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Summary Statement  

Due to the rising incidence of obesity, there is a corresponding increased occurrence of obesity 

related cancers, which is often described to be dependent on sex. Here we developed a model 

to investigate the intersection between obesity, sex, and cancer.   
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Abstract 

Obesity is a rising concern and associated with an increase in numerous cancers often in a sex-

specific manner. Preclinical models are needed to deconvolute the intersection between obesity, 

sex, and cancer. We have generated a zebrafish system that can be used as a platform for 

studying these factors. We studied how germline overexpression of AgRP along with a high-fat 

diet (HFD) affects melanomas dependent on BRAFV600E. This revealed an increase in tumor 

incidence and area in male obese fish, but not females, consistent with the clinical literature. This 

is dependent on the somatic mutations, as male tumors generated with an RB1 mutation are 

sensitive to obesity, but this is not observed with PTEN. These data indicate that both germline 

and somatic mutations contribute to obesity related effects in melanoma. Given the rapid genetic 

tools available in the zebrafish, this provides a high-throughput system to dissect the interactions 

of genetics, diet, sex, and host factors in obesity-related cancers.  
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Introduction 

There has been a sharp rise in the number of overweight and obese people in the US and 

worldwide. The Centers for Disease Control and Prevention reported in 2018 that 42% of 

Americans over the age of 20 are obese or severely obese, an increase from 30% in 2000 (Hales 

et al., 2020). As the incidence of obesity increases, so does the prevalence of diseases that are 

associated with obesity. This includes heart disease, type 2 diabetes, metabolic syndrome, and 

several cancers, including breast, colorectal, pancreatic cancer and melanoma (Renehan et al., 

2008; Wolk et al., 2001). 

Melanoma is the most lethal form of skin cancer. It is derived from melanocytes or their 

neural crest precursors in the skin. As melanoma invades deeper into the skin, the cells encounter 

several microenvironmental cell types including adipocytes. These adipocytes contribute to 

melanoma invasiveness by providing fatty acids as fuel for growth (Zhang et al., 2018). Obesity 

is well known to increase adipocyte numbers and sizes, and thus it is likely that the cross-talk 

between melanoma and adipocytes would be enhanced in obese individuals (Björntorp and 

Sjöström, 1971; Verboven et al., 2018). Clinically, the effect of obesity on melanoma is suggested 

but the data is not entirely clear.  For example, clinical studies suggest that there is an increased 

hazard ratio for melanoma associated with obesity, but this is only in males (Karimi et al., 2016; 

Sergentanis et al., 2013). Further adding to this complexity, targeted therapy has been shown to 

be more effective in the obese setting only in males, suggesting a sex dependent effect of obesity 

on melanoma (McQuade et al., 2018). Preclinical animal studies using both genetic and diet 

models of obesity in mice demonstrate that there is an increase in xenograft tumor size in the 

obese setting (Brandon et al., 2009; Pandey et al., 2012; Ringel et al., 2020). These studies 

however do not address the effect of sex in these animals, nor do they test the effect of obesity 

on response to therapy. Furthermore, studies focusing on the systemic versus local effect of 
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obesity on melanoma have been limited. Therefore, there is a critical need to develop preclinical 

models to further clarify the questions surrounding obesity, sex and melanoma.  

Because the effects of obesity on cancer occur within the context of host physiology, it is 

important to study this in model organisms. The mouse is the most traditional model for this work, 

given its amenability to genetic manipulation, robust cancer models and ease of dietary 

interventions. However, there are limitations to mice in terms of the number of genetic 

manipulations that can be done, often requiring large numbers of crosses to gain germline alleles, 

and challenges in performing in vivo unbiased screens. In addition, detailed in vivo imaging 

remains difficult in the mouse outside of specialized equipment.  

The zebrafish has emerged as an important model organism in cancer biology. The major 

advantage of the model is that it is highly amenable to large-scale and rapid genetic manipulation 

(using CRISPR or cDNA screens), allows for detailed in vivo imaging (especially in the casper 

strain), can be used for small molecule screens, and has a wide variety of cancer models available 

(Heilmann et al., 2015; Patton et al., 2021; Zhang et al., 2012). For melanoma, it has been widely 

used to study the effects of BRAF or NRAS (key initiating events in melanoma) and has uncovered 

important developmental and microenvironmental influences on these tumors (Kaufman et al., 

2016; Zhang et al., 2018). 

While less studied, the zebrafish has also been increasingly used to study host physiology 

and disease in the context of cancer. This includes metabolite tracing and inter-organ crosstalk 

(Naser et al., 2021). Several models of obesity have been generated in the zebrafish, using either 

diet or genetic manipulation, and closely resembles key aspects of the condition in humans 

(Landgraf et al., 2017; Song and Cone, 2007; Zang et al., 2018). For example, AgRP is a 

neuropeptide secreted in the hypothalamus as part of the central melanocortin signaling system 

that regulates food intake (Ollmann et al., 1997). Clinically, the central melanocortin system is the 
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pathway with the most mutations observed in genetically obese patients (Loos and Yeo, 2022; 

Mendes de Oliveira et al., 2021). There is increased expression of AgRP in response to obesity 

in both mice and humans (Katsuki et al., 2001; Shutter et al., 1997). Ubiquitous overexpression 

of AgRP has been shown to increase appetite, resulting in increased weight and obesity in mice 

(Graham et al., 1997). The central melanocortin system and AgRP are highly conserved between 

mammals and zebrafish and overexpression of the peptide leads to a similar phenotype in this 

organism  (Song and Cone, 2007; Song et al., 2003). The cells affected in these zebrafish models 

continue to be characterized, but at a minimum pertain to white adipocytes (i.e. subcutaneous or 

visceral adipocytes), since the fish are not thought to have thermogenic brown adipocytes. Other 

organs affected by obesity, including the liver and skeletal muscle, are also present in this 

organism, implying it can be readily studied in the context of cancer. In this study, we combine 

these unique attributes of the zebrafish to study the intersection of germline and somatic genetics 

in a melanoma model of obesity. The methods described here can be leveraged in future studies 

for larger scale discovery-based efforts to uncover new mediators of this crosstalk with relevance 

to the human diseases. 

Results 

AgRP overexpression promotes obesity in casper zebrafish 

Previous studies have shown that overexpression of the orexigenic peptide Agouti-related protein 

AgRP1 in zebrafish results in fish that are overweight with hypertriglycerdemia and fatty liver 

(Song and Cone, 2007). We generated a plasmid in which the ubiquitin B (ubb) promoter drives 

the expression of zebrafish AgRP1 cDNA (zAgRP1) followed by a 2aGFP in order to visualize its 

expression (Fig. 1A) (Mosimann et al., 2011; Song et al., 2003). We first confirmed the 

obesogenic effects of zAgRP1 in fish without melanoma by injecting the plasmid into casper fish 

(mpv17-/-, mitfa -/-; p53-/-) (Fig. 1B). These fish also contain an inactive BRAFV600E oncogene in 
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the germline, so on their own will not develop melanoma but can be induced to so as explained 

further below. We found that in these non-melanoma fish, mosaic overexpression in this line led 

to an increase in weight in these fish over time, statistically observed at 4 months post fertilization 

(Fig. 1C). Furthermore, when observing male and female fish separately, we see that mosaic 

overexpression of zAgRP1 leads to increased weight in females at 4 months and a trend for an 

increase in weight in males (p=0.0585) at this time point (Fig. 1D-E). We outcrossed these fish to 

generate stable lines (Tg(-3.5ubb:zAgRP1-2A-EGFP)). In the F3 generation, both male and 

female zAgRP1 overexpressing fish have increased weight and are larger compared to wildtype 

quads (Fig. 1F-H). We did not observe differences in length, an alternative measure of obesity in 

zebrafish, in either the mosaic or stable Tg(-3.5ubb:zAgRP1-2A-EGFP) fish (Fig. S1A-S1E) 

(Song and Cone, 2007).  

To further confirm that overexpression of zAgRP1 in these fish exhibited pathologic effects of 

obesity, we sectioned 5 month old F3 Tg(-3.5ubb:zAgRP1-2A-EGFP) fish and sent them for 

histology. We found that both male and female Tg(-3.5ubb:zAgRP1-2A-EGFP) fish had more 

abdominal adipose tissue compared to wildtype control fish (Fig. 1I). Furthermore, when 

observing the effect of zAgRP1 overexpression on the histology of the liver, we find that Tg(-

3.5ubb:zAgRP1-2A-EGFP) fish exhibit fatty liver while the wildtype fish do not (Fig. 1J). Taken 

together this data demonstrate that overexpression of zAgRP1 driven by the ubiquitin promoter 

results in obesity in the casper strain of zebrafish, consistent with previous work overexpressing 

zAgRP1 driven under the actin promoter in zebrafish (Song and Cone, 2007).  

AgRP overexpression increases visceral adiposity 

We wanted to further characterize the effect of zAgRP1 expression on overall adiposity and 

adipocyte dynamics in living fish. To do this, we first utilized the fluorescent dye BODIPY to 

visualize the fat depots in the fish in response to zAgRP1 overexpression. These dyes have been 
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used extensively to study the anatomical distribution and amount of adipose tissue in living 

zebrafish (Minchin and Rawls, 2017). Upon staining both male and female zebrafish with 

BODIPY, we found that zAgRP1 overexpression increases overall adiposity compared to wildtype 

controls (Fig. 2A-B). Further analysis into the visceral and subcutaneous fat demonstrate that 

zAgRP1 specifically increases the area of adipose tissue in the visceral abdominal region and not 

the subcutaneous tail depot (Fig. 2C-F).This demonstrates that our Tg(-3.5ubb:zAgRP1-2A-

EGFP) fish model , represents clinical aspects of obesity as the disease related adverse effects 

are more strongly associated with excess visceral fat (Fox et al., 2007; Goodpaster et al., 2003).  

AgRP results in increased susceptibility to HFD 

Obesity has both a genetic and environmental component, and it is thought that patients with 

mutations in the melanocortin signaling pathway exhibit poor dietary control by preferring foods 

with a high fat content (van der Klaauw et al., 2016). Similarly studies in mice demonstrate that 

alterations in this pathway promote increased preference for high fat diets (HFD) (Koegler et al., 

1999; Tung et al., 2007).  Since AgRP plays a role in regulating adiposity as well as high fat diet 

seeking behaviors, we wanted to determine the effect of zAgRP1 overexpression in the zebrafish 

on adipocyte dynamics in the context of a HFD. To better visualize these dynamics (compared to 

BODIPY), we utilized a previously developed zebrafish line in which the adipocytes lipid droplets 

are fluorescently labeled with a plin2-tdTomato construct (Lumaquin et al., 2021) and are highly 

sensitive to HFD. We injected the ubb:zAgRP1-2A-EGFP construct into the Tg(-3.5ubb:plin2-

tdTomato) line and outcrossed several generations to generate a stable line (Fig. 2G). We then 

took 21 dpf larvae and fed them either a commercially available HFD or control diet for a week 

and measured visceral adiposity using the tdTomato fluorescence (Fig. 2H). We found that in 

response to a HFD, Tg(-3.5ubb:zAgRP1-2A-EGFP) fish have increased adipocyte expansion 

compared to wildtype controls (Fig. 2I). 
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In order to confirm that this effect is conserved when fish are adults over a longer period of time, 

we fed the F3 Tg(-3.5ubb:zAgRP1-2A-EGFP) fish with a HFD for 3 months and then sent them 

for histology. We found that Tg(-3.5ubb:zAgRP1-2A-EGFP) fish that were fed a HFD had more 

adipose tissue as well as worse fatty liver compared to wildtype siblings on either diet alone or 

Tg(-3.5ubb:zAgRP1-2A-EGFP) fish on the control diet (Fig. 2J and S2A). Interestingly, we do not 

see a synergistic effect of HFD and zAgRP1 on adult fish weight over several weeks (Fig. S3A-

B). Taken together, these findings demonstrate that zAgRP1 expressing fish are more susceptible 

to HFD induced obesity, further demonstrating the similarities between our model and the obesity 

phenotype observed in patients.   

AgRP increases melanoma onset in male zebrafish 

Given the obesogenic effects of both AgRP and HFD, we next studied this in the context of 

melanoma. As described above, the transgenic zebrafish had a latent BRAFV600E gene in the 

germline which can be activated by injection of the MiniCoopR plasmid, as previously described 

(Iyengar et al., 2012). We co-injected MiniCoopR-tdTomato with either the ubb:zAgRP1-2A-EGFP 

or an empty vector construct (Fig. 3A). Similar to the experiments above, the fish that were 

injected with ubb:zAgRP1-2A-EGFP are larger compared to empty vector controls (Fig. 3B-C). 

We screened the fish starting at 2 mpf, imaged the fish starting at 3 mpf, and assessed melanoma 

onset using a previously established rubric developed in the lab (Weiss et al., 2020). These criteria 

are based on the combination of hyperpigmentation, tdTomato fluorescence and growth of lesions 

into or out of the fish. This showed that the zAgRP1 overexpressing obese zebrafish develop 

tumors significantly faster than empty vector controls (Fig. 3D). When we segregated these fish 

by sex and calculated disease-free survival, we see that the increased onset is primarily seen in 

male fish but absent in females (Fig. 3E-F). These data are the first animal studies to demonstrate 

the clinically observed sex specific effect of obesity on melanoma (Sergentanis et al., 2013).  
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AgRP increases tumor initiation and area in RB1 mutant melanoma  

While this data clearly demonstrates that zAgRP1 overexpression leads to increased tumor onset, 

there are several limitations to this model in which the transgenes are injected at the embryonic 

stage. In this embryonic injection transgenic model, tumorigenesis occurs in the embryo and 

tumor onset manifests over time. This is an issue for this particular question, as zebrafish do not 

start differentiating their sex until ~19 dpf and do not overtly display sex phenotypes until about 

one month post fertilization. Second, zAgRP1 overexpression induces overfeeding, which is not 

detected in weight until 4 mpf, long after the transgene is activated. Third, it is hard to detect 

differences in tumor size in this model, or study metastasis since the transgene is expressed 

everywhere and we cannot discern multifocal primary tumors versus metastatic lesions. To better 

address these issues, we instead turned to an electroporation based method called TEAZ 

(Transgene Electroporation in Adult Zebrafish (Callahan et al., 2018)), in which plasmids are 

directly electroporated into adult skin cells. Thus, tumor onset occurs somatically in adulthood 

(similar to humans), is spatially and temporally controlled, and can be monitored for tumor area 

and metastasis occurrence.  

We used TEAZ to initiate tumors driven by BRAFV600E;p53-/-;RB1-/- with or without zAgRP1 

overexpression (Fig. 4A). This approach had been previously shown to induce melanoma 

development and is responsive to genetic perturbations (Baggiolini et al., 2021; Tagore et al., 

2021). We found that zAgRP1 increases tumor initiation detected at 14 dpe (days post-

electroporation) as well as tumor area of early (14 dpe Fig. 4B-C) and late lesions (42 dpe, Fig. 

4D-E). We have found that these lesions are relatively slow growing and rarely develop 

metastasis. Therefore, we sought to determine the effect of zAgRP1 on a more aggressive model 

by swapping the RB1 deletion for a PTEN deletion (Fig. S4A). We have found that these tumors 

are more aggressive, growing faster and larger compared to the RB1 deletion, a phenomenon 

that has previously been reported in mice (Dankort et al., 2009).  Interestingly when we initiate 
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tumors using TEAZ with a PTEN deletion, we find that indeed these tumors are larger and grow 

faster than their RB1 counterparts, however there was no significant effect of zAgRP1 layered on 

top of a PTEN deletion (Fig. S4B-E). This was the case for both early and late lesions.  

Obesity increases tumor initiation in RB1 mutant melanoma in male zebrafish 

Since the TEAZ transgenesis assay allows us to induce a tumor in a fully immunocompetent adult 

animal, we next sought to extend our findings on obesity and melanoma in the context of zAgRP1 

overexpression or high fat diet and whether this was dependent on sex. We used the Tg(-

3.5ubb:zAgRP1-2A-EGFP)  WT siblings and fed them a HFD for one week based on our data 

that zAgRP1 can induce changes in 1 mpf larvae after a week on the diet (Fig. 2H-I). We then 

introduced the BRAFV600E mutation in conjunction with a RB1 deletion into the fish using TEAZ 

and monitored fish for tumors via fluorescence microscopy over the course of 12 weeks (Fig. 5A). 

During this time the fish remained on their respective diets. This revealed a significant sex-based 

difference in tumor growth. In male fish, all obesity conditions (genetic, diet or combined) led to 

tumors that were larger compared to WT control diet fish. When observing early (21 dpe, Fig. 5D 

and H) and late (63 dpe, Fig. 5E and H) individual time points, we see that the effect is stronger 

earlier on and seems to become less apparent at later stages, suggesting that the effect is 

primarily on tumor initiation more so than progression. In contrast, in females we did not observe 

a significant difference in growth curves between the WT control fish and either zAgRP1 or HFD 

alone at either early (21 dpe, Fig. 5F and H) or late (63 dpe, Fig. 5G and H) time points. However, 

the combination of genetic and diet induced obesity did have an additive effect on tumor area in 

combination only at early time points (21 days), but this is not seen in later lesions, further 

underscoring lack of increased tumor area in response to obesity specifically in females.  

Obesity-related effects on melanoma are not seen with PTEN  
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Finally, we determined whether this was maintained with a different genetic driver. We therefore 

studied the effect of BRAFV600E;p53-/-;PTEN-/-. Unlike the case for RB1-/-, we did not see a 

significant difference in the tumor growth in the context of a PTEN deletion in both male and 

female fish (Fig. S5B-C). This was true in both early and late lesions (Fig. S5D-H). As expected, 

the PTEN tumors were larger and grew faster compared to those with an RB1 deletion. Overall, 

these data demonstrate that the interaction between systemic alterations (i.e. diet, sex) and the 

tumor is dependent on the genotype of the tumor itself (PTEN vs RB1 deletion). This highlights 

that it is critical to develop models in which it is possible to study multiple facets in both the host 

and the tumor concurrently. The flexibility of the zebrafish system will allow future studies to 

dissect these interactions in a high-throughput manner. 

Discussion 

In this study, we aimed to develop the zebrafish as a new model for studying the interaction 

between obesity and melanoma, and whether this depends on somatic and germline factors. This 

revealed a sex-specific effect on melanoma initiation that is consistent with clinical literature on 

human patients. This effect was most clear in tumors initiated by BRAFV600E;p53-/-;RB1-/- but 

not BRAFV600E-/-;p53-/-;PTEN-/-.  

While studies such as these are more traditionally done using mouse models of cancer, the 

rapidity by which we can generate these perturbations, and precisely quantify tumor initiation and 

progression, make the zebrafish an ideal system for future studies. The major advance offered in 

this system is the ease by which we can make somatic mutations (i.e. loss of RB1 or PTEN) using 

the TEAZ system, which is far more rapid and simpler than comparable mouse models. Moreover, 

these can be readily combined with germline alterations in genes such as AgRP, one of the most 

frequent alterations seen in patients with obesity, or with dietary changes such as high-fat diets. 
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One of the important observations in our research is that obesity has a sex-specific effect on 

melanoma initiation, with obese males having a greater effect than obese females.  However, 

despite numerous human and animal studies demonstrating that males are at higher risk of 

developing melanoma (Pandey et al., 2012; Renehan et al., 2008; Sergentanis et al., 2013), it 

has also long been observed that females have improved survival once they have the disease. 

The mechanisms regulating this discrepancy remain poorly understood. Potential reasons include 

a relatively stronger immune responsiveness in females (Bouman et al., 2005; Gubbels Bupp et 

al., 2018). Hormonal influences are also thought to play an important, yet still not understood role. 

Estrogen binds to multiple receptors with somewhat opposing effects. Estrogen receptor α (ERα) 

is thought to be pro-proliferative, whereas Estrogen receptor β (ERβ) may act in an anti-

proliferative manner and men were found to have comparatively lower levels of ERβ (de Giorgi et 

al., 2013). Estrogens can also bind to the more recently described G protein-coupled estrogen 

receptor (GPER), which can inhibit melanoma growth and are thought to mediate some of the 

protective effect in females (Natale et al., 2018). Testosterone likely also plays a role, since 

melanomas are known to express androgen receptors (AR), with dihydrotestosterone thought to 

be especially mitogenic (Richardson et al., 1999). Adding to this complexity is the so-called 

“obesity paradox”, in which obesity can be associated with improved survival specifically in males. 

For example, a large retrospective meta-analysis showed that obese males have improved 

response to targeted or immunotherapy treatments (McQuade et al., 2018). While our studies do 

not address the mechanisms involved in these seemingly contradictory effects on initiation versus 

survival, there is evidence that polymorphisms of p53 may play a role in such sex-specific effects 

(Oliveira et al., 2017). The fact that we see this sex difference in the context of p53/RB1, but not 

p53/PTEN, also highlights a potential interaction between germline alleles and somatic mutations 

in the PTEN/PI3K pathway. This is particularly compelling given the known interactions between 

ERβ and the PI3K pathway (Dey et al., 2013; Lei et al., 2020). These would be fruitful areas for 

future exploration using the zebrafish system we have developed. 
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Materials and Methods  

Zebrafish husbandry  

All zebrafish (Danio rerio) were bred and housed in the Aquatics facility in Zuckerman Research 

Center at Sloan Kettering Institute. All fish were housed in standard conditions with a water 

temperature of  28.5°C, controlled salinity, a pH of 7.4, and a light/dark cycle of 14hrs/10hrs. 

Unless otherwise indicated, fish were initially fed rotifers followed by a standard commercial pellet 

diet (GEMMA) 3 times per day. Fish were housed at a density no higher than 10 fish per liter. 

Anesthesia of adult zebrafish was carried out using Tricaine (4g/L, Syndel USA) that was diluted 

to 0.16 mg/mL. All of the protocols listed in this manuscript were reviewed and approved by the 

Memorial Sloan Kettering Cancer Center Institutional Animal Care and Use Committee, protocol 

#12-05-008. 

Zebrafish transgenic lines  

The zebrafish lines used in these studies were the casper (mitfa:BRAFV600E, p53-/-, mitfa-/-, 

mpv17-/-) fish (Baggiolini et al., 2021; Tagore et al., 2021) and the Tg(-3.5ubb:plin2-tdTomato) 

line (Lumaquin et al., 2021). These lines were generated in the white lab previously. For this 

manuscript we also generated the Tg(-3.5ubb:zAgRP1-2A-EGFP) casper (mitfa:BRAFV600E, p53-

/-, mitfa-/-, mpv17-/-) fish  and the Tg(-3.5ubb:plin2-tdTomato, -3.5ubb:zAgRP1-2A-EGFP) casper 

fish lines as described below.  

Generation of AgRP Construct  

To generate the ubb:zAgRP1-2A-EGFP construct, Gateway Cloning, using the LR Gateway 

Enzyme mix (Thermo Fisher, Waltham, USA; catalog #11791019), was completed using a p5E-

ubb, pME-zAgRP1, p3E-2A-EGFP into the pDestTol2pA2-blastocidin destination vector . The 

control plasmid, an empty pDestTol2pA2-blastocidin vector, was generated from colonies that 
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arose in the destination vector control reaction. All selected colonies were cultured overnight and 

prepared using the HiSpeed Plasmid Maxi Kit (Qiagen, Hilden Germany, cat# 12663) and 

sequenced at Genewiz (South Plainfield NJ USA) for confirmation. To create the pME-zAgRP1 

construct for gateway cloning, the cDNA sequence was obtained from (Song et al., 2003) and 

ordered as a gBlock Gene Fragment (IDT DNA, Coralville IA USA), PCR amplified using 

AccuPrime Taq DNA Polymerase High Fidelity (Invitrogen, Waltham MA USA, cat# 12346086), 

and gel extracted using the NucleoSpin Gel and PCR Clean-up kit (Takara Bio USA Inc, San Jose 

CA USA, cat# 740609). The fragment was subsequently cloned into the pME vector using the 

pENTR/D-TOPO Cloning kit (Invitrogen, Waltham MA USA, cat# K240020). Colonies were 

prepared using the Qiaprep Spin Miniprep kit (QiAgen, Hilden Germany, cat# 27106) and 

sequenced at Genewiz (South Plainfield NJ USA)  for confirmation.  

Generation of AgRP fish  

In order to generate the Tg(-3.5ubb:zAgRP1-2A-EGFP) casper (mitfa:BRAFV600E, p53-/-, mitfa-/-, 

mpv17-/-) mosaic fish, the ubb:zAgRP1-2A-EGFP and Tol2 mRNA were injected into the yolk of 

casper (mitf:BRAFV600E, p53-/-, mitf-/-, mpv17-/-) fish at the one cell stage (Baggiolini et al., 2021; 

Tagore et al., 2021). Fish were sorted for GFP+ fluorescence due to the 2aEGFP and used for 

mosaic experiments or to generate a stable line of F2 and F3 fish. For mosaic experiments, 

uninjected quad fish from the same clutch were used as control. To make the stable line, F0 fish 

were out crossed 2 generations to quad zebrafish, and GFP- siblings were used as the WT 

control. 

Generation of AgRP Plin2tdTomato fish 

In order to generate the Tg(-3.5ubb:plin2-tdTomato, -3.5ubb:zAgRP1-2A-EGFP)  casper  mosaic 

fish, 25 ng/μL of the ubb:zAgRP1-2A-EGFP and 20 ng/μL of Tol2 mRNA were injected into the 

yolk of Tg(-3.5ubb:plin2-tdTomato) casper fish at the one cell stage (Lumaquin et al., 2021). Fish 
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were sorted for both overall GFP+ fluorescence and GFP+ hearts used to generate a stable line 

of F2 and F3 fish. To make the stable line, F0 fish were out-crossed 2 generations to Tg(-

3.5ubb:plin2-tdTomato) casper zebrafish, and GFP- body, but GFP+ heart siblings were used as 

the WT control. 

Determination of zebrafish weight and length  

Adult fish were anesthetized with tricaine and then dried using a paper towel. Length was 

determined to the closest 0.01 mm using electronic calipers (Cole-Parmer, Vernon Hills IL USA, 

Cat# # EW-09925-43 ) and weight to the nearest 0.01 g using a portable balance (OHAUS, 

Parsippany NJ USA, Cat# SPX222). Fish were then placed into a tank with fresh system water to 

recover.  

Histology  

Zebrafish were sacrificed using ice-cold water. Head and tail were removed, and fish were placed 

in 4% PFA in PBS for 72 hours at 4°C on a rocker. Fish were then transferred to 70% EtOH for 

24 hours at 4°C on a rocker. Fish were sent to Histowiz (Brooklyn NY USA), where they were 

paraffin embedded, sectioned coronally at 5 μm, and underwent hematoxylin and eosin staining.  

High Fat Diet Feeding  

For high fat diet experiments, fish were fed a commercially developed pelleted fish food (Sparos, 

Portugal) (Lumaquin et al., 2021). Both the HFD and matched control diets were developed by 

Sparos. The crude composition as per fed basis for the control diet was: 57.3% crude protein, 

13.1% crude fat, 0.5 % fiber, 8.8% ash, and 20.3 MJ/kg gross energy. The crude composition as 

per fed basis for the HFD was: 57.3% crude protein, 24.8% crude fat, 0.5 % fiber, 8.8% ash, and 

23.3 MJ/kg gross energy.  The diets were analyzed for final composition. The Sparos control diet 

contains 30% fishmeal, 33% squid meal, 5% fish gelatin, 5.5% wheat gluten, 12% cellulose, 2.5% 
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soybean oil, 2.5% rapeseed oil, 2% vitamins and minerals, 0.1% vitamin E, 0.4% antioxidant, 2% 

monocalcium phosphate, and 2.2% calcium silicate. The Sparos HFD contains 30% fishmeal, 

33% squid meal, 5% fish gelatin, 5.5% wheat gluten, 12% palm oil, 2.5% soybean oil, 2.5% 

rapeseed oil, 2% vitamins and minerals, 0.1% vitamin E, 0.4% antioxidant, 2% monocalcium 

phosphate, and 2.2% calcium silicate. For the larvae experiments, 21 dpf larvae were moved to 

0.8L tanks in equal density (15-20 larvae). Fish were fed 0.1g of food split between 2x per day. 

Fish were kept on the diet for 1 week and then imaged for visceral adiposity via tdTomato 

expression. The images were analyzed and the visceral adiposity measured using MATLAB 

(Lumaquin et al., 2021). HFD induced expansion was calculated as the tdTomato+ area of the 

HFD fed group divided by the average of the control fed group for the indicated genotype. For 

adult fish experiments, fish were fed 5% of bodyweight per fish split over 2x per day. Fish were 

kept on the diet for indicated time points (1-3 months).  

Embryo injection transgenesis and analysis 

In order to generate melanomas using embryo injection based transgenics, we used the 

MiniCoopR based transgenic model as previously described (Ceol et al., 2011; Kaufman et al., 

2016). Fish were injected at the one-cell stage with 15 ng/μL of MiniCoopR-tdTomato, 15 ng/μL 

of either ubb:zAgRP1-2A-EGFP or empty vector control, and 20 ng/μL Tol2 mRNA. Fish were 

monitored at 48 hrs post fertilization for GFP and tdTomato fluorescence. Fish were put in the 

nursery at 5 dpf and then monitoring for tumors starting at 2 mpf, and imaging at 3 mpf. Fish were 

checked monthly for tumors up until 6 mpf. Tumors were determined based on a rubric of criteria 

developed in the lab previously (Weiss et al., 2020). The basis of the criteria is hyperpigmentation, 

tdTomato fluorescence and growth into or out of the fish. Disease Free Survival curves were 

generated using GraphPad Prism 8 (Graphpad, San Diego, USA).  

TEAZ based transgenesis and analysis 
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Melanomas were generated using TEAZ as described previously (Callahan et al., 2018). All 

tumors generated had a BRAFV600E mutation and loss of p53 with the additional loss of either rb1 

or ptena and ptenb. To generate these tumors, fish were anesthetized with 0.16 mg/mL tricaine 

and injected with 1uL of rb1 tumor plasmid mix (250 ng/μL mitf:Cas9, 250 ng/μL MiniCoopR-

tdTomato, 106 ng/μL sgRB1, 67 ng/μL Tol2) or ptena/b tumor plasmid mix (250 ng/μL mitf:Cas9, 

250 ng/μL MiniCoopR-tdTomato, 27.3 ng/μL gPTENa, 27.3 ng/μL gPTENb, 61 ng/μL Tol2) into 

the skin below the dorsal fin. Fish were then electroporated and returned to fresh system water 

to recover. Electroporation was carried out using the CM 830 Electro Square Porator (BTX 

Harvard Apparatus, Holliston MA USA) and the 3mm platinum Tweezertrodes (BTX Harvard 

Apparatus, Holliston MA USA, Cat# 45-0487). The electroporator settings were LV mode with a 

voltage of 40 V, 5 pulses, 60 ms pulse length and 1 s pulse interval. Electroporated zebrafish 

were imaged serially for up to 12 weeks dpe using brightfield and fluorescence imaging. Area of 

tdTomato fluorescence was quantified at indicated time points using FIJI. 

Imaging and Analysis  

Zebrafish were imaged using an upright Zeiss AxioZoom V16 Fluorescence Stereo Zoom 

Microscope equipped with a motorized stage, brightfield and fluorescent filter sets (mCherry or 

Cy5, GFP, and tdTomato). Adult fish were imaged with a x0.5 adjustable objective lens and larvae 

were imaged with a x1.0 adjustable objective lens. To acquire images, zebrafish were lightly 

anesthetized with 0.16 mg/mL tricaine. Images were acquired with the Zeiss Zen Pro v2 and 

exported as CZI files for visualization and analysis. Imaging analysis was completed manually 

using FIJI or automated with MATLAB software (Mathworks, Natick, USA).  

Statistical Analysis   

All experiments were completed at least three times as independent biological experiments. 

Statistical analysis was completed using Graphpad Prism versions 8 and 9 (Graphpad, San 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.27.493792doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=5723613&pre=&suf=&sa=0
https://doi.org/10.1101/2022.05.27.493792
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Diego, USA). Exact sample sizes and statistical tests for each experiment are detailed in the 

figure legends. Data are represented as mean ± standard error of mean (SEM). Statistical 

significance was set at p≤0.05.  
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Figure 1. AgRP overexpression promotes obesity in casper triple zebrafish. (A) AgRP overexpression construct driven by the ubb promoter. Created with Snapgene. (B) 
Schematic of generation of zAgRP1 overexpressing casper zebrafish (mpv17-/-, mitfa -/-; p53-/-, mitfa:BRAFV600E). Created with Biorender. (C) Weight of both male and female F0 fish 
combined over 6 months. (D-E) Weights of male (D) and female (E) at 120 dpf of F0 mosaic fish. Fish were separated into equal numbers at one month and weights measured at 
indicated time points. n=5-10 fish per genotype per biological replicate. Data is the average of 3 biological replicates. (F-G) Weights of male (F) and female (G) fish at 120 dpf of F3 
stable line. (H) Representative images of male and female zAgRP1 fish and wild-type siblings. The data is the weight of all the fish from 2 separate clutches of fish across six separate 
tanks. n=35-60 fish per group. zAgRP1 fish and wild-type siblings were housed in the same tanks and identified via GFP fluorescence. (I-J) Histology of abdomen (I) and liver (J) from 7 
month old F3 male and female zAgRP1 or wildtype siblings. Representative images. 2 fish per genotype per sex were sectioned for histololgy. * p ≤ 0.05, ** p ≤ 0.01 Welch’s t-test. 
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Figure 2. AgRP overexpression increases visceral adiposity and susceptibility to HFD. (A-B) 
Representative images of male (A) and female (B) BODIPY stained fish. (C-F) Quantification of 
visceral abdominal (C, E) and subcutaneous (D, F) fat depots from BODIPY stained male (C, D) and 
female (E, F) fish. n=6 fish per condition over 3 biological replicates. (G) Schematic of plin2tdTomato 
HFD experiment. 21 dpf zAgRP1 or  wild-type plin2tdTomato fish were put on either a control or high 
fat diet for one week and visceral adiposity measured. Created with Biorender. (H) Representative 
images of plin2tdTomato fish. (I) Quantification of adipocyte expansion. HFD induced adipocyte 
expansion was calculated by taking the ratio of the area of adipocyte tissue on control diet versus 
HFD for each genotype. n Ó 30 fish per genotype across 3 biological replicates. (J) Histology of a 
cross section male and female adult quad fish with zAgRP1 or wild type controls on a high fat or 
control diet for 3 months. 2 fish per condition were sent for sectioning. ** p Ò 0.01, Mann-Whitney test. 
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Figure 3

Figure 3. AgRP overexpression increases tumor onset in embryo injection model of melanoma. (A) Schematic of embryo injection experiment to determine tumor onset with 
and without zAgRP1. Created with Biorender. (B-C) Representative images of male (B) and female (C) fish with tumors from EV control or zAgRP1 overexpression. (D) Disease 
free survival of MiniCoopR rescued male and female fish combined. (E-F)  Disease free survival of MiniCoopR rescued male (E) and female (F) fish separated from D. Fish were 
injected at the one cell stage and monitored for tumors starting at 2 mpf at indicated time points. Data is the average of 3 biological replicates. 
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Figure 5. Obesity increases tumor growth in sex dependent manner in RB1 mutant melanoma. 
(A) Schematic of in vivo transgenesis assay via TEAZ with the addition of a high fat diet. Fish were 
put on a control or high fat diet for one week. Adult casper (mitfa:BRAFV600E, p53-/-, mitfa-/-, 
mpv17-/-) zAgRP1 or WT F3 fish were injected with MiniCoopR-tdTomato, sgRB1, mitfa:Cas9, and 
tol2 constructs and then electroporated. Fish were analyzed for tumor initiation and area by 
fluorescence microscopy  over 12 weeks while they remained on their respective diets. Created with 
Biorender. (B-C) Tumor growth as measured by tdTomato+ area over time. TdTomato+ area of 
lesions on zAgRP1 or WT male (B) and female (C) fish at indicated dpe. Growth curves were 
analyzed via Mixed-effects analysis, with p=0.0344 significance when comparing the different 
conditions in males and p=0.2391 in females. (D-E) tdTomato+ area for early (21 dpe, D) and late (63 
dpe, E) lesions in male zAgRP1 or WT fish on either a control or high fat diet. (F-G)  tdTomato+ area 
for early (21 dpe, F) and late (63 dpe, G) lesions in female zAgRP1 or WT fish on either a control or 
high fat diet. (H) Representative fluorescence overlaid on brightfield images of lesions in male and 
female fish at indicated time dpe. n=14 fish per condition per sex and is the average of 3 biological 
replicates. * p ≤ 0.05, ** p ≤ 0.01, Dunnet’s multiple comparisons test. 
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Figure 4. Obesity increases tumor initiation and area in electroporation model of RB1 mutant melanoma. (A) Schematic of in vivo transgenesis assay via TEAZ. Adult 
casper (mitfa:BRAFV600E, p53-/-, mitfa-/-, mpv17-/-) zAgRP1 or WT F0 fish were injected with MiniCoopR-tdTomato, sgRB1, mitfa:Cas9, and tol2 constructs and then 
electroporated. Fish were analyzed for tumor initiation and area by fluorescence microscopy over 6 weeks. Created with Biorender. (B-C) Tumor area at 14 dpe. 
Representative images (B) and quantification (C) of WT and zAgRP1 fish. (D-E) Tumor area at 42 dpe. Representative images (D) and quantification (E) of WT and zAgRP1 
fish. n ≥ 25 per genotype. Data is the average of 3 biological replicates. ** p ≤ 0.01, *** p ≤ 0.001, Mann-Whitney test. 
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