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Abstract 

Massively parallel single cell RNA-seq (scRNA-seq) for diverse applications, from cell atlases to 

functional screens, is increasingly limited by sequencing costs, and large-scale low-cost 

sequencing can open many additional applications, including patient diagnostics and drug screens. 

Here, we adapted and systematically benchmarked a newly developed, mostly-natural sequencing 5 

by synthesis method for scRNA-seq. We demonstrate successful application in four scRNA-seq 

case studies of different technical and biological types, including 5’ and 3’ scRNA-seq, human 

peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-

Seq. Our data show comparable results to existing technology, including compatibility with state-

of-the-art scRNA-seq libraries independent of the sequencing technology used – thus providing an 10 

enhanced cost-effective path for large scale scRNA-seq. 
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Cellular profiling by single-cell RNA-seq (scRNA-seq) now enables studying and characterizing 

cellular states and pathways at ever-growing experimental scales, including the Human Cell Atlas 

1, cell atlases for tumors 2 and other diseases 3, 4, and large-scale Perturb-seq screens of millions of 

cells under genetic 5, 6 or drug 7 perturbations. As methods for capturing and processing single cell 

libraries have been radically scaled in the past few years 8-11, sequencing technologies are 5 

becoming a major barrier to the broad adoption of scRNA-seq in both basic research and the clinic. 

 

Here, we describe the application of a new sequencing technology that has the potential to advance 

single cell genomics by significantly lowering the sequencing cost component of scRNA-seq. 

Mostly-natural sequencing by synthesis (mnSBS) is a new sequencing chemistry that leverages a 10 

low fraction of labeled nucleotides to combine the efficiency of non-terminating chemistry with 

the throughput and scalability of optical endpoint scanning to enable low-cost, high-throughput 

sequencing. To benchmark mnSBS with scRNA-seq, we performed experiments with four library 

types, sequenced in parallel on an Illumina sequencer and on an Ultima Genomics (Ultima) 

prototype sequencer implementing mnSBS (Fig. 1a). 15 

 

To implement mnSBS for massively-parallel, droplet-based scRNA-seq, we converted a typical 

scRNA-seq workflow to be compatible with Ultima sequencing (Fig. 1b-d; Online Methods). 

Focusing on 10x Chromium scRNA-seq (Online Methods), a popular method, we first added 

adapters to cDNA libraries specific for Ultima sequencing (Fig. 1b). Next, we address the fact that 20 

droplet-based scRNA-seq relies on pairing each cDNA read with a cell barcode (CBC) and a 

Unique Molecular Identifier (UMI) (Online Methods). With Illumina sequencing, the two ends 

of the library are sequenced separately by paired-end sequencing, but for single-end Ultima 
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sequencing, we capture all the information in a single 200 to 250 base read (Fig. 1d), such that the 

CBC and UMI are read first and followed by the cDNA. For those reads derived from the 

transcript’s 3’ end, we sequence through poly(T) bases, which are due to the mRNA poly(A) tail, 

adjacent to the cDNA sequence. 

 5 

To evaluate mnSBS with scRNA-seq, we carried out experiments with four libraries, spanning 

different technical and biological use cases, and sequenced each in parallel on both Ultima and 

Illumina sequencers (Online Methods). Three libraries were from peripheral blood mononuclear 

cells (PBMCs) of healthy human donors, spanning 3’ scRNA-seq (~7,000 cells, 1 individual), 5’ 

scRNA-Seq (~7,000 cells, 1 individual), and a library generated in multiplex by pooling cells from 10 

eight donors (~24,000 cells, 8 individuals, 5’ scRNA-seq). We chose PBMCs because they are 

primary human cells, include diverse cell types of various sizes and frequencies, and have been 

used for previous benchmarking 12, 13. The fourth library was from a Perturb-Seq 5, 6 experiment, 

where ~20,000 cells were profiled after CRISPR/Cas9 pooled genetic perturbation, followed by 

scRNA-Seq to detect both the cell’s profile and associated guide RNA. Together, the four libraries 15 

span three major use cases – individual patient atlas, multiplex patient profiling, and large-scale 

screens, and the two most commonly used library types for scRNA-seq. 

 

We first tested the feasibility of mnSBS for scRNA-seq, with matched Ultima and 5’ and 3’ 

droplet-based scRNA-seq of PBMCs. Initial analysis (Online Methods) showed that the number 20 

of UMIs generated at a given sequencing depth was comparable between Ultima and Illumina in 

the 5’ libraries, while for the 3’ libraries we obtained more UMIs with Illumina than Ultima (Fig. 

2a), due to sequence quality differences. While Ultima and Illumina data for 5’ libraries were 
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similar, for the 3’ data there was lower quality for Ultima in the bases flanking the poly(T) region 

– the 3’ end of the UMI and the 5’ end of the cDNA (Extended Data Fig. 1a). Indeed, filtering 

out reads that have bases with quality <10 in their UMI (the filter applied by the pre-processing 

pipeline we used, Cell Ranger 14), yields similar rarefaction curves for Illumina and Ultima 

(Extended Data Fig. 1b). Thus, much of the difference in the observed number of UMIs per 5 

sequenced read for 3’ libraries is explained by the lower sequence quality UMIs in the Ultima data 

due to the need to sequence through the poly(T) bases. To overcome this, for 3’ libraries we 

trimmed 5 bases from the cDNA adjacent to the poly(T) bases and then explored how best to trim 

the UMI. As we shortened the UMIs, UMIs that differed only in the trimmed bases “collapsed” 

into a single UMI leading to decreases in the fraction of UMI/CBC pairs that occur in only one 10 

gene at roughly the same rate in Illumina and Ultima data (Extended Data Fig. 1c). Shortening 

the UMIs for Illumina had a minimal effect at 9 bases or more (Extended Data Fig. 1d), 

suggesting that the challenges with Ultima reads were due to lower base quality and that trimming 

to 9 bases was reasonable. This led us to exclude the last 3 bases of each UMI in Ultima 3’ data in 

subsequent downstream analysis (Online Methods).  15 

 

Next, comparing the performance of these PBMC 3’ and 5’ matched libraries, we obtained similar 

overall performance for both sequencing technologies. First, to correct for differences in 

sequencing depths, which were higher in Ultima than Illumina, we randomly sampled Ultima 

reads, so that we used the same number of reads for each sequencing platform (Online Methods). 20 

Both technologies identified nearly all the same CBCs (Fig. 2b, 7,916 cells (Ultima) vs 7,926 cells 

(Illumina) in the 3’ data, and 7,875 cells (Ultima) vs 7,854 cells (Illumina) in the 5’ data), with the 

same number of UMIs and genes per cell for 5’ libraries and slightly lower numbers for 3’ libraries 

with Ultima (as expected) (Fig. 2c,d). When we sampled reads to have the same number of UMIs 
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(Online Methods), we obtained a similar number of genes per cell in Illumina and Ultima also for 

3’ libraries (Extended Data Fig. 2). Other metrics (Supplementary Table 1) also showed similar 

overall performance, with slightly higher genome mapping rates in Ultima but comparable 

transcriptome mapping rates. 

 5 

The two technologies yielded highly correlated expression levels, albeit with some outlier genes 

and minor differences (Pearson’s r=0.98 in all cases; Fig. 2e, Extended Data Fig. 2c). (As 

expected, when a single sequencing run was randomly split into two datasets, we see even higher 

correlation of expression levels (Extended Data Fig. 2d)). Specifically, there was a modest bias, 

particularly in the 3’ libraries, towards genes with higher GC content having higher expression in 10 

Illumina and the longest genes having higher expression in Ultima 3’ libraries (Extended Data 

Fig. 3a,b). Of the 166 genes with differences in expression for 3’ PBMC between the two 

sequencing platforms, most (130 genes, 78.3%) differed in the fraction of reads that were assigned 

by Cell Ranger to the gene out of all the reads mapped to that gene region (Extended Data Fig. 

3c). This is likely related to how Ultima and Illumina reads map to different locations relative to 15 

the transcript, as expected from the difference in single-end vs. paired-end reads (Fig. 1d): in 5’ 

data, Ultima reads map closer to the 5’ end than Illumina reads, while in 3’ data, Ultima reads map 

closer to the 3’ end than Illumina reads (Extended Data Fig. 3d,e). Because Cell Ranger excludes 

reads that do not fully map within annotated gene boundaries, more Ultima reads are excluded 

from analysis as they are closer to gene ends (Extended Data Fig. 3d,e), as shown for example 20 

for LILRA5 and HIST1H1D (Extended Data Fig. 3f,g). This difference in location can also lead 

to more multimapping or ambiguous reads (Extended Data Fig. 3h, Supplementary Table 2). 

For example, four (ARF5, MIF, IFITM1, and TCIRG1) of the 20 genes with the largest log fold 

change (logFC) between Ultima and Illumina in the 3’ data (labeled in Fig 2E) have higher 
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expression in Illumina and a much higher rate of mapped ambiguous reads in the Ultima than the 

Illumina data (>50 vs. <10 ambiguous reads per non-ambiguous read for each gene, respectively) 

(Supplementary Table 2), possibly explaining the difference in their expression levels. 

Shortening Ultima Read 2 to the same length as Illumina Read 2 had a small effect on the fraction 

of assigned reads (Extended Data Fig. 3h) and other metrics (Supplementary Table 1) – 5 

suggesting read length is not a major factor in the differences we observed. 

 

To further explore the effects of gene annotation on Ultima and Illumina-based scRNA-seq, we 

extended the standard reference using RNA-seq data, as we have previously shown this can recover 

the expression of a gene with an alternative 3’ end compared to the annotation 15. We created a 10 

pipeline that extends the annotated gene boundaries based on reads that overlap a gene but are not 

completely contained in any of its annotated exons (Online Methods). We generated three such 

references, extended with either (1) published bulk PBMC data 12, (2) the Ultima 3’ scRNA-seq 

data, or (3) the Ultima 5’ scRNA-seq data (with Ultima and Illumina data sampled to the same 

number of reads). We compared the expression of genes in Ultima data processed with the 15 

extended references to those in Illumina data either with or without the extended reference 

(Extended Data Fig. 4, Supplementary Tables 1 and 3). Analyzing the 5’ PBMC data with the 

extended reference decreased the number of differentially expressed (DE) genes between Ultima 

and Illumina by 22 to 23% (absolute logFC > ln(2)) compared with the standard reference, while 

other overall metrics were largely unchanged. In the 3’ data, there were a similar number of DE 20 

genes in analyses with the extended and standard references, although the expression of some 

genes, e.g., LILRA5 and MT-CO2, agreed much more closely using the extended reference. 

Comparing gene expression levels for the same sequencing dataset processed with the standard or 

an extended reference shows that most levels are very similar, though a sizeable number (23 to 83) 
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are higher and a few (1 to 3) are lower (Extended Data Fig. 4c). Also. some of the top genes that 

differ between the extended and standard references are genes that differ between Ultima and 

Illumina with the standard reference, e.g., MT-CO2 and LILRA5 in the 3' data and HIST1H1D and 

HIST1H1E in the 5' data (Fig. 2e, Extended Data Fig. 3f,g). This suggests that a data-driven 

extended reference might help recover expression in Ultima scRNA-seq data, particularly when 5 

using 5’ data. Alternatively, one could consider modifying the way Cell Ranger counts UMIs to 

better take advantage of reads that overlap genes but are not completely contained within them. 

 

To compare the biological insights derived from scRNA-seq using the two technologies, we turned 

to analyze 5’ scRNA-seq of PBMCs from eight individuals processed together and sequenced with 10 

both Ultima and Illumina (Online Methods). Both methods have roughly the same number of 

UMIs in this dataset (<1% difference) and performed similarly (Supplementary Table 1 and 

Extended Data Fig. 5, using all reads). We also generated matched T cell Receptor (TCR) and B 

cell Receptor (BCR) Illumina sequencing data (Online Methods). Ultima sequencing was not 

used for this, because the 10x Chromium constructs specifically require paired-ends or much 15 

longer single-end reads to cover the entirety of these genes.  

 

In the 8 individuals PBMC dataset, the two sequencing platforms produced very similar results for 

the common tasks of genotype-based assignment, cell type labeling, and DE gene identification, 

and were well-embedded together. First, we used Vireo 16, which finds genotype clusters in the 20 

data without prior knowledge of the genotypes of individuals in the experiment, to assign reads to 

each individual in the mixture (Online Methods). Both Ultima and Illumina data returned highly 

concordant labels (Fig. 3a), with 92% agreement in label if we include those cells declared 
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doublets or unassigned (χ2 test for independence gives a p-value < 2.2 x 10-16 and χ2=199127 with 

df=81), and >99.9% agreement if the cell is assigned singlet by both technologies (only 5 cells 

differ, χ2 test for independence gives a p-value < 2.2 x 10-16 and χ2=146879 with df=49). Next, we 

clustered the cells for each of the two datasets separately (Online Methods), and used Azimuth 17 

to automatically label cell types in each (Online Methods). In both sequencing datasets, we 5 

identify the major cell types expected for PBMCs, with the expected cell type markers (Extended 

Data Fig. 6a,b), and cells are comparably well-mixed among individuals (Fig. 3b), with low 

adjusted mutual information (AMI) between cell type and individual in both Ultima (0.026) and 

Illumina (0.025) (AMI = 0 corresponds to no relation between individual and cell type; AMI = 1 

corresponds to the case of perfect agreement between the two labelings). The two sequencing 10 

datasets also had high agreement on proportions of each cell type from each individual, both for 

the main cell type categories (Fig. 3c, 95% agreement in cell type labels between Ultima and 

Illumina, χ2 test for independence gives a p-value < 2.2 x 10-16 and χ2=123891 with df=49, AMI = 

0.88) and for finer cell subsets, such as subclusters of T cells (Fig. 3d). They further agreed on 

differential expression between cell types (Fig. 3e; r=0.93-0.95), such that 67.9% of genes that are 15 

significantly DE in one cell type in one of the two datasets are significant in both for that cell type. 

We found similar results with 5’ and 3’ PBMC datasets from a single individual (Extended Data 

Fig. 7). Moreover, the two PBMC mixture datasets were co-embedded well together into a joint 

2-dimensional space using Uniform Manifold Approximation and Projection (UMAP) after 

regressing out dataset of origin (Online Methods), with good mixing between datasets (AMI = 20 

0.00068 between the joint clustering and dataset of origin), and good separation of cell types (Fig. 

3f). Thus, data generated by the two sequencing technologies are compatible and can be combined 

easily in a single analysis. 
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For B and T cells, where we had clonotype assignment by Illumina sequencing of TCRs and BCRs 

(Online Methods), we found good concordance between Ultima and Illumina assignments. Most 

T cells called by either method had TCR sequences (76% in both Ultima and Illumina) with only 

a very small percent of cells of other cell types having a TCR sequence (3.7% in Ultima and 3.5% 

Illumina), with similar results for B cells and BCR sequences (Extended Data Fig. 6c; 93% of B 5 

cells in both Ultima and Illumina were assigned a BCR clonotype while only 0.72% of non-B cells 

in Ultima and 0.73% of non-B cells in Illumina were assigned a BCR clonotype). The distribution 

of T cell subsets to top TCR clonotypes for each individual was also largely concordant between 

Ultima and Illumina sequencing (Extended Data Fig. 6d), with small differences in cell type 

labeling. CD8 T effector memory (TEM) cells were by far the most likely to be expanded, as 10 

expected 18. Thus, Ultima sequencing for scRNA-seq can be combined with Illumina sequencing 

of TCR and BCR genes to generate comparable results to those found with only Illumina 

sequencing. 

 

To explore finer signals, we compared the two data sets for continuous cell states – such as 15 

activation status or the cell cycle – recovered by unsupervised non-negative matrix factorization 

(NMF). Each NMF factor can reflect a gene program, defined by a non-negative score for each 

gene (referred to as gene loadings) and a non-negative score for each cell (referred to as cell 

loadings). Because NMF runs are not identical even when re-run on the same data, to compare 

NMF models from Ultima and Illumina data, we fit NMF on Ultima data, Illumina data, and a null 20 

of randomly permuted Illumina expression values (Online Methods), and then measured how well 

cell or gene loadings fit each dataset. Cell loadings from the model learned on Ultima data fit the 

Illumina data almost as well as cell loadings from the Illumina-learned model and vice versa, while 

loadings from the permuted (null) dataset led to much poorer fit (Extended Data Fig. 8a). For 
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gene loadings, there was lower performance when fitting data from one sequencing technologies 

with loadings from a model learned on the data from the other technologies, each to a comparable 

extent, and both far better than random permutations (Extended Data Fig. 8b). Consensus NMF 

(cNMF) 19 (Online Methods), which reduces variability due to random sampling between NMF 

runs, showed high correlations of cell (Extended Data Fig. 8c) or gene (Extended Data Fig. 8d) 5 

loadings between models learned on different runs. The correspondence was comparable to that 

observed between two independent cNMF runs on the same dataset (Extended Data Fig. 8e,f), 

and lower than when comparing a single run to itself (Extended Data Fig. 8g,h), as expected. It 

was also much stronger than comparing cNMF models of two different biological systems (5’ 

PBMC mixture data and Perturb-seq, see below for details of this experiment) (Extended Data 10 

Fig. 8i,j). Notably, the same cell subsets score highly for Ultima (Extended Data Fig. 8k) and 

Illumina (Extended Data Fig. 8l) data-derived programs on a joint UMAP embedding. For 

example, factor 13 in Illumina and factor 1 in Ultima scored in the same cells (Extended Data 

Fig. 8k,l) and were correspondingly highly correlated on both cell (Extended Data Fig. 8c) and 

gene (Extended Data Fig. 8d) loadings, indicating that they correspond to the same program. 15 

Moreover, other factors that differed between Ultima and Illumina were highly related—for 

example, factor 5 in the Ultima dataset was roughly decomposed into factors 5 and 11 in the 

Illumina dataset. Overall, we conclude that there is a high correspondence between cell states in 

Ultima and Illumina data. 

 20 

As a final test, we evaluated performance with a Perturb-seq screen, where heavy sequencing 

requirements are particularly limiting for scale 5, 6, and used a design that also tested for CITE-Seq 

20 and Cell Hashing 21 performance. Specifically, we used a library from a pilot screen of an 

ongoing genome-wide Perturb-seq study (PIT, KGS, CJF and AR, unpublished results) to identify 
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regulators of MHC Class I in melanoma A375 cells (Fig. 4a). In this pilot, we introduced 6,127 

guides targeting 1,902 transcription factors and chromatin modifiers (Supplementary Table 4) 

along with both intergenic and non-targeting control guides, enriched for cells with low HLA 

levels, and followed by scRNA-seq of 20,000 cells that included CITE-seq 20 and Cell Hashing 21, 

22 (Online Methods). We sequenced the resulting scRNA-seq libraries with Illumina and Ultima, 5 

but the dial-out libraries used for guide detection, CITE-seq, and Cell Hashing were only 

sequenced with Illumina (Extended Data Fig. 9a-c). Initial pre-processing of the Perturb-seq 

scRNA-seq data showed similar performance for Ultima and Illumina, after sampling reads to have 

the same number of UMIs in each dataset (Extended Data Fig. 5a,b, Supplementary Table 1), 

as before, as well as in terms of cell assignment to guides (Fig. 4b and Extended Data Fig. 9c), 10 

Cell Hashing barcodes (Fig. 4c), and cell clustering and marker gene expression (Extended Data 

Fig. 9d-i). 

 

Importantly, the Ultima and Illumina datasets identified similar relationships between 

perturbations and similar regulatory effects. For this analysis, we included the 335 cells in Illumina 15 

and 336 cells in Ultima, coming from 11 perturbations and 10 control guides in this pilot screen 

that were assigned to a single perturbation that had more than 10 assigned cells (the same 

perturbations were found by Illumina and Ultima). We then fit a regularized linear model (with 

elastic net, similar to 6, 22 (Online Methods)) of the mean impact of each perturbation on each 

gene, selected genes with nominal p-values < 0.05 using a permutation-based approach (Online 20 

Methods), and clustered the guides by these regulatory profiles. Ultima (Fig. 4d) and Illumina 

(Fig. 4e) based analyses yielded very similar guide relationships, both between multiple guides to 

the same gene (e.g., STAT1 guides) and between guides to different, functionally-related genes 

(e.g., STAT1 and IRF1 or COP1_1 and CREBBP_3). Moreover, there was very high agreement in 
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the effects on individual genes in both datasets, when comparing DE genes between each guide 

and an intergenic control (intergenic_1) in each dataset, in both significance and effect size (Fig. 

4f, Extended Data Fig. 9j,k). Many such gene/guide pairs were significant in both the Ultima and 

Illumina datasets (Fig. 4f), and those significant only in one, had highly similar effect sizes, 

showing consistent signal. Moreover, the KEGG pathways enriched with DE genes between each 5 

guide and an intergenic control were highly similar between the datasets (Fig. 4g). 

 

In conclusion, the two sequencing platforms generally perform similarly for scRNA-seq, across 

two main protocols for droplet based scRNA-seq (3’ and 5’), two different sample types (primary 

cells and a cell line), and multiple experimental designs (simplex and multiplex, Perturb-Seq, 10 

CITE-Seq and Cell Hashing). One key explanation for the minor differences we observed is the 

position of reads relative to annotated gene boundaries (Extended Data Fig. 3d-g), as a 

consequence of Ultima’s single-end reads being closer to gene ends. Additionally, we currently 

recommend 5’ over 3’ libraries, given the small penalty in lost reads in 3’ libraries (Fig. 2a) due 

to lower sequencing quality adjacent to the poly(T) sequence (Extended Data Fig. 1).  15 

 

It is exciting to imagine what will be possible with Ultima’s lower cost, estimated at over 5-fold 

reduction in cost per read, that enables sequencing more reads, cells, and/or samples in the context 

of large scale tissue atlasing projects, such as the Human Cell Atlas 1, the BRAIN Initiative 23, the 

Cancer Moonshot Human Tumor Atlas Network 2 as well as perturbation screens 5, 6. It should also 20 

be possible to design droplet-based scRNA-seq reagents, and methods for other large scale single 

cell and spatial genomics 24-28 customized to Ultima sequencing to directly generate libraries and 

eliminate the need for library conversion (Fig. 1b)Additionally, with longer Ultima reads or 
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different construct designs, sequencing of other library types including TCR/BCR and dial-out can 

be enabled. Finally, such reduced sequencing costs could open the way to use scRNA-seq in 

clinical applications, including diagnostics (as in next-generation blood tests, “CBC2.0” 1) or for 

therapeutics screens of small molecules, antibodies or cell therapies, impacting both basic 

biological discoveries and their clinical translation. 5 
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Methods 

PBMC library preparation 

All biospecimens were collected with informed consent by a commercial vendor. Use of all 

deidentified biospecimens for sequencing at the Broad Institute was further approved by the 

Broad’s Office of Research Subject Protection (ORSP), which determined that the research did 5 

not involve human subjects according to U.S. federal regulations (45CFR46.102f) – determination 

ORSP-3635. This study complied with all relevant ethical regulations. 

We purchased 9 cryopreserved human PMBC samples (AllCells). We thawed PBMC vials in a 

37°C water bath for ~2 minutes. A quick counting revealed high viability (>90%) in all samples. 

We added 1 ml of RPMI1640 (Thermo Fisher Scientific, 11875093) with 10% Fetal Bovine Serum 10 

(Thermo Fisher Scientific, 16140-071), transferred the cells to 15 ml conical tubes, and then added 

another 9 ml of this media slowly dropwise. We spun down the samples for 10 minutes at 300g at 

room temperature. After supernatant removal, we flicked each tube to dislodge the pellet and 

carefully added 10 ml of media dropwise, followed by another spin under the same conditions. 

After supernatant removal, we flicked the tubes to dislodge pellets, re-suspended the cells in 500 15 

µl PBS 0.4% BSA (Sigma, B8667), and transferred to 1.5 ml tubes. We then spun down the 

samples for 5 minutes at 300g at room temperature. We washed the cells with 500 µl PBS 0.4% 

BSA an additional 2 times and filtered through 40 µm cell strainers (Falcon, 352340). We counted 

cells with a TC-20 cell counter (Bio-Rad) and observed high viability (>90%) for all samples. 

 20 

For one sample with matched 5’ and 3’ libraries, we loaded one channel of 10x 3’ V3.1 (10x 

Genomics, 1000128) onto a G chip (10x Genomics, 1000127) and one channel of 5’ V2 (10x 

Genomics, 1000265) onto a K chip (10x Genomics, 1000286), respectively, aiming to recover 

7,000 cells from each. With the other 8 samples, we pooled them equally and loaded onto one 
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channel of 10x 5’ V2 assay aiming to recover a total of 24,000 cells. We generated the 10x 3’ and 

5’ scRNA-seq libraries following the manufacturer’s protocols, as well as the TCR and BCR 

libraries from the 5’ assay with the 10x Chromium Single Cell Human TCR (10x Genomics, 

1000252) and BCR Amplification kits (10x Genomics, 1000253), respectively. We performed 

each experiment once (n = 1 biological replicate). The two 5’ experiments are biological replicates 5 

for each other in some, though not all, ways. 

 

Perturb-seq screen 

To generate a large Perturb-seq library targeting all transcription factors and chromatin regulators, 

we designed a 5706 guide library targeting 1902 genes identified as either transcription factors or 10 

chromatin regulators with three gRNAs per gene taking sequences from the Broad Institute Genetic 

Perturbation Platform Web sgRNA Designer 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) 29. We included two 

different types of control gRNAs either guides that cut in a non-gene region (intergenic control) 

or guides that do not bind any genomic region (non-targeting control) each at 5% of the total guide 15 

count. The pooled CRISPR library was cloned as previously described in the CROPseq mKate2 

vector backbone 22. We transduced Cas9-expressing A375 cells (ATCC CRL-1619) with a 

transcription factor and chromatin regulator-gRNA library (Supplementary Table 4). We 

selected perturbed cells for 3 days using 2 µg/ml puromycin. After selection, we treated cells with 

2 ng/ml recombinant IFNγ for 16 hours. Following IFNγ treatment, we stained cells with CITE-20 

seq and hashing antibodies as previously described 22 (Supplementary Table 4) along with a 

fluorescent HLA antibody (BioLegend 311415). The 5% lowest expressing HLA cells were 

selected via FACS and 40,000 cells were loaded onto one 10x 3’ V3 Chromium channel. We 

performed this experiment once (n = 1 biological replicate). 
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10x Chromium Illumina sequencing 

We sequenced the PBMC libraries on Illumina NextSeq 500 flowcells with at least 20,000 

reads/cell for scRNA-seq libraries and 5,000 reads/cell for TCR and BCR libraries. For 3’ libraries, 

we sequenced 28 bases for Read 1, 55 bases for Read 2 and 8 bases for Index 1. For 5’ libraries, 5 

we sequenced 26 bases for Read 1, 45 bases for Read 2 and 10 bases each for Index 1 and Index 

2. For TCR and BCR libraries, we sequenced 26 bases for Read 1, 90 bases for Read 2 and 10 

bases each for Index 1 and Index 2. We sequenced the Perturb-seq library on Illumina HiSeq X 

flowcells with 14,000 reads/cell for scRNA-seq libraries, 5,000 reads/cell for CITE-seq libraries, 

and 1,000 reads/cell for Hashing libraries. For Perturb-seq libraries, we sequenced 28 bases for 10 

Read 1, 96 bases for Read 2 and 8 bases for Index 1. 

 

10x Chromium library conversion and Ultima Genomics (UG) sequencing 

Our 10x Chromium libraries were converted using a library conversion PCR workflow (Fig. 1b) 

to enable sequencing on the UG platform. In brief, library concentration was verified using Qubit 15 

(Thermo Fisher Scientific), with conversion PCR library input being 7 ng. Conversion was 

facilitated through two overhang primers. Primer 1 anneals in the Read 1 region of the 10x library 

and contains a UG specific overhang (Index Adapter sequence – IA). It contains primer binding 

sites for clonal amplification and sequencing. IA also includes an in-line UG-specific sample 

barcode (PS-SBC). Primer 2 anneals in the Read 2 region and contains a UG-specific overhang 20 

(Unique Bead Adapter sequence – UBA) necessary for clonal amplification (Supplementary 

Table 5). We used the Q5 Hot Start High-Fidelity kit (New England Biolabs) with 10 PCR cycles 

for amplification, followed by DNA Clean Concentrator tubes (Zymo Research) as per the 

manufacturer’s instructions for PCR product purification, and quantification of the purified library. 
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After pooling, we seeded libraries, clonally amplified them on sequencing beads using a high-scale 

emulsion amplification tool, and sequenced them on a prototype UG Sequencer, which uses a 

sequence of additions of partially labeled non-terminating nucleotides, followed by imaging to 

generate single-end reads of length 200 to 250 bases (Fig. 1c, a detailed workflow description will 5 

be published elsewhere). For sequencing of 10x Chromium 3’ libraries, we used a modified 

sequencing protocol that accommodates the high consumption of dT nucleotides in the poly(dT) 

stretch of the cDNA. Specifically, we included additional T injections when sequencing cycles 28 

to 32, which were predicted to include the poly(dT) stretch: (TGCA)27 (T10GCA)5 (TGCA)60. 

 10 

Initial Ultima read processing 

To enable standard scRNA-seq analysis of single-end reads, we first converted UG data to create 

paired-end data (Fig. 1d). To this end, we removed conversion adapters, and quality trimmed reads 

using Cutadapt v2.10 30, using a threshold of 30. We discarded reads not containing at least 8 Ts 

for the expected poly(T) for 3’ libraries or the template switch oligo (TSO) for 5’ libraries. We 15 

split reads into two sequences: one containing the CBC and UMI, and the other containing the 

reverse complement of the cDNA using Cutadapt and SeqKit v0.15.0 31. To create Read 1 

(<output_read1>) and Read 2 (<output_read2_revcom>) files from input FASTQ files, we ran the 

following three commands. For 3’: cutadapt -j 0 --discard-untrimmed --pair-filter any -a 

CTACACGACGCTCTTCCGATCT;max_error_rate=0.2;min_overlap=10;required...AGATCG20 

GAAGAGCACACGTCTG;max_error_rate=0.2;min_overlap=6 -U 50 -q 30 -A 

TTTTTTTTTTTT;max_error_rate=0.2;min_overlap=8;required...AGATCGGAAGAGCACAC

GTCTG;max_error_rate=0.2;min_overlap=6 -o <output_read1_long> -p <output_read2> --

minimum-length 28:50 <input_fastq> <input_fastq> 
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cutadapt -j 0 --minimum-length 28 --maximum-length 28 --length 28 -o <output_read1> 

<output_read1_long> 

zcat <output_read2> | awk '{if ((NR%4 == 2) || (NR%4 == 0)) {print substr($0,1+5,90) } else 

{print $0 } }' | seqkit -j 8 seq -p -r -t DNA | gzip > <output_read2_revcom> 

 5 

For 5’: cutadapt -j 0 --discard-untrimmed --pair-filter any -a 

CTACACGACGCTCTTCCGATCT;max_error_rate=0.2;min_overlap=10;required...AGATCG

GAAGAGCACACGTCTG;max_error_rate=0.2;min_overlap=6 -U 48 -q 30 -A 

^TTTCTTATATGGG;max_error_rate=0.5;min_overlap=8;required...AGATCGGAAGAGCAC

ACGTCTG;max_error_rate=0.2;min_overlap=6 -o <output_read1_long> -p <output_read2> --10 

minimum-length 26:50 --maximum-length 390:315 <input_fastq> <input_fastq> 

cutadapt -j 0 --minimum-length 26 --maximum-length 26 --length 26 -o <output_read1> 

<output_read1_long> 

zcat <output_read2> | awk '{if ((NR%4 == 2) || (NR%4 == 0)) {print substr($0,1+3,90) } else 

{print $0 } }' | seqkit -j 8 seq -p -r -t DNA | gzip > <output_read2_revcom> 15 

 

We removed reads with a cDNA sequence < 50bp. For 3’ libraries, we clipped the first five bases 

after the poly(T) and masked the last three bases of the UMI. For 5’ libraries, we clipped the first 

three bases after the TSO. We trimmed cDNA sequences to 90 bases. 

 20 

Extracting expression information from FASTQ files 

We used Cell Ranger v5 14 to pre-process data for both Illumina and Ultima (for Ultima using 

simulated Read 1 and Read 2 as extracted above). For all datasets, we used the GRCh38 human 

reference from 10x Genomics unless otherwise stated, and set --expect-cells to the expected 
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number of cells (7,000 cells for the single sample 3’ and 5’ PBMC data, 24,000 cells for the 5’ 

mixture PBMC sample, and 20,000 cells for the Perturb-seq sample). To process 3’ Ultima data, 

unless otherwise stated, we modified the last 3 bases of the UMI using awk by replacing them with 

A’s and setting the last 3 quality values to be equal to I. 

 5 

For the 5’ mixture data, we demultiplexed it by first calculating SNP coverage data for SNPs in 

the 1000 Genomes Project 32 with cellsnp-lite v1.2.0 33 (using --minMAF 0.1 --minCOUNT 20) 

followed by Vireo v0.5.5 16 to get labels for the sample of origin. 

 

For Perturb-seq data, we also passed Cell Ranger FASTQ files for dial-out data (using the CRISPR 10 

Guide Capture keyword), hash tag oligo (HTO) data (using the Custom keyword), and antibody 

derived tag (ADT) reads for CITE-seq (using the Antibody Capture keyword), as well as feature 

barcode information for each. We further processed HTO data with DemuxEM v0.1.7 34 to obtain 

sample labels.  

 15 

Sampling reads 

For each Ultima dataset, unless otherwise stated, we sampled it to have both the same number of 

reads and the same number of total UMI as the corresponding Illumina dataset. This was performed 

by sampling the FASTQ files with seqtk v1.0 sample (https://github.com/lh3/seqtk) passing it the 

argument -s 100, the FASTQ file to sample, and the proportion to sample by. For sampling to the 20 

same number of reads, we calculated the proportion by dividing the total number of reads in 

Illumina by the number in Ultima. For sampling to the same number of UMIs, we used 

DropletUtils v1.10.3 35 to sample Ultima data to different levels (in 5% increments) and calculated 

the total number of UMIs. We chose an initial unrefined proportion as the largest proportion that 
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gave fewer UMIs in Ultima than were present in Illumina. We then performed a refinement step 

with 1% steps ranging from this unrefined proportion up to the initial unrefined proportion plus 

5%, and chose the final refined proportion used for sampling from this range to be the largest 

proportion that gave fewer UMIs in Ultima than were present in Illumina. We did not sample the 

5’ mixture Ultima data because it had roughly the same number of UMIs as the 5’ mixture Illumina 5 

data. After sampling, we processed data in a similar fashion to non-downsampled data (see 

Extracting expression information from FASTQ files). 

 

Extracting FASTQ QC metrics 

To extract base quality information from each FASTQ file, we randomly selected 1,000,000 reads 10 

with seqtk sample using the parameter -s 100 to set a random seed. We then used the SeqIO.parse 

function from Biopython v1.79 36 to read the FASTQ into Python. We then extracted the quality 

information with the letter_annotations function and recorded the resulting information to a file 

with one line per read and one column for each base in that read. This was used for downstream 

visualizations.  15 

 

To explore the effects of shortening UMIs on number of reads, we loaded the molecular 

information h5 file generated by Cell Ranger into R with DropletUtils and saved the resulting data 

frame. We then loaded this into Python, resulting in a table with one entry for each UMI counted 

by Cell Ranger, which included CBC, UMI, and Gene. We shortened the UMI to different lengths 20 

and used the pandas 37 groupby function to count the number of UMIs that collapsed together after 

this shortening and the number of UMIs from different genes that collapsed together after this 

shortening. 
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Analysis of PBMC data 

We loaded filtered PBMC count data from Cell Ranger (located in the 

outs/filtered_feature_bc_matrix subdirectory output) into R v4.0.3 38 using Seurat v4.0.0 39. To 

avoid biases introduced by using slightly different sets of cells, we used only the intersection of 

the sets of cells found in Ultima and Illumina for each analysis. For the 5’ mixture data, we also 5 

uploaded the labels from Vireo and removed doublets and unassigned cells. We processed data 

were then processed through the standard Seurat pipeline, as followed. We scaled scaling data to 

transcripts per million (TPM) and log normalized with NormalizeData, finding variable genes with 

FindVariableFeatures (using 2,000 variable genes), scaling data and regressing out the number of 

genes per cell with ScaleData, and performing PCA with RunPCA. We performed UMAP 10 

embedding and clustering using Seurat’s FindNeighbors followed by FindClusters with 20 

Principal Components (PCs) and otherwise default parameters (including FindClusters using 

Louvain clustering with a resolution of 0.8). Cell types were assigned using Azimuth v0.3.2 39 with 

the built-in PBMC dataset. In particular, we assigned cell types at two different levels of 

granularity, denoted in the Azimuth labeling by l1 (general cell types) and l2 (refined cell types). 15 

Adjusted Mutual Information (AMI) was calculated with the AMI function in the aricode package 

v1.0.0 (https://github.com/jchiquet/aricode). For calculating joint embeddings, we combined and 

processed the two datasets through the same Seurat pipeline, except the sequencing technology 

used (Ultima or Illumina) was regressed out before PCA with ScaleData. Presto v1.0.0 17 was used 

to calculate DE genes between cell types with default parameters using an FDR cutoff of 0.05. 20 

 

Analysis of method specific biases  

We calculated logFCs comparing expression levels between Ultima and Illumina by creating a 

pseudobulk profile for an entire dataset using count data, which was then normalized to TPM. We 
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calculated logFC values by taking the difference between the log of the corresponding TPM values 

in Ultima and Illumina with a pseudocount of 10. All plots of log TPM have a pseudocount of 1 

added.  

 

For the sampling analysis to compare reads with each other from the same sequencing run, we 5 

used a modified version of the downsampleReads code from DropletUtils applied to the 

molecule_info.h5 file from Cell Ranger to split reads into two disjoint sets of equal size (up to 

rounding) and calculated the associated gene by cell UMI count matrix for each set of reads. 

 

We performed DE analysis between Ultima and Illumina with Presto 17. To explore GC and length 10 

biases in DE results, we used a Python script to process the GTF file used in Cell Ranger and 

collapse overlapping exons from the same gene into one genomic interval. This information was 

written to a BED file and used to calculate the total length of sequence in each gene covered by at 

least one exon (the gene length used in our analysis). We used the “bedtools getfasta” command 

in BEDTools version 2.26.0 40 with arguments -s -name -tab to extract the associated sequences of 15 

each of the regions in the above BED file. We processed the resulting FASTA file with a Python 

script that extracted gene level GC information. 

 

Classification of gene expression and read assignment bias was performed as follows. For each 

protein-coding gene with a total count >100 in at least one of the platforms, we calculated read 20 

assignment rate (see below) differences for unfiltered (total reads, including reads from cell 

barcodes not in the filtered list) Illumina and downsampled Ultima reads, and normalized the fold-

changes of counts by the median difference. We partitioned the genes into three categories: (1) >5-

fold higher in Illumina (“Higher count in Illumina”); (2) >5-fold higher in Ultima (“Higher count 
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in Ultima”); and (3) all remaining genes (“Similar counts”) (Extended Data Fig. 3c). A read 

assignment rate higher in Illumina (“Higher read assignment in Illumina”) was defined if the ratio 

of Cell Ranger gene-assigned reads out of the total reads mapped to the annotated gene body plus 

a flanking 100bp was higher in Illumina (>3-fold higher ratio with p < 0.01, binomial test). The 

read assignment rate higher in Ultima (“Higher read assignment in Ultima”) was defined 5 

analogously. 

 

To explore 3’ and 5’ bias, the GTF file used by Cell Ranger was processed as described above to 

collapse overlapping exons together. We then used pysam v0.15.3 (https://github.com/pysam-

developers/pysam) to load each alignment (selecting 1% of alignments at random), excluding those 10 

without an assigned gene, CBC, or UMI, as well as excluding multimappers. We then calculated 

the distance along the exonic regions of the gene (normalized by gene length) from the 5’ end of 

the gene to the 3’ and 5’ ends of the read using the overlapping exon representation we generated 

earlier. We then recorded this information for each alignment. For plotting, this was divided into 

bins of length 1% labeled from 0 to 100 (including the bottom of each bin but not the top – meaning 15 

that bin 100 was empty for 5’ reads and bin 0 was empty for 3’ reads), and normalized by the 

number of reads mapping to that gene to avoid highly expressed genes biasing the results. 

 

To extract information about the number of reads falling into different categories (unmapped, 

ambiguous, etc.), we took the BAM file from Cell Ranger and applied FeatureCount v1.6.2 41 with 20 

settings -t exon -g gene_name –fracOverlap 0. For 3’ data we set -s 1 to denote sense reads, while 

for 5’ data we used -s 2 to denote antisense reads. In addition, for gene level information about the 

number of reads in different categories, we reran FeatureCount once with the flag -M (for 

multimappers) and once with the flag -O (for ambiguous reads). 
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For IGV v2.3.80 42 plots, we used SAMtools v1.8 43 to extract a region around each gene of interest 

from the associated 10x BAM file. We then used grep to extract reads that were assigned to a given 

gene and those that were not. 

 5 

Extension of the standard reference 

We built a Nextflow-based 44 pipeline that takes in a preexisting reference GTF file and RNA-seq 

BAM file (from paired-end or single-end RNA-seq) and outputs a new GTF file that extends the 

old one using RNA-seq data. The first step in the pipeline annotates reads in the BAM file 

overlapping genes in the standard reference using FeatureCount with the parameters -t exon, -R 10 

BAM, and -g gene_id, as well as using the -s 1 or –s 2 flag depending on the strandedness of the 

RNA-seq data. For paired-end data we also used the flag -p. We then used a pysam-based start and 

end coordinates being the start and end coordinates of that read, and with an extra field recording 

the assigned gene for the read. We excluded reads with large gaps (>10 bases labeled as N in the 

CIGAR string) and, for paired-end reads, only include properly paired reads. We then sorted the 15 

BED file with bedops 45, clustered the entries in this BED file using bedtools cluster with the -s 

flag, and used bedtools groupby to merge BED entries from the same cluster and gene. We then 

sorted the resulting BED file with bedops again, use a Python script to turn the BED file into a 

GTF with one exon per entry in the BED file. We combined this GTF file with the GTF for the 

standard reference and sorted the results with BEDTools, yielding the extended references. These 20 

new GTFs were then used to generate references for Cell Ranger with cellranger mkfastq. We used 

this approach to create three references, one using published bulk data 12 (using the BAM file 

generated in that publication), and two using scRNA-seq Ultima PBMC data – one generated with 

3’ data and the other with 5’ data. We then processed PBMC data with each of these references 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.29.493705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493705
http://creativecommons.org/licenses/by/4.0/


 

30 
 

using cellranger count as described above and performed downstream analysis. We did not process 

the 3’ data with the 5’ reference or vice versa. 

 

Processing TCR and BCR data 

We processed FASTQ files for 10x Chromium TCR and BCR data with Cell Ranger v5 using the 5 

vdj command and the prebuilt 10x reference (refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0). 

We then loaded data into the associated Seurat object with the djvdj package v0.0.0.9000 

(https://rdrr.io/github/rnabioco/djvdj/man/djvdj-package.html) where they were used for 

downstream visualizations. 

 10 

Gene program analysis by NMF 

We calculated all NMF models with RcppML v0.3.7 46 using 15 factors and with the log TPM 

matrix as input including genes expressed in more than 1% of cells. NMF returns a cell loading 

matrix, with one row per cell and one column per factor, and a gene loading matrix, with one row 

per gene and one column per factor. To test how well NMF factors from one data type fit another, 15 

we split our data into a training set (with 5,000 cells) and a test set (all other cells) to avoid data 

overfitting when testing the gene loading matrix. We then fit NMF models separately on the Ultima 

data, Illumina data, and a permuted version of the Illumina data (where the values of each gene 

were randomly scrambled between cells) using the 5,000 cell training set. To test the accuracy of 

gene loadings of each NMF model for each data type, we used the project function from RcppML 20 

to generate a cell loading matrix on the training data and the mean squared error (MSE) was 

measured. For cell loadings, we used a similar approach, except that testing was performed on the 

test dataset. In all cases we repeated the analysis 10 times with different random seeds to account 

for variability in NMF solutions. 
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For consensus NMF (cNMF) 19, a modification of NMF meant to improve robustness and 

reproducibility, we implemented an R version with two minor changes: (1) Instead of performing 

NMF on the count data with each gene normalized by its standard deviation, we performed it on 

log TPM data; and (2) we performed each NMF round used by cNMF with the variable genes from 5 

our Seurat analysis instead of the variable gene selection procedure in the cNMF package. We ran 

cNMF on all cells in each dataset, using 100 iterations of NMF and 15 factors. For Perturb-seq 

based cNMF, we used the project function in RcppML to project the gene loadings onto the PBMC 

mixture dataset. Similarity matrices were calculated with Pearson correlation. 

 10 

Analysis of Perturb-seq data 

We processed Perturb-seq data through a similar pipeline to the PBMC data (see Analysis of 

PBMC data), except the HTO, ADT, and guide count matrices were also uploaded as additional 

assays, while the DemuxEM labels for Hash ID and the Cell Ranger labels for guide assignment 

were added to the metadata. After initial processing with Seurat, we removed cells assigned to 15 

multiple hash tags or multiple guides, as were cells assigned to guides with 10 or fewer cells 

assigned to them.  

 

We generated a guide similarity matrix with a slightly modified version of the MIMOSCA package 

6. We extracted a cell by gene log TPM expression matrix from the Seurat object, selecting the 20 

cells filtered as described above (one hashtag and guide assignment, with guides with more than 

10 assigned cells) and genes that were expressed in >5% of cells. We also extracted a covariate 

matrix consisting of the scaled number of UMIs per cell, as well as one-hot encoded versions of 

the perturbation assignments, Hash ID assignments, and cluster assignments (based on clustering 
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all cells with Seurat’s FindClusters function at a resolution of 0.2 with 20 PCs and otherwise 

default settings). We loaded data into Python using pandas and an elastic net model was fit 

modeling expression as a linear model of the covariates using sklearn.linear_model.ElasticNet 47 

with parameters l1_ratio=0.5, alpha=0.0005, and max_iter=10000. The coefficient matrix from 

this model was saved. We randomly permuted guide labels 100 times (while preserving the number 5 

of guides assigned to each hash barcode and vice versa) followed by the same elastic net-based 

analysis. We loaded the resulting gene by covariate coefficient matrices into R and discarded 

columns that did not correspond to guide labels, along with columns corresponding to non-

targeting control guides (those labeled as NO_SITE in our feature data) and the Background 

control guide. For each gene, we calculated a p-value based on the resulting matrices by scoring 10 

each gene by the maximum absolute value for that gene across all guides. We partitioned genes 

into 20 bins of equal size based on average expression. We calculated a p-value for each gene by 

comparing the score of that gene in the non-permuted data to the score of all genes in the same bin 

as it in all 100 permuted datasets. We retained all genes in the coefficient matrix with uncorrected 

p-value < 0.05 and calculated the Pearson correlation between guides based on this matrix. 15 

 

Perturb-seq differential expression analysis of genes regulated by each guide 

We performed DE between each guide’s profiles and the intergenic guide profiles with Nebula 

v1.1.7 48, with the assigned Hash ID as the sample of origin, and the Intergenic_1 guide as 

reference. We calculated Benjamini-Hochberg FDR 49 on the resulting p-values. We performed 20 

KEGG enrichment analysis with the KEGG ontology 50 using ClusterProfiler v3.18.1 51 and 

performing GSEA with the fgsea package v1.16.0 52. KEGG terms with fewer than 20 genes were 

filtered before visualization. 
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Visualization 

Most of the visualization was performed using ggplot2 v3.3.3 53 and cowplot v1.1.1 

(https://github.com/wilkelab/cowplot) packages in R. The major exception to this was the 

heatmaps, which were produced with the ComplexHeatmap package v2.6.2 54 and NMF package 

55, and histograms that were produced with the base R hist function. 5 
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Fig. 1. Experimental Design. (a) Workflow showing 4 samples used and adjustments made for 

Ultima sequencing. (b) Library conversion showing PCR process to change adapters from Illumina 

(P5 and P7, parts of Read 1 and 2) to Ultima (PS-SBC and PB, parts of Read 1 and 2). 5’ libraries 

have Template Switch Oligo (TSO) and 3’ libraries have poly(dT). (c) Mostly-natural sequencing 5 

by synthesis schematic. (d) Data conversion of single-end reads to simulated paired-end reads 

needed for Cell Ranger analysis. White box shows 5 bases trimmed from cDNA and 3 bases 

trimmed from UMI adjacent to the poly(dT) sequence in 3’ libraries. In 5’ libraries, only 3 bases 

were trimmed from the cDNA next to the TSO. PS-SBC read is used to deconvolute multiplexed 

libraries. 10 

Fig. 2. Quality Metrics for matched 5’ and 3’ libraries. (a) Total number of UMIs detected per 

cell at different sequencing depths. For (b) – (e) reads were sampled so that Illumina and Ultima 

have the same number of reads. (b) Number of cells identified by Cell Ranger only in Ultima, only 

in Illumina, or both. Distribution of the number of genes (c) or UMIs (d) per cell. Boxplots defined 

by 25% and 75% quantiles with the median marked in between. (e) Scatter plots with one point 15 

for each gene. Labeled genes (grey) have a high fold change (FC) (FC >2 using a pseudocount of 

10 TPM). The 20 genes with the highest FC are labeled in each plot. For all 3’ libraries, the last 

three UMI bases were trimmed for quality reasons. 

Fig. 3. Cell type identification and characterization of a mixture of PBMCs. (a) Number of 

cells assigned to each donor by Vireo. Donors were renamed to match between Ultima and 20 

Illumina. (b) UMAP plots for Ultima (right) and Illumina (left) colored by donor (top) and cell 

type (bottom). (c) Bar plots of the proportion of each Azimuth-defined cell type in each donor for 

Ultima and Illumina. (d) Bar plots of the proportion of each Azimuth-defined T cell subtype in 
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each donor for Ultima and Illumina. Can see strong agreement. (e) Scatter plots of logFC from 

performing DE between cell type clusters with Presto. (f) Joint UMAP of Ultima and Illumina data 

colored as in (b). We did not sample the exact same number of reads from Illumina or Ultima data 

since they have approximately the same number of total UMIs. NK: Natural Killer cells. CTL: 

Cytotoxic T cells. TCM: Central memory T cells. TEM: Effector memory T cells. MAIT: Mucosal-5 

associated invariant T cells. Treg: Regulatory T cells. dnT: Double negative T cells. gdT: Gamma 

delta T cells. 

Fig. 4. Perturb-seq. (a) Perturb-seq to find regulators of MHC Class I in melanoma. We 

transduced A375 melanoma cells with a genome-wide library, and cells with low HLA expression 

were enriched by flow cytometry prior to scRNA-seq. (b) Number of cells with each perturbation, 10 

only plotting those with >10 cells, excluding non-targeting and background guides. (c) Number of 

cells with each Cell Hashing label. Guide similarity heatmaps in Ultima (d) and Illumina (e). 

Effects of each guide on each gene in the Illumina data were calculated with an elastic net-based 

approach as in MIMOSCA. The matrix of guides by genes with (uncorrected) p-values < 0.05 was 

extracted; the correlation between guides was calculated and plotted as a heatmap. (f) We extracted 15 

all gene/guide pairs from our DE analysis with FDR < 0.05 in either Illumina or Ultima. For each 

of these guide/gene pairs, we plotted the logFC on the y axis (with 95% CI) and guide on the x 

axis, with each box being a different gene, for both Illumina and Ultima. We included all guides 

that targeted a gene with any significantly different guides. The dots are colored red if significant 

(FDR < 0.05) and black if not. (g) KEGG enrichment analysis for each guide. The 10 pathways 20 

with smallest p-values in both Illumina (left) and Ultima (right) are plotted as their -log10 p-values 

in both Illumina and Ultima. All pathways were significant in both Illumina and Ultima at FDR of 

0.05. 
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Extended Data Figures 

Extended Data Figure 1. Sequence read quality for matched 5’ and 3’ PBMC libraries. 

(a) Bar plot of the percent of reads at different quality levels for each sequencing platform and 

library type along the length of the read, for either Read 1, or Read 2 (or, for Ultima, the subsection 

of the read corresponding to Read 2), or the full read (up to 200 bases, Ultima only). Annotation 5 

of the reads is shown at the bottom. Information to guide UMI trimming from the UMI 3’ end for 

3’ libraries (b-d). (b) Rarefaction curves at different UMI lengths and with and without filtering 

low quality reads. (c) At different UMI lengths, UMI/CBC pairs that have all Read 2’s in the same 

gene. Lower levels suggest UMIs are too short. (d) Number of UMIs at different UMI lengths – a 

measure of similar UMIs collapsing as length decreases. 10 

Extended Data Figure 2. Quality metrics for matched 5’ and 3’ PBMC libraries sampling 

reads to the same number of UMIs. 

(a) Number of cells identified by Cell Ranger only in Ultima, only in Illumina, or both. (b) 

Distribution of the number of genes per cell. (c) Scatter plots comparing gene expression in Ultima 

and Illumina sequencing. (d) Scatterplots comparing reads sampled from the same sequencing run. 15 

For (c) and (d), one point for each gene as in Fig 2e. For all 3’ libraries, the last three UMI bases 

were trimmed for quality reasons. 

Extended Data Figure 3. Sequencing biases in matched 5’ and 3’ PBMC libraries. 

(a) Genes were assigned to bins by GC content (exonic sequences only) and the average logFC for 

each bin between Ultima and Illumina is shown. Positive logFC indicates higher expression in 20 

Ultima. (b) Genes were assigned to bins by log10 length (total number of bp in at least one exon 

for a given gene) and the average logFC for each bin between Ultima and Illumina is shown. 

Positive logFC indicates higher expression in Ultima. (c) Differences in read assignment ratio for 

genes categorized based on their expression being similar or higher in one platform than the other. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.29.493705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493705
http://creativecommons.org/licenses/by/4.0/


 

37 
 

Number of genes in each category shown on top of each bar. See Materials and Methods for 

additional details. (d) For each library (5’ PBMC, left, and 3’PBMC, right), the 5’ end of each read 

is shown at relative positions along the length of each gene. (e) Relative position of the 3’ end of 

reads as in (d). (f) LILRA5 sequence coverage of 3’ libraries with Illumina (top two tracks) and 

Ultima (next two tracks). Standard gene annotation with introns as lines, exons as boxes, and 5 

arrows for direction of transcription shown in bottom track. Extended reference annotation using 

bulk or single cell (SC) Ultima data shown at bottom. Reads assigned (blue) or not (red) to LILRA5 

by Cell Ranger. (g) HIST1H1D sequence coverage of 5’ libraries shown as in (f). (h) Bar plots 

showing classification of reads by FeatureCount. Ultima (short) reads had Read 2 trimmed to 45 

bases for 5’ and 55 bases for 3’ to match Illumina read lengths. Assigned: assigned to genes 10 

(uniquely mapped reads that overlap a gene; not all of these are assigned to a gene by Cell Ranger, 

which only assigns reads that completely overlap a gene); ambiguous: uniquely mapped reads that 

overlap the exons of multiple genes; no feature: uniquely mapped reads that do not overlap any 

exons; multimappers: map to multiple genomic locations (note Cell Ranger is able to recover 

multimappers if they only overlap one gene); unmapped: map to no genomic locations. Each read 15 

can only fit in one category. Ultima data sampled to have the same number of UMIs ((a) and (b)) 

or reads (other panels) as the Illumina data. 

Extended Data Figure 4. Gene expression and read assignment with extended references. 

(a) Scatter plots comparing gene expression of Illumina and Ultima datasets using extended 

references for both. Extended references from bulk RNA-seq (bulk) or Ultima scRNA-seq (SC). 20 

Labeling as in Fig. 2e. For 5’ data we used the reference extended by 5’ Ultima data, while for 3’ 

data we used the reference extended by 3’ Ultima data. (b) Same as (a), except using the standard 

reference for Illumina in all cases. (c) Same as (a), except comparing standard with extended 

references for the same dataset. (d) Bar plots showing classification of reads by FeatureCount, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.29.493705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493705
http://creativecommons.org/licenses/by/4.0/


 

38 
 

both with the standard reference and with the extended references. Categories as in Extended Data 

Fig. 3. Reads were sampled so that Illumina and Ultima have the same number of reads. 

Extended Data Figure 5. Quality metrics for libraries from a mixture of PBMCs (5’) and 

from Perturb-seq (3’). 

(a) The total number of UMIs detected per cell at different sequencing depths. (b) The number of 5 

cells found by Cell Ranger only in Ultima, only in Illumina, or in both. (c) Distribution of the 

number of genes per cell. (d) Scatter plots with one point for each gene as in Fig. 2. For the 3’ 

library, the last three UMI bases were trimmed for quality reasons. For panels (b) to (d), reads 

sampled to have the same number of UMIs for Illumina and Ultima for 3’ libraries, but sampling 

not needed as already nearly the same for 5’ libraries. 10 

Extended Data Figure 6. PBMC marker gene and TCR/BCR expression. 

Heatmaps showing expression of known cell type markers 12 in Illumina (a) and Ultima (b) 

libraries in Azimuth-assigned cell types. We did not use markers for plasma cells or markers 

selected because they are downregulated in a given cell type. (c) Percent of cells in each Azimuth-

assigned cell type with associated TCR or BCR clonotype information. (d) Top TCR clonotypes 15 

among T cells, stratified by individual, colored by more refined cell type in Illumina (top row) and 

Ultima (bottom row). 

Extended Data Figure 7. Cell type characterization of matched 5’ and 3’ PBMC libraries. 

UMAP plots of Azimuth-assigned cell types in 5’ (a) or 3’ (b) libraries. UMAP plots of Azimuth-

assigned cell types on a joint embedding in 5’ (c) or 3’ (d) libraries. (e) Bar plots of cell type 20 

proportions for the 5’ libraries. There is 92% agreement in the cell type labels between the two 

sequencing platforms. (f) Bar plots of cell type proportions for the 3’ libraries. There is 96% 

agreement in the cell type labels between the two sequencing platforms. 
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Extended Data Figure 8. Comparisons of cell state for the PBMC mixture between 

sequencing platforms. 

(a) NMF applied to either Illumina, Ultima, or Illumina data with permuted genes, to extract the 

cell loadings, and test how well they fit either the Illumina (left) or Ultima (right) data, measured 

by Mean Squared Error (MSE; lower MSE is better). Dots show analysis repeated ten times with 5 

different seeds. (b) NMF applied to either Illumina, Ultima, or Illumina data with permuted genes, 

to extract the gene loadings, and test how well those loadings fit either the Illumina (left) or Ultima 

(right) data, measured by MSE. Dots as in (a). (c) Correlation between cell level loadings shown 

after applying cNMF on Illumina and Ultima data with 15 factors. (d) Correlation between gene 

level loadings shown after applying cNMF on Illumina and Ultima data with 15 factors. (e) 10 

Correlation between cell level loadings of both runs after applying cNMF on the same Illumina 

data twice with 15 factors. (f) Correlation between gene level loadings of both runs after applying 

cNMF on the same Illumina data twice with 15 factors. (g) Correlation between cell level loadings 

in the Illumina data after applying cNMF. (h) Correlation between gene level loadings in the 

Illumina data after applying cNMF. (i) Correlation between cell level loadings after performing 15 

cNMF on the PBMC Illumina and Perturb-seq Illumina data with 15 factors and projecting the 

Perturb-seq gene loadings onto the PBMC data to get cell loadings. (j) Correlation of gene level 

loadings after performing cNMF on PBMC Illumina and Perturb-seq Illumina data with 15 factors. 

Feature plots of the cell level loading cNMF factors for Ultima (k) and Illumina (l) in the joint 

UMAP space. All correlations here are Pearson correlations. 20 

Extended Data Figure 9. Additional Perturb-seq analysis. 

(a) Histogram of the number of guide UMIs per cell from dial-out PCR. (b) Histogram of the 

number of CITE-seq ADT UMIs per cell. (c) Histogram showing the number of guides with a 

given number of cells assigned to them. Note the y axis is log scaled. Dotted line: 10 cells per 
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guide. (d) UMAP of gene expression for Illumina. (e) Feature plot of the number of genes for 

Illumina. (f) Violin plots of DE genes among clusters in the Illumina data. Shown are clusters 

showing active cell cycling (cluster 0, 1, and 5) and a cluster with high immediate early gene levels 

(cluster 5). (g) UMAP of gene expression for Ultima. (h) Feature plot of the number of genes for 

Ultima. (i) Violin plots of DE genes among clusters in the Ultima data. (j) Scatterplot of -log10 (p-5 

value) for each guide/gene pair in Illumina vs. Ultima, where the p-values are the output of DE 

analysis comparing each guide to the control Intergenic_1 guide. (k) Scatterplot of logFC for each 

guide/gene pair as in (j). Only gene/guide pairs with uncorrected p-value < 0.01 in either Ultima 

or Illumina are shown. 

 10 

Supplementary Tables 

Supplementary Table 1. Sequencing metrics. 

Supplementary Table 2. Comparison of read mapping between Ultima and Illumina. 

Supplementary Table 3. Differentially expressed genes between Ultima and Illumina with 

standard or extended references. 15 

Supplementary Table 4. Antibody, Perturb-seq, and hashing DNA barcodes. 

Supplementary Table 5. PCR primers to convert libraries for Ultima sequencing. 
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