

1 Improved methods for bulk cultivation and fixation 2 of *Loxodes* ciliates for fluorescence microscopy

3 Brandon Kwee Boon Seah, Christiane Emmerich, Aditi Singh, Estienne Swart

4 Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany

5 Corresponding author: Brandon Kwee Boon Seah (kb.seah@tuebingen.mpg.de)

6 Running title: Cultivation and fixation of *Loxodes*

7 **Abstract**

8 *Loxodes* is one of the best ecologically characterized ciliate genera with numerous intriguing
9 physiological abilities, including gravity-sensing organelles and nitrate respiration. However,
10 these cells have been considered challenging to cultivate in bulk, and are poorly preserved
11 by conventional fixatives used for fluorescence microscopy. Here we describe methods to
12 grow and harvest *Loxodes* cells in bulk with liquid soil extract medium, as well as a new
13 fixative called ZFAE (zinc sulfate, formaldehyde, acetic acid, ethanol) that can fix *Loxodes*
14 cells more effectively than buffered formaldehyde or methanol. We show that ZFAE is
15 compatible with immunofluorescence and the nuclear stain DAPI. *Loxodes* is thus now
16 amenable to long-term maintenance, large-scale growth, and modern cell biology
17 investigations of monoclonal strains in laboratory conditions.

18 **Key words**

19 Ciliophora, Karyorelictea, cytoskeleton, antibody, fluorescence microscopy, culture

20 **Introduction**

21 The ciliate genus *Loxodes* was the subject of pioneering ecophysiological studies by Bland
22 Finlay and his colleagues, who used both natural populations and laboratory cultures in their
23 work. *Loxodes* are microaerophiles that can migrate vertically in response to oxygen
24 gradients in the water column, orienting themselves with the help of gravity-sensing
25 organelles called Müller vesicles (Fenchel and Finlay, 1986; Finlay, 1981; Finlay et al., 1986;
26 Goulder, 1980). They are also able to respire nitrate, a trait that is unusual for eukaryotes
27 and which gives them an advantage under anoxic conditions (Finlay et al., 1983).

28 Despite their intriguing biology, *Loxodes* can be challenging to work with in the laboratory.
29 Although they are sometimes referred to as “uncultivable”, several methods for maintaining
30 cultures have previously been reported (Bobyleva, 1980; Buonanno et al., 2005; Nagel et al.,
31 1997; Neugebauer et al., 1998). A strain of *L. striatus* was available from the CCAP culture
32 collection in the 1990s (Hemmersbach et al., 1996), but appears to have been lost. Most
33 cultivation approaches are similar to that used by (Fenchel and Finlay, 1984), namely
34 growing them in test tubes filled with liquid medium and a layer of soil at the bottom.
35 Respiration by bacteria produces an oxygen gradient in the tube that mimics the natural
36 habitats of these ciliates (Finlay et al., 1986). However, this format with solid soil particles is
37 inconvenient for growing and harvesting large quantities of cells for experiments.

38 Furthermore, conventional fixatives used in histology and molecular biology, such as
39 buffered formaldehyde solutions or alcohols, perform poorly in preserving the morphology of
40 *Loxodes* and members of the class Karyorelictea in general (Foissner, 2014; Munyenjembe
41 et al., 2021). “Strong” fixatives that are good at preserving ciliate morphology, on the other
42 hand, usually contain toxic and hazardous substances, e.g. Parducz’s solution (mercuric
43 chloride and osmium tetroxide), Stieve’s solution (mercuric chloride), and Bouin’s solution
44 (picric acid). Such fixatives are still used in standard protocols to fix ciliates for morphological
45 description, despite their hazards and the additional costs associated with proper handling
46 and disposal. They are typically used to prepare samples for electron microscopy or silver
47 staining methods (e.g. protargol or silver nitrate) that reveal cytoskeletal structures important
48 to ciliate taxonomy, but may be incompatible with other desired applications, such as
49 fluorescent labels or immunocytochemistry. For example, fixation with osmium tetroxide
50 produces osmium precipitates that interfere with the detection of fluorescent signals (Dyal et
51 al., 1995).

52 Here, we describe protocols used in our laboratory for growing *Loxodes* cells in bulk using
53 liquid media, as well as a new fixative that we call ZFAE (zinc sulfate, formaldehyde, acetic
54 acid, ethanol) which keeps *Loxodes* cells intact and which is compatible with fluorescence
55 microscopy while avoiding mercuric chloride and other hazardous substances.

56 Methods

57 Ciliate strains

58 *Loxodes magnus* strain Lm5 and *L. striatus* strain Lb1 were isolated from local ponds in
59 Tübingen, Germany and Bern, Switzerland respectively by manual pipetting of single cells
60 into soil-liquid tubes. Species identity was determined by nuclei number and morphology
61 with reference to (Wang et al., 2019).

62 *Blepharisma stoltei* strain ATCC 30299 was obtained from the lab of T. Harumoto (Nara
63 Women's University, Japan), and grown in SMB-III medium (Miyake, 1981).

64 Media for algal culture

65 Algae for feeding the ciliates were grown in Tris-acetate-phosphate (TAP) medium (10 mL
66 5× Beijerinck's solution, 1 mL phosphate buffer, 2 M Tris base, 1 mL Hutner's trace element
67 solution, 1 mL glacial acetic acid, dissolved in 1 L water) or Tris-phosphate (TP) medium
68 (same as TAP, except acetic acid omitted and pH adjusted to 7.0 with hydrochloric acid).

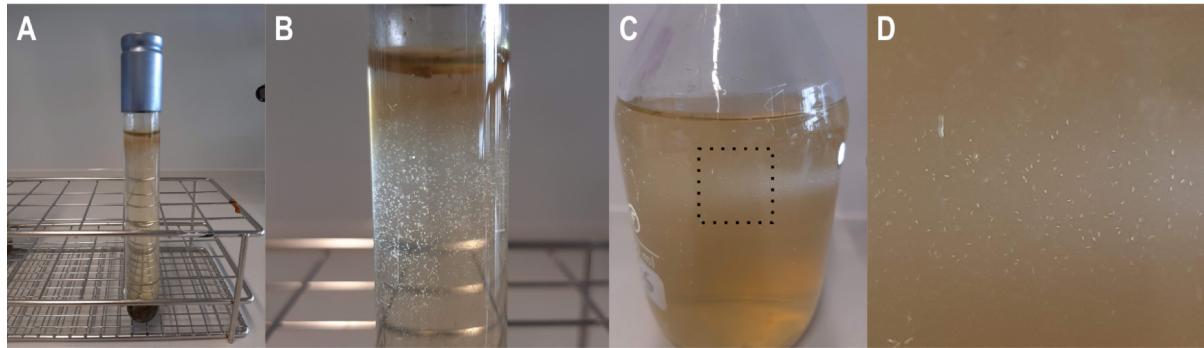
69 5× Beijerinck's solution: 20 g ammonium chloride, 5 g magnesium sulfate heptahydrate, 2.5
70 g calcium chloride dihydrate in 500 mL total volume of deionized water. Calcium chloride
71 was dissolved separately from the other salts; both solutions were then combined and
72 adjusted to the final volume.

73 Phosphate buffer: 10.8 g anhydrous potassium hydrogen phosphate and 5.6 g anhydrous
74 potassium dihydrogenphosphate dissolved in 100 mL water.

75 Hutner's trace element solution: 50.0 g EDTA disodium, 11.14 g boric acid, 22.0 g zinc
76 sulfate heptahydrate, 5.1 g manganese (II) chloride tetrahydrate, 5.0 g iron (II) sulfate
77 heptahydrate, 1.6 g cobalt (II) chloride hexahydrate, 1.6 g copper (II) sulfate pentahydrate,
78 and 1.1 g ammonium heptamolybdate tetrahydrate in 1 L deionized water. Components
79 except EDTA were dissolved in 550 mL water at 70 °C, EDTA was separately added to 250
80 mL water and heated until dissolved. EDTA solution was added to the other salts, and the
81 mixture was heated to boiling, then cooled to 70-75 °C. pH was adjusted to 6.5-6.8 with 20%
82 (w/v) potassium hydroxide while temperature was above 70 °C. Solution was diluted to 1 L
83 final volume with deionized water. Container was loosely covered with a cotton plug, and
84 stirred for two weeks at room temperature until color changed from green to purple. Solution
85 was filtered and stored at 4 °C.

86 *Cultivation and harvesting of algae*

87 Stock solutions of *Chlamydomonas reinhardtii* strain SAG 33.89 (obtained from the Culture
88 Collection of Algae, SAG, University of Göttingen) were grown in 50 mL TP medium,
89 subcultured every two weeks (1 mL inoculum). Bulk cultures for feeding ciliates were grown
90 in 50 to 400 mL TAP medium, inoculated 3-4 days before harvest with 125 µL inoculum from
91 saturated stock culture per 100 mL final volume. Cultures were maintained in Erlenmeyer
92 flasks with loosely fitting aluminum caps under commercially available aquarium LED lamps.


93 Algal density was monitored by optical density (OD) at 550 and 750 nm with a
94 spectrophotometer (BioRad SmartSpec Plus). OD of saturated algae was about 1.5 for both
95 wavelengths. If cultures were too dilute or concentrated the resuspension volume was
96 adjusted accordingly. Algae were concentrated by centrifugation (1000 rcf; 3 min; room
97 temperature), supernatant was discarded, and the pellet then resuspended either in Volvic
98 water or SMB medium at 1/10 the original volume. Concentrated resuspended algae was
99 used to feed the ciliates.

100 *Maintenance of *Loxodes* stock cultures in soil-liquid test tubes*

101 Loamy garden soil was air-dried in open trays and then stored in plastic buckets at room
102 temperature. Soil was sieved through a stainless steel sieve (2.2 × 2.2 mm) before use, to
103 break up clumps and remove stones and large organic debris. 1 to 1.5 g sieved dried soil
104 was portioned into 30 mL glass test tubes with loose-fitting aluminum caps. Soil-filled tubes
105 were autoclaved (121°C, 20 min), allowed to cool overnight, and autoclaved again, to kill
106 potential eukaryotic spores and cysts. Autoclaved (121 °C, 15 min), cooled Volvic mineral
107 water was added to test tubes up to the 25 mL mark. Tubes were briefly vortexed and
108 tapped to dislodge air bubbles in the soil, then left for at least two days to allow fine particles
109 to settle out before use. Tubes have been prepared up to three months in advance. An
110 alternative method of autoclaving tubes already filled with both soil and water (Bobyleva,
111 1980) was less successful for us, because the mixture was often ejected from the tubes
112 during autoclaving.

113 To inoculate new cultures, 100 to 500 µL of a dense culture (Figure 1A, B) was transferred
114 by pipette (glass or disposable plastic) to a new test tube. Cultures were kept out of direct
115 light in a closed cupboard at stable room temperature (around 24 °C in our laboratory), and
116 fed once weekly with 50 µL concentrated *Chlamydomonas* per test tube. Cultures were
117 subcultured once monthly using one- or two-month old cultures.

118 *Bulk culture of Loxodes in liquid soil extract medium*

119 **Figure 1.** *Loxodes magnus* in soil-liquid test tube (A, B), and soil extract medium (C, D).

120 Close-ups with raking light showing cells in medium (B, D). The dark brown ring on the inner
121 test tube wall below the meniscus is a biofilm produced by ambient microbes.

122 To prepare soil extract, 82 g of sieved dried garden soil (above) and 600 mL tap water were
123 mixed in a 1 L borosilicate glass bottle, then autoclaved (121 °C, 15 min). After cooling to
124 room temperature and allowing particles to settle, the clear supernatant was decanted into a
125 new bottle, diluted 1:1 (v/v) with tap water, and autoclaved again. Soil extract was stored at
126 room temperature until use. Measurements of total organic carbon, inorganic ions, and
127 elemental composition were performed by SGS Institut Fresenius (Taunusstein, Germany);
128 data are available at doi:10.17617/3.4ZQNBK.

129 To inoculate a soil extract medium culture, >1 mL of a dense stock culture was used to
130 inoculate 50 mL of soil extract medium in a borosilicate glass bottle, taking care not to
131 transfer soil particles. Bottles were closed but still had air-filled headspace in the conical part
132 of the bottle (Figure 1C, D). Cultures were transferred to larger bottles and diluted 1:1 with
133 new soil extract medium when dense, until the desired volume and cell density were
134 achieved. Starting with a smaller volume of soil extract and doubling it when dense was
135 usually more successful than immediately inoculating a large volume (e.g. 500 mL) with a
136 small stock inoculum.

137 Cultures were fed twice weekly with 300 µL concentrated *Chlamydomonas* per 100 mL
138 culture volume.

139 *Monitoring of individual cells in glass wells kept in a gas chamber*

140 Clonal lines can also be grown from single cells isolated in three-well glass depression
141 slides, similar to protocols for *Paramecium* (Beisson et al., 2010a; Sonneborn, 1950). Each
142 well was filled with 250 µL soil extract medium, initially fed with 1-5 µL concentrated

144 *Chlamydomonas*, and maintained for several days in polycarbonate gas jars (A05077, Don
145 Whitley Scientific) under microaerobic conditions using N₂ gas (Whitley Jar Gassing System,
146 Don Whitley Scientific). The bottom of each jar was lined with moist paper towels to prevent
147 evaporation of media from the wells. Three-well slides were placed in plastic Petri dishes to
148 allow them to be stacked in the jar.

149 *Cell counting and calculation of growth rates*

150 Bulk liquid cultures were gently swirled to distribute cells more evenly before sampling. For
151 counting, three 100 µL aliquots were taken with a wide-bore pipette tip, and gently spotted
152 as a row of smaller droplets on a plastic Petri dish to facilitate counting. Cells were counted
153 under a binocular microscope with the help of a clicker. If density was too high (above about
154 150 cells / 100 µL), samples were first diluted 10× in SMB or soil extract medium before
155 spotting onto a Petri dish.

156 To estimate growth rates for each species, three replicate bottles of soil extract medium
157 were inoculated with 15-20 mL of dense *Loxodes* culture, and filled to 100 mL with soil
158 extract medium. Samples were taken as above for counting twice weekly, and fed with
159 *Chlamydomonas* as described above after counting. After cultures appeared to have
160 reached saturation density, they were transferred to new bottles, and new soil extract
161 medium was added to a total volume of 200 mL each, and monitored for another week. Cell
162 count data are available at doi:10.17617/3.4ZQNBK.

163 *Harvesting of cells from bulk culture for experiments*

164 Cultures were filtered through a layer of cotton gauze swabs (Paul Hartmann AG) to remove
165 flocculent debris, pouring gently to avoid breaking up debris into smaller pieces that can
166 pass through the gauze. Ciliates were concentrated by centrifugation (*Loxodes magnus* 120
167 rcf, *L. striatus* 240 rcf; 1 min; room temperature) in pear-shaped flasks using an oil-testing
168 centrifuge (Rotanta 460, Hettich, Ref 5650), as previously described for the ciliate
169 *Paramecium* (Beisson et al., 2010b; Sonneborn, 1950), and then resuspended in a smaller
170 volume of new SMB medium.

171 *Preparation of fixatives*

172 ZFAE solution is a modification of Nissenbaum's fixative (Nissenbaum, 1953), and consists
173 of the following components mixed together shortly before use: 10 volumes of 0.25 M zinc
174 sulfate (Sigma-Aldrich), 2 volumes of 36.5-38% (w/v) formaldehyde solution (Sigma-Aldrich),
175 2 volumes of glacial acetic acid (Roth), 5 volumes absolute ethanol (Roth). Commercial

176 formalin (37% formaldehyde, 10% methanol as stabilizer) has also been used instead of
177 formaldehyde without any apparent difference in results.

178 Other fixatives tested were 4% formaldehyde (w/v) in phosphate buffered saline (FA-PBS),
179 4% formaldehyde (w/v) in SMB medium (FA-SMB), and ice-cold methanol (MeOH).

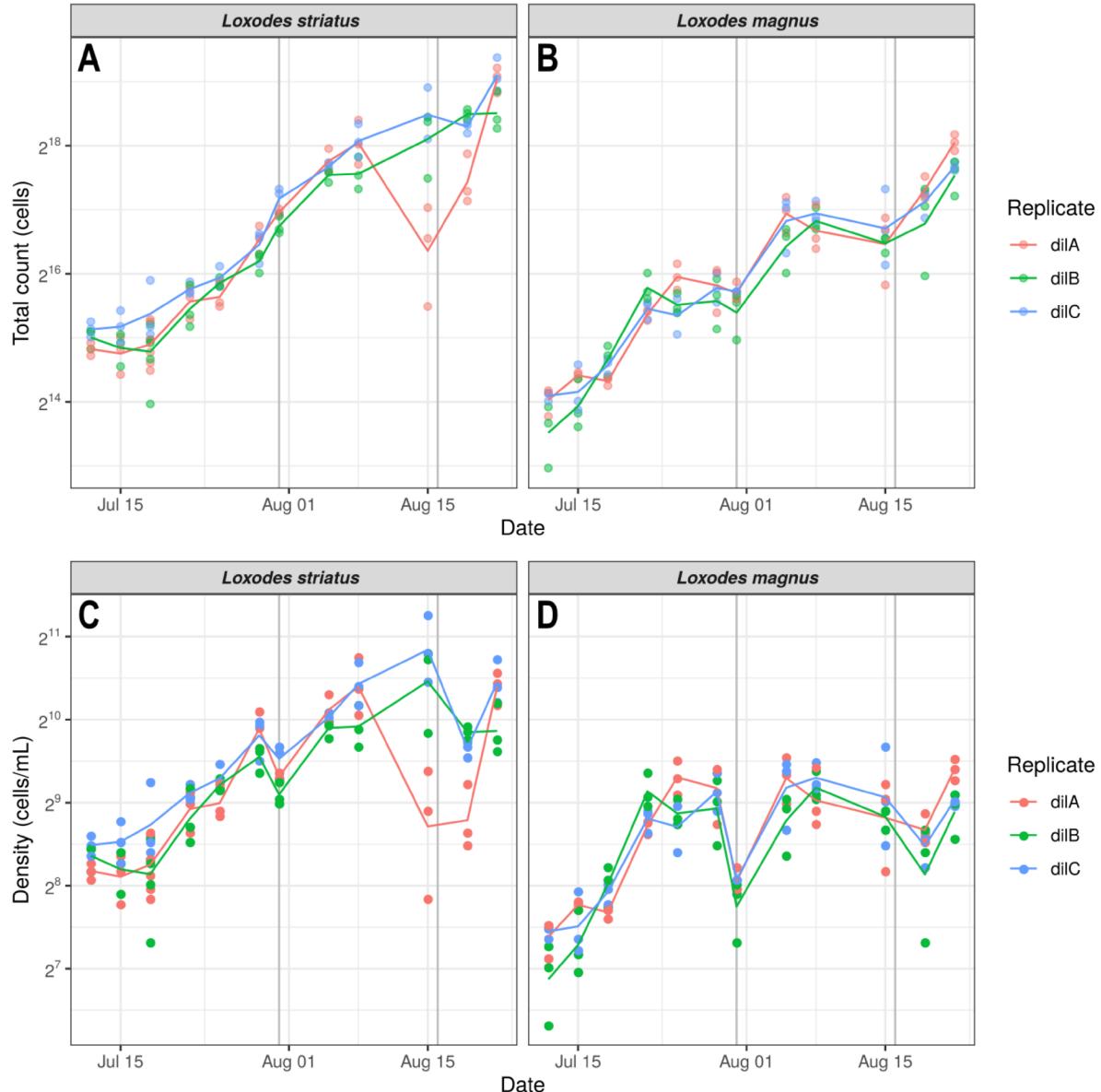
180 *Fixation of ciliate cells*

181 For ZFAE fixative, cells were fixed with twice the volume of fixative solution for 1 h at room
182 temperature (RT), centrifuged (100 rcf; 2 min; RT), and resuspended in SMB. For FA-SMB
183 and FA-PBS, 30 μ L of concentrated cells were added to 1 mL of fixative solution, fixed for 1
184 h at RT, centrifuged, and resuspended in respective buffer solution (SMB or PBS). For
185 MeOH, 20 μ L of concentrated cells were added to 1 mL ice-cold MeOH, fixed for 5 min,
186 centrifuged, and resuspended in SMB. ZFAE-fixed cells can also be resuspended again in
187 70% ethanol and stored at 4 °C for later use.

188 Live and fixed cells were imaged with differential interference contrast (DIC) on a Nikon
189 Eclipse Ts2R inverted microscope with either 20 \times or 40 \times objective and Zeiss AxioCam HRC
190 camera. Contrast and brightness were adjusted in the Zeiss AxioVision software to achieve
191 a similar background brightness.

192 *Immunofluorescence*

193 This protocol was adapted from (Beisson et al., 2010c). Primary antibody against alpha-
194 tubulin (raised in rat, Abcam ab6161) was diluted 1:100 (v/v) in 3% (w/v) bovine serum
195 albumin (BSA, Sigma-Aldrich) in TBSTEM buffer (10 mM EGTA, 2 mM MgCl₂, 150 mM
196 NaCl, 10 mM Tris, 1% Tween-20, pH 7.4). Secondary antibody (goat anti-rat, Alexa Fluor
197 488 labeled, Abcam ab150157) was diluted 1:200 (v/v) in 3% BSA / TBSTEM. DAPI was
198 diluted to 1 μ g/mL in 3% BSA / TBSTEM. All resuspension steps were performed by first
199 centrifuging (1000 rcf; 1 min; room temperature), then removing supernatant, and
200 resuspending the pellet by pipetting up and down. Fixed cells were resuspended in 0.5 mL
201 diluted primary antibody and incubated for 10-60 min at room temperature (RT). Cells were
202 washed for 5-10 min RT in 1.5 mL of 3% BSA / TBSTEM, then incubated for 10-30 min RT in
203 0.5 mL diluted secondary antibody. Cells were counterstained for >5 min at RT in 1 mL DAPI
204 / BSA, then resuspended in 15 μ L ProLong Gold (P36930, Thermo Fisher), mixed by gentle
205 stirring, and mounted under a coverslip. Preparations were cured overnight at RT before
206 imaging. Coverslips can be sealed with nail polish. Sealed slides kept at 4 °C for several
207 months can still be used for imaging. DIC and fluorescence images were imaged on a Zeiss

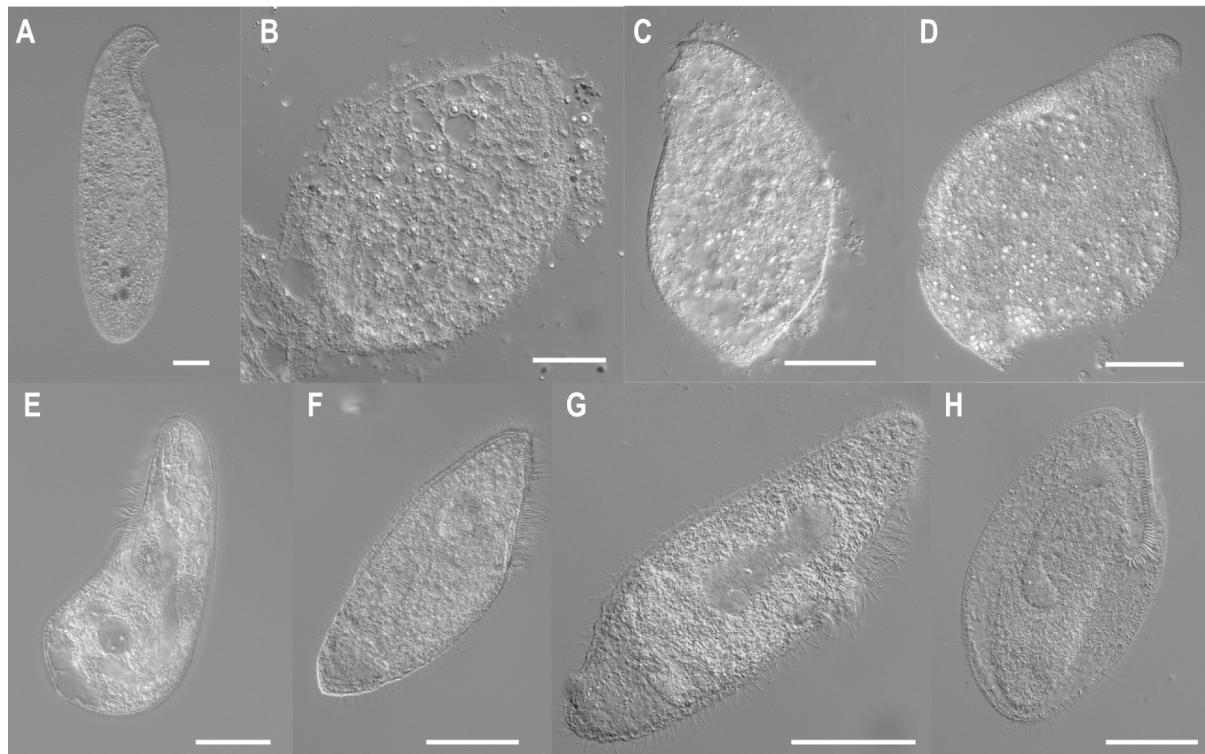

208 AxioImager Z.1 with 40× objective, with Zeiss Filter Set 49 for DAPI and Zeiss Filter Set
209 38HE for Alexa Fluor 488, and Zeiss AxioCam HRc Rev.3 camera.

210 ***Safe disposal of ZFAE fixative***

211 Excess sodium bicarbonate was added to neutralize the acetic acid and to precipitate zinc
212 as zinc bicarbonate, which was filtered out and disposed of as solid chemical waste to
213 minimize waste volume. Formaldehyde in the filtrate was inactivated by adding excess
214 glycine or milk powder and stirring for >1 h.

215 **Results**

216 *Growth of Loxodes magnus in liquid soil medium*

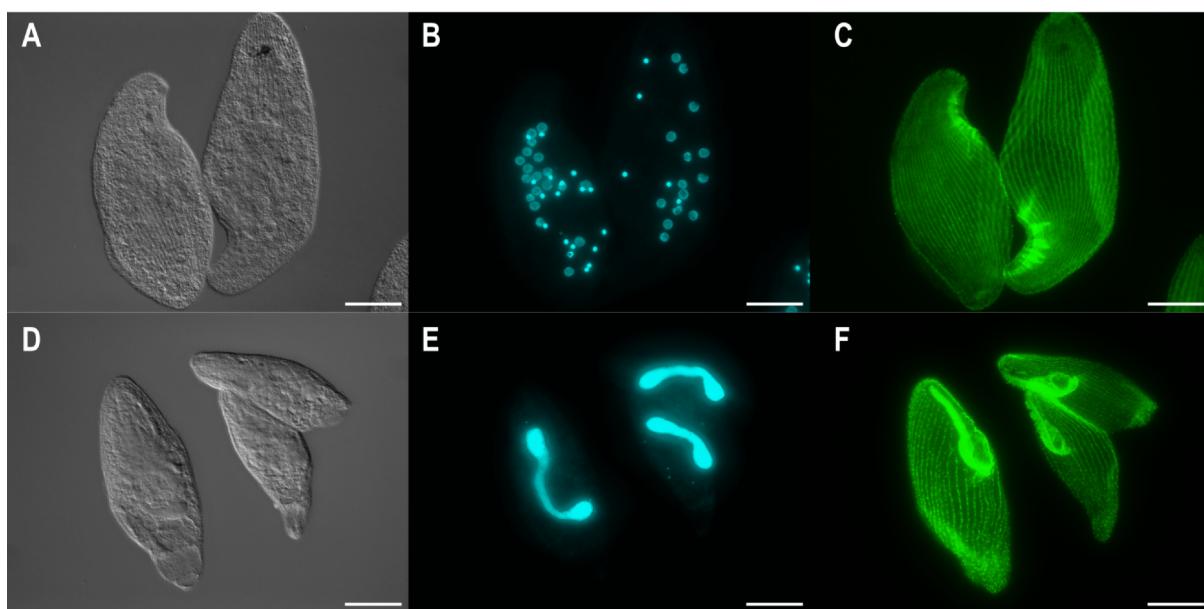

217 **Figure 2.** Growth of *Loxodes striatus* (A, C) and *L. magnus* (B, D) in soil extract medium,
218 each strain grown in triplicate (colors), plotted as total counts (above) vs. cell density
219 (below). Points represent each aliquot taken for counting (3 per replicate), lines are mean
220 counts per replicate. Dark grey vertical lines mark dates when total culture volume was
221 expanded two-fold by adding fresh medium.

222 *Loxodes* cultures were maintained in soil-liquid test tubes as well as in liquid soil extract

223 medium. The media were visibly turbid a few days after inoculation, because neither
224 cultivation medium was axenic, and both depend on the respiration of bacteria co-isolated
225 with *Loxodes* to produce the micro-oxic conditions preferred by the ciliates.

226 Growth rates of *Loxodes* were estimated in liquid culture, because in soil-liquid tubes many
227 cells also reside in the soil and cannot be easily counted. *L. striatus* cell counts did not show
228 much change for the first 6 days, then entered an exponential growth phase (linear region on
229 the log-scaled plot) (Figure 2A, C). This continued after the culture was expanded by adding
230 fresh medium, but one replicate experienced a crash in cell density just before the second
231 expansion. The experiment did not continue long enough to observe a sustained plateau in
232 cell density, so the saturation density of *L. striatus* is probably above the highest density
233 observed of ca. $2^{10} \approx 1000$ cells / mL. In comparison, *L. magnus* showed exponential growth
234 for the first 10 days; subsequently cell density appeared to plateau at about $2^9 \approx 500$ cells /
235 mL (Figure 2B, D). Cell density soon returned to this saturation value after each time that
236 new medium was added. Doubling times, as judged from the linear regions of the log-scaled
237 density plot, were about 7-9 days for *L. striatus*, vs. 4-8 days for *L. magnus*, although *L.*
238 *striatus* is a smaller species and was hence expected to divide more rapidly. We hypothesize
239 that the actual division rate of individual *L. striatus* cells was indeed faster than *L. magnus*,
240 but that the overall doubling rate was limited by the available algal food, which was supplied
241 at the same rate for both strains.

242 Comparison of fixation by ZFAE vs. formaldehyde or methanol


243 **Figure 3.** Comparison of live cells vs. fixed with conventional fixatives, *Loxodes magnus*
244 (above) and *Blepharisma stoltei* (below), imaged with differential interference contrast. Live
245 cells (A,E); 4% formaldehyde/SMB (B,F); 4% formaldehyde/PBS (C,G); ice-cold methanol
246 (D,H). All scale bars: 50 μ m.

247 We first evaluated the effectiveness of formaldehyde and methanol, fixatives typically used
248 in immunofluorescence protocols, against *Loxodes magnus* and the heterotrich *Blepharisma*
249 *stoltei*, which is also known to be challenging to fix. Formaldehyde solutions were buffered
250 with either PBS or SMB, because live cells could be resuspended in these solutions without
251 lysing or losing motility.

252 Neither 4% formaldehyde in phosphate buffered saline (FA-PBS), 4% formaldehyde in SMB
253 medium (FA-SMB), nor ice-cold methanol (MeOH) could fix *Loxodes* cells effectively for
254 downstream applications. *Loxodes* cells fixed with these fixatives were swollen and soft, and
255 most cells partly disintegrated with the handling required to mount cells under a coverslip,
256 although nuclei appeared to be intact (Figure 3A-D). *Blepharisma* cells fixed with FA-SMB or
257 FA-PBS were also swollen compared to live morphology, although more cells remained
258 intact (Figure 3E-G). MeOH fixation caused the pellicles of *Blepharisma* cells to swell and
259 partially detach from the rest of the cytoplasm, but adoral membranelles were less

260 disaggregated compared to FA-PBS and FA-SMB (Figure 3H).
261 In comparison, ZFAE-fixed cells, both for *Loxodes* and *Blepharisma*, remained intact and did
262 not disintegrate on handling (Figure 4A, D). Cells shrank relative to live material but largely
263 kept their original shape, although cilia were stubby or lost. Cell pigments (pink for
264 *Blepharisma*, yellow for *Loxodes*) were also partially extracted by ZFAE, probably because
265 of the ethanol in the fixative. For *Blepharisma*, the posterior contractile vacuole was clearly
266 visible in ZFAE-fixed cells, unlike with other fixatives. However the Müller vesicles of
267 *Loxodes* were not observed in fixed samples, including with ZFAE.

268 *Compatibility of ZFAE fixation with immunofluorescence*

269 **Figure 4.** *Loxodes magnus* (above) and *Blepharisma stoltei* (below) cells fixed with ZFAE.
270 Morphology imaged with DIC (left), and false color fluorescence micrographs of nuclei
271 labeled with DAPI (center), and alpha-tubulin labeled with secondary immunofluorescence
272 (right). All scale bars: 50 μ m.

273 Ciliate cells fixed with ZFAE were compatible with indirect immunofluorescence and DAPI
274 staining of nuclear DNA.
275 Indirect immunofluorescence with a primary antibody against alpha-tubulin labeled linear
276 structures in *Loxodes magnus* that corresponded with the expected appearance and number
277 of somatic kineties (Figure 4C). Cells were laterally flattened, with most ciliation on the right
278 side (ca. 25 somatic kineties), vs. two somatic kineties on the left side that were more faintly
279 labeled. Oral kineties were more difficult to distinguish because bundles of fibrous structures

280 were brightly labeled in the oral region and obscured the signal from other structures. These
281 bundles appear to be nematodesmata associated with the paroral kineties and the left
282 pseudobuccal kinety (Foissner and Rieder, 1983; Klindworth and Bardele, 1996). The
283 vestibular extension ("pharynx") was also labeled. Nuclei stained with DAPI had their
284 characteristic morphology: micronuclei were densely and uniformly stained, whereas
285 macronuclei were less intensely stained, and the central nucleolus was only weakly labeled
286 by DAPI (Figure 4B).

287 *Blepharisma stoltei* cells were spindle-shaped and ciliated all around, in line with previous
288 morphological descriptions (Giese, 1973). Similarly to *Loxodes*, the oral region, particularly
289 the adoral zone of membranelles, was brightly labeled so details of the oral ciliature were
290 difficult to distinguish when overlapping (Figure 4F). The elongate macronucleus was
291 strongly labeled with DAPI, and small spherical micronuclei were also observed beside the
292 macronuclei (Figure 4E).

293 **Discussion**

294 We have shown that *Loxodes* ciliates can be grown in bulk in liquid medium, and that the
295 new ZFAE fixative can be used to fix fragile ciliates like *Loxodes* and *Blepharisma* for
296 fluorescence microscopy applications.

297 Cultivation of *Loxodes* and indeed most ciliates is xenic, i.e. ambient bacteria are present,
298 but the target ciliate and food algae should be the only eukaryotes present. *Loxodes* cultures
299 often collapsed or died out some time after the initial isolation, which was likely influenced by
300 the composition or dynamics of the accompanying bacterial community. Therefore, multiple
301 isolates should be maintained and subcultured for some time, before the most consistently
302 growing ones are chosen for expansion in bulk liquid culture. In our laboratory, the most
303 stable strains have been maintained for over two years in both soil-liquid tubes and soil
304 extract medium.

305 Successful cultivation of *Loxodes* appears to require soil or soil extract, because it is a
306 component of most reported protocols (Supplementary Information). As the composition of
307 soil can vary greatly, it is necessary to test different local soils when setting up a culture,
308 starting with soil from the site where the ciliates were collected. Some previous studies have
309 reported bubbling liquid culture medium with nitrogen gas, or using a chamber flushed with
310 nitrogen, to achieve low oxygen concentrations (Buonanno et al., 2005; Nagel et al., 1997).
311 We did not find this necessary, presumably because the soil extract contains sufficient
312 organic carbon (195 mg / L total organic carbon) to support bacterial growth that is fast
313 enough to consume excess oxygen, and diffusion of oxygen is limited by using bottles or
314 tubes vs. shallow dishes. Indeed, *Loxodes* cultures tend to die out if bottles were completely
315 filled without leaving any headspace, consistent with previous reports that *Loxodes* cannot
316 tolerate complete anoxia (Goulder, 1980). Optimal growth temperatures may be strain and
317 locality dependent. Our cultures are maintained at room temperature (24 °C), whereas
318 attempts to move backup cultures to lower temperatures (18 °C, 4 °C) were not successful.
319 *Loxodes* also appears to be flexible in their choice of food algae. Both *L. striatus* and *L.*
320 *magnus* can also be fed with *Euglena gracilis* and *Chlorogonium* sp., but *Chlamydomonas*
321 was chosen because it was the easiest to grow.

322 The ZFAE fixative fills a useful niche in the ciliatology toolkit, as a fixative that works for at
323 least two known “difficult” taxa, and which is also suitable for fluorescence microscopy,
324 which opens the door to applying cell biology methods to a wider range of ciliate model

325 species. Fluorescent labeling of the cytoskeleton has also been suggested as an alternative
326 method for species identification and description in ciliates vs. traditional silver staining
327 methods (Hirst et al., 2011; Trogant et al., 2020), because the reagents and expertise are
328 more readily available from commercial suppliers, and because they can potentially be
329 imaged at higher resolution, e.g. with confocal microscopy. Methanol has been used to fix
330 *Blepharisma* for immunofluorescence (Santangelo and Bruno, 2001), but the reported
331 protocol involves immobilizing cells in a thin film of culture medium on a depression slide
332 before adding fixative. Similarly, a protocol used to fix *Loxodes* for DAPI staining adheres
333 them to glass slides (Munyenjembe et al., 2021). These methods require careful manual
334 manipulation and limit the numbers of cells that can be fixed. In contrast, ZFAE is more
335 suitable for large numbers of cells, and is simpler as all steps can be performed at room
336 temperature in microcentrifuge tubes. Drawbacks of ZFAE, however, are that surface
337 ciliation is poorly preserved, and morphology may be distorted because of shrinkage during
338 fixation.

339 The key difference between ZFAE and the original Nissenbaum's fixative is the substitution
340 of mercuric chloride with zinc sulfate. Mercuric salts were historically widely used in histology
341 (Hopwood, 1972), but are rarely used today because of their toxicity and the expense of
342 chemical disposal (Layton et al., 2019). Zinc salts have successfully substituted for mercuric
343 salts in several applications (Garcia et al., 1993; Lykidis et al., 2007), and are thought to
344 work via a similar mechanism. The original Nissenbaum's fixative was used for simultaneous
345 fixation and enrobing, i.e. adhesion of specimens to glass slides. In contrast, ZFAE
346 fixative is not effective at enrobing, so fixation in tubes or vials is recommended.
347 Nonetheless, this is an advantage for protocols like immunofluorescence, and it is also more
348 convenient to store fixed samples in tubes for later use.

349 Finally, ZFAE is composed of inexpensive chemicals, and the disposal of fixative waste is
350 more convenient and safer than for mercuric chloride-containing fixatives. Besides protecting
351 laboratory workers, this also saves on shipping, storage, and disposal costs. Alternatively,
352 40% glyoxal solution can be used in place of formalin as a less toxic substitute (Richter et
353 al., 2018). Standard precautions (fume hood, personal protective equipment) should still be
354 taken.

355 **Acknowledgements**

356 This work pays tribute to the contributions of Bland Finlay to our knowledge of *Loxodes* and
357 the microbial world. We thank T. Harumoto and M. Sugiura for providing the *Blepharisma*
358 culture, K. Eisler for the gift of *Loxodes* cultures from the former teaching collection of the
359 University of Tübingen, S. Mattes for routine maintenance of our cultures, B. Seah Mikitish
360 for translation from Russian, and G. Esteban for the invitation to contribute this article.

361 **Declaration of interests:** None

362 **References**

363 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
364 Malinsky, S., Meyer, E., Preer, J.R., Sperling, L., 2010a. Maintaining clonal
365 *Paramecium tetraurelia* cell lines of controlled age through daily reisolation. Cold Spring
366 Harb. Protoc. 2010, pdb.prot5361. doi:10.1101/pdb.prot5361

367 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
368 Malinsky, S., Meyer, E., Preer, J.R., Sperling, L., 2010b. Mass culture of *Paramecium*
369 *tetraurelia*. Cold Spring Harb. Protoc. 2010, pdb.prot5362. doi:10.1101/pdb.prot5362

370 Beisson, J., Bétermier, M., Bré, M.-H., Cohen, J., Duharcourt, S., Duret, L., Kung, C.,
371 Malinsky, S., Meyer, E., Preer, J.R., Sperling, L., 2010c. Immunocytochemistry of
372 *Paramecium* cytoskeletal structures. Cold Spring Harb. Protoc. 2010, pdb.prot5365.
373 doi:10.1101/pdb.prot5365

374 Bobyleva, N.N., 1980. [Cultivation and cloning of the primitive ciliates of the genus *Loxodes*
375 and some aspects of their biology]. Tsitologiia 23, 1073–1077.

376 Buonanno, F., Saltalamacchia, P., Miyake, A., 2005. Defence function of pigmentocysts in
377 the karyorelictid ciliate *Loxodes striatus*. Eur. J. Protistol. 41, 151–158.
378 doi:10.1016/j.ejop.2005.01.001

379 Dyal, P.L., Hope, S., Roberts, D.M., Embley, T.M., 1995. Use of the PCR and fluorescent
380 probes to recover SSU rRNA gene sequences from single cells of the ciliate protozoon
381 *Spathidium*. Mol. Ecol. 4, 499–503. doi:10.1111/j.1365-294x.1995.tb00244.x

382 Fenchel, T., Finlay, B.J., 1984. Geotaxis in the ciliated protozoon *Loxodes*. J. Exp. Biol. 110,
383 17–33. doi:10.1242/jeb.110.1.17

384 Fenchel, T., Finlay, B.J., 1986. The structure and function of müller vesicles in loxodid
385 ciliates. J. Protozool. 33, 69–76. doi:10.1111/j.1550-7408.1986.tb05560.x

386 Finlay, B.J., Fenchel, T., Gardener, S., 1986. Oxygen perception and O₂ toxicity in the

387 freshwater ciliated protozoon *Loxodes*. *J. Protozool.* 33, 157–165. doi:10.1111/j.1550-
388 7408.1986.tb05582.x

389 Finlay, B.J., Span, A.S.W., Harman, J.M.P., 1983. Nitrate respiration in primitive eukaryotes.
390 *Nature* 303, 333–336. doi:10.1038/303333a0

391 Finlay, B.J., 1981. Oxygen availability and seasonal migrations of ciliated protozoa in a
392 freshwater lake. *J. Gen. Microbiol.* 123, 173–178. doi:10.1099/00221287-123-1-173

393 Foissner, W., Rieder, N., 1983. Licht- und rasterelektronenmikroskopische Untersuchungen
394 über die Infraciliatur von *Loxodes striatus* (Engelmann, 1862) und *Loxodes magnus*
395 Stokes, 1887 (Protozoa: Ciliophora). *Zool Anz* 210, 3–13.

396 Foissner, W., 2014. An update of “basic light and scanning electron microscopic methods for
397 taxonomic studies of ciliated protozoa”. *Int. J. Syst. Evol. Microbiol.* 64, 271–292.
398 doi:10.1099/ijss.0.057893-0

399 Garcia, L.S., Shimizu, R.Y., Shum, A., Bruckner, D.A., 1993. Evaluation of intestinal
400 protozoan morphology in polyvinyl alcohol preservative: comparison of zinc sulfate- and
401 mercuric chloride-based compounds for use in Schaudinn’s fixative. *J. Clin. Microbiol.*
402 31, 307–310. doi:10.1128/jcm.31.2.307-310.1993

403 Giese, A.C., 1973. *Blepharisma*: The Biology of a Light-sensitive Protozoan, illustrated ed.
404 Stanford University Press.

405 Goulder, R., 1980. The ecology of two species of primitive ciliated protozoa commonly found
406 in standing freshwaters (*Loxodes magnus* Stokes and *L. striatus* Penard). *Hydrobiologia*
407 72, 131–158. doi:10.1007/BF00016241

408 Hemmersbach, R., Voormanns, R., Briegleb, W., Rieder, N., Häder, D.P., 1996. Influence of
409 accelerations on the spatial orientation of *Loxodes* and *Paramecium*. *J. Biotechnol.* 47,
410 271–278. doi:10.1016/0168-1656(96)01337-5

411 Hirst, M.B., Kita, K.N., Dawson, S.C., 2011. Uncultivated microbial eukaryotic diversity: a
412 method to link SSU rRNA gene sequences with morphology. *PLoS ONE* 6, e28158.
413 doi:10.1371/journal.pone.0028158

414 Hopwood, D., 1972. Tissue Fixation with Mercury Compounds. *Prog. Histochem. Cytochem.*
415 4, III–30. doi:10.1016/S0079-6336(72)80003-2

416 Klindworth, T., Bardole, C.F., 1996. The ultrastructure of the somatic and oral cortex of the
417 karyorelictean ciliate *Loxodes striatus*. *Acta Protozool* 35, 13–28.

418 Layton, C., Bancroft, J.D., Suvarna, S.K., 2019. Fixation of tissues, in: Bancroft’s Theory and
419 Practice of Histological Techniques. Elsevier, pp. 40–63. doi:10.1016/B978-0-7020-
420 6864-5.00004-9

421 Lykidis, D., Van Noorden, S., Armstrong, A., Spencer-Dene, B., Li, J., Zhuang, Z., Stamp,

422 G.W.H., 2007. Novel zinc-based fixative for high quality DNA, RNA and protein analysis.
423 Nucleic Acids Res. 35, e85. doi:10.1093/nar/gkm433

424 Miyake, A., 1981. Cell interaction by gamones in *Blepharisma*, in: O'Day, D.H., Horgen, P.A.
425 (Eds.), Sexual Interaction in Eukaryotic Microbes. Academic Press, New York, pp. 95–
426 129.

427 Munyenjembe, K., Timmons, C., Weiner, A.K.M., Katz, L.A., Yan, Y., 2021. DAPI staining
428 and DNA content estimation of nuclei in uncultivable microbial eukaryotes (Arcellinida
429 and Ciliates). Eur. J. Protistol. 81, 125840. doi:10.1016/j.ejop.2021.125840

430 Nagel, U., Machemer, H., Bräucker, R., 1997. Electric control of ciliary beat direction and
431 curvature of gliding in *Loxodes* (Ciliata). Eur. J. Protistol. 33, 284–294.
432 doi:10.1016/S0932-4739(97)80006-5

433 Neugebauer, D.C., Machemer-Röhnisch, S., Nagel, U., Bräucker, R., Machemer, H., 1998.
434 Evidence of central and peripheral gravireception in the ciliate *Loxodes striatus*. Journal
435 of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 183, 303–
436 311. doi:10.1007/s003590050257

437 Nissenbaum, G., 1953. A combined method for the rapid fixation and adhesion of ciliates
438 and flagellates. Science 118, 31–32. doi:10.1126/science.118.3053.31-a

439 Richter, K.N., Revelo, N.H., Seitz, K.J., Helm, M.S., Sarkar, D., Saleeb, R.S., D'Este, E.,
440 Eberle, J., Wagner, E., Vogl, C., Lazaro, D.F., Richter, F., Coy-Vergara, J., Coceano,
441 G., Boyden, E.S., Duncan, R.R., Hell, S.W., Lauterbach, M.A., Lehnart, S.E., Moser, T.,
442 Rizzoli, S.O., 2018. Glyoxal as an alternative fixative to formaldehyde in immunostaining
443 and super-resolution microscopy. EMBO J. 37, 139–159. doi:10.15252/embj.201695709

444 Santangelo, G., Bruno, P., 2001. An immunofluorescence technique for staining ciliated
445 protozoans: highlighting cytoplasmic microtubular arrays and stages of micronuclear
446 meiosis. Micron 32, 207–210. doi:10.1016/s0968-4328(99)00144-4

447 Sonneborn, T.M., 1950. Methods in the general biology and genetics of *Paramecium aurelia*.
448 J. Exp. Zool. 113, 87–147. doi:10.1002/jez.1401130106

449 Trogant, S., Becker, K., Schweinsberg, M., Ioannidou, I., Tollrian, R., Weiss, L.C., 2020.
450 Simple morphology-based species identification in *Euplates* spp. fal 193, 205–211.
451 doi:10.1127/fal/2020/1220

452 Wang, L., Qu, Z., Li, S., Hu, X., 2019. Morphology and Molecular Phylogeny of Two Little-
453 Known Species of *Loxodes*, *L. kahli* Dragesco & Njiné, 1971 and *L. rostrum* Müller,
454 1786 (Protist, Ciliophora, Karyorelictea). J. Ocean Univ. China 18, 643–653.
455 doi:10.1007/s11802-019-3897-3