when expressed in the absence of phage
167 infection, we inferred that it must somehow be activated by phage. The toxins of some TA
168 systems are activated by the degradation of the more labile antitoxin^{19,33,34}. To test whether the
169 C-terminal antitoxin of CapRel^{SJ46} is proteolytically cleaved off and degraded upon phage
170 infection, we N-terminally tagged CapRel^{SJ46} and first verified that the tagged protein still
171 defends against phage (Fig. S3a). We then tracked the size of CapRel^{SJ46} by immunoblotting
172 following infection with SECΦ27. The overall protein levels of CapRel^{SJ46} remained constant
173 and we observed only the full-length product, suggesting that CapRel^{SJ46} was not proteolytically
174 processed (Fig. 3a). Thus, we hypothesized that a specific phage product regulates the C-terminal
175 domain of CapRel^{SJ46} to relieve autoinhibition. To identify such a factor, we sought to identify
176 SECΦ27 mutants that escape CapRel^{SJ46} defense. As no spontaneous escape mutants could be
177 isolated, we used an experimental evolution approach (Fig. 3b). Briefly, we infected cells
178 containing an empty vector or CapRel^{SJ46} with serial dilutions of phage in microtiter plates. After
179 overnight incubation, we collected and pooled the phages from cleared wells, which indicated
180 successful infection, and used these to seed the next round of infections. Initially, cells harboring
181 the empty vector were infected much better, but after 13 rounds, each phage population had
182 evolved to infect both empty vector and CapRel^{SJ46}-containing cells similarly (Fig. 3c). We
183 isolated 10 mutant SECΦ27 clones from 5 independently evolved populations and sequenced
184 their genomes. Remarkably, all 10 clones contained a point mutation in the same gene that
185 encodes a hypothetical protein, Gp57, with 9 clones producing the same L114P substitution and
186 one clone yielding an I115F substitution (Fig. 3d).

187 The structure of the hypothetical protein Gp57 predicted by AlphaFold³² is highly similar (DALI
188 Z-score of ~17) to the HK97-fold commonly adopted by major capsid proteins of dsDNA viruses
189 including bacteriophages and Herpesviruses³⁵ (Fig. 3e). By performing mass spectrometry on
190 wild-type and escape mutant SECΦ27 phages, we identified this hypothetical protein as the most
191 abundant protein in mature virions, consistent with it being the major capsid protein of SECΦ27
192 (Fig. 3f and Table S2).

193 Our results suggested that wild-type Gp57 from SECΦ27 activates CapRel^{SJ46}, with the escape
194 mutants preventing activation while retaining the ability to form a capsid. To test this hypothesis,
195 we first examined whether Gp57 alone is sufficient to activate CapRel^{SJ46}. Indeed, co-producing
196 wild-type Gp57 with wild-type CapRel^{SJ46} was highly toxic to cells in the absence of phage
197 infection, whereas neither evolved variant (L114P or I115F) of Gp57 had a measurable effect on
198 growth when co-produced with CapRel^{SJ46} (Fig. 3g). As controls, we confirmed that expressing
199 the wild-type or either Gp57 variant was not toxic on its own or if co-produced with a
200 catalytically compromised CapRel^{SJ46} (Fig. S3b).

201 To examine the basis of CapRel^{SJ46} toxicity we first co-produced it with wild-type or the L114P
202 variant of Gp57 and then measured the effects on bulk transcription and translation by pulse-
203 labeling with ³H-uridine and ³⁵S-methionine/³⁵S-cysteine, respectively. Active CapRel^{SJ46}
204 produced with wild-type Gp57 robustly inhibited translation but not transcription (Fig. 3h and
205 S3c), whereas no effect was seen with Gp57(L114P). Similar effects were seen when
206 overexpressing just the N-terminal domain of CapRel^{SJ46} (Fig. S3d). We also measured bulk

207 translation and transcription following SECΦ27 infection of CapRel^{SJ46}-containing cells and
208 observed a decrease in translation but not transcription with wild-type SECΦ27. No effect on
209 translation was seen with the evolved mutant phage producing Gp57(L114P) (Fig. 3i and S3e).

210 Next, we measured the ability of full-length CapRel^{SJ46} to affect translation *in vitro* using the
211 reconstituted *in vitro* transcription-translation system. Purified CapRel^{SJ46} inhibited synthesis of a
212 control DHFR protein in the presence of the SECΦ27 major capsid protein Gp57, whereas no
213 inhibition was seen for the L114P I115F variant of Gp57 (Fig. 3j). We also incubated wild-type
214 Gp57 or the L114P I115F variant with [γ -³²P]-ATP and bulk *E. coli* tRNAs in the presence and
215 absence of purified CapRel^{SJ46}. Wild-type Gp57 strongly stimulated the pyrophosphorylation of
216 tRNAs by CapRel^{SJ46}, like the previously characterized toxSAS enzymes FaRel2 and PhRel2²⁸
217 (Fig. 3k). With the L114P I115F variant of Gp57, tRNA pyrophosphorylation was reduced to the
218 background levels seen with CapRel^{SJ46} alone. Together, our results demonstrate that Gp57, the
219 major capsid protein of SECΦ27, is both necessary and sufficient to activate CapRel^{SJ46},
220 enabling it to pyrophosphorylate tRNAs and inhibit translation.

221 **CapRel^{SJ46} directly binds to the major capsid protein of SECΦ27**

222 To test whether the SECΦ27 major capsid protein directly binds CapRel^{SJ46}, we first
223 immunoprecipitated CapRel^{SJ46}-FLAG from cells infected with wild-type phage or the mutant
224 that produces Gp57(L114P) after verifying the tag does not affect CapRel^{SJ46} function (Fig. S3a).
225 We detected Gp57 that had co-precipitated with CapRel^{SJ46} by mass spectrometry when cells
226 were infected with wild-type phage, with a significant reduction in the mutant phage (Fig. S4a-
227 b). In addition, we co-produced CapRel^{SJ46}-FLAG and Gp57-HA and found that wild-type, but
228 not the L114P or I115F variant of the capsid protein, co-precipitated with CapRel^{SJ46}-FLAG
229 (Fig. 4a and S4c). Finally, we purified both full-length CapRel^{SJ46} and Gp57, and used
230 isothermal titration calorimetry to show that they interact directly with an affinity of 190 nM
231 (Fig. 4b).

232 Consistent with this tight-binding interaction, the *ab initio* AlphaFold prediction of the
233 CapRel^{SJ46}-Gp57 complex has a large contact interface of around 1800 Å² (Fig. 4c). In the
234 complex, CapRel^{SJ46} adopts the same open state seen in our crystal structure (Fig. 2d), with the
235 pseudo-ZFD making extensive contacts with the β -sheet and spine α -helix of the peripheral (P)-
236 domain of Gp57 (Fig. 4c and S4d). Notably, this region of Gp57 contains the residues L114 and
237 I115 identified in our escape mutants. The complex predicted further interactions of pseudo-ZFD
238 β 6- β 7 loop with the β 6- α 5 and β 8- β 9 loops of the axial (A)-domain of Gp57. In this arrangement
239 Gp57 prevents the recoil of pseudo-ZFD to block the active site of the enzyme while stabilizing
240 the YxxY motif in the non-neutralizing hinge conformation.

241 Hydrogen-deuterium exchange (HDX) monitored by mass spectrometry strongly supported the
242 AlphaFold predictions. In the presence of Gp57, the pseudo-ZFD of CapRel^{SJ46} became more
243 protected with the strongest protection mapping to α 10, β 8, and the C-terminal α -helical
244 extension (Fig. 4d-e and S4f-g). This overlaps the same region critical for phage specificity (Fig.
245 2b). The HDX data also confirmed the interface formed between Gp57 P-domain β 5 and
246 CapRel^{SJ46} pseudo-ZFD as well as the Gp57 A-domain β 8- β 9 loop and CapRel^{SJ46} β 6- β 7 loop.
247 Finally, we observed increased deuterium uptake in CapRel^{SJ46} in residues 110-124 of β 2 and
248 125-130 of α 4 which are part of the adenine coordination pocket of toxSYNTH, thus confirming
249 that interaction with Gp57 exposes the active site of the enzyme (Fig. 4d-e and S4f-g).

250 To further validate the role of the pseudo-ZFD in binding and activating CapRel^{SJ46}, we
251 performed error-prone PCR-based mutagenesis on this domain and screened for mutations that

252 disrupted activation of CapRel^{SJ46} when it was co-produced with the capsid protein Gp57. The
253 substitutions L280Q and L280P drastically reduced the toxicity of CapRel^{SJ46} in the presence of
254 wild-type Gp57 (Fig. 4f), and prevented CapRel^{SJ46} from protecting against SECΦ27 infection
255 (Fig. 4g). Importantly, these CapRel^{SJ46} variants still protected *E. coli* against phage T2 and T4,
256 indicating that these variants retained structural integrity (Fig. S4e). The substitution L307A had
257 similar, but reduced, effects on CapRel^{SJ46} activity (Fig. 4f-g).

258 The crystal structure of CapRel^{SJ46} suggested that L280 and L307 in the wild-type protein
259 promote the open, active state, with L280 stabilizing one of the hinge regions involving the
260 pseudo-ZFD and L307 structuring the β 6- β 7 loop that interacts with Gp57 A-domain. The
261 L280Q and L280P variants of CapRel^{SJ46} were unable to co-precipitate the major capsid protein
262 of SECΦ27, and the L307A substitution significantly reduced binding in this assay (Fig. 4h). In
263 sum, our findings strongly support a model in which the C-terminal pseudo-ZFD of CapRel^{SJ46}
264 directly recognizes the major capsid protein of SECΦ27, thereby triggering a relief of
265 autoinhibition of the N-terminal toxSYNTH domain.

266 CapRel^{SJ46} can be activated by capsid homologs of other phages

267 The pseudo-ZFD of CapRel^{SJ46}, including residues L280 and L307, is the least well conserved
268 portion of the protein (Fig. S2a and S2f). This variability may reflect a Red Queen dynamic, a
269 hallmark of many host-pathogen interfaces that arises from cycles of selective pressure on
270 pathogens to evade host immunity followed by selection on host immune factors to restore
271 recognition of a pathogen⁵. As triggers of the CapRel defense system, phage capsid proteins are
272 likely under pressure to diversify, while retaining the ability to form a capsid, leading to a
273 selective pressure on the pseudo-ZFD of CapRel to diversify and retain its interaction with the
274 capsid proteins. To test this hypothesis, we examined three phages from the BASEL collection³⁶
275 (Bas4, Bas5 and Bas8) that are closely related to SECΦ27 and contain a close homolog of Gp57
276 called Gp8 (Fig. S5a). We first found that co-expressing the major capsid homologs from Bas5
277 and Bas8, but not that of Bas4, with CapRel^{SJ46} rendered CapRel^{SJ46} toxic, as with the SECΦ27
278 capsid protein. We then tested whether CapRel^{SJ46} protects against these phages and found that it
279 protected strongly against Bas5 and Bas8, but not Bas4 (Fig. 5b).

280 To validate that defense against Bas8 requires activation of CapRel^{SJ46} by this phage's capsid
281 protein homolog, we isolated spontaneous mutants of Bas8 that escaped defense. Two mutant
282 clones of Bas8 were no longer defended against by CapRel^{SJ46} and contained either an F120L or
283 I124F substitution in the major capsid homolog (Fig. 5c). Both substitutions significantly
284 reduced the capsid protein's ability to activate CapRel^{SJ46} when co-produced (Fig. 5d). Notably,
285 these two positions were close to the positions of the escape mutants identified in SECΦ27
286 Gp57, further confirming that this region in the major capsid protein is important for activating
287 CapRel^{SJ46} (Fig. 5e).

288 Unlike Bas8, Bas4 was not defended against by CapRel^{SJ46} and its capsid homolog did not
289 activate CapRel^{SJ46} despite being 98% identical to SECΦ27 Gp57, with just 5 amino acid
290 differences between the two. However, one difference is at position 113, near the region that
291 likely binds to CapRel^{SJ46}. This residue is a phenylalanine in SECΦ27, Bas5, and Bas8, but a
292 tyrosine in Bas4 (Fig. 5e). We tested whether this residue is critical for activation by making a
293 Y113F substitution in the Bas4 capsid homolog and found that it gained the ability to activate
294 CapRel^{SJ46} when coproduced (Fig. 5f). Conversely, a F113Y substitution in the SECΦ27 capsid
295 protein abolished its ability to activate CapRel^{SJ46}. Additionally, we mutated Bas4 phage such
296 that it produces major capsid protein harboring the Y113F substitution. This mutant phage could

297 still produce mature virions, but was now defended against by CapRel^{SJ46} (Fig. 5g). These results
298 support the notion of a Red Queen dynamic between the pseudo-ZFD of CapRel and the phage
299 capsid proteins that directly bind and activate CapRel.

300 **Conclusions**

301 We propose the following model for CapRel^{SJ46} activation by SECΦ27 (Fig. 5h). Without phage
302 infection, CapRel^{SJ46} adopts an inactive, closed conformation in cells with its C-terminal
303 antitoxin domain autoinhibiting the N-terminal toxin domain. Upon infection, the major phage
304 capsid protein is produced and directly binds to CapRel^{SJ46} to stabilize the active, open state.
305 This open state enables CapRel^{SJ46} to pyrophosphorylate tRNAs and inhibit translation, leading to
306 an abortive infection that prevents propagation of phage through a population of cells.
307 Importantly, our results imply that type II TA systems, which feature protein antitoxins, can be
308 activated without proteolysis of the antitoxin, which is often asserted as their primary means of
309 activation.

310 Major capsid proteins, like Gp57 from SECΦ27, may be a common trigger for both TA systems
311 and other anti-phage defense systems. Prior studies found that a short peptide called Gol within
312 the major capsid protein Gp23 of T4 can activate the Lit protease in *E. coli* if both components
313 are overproduced^{37,38}. For PifA, which allows the F plasmid to exclude T7, escape mutants
314 mapped to the major capsid protein, but this interaction has not been studied biochemically³⁹.
315 Recent work reported that mutations in the major capsid protein of T5 allow it to overcome
316 Pycsar-mediated defense, but the capsid protein alone is insufficient to activate Pycsar⁴⁰. We
317 anticipate that major capsid proteins may emerge as common, direct triggers for a diverse range
318 of anti-phage defense systems. As with PAMPs in eukaryotes, relying on an essential, abundant
319 component of phages for activation may help ensure that an immune response is only mounted
320 following an infection. Notably, the capsid proteins of some eukaryotic viruses stimulate
321 mammalian innate immune pathways. For instance, HIV capsid protein is directly detected in the
322 host cell cytoplasm and nucleus by TRIM5 and NONO, respectively, to trigger innate immune
323 activation^{7,9}. Thus, our results suggest that similar principles of pathogen detection underlie the
324 function and molecular basis of innate immunity in all domains of life.

325

326 **Acknowledgements**

327 We thank A. Harms for generously sharing the BASEL phage collection, the MIT BioMicro
328 Center and its staff for their support in sequencing, the MIT Biopolymers & Proteomics Core and
329 its staff for their help in mass spectrometry experiments. We thank K. Gozzi and B. Wang for
330 comments on the manuscript and all members of the Laub lab for helpful discussions. G.C.A and
331 V.H. were supported by the Swedish Research council (grant 2018-00956 within the
332 RIBOTARGET consortium under the framework of JPIAMR, project grants 2017-03783 and
333 2021-01146 to V.H., project grant 2019-01085 to G.C.A.), the Knut and Alice Wallenberg
334 Foundation (2020.0037 to G.C.A), the Ragnar Söderberg Foundation (M23/14 to V.H.), the
335 European Regional Development Fund through the Centre of Excellence for Molecular Cell
336 Technology (V.H.), and the Estonian Science Foundation (project grant PRG335 to V.H.). A.G-
337 P. was supported by Fonds National de Recherche Scientifique (FRFS-WELBIO CR-2017S-03,
338 FNRS CDR J.0068.19, FNRS-EQP UN.025.19 and FNRS-PDR T.0090.22), the European
339 Research Council (CoG DiStRes, n° 864311), the Joint Programming Initiative on Antimicrobial
340 Resistance (JPI-EC-AMR-R.8004.18), the Programme Actions de Recherche Concerté 2016-
341 2021, Fonds Jean Brachet and the Fondation Van Buuren, Chargé de Recherches fellowship
342 from the FNRS n° CR/DM-392 (HeT), the European Union's Horizon 2020 research and
343 innovation programme under the Marie Skłodowska-Curie grant agreement N° 801505
344 (IF@ULB postdoctoral grant to A.A.). K.C.W. is a fellow of the FRIA, C.M. is supported as a
345 Research Associate of the F.R.S.-F.N.R.S. The authors acknowledge the use of the PROXIMA 1
346 and 2A beamlines at the Soleil synchrotron (Gif-sur-Yvette, France). M.T.L. is an Investigator of
347 the Howard Hughes Medical Institute.

348 **Author Contributions**

349 Experiments were conceived and designed by T.Z., T.K., G.A., V.H., A.G-P., M.T.L. Phage and
350 bacterial experiments, as well as incorporation and co-IP assays, were done by T.Z. with
351 assistance from M.L. and S.S. Metabolic labeling experiments were done by T.Z. and T.B. Cell-
352 free translation and tRNA pyrophosphorylation assays were done by T.Z and T.K. CapRel
353 purification was done by T.Z., T.K., H.T., and A.T. ITC was performed by H.T., A.T., and A.C.
354 HDX was performed by C.M. and K.C.W. X-ray data collection and analyses was performed by
355 H.T., A.T., and A.G-P. Bioinformatic analyses were performed by T.Z. and G.C.A. Figure
356 design, manuscript writing, and editing done by T.Z., T.K., G.A., V.H., A.G-P., M.T.L. Project
357 supervision and funding provided by G.A., V.H., A.G-P., M.T.L.

358 **Author Information**

359 The authors declare no competing financial interests. Correspondence and requests for materials
360 should be addressed to V.H. (vasili.hauryliuk@med.lu.se), A.G-P. (abel.garcia.pino@ulb.be),
361 and M.T.L. (laub@mit.edu).

362 **Data and materials availability:** Structural data are available in PDB (7ZTB). HDX data raw
363 data can be accessed at: doi.org/10.6084/m9.figshare.19745089. Sequencing data are available in
364 the Sequence Read Archive (SRA) under BioProject PRJNA837951. All other data are available
365 in the manuscript or the supplementary materials. Materials including strains and plasmids are
366 available upon reasonable request.

367

368

369 **Methods**

370 **Strains and growth conditions**

371 All bacterial and phage strains used in this study are listed in Table S3. *Escherichia coli* strains
372 were routinely grown at 37 °C in Luria broth (LB) medium for cloning and maintenance. Phages
373 were propagated by infecting a culture of *E. coli* MG1655 at an OD₆₀₀ ~0.1-0.2 with a MOI of
374 0.1. Cleared cultures were pelleted by centrifugation to remove residual bacteria and filtered
375 through a 0.2 µm filter. Chloroform was then added to phage lysates to prevent bacterial growth.
376 All phage infection experiments in liquid media and phage spotting experiments were performed
377 in LB medium at 25 °C, except for spotting of T2 and T4 on strains producing CapRel^{SJ46}
378 variants, which was performed in M9 medium (6.4 g/L Na₂HPO₄·7H₂O, 1.5 g/L KH₂PO₄, 0.25
379 g/L NaCl, 0.5 g/L NH₄Cl medium supplemented with 0.1% casamino acids, 0.4% glycerol, 0.4%
380 glucose, 2 mM MgSO₄, and 0.1 mM CaCl₂) at 30 °C. For liquid induction experiments from
381 pBAD33 vectors, bacterial cells were grown in M9 medium. Antibiotics were used at the
382 following concentrations (liquid; plates): carbenicillin (50 µg/mL; 100 µg/mL), chloramphenicol
383 (20 µg/mL; 30 µg/mL).

384 **Plasmid construction**

385 All plasmids are listed in Table S4. All primers and synthesized gene sequences are listed in
386 Table S5.

387 pBR322-*capRel* constructs: DNA encoding *capRel*^{SJ46}, *capRel*^{Ebc}, and *capRel*^{Kp} open reading
388 frames were codon-optimized for expression in *E. coli* and 100-200 bp of the upstream region
389 from the source organism was added in each case for native expression (TZ-1 to TZ-5). DNA
390 was commercially synthesized by Integrated DNA Technology as gBlocks and assembled into a
391 promoter-less backbone of pBR322 amplified with TZ-6 and TZ-7 by Gibson assembly.
392 Mutations that produce the single amino-acid substitutions CapRel^{SJ46}(Y155A),
393 CapRel^{Ebc}(Y153A), CapRel^{SJ46}(L280Q), CapRel^{SJ46}(L280P) and CapRel^{SJ46}(L307A) were
394 generated by site-directed mutagenesis using primers TZ-8 to TZ-11 and TZ49 to TZ-54. To add
395 an N-terminal His₆-tag or a C-terminal FLAG-tag to CapRel^{SJ46}, primers TZ41 and TZ-42 or
396 TZ45 and TZ46 were used to PCR-amplify pBR322-*capRel*^{SJ46} followed by Gibson assembly.
397 pBR322-*capRel-chimera* was constructed by inserting *capRel*^{Ebc}(270-339) that had been PCR-
398 amplified with TZ-22 and TZ-23 into pBR322-*capRel*^{SJ46} linearized with TZ-20 and TZ-21
399 using Gibson assembly.

400 pBAD33-*capRel*^{SJ46} constructs: *capRel*^{SJ46}(1-272) or full-length *capRel*^{SJ46} was PCR-amplified
401 with TZ14 and TZ15, or TZ14 and TZ24, respectively, and inserted into pBAD33 linearized with
402 TZ-12 and TZ-13 using Gibson assembly. pBAD33-*capRel*^{SJ46} variants (A77K, R116A, V338A,
403 L339A, A341K, A351K, Y352A or Y355A) were constructed by site-directed mutagenesis using
404 primers TZ25 to TZ40. pBAD33-*capRel*^{SJ46} variants (R78A, K311A, R314A, E319A, K346A)
405 were constructed by site-directed mutagenesis using primers TZ75 to TZ84.

406 pEXT20-*capRel*^{SJ46} construct: *capRel*^{SJ46}(273-373) was PCR-amplified with primers TZ-18 and
407 TZ-19, and then inserted into linearized pEXT20 with TZ-16 and TZ-17 using Gibson assembly.

408 pBAD33-*gp57* constructs: wild-type or mutant variant (L114P or I115F) *gp57* was PCR-
409 amplified from the corresponding wild-type or escape mutant SECΦ27 phage using primers TZ-
410 43 and TZ-44, and inserted into linearized pBAD33 using Gibson assembly. A C-terminal HA-
411 tag was added to wild-type or mutant *gp57* using primers TZ-47 and TZ-48 to PCR-amplify the

412 corresponding construct followed by Gibson assembly. The F113Y variant of *gp57* was
413 generated by site-directed mutagenesis using primers TZ-63 and TZ-64.

414 pBAD33-*gp8*: the genes encoding the major capsid protein homologs Gp8^{Bas4}, Gp8^{Bas5}, and
415 Gp8^{Bas8} were PCR-amplified from the corresponding phage using primers TZ-55 to TZ-60 and
416 inserted into linearized pBAD33 by Gibson assembly. The Y113F variant of *gp8^{Bas4}* was
417 generated by site-directed mutagenesis using primers TZ-61 and TZ-62. The F120L and I124F
418 variants of *gp8^{Bas8}* were cloned from the corresponding phage escape mutants using primers TZ-
419 59 and TZ-60.

420 pET-*gp57* constructs: *gp57* and *gp57(L114P I115F)* fragments were PCR-amplified with primers
421 TZ-65 and TZ-66 and either TZ-67 template (for *gp57*) or TZ-68 (for *gp57(L114P I115F)*).
422 Using Gibson assembly, the resultant linear DNA fragments were inserted into linearized
423 pET24d (without tag) using TZ-69 and TZ-70. Templates TZ-67 and TZ-68 we synthesized as
424 gBlocks by Integrated DNA Technology.

425 pET24d-*His10-SUMO-capRel^{SJ46}* constructs: *capRel^{SJ46}* ORF was PCR-amplified using primers
426 TZ-71 and TZ-72 as well as pBAD-*capRel^{SJ46}* as template, and, using Gibson assembly, inserted
427 into a linearized pET24d-*His10-SUMO* plasmid using primers TZ-73 and TZ-74.

428 **Strain construction**

429 Plasmids described above were introduced into *E. coli* MG1655 or BW27783 by TSS
430 transformation or electroporation.

431 Bas4 mutant phage were generated using a CRISPR-Cas system for targeted mutagenesis as
432 described previously⁴¹. Briefly, sequences for RNA guides to target Cas9-mediated cleavage
433 were designed using the toolbox in Geneious Prime 2021.2.2 and selected for targeting of *gp8^{Bas4}*
434 but nowhere else in the Bas4 genome. The guides were inserted into the pCas9 plasmid and
435 tested for their ability to restrict Bas4. An efficient guide was selected and the pCas9-guide
436 plasmid was co-transformed into *E. coli* MG1655 with a high copy-number repair plasmid
437 containing *gp8^{Bas4}(Y113F)* with the guide mutated to prevent self-cutting. The wild-type Bas4
438 phage was plated onto a strain containing both the pCas9-guide and the repair plasmid, and
439 single plaques were screened by Sanger Sequencing. Two clones that produce the Y113F
440 substituted Gp8 were propagated twice on strains containing only pCas9-guide for further
441 selection and genomes were sequence verified by Illumina sequencing as described below.

442 **Toxicity assays on solid media**

443 For producing the CapRel^{SJ46} N- and C-terminal domains, single colonies of *E. coli* MG1655
444 containing pBAD33-*capRel^{SJ46}(1-272)* and pEXT20-*capRel^{SJ46}(273-373)* or the corresponding
445 empty vectors were grown for 6 hours at 37 °C in LB-glucose to saturation. 200 µL of each
446 saturated culture was then pelleted by centrifugation at 4000 g for 10 min, washed once in 1x
447 phosphate-buffered saline (PBS), and resuspended in 400 µL 1x PBS. Cultures were then
448 serially-diluted 10-fold in 1x PBS and spotted on M9L plates (M9 medium supplemented with
449 5% LB (v/v)) further supplemented with 0.4% glucose, 0.2% arabinose or 0.2% arabinose and
450 100 µM IPTG. Plates were then incubated at 37 °C overnight before imaging.

451 For producing full-length CapRel^{SJ46}, *E. coli* MG1655 containing pBAD33-*capRel^{SJ46}* or a
452 mutant form of *capRel^{SJ46}* were grown to saturation and processed as above. Cultures were plated
453 onto 0.4% glucose and 0.2% arabinose and incubated at 37 °C overnight.

454 For co-producing CapRel^{SJ46} and the major capsid proteins from SECΦ27, Bas4, Bas5, or Bas8,
455 *E. coli* MG1655 harboring pBR322-*capRel*^{SJ46} and pBAD33-*capsid protein* were grown to
456 saturation and processed as above. Cultures were plated onto 0.4% glucose and 0.2% arabinose
457 and incubated at 37 °C overnight.

458 For co-producing CapRel^{SJ46} and variants of the major capsid protein from Bas8, *E. coli*
459 BW27783 harboring pBR322-*capRel*^{SJ46} and pBAD33-*gp8^{Bas8}* (wild-type or a mutant variant)
460 were grown to saturation and processed as above. Cultures were plated onto 0.4% glucose and
461 0.0002% arabinose and incubated at 37 °C overnight.

462 **Phage spotting assays and efficiency of plaquing (EOP) measurements**

463 Phage stocks isolated from single plaques were propagated in *E. coli* MG1655 at 37 °C in LB.
464 To titer phage, dilutions of stocks were mixed with *E. coli* MG1655 and melted LB + 0.5% agar
465 and spread on LB + 1.2% agar plates and incubated at 37 °C overnight. For phage spotting
466 assays, 40 µL of a bacterial strain of interest was mixed with 4 mL LB + 0.5% agar and spread
467 on an LB + 1.2% agar + antibiotic plate. Phage stocks were then serially diluted in 1x FM buffer
468 (20 mM Tris-HCl pH 7.4, 100 mM NaCl, 10 mM MgSO₄), and 2 µL of each dilution was spotted
469 on the bacterial lawn. Plates were then incubated at 25 °C overnight before imaging. Efficiency
470 of plaquing (EOP) was calculated by comparing the ability of the phage to form plaques on an
471 experimental strain relative to the control strain. Experiments were replicated 3 times
472 independently and representative images are shown.

473 For spotting phage T2 and T4 on strains producing CapRel^{SJ46} variants, 40 µL of a bacterial
474 strain of interest was mixed with 4 mL M9 + 0.5% agar and spread on an M9 + 1.2% agar +
475 antibiotic plate. Phage were serially diluted and spotted as described above. Plates were then
476 incubated at 30 °C overnight before imaging.

477 **Growth curves following phage infection in liquid culture**

478 Single colonies of *E. coli* MG1655 pBR322-EV or pBR322-*capRel*^{SJ46} or pBR322-
479 *capRel*^{SJ46}(Y155A) were grown in LB overnight. Cultures were then back-diluted to OD₆₀₀ = 0.1
480 in fresh LB and 100 µL cells were added into each well of a 96-well plate. 10 µL of serial-
481 diluted T4 phage were added to each well at the indicated MOI and growth following phage
482 infection was measured at 15 min intervals with orbital shaking at 25 °C on a plate reader
483 (Biotek). Data reported are the mean and standard deviation of 8 plate replicates and the growth
484 curve experiment was replicated 3 times independently.

485 **One-step growth curves**

486 Single colonies of *E. coli* MG1655 pBR322-EV or pBR322-*capRel*^{SJ46} were grown overnight in
487 LB. Overnight cultures were back-diluted to OD₆₀₀ = 0.05 in 25 mL fresh LB and grown to
488 OD₆₀₀ ~ 0.3 at 25 °C. 10 mL of each culture were infected with T4 phage at an MOI of 0.05 in
489 LB at 25 °C and phages were allowed to adsorb for 10 min before serial dilution in LB three
490 times (1:100, 1:10, 1:10 serial dilution) to three flasks. Then, at indicated time points, 100 µL of
491 infected cells from the corresponding dilution flask were mixed with 100 µL of indicator cells
492 MG1655 pBR322-EV (OD₆₀₀ ~ 0.3), and the mixtures were mixed with 4 mL of LB + 0.5% agar
493 and spread on LB + 1.2% agar plates. Plates were incubated overnight at 25 °C and plaques were
494 enumerated the following day. Plaque forming units (pfu/mL) were calculated based on the
495 dilution flask samples were taken from. Data reported are the mean and individual data points
496 from 3 biological replicates.

497 **Western blot of CapRel^{SJ46} after phage infection**

498 Single colonies of *E. coli* MG1655 pBR322-*His*₆-*capRel*^{SJ46} were grown overnight in LB.
499 Overnight cultures were back-diluted to OD₆₀₀ = 0.05 in 25 mL fresh LB and grown to OD₆₀₀ =
500 0.2 at 25 °C. Cells were infected with phage SECΦ27 at MOI = 100, and incubated at 25 °C
501 during the experiment. At each indicated time point (0, 10, 20, 40, 60 min), OD₆₀₀ was measured
502 and 1 mL of cells was pelleted at 21,000 g for 2 min at 4 °C. Supernatant was removed and
503 pellets were flash-frozen in liquid nitrogen. Pellets were thawed and resuspended in 1x Laemmli
504 sample buffer (Bio-Rad) supplemented with 2-mercaptoethanol with OD₆₀₀ normalized. Samples
505 were then boiled at 95 °C and analyzed by 12% SDS-PAGE and transferred to a 0.45 µm PVDF
506 membrane. Anti-*His*₆ antibody (Invitrogen) was used at a final concentration of 1:1000, and
507 SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher) was used to develop
508 the blots. Blots were imaged by a ChemiDoc Imaging system (Bio-Rad). Image shown is a
509 representative of 2 independent biological replicates.

510 **Isolation of phage escape mutants to infect CapRel^{SJ46}**

511 The phage evolution experiment was conducted as described previously⁴². Briefly, five
512 independent populations were evolved in a 96-well plate containing a sensitive host *E. coli*
513 MG1655 pBR322-EV and a resistant host *E. coli* MG1655 pBR322-*capRel*^{SJ46}. One control
514 population was evolved with only the sensitive host. Overnight bacterial cultures were back-
515 diluted to OD₆₀₀ = 0.1 in LB and 100 µL were seeded into each well. Cells were infected with
516 10-fold serial dilutions of SECΦ27 phage with MOI from 100 to 10⁻⁴, with one well uninfected
517 to monitor for contamination. Plates were sealed with breathable plate seals and incubated at
518 25 °C for 6 hours in a plate shaker at 1000 rpm. Cleared wells from each population were pooled,
519 pelleted at 4000 g for 20 min to remove bacteria, and the supernatant lysates were transferred to
520 a 96 deep-well block with 40 µL chloroform added to prevent bacterial growth. Lysates were
521 spotted onto both sensitive and resistant hosts to check the defense phenotype. Thirteen rounds
522 of evolution were performed to allow all five populations to overcome CapRel^{SJ46} defense.
523 Evolved clones from each evolved population were isolated by plating to single plaques on lawns
524 of resistant host, and control clones from the control population were isolated on a lawn of the
525 sensitive host. Two clones from each population were propagated using the corresponding host
526 and sequenced as described below.

527 Bas8 escape mutants were isolated by plating a population of phage onto CapRel^{SJ46}-containing
528 cells. 20 µL of 10¹¹ pfu/mL Bas8 phage mixed with 40 µL overnight culture of *E. coli* MG1655
529 pBR322-*capRel*^{SJ46} were added to 4 mL of LB + 0.5% agar and spread onto LB + 1.2% agar.
530 Plates were incubated at 25 °C overnight. Single plaques were isolated and propagated using the
531 same strain in LB at 25 °C. Amplified phage lysates were pelleted to remove bacteria, and then
532 plated to single plaques and propagated similarly for a second round of isolation to improve
533 purity and sequenced as described below.

534 **Phage DNA extraction and Illumina sequencing**

535 To extract phage DNA, high titer phage lysates (> 10⁶ pfu/µL) were treated with DNase I (0.001
536 U/µL) and RNase A (0.05 mg/mL) at 37 °C for 30 min. 10 mM EDTA was used to inactivate the
537 nucleases. Lysates were then incubated with Proteinase K at 50 °C for 30 min to disrupt capsids
538 and release phage DNA. Phage DNA was isolated by ethanol precipitation. Briefly, NaOAc pH
539 5.2 was added to 300 mM followed by 100% ethanol to a final volume fraction of 70%. Samples
540 were incubated at -80 °C overnight, pelleted at 21,000 g for 20 min and supernatant removed.
541 Pellets were washed with 100 µL isopropanol and 200 µL 70% (v/v) ethanol, and then aired

542 dried at room temperature and resuspended in 25 μ L 1x TE buffer (10 mM Tris-HCl, 0.1 mM
543 EDTA, pH = 8). Concentrations of extracted DNA were measured by NanoDrop (Thermo Fisher
544 Scientific).

545 To prepare Illumina sequencing libraries, 100-200 ng of genomic DNA was sheared in a
546 Diagenode Bioruptor 300 sonicator water bath for 20x 30 s cycles at maximum intensity.
547 Sheared genomic DNA was purified using AmpureXP beads, followed by end repair, 3'
548 adenylation, and adaptor ligation. Barcodes were added to both 5' and 3' ends by PCR with
549 primers that anneal to the Illumina adaptors. The libraries were cleaned by Ampure XP beads
550 using a double cut to elute fragment sizes matching the read-lengths of the sequencing run.
551 Libraries were sequenced on an Illumina MiSeq at the MIT BioMicro Center. Illumina reads
552 were assembled to the reference genomes using Geneious Prime 2021.2.2.

553 **Mass spectrometry of phages**

554 Wild-type or mutant (L114P in Gp57, evolved clone 1 from population 3) SECΦ27 phage were
555 propagated in *E. coli* MG1655 for high titer stocks. Briefly, *E. coli* MG1655 ($OD_{600} = 0.2$) in LB
556 were infected with phages at MOI = 0.1 and incubated at 37 °C for 4 hours. Cells were pelleted
557 at 4000 g for 10 min and supernatant lysates were filtered through 0.2 μ m filters. 500 μ L of
558 phage stocks (10^{10} pfu/ μ L) were further concentrated with Amicon Ultra filter (MW 100 kDa)
559 and washed twice with 1x FM buffer (20 mM Tris-HCl pH 7.4, 100 mM NaCl, 10 mM MgSO₄).
560 Concentrated phage lysates were boiled to denature virions and run on 4-20% SDS-PAGE. Each
561 lane from the gel was excised. Proteins were reduced with 10 mM dithiothreitol (Sigma) for 1
562 hour at 56 °C and then alkylated with 20 mM iodoacetamide (Sigma) for 1 hour at 25 °C in the
563 dark. Proteins were then digested with 12.5 ng/ μ L modified trypsin (Promega) in 50 μ L 100
564 mM ammonium bicarbonate, pH 8.9 at 25 °C overnight. Peptides were extracted by incubating
565 the gel pieces with 50% acetonitrile/5% formic acid then 100 mM ammonium bicarbonate,
566 repeated twice followed by incubating the gel pieces with 100% acetonitrile then 100 mM
567 ammonium bicarbonate, repeated twice. Each fraction was collected, combined, and reduced to
568 near dryness in a vacuum centrifuge. Peptides were desalted using Pierce Peptide Desalting Spin
569 Columns (Thermo) and then lyophilized. The tryptic peptides were separated by reverse phase
570 HPLC (Thermo Ultimate 3000) using a Thermo PepMap RSLC C18 column over a 90 min
571 gradient before nano-electrospray using an Exploris mass spectrometer (Thermo). Solvent A was
572 0.1% formic acid in water and solvent B was 0.1% formic acid in acetonitrile. Detected peptides
573 were mapped to SECΦ27 protein sequences and the abundance of proteins were estimated by
574 number of spectrum counts/molecular weight (SC/MW) to normalize for protein sizes.

575 **Co-immunoprecipitation (co-IP) analysis**

576 For immunoprecipitation of CapRel^{SJ46} after phage infection, *E. coli* MG1655 containing
577 pBR322-*capRel*^{SJ46}-FLAG were grown overnight in LB. Overnight cultures were back-diluted to
578 $OD_{600} = 0.05$ in 175 mL of LB and grown to $OD_{600} \sim 0.3$ at 25 °C. Cells were infected with wild-
579 type or mutant (L114P in Gp57, evolved clone 1 from population 3) SECΦ27 at MOI = 100 and
580 incubated at 25 °C. At the indicated time points (15 min or 40 min), OD_{600} was measured and 50
581 mL of cells were pelleted at 6000 g for 5 min at 4 °C. Uninfected cells were harvested at 0 min
582 before phage infection. Supernatant was removed and cells were resuspended in 900 μ L lysis
583 buffer (25 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 and 5% glycerol)
584 supplemented with protease inhibitor (Roche), 1 μ L/mL Ready-Lyse™ Lysozyme Solution
585 (Lucigen) and 1 μ L/mL benzonase nuclease (Sigma). Samples were lysed by two freeze-thaw
586 cycles, and lysates were normalized by OD_{600} . Lysates were pelleted at 21,000 g for 10 min at 4

587 °C, and 850 µL of supernatant were incubated with pre-washed anti-FLAG M2 magnetic beads
588 (Sigma) beads for 1 hour at 4 °C with end-over-end rotation. Beads were then washed 3 times
589 with lysis buffer containing 350 mM NaCl but free of detergent. On-bead reduction, alkylation
590 and digestion were performed. Proteins were reduced with 10 mM dithiothreitol (Sigma) for 1
591 hour at 56 °C and then alkylated with 20 mM iodoacetamide (Sigma) for 1 hour at 25 °C in the
592 dark. Proteins were then digested with modified trypsin (Promega) at an enzyme/substrate ratio
593 of 1:50 in 100 mM ammonium bicarbonate, pH 8 at 25 °C overnight. Trypsin activity was halted
594 by addition of formic acid (99.9 %, Sigma) to a final concentration of 5 %. Peptides were
595 desalted using Pierce Peptide Desalting Spin Columns (Thermo) then lyophilized. The tryptic
596 peptides were subjected to LC-MS/MS as described above. Experiments were performed 2 times
597 independently and spectral counts are reported. Ratio of spectral counts between Gp57 and
598 CapRel^{SJ46} were calculated and graphed for normalization.

599 For co-producing CapRel^{SJ46} and Gp57, *E. coli* MG1655 containing pBR322-*capRel*^{SJ46} or
600 pBR322-*capRel*^{SJ46}-FLAG (wild type or mutants) and pBAD33-*gp57-HA* (wild type or mutants)
601 were grown overnight in M9-glucose. Overnight cultures were back-diluted to OD₆₀₀ = 0.05 in
602 50 mL of M9 (no glucose) and grown to OD₆₀₀ ~ 0.3 at 37 °C. Cells were induced with 0.2%
603 arabinose for 30 min at 37 °C, then OD₆₀₀ was measured and cells were pelleted at 4000 g for 10
604 min at 4 °C. Supernatant was removed and cells were resuspended in 900 µL lysis buffer as
605 described above. Samples were lysed by two freeze-thaw cycles, and lysates were normalized by
606 OD₆₀₀. Lysates were pelleted at 21,000 g for 10 min at 4 °C, and 850 µL of supernatant were
607 incubated with pre-washed anti-FLAG M2 magnetic beads (Sigma) beads for 1 hour at 4 °C with
608 end-over-end rotation. Beads were then washed 3 times with lysis buffer containing 350 mM
609 NaCl. 1x Laemmli sample buffer (Bio-Rad) supplemented with 2-mercaptoethanol was added to
610 beads directly to elute proteins. Samples were boiled at 95 °C and analyzed by 12% SDS-PAGE
611 and transferred to a 0.45 µm PVDF membrane. Anti-FLAG and anti-HA antibodies (Cell
612 Signaling Technology) were used at a final concentration of 1:1000, and SuperSignal West
613 Femto Maximum Sensitivity Substrate (ThermoFisher) was used to develop the blots. Blots were
614 imaged by a ChemiDoc Imaging system (Bio-Rad). Images shown are representatives of 3
615 independent biological replicates.

616 Incorporation assays

617 For co-producing CapRel^{SJ46} and Gp57, the SECΦ27 major capsid protein, single colonies of *E.*
618 *coli* MG1655 containing pBR322-*capRel*^{SJ46} and pBAD33-*gp57* (wild-type or L114P variant) or
619 corresponding empty vectors were grown overnight in M9-glucose. Overnight cultures were
620 back-diluted to OD₆₀₀ = 0.05 in 25 mL M9-glucose and grown to OD₆₀₀ ~ 0.3 at 37 °C. Cells
621 were pelleted at 4000 g for 5 min at 4 °C and washed once with M9 (no glucose), and then back-
622 diluted to OD₆₀₀ = 0.1 in 15 mL M9 (no glucose) and recovered for 45 min at 37 °C. At the indicated time
623 points (0, 10, 20, 30, 40 min), OD₆₀₀ was measured and an aliquot of 250 µL of cells was
624 transferred to microcentrifuge tube containing [5,6-³H]-uridine (PerkinElmer) (4 µCi/mL) for
625 transcription measurements or EasyTag™ EXPRESS-³⁵S Protein Labeling Mix, [³⁵S]
626 (PerkinElmer) at 44 µCi/mL for translation measurements. Tubes were incubated at 37 °C for 2
627 min, then quenched by addition of nonradioactive uridine (1.5 mM) or cysteine and methionine
628 (15 mM each) and incubated for an additional 2 min. Samples were then added to ice cold
629 trichloroacetic acid (TCA) (10% w/v) and incubated at least 30 min on ice to allow for
630 precipitation. Resulting samples were vacuum filtered onto a glass microfiber filter (Whatman,
631

632 1820-024) that had been pre-wetted with 5% w/v TCA. Filters were washed with 35x volume of
633 5% w/v TCA, then with 5x volume of 100% ethanol. Air dried filters were placed in tubes with
634 scintillation fluid and measured in a scintillation counter (PerkinElmer). CPM (Counts Per
635 Million) was normalized to OD₆₀₀ and percent incorporation at each time point was calculated by
636 normalizing to T = 0. Data reported are the mean and individual data points from three
637 independent biological replicates.

638 For producing the CapRel^{SJ46} N-terminal toxin domain, single colonies of *E. coli* MG1655
639 containing pBAD33-*capRel*^{SJ46}(1-272) or an empty vector were grown overnight in M9-glucose.
640 Transcription and translation experiments were done as described above. Data reported are the
641 mean and individual data points from three independent biological replicates.

642 For phage infection experiments, single colonies of *E. coli* MG1655 harboring pBR322-EV or
643 pBR322-*capRel*^{SJ46} were grown overnight in LB. Overnight cultures were back-diluted to OD₆₀₀
644 = 0.05 in 25 mL fresh LB and grown to OD₆₀₀ ~ 0.3 at 25 °C. Cells were then diluted to OD₆₀₀ =
645 0.1 in 10 mL LB and infected with wild-type or mutant (L114P in Gp57, evolved clone 1 from
646 population 3) SECΦ27 at MOI = 100 and incubated at 25 °C. At the indicated time points (0, 15,
647 30, 45, 60 min), OD₆₀₀ was measured and an aliquot of 250 µL of cells was transferred to a
648 microcentrifuge tube containing [5,6-³H]-uridine (PerkinElmer) (32 µCi/mL) for transcription
649 measurements or EasyTag™ EXPRESS-³⁵S Protein Labeling Mix, [³⁵S] (PerkinElmer) at 88
650 µCi/mL for translation measurements. Tubes were incubated at 25 °C for 4 min, then quenched
651 by addition of nonradioactive uridine (1.5 mM) or cysteine and methionine (15 mM) and
652 incubated for an additional 2 min. Samples were then processed same as above. Data reported
653 are the mean and individual data points from three independent biological replicates. Statistical
654 significance was determined by unpaired, two-tailed Student's t-test (p<0.05).

655 Homology search, alignment, and conservation analysis

656 CapRel^{SJ46} was identified in the sequence database from our previous bioinformatic survey of
657 RSH proteins²⁴ that included gene neighborhood analysis to identify TA systems⁴³. Bacterial
658 strains containing CapRel^{SJ46}, CapRel^{Ebc} or CapRel^{Kp} with 100% amino acid identity were found
659 on NCBI database. Local genomic regions (+/- 10kb of CapRel) were extracted and annotated
660 for all coding sequences. Prophage genes and intact prophage regions were identified by
661 PHASTER⁴⁴. Additional homologs of CapRel^{SJ46} were identified by ConSurf⁴⁵ using PSI-
662 BLAST (default settings) to search UniRef90 database, yielding 44 homologs. For Fig S1,
663 sequences were aligned with MAFFT L-INS-i v7.453 (Ref⁴⁶) with manual curation of the C
664 terminal region guided by homology modeling of the stand-alone Phrann Gp30 antitoxin using
665 Swiss-Model⁴⁷, and with our CapRel^{SJ46} predicted structure as a template. For Fig. S2, 52
666 homologs were used to generate the multiple sequence alignment by MAFFT and used as input
667 for ConSurf. Conservation scores were calculated using the Bayesian method and default
668 settings. An alignment of representative diverse sequences is shown and color-coded by percent
669 identity (Fig. S2a).

670 Homologs of the major capsid proteins in BASEL phages were identified by BLASTp⁴⁸ searches
671 against each phage genome. Homologs of Gp57 (Gp8^{Bas4}, Gp8^{Bas5}, Gp8^{Bas8}) were aligned by
672 MUSCLE⁴⁹ and colored by percent identity (Fig. S5a).

673 CapRel^{SJ46} preparation for crystallization and HDX-MS

674 For the production of His₁₀-SUMO-tagged CapRel^{SJ46} and CapRel^{SJ46} variants, *E. coli* BL21
675 (DE3) cells were transformed with pET24d plasmids containing the gene of interest and grown

676 in LB medium to OD₆₀₀ of 0.6. Expression of the protein of interest was induced by addition of
677 0.5 mM IPTG, and cells were grown for 3 hours at 30 °C. The culture was then centrifuged, and
678 pellet was re-suspended in resuspension buffer (50 mM Tris-HCl pH 8.0, 1.5 M KCl, 2 mM
679 MgCl₂, 1 mM TCEP, 0,002% mellitic acid and 1 pastil of protease inhibitors cocktail (Roche)).
680 Cells were disrupted using a high-pressure homogenizer (Emulsiflex) and the supernatant was
681 separated from the pellet by centrifugation and filtered through 0.45 µm filters. Protein extracts
682 were loaded onto a gravity-flow column (Cytiva) packed with HisPur™ Nickel resin
683 (ThermoFisher Scientific), washed with buffer A (50 mM Tris-HCl pH 8, 500 mM NaCl, 500
684 mM KCl, 1 mM TCEP, 0.002% Melitic acid) and stepwise eluted in the resuspension buffer
685 supplemented with 500 mM imidazole. To remove remaining contaminants and imidazole, the
686 elution fraction was immediately transferred to a size exclusion chromatography (SEC) column
687 Superdex 200 PG column (GE Healthcare), previously equilibrated in the SEC buffer [50 mM
688 HEPES pH 7.5, 500 mM NaCl, 500 mM KCl, 2 mM MgCl₂, 1 mM TCEP, 0.002% mellitic acid
689 (and 1 mM MnCl₂ for all CapRel^{SJ46} proteins)]. The fractions containing the protein were
690 concentrated to around 1 mg/mL and the His-tag was removed by incubating with UlpI protease
691 (1:50 molar ratio) at 4 °C for 30 minutes. His₁₀-SUMO-tag and the protease were then removed
692 by passing the samples over a gravity-flow column (Cytiva) packed with HisPur™ Nickel resin
693 (ThermoFisher Scientific). Purity of the sample preparation was assessed spectrophotometrically
694 and by SDS-PAGE. For all the purified protein samples, OD₂₆₀/OD₂₈₀ ratio was below 0.6.
695 Samples were stored at -20 °C or concentrated to 7 mg/ml and used directly in crystallization
696 experiments.

697 For the purification of the His₁₀-SUMO-CapRel^{SJ46} + His₁₀-SUMO-Gp57 complex *E. coli* BL21
698 (DE3) strain containing freshly transformed pET24d-*His₁₀-SUMO-capRel^{SJ46}*(Y155A) and
699 pET21a-*His₁₀-SUMO-gp57* were grown in LB medium to OD₆₀₀ of 0.2. This culture was then
700 diluted in fresh LB media and grown until OD₆₀₀ of 0.6. Expression of the protein of interest was
701 induced by addition of 0.5 mM IPTG, and cells were grown for overnight at 16 °C. The
702 subsequent purification, Sumo tag cleavage and purity assessment steps were identical to the
703 workflow described above for the all the CapRel^{SJ46} protein variants.

704 Crystallization of CapRel^{SJ46}

705 The screening of crystallization conditions of CapRel^{SJ46} was carried out using the sitting-drop
706 vapor-diffusion method. The drops were set up in Swiss (MRC) 96-well two-drop UVP sitting-
707 drop plates using the Mosquito HTS system (TTP Labtech). Drops of 0.1 µL protein and 0.1 µL
708 precipitant solution were equilibrated to 80 µL precipitant solution in the reservoir.
709 Commercially available screens LMB and SG1 (Molecular Dimensions) were used to test
710 crystallization conditions. The condition resulting in protein crystals (LMB screen position C9
711 for CapRel^{SJ46}) were repeated as 2 µL drops. Crystals were harvested using suitable cryo-
712 protecting solutions and vitrified in liquid N₂ for transport and storage before X-ray exposure. X-
713 ray diffraction data was collected at the SOLEIL synchrotron (Gif-sur-Yvette, Paris, France) on
714 the Proxima 1 (PX1) and Proxima 2A (PX2A) beamlines using an Eiger-X 16M detector.
715 Because of the high anisotropic nature of the data from all the crystals we performed anisotropic
716 cutoff and correction of the merged intensity data as implemented on the STARANISO server
717 (<http://staraniso.globalphasing.org/>) using the DEBYE and STARANISO programs. The analysis
718 of the data suggested a resolution of 2.31 Å (with 2.31 Å in *a**, 2.85 Å in *b** and 2.72 Å in *c**).

719 Structure determination

720 The data were processed with the XDS suite⁵⁰ and scaled with Aimless. In all cases, the unit-cell
721 content was estimated with the program MATTHEW COEF from the CCP4 program suite⁵¹.
722 Molecular replacement was performed with Phaser⁵². The crystals of CapRel^{SJ46} diffracted on
723 average to ≈ 2.3 Å. We used the coordinates of Rel₇₇^{NTD} as search model for the toxSYNTH
724 domain (PDBID 6S2T)⁵³. The MR solution from Phaser was used in combination with Rosetta as
725 implemented in the MR-Rosetta⁵⁴ suit from the Phenix package⁵⁵. After several iterations of
726 manual building with Coot⁵⁶ and maximum likelihood refinement as implemented in
727 Buster/TNT⁵⁷, the model was extended to cover all the residues (R/R_{free} of 21.5/26.0 %). **Table**
728 **S1** details all the X-ray data collection and refinement statistics.

729 Isothermal titration calorimetry (ITC)

730 For all ITC measurements CapRel^{SJ46} samples were prepared from the pET24d-*His₁₀-SUMO-*
731 *capRel^{SJ46}* as detailed above. In the case of Gp57, *E. coli* BL21 (DE3) cells were transformed
732 with pET21a-*His₁₀-SUMO-gp57* and grown in LB medium to OD₆₀₀ of 0.2. This culture was then
733 diluted in fresh LB media and grown until OD₆₀₀ of 0.6. Expression of His₁₀-SUMO-Gp57 was
734 induced by addition of 0.1 mM IPTG, and cells were grown for overnight at 16 °C. The
735 subsequent purification, SUMO-tag cleavage and purity assessment steps were identical to the
736 workflow described above for the all the CapRel^{SJ46} protein variants. After removing the SUMO-
737 tag, samples were concentrated to 10 µM and used directly for ITC immediately after
738 purification.

739 All titrations were performed with an Affinity ITC (TA instruments) at 25 °C. For the titration,
740 CapRel^{SJ46} was loaded in the instrument syringe at 150 µM and Gp57 was used in the cell at 10
741 µM. The titration was performed in 50 mM HEPES pH 7.5; 500 mM KCl; 500 mM; NaCl; 10
742 mM MgCl₂; 1 mM TCEP; 0.002 % mellitic acid. Final concentrations were verified by the
743 absorption using a Nanodrop One (ThermoScientific). All ITC measurements were performed by
744 titrating 2 µL of CapRel^{SJ46} into Gp57 using a constant stirring rate of 75 rpm. All data were
745 processed, buffer-corrected and analysed using the NanoAnalyse and Origin software packages.

746 Hydrogen deuterium exchange mass spectrometry (HDX-MS)

747 Hydrogen Deuterium exchange mass spectrometry (HDX-MS) experiments were performed on
748 an HDX platform composed of a Synapt G2-Si mass spectrometer (Waters Corporation)
749 connected to a nanoAcuity UPLC system. Samples of CapRel^{SJ46} and CapRel^{SJ46} complexed
750 with Gp57 were prepared at a concentration of 20 to 50 µM. For each experiment 5 µL of sample
751 (CapRel^{SJ46} or CapRel^{SJ46}-Gp57) were incubated for 1 min, 5 min, 15 min or 60 min in 95 µL of
752 Labeling buffer L (50 mM HEPES, 500 mM KCl, 500 mM NaCl, 2 mM MgCl₂, 1 mM TCEP,
753 0.002% mellitic acid, pH 7.5) at 20°C. The non-deuterated reference points were prepared by
754 replacing buffer L by Equilibration buffer E (50 mM HEPES, 500 mM KCl, 500 mM NaCl, 2
755 mM MgCl₂, 1 mM TCEP, 0.002% mellitic acid, pH 7.5). After labeling, the samples are
756 quenched by mixing with 100 µL of pre-chilled quench buffer Q (1.2 % formic acid, pH 2.4). 70
757 µL of the quenched samples are directly transferred to the Enzymate BEH Pepsin Column
758 (Waters Corporation) at 200 µL/min and at 20°C with a pressure 8.5 kPSI. Peptic peptides were
759 trapped for 3 min on an Acquity UPLC BEH C18 VanGuard Pre-column (Waters Corporation) at
760 a 200 µL/min flow rate in water (0.1% formic acid in HPLC water pH 2.5) before eluted to an
761 Acquity UPLC BEH C18 Column for chromatographic separation. Separation was done with a
762 linear gradient buffer (7-40% gradient of 0.1% formic acid in acetonitrile) at a flow rate of 40
763 µL/min. Peptides identification and deuteration upatke analysis was performed on the Synapt

764 G2Si in ESI+ - HDMS^E mode (Waters Corporation). Leucine Enkephalin was applied for mass
765 accuracy correction and sodium iodide was used as calibration for the mass spectrometer.
766 HDMS^E data were collected by a 20-30 V transfer collision energy ramp. The pepsin column
767 was washed between injections using pepsin wash buffer (1.5 M Gu-HCl, 4% (v/v) MeOH, 0.8%
768 (v/v) formic acid). A blank run was performed between each sample to prevent significant
769 peptide carry-over. Optimized peptide identification and peptide coverage for all samples was
770 performed from undeuterated controls (five replicates). All deuterium time points were
771 performed in triplicate.

772 Data treatment and statistical analysis of HDX-MS

773 The non-deuterated references points were analyzed by PLGS (ProteinLynx Global Server 2.5.1,
774 Waters) to identify the peptic peptides belonging CapRel^{SJ46} or Gp57. Then, all the HDMS^E data
775 including reference and deuterated samples were processed by DynamX 3.0 (Waters) for
776 deuterium uptake determination. We chose the following filtering parameters: minimum
777 intensity of 1000, minimum and maximum peptide sequence length of 5 and 20, respectively,
778 minimum MS/MS products of 3, minimum products per amino acid of 0.27, minimum score of
779 5, and a maximum MH⁺ error threshold of 15 p.p.m. Data were analyzed at peptidic and overall
780 level and manually curated by visual inspection of individual spectra. The overall level is based
781 on the relative fractional uptake (RFU) that can be calculated by the following formula:

$$782 RFU_{a,t}(\%) = \frac{\gamma_{a,t}}{MaxUptake_a \times D}$$

783 where $\gamma_{a,t}$ is the deuterium uptake for peptide a at incubation time t, and $MaxUptake_a \times D$ is
784 the theoretical maximum uptake in deuterium value that peptide a can take. The ΔRFU compared
785 RFU value between two different experiments conditions, in this case, this is the comparison
786 between CapRel^{SJ46} and CapRel^{SJ46} + Gp57. Heat maps have been generated in DynamX. All the
787 raw data can be accessed at: doi.org/10.6084/m9.figshare.19745089.

788 CapRel^{SJ46} expression and purification for biochemical assays

789 Full-length *capRel^{SJ46}* was overexpressed in freshly transformed *E. coli* BL21(DE3) pET24d-*N*-
790 *His₁₀-SUMO-capRel^{SJ46}* pMG25-*paSpo* (VH-4) co-transformed with the plasmid encoding PaSpo
791 Small Alarmone Hydrolase (SAH) from *Salmonella* phage SSU5 that had been shown to
792 neutralize the toxicity of other toxSAS toxins²⁴. Fresh transformants were used to inoculate 800
793 mL of LB medium (final OD₆₀₀ of 0.03) supplemented with 50 µg/mL kanamycin, 20 µg/mL
794 chloramphenicol and 0.2% arabinose. Bacterial cultures were grown at 37 °C until an OD₆₀₀ of
795 0.4-0.5 and protein expression was induced with 0.1 mM IPTG (final concentration). Cells were
796 grown for additional 1 hour at 30 °C and the biomass was harvested by centrifugation (10,000
797 rpm, for 5 minutes, JLA-10.500 rotor (Beckman Coulter)).

798 Cell mass was resuspended in buffer A (750 mM KCl, 500 mM NaCl, 5 mM MgCl₂, 40 µM
799 MnCl₂, 40 µM Zn(OAc)₂, 1 mM mellitic acid, 20 mM imidazole, 10% glycerol, 4 mM β-
800 mercaptoethanol and 25 mM HEPES:KOH pH = 8) supplemented with 0.1 mM PMSF and 1
801 U/mL of DNase I, and lysed by one passage through a high-pressure cell disrupter (Stansted
802 Fluid Power, 150 MPa). Mellitic acid was added to buffers as it was earlier shown to stabilise
803 *Thermus thermophilus* Rel stringent factor⁵⁸. Cell debris was removed by centrifugation (25,000
804 rpm for 1 hour, JA-25.50 rotor (Beckman Coulter)), the clarified lysate was filtered through a
805 0.22 µm syringe filter and loaded onto a HisTrap 5 ml HP column (Cytiva) pre-equilibrated in
806 buffer A. The column was washed with 5 column volumes (CV) of buffer A, and the protein was

807 eluted using a combination of stepwise and linear gradient (5 CV with 0-100% buffer B) of
808 buffer B (750 mM KCl, 500 mM NaCl, 5 mM MgCl₂, 40 µM MnCl₂, 40 µM Zn(OAc)₂, 1 mM
809 mellitic acid, 1 M imidazole, 10% glycerol, 4 mM β-mercaptoethanol, 25 mM HEPES:KOH pH
810 = 8). Fractions enriched in CapRel^{SJ46} (approximately 40% buffer B) were pooled, totalling
811 approximately 5 mL. The sample was loaded on a HiLoad 16/600 Superdex 200 PG column pre-
812 equilibrated with a high-salt buffer (buffer C; 2 M NaCl, 5 mM MgCl₂, 10% glycerol, 4 mM β-
813 mercaptoethanol, 25 mM HEPES:KOH pH = 8). The fractions containing CapRel^{SJ46} were
814 pooled and applied on a HiPrep 10/26 desalting column (GE Healthcare) pre-equilibrated with
815 storage buffer (buffer D; 720 mM KCl, 5 mM MgCl₂, 40 mM arginine, 40 mM glutamic acid,
816 10% glycerol, 4 mM β-mercaptoethanol, 25 mM HEPES:KOH pH = 8). Fractions containing
817 CapRel^{SJ46} were collected (about 14 mL in total) and the His₁₀-SUMO tag was cleaved off by
818 addition of 10 µg of His₆-Ulp1 per 1 mg CapRel^{SJ46} followed by a 30-minute incubation on ice.
819 After the His₁₀-SUMO tag was cleaved off, the protein was passed through a 5 mL HisTrap HP
820 pre-equilibrated with buffer D supplemented with 20 mM imidazole. Fractions containing
821 CapRel^{SJ46} in the flow-through were collected and concentrated on an Amicon Ultra (Millipore)
822 centrifugal filter device with a 10 kDa cut-off. The purity of protein preparations was assessed by
823 SDS-PAGE. Protein preparations were aliquoted, frozen in liquid nitrogen and stored at -80 °C.
824 Individual single-use aliquots were discarded after the experiment.

825 Cell-free translation

826 Experiments with PURExpress *in vitro* protein synthesis kit (NEB, E6800) were performed as
827 per the manufacturer's instructions. All reactions were supplemented with 0.8 U/µL RNase
828 Inhibitor Murine (NEB, M0314S). Purified CapRel^{SJ46} protein was used at a final concentration
829 of 250 nM, with *gp57* or *gp57(L114P I115F)* as template plasmid at 10 ng/µL. As a mock
830 control CapRel^{SJ46} was substituted for equal volume of HEPES:Polymix buffer, pH = 7.5. After a
831 10-minute incubation at 37 °C, a 1.34 µL aliquot of the reaction mixture was taken and quenched
832 by addition of 13.66 µL of 2x sample buffer (100 mM Tris:HCl pH = 6.8, 4% SDS, 0.02%
833 bromophenol blue, 20% glycerol, 20 mM DTT and 4% β-mercaptoethanol), and DHFR template
834 plasmid was added to the remaining reaction mixture at a final concentration of 20 ng/µL. After
835 further incubation at 37 °C for 1 hour, the reaction mixture was mixed with 9-fold volume of 2x
836 sample buffer and 5 µL of the mixture was resolved on 18% SDS-PAGE gel. The SDS-PAGE
837 gel was fixed by incubating for 5 min at room temperature in 50% ethanol solution supplemented
838 with 2% phosphoric acid, washed three times with water for 20 min at room temperature, and
839 stained with "blue silver" solution (0.12% Brilliant Blue G250 (Sigma-Aldrich, 27815), 10%
840 ammonium sulfate, 10% phosphoric acid, and 20% methanol) overnight at room temperature.
841 After washing with water for 3 hours at room temperature, the gel was imaged on an
842 Amersham™ ImageQuant 800 (Cytiva) imaging system. For tRNA pyrophosphorylation
843 experiments (see below), Gp57 and Gp57(L114P I115F) were produced in similar reaction
844 mixture without CapRel^{SJ46} and DHFR template at 37 °C for 2 hours.

845 tRNA pyrophosphorylation by CapRel^{SJ46}

846 The reaction mixture containing 5 µM tRNA from *E. coli* MRE600 (Sigma-Aldrich,
847 10109541001), 500 µM γ³²P-ATP, 250 nM CapRel^{SJ46} and 1/10 volume of either wild-type
848 Gp57 or Gp57(L114P I115F) products from PUREsystem in HEPES:Polymix buffer, pH = 7.5
849 (5 mM Mg²⁺ final concentration) supplemented with 1 mM DTT was incubated at 37 °C for 10
850 min. To visualize phosphorylated tRNA, the reaction sample was mixed in 2 volumes of RNA
851 dye (98% formamide, 10 mM EDTA, 0.3% bromophenol blue and 0.3% xylene cyanol), tRNA
852 was denatured at 37 °C for 10 min and resolved on urea-PAGE in 1x TBE (8 M urea, 8%

853 PAGE). The gel was stained with SYBR Gold (Life technologies, S11494) and exposed to an
854 imaging plate overnight. The imaging plate was imaged by a FLA-3000 (Fujifilm).

855

856 **References**

- 857 1. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a
858 community resource. *Nat. Rev. Microbiol.* **18**, 113–119 (2020).
- 859 2. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their
860 phage foes. *Nature* **577**, 327–336 (2020).
- 861 3. Rostøl, J. T. & Marraffini, L. (Ph)ighting Phages: How Bacteria Resist Their Parasites. *Cell*
862 *Host Microbe* **25**, 184–194 (2019).
- 863 4. Fitzgerald, K. A. & Kagan, J. C. Toll-like Receptors and the Control of Immunity. *Cell* **180**,
864 1044–1066 (2020).
- 865 5. Daugherty, M. D. & Malik, H. S. Rules of engagement: molecular insights from host-virus
866 arms races. *Annu. Rev. Genet.* **46**, 677–700 (2012).
- 867 6. Fletcher, A. J. *et al.* Trivalent RING Assembly on Retroviral Capsids Activates
868 TRIM5 Ubiquitination and Innate Immune Signaling. *Cell Host Microbe* **24**, 761–775.e6
869 (2018).
- 870 7. Lahaye, X. *et al.* NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate
871 Immune Activation. *Cell* **175**, 488–501.e22 (2018).
- 872 8. Lin, Y.-T., Chen, Y.-P., Fang, C.-H., Huang, P.-Y. & Liang, S.-M. Capsid proteins of foot-
873 and-mouth disease virus interact with TLR2 and CD14 to induce cytokine production.
874 *Immunol. Lett.* **223**, 10–16 (2020).
- 875 9. Pertel, T. *et al.* TRIM5 is an innate immune sensor for the retrovirus capsid lattice. *Nature* **472**,
876 361–365 (2011).
- 877 10. Shepardson, K. M. *et al.* Induction of Antiviral Immune Response through Recognition of the
878 Repeating Subunit Pattern of Viral Capsids Is Toll-Like Receptor 2 Dependent. *mBio* **8**,
879 e01356-17 (2017).
- 880 11. Rousset, F. *et al.* Phages and their satellites encode hotspots of antiviral systems. *Cell Host*
881 *Microbe* S1931-3128(22)00104–4 (2022) doi:10.1016/j.chom.2022.02.018.
- 882 12. Doron, S. *et al.* Systematic discovery of antiphage defense systems in the microbial
883 pangenome. *Science* **359**, eaar4120 (2018).
- 884 13. Millman, A. *et al.* An expanding arsenal of immune systems that protect bacteria from phages.
885 2022.05.11.491447 (2022) doi:10.1101/2022.05.11.491447.
- 886 14. Vassallo, C., Doering, C., Littlehale, M. L., Teodoro, G. & Laub, M. T. Mapping the landscape
887 of anti-phage defense mechanisms in the *E. coli* pangenome. 2022.05.12.491691 (2022)
888 doi:10.1101/2022.05.12.491691.
- 889 15. Gao, L. *et al.* Diverse enzymatic activities mediate antiviral immunity in prokaryotes. *Science*
890 **369**, 1077–1084 (2020).
- 891 16. Lopatina, A., Tal, N. & Sorek, R. Abortive Infection: Bacterial Suicide as an Antiviral Immune
892 Strategy. *Annu. Rev. Virol.* **7**, 371–384 (2020).
- 893 17. LeRoux, M. & Laub, M. T. Toxin-Antitoxin Systems as Phage Defense Elements. *Annu. Rev.*
894 *Microbiol.* (2022) doi:10.1146/annurev-micro-020722-013730.
- 895 18. Song, S. & Wood, T. K. A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage
896 Inhibition. *Front. Microbiol.* **11**, 1895 (2020).
- 897 19. Guegler, C. K. & Laub, M. T. Shutoff of host transcription triggers a toxin-antitoxin system to
898 cleave phage RNA and abort infection. *Mol. Cell* **81**, 2361–2373.e9 (2021).
- 899 20. Fineran, P. C. *et al.* The phage abortive infection system, ToxIN, functions as a protein-RNA
900 toxin-antitoxin pair. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 894–899 (2009).

901 21. Short, F. L., Akusobi, C., Broadhurst, W. R. & Salmond, G. P. C. The bacterial Type III toxin-
902 antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent
903 antiviral abortive infection activity. *Sci. Rep.* **8**, 1013 (2018).

904 22. LeRoux, M., Culviner, P. H., Liu, Y. J., Littlehale, M. L. & Laub, M. T. Stress Can Induce
905 Transcription of Toxin-Antitoxin Systems without Activating Toxin. *Mol. Cell* **79**, 280-292.e8
906 (2020).

907 23. Bobonis, J. *et al.* Phage proteins block and trigger retron toxin/antitoxin systems.
908 2020.06.22.160242 (2020) doi:10.1101/2020.06.22.160242.

909 24. Jimmy, S. *et al.* A widespread toxin-antitoxin system exploiting growth control via alarmone
910 signaling. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 10500–10510 (2020).

911 25. Anderson, B. W., Fung, D. K. & Wang, J. D. Regulatory Themes and Variations by the Stress-
912 Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. *Annu. Rev. Genet.* **55**, 115–133 (2021).

913 26. Bange, G., Brodersen, D. E., Liuzzi, A. & Steinchen, W. Two P or Not Two P: Understanding
914 Regulation by the Bacterial Second Messengers (p)ppGpp. *Annu. Rev. Microbiol.* **75**, 383–406
915 (2021).

916 27. Ahmad, S. *et al.* An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp.
917 *Nature* **575**, 674–678 (2019).

918 28. Kurata, T. *et al.* RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to
919 inhibit protein synthesis. *Mol. Cell* S1097-2765(21)00452-4 (2021)
920 doi:10.1016/j.molcel.2021.06.005.

921 29. Kurata, T. *et al.* A hyperpromiscuous antitoxin protein domain for the neutralization of diverse
922 toxin domains. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2102212119 (2022).

923 30. Dedrick, R. M. *et al.* Prophage-mediated defence against viral attack and viral counter-defence.
924 *Nat. Microbiol.* **2**, 16251 (2017).

925 31. Steinchen, W. *et al.* Structural and mechanistic divergence of the small (p)ppGpp synthetases
926 RelP and RelQ. *Sci. Rep.* **8**, 2195 (2018).

927 32. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–
928 589 (2021).

929 33. Van Melderen, L., Bernard, P. & Couturier, M. Lon-dependent proteolysis of CcdA is the key
930 control for activation of CcdB in plasmid-free segregant bacteria. *Mol. Microbiol.* **11**, 1151–
931 1157 (1994).

932 34. Koga, M., Otsuka, Y., Lemire, S. & Yonesaki, T. Escherichia coli rnlA and rnlB Compose a
933 Novel Toxin–Antitoxin System. *Genetics* **187**, 123–130 (2011).

934 35. Duda, R. L. & Teschke, C. M. The amazing HK97 fold: versatile results of modest differences.
935 *Curr. Opin. Virol.* **36**, 9–16 (2019).

936 36. Maffei, E. *et al.* Systematic exploration of Escherichia coli phage-host interactions with the
937 BASEL phage collection. *PLoS Biol.* **19**, e3001424 (2021).

938 37. Kao, C., Gumbs, E. & Snyder, L. Cloning and characterization of the Escherichia coli lit gene,
939 which blocks bacteriophage T4 late gene expression. *J. Bacteriol.* **169**, 1232–1238 (1987).

940 38. Bergsland, K. J., Kao, C., Yu, Y. T., Gulati, R. & Snyder, L. A site in the T4 bacteriophage
941 major head protein gene that can promote the inhibition of all translation in Escherichia coli.
942 *J. Mol. Biol.* **213**, 477–494 (1990).

943 39. Molineux, I. J., Schmitt, C. K. & Condreay, J. P. Mutants of bacteriophage T7 that escape F
944 restriction. *J. Mol. Biol.* **207**, 563–574 (1989).

945 40. Tal, N. *et al.* Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. *Cell*
946 S0092867421011144 (2021) doi:10.1016/j.cell.2021.09.031.

947 41. Duong, M. M., Carmody, C. M., Ma, Q., Peters, J. E. & Nugen, S. R. Optimization of T4 phage
948 engineering via CRISPR/Cas9. *Sci. Rep.* **10**, 18229 (2020).

949 42. Srikant, S., Guegler, C. K. & Laub, M. T. The evolution of a counter-defense mechanism in a
950 virus constrains its host range. 2022.04.14.488369 (2022) doi:10.1101/2022.04.14.488369.

951 43. Saha, C. K., Sanches Pires, R., Brolin, H., Delannoy, M. & Atkinson, G. C. FlaGs and
952 webFlaGs: discovering novel biology through the analysis of gene neighbourhood
953 conservation. *Bioinformatics* **37**, 1312–1314 (2021).

954 44. Arndt, D. *et al.* PHASTER: a better, faster version of the PHAST phage search tool. *Nucleic*
955 *Acids Res.* **44**, W16–W21 (2016).

956 45. Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
957 evolutionary conservation in macromolecules. *Nucleic Acids Res.* **44**, W344–W350 (2016).

958 46. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7:
959 Improvements in Performance and Usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

960 47. Waterhouse, A. *et al.* SWISS-MODEL: homology modelling of protein structures and
961 complexes. *Nucleic Acids Res.* **46**, W296–W303 (2018).

962 48. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic Local Alignment
963 Search Tool. 8.

964 49. Madeira, F. *et al.* Search and sequence analysis tools services from EMBL-EBI in 2022.
965 *Nucleic Acids Res.* gkac240 (2022) doi:10.1093/nar/gkac240.

966 50. Kabsch, W. *XDS. Acta Crystallogr. D Biol. Crystallogr.* **66**, 125–132 (2010).

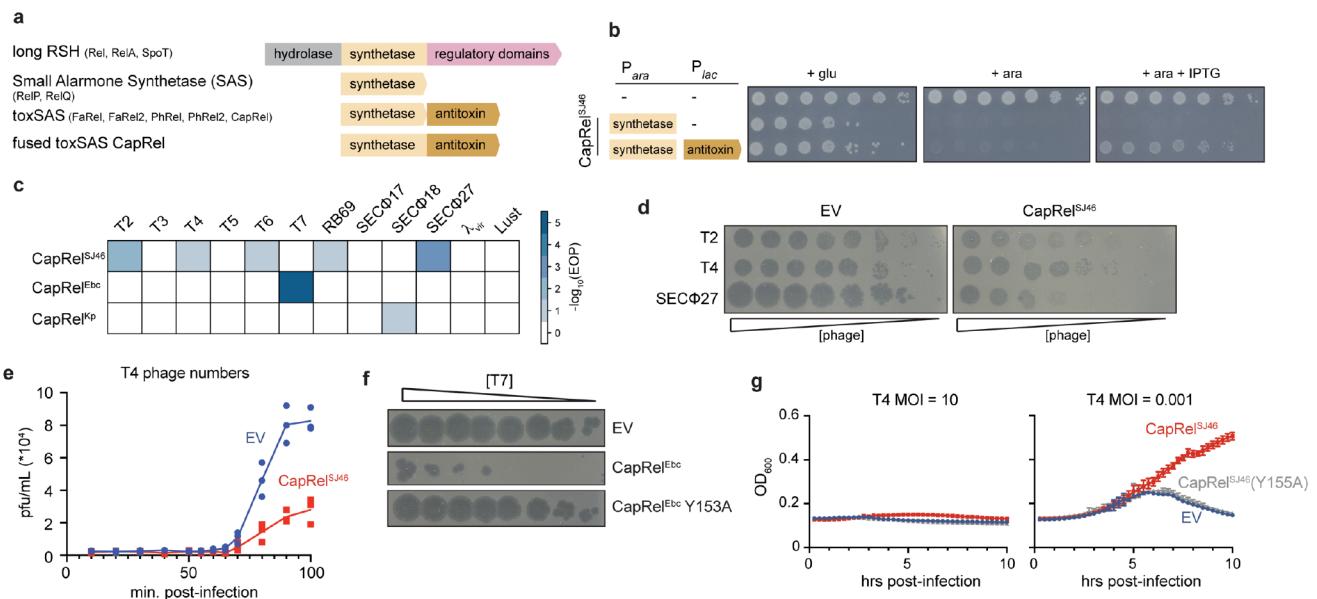
967 51. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein
968 crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **50**, 760–763 (1994).

969 52. McCoy, A. J. *et al.* Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658–674 (2007).

970 53. Tamman, H. *et al.* A nucleotide-switch mechanism mediates opposing catalytic activities of
971 Rel enzymes. *Nat. Chem. Biol.* **16**, 834–840 (2020).

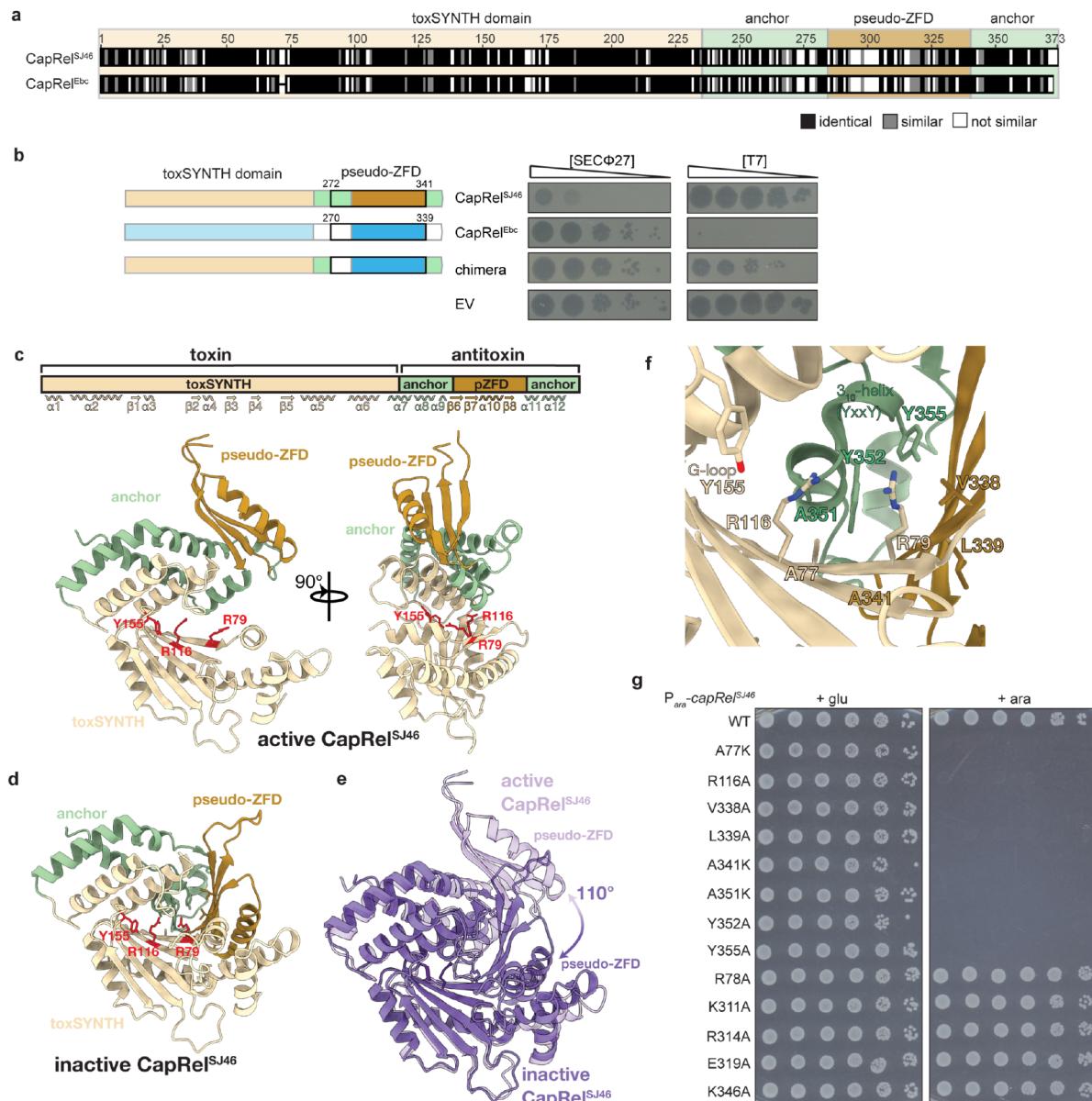
972 54. Terwilliger, T. C. *et al.* phenix.mr_rosetta: molecular replacement and model rebuilding with
973 Phenix and Rosetta. *J. Struct. Funct. Genomics* **13**, 81–90 (2012).

974 55. Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with
975 phenix.refine. *Acta Crystallogr. D Biol. Crystallogr.* **68**, 352–367 (2012).

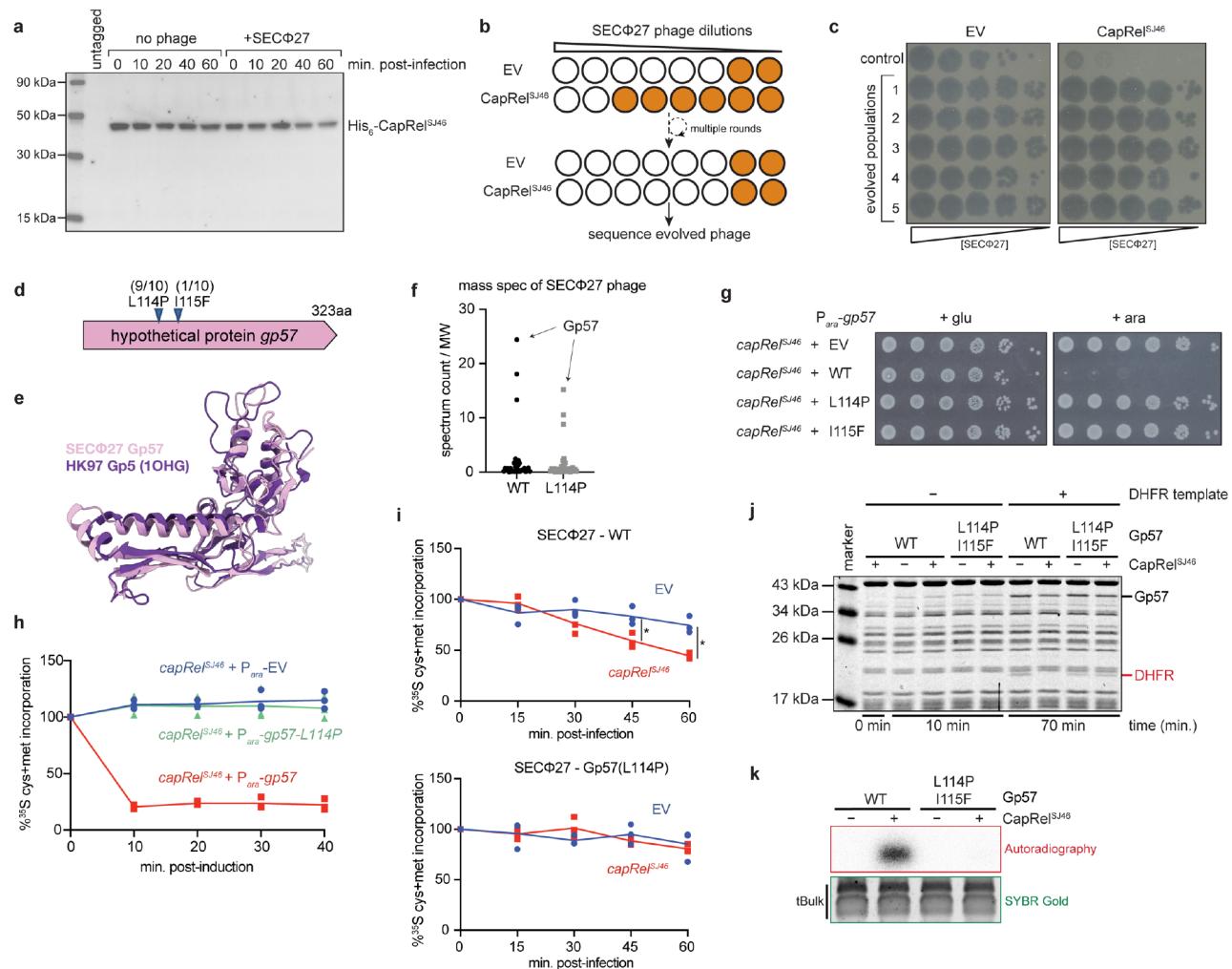

976 56. Emsley, P. & Cowtan, K. Coot : model-building tools for molecular graphics. *Acta Crystallogr.*
977 *D Biol. Crystallogr.* **60**, 2126–2132 (2004).

978 57. Smart, O. S. *et al.* Exploiting structure similarity in refinement: automated NCS and target-
979 structure restraints in BUSTER. *Acta Crystallogr. D Biol. Crystallogr.* **68**, 368–380 (2012).

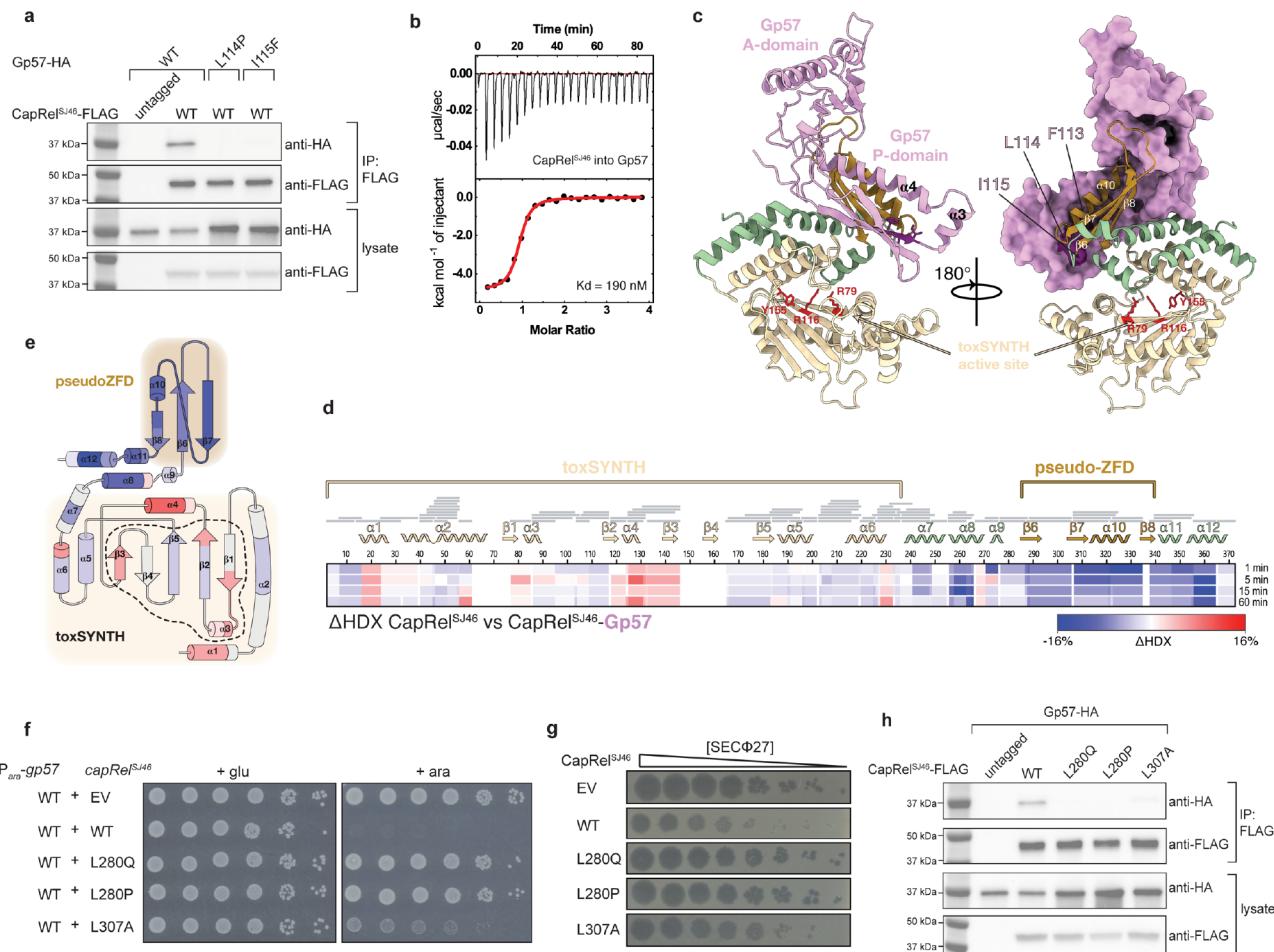
980 58. Van Nerom, K., Tamman, H., Takada, H., Hauryliuk, V. & Garcia-Pino, A. The Rel stringent
981 factor from *Thermus thermophilus*: crystallization and X-ray analysis. *Acta Crystallogr. Sect.*
982 *F Struct. Biol. Commun.* **75**, 561–569 (2019).


983 59. Turnbull, K. J., Dzhygyr, I., Lindemose, S., Hauryliuk, V. & Roghanian, M. Intramolecular
984 Interactions Dominate the Autoregulation of *Escherichia coli* Stringent Factor RelA. *Front.*
985 *Microbiol.* **10**, 1966 (2019).

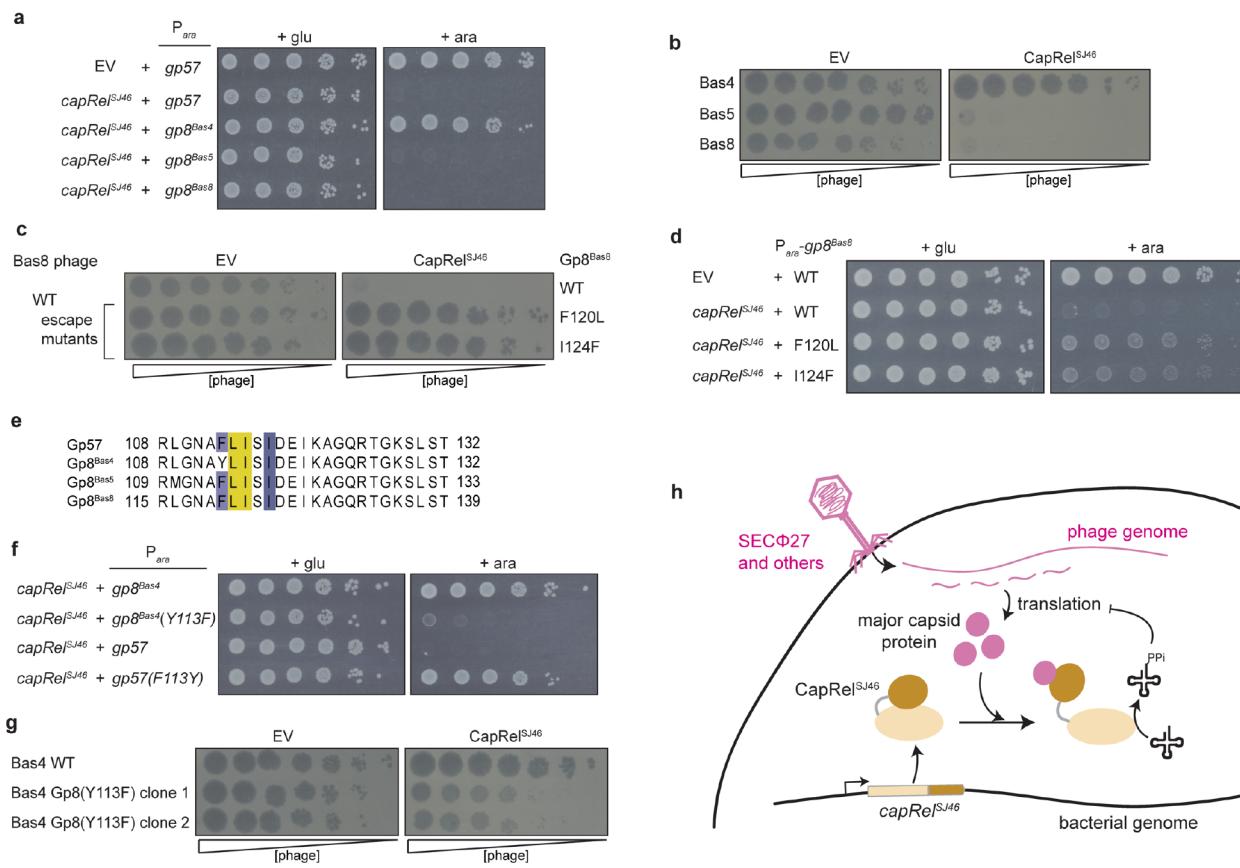
986


Figure 1. Fused CapRel homologs are toxin-antitoxin systems that can provide *E. coli* with robust defense against phages.

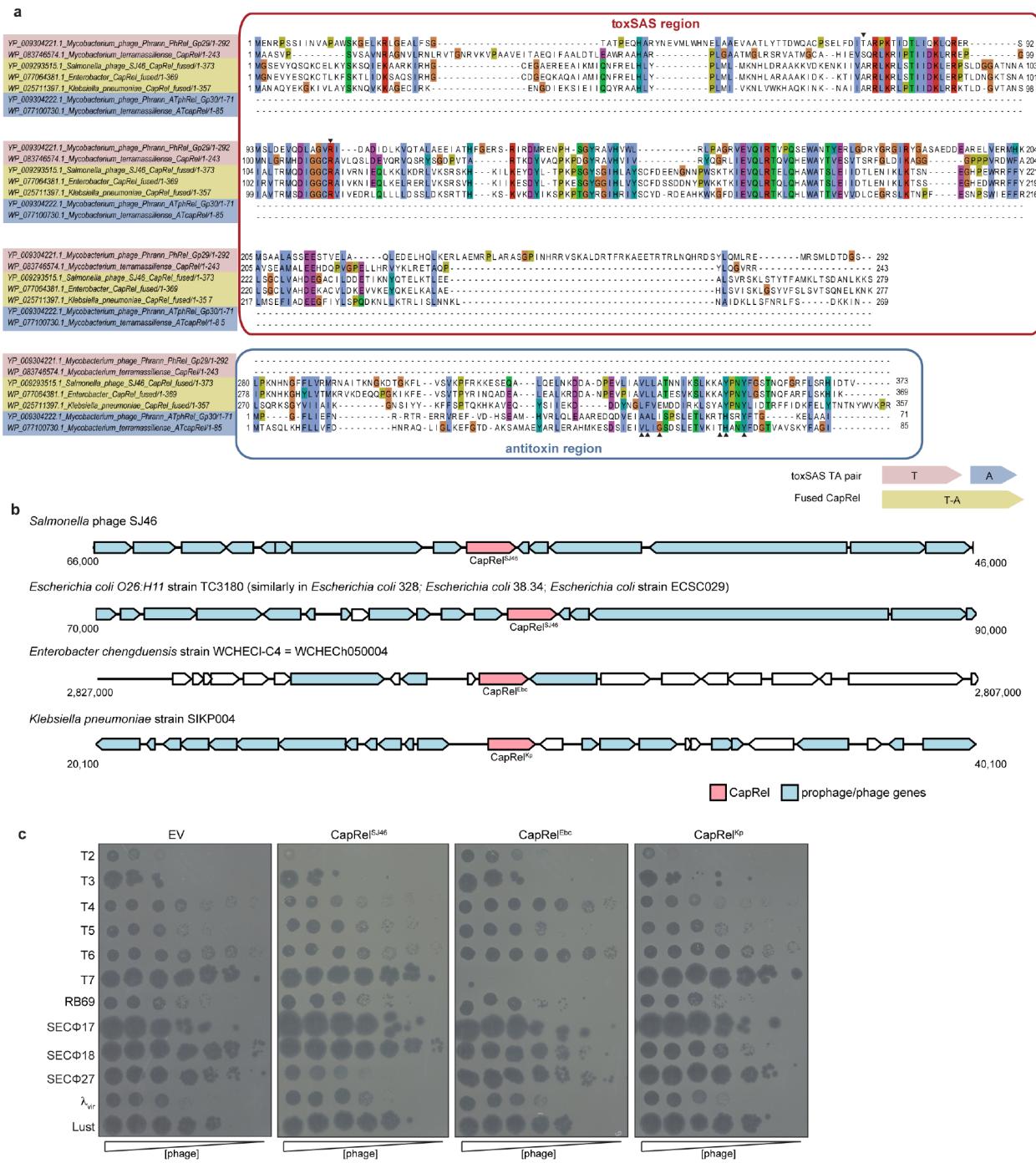
(a) Domain organization of long RSH (RelA-SpoT Homologs), SAS (Small Alarmone Synthetases), toxSAS, and the fused subclass of toxSAS TA systems including CapRel^{S146}. **(b)** Cell viability assessed by serial dilutions for strains expressing the N-terminal toxin domain of CapRel^{S146} alone or with the C-terminal antitoxin domain. **(c)** Efficiency of plaquing (EOP) data for the phages indicated when infecting cells producing CapRel^{S146}, CapRel^{Ebc}, or CapRel^{Kp}. **(d)** Serial dilutions of the phages indicated spotted on lawns of cells harboring CapRel^{S146} or an empty vector (EV). **(e)** One-step growth curve measuring plaque forming units (pfu/mL) during the first round of infection by T4 of cells harboring CapRel^{S146} or an empty vector. **(f)** Serial dilutions of T7 phage spotted on lawns of cells harboring CapRel^{Ebc}, CapRel^{Ebc}(Y153A), or an empty vector. **(g)** Growth of cells producing CapRel^{S146} or CapRel^{S146}(Y155A), or harboring an empty vector, following infection with T4 at a multiplicity of infection (MOI) of 10 (left) or 0.001 (right).


Figure 2. The pseudo-zinc finger antitoxin domain of CapRel confers phage specificity.

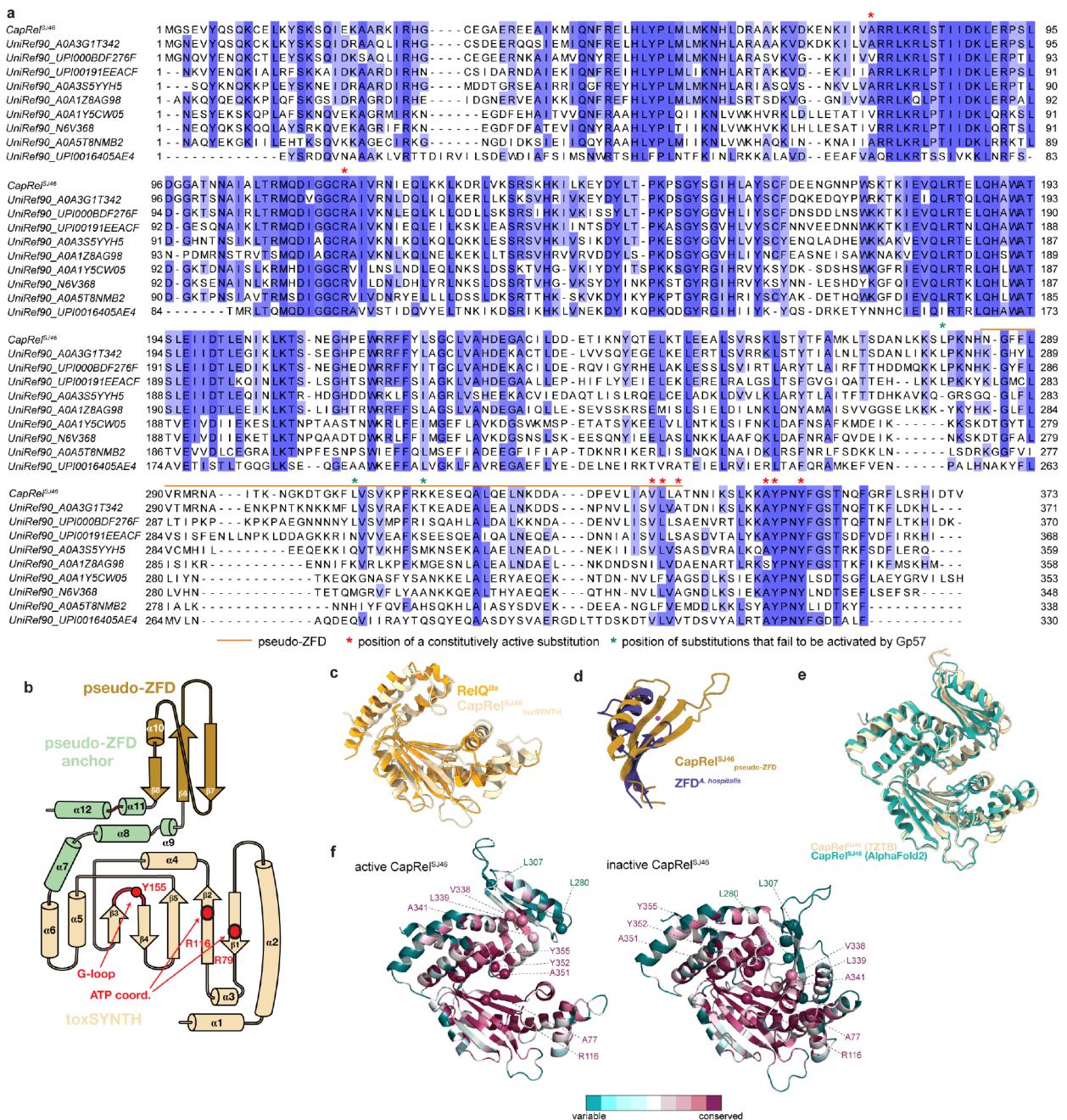
(a) Sequence alignment of CapRel^{SJ46} and CapRel^{Ebc}, with the more variable pseudo-zinc finger domain (pseudo-ZFD) labeled. **(b)** Serial dilutions of the phages indicated spotted on lawns of cells harboring the CapRel constructs indicated and diagrammed (*left*). **(c)** Cartoon representation of the structure of CapRel^{SJ46} with active site G-loop Y155 and the ATP-coordination residues R79 and R116 highlighted in red. Structural elements (toxSYNTH, pseudo-ZFD and the anchors) are coloured as in **(a)**. **(d)** Closed conformation of CapRel^{SJ46} predicted by AlphaFold and coloured as **(c)**. **(e)** Superposition of the active (open, light purple) and inactive (closed, dark purple) states of CapRel^{SJ46} as observed in the crystal structure and predicted by AlphaFold. **(f)** Details of the autoinhibited active site of CapRel^{SJ46} in the closed state. In this conformation, the YxxY neutralization motif of the pseudo-ZFD blocks the adenine coordination site, preventing catalysis. **(g)** Serial dilutions of cells expressing the indicated variant of CapRel^{SJ46} from an arabinose-inducible promoter on media containing glucose (*left*) or arabinose (*right*).


Figure 3. CapRel^{SJ46} is activated by the major capsid protein of SECΦ27 to pyrophosphorylate tRNAs and block translation.

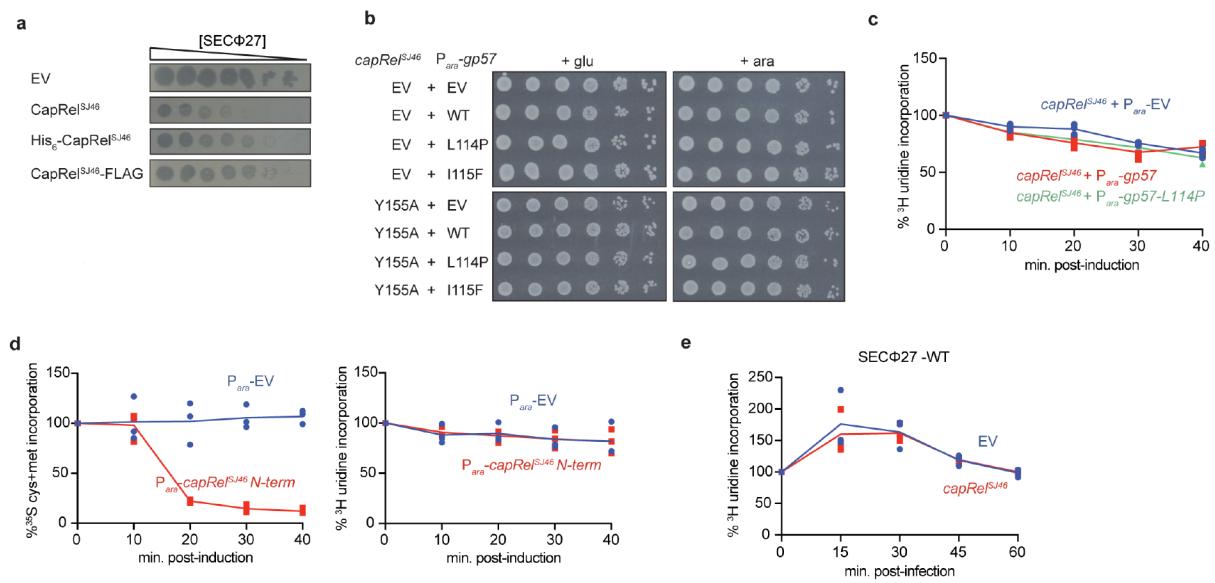
(a) Immunoblot of His₆-CapRel^{SJ46} following infection with SECΦ27 (MOI = 100) compared to an uninfected control. **(b)** Schematic of experimental evolution approach used to identify SECΦ27 escape mutants that can infect cells harboring CapRel^{SJ46}. **(c)** Serial dilutions of 5 independently evolved populations of SECΦ27 phage and a control population spotted on cells harboring an empty vector (*left*) or CapRel^{SJ46} (*right*). **(d)** Summary of escape mutants identified, all of which map to a hypothetical protein encoded by gene 57 of SECΦ27. **(e)** AlphaFold-predicted structure of Gp57 compared to the major capsid protein Gp5 from phage HK97, which has the eponymous HK97-fold. **(f)** Mass spectrometry analysis of SECΦ27 phage lysates, indicating that the hypothetical protein Gp57 has the highest spectrum count for both WT and an escape mutant producing the L114P variant. **(g)** Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells expressing CapRel^{SJ46} from its native promoter and expressing the indicated variant of Gp57 from an arabinose-inducible promoter. **(h)** Cells harboring CapRel^{SJ46} and expressing the wild-type or L114P variant of Gp57 from an arabinose-inducible promoter or harboring an empty vector were pulse-labeled with ³⁵S-Cys/Met at the times indicated post-addition of arabinose. **(i)** Same as **(h)** but for cells carrying CapRel^{SJ46} or an empty vector and at times post-infection with SECΦ27 (*top*) or the SECΦ27 escape mutant with the L114P variant of Gp57 (*bottom*) at MOI = 100. Asterisks indicate $p < 0.05$ (unpaired two-tailed t-test). **(j)** *In vitro* transcription-translation (PURExpress) assays using DHFR production from a DNA template as the readout of expression activity. Purified CapRel^{SJ46} was added to each reaction along with a template for also producing Gp57 (wild-type or the L114P I115F variant). **(k)** Autoradiography of reactions in which purified CapRel^{SJ46} was incubated with [γ -³²P]-ATP, bulk *E. coli* tRNAs, and Gp57 (WT or the L114P I115F variant). SYBR Gold staining of bulk tRNAs serves as a loading control.


Figure 4. The SECΦ27 major capsid protein Gp57 binds directly to the pseudo-ZFD of CapRel^{SJ46}.

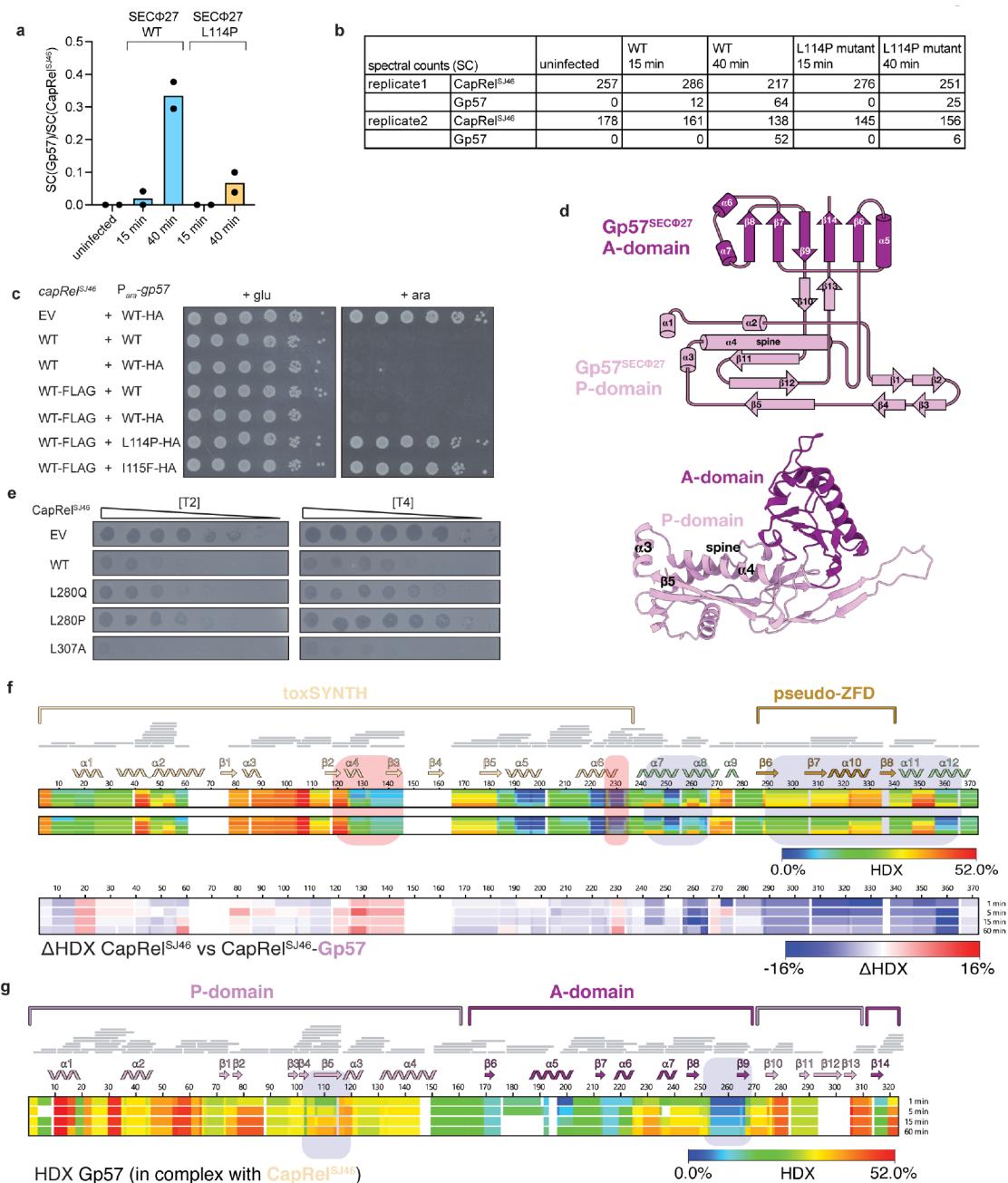
(a) From cells expressing CapRel^{SJ46}-FLAG and Gp57-HA (wild-type or mutant variant), the CapRel^{SJ46}-FLAG was immunoprecipitated and probed for the presence of the indicated variant of Gp57-HA. Lysates used for the IP were probed as controls for expression levels. **(b)** Binding of CapRel^{SJ46} to Gp57 monitored by isothermal titration calorimetry (ITC). **(c)** Structural model of the CapRel^{SJ46}-Gp57 complex predicted by AlphaFold. According to the model, the P-domain of Gp57 (in pink) recognizes the pseudo-ZFD (in orange) and anchor regions (in green) of CapRel^{SJ46}. This interaction prevents the recoil of pseudo-ZFD to the active site and activates the enzyme. **(d)** ΔHDX between CapRel^{SJ46} and CapRel^{SJ46}-Gp57 displayed as a difference heat map. Red indicates elevated deuteration of CapRel^{SJ46} in the presence of Gp57; blue signifies lower deuteration. **(e)** Topological representation of CapRel^{SJ46} colored according to the ΔHDX. The active site of the enzyme is marked by a black dashed outline and the catalytic toxSYNTH domain and the phage-recognition pseudo-ZFD are shadowed in light yellow and light orange. **(f)** Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells expressing the indicated mutant of CapRel^{SJ46} from its native promoter and the wild-type Gp57 from an arabinose-inducible promoter. **(g)** Serial dilutions of SECΦ27 phage spotted on cells expressing the indicated mutant of CapRel^{SJ46} or an empty vector. **(h)** Same as in **(a)** but with the indicated mutants of FLAG-CapRel^{SJ46}.


Figure 5. Evidence for the coevolution of CapRel^{SJ46} and the major capsid protein of SECΦ27 and related phages.

(a) Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells expressing CapRel^{SJ46} from its native promoter and the major capsid protein homolog from the phage indicated via an arabinose-inducible promoter. **(b)** Serial dilutions of the phages indicated spotted on lawns of cells harboring CapRel^{SJ46} or an empty vector. **(c)** Serial dilutions of wild-type Bas8 phage or the escape mutants bearing the major capsid mutations indicated spotted on lawns of cells harboring CapRel^{SJ46} or an empty vector. **(d)** Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells expressing CapRel^{SJ46} from its native promoter or harboring an empty vector and producing the indicated variant of the Bas8 major capsid protein from an arabinose-inducible promoter. **(e)** Alignment of the region of the major capsid protein in SECΦ27, Bas5, and Bas8 that triggers CapRel^{SJ46}, along with Bas4 which has a tyrosine at position 113 instead of phenylalanine. **(f)** Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells expressing CapRel^{SJ46} from its native promoter and the Bas4 or SECΦ27 major capsid protein variant indicated from an arabinose-inducible promoter. **(g)** Serial dilutions of wild-type Bas4 or two mutant clones containing Y113F in the major capsid protein Gp8 spotted on lawns of cells harboring CapRel^{SJ46} or an empty vector. **(h)** Model for the direct activation of CapRel^{SJ46} by the major capsid protein of SECΦ27 and related phages. After genome injection, the production of the major capsid protein triggers relief of autoinhibition by the C-terminal antitoxin of CapRel^{SJ46}, leading to pyrophosphorylation of tRNAs by activated CapRel^{SJ46}, which inhibits translation and restricts viral infection.


Figure S1. Analysis of CapRel homologs.

(a) Sequence alignment comparing fused CapRel systems with related, unfused systems. Alignment of toxSAS PhRel and ATphRel from the *Mycobacterium* phage Phrann, non-fused CapRel and ATcapRel from *Mycobacterium terramassiliense*, and the three fused systems CapRel^{SJ46}, CapRel^{Ebc} and CapRel^{Kp}. The N-terminal region of fused CapRel systems is a toxSAS toxin domain, while the C-terminal region is homologous to the antitoxins of the PhRel and unfused CapRel TA systems. Substituted sites of CapRel^{SJ46} (see Fig. 2g) are indicated with black arrowheads. The inset diagram summarises the homologous regions of the bicistronic toxin-antitoxin and fused toxin-antitoxin systems considered here. **(b)** Genome maps of native locations of CapRel^{SJ46}, CapRel^{Ebc} and CapRel^{Kp} (+/- 10kb) with predicted flanking prophage and phage genes. **(c)** Serial dilutions of the phages indicated spotted on lawns of cells producing CapRel^{SJ46}, CapRel^{Ebc}, or CapRel^{Kp} or harboring an empty vector (EV).


Figure S2. Structural analysis of CapRel^{SJ46}.

(a) Alignment of CapRel^{SJ46} and diverse fused CapRel homologs, with labels indicating that pseudo-ZFD and location of substitutions that render CapRel^{SJ46} constitutively active or unable to be activated by Gp57, the SECΦ27 major capsid protein. **(b)** Topology of CapRel^{SJ46}. The toxSYNTH domain is colored in light yellow, the pseudo-ZFD in dark gold and the regions that anchor pseudo-ZFD to toxSYNTH are in green. The adenine coordinating R79 and R116 are shown as red dots and the G-loop is colored in red. **(c)** Superposition of the toxSYNTH domain of CapRel^{SJ46} (colored in light yellow) onto RelQ (PDBID: 5DEC, colored in light orange) from *Bacillus subtilis*. **(d)** Superposition of the pseudo-ZFD of CapRel^{SJ46} (colored in dark gold) onto the ZFD transcription factor of *Acidianus hospitalis* (2LVH, colored in purple). **(e)** Superposition of the crystal structure of CapRel^{SJ46} (colored in light yellow) onto the structure of the open state predicted by AlphaFold (colored in green). **(f)** Structures of the open (*left*; from crystal structure) or closed (*right*; AlphaFold prediction) conformations of CapRel^{SJ46} color coded by the conservation score of each amino acid calculated by ConSurf. Substitutions that render CapRel^{SJ46} constitutively active mutants or unable to be activated by Gp57 are labeled as spheres.

Figure S3. Gp57 from SECΦ27 triggers CapRel^{SJ46} to inhibit translation, not transcription.

(a) Serial dilutions of phage SECΦ27 spotted on lawns of cells producing CapRel^{SJ46}, His₆-CapRel^{SJ46}, or CapRel^{SJ46}-FLAG, or harboring an empty vector (EV). **(b)** Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells expressing *capRel^{SJ46}(Y155A)* from its native promoter or an empty vector and expressing the indicated variant of Gp57 from an arabinose-inducible promoter. **(c)** Cells harboring CapRel^{SJ46} and producing the wild-type or L114P mutant of Gp57 (expressed from an arabinose-inducible promoter) or harboring an empty vector were pulse-labeled with ³H-uridine at the times indicated post-addition of arabinose. **(d)** Cells producing the CapRel^{SJ46} N-terminal toxin domain (expressed from an arabinose-inducible promoter) or harboring an empty vector were pulse-labeled with ³⁵S-Cys/Met (*left*) or ³H-uridine (*right*) at the times indicated post-addition of arabinose. **(e)** Same as **(d)** but for cells carrying CapRel^{SJ46} or an empty vector and at times post-infection with SECΦ27 at MOI = 100.

Figure S4. Characterization of the CapRel^{SJ46}-Gp57 interaction.

(a) Immunoprecipitation of CapRel^{SJ46}-FLAG from cells infected with wild-type SECΦ27 or mutant phage that produces Gp57(L114P), followed by mass spectrometry. Spectrum counts (SC) of Gp57 that had co-precipitated with CapRel^{SJ46} were normalized to the spectrum counts of CapRel^{SJ46}. **(b)** Same as in **(a)** but showing spectrum counts of CapRel^{SJ46} and Gp57 in two independent replicates. **(c)** Serial dilutions on media containing glucose (*left*) or arabinose (*right*) of cells producing CapRel^{SJ46} or CapRel^{SJ46}-FLAG, each expressed from its native promoter, and the indicated variant of untagged or HA-tagged version of Gp57, expressed from an arabinose-inducible promoter. **(d)** Topology and cartoon representation of SECΦ27 Gp57. The P-domain is colored in pink and the A-domain in violet. **(e)** Serial dilutions of T2 and T4 phage spotted on cells producing the indicated mutant of CapRel^{SJ46} or harboring an empty vector. **(f)** Heat maps representing the HDX of CapRel^{SJ46} (*top*) and CapRel^{SJ46}-Gp57 complex (*center*) and the ΔHDX (*bottom*). Regions involved in strong uptake such as residues 115-145 and 225-235 (which includes the active site β-strand β2 and the G-loop) are shaded in red and regions involved in strong protection 240-268 and 288-366 (which include both anchors and the pseudo-ZFD) are shaded in blue. **(g)** Heat map representing the HDX of Gp57 in the complex with CapRel^{SJ46}. Shaded regions highlight areas of variable HDX signal that indicate these regions are involved in the CapRel^{SJ46}-Gp57 interface.

a

Gp57	1	- - - - -	MAKKYDE LDA TIVANH LQ QGVK TDASDMG WTAQE LHK RS TAYEKEYPAGSA LRV FPV TNE LSD TDKT FEY QTFDKVGYA	82
Gp8 ^{Bas4}	1	- - - - -	MAKKYDE LDA TIVANH LQ QGVK TDASDMG WTAQE LHK RS TAYEKEYPAGSA LRV FPV TNE LSD TDKT FEY QTFDKVGYA	82
Gp8 ^{Bas5}	1	- - - - -	MTKKKYDE LDAS IVSNH LQLQGVKGDA SDMG WTAQE LHK RS TAYEKEYPAGSA LRV FPV TNE LSD TDKT FEY QTFDKVGYA	83
Gp8 ^{Bas8}	1	MREN MSKEM KYDE FE ANV ANHMQLRGA KNDASDMG WTAQE LHK KAQAYEKEYPAGSA LRV FPV TS E LSD TDKT FEY QTFDKVGYA	89	
Gp57	83	K I ADY TDDL PTVDA LMTSE FGKV FRLGN AFL IS IDE I KAGQRTGKSL S TRKANAAQNAHDQL I N FLV FKGS KPHK VSV FDHPNL TK I	171	
Gp8 ^{Bas4}	83	K I ADY TDDL PTVDA LMTSE FGKV FRLGN AFL IS IDE I KAGQRTGKSL S TRKANAAQNAHDQL I N FLV FKGS KPHK VSV FDHPNL TK I	171	
Gp8 ^{Bas5}	84	K I ADY TDDL PTVDA LMTSE FGKV FRLGN AFL IS IDE I KAGQRTGKSL S TRKANAAQNAHDQL I N FLV FKGS KPHK VSV FDHPNL TK I	172	
Gp8 ^{Bas8}	90	K I ADY TDDL PTVDA LMTSE FGKV FRLGN AFL IS IDE I KAGQRTGKSL S TRKANAAQNAHDQL V N HLV FKGS KPHK I S VFDHPNL TT I	178	
Gp57	172	VSKGWMS QDGNTK FP DVASDE LEAA I E TIEEV TKGQHRA TN I L I PPSMRKV L TVRMEN TTESY LEY FQKQNGG I TIDS IAE LED IDGKG	260	
Gp8 ^{Bas4}	172	ASKGWMS NDGNTK FPQVASDE LEAA I E TIEEV TKGQHRA TN I L I PPSMRKV L TVRMEN TTESY LEY FQKQNGG I TIDS IAE LED IDGKG	260	
Gp8 ^{Bas5}	173	TSKGWL SKDGNTK FPEVASDE LEA I E TIEEV TKGQHRA TN I L I PPSMRKV L TVRMEN TTESY LEY FQKQNDG I TIDS IAE LED IDGKG	261	
Gp8 ^{Bas8}	179	NSAGWNNAAAGTGKKP E T A Q D E L E Q A I E K I E T L T N S Q H R A N M I L I PPSMRKV L M V R M P E T T M S Y L D Y F K Q Q N G G I T I E S I S E L E D IDGKG	267	
Gp57	261	TKGC LVYE KDP MNMS I E I PEA FNMLPAQPKDLH FKVPCTS KCT GLT I YRP FTMV L I TGLKKSV	323	
Gp8 ^{Bas4}	261	TKGC LVYE KDP MNMS I E I PEA FNMLPAQPKDLH FKVPCTS KCT GLT I YRP FTMV L I TGLKKAE	323	
Gp8 ^{Bas5}	262	TKGC LVYE KDP MNMS I E I PEA FNMLPAQPKDLH FKVPCTS KCT GLT I YRP FTMV L I TGLKKAA	324	
Gp8 ^{Bas8}	268	TKAA LVYE KDP MNMS I E I PEA FNMLTAQPKDLH FKVPCTS KCT GLT I YRP FTMV L I TGLKKAA	329	

Figure S5. The major capsid protein from multiple, related phages activate CapRel^{SJ46}.

(a) Multiple sequence alignment of the major capsid proteins from phages SECΦ27, Bas4, Bas5 and Bas8.