

1

2 **Title**

3 Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro

4

5 **Authors**

6 Ruchi Yadav,^{1,2,†} Valentine V. Courouble,^{3,4,†} Sanjay K. Dey,^{1,2,‡} Jerry Joe E.K. Harrison,⁵

7 Jennifer Timm,¹ Jesse B. Hopkins,⁶ Ryan L. Slack⁷, Stefan G. Sarafianos^{7,8}, Francesc X. Ruiz,^{1,2,*}

8 Patrick R. Griffin,^{3,4,9,10*} and Eddy Arnold^{1,2,*}

9

10 **Affiliations**

11 ¹Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway,
12 NJ, USA.

13 ²Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.

14 ³Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.

15 ⁴Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute,
16 Jupiter, FL, USA.

17 ⁵Department of Chemistry, University of Ghana, Legon, Ghana.

18 ⁶BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL, United States.

19 ⁷Division of Laboratory of Biochemical Pharmacology, Division of Infectious Diseases,
20 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.

21 ⁸Children's Healthcare of Atlanta, Atlanta, GA, USA.

22 ⁹Department of Integrative Structural and Computational Biology, The Scripps Research Institute,
23 Jupiter, FL, USA.

24 ¹⁰Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida,
25 Jupiter, FL, USA.

26 [†]These authors contributed equally.

27 [‡]Present address: Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of
28 Delhi, Delhi, India.

29 * Corresponding authors: arnold@cabm.rutgers.edu; pgriffin@scripps.edu;
30 xavier@cabm.rutgers.edu

31

32 **Abstract**

33 SARS-CoV-2, a human coronavirus, is the causative agent of the COVID-19
34 pandemic. Its ~30 kb RNA genome is translated into two large polyproteins subsequently cleaved
35 by viral papain-like protease and main protease (Mpro/nsp5). Polyprotein processing is essential
36 yet incompletely understood. We studied Mpro-mediated processing of the nsp7-10/11
37 polyprotein, whose mature products are cofactors of the viral replicase, identifying the order of
38 cleavages as: 1) nsp9-10, 2) nsp8-9/nsp10-11, and 3) nsp7-8. Integrative modeling based on mass
39 spectrometry (including hydrogen-deuterium exchange and cross-linking) and X-ray scattering
40 yielded three-dimensional models of the nsp7-10/11 polyprotein. Our data suggest that the nsp7-
41 10/11 structure in complex with Mpro strongly resembles the unbound polyprotein, and that both
42 polyprotein conformation and junction accessibility determine the preference and order of
43 cleavages. Finally, we used limited proteolysis assays to characterize the effect of a series of
44 inhibitors/binders on Mpro processing of nsp7-11 and Mpro inhibition using a polyprotein
45 substrate.

46

47 **Teaser**

48 We elucidated the structural basis of order of cleavage of SARS-CoV-2 nsp7-11 polyprotein, with
49 implications for Mpro inhibition.

50

51

52

53

54 **Introduction**

55 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; CoV-2), a member
56 of the *Coronaviridae* family, is responsible for the ongoing COVID-19 global pandemic (1). The
57 toll of CoV-2 is extraordinary in terms of worldwide repercussions in the number of infected
58 people, deaths and pace of infection spread (<https://covid19.who.int/>). SARS-CoV-2 has an ~30
59 kb (+)-sense RNA genome, one of the largest known of any RNA virus, that encodes 13 open
60 reading frames (ORFs), including replicase (ORF1a/ORF1b), spike (S), envelope (E), membrane
61 (M), nucleocapsid (N), and seven other ORFs that encode accessory proteins (2). ORF1a and
62 ORF1b are translated to produce two large polyproteins, pp1a and pp1ab. These polyproteins are
63 subsequently cleaved into 16 non-structural proteins (nsps) by virally encoded proteases: the
64 papain-like protease (PLpro, a domain of nsp3), which cleaves junctions from nsp1 to the nsp4 N-
65 terminus, and the main protease (Mpro, nsp5, 3C-like protease, 3CLpro), which cleaves junctions
66 from the nsp4 C-terminus to nsp16 (3). The “polyprotein strategy”—used by most RNA viruses
67 and retroviruses—allows for: i) a more compact genome, ii) regulation of activity through a
68 precise temporal (*i.e.* stage of viral cycle) and spatial (*i.e.* subcellular location) cleavage pattern,
69 and iii) cleavage intermediates having distinct and critical roles from those of the cleaved
70 products, as shown for alphaviruses, picornaviruses, and noroviruses (4-6). Hence, coordinated
71 processing of polyproteins is vital for regulating the viral life cycle.

72 Different polyprotein intermediates derived from Mpro-mediated pp1a/1b processing have
73 been detected in other CoVs, including mouse hepatitis virus (MHV) (7, 8) and alphacoronavirus
74 human CoV 229E (HCoV-229E) (9). CoV-2 and MHV belong to the betacoronavirus genera with
75 the latter being a good surrogate mouse model for studying CoV-2 infection and biology (10-12).
76 Notably, mutations in the junction sites within the MHV nsp7-10 polyprotein were found to be
77 lethal for viral replication, with the exception of the nsp9-10 site, where mutations led to a
78 crippled mutant virus (8). Additionally, a polyprotein intermediate of ~150 kDa corresponding to
79 nsp4-10/11 has been detected in pulse-chase experiments (13, 14). Reverse genetic studies with
80 temperature-sensitive mutants in MHV suggest that nsp4-11 could serve as a scaffold where
81 replicative enzymes (nsp12, nsp14, nsp16) may dock to perform their activities on the viral RNA
82 (15). Alternatively, they may indicate that mutation of this intermediate perturbs Mpro processing
83 (16). Thus, the functional role(s) of nsp4-10/11 in virus replication remain unclear. Additionally,
84 the subcellular localization of nsp7 to nsp10 has been studied for several CoVs using
85 immunofluorescence microscopy and cryo-electron microscopy/tomography. pp1a/1ab are
86 anchored to the endoplasmic reticulum (ER) membranes by flanking transmembrane domains
87 (TMD) of nsp4 and nsp6, along with membrane-spanning nsp3. This topology results in the
88 membrane-anchored Mpro being exposed to the cytosol along with most likely the nsp7-10/7-11

89 region (7, 17-20). Moreover, data from CoVs and other RNA viruses suggest that “convoluted
90 membranes” (the precursors of the coronavirus replication organelles formed by double-
91 membrane vesicles) may be the main site of viral gene expression and polyprotein processing.
92 However, it should be noted that these labeling techniques cannot distinguish between mature
93 nsps and polyprotein intermediates.

94 More recently in CoV-2 infected cells, the identification of viral cleavage sites at nsp4,
95 nsp8-9, and nsp10-12 junctions at different post-infection time points has validated the presence
96 of polyprotein intermediates and thus garnered support for further investigation into their
97 functional relevance and structures (3). Krichel and co-authors have applied a structure-function
98 approach to investigate the processing of the SARS-CoV nsp7-10 and MERS-CoV nsp7-11
99 polyproteins *in vitro* using native mass spectrometry (MS) (21, 22). Their results emphasized the
100 critical role of the polyprotein conformation and the structural environment of the cleavage
101 junctions in determining cleavage order, as the order of processing was previously inferred by
102 determining the specific activity of Mpro cleavage on short oligopeptide sequences comprising
103 the cleavage junctions (23).

104 One of the most investigated CoV-2 targets has been Mpro with ~500 PDB structural
105 depositions (<https://rcsb.org/covid19>). These structures include Mpro in both immature forms
106 (24), as well as its mature apo form [(<https://rcsb.org/covid19>) (25, 26)]. Furthermore, there are
107 multiple structures of Mpro bound with inhibitors (27, 28)—including the recently FDA-
108 approved Pfizer inhibitor [PF-07321332, nirmatrelvir (NMTV)], (29)—and small molecules and
109 fragment binders (30-32), and several structures with peptide substrates and products (33-35).
110 Even with these efforts and with >2000 SARS-CoV-2 PDB depositions, no CoV polyprotein
111 structures have been reported to date (<https://rcsb.org/covid19>). Indeed, despite their importance
112 in the viral life cycle, polyprotein structural knowledge is very underrepresented in comparison to
113 the multitude of solved structures of mature, post-cleavage proteins (6).

114 Herein, we have employed a multi-pronged approach to study the structural basis of
115 processing of the CoV-2 nsp7-10 and nsp7-11 polyprotein(s) by Mpro *in vitro*, given their highly
116 dynamic nature and multidomain organization. We have characterized the processing kinetics
117 through gel-based and pulse-labeling MS techniques, as well as the footprint of the polyproteins
118 on Mpro and vice versa. We also determined the integrative structures of the nsp7-11 and nsp7-8
119 polyproteins (by MS, small-angle X-ray scattering (SAXS), and molecular modeling). These
120 experiments allowed us to rationalize the order of processing of the polyprotein by Mpro and
121 provided insights into binding of the polyprotein substrate to Mpro. Finally, taking advantage of
122 the vast number of Mpro-ligand structures, we identified a set of binders (with some displaying

123 antiviral activity) overlapping with regions of Mpro relevant for polyprotein binding outside of its
124 active site, and probed them in limited proteolysis inhibition assays including the full-length
125 polyprotein substrate. Altogether the information gathered from this study improves our
126 understanding of the role of polyproteins in SARS-CoV-2 viral replication.

127

128 **Results**

129 **nsp7-10/11 polyprotein processing by Mpro using limited proteolysis**

130 Polyprotein processing in *Coronaviruses* is a precise and tightly regulated process (8, 16,
131 36). We first expressed and purified the nsp7-11 and nsp7-8 polyproteins, and wild-type Mpro
132 (**Fig. S1 in the Supplementary Materials, SM**), to assess the proteolytic cleavage order of
133 SARS-CoV-2 polyproteins. Next, we conducted a semi-quantitative proteolysis assay of the nsp7-
134 11 polyprotein with Mpro using SDS-PAGE as a readout (**Fig. 1A, S2**). Analysis of the nsp7-11
135 polyprotein processing revealed that the nsp9-10 junction was cleaved initially (starting ~30 min),
136 followed by simultaneous cleavage of the nsp8-9 and nsp10-11 junctions (starting ~2 h), and
137 finally the nsp7-8 junction (starting ~4 h) (**Fig. 1A and 1B**). This order of cleavage is identical to
138 the polyprotein processing order reported for SARS-CoV (CoV-1), which was expected given
139 their high amino acid sequence conservation (22). Analysis of the nsp7-10 polyprotein processing
140 yielded similar results (**Fig. S3**). This suggests that the presence of nsp11 does not affect the
141 polyprotein cleavage order. Moreover, altering ratios of Mpro to polyprotein had no effect on the
142 cleavage order (1:2 and 1:12 molar ratio for nsp7-10 and nsp7-11 limited proteolysis,
143 respectively), further supporting the specificity of Mpro and the lack of a concentration-dependent
144 cleavage effect. Interestingly, after 24 h of exposure to Mpro, the nsp7-8 junction was not
145 completely cleaved. The limited proteolysis assay with the nsp7-8 intermediate polyprotein
146 showed that nsp7-8 was also not fully cleaved after 24 h (1:10 molar ratio of Mpro:nsp7-8) (**Fig.**
147 **S4**), suggesting that the structural environment around the nsp7-8 junction impedes efficient Mpro
148 cleavage with respect to the other junction sites.

149

150 **Pulsed HDX-MS reveals cleavage order of polyprotein by Mpro**

151 To gain further structural insight into the polyprotein processing with Mpro, we conducted
152 pulsed HDX-MS. Briefly, we incubated nsp7-11 with Mpro at an equimolar ratio and the
153 cleavage reaction was allowed to proceed over 24 h. Aliquots of the reaction were taken at
154 various time intervals and incubated in deuterated buffer for 30 s before being quenched, flash-
155 frozen, and stored until ready for MS analysis. All time points were compared to nsp7-11 without

156 Mpro to observe changes in solvent exchange occurring in the polyprotein over the course of the
157 proteolytic process (**Fig. 1C, S5, Table S1**).

158 We observed increased deuterium exchange (destabilization/decreased hydrogen bonding)
159 in the nsp9 C-terminal region at 30 min (**Fig. 1C**), indicative of increased conformational
160 mobility in this region of the polyprotein upon interaction with Mpro. Deuterium exchange
161 continued to increase over time in this region as compared to the protein in the absence of
162 enzyme. This change was followed by increased deuterium exchange of the nsp10 N-terminal
163 region, indicating increased conformational mobility in this region. Concomitantly, we observed
164 decreased solvent exchange at the cleavage junction residues, suggesting reduced solvent
165 accessibility due to Mpro binding. Over the time course, we also observed a decrease in signal
166 intensity of the nsp9-10 junction site spanning peptides indicative of cleavage. At 24 h we were
167 no longer able to detect these peptides in the mass spectrometer indicating full cleavage of the
168 nsp9-10 site (**Fig. S5**). These observations suggest that the nsp9-10 junction is being cleaved first,
169 consistent with our SDS-PAGE analysis (**Fig. 1A**).

170 The nsp8-9 and nsp10-11 junctions appeared to be simultaneously cleaved next as both
171 junctions showed changes in deuterium exchange starting at 4 h. At the nsp9 N-terminal region,
172 we observed increased deuterium exchange compared to the protein in the absence of the enzyme,
173 indicating increased solvent exchange in this region. As we were unable to detect peptides
174 specifically spanning the nsp8-9 junction, we could not determine the exact timing of full
175 cleavage. Meanwhile, at the nsp10-11 junction site, we observed decreased solvent exchange and
176 reduced signal intensity in the peptides spanning the junction site until 24 h where they were no
177 longer identified in the mass spectrometer to suggest full cleavage. While it appears that nsp11 is
178 no longer identified at 24 h, this is due to our inability to detect any nsp11 only peptides, as it is
179 only 13 amino acids in length, such that all the peptides covering nsp11 are also covering the
180 junctions (**Fig. S5**). Nevertheless, it was clear that nsp8-9 and nsp10-11 are cleaved
181 simultaneously, following cleavage at the nsp9-10 site.

182 The nsp7-8 site is cleaved last, as we did not observe any changes in deuterium uptake
183 near the nsp7-8 junction until 8 h. While we do not observe decreased solvent exchange in the
184 peptides spanning the nsp7-8 junction to indicate Mpro binding at this site, we did not detect these
185 peptides in the mass spectrometer at 24 h suggesting that the nsp7-8 junction is cleaved by Mpro.

186 Interestingly, we also observed changes in solvent exchange away from the junction sites
187 in nsp7 and nsp8. The protection from exchange (stabilization/increased hydrogen bonding)
188 within both nsp7 and nsp8, suggests that nsp7 and nsp8 associate into a heterodimer after their
189 release from the polyprotein. The pattern of protection observed in nsp7 agreed well with

protection we observed in our prior differential HDX-MS analysis of the nsp7:nsp8 heterotetrameric complex (37). Unexpectedly, increased exchange (destabilization) within nsp8 was also observed starting at 2 h. These peptides in nsp8 that showed increased exchange demonstrated EX1 behavior as revealed by detection of two distinct deuterated ion distributions (bimodal) for the same peptide (38). Under native conditions this behavior has been shown to be a result of multiple intermediate conformational protein states (39-42). The observed EX1 behavior in nsp8 could be explained by either increased flexibility of the nsp8 N-terminus adopting multiple conformations—previously documented (21, 37)—and/or by the simultaneous presence of both mature nsp8 protein and nsp7-8 polyprotein within the samples.

Additionally, nsp10 also showed decreased deuterium uptake away from the junction site. Comparing the solvent exchange profile of nsp7-11, nsp7-10, and individual nsp10 (**Fig. 3A**), we observed that nsp10 has the greatest deuterium uptake in nsp7-11 while nsp7-10 and nsp10 showed similar solvent exchange profiles, suggesting that the presence of nsp11 destabilizes nsp10. Specifically, the regions of protection from solvent exchange observed in nsp10 during the pulsed HDX-MS experiment align with the residues showing decreased deuterium uptake in mature nsp10 and nsp7-10. Moreover, the pulsed HDX-MS with nsp7-10 (**Fig. S6**) did not show any changes in deuterium exchange in nsp10, as expected from the comparison of the solvent exchange profiles of nsp7-10 and mature nsp10. This confirms that released nsp10 does not interact with other liberated proteins in solution and the observed decreased solvent exchange in nsp10 is due to the release of nsp11 from nsp10.

Overall, the pulsed HDX-MS results were consistent with the SDS-PAGE proteolytic results, showing the processing order to be: 1) nsp9-10, 2) nsp8-9 and nsp10-11, and finally 3) nsp7-8 (**Fig. 1B**). Moreover, pulsed HDX-MS with nsp7-10 displayed similar results with the same processing order as well as interaction of mature nsp7 and nsp8 after their release (**Fig. S6**).

215 Differential HDX-MS demonstrates localized sites of interaction of C145A Mpro to 216 polyprotein junction sites

Next, we used HDX-MS and XL-MS as complementary techniques to better understand the solution phase dynamics of the complex. Using differential HDX-MS, we compared nsp7-11 versus nsp7-11 in complex with C145A Mpro at an equimolar ratio (**Fig. 2A, S7A, Table S1**). Increased protection from solvent exchange was observed at all junction sites except the nsp10-11 junction. The nsp9-10 junction had the largest magnitude in reduction of solvent exchange which may suggest it to be the primary binding site on the polyprotein. This observation is consistent with the proteolysis SDS-PAGE (**Fig. 1A**) and pulsed HDX-MS results (**Fig. 1C**) that indicate the

224 nsp9-10 junction to be the initial target of Mpro. Minimal alteration of solvent exchange was
225 observed within the nsp subdomains outside of the junction sites, suggesting that Mpro interaction
226 with the polyprotein is favored at the junction site sequences, and that binding of Mpro does not
227 induce significant long-range conformational changes in the polyprotein. Only nsp8 showed
228 additional regions of protection from solvent exchange away from the junctions, specifically
229 residues T120-M140 and K182-L213. These regions of the polyprotein are inherently more
230 dynamic, as determined by higher intrinsic deuterium exchange (**Fig. 3A**), and thus the observed
231 protection suggests that interaction with C145A Mpro is stabilizing the nsp8 N-terminal region.

232 Similar results were observed with the nsp7-10 polyprotein (**Fig. 2B, S7B, Table S1**). All
233 the cleavage sites in nsp7-10 were protected from solvent exchange upon interaction with C145A
234 Mpro. Additionally, the nsp9-10 junction showed greatest protection from solvent exchange,
235 while only nsp8 showed additional regions of protection outside the junctions. These results
236 indicate that nsp11 does not alter the polyprotein interactions with C145A Mpro.

237

238 **Differential HDX-MS validates polyprotein binding to C145A Mpro beyond the active site 239 pocket**

240 Next, we profiled changes in solvent exchange of C145A Mpro bound to nsp7-11 at an
241 equimolar ratio but did not observe any significant protection from solvent exchange in case of
242 C145A Mpro (data not shown). However, C145A Mpro deuterium uptake was relatively low over
243 the experimental time course up to one hour, suggesting that the Mpro dimer is very stable. To
244 increase the observable window to detect protection from solvent exchange, we incubated C145A
245 Mpro and the C145A Mpro:nsp7-11 complex in deuterium buffer for 12 h. Overall, deuterium
246 uptake was increased over this longer time course and significant protection from solvent
247 exchange was observed in the active site region containing the C145A mutation only when in the
248 presence of polyprotein (**Fig. 2C, S7C, Table S1**). Additional regions of the enzyme were shown
249 to be protected from solvent exchange at 12 h incubation in deuterated buffer only, including
250 peptides spanning residues T45-S46, V77-L89, I106-F150, Y161-L205, and D289-Q306 (**Fig.**
251 **2D, S7D, Table S1**). These regions were mapped from the back side of the C145 Mpro active site
252 pocket to the vicinity of the dimerization interface, hinting to a putative binding track for the rest
253 of the nsp7-11 polyprotein outside of the nsp9-10 junction (see below for more details).

254

255 **XL-MS demonstrates additional contact sites between C145A Mpro and polyproteins**

256 While the differential HDX-MS analysis of the C145A Mpro polyprotein complex
257 reported on changes in protein backbone dynamics, we also analyzed the complex using XL-MS

258 to probe protein side chain residency and reactivity. A total of nine inter-protein crosslinks were
259 identified between C145A Mpro and nsp7-10 (**Fig. 2E**). The three C145A Mpro residues (K61,
260 S62, and K102) that form inter-protein crosslinks with nsp7-10 were mapped to the catalytic
261 domain (**Fig. 2F**). When these crosslinks were mapped alongside the HDX-MS data, we observed
262 that the inter-protein crosslinks map to residues outside of regions showing protection from
263 solvent exchange (**Fig. 2E**). Accordingly, these crosslinks represent additional contact sites
264 between the polyprotein and Mpro that may help stabilize the complex to position the junctions
265 into the active site. For example, K162 within nsp8 is located between the two regions of nsp8
266 showing protection from solvent exchange (**Fig. 2B**) and forms an interprotein crosslink with S62
267 and K102 in Mpro. This further supports that interaction with C145A Mpro stabilizes nsp8
268 conformation.

269

270 **HDX-MS profile of polyprotein revealed similar secondary structure elements to individual**
271 **nsps**

272 The HDX-MS intrinsic exchange profiles of nsp7-11, nsp7-10, and nsp7-8 polyproteins all
273 revealed similar solvent exchange behavior (**Fig. 3A**), which suggests that all polyproteins share
274 similar secondary structure elements and overall conformation. Additionally, the HDX-MS
275 intrinsic exchange profiles of the polyproteins largely resembled the intrinsic exchange profiles of
276 individual nsp7, nsp8, and nsp9 (**Fig. 3A**). This suggests that the secondary structures within the
277 polyproteins remain largely unchanged in these mature nsps. The only exception is mature nsp10,
278 which by itself or within nsp7-10, shows reduced deuterium uptake compared to nsp10 within the
279 nsp7-11 polyprotein. This suggests that nsp10 is destabilized (decreased hydrogen bonding) when
280 bound to nsp11.

281

282 **Integrative structural modeling of the nsp7-11 polyprotein structure proposes an ensemble**
283 **of different conformations**

284 Next, we turned to an integrative structural modeling approach using multiple
285 experimental techniques to account for biases inherent to each technique. We used the *ab initio*-
286 based I-TASSER algorithm that allows incorporation of experimental restraints (43). We decided
287 to focus the integrative modeling efforts on nsp7-11 as translation of ORF1a includes nsp11.

288 We first used analytical size exclusion chromatography (SEC) coupled to multi-angle light
289 scattering (MALS) and SAXS detection (SEC-MALS-SAXS) to analyze the assembly state and
290 structural features of the polyprotein in-solution. The SEC of the nsp7-11 polyprotein showed two
291 peaks suggesting the presence of two different states: monomer and dimer, with the monomeric

292 form being predominant (**Fig. S8A**). The MALS analysis was used to calculate the molecular
293 weights of the two identified peaks for nsp7-11 (~60 and ~110 kDa). SAXS analysis was
294 conducted for both oligomeric states to understand the arrangement of these polyproteins in
295 solution. Concretely, evolving factor analysis was used for separating the scattering of the
296 monomer and dimer components (**Fig. S8B**) in a model-independent way (44). Both states yielded
297 a linear Guinier plot indicating the presence of stable protein sample with no aggregation (**Fig.**
298 **S8C**). The bell-shaped (Gaussian) curve at lower q values in the Kratky plot showed that the
299 sample contains folded domains with no significant disorder (**Fig. S8D**). The pair-distance
300 distribution function, $P(r)$, which is related to the shape of the sample, indicated a globular shaped
301 protein for both the monomeric and dimeric forms of nsp7-11 (**Fig. S8E**). The R_g and the D_{max}
302 values calculated from the $P(r)$ are: 48.2 Å and 191 Å for the dimer, and 35.8 Å and 156 Å for the
303 monomeric nsp7-11 (**Table S2**).

304 Subsequently, we applied the integrative structural modeling approach to predict the
305 structure(s) of the monomeric state of the nsp7-11 polyprotein (**Fig. 3B**), which may likely be the
306 form binding to Mpro (based on the HDX-MS data, see **Fig. 2A, S7A**). Models were generated
307 based on the amino acid sequence and the following experimental parameters: i) distance
308 constraints from XL-MS, ii) secondary structure restraints from solved X-ray crystal structures of
309 the mature nsp7 to nsp10 (guided by solvent exchange profiles from HDX-MS indicating similar
310 secondary structures of nsps within the polyprotein or upon cleavage), and iii) various nsp7-8
311 polyprotein models (**Fig. S10A-F, more details in SM**). A final ensemble of ten nsp7-11 models
312 were binned into four representative conformational groups, which were all assessed using our
313 gamut of techniques (**Fig. 3B-C**).

314 When we compared the four model groups, the nsp7 helical bundle stood as the most
315 conserved structural element in all models, except for Group D. The other nsp domains presented
316 more diversity in structural conformations and orientations. Group A is defined by an extended
317 helical N-terminus, with a “golf-club” conformation, observed in the CoV-1 nsp7:nsp8 complex
318 (45) and in CoV-2 structures of nsp8 interacting with nsp7 and nsp12 (46-48). Groups B and C
319 exhibit a more compact organization of nsp8, with Group B having nsp7, nsp8, nsp9, and nsp10
320 arranged linearly, while Group C has all domains arranged in a packed “sphere” and Group D
321 presents an “open” conformation.

322 Despite these conformational differences, all the models satisfied most of the crosslinks,
323 with distances equal to or less than 30 Å (upper limit distance for DSSO crosslinks) (**Fig. 4A,**
324 **S11, Table S3**). Specifically, Group B satisfied the greatest percentage of crosslinks while Group
325 A and D had the highest number of violations. These violations mostly stemmed from the

326 extended nsp8 N-terminal helix in Group A and the less ordered conformation in Group D, which
327 suggests that the nsp7-11 polyprotein, and especially the nsp8 segment, samples multiple
328 conformations in solution. This conclusion is also supported by the HDX-MS data, showing that
329 the central region of the nsp8 N-terminal subdomain exhibited greater solvent exchange (higher
330 percent deuterium) suggesting increased inherent dynamics (**Fig. S12D**).

331 Next, we evaluated the models with the HDXer software using the percent deuterium
332 uptake values from our HDX-MS experiments as input (49, 50) (**Fig. 4B, S12A-B, Table S3**).
333 HDXer calculates deuterated fractions for peptide segments corresponding to the experimental
334 data as a function of the experimental deuterium exposure times. We then plotted the
335 computationally derived percent deuterium value at 10 s incubation in deuterated buffer for each
336 model versus the experimentally determined percent deuterium value at 10 s incubation in
337 deuterated buffer and calculated their Root Mean Square Error (RMSE). Group A demonstrated
338 the lowest RMSE (best agreement), compared to other models. Group C and D models had the
339 highest RMSE suggesting these conformations to be representative of models with too much
340 rigidity or too much flexibility, respectively. Moreover, it was noted that nsp11 had the worst
341 agreement with experimental HDX-MS data, while nsp7 had the best agreement (**Fig. S12C**),
342 which is likely due to the lack of nsp11 structures and abundance of X-ray crystal structures of
343 nsp7 in complex with nsp8.

344 Next, a three-dimensional shape (bead model) was reconstructed for the monomeric nsp7-
345 11 from the scattering profile using DAMMIF/N from the ATSAS package (51, 52). As the
346 SAXS scattering profile represents averaged scattering from all different possible orientations, it
347 may be possible that many different shapes/orientations can generate the same scattering profile
348 and therefore, for certain shapes it can be difficult to generate a bead model that correctly
349 represents the solution shape. To assess whether a bead model uniquely fits the scattering data or
350 if multiple models can fit the data, certain criteria are checked including ambiguity score,
351 normalized spatial discrepancy (NSD) value, number of clusters, as well as parameters such as
352 R_g , D_{max} , and molecular weight (M.W.) values. Ambiguity score or “a-score” is the initial
353 screening which informs about the number of possible shapes representing the same scattering
354 profile. An “a-score” below 1.5 is usually indicative of a unique *ab initio* shape determination. In
355 our case, 0.85 “a-score” suggested a unique 3D reconstruction. The R_g and D_{max} obtained from
356 the reconstructed model were close to those calculated from the $P(r)$ function. The M.W. of the
357 refined model was also comparable to the expected M.W. (**Table S2**). Another important criterion
358 to consider is NSD, which is used to evaluate the stability of the reconstruction. An NSD value
359 less than 1.0 suggests fair stability of the reconstructions. DAMAVER reported 0.95 NSD for our

360 reconstruction, which is on the borderline of a stable reconstruction. DAMCLUST created nine
361 different clusters, suggesting that several different shapes in solution could have generated the
362 same scattering profile. While the ambiguity score and comparable Rg, Dmax and M.W. values
363 favored the bead model reconstruction, other criteria such as NSD and number of clusters
364 suggested heterogeneity in the reconstruction. The higher NSD value and multiple clusters are
365 likely due to nsp7-11 adopting multiple conformations. As stated earlier, the central segment of
366 nsp8 is highly flexible and dynamic as suggested by greater solvent exchange in HDX, which
367 could lead to heterogeneity in the conformations. Out of the four representative conformational
368 groups, Group A showed the best fit with the reconstructed SAXS envelope, as the extended nsp8
369 helix fit into the elongated extension of the envelope. Interestingly, the less ordered and open
370 conformation of the Group D model appeared to fit better in the SAXS envelope compared to the
371 more ordered and compact structure of Group C models. We also compared the calculated
372 scattering profile for the models to the experimental scattering profile. The χ^2 and Rg values for
373 Group A showed the greatest agreement with experimental data (**Fig. 4C, Fig. S13, Table S3**).

374 In summary, the assessment of the ten models using HDX-MS, XL-MS, and SAXS
375 highlighted that nsp7-11 can sample four major conformations (**Table S3**). To note, our
376 integrative structure modeling approach cannot ascertain the abundance of the different
377 conformers within the ensemble. Group A conformers adopted an extended nsp8 helix with good
378 agreement with HDX-MS and SAXS data but poor agreement with XL-MS. Group B conformers
379 showed linear nsp organization with good XL-MS agreement but average agreement with HDX-
380 MS and poor SAXS agreement. Group C conformers were arranged as a packed spherical
381 structure with poor HDX-MS and SAXS agreement but good XL-MS agreement. Finally, Group
382 D conformers had the most dynamic conformations (i.e., fewer ordered secondary structural
383 elements) and showed good agreement to SAXS data but average agreement to HDX-MS and
384 poor XL-MS agreement (**Table S3**).

385

386 **The ensemble of nsp7-11 models unveils the interplay between cleavage junction
387 conformation and accessibility to determine preference and order of cleavage**

388 Next, we evaluated the structural environment of the cleavage junctions in the ensemble of
389 nsp7-11 models to understand the influence of polyprotein substrate conformation and
390 accessibility in processing (**Fig. 5, S14, Table S3**). In general, all the junctions (except for nsp8-9,
391 which was just partially covered by HDX-MS) (**Fig. 2A**) showed high levels of solvent exchange
392 (high percent deuterium values), consistent with the fact that the cleavage regions should be
393 accessible for proteolysis to occur. The combination of secondary structure and accessible surface

394 area for Groups B and C was most consistent with the processing order we determined by limited
395 proteolysis and pulsed HDX-MS (**Fig. 5, S14, Table S3**). Comparing all the junctions, the nsp9-
396 10 junction, which was the first to be cleaved, was the most exposed junction in all the models
397 and adopted a random coil in all but one model, which may best facilitate interaction with Mpro.
398 On the other hand, the nsp7-8 junction, which was the last to be cleaved, was more hindered and
399 mostly adopted an α -helical conformation, which may entail a slow cleavage event. Interestingly,
400 for Group A models, nsp7-8 junction appeared to be the most accessible junction, which
401 ultimately lends to our conclusion that the polyprotein is likely sampling multiple conformations
402 with some being more amenable to proteolytic processing than others.

403

404 **Probing nsp7-11 binding to Mpro with small molecule binders**

405 To further understand the implications of polyprotein binding to Mpro outside its active
406 site—studied first via HDX- and XL-MS—regarding proteolytic processing, we leveraged the
407 limited proteolysis assay using the nsp7-11 polyprotein as Mpro substrate to measure inhibition
408 by active site and non-active site binders of Mpro identified through crystallography (30, 32).
409 Specifically, we selected small molecule binders—some of them presenting antiviral activity, but
410 most of them not tested in enzymatic assays (32)—overlapping with the Mpro regions showing
411 protection in the differential HDX-MS of nsp7-11 on C145A Mpro at 12 h (**Fig. 6A and Table**
412 **S4**). We used the FDA-approved drug nirmatrelvir (NMTV) as a positive control.

413 NMTV, as expected, showed comparable inhibition with an IC_{50} value of 255 nM with the
414 full polyprotein substrate *in vitro* (**Fig. 6B-D**) (29). None of the non-active site binders displayed
415 significant inhibition of the enzymatic activity of Mpro (**Fig. S15A**). On the contrary, climbazole
416 and pelitinib showed activation of Mpro activity in our assay conditions, despite the last
417 presenting an $EC_{50} = 1.25 \mu\text{M}$ and moderate cytotoxicity (32).

418 Next, we analyzed by differential HDX-MS the effect of ligand binding on Mpro.
419 Interestingly, NMTV was the only compound that showed significant change in Mpro solvent
420 exchange behavior (**Fig. 6E, S15B, Table S1**). The lack of observed change in solvent exchange
421 may be due to experimental limitations on studying interactions of weak binders by HDX-MS
422 (53, 54). The NMTV interaction footprint on Mpro demonstrates strong protection from solvent
423 exchange in the active site, in agreement with mechanism of action of NMTV forming a
424 reversible covalent thioimide adduct with the catalytic C145 (29). These results closely
425 resemble the nsp7-10/11 interaction footprint (**Fig. 2 and 6A**), as we observed protection in the
426 active site of Mpro upon interaction with the polyprotein. Additionally, the nsp7-10/11 footprint
427 showed protection from solvent exchange in residues V77-L89 not found in the presence of

428 NMTV. These residues are located on the back of the catalytic domain, near residues K61 and
429 S62 which form inter-Mpro-nsp7-11 crosslinks and are thus likely stemming from more transient
430 interaction of the Mpro with the polyprotein away from the active site.

431

432 Discussion

433 In this work, we have studied the processing of CoV-2 nsp7-10/nsp7-11 polyproteins by
434 Mpro. As expected by the high degree of amino acid conservation, we have seen that CoV-2
435 polyprotein processing is almost, if not, identical to that observed for CoV-1 (22). The cleavage
436 order deduced from the gel analysis is also supported by results from the pulsed HDX-MS
437 experiment. The destabilization observed in the pulsed HDX-MS in the nsp9 C-terminal region at
438 the first time point (30 min) suggests cleavage and release of nsp7-9 to increase solvent exposure
439 of the nsp9 C-terminal region. This is consistent with the fact that SDS-PAGE gel shows an
440 intermediate nsp7-9 polyprotein observed at 30 min-1 h suggesting that the nsp9-10 junction is
441 the first cleavage site. As shown in the literature for SARS-CoV (22), the order of processing
442 cannot be directly inferred from the substrate specificity of Mpro with peptides mimicking the
443 cleavage junctions as the conformation and accessibility of the substrate polyprotein(s) is critical
444 to regulating the process.

445 Whether the same *in vitro* order of cleavages occur during viral replication is unknown.
446 However, several lines of evidence support this concept. Several studies have detected the nsp4-
447 nsp10/11 polyprotein intermediate in MHV-infected cells (13, 16, 55). Recently, in CoV-2
448 infected cells, the identification of viral cleavage sites at nsp4, nsp8-9, and nsp10-12 junctions at
449 different post-infection time points is also consistent with such a polyprotein intermediate (3).
450 Reverse genetics studies with MHV infected cells (8, 16, 55) also provide support for their
451 essential role in the viral replication cycle. As shown in MHV, the processing order of the nsp7-
452 10 region is crucial for viral replication: either domain deletions or switching, and cleavage site
453 mutations were lethal to the virus replication, with the exception being inactivation of the nsp9-10
454 cleavage site, which yielded an attenuated mutant virus (8).

455 Additionally, the nsp7-11 and nsp7-8 processing results indicate the presence of the nsp7-
456 8 intermediate even after 24 hours of exposure to Mpro. It is not known whether this longer-lived
457 intermediate could have some functional or essential role in the viral cycle; further suppression of
458 nsp7-8 maturation could represent a unique drug target. The existence of potent maturation
459 inhibitors in HIV has validated this concept as a plausible strategy; bevirimat, the lead for this
460 class, binds to the CA/SP1 junction of the Gag polyprotein and hinders its cleavage: this junction

461 (similarly to the nsp7-8 junction) is in a dynamic helix-to-coil equilibrium and binding of
462 bevirimat stabilizes the helical conformation (56-58). Regardless, it should be noted that, as
463 labeling techniques used for microscopy cannot distinguish between mature nsps and polyprotein
464 intermediates, chemical probes specifically targeting the nsp7-8 junction could help in further
465 elucidation of the role of polyproteins during the CoV cycle.

466 The critical observation that the studied polyproteins have similar deuterium incorporation
467 profiles as the individual proteins (and thus share similar structural elements) led us to conclude
468 that the individual nsps do not undergo large structural rearrangements following cleavage by
469 Mpro. This permitted the use of an integrative structural biology approach combining modeling
470 and experimental methodologies to elucidate the structural basis for the order of CoV-2
471 polyprotein processing. The structural predictions of nsp7-11 polyprotein using the I-TASSER
472 software provided us with an ensemble of 10 models with four representative conformations.
473 Overall, none of the four groups satisfy all the experimental HDX-MS, XL-MS, and SAXS data,
474 suggesting that the nsp7-11 polyprotein is highly dynamic and samples multiple conformations.
475 While SAXS and HDX-MS capture the extended nsp8 helix conformation represented by Group
476 A, XL-MS data are more consistent with the more globular protein conformations seen in Group
477 B and Group C. The surface-accessible areas of the cleavage junctions and secondary structure
478 element analysis of the nsp7-11 polyprotein suggested that Groups B and C (comprising six out of
479 the ten models of the ensemble) might represent the polyprotein conformations in better
480 agreement with the processing order we determined experimentally (e.g., more accessible and
481 disordered nsp9-10 junction in comparison with a more structured and hindered nsp7-8 junction).
482 On the other hand, the four models comprising Groups A and D showcase the conformational
483 adaptability of the polyprotein: in these models, the nsp7-8 junction is more exposed and
484 unstructured, thus accessible for cleavage. Overall, the nsp7-11 model ensemble recapitulates the
485 need for viral polyproteins to adopt different conformations during the replication cycle, i.e.,
486 metamorphic proteins (59, 60), given the strict genetic economy of RNA viruses.

487 The HDX-MS footprint and XL-MS of the Mpro:nsp7-11 complex reveal the importance
488 of the “incognito” part of the polyprotein—the part of the polyprotein excluding the junctions
489 captured in Mpro:substrate peptidic structures (33-35)—in processing. While we see that binding
490 to Mpro substantially stabilizes the nsp8 portion of nsp7-11 (**Fig. 2A-B and 2E**), positioning of
491 the polyprotein may be such that either the polyprotein binds to the active site of one Mpro
492 protomer and wraps around to make contact with the back side of the catalytic domain of that
493 same protomer, or the polyprotein binds to the active site of one protomer and sits on top of the
494 back side of the catalytic domain of the other protomer (**Fig. 7**). The HDX-MS footprint on

495 C145A Mpro shows that the binding to the active site is strongest, while the binding outside of it
496 is more transient (**Fig. 2C** and **2D**, respectively). This could be because the polyprotein can adopt
497 four different conformations that can interact differently with the catalytic domain and depending
498 on which junction is interacting with the active site (**Fig. 2A-B**), highlighting the transitoriness of
499 these interactions. The lack of Mpro inhibition by the non-active site surface binders also hints to
500 this more transient nature (**Fig. S15**). Nevertheless, despite this more transient nature, these
501 interactions may be important in setting the conformation of the junctions for cleavage, as
502 aforementioned.

503 The HDX-MS footprint of Mpro:nsp7-11 also reveals significant protection in the Mpro
504 dimerization interface area, especially near the Mpro C-terminus (**Fig. 2D and 6**) and suggesting
505 that nsp7-11 binding stabilizes the Mpro dimer. In this sense, El-Baba and colleagues (61)
506 identified that fragment JGY—discovered through crystallographic fragment screening and
507 binding in the dimer interface (30)—destabilized the Mpro dimer and showed ~35% inhibition of
508 the rate of processing at 100 μ M. Along the same lines, Sun and colleagues (62) discovered a
509 nanobody, NB2B4, which binds the C-terminal domain of monomeric Mpro (PDB 7VFB) and
510 inhibits activity with an IC_{50} ~150 nM. Thus, destabilization of the Mpro catalytic dimer may
511 contribute to the mechanism of inhibition. Combined with the lack of Mpro inhibition by the non-
512 active site surface binders (**Fig. S15**), allosteric inhibition of Mpro may only be efficiently
513 achieved by interface binders destabilizing the Mpro dimer. Binding in areas on the surface may
514 not distort the active site of Mpro, which is by nature very malleable (accommodating 11 different
515 junctions *in virio*) (25, 34).

516 While the impressive crystallographic small molecule repurposing campaign (32) has
517 provided valuable hits and probes along with antiviral activity testing, enzymatic inhibition was
518 not reported by this study. As reviewed for remdesivir (63), the value of mechanistic, and
519 enzymatic inhibition studies (alongside antiviral studies) is paramount, because it provides a
520 logical path for developing direct-acting antivirals. The best example in the current case is
521 pelitinib, which given its strong antiviral activity was portrayed as an allosteric inhibitor. Our
522 studies show that it might be an allosteric activator. We hypothesize that this activation might be
523 due to the stabilization of the Mpro dimer (**Fig. S15A**). To understand whether its antiviral
524 activity is due to an off-target effect [pelitinib has low inhibition of PLpro in enzymatic inhibition
525 assays, (64)] or due to dysregulation of viral maturation [as seen for efavirenz acceleration of
526 Gag-Pol processing in HIV (65)], more experiments are required.

527 In summary, this study describes the structural basis of the order of Mpro processing of
528 the essential nsp7-10/11 segment, the importance of the more transient interactions of the

529 substrate to Mpro for proper positioning and catalysis and provides a mechanistic validation of
530 allosteric inhibition. In conclusion, our results give structural insights into CoV-2 polyproteins
531 which will help us in understanding the structure-function relationships, drug design, and the
532 fundamental biology of polyprotein activity and processing in CoV-2.

533 Materials and Methods

534 Reagents and Plasmids

535 Unless otherwise specified, all chemicals and reagents were purchased from Sigma-
536 Aldrich (St. Louis, MO). Formic acid, trifluoroacetic acid, and UHPLC-grade solvents were
537 purchased from ThermoFisher. The active site inhibitor NMTV and non-active site binder
538 RS102895 were purchased from MedChemExpress. AT7519 and Climbazole were purchased
539 from Selleck Chemicals. PD168568 was purchased from Tocris Bioscience. Pelitinib was
540 purchased from BioVision. The pGEX-6P-1-nsp5 (or Mpro) plasmid was a kind gift from Dr.
541 Martin Walsh, Diamond Light Source. pGBWm4046979 (coding for full-length nsp7, NCBI
542 Reference Sequence: YP_009725303.1, codon-optimized, with an initial Met and a cleavable C-
543 terminal TEV 6x-His tag was a gift from Ginkgo Bioworks (Addgene plasmid 145611;
544 <http://n2t.net/> addgene:145611; RRID: Addgene_145611). pGBWm4046852 (coding for full-
545 length nsp8, NCBI Reference Sequence: YP_009725304.1, codon-optimized, with an initial Met
546 and a cleavable C-terminal TEV 6x-His tag) was a gift from Ginkgo Bioworks (Addgene plasmid
547 145584; <http://n2t.net/> addgene:145584; RRID: Addgene_145584). The pET-28a-nsp9 gene was
548 obtained from BEI Resources (NR-53501). The gene encoding SARS-CoV-2 nsp10 was cloned
549 into the pGEX-6P-1 vector to generate an expression construct containing an N-terminal GST tag
550 and an HRV 3C protease cleavage site (GST_{3C}Nsp10). Plasmids for codon-optimized pET-28a-
551 His₆-nsp7-8 and pET-28a-His₆-nsp7-11 (with an HRV 3C protease cleavage site between the 6x-
552 His tag and the coding sequence) were obtained from GenScript (Piscataway, NJ). Primers used
553 for cloning and mutagenesis, as well as plasmid sequences, are available upon request. HRV 3C
554 and TEV proteases were recombinantly expressed using in-house plasmids.

555

556 Protein Expression and Purification

557 WT Mpro was produced with native N- and C-termini, as described in (66). The pGEX-
558 6P-1-nsp5 expression plasmid was transformed into *E. coli* Rosetta gami competent cells and
559 cultured in LB media at 37 °C with 100 µg/mL ampicillin. Next day, the culture was diluted 1:100
560 into 1 L LB media supplemented with 100 µg/mL ampicillin. The cells were grown to an OD₆₀₀
561 (optical density at 600 nm) = 0.8 before being induced with 1 mM IPTG at 16 °C. After 10 h of
562 induction, the cells were collected by centrifugation at 7,200 x g for 10 min and stored in -80 °C.

563 The cell pellet was resuspended in 50 mM Tris pH 8.0, 300 mM NaCl, 5 mM imidazole, and 1
564 mM TCEP followed by sonication and centrifugation at 30,000 x g for 60 min. The cleared lysate
565 was loaded on a Ni-NTA affinity column (Qiagen). The bound proteins were first washed with
566 lysis buffer and then with the lysis buffer supplemented with 20 mM imidazole to remove non-
567 specific proteins. Mpro was eluted with 300 mM imidazole in the lysis buffer and then purified by
568 size-exclusion chromatography using a pre-packed Superose 6 Increase 10/300 GL column (GE
569 Healthcare Life Sciences) equilibrated in 50 mM Tris pH 8.0, 300 mM NaCl, and 1 mM TCEP.
570 The fractions containing the pure protein were pooled, concentrated, and stored in -80 °C.

571 nsp7 and nsp8 were produced as described in our earlier work (37). nsp9 was purified
572 using the protocol described in (67). Overall, the plasmid was first transformed into *E. coli* BL21-
573 CodonPlus (DE3)-RIL cells and then grown in LB media with 50 µg/mL kanamycin at 37 °C. The
574 cells were grown to an OD_{600nm} 1.0 before being induced with 0.5 mM IPTG. After 4 h of
575 induction, the cells were collected by centrifugation at 7,200 x g. The cells were resuspended in a
576 lysis buffer (20 mM HEPES pH 7.0, 150 mM NaCl, 20 mM imidazole, 2 mM MgCl₂, and 0.5
577 mM TCEP). The cells were lysed by sonication in the presence of 1 mg of lysozyme and then
578 centrifuged at 10,000 x g for 20 min. The cleared lysate was loaded on a Ni-NTA affinity column
579 (Qiagen) and the column was then washed with the lysis buffer and 50 mM imidazole buffer. The
580 His-tagged protein was eluted with 400 mM imidazole in the lysis buffer. The His-tag was
581 cleaved by incubating the protein with HRV 3C protease overnight at 4 °C. After digestion, the
582 protein was passed through a second Ni-NTA column to remove the 3C protease and the residual
583 un-cleaved protein. The protein sample was then purified by size-exclusion chromatography using
584 a pre-packed Superose 6 Increase 10/300 GL (GE Healthcare Life Sciences) equilibrated in 20
585 mM HEPES pH 7.0, 150 mM NaCl, 2 mM MgCl₂, and 0.5 mM TCEP. Pure protein-containing
586 fractions were concentrated and stored at -80 °C after snap freezing.

587 A single colony of *E. coli* BL-CodonPlus (DE3)-RIL (Agilent Technologies) carrying the
588 GST_{3C}-nsp10 was used to inoculate 50 mL of LB media containing the appropriate antibiotics
589 (100 µg/mL carbenicillin and 25 µg/mL chloramphenicol). This seeding culture was grown
590 overnight in a shaking incubator at 37 °C. The seeding cultures were then used to inoculate 1 L
591 expression cultures containing the appropriate antibiotics to an initial OD₆₀₀ of 0.2 and grown in a
592 shaking incubator at 37 °C to an OD₆₀₀ of 0.6. The temperature was reduced to 16 °C, and protein
593 expression was induced at an OD₆₀₀ of 0.9 with the addition of 0.1 mM IPTG. The expression
594 cultures were harvested after 16 hours by centrifugation for 30 min at 2555 x g, followed by
595 flash-freezing and storage at -80 °C. All centrifugation steps were performed at 4 °C. The cell
596 pellet from 1 L of expression culture was resuspended in lysis buffer (50 mM Tris, 300 mM NaCl,

597 5 mM β -mercaptoethanol, 4 mM MgSO₄, 10 % volume/volume glycerol, pH 8.0), at a ratio of 5
598 mL lysis buffer to 1 g cell paste and thawed on ice. The cells were lysed by sonication on ice for
599 8 minutes, and the cellular debris was separated from the soluble lysate by centrifugation for 30
600 min at 48,000 x g. The volume of the soluble lysate was measured, and an equal volume of
601 saturated ammonium sulfate was added to achieve 50% saturation, followed by overnight
602 incubation at 4 °C. The soluble fraction was separated by centrifugation for 30 min at 24,000 x g
603 and discarded. The pellet was resuspended in 10 mL of lysis buffer, and 100 μ L of
604 polyethyleneimine (5% w/v) was added in a dropwise fashion. The insoluble material was
605 removed by centrifugation for 30 minutes at 24,000 x g. The supernatant was decanted and added
606 to 2 mL of Glutathione Sepharose 4 FF (Cytiva) affinity medium which had been pre-equilibrated
607 with lysis buffer. Batch binding was performed on an orbital rotator at 4 °C for 4 h, and the
608 unbound protein was removed using gravity-flow chromatography and washed with 20 mL of
609 lysis buffer. GST_{3C}-nsp10 was cleaved on-column with the addition of 8 mL of lysis buffer
610 containing 0.2 mg/mL HRV 3C protease, and incubation on an orbital rotator at 4 °C overnight.
611 The cleaved nsp10 was collected in the flow-through and wash fractions, concentrated to 198 μ M
612 using an Amicon Ultra centrifugal filter (Millipore Sigma), and stored at -80 °C.

513 The nsp7-8 and nsp7-11 polyprotein genes were transformed into *E. coli* BL21-CodonPlus
514 (DE3)-RIL cells and grown overnight on an LB-agar plate containing 50 μ g/mL kanamycin. A
515 single colony was picked from the plate and inoculated into LB media with 50 μ g/mL kanamycin.
516 The culture was grown overnight at 37°C. Next morning, the starter culture was diluted 1:500 into
517 the LB media. The cells were grown at 37 °C until OD₆₀₀ ~ 1.6 was reached. The culture was then
518 allowed to cool for an hour at 20 °C with continuous shaking after which it was induced with 1
519 mM IPTG. After overnight incubation, the cells were collected by centrifugation at 7,200 x g. The
520 cell pellet was resuspended in lysis buffer (50 mM Tris pH 8.0, 500 mM NaCl, 20 mM imidazole,
521 5% glycerol, 10 mM CHAPS, 1 mM TCEP) supplemented with 1 μ M leupeptin, 1 μ M pepstatin,
522 and 1 mM PMSF. The cell suspension was lysed by sonication and clarified by centrifugation at
523 30,000 x g at 4 °C for an hour. The supernatant was loaded on a Ni-NTA affinity column
524 (Qiagen), pre-equilibrated with the lysis buffer. The column was first washed with lysis buffer
525 and then with 50 mM imidazole in lysis buffer. Homemade HRV 3C protease in the buffer
526 containing 50 mM Tris pH 8.0, 500 mM NaCl, 20 mM imidazole, 5% glycerol, 1 mM TCEP, was
527 added to perform on-column cleavage of the 6x-His tag at 4°C. The digested protein was eluted
528 from the column and passed through a second Ni-NTA column. This reverse Ni-NTA step is
529 performed to remove residual 3C protease and uncleaved protein. The protein was further purified
530 by ion-exchange chromatography using the HiTrap Heparin HP column (GE Healthcare Life

531 Sciences) and a Mono Q anion exchange column (16/10; GE Healthcare Life Sciences) using
532 gradient elution from 150 mM to 2 M NaCl. The protein sample was then purified by size-
533 exclusion chromatography using a pre-packed Superose 6 Increase 10/300 GL (GE Healthcare
534 Life Sciences) equilibrated in 50 mM Tris pH 8.0, 500 mM NaCl, 5% glycerol, and 1 mM TCEP.
535 Pure protein-containing fractions were pooled together, concentrated, and stored at -80 °C.
536

537 **Proteolysis assays with nsp7-8 and nsp7-11 polyprotein substrates**

538 WT Mpro was used to carry out cleavage assays with the nsp7-8 and nsp7-11 polyprotein
539 substrates. The *in vitro* cleavage reaction was performed by incubating the polyproteins with
540 Mpro WT (nsp7-11:Mpro molar ratio was 6:0.5, in μ M; nsp7-8:Mpro molar ratio was 5:0.5, in
541 μ M) at room temperature in the assay buffer: 50 mM Tris pH 7.5, 150 mM NaCl, and 1mM DTT.
542 The reaction was stopped at various time points by the addition of 4X stop buffer (277.8 mM
543 Tris-HCl pH 6.8, 44.4% glycerol, 4.4% SDS, 0.02% bromophenol blue). The samples were then
544 denatured at 95 °C for 5 min and assessed on a gradient SDS-PAGE gel. The bands for the full-
545 length substrates, intermediate products, and the final cleavage products were cut and confirmed
546 by mass spectrometry. In-gel trypsin digestion was performed on the gel bands and LC-MS/MS
547 was carried out on them (see SM for MS experimental details).

548 ***In vitro* assessment of the effects of small molecules on Mpro activity**

549 The stock solutions of all the Mpro binders were made in DMSO. They were diluted in
550 the assay buffer and pre-incubated for 30 min at room temperature with Mpro WT before starting
551 the reaction. The nsp7-11 polyprotein substrate was then added to the reaction at 6 μ M. The
552 reaction was stopped after 24 h. After denaturing, the samples were then run on the SDS-PAGE
553 gel. The effect of small molecules on Mpro activity was assessed by observing the amount of
554 substrate (nsp7-11) present after 24 h. The gel band intensity for nsp7-11 was calculated using
555 ImageJ software (<https://imagej.nih.gov/ij/index.html>) and plotted against the concentration of
556 binders using the GraphPad Prism Version 9.3.1 (GraphPad Software, La Jolla California USA,
557 www.graphpad.com). The IC₅₀ value calculation for NMTV was also done using the GraphPad
558 Prism Version 9.3.1.
559

560 **Crosslinking mass spectrometry (XL-MS)**

561 ***Sample preparation***

562 For DSSO (disuccinimidyl sulfoxide) (ThermoFisher) crosslinking reactions, individual
563 protein and protein-protein complexes were diluted to 10 μ M in crosslinking buffer (50 mM
564

565 HEPES pH 8.0, 500 mM NaCl, 1 mM TCEP) and incubated for 30 min at room temperature prior
566 to initiating the crosslinking reaction. DSSO crosslinker was freshly dissolved in crosslinking
567 buffer to a final concentration of 75 mM before being added to the protein solution at a final
568 concentration of 1.5 mM. The reaction was incubated at 25 °C for 45 or 90 min, then quenched by
569 adding 1 μ L of 1.0 M Tris pH 8.0 and incubating an additional 10 min at 25°C. Control reactions
570 were performed in parallel without adding the DSSO crosslinker. All crosslinking reactions were
571 carried out in three replicates. The presence of crosslinked proteins was confirmed by comparing
572 to the no-crosslink negative control samples using SDS-PAGE and Coomassie staining. The
573 remaining crosslinked and non-crosslinked samples were separately pooled and then precipitated
574 using methanol and chloroform. Dried protein pellets were resuspended in 12.5 μ L of
575 resuspension buffer (50 mM ammonium bicarbonate, 8 M urea, pH 8.0). ProteaseMAX (Promega
576 - V5111) was added to 0.02% and the solutions were mixed on an orbital shaker operating at 400
577 rpm for 5 min. After resuspension, 87.5 μ L of digestion buffer (50 mM ammonium bicarbonate
578 pH 8.0) was added. Protein samples were reduced by adding 1 μ L of 500 mM DTT followed by
579 incubation of the protein solutions on an orbital shaker operating at 400 rpm at 56 °C for 20
580 minutes. After reduction, 2.7 μ L of 550 mM iodoacetamide was added and the solutions were
581 incubated at room temperature in the dark for 15 min. Reduced and alkylated protein solutions
582 were digested overnight using trypsin at a ratio of 1:150 (w/w trypsin:protein) at 37°C. Peptides
583 were acidified with 1% trifluoroacetic acid (TFA) and then desalted using C18 ZipTip®
584 (Millipore cat # ZTC18 5096). Dried peptides were resuspended in 10 μ L of 0.1% TFA in water.
585 Samples were then frozen and stored at -20 °C until LC-MS analysis.
586

587 ***Liquid Chromatography and Mass Spectrometry***

588 500 ng of sample was injected (triplicate injections for crosslinked samples and duplicate
589 injections for control samples) onto an UltiMate 3000 UHP liquid chromatography system
590 (Dionex, ThermoFisher). Peptides were trapped using a μ PAC C18 trapping column
591 (PharmaFluidics) using a load pump operating at 20 μ L/min. Peptides were separated on a 200 cm
592 μ PAC C18 column (PharmaFluidics) using a linear gradient (1% Solvent B for 4 min, 1-30%
593 Solvent B from 4-70 min, 30-55% Solvent B from 70-90 min, 55-97% Solvent B from 90-112
594 min, and isocratic at 97% Solvent B from 112-120 min) at a flow rate of 800 nL/min. Gradient
595 Solvent A contained 0.1% formic acid and Solvent B contained 80% acetonitrile and 0.1% formic
596 acid. Liquid chromatography eluate was interfaced to an Orbitrap Fusion Lumos Tribrid mass
597 spectrometer (ThermoFisher) with a Nanospray Flex ion source (ThermoFisher). The source
598 voltage was set to 2.5 kV, and the S-Lens RF level was set to 30%. Crosslinks were identified

599 using a previously described MS2-MS3 method (68) with slight modifications. Full scans were
600 recorded from m/z 150 to 1500 at a resolution of 60,000 in the Orbitrap mass analyzer. The AGC
601 target value was set to 4e5, and the maximum injection time was set to 50 ms in the Orbitrap.
602 MS2 scans were recorded at a resolution of 30,000 in the Orbitrap mass analyzer. Only precursors
603 with charge state between 4-8 were selected for MS2 scans. The AGC target was set to 5e4, a
604 maximum injection time of 150 ms, and an isolation width of 1.6 m/z. CID fragmentation energy
605 was set to 25%. The two most abundant reporter doublets from the MS2 scans with a charge state
606 of 2-6, a 31.9721 Da mass difference, and a mass tolerance of ± 10 ppm were selected for MS3.
607 The MS3 scans were recorded in the ion trap in rapid mode using HCD fragmentation with 35%
608 collision energy. The AGC target was set to 2e4, the maximum injection time was set for 200 ms,
609 and the isolation width set to 2.0 m/z.

610

611 **Data Analysis**

612 To identify crosslinked peptides, Thermo.Raw files were imported into Proteome
613 Discoverer 2.5 (ThermoFisher) and analyzed via XlinkX algorithm (69) using the MS2_MS3
614 workflow with the following parameters: MS1 mass tolerance—10 ppm; MS2 mass tolerance—
615 20 ppm; MS3 mass tolerance—0.5 Da; digestion—trypsin with four missed cleavages allowed;
616 minimum peptide length of 4 amino acids, fixed modification—carbamidomethylation (C);
617 variable modification—oxidation (M); and DSSO (K, S, T, Y). The XlinkX/PD Validator node
618 was used for crosslinked peptide validation with a 1% false discovery rate (FDR). Identified
619 crosslinks were further validated and quantified using Skyline (version 19.1) (70) using a
620 previously described protocol (71). Crosslink spectral matches found in Proteome Discoverer
621 were exported and converted to sequence spectrum list format using Excel (Microsoft). Crosslink
622 peak areas were assessed using the MS1 full-scan filtering protocol for peaks within 8 min of the
623 crosslink spectral match identification. Peak areas were assigned to the specified crosslinked
624 peptide identification if the mass error was within 10 ppm of the theoretical mass, the isotope dot
625 product was greater than 0.95, and if the peak was not found in the non-crosslinked negative
626 control samples. The isotope dot product compares the distribution of the measured MS1 signals
627 against the theoretical isotope abundance distribution calculated based on the peptide sequence.
628 Its value ranges between 0 and 1, where 1 indicates a perfect match (72). Pair-wise comparisons
629 were made using the ‘MSstats’ package (73) implemented in Skyline to calculate relative fold
630 changes and significance. Significant change thresholds were defined as a log2 fold change less
631 than -2 or greater than 2 and -log10 p-value greater than 1.3 (p-value less than 0.05).
632 Visualization of proteins and crosslinks was generated using xiNET (74).

733 The data have been deposited to the ProteomeXchange Consortium via the PRIDE (75)
734 partner repository with the dataset identifier PXD033748.

735 **Project Name:** Biochemical and structural insights into SARS-CoV-2 polyprotein processing by
736 Mpro (XL-MS)

737 **Project accession:** PXD033748

738 **Reviewer account details:**

739 **Username:** reviewer_pxd033748@ebi.ac.uk

740 **Password:** oKi04fUZ

742 **Hydrogen-deuterium exchange mass spectrometry (HDX-MS)**

743 **Peptide identification**

744 Peptides were identified using tandem MS (MS/MS) experiments performed on a
745 QExactive (Thermo Fisher Scientific, San Jose, CA) over a 70 min gradient. Product ion spectra
746 were acquired in a data-dependent mode and the five most abundant ions were selected for the
747 product ion analysis per scan event. The MS/MS *.raw data files were converted to *.mgf files
748 and then submitted to MASCOT (version 2.3 Matrix Science, London, UK) for peptide
749 identification. The maximum number of missed cleavages was set at 4 with the mass tolerance for
750 precursor ions +/- 0.6 Da and for fragment ions +/- 8 ppm. Oxidation to methionine was selected
751 for variable modification. Pepsin was used for digestion and no specific enzyme was selected in
752 MASCOT during the search. Peptides included in the peptide set used for HDX detection had a
753 MASCOT score of 20 or greater. The MS/MS MASCOT search was also performed against a
754 decoy (reverse) sequence and false positives were ruled out if they did not pass a 1% false
755 discovery rate.

756

757 **Pulse labeling**

758 The nsp7-10 polyprotein at 10 μ M concentration was incubated with WT Mpro at 1:1
759 molar ratio and 5 μ L aliquots of the cleavage reaction were removed at 600, 1800, 3600, 14400,
760 and 86400 s. Aliquots were mixed with 20 μ L of deuterated (D₂O-containing) buffer (50 mM
761 HEPES, 500 mM NaCl, 1 mM TCEP, pH 8.4) and incubated on ice for 30 s. Deuterated samples
762 were quenched with 25 μ L quench solution (5 M urea, 1% TFA, pH 2) and immediately flash
763 frozen and stored until ready for direct inject MS analysis.

764

765 **Continuous labeling**

766 Experiments with continuous labeling were carried out on a fully automated system (CTC
767 HTS PAL, LEAP Technologies, Carrboro, NC; housed inside a 4 °C cabinet) as previously
768 described (76) with the following modifications. For differential HDX, protein-protein complexes

769 were pre-formed and allowed to incubate 30 min at room temperature prior to analysis. The
770 reactions (5 μ L) were mixed with 20 μ L of deuterated (D_2O -containing) buffer (50 mM HEPES,
771 500 mM NaCl, 1 mM TCEP, pD 8.4) and incubated at 4 °C for 0 s, 10 s, 30 s, 60 s, 900 s, or 3600
772 s. Following on-exchange, unwanted forward- or back-exchange was minimized, and the protein
773 was denatured by the addition of 25 μ L of a quench solution (5 M urea, 1% TFA, pH 2.0) before
774 being immediately passed along for online digestion.

775

776 ***HDX-MS analysis***

777 Samples were digested through an immobilized pepsin column (prepared in-house) at 50
778 μ L/min (0.1% v/v TFA, 4 °C) and the resulting peptides were trapped and desalted on a 2
779 mm \times 10 mm C8 trap column (Hypersil Gold, ThermoFisher). The bound peptides were then
780 gradient-eluted (4-40% CH_3CN v/v and 0.3% v/v formic acid) on a 2.1 mm \times 50 mm C18
781 separation column (Hypersil Gold, ThermoFisher) for 5 min. Sample handling and peptide
782 separation were conducted at 4 °C. The eluted peptides were then subjected to electrospray
783 ionization directly coupled to a high-resolution Orbitrap mass spectrometer (QExactive,
784 ThermoFisher).

785

786 ***Data rendering***

787 The intensity weighted mean m/z centroid value of each peptide envelope was calculated
788 and subsequently converted into a percentage of deuterium incorporation. This is accomplished
789 by determining the observed averages of the undeuterated and fully deuterated spectra using the
790 conventional formula described elsewhere (77). The fully deuterated control, 100% deuterium
791 incorporation, was calculated theoretically, and corrections for back-exchange were made on the
792 basis of an estimated 70% deuterium recovery and accounting for 80% final deuterium
793 concentration in the sample (1:5 dilution in deuterated buffer). Statistical significance for the
794 differential HDX data is determined by an unpaired t-test for each time point, a procedure that is
795 integrated into the HDX Workbench software (78).

796 The HDX data from all overlapping peptides were consolidated to individual amino acid
797 values using a residue averaging approach. Briefly, for each residue, the deuterium incorporation
798 values and peptide lengths from all overlapping peptides were assembled. A weighting function
799 was applied in which shorter peptides were weighted more heavily and longer peptides were
800 weighted less. Each of the weighted deuterium incorporation values were then averaged
801 incorporating this weighting function to produce a single value for each amino acid. The initial

302 two residues of each peptide, as well as prolines, were omitted from the calculations. This
303 approach is similar to that previously described (79).

304 Deuterium uptake for each peptide is calculated as the average of %D for all on-exchange
305 time points and the difference in average %D values between the unbound and bound samples is
306 presented as a heat map with a color code given at the bottom of the figure (warm colors for
307 deprotection and cool colors for protection). Peptides are colored by the software automatically to
308 display significant differences, determined either by a >5% difference (less or more protection) in
309 average deuterium uptake between the two states, or by using the results of unpaired t-tests at
310 each time point (p-value < 0.05 for any two time points or a p-value < 0.01 for any single time
311 point). Peptides with non-significant changes between the two states are colored gray. The
312 exchange at the first two residues for any given peptide is not colored. Each peptide bar in the
313 heat map view displays the average Δ %D values, associated standard deviation, and the charge
314 state. Additionally, overlapping peptides with a similar protection trend covering the same region
315 are used to rule out data ambiguity.

316 The data have been deposited to the ProteomeXchange Consortium via the PRIDE (75) partner
317 repository with the dataset identifier PXD033702 for the pulse labeling HDX-MS experiment and
318 PXD033698 for continuous labeling HDX-MS experiments.

319 **Project Name:** Biochemical and structural insights into SARS-CoV-2 polyprotein processing by
320 Mpro (HDX-MS continuous labeling)

321 **Project accession:** PXD033698

322 **Reviewer account details:**

323 **Username:** reviewer_pxd033698@ebi.ac.uk

324 **Password:** QgiXipcs

326 **Project Name:** Biochemical and structural insights into SARS-CoV-2 polyprotein processing by
327 Mpro (HDX-MS pulse labeling)

328 **Project accession:** PXD033702

329 **Reviewer account details:**

330 **Username:** reviewer_pxd033702@ebi.ac.uk

331 **Password:** wHh4zEPB

333 SEC-MALS-SAXS

334 Purified and concentrated nsp7-8 (8 mg/mL) and nsp7-11 (4 mg/mL) were used for data
335 collection. SAXS was performed at BioCAT (beamline 18ID at the Advanced Photon Source,
336 Chicago) with in-line size exclusion chromatography (SEC) to separate sample from aggregates
337 and other contaminants thus ensuring optimal sample quality and multiangle light scattering
338 (MALS), dynamic light scattering (DLS) and refractive index measurement (RI) for additional
339 biophysical characterization (SEC-MALS-SAXS). The samples were loaded on a Superdex 200

340 Increase 10/300 GL column (Cytiva) run by a 1260 Infinity II HPLC (Agilent Technologies) at
341 0.6 mL/min. The flow passed through (in order) the Agilent UV detector, a MALS detector and a
342 DLS detector (DAWN Helios II, Wyatt Technologies), and an RI detector (Optilab T-rEX,
343 Wyatt). The flow then went through the SAXS flow cell. The flow cell consists of a 1.0 mm ID
344 quartz capillary with ~20 μ m walls. A coflowing buffer sheath is used to separate samples from
345 the capillary walls, helping prevent radiation damage (80). Scattering intensity was recorded
346 using a Pilatus3 X 1M (Dectris) detector which was placed 3.69 m from the nsp7-11 sample
347 giving us access to a q-range of 0.003 \AA^{-1} to 0.35 \AA^{-1} and 3.631 m from the nsp7-8 sample giving
348 us access to a q-range of 0.0047 \AA^{-1} to 0.35 \AA^{-1} . The data was reduced using BioXTAS RAW
349 2.0.3 (81). Buffer blanks were created by averaging regions flanking the elution peak and
350 subtracted from exposures selected from the elution peak to create the $I(q)$ vs q curves used for
351 subsequent analyses. Molecular weights and hydrodynamic radii were calculated from the MALS
352 and DLS data respectively using the ASTRA 7 software (Wyatt). Data analysis was carried out
353 using the RAW software package for the determination of radius of gyration (R_g), $P(r)$
354 distribution, particle maximum dimension (D_{max}) parameters, and for qualitative flexibility
355 analysis (through generation of R_g -Normalized Kratky and Guinier plots). Volumetric bead
356 modeling was performed using the DAMMIN software package (52). The resulting bead models
357 were averaged and filtered using the DAMAVER package (82), generating the final bead model
358 reconstruction. The SAXS data are deposited in the SAXS database under the accession codes
359 SASDPY2, SASDPZ2, SASDP23 and SASDP33.

360

361 Structural integrative modeling using I-TASSER

362 For the structural predictions of the nsp7-11 polyprotein, an integrative modeling
363 approach was employed. The I-TASSER server (43), which is an online source for automated
364 protein structure prediction, was used to generate models of the polyproteins. A two-run approach
365 was used to model the nsp7-11 polyprotein. Run 1 included the following inputs: i) amino acid
366 sequence, ii) distance constraints from XL-MS, iii) nsp7-8 model as a template, and iv) secondary
367 structure constraints for nsp7, nsp8, nsp9, and nsp10 as advised by HDX-MS to generate Models
368 A1-2, D, and C1-C2 (**Fig. 3B-C**). Run 2 included: i) amino acid sequence, ii) distance constraints
369 from XL-MS, iii) nsp7-8 as a template, and iv) secondary structure constraints for nsp8, nsp9, and
370 nsp10 as advised by HDX-MS to generate Models A3 and B1-4 (**Fig. 3B-C**). Initial observation
371 of the polyprotein by HDX-MS showed a similar pattern of deuterium uptake compared to the
372 individual proteins (**Fig. 3A**), suggesting that secondary structures within the polyprotein are
373 likely to largely resemble the secondary structures of the mature nsps. Accordingly, this allowed

374 us to delineate secondary structural constraints based on solved X-ray crystal structures of nsp7,
375 nsp8, nsp9, and nsp10. We also used two nsp7-8 models we previously generated using a similar
376 integrative modeling workflow to serve as additional structural templates since the HDX-MS
377 footprint of the nsp7-8 polyprotein resembles the footprint of nsp7-8 in nsp7-11 (**Fig. 3A**). The
378 two nsp7-8 models were chosen based on their varying agreement with the XL-MS and HDX-MS
379 data in order to limit bias from a particular experimental approach and sample the conformational
380 landscape as thoroughly as possible (**see SM for nsp7-8 integrative modeling**).

381 The ten nsp7-11 output models were assessed against the experimental (i) HDX-MS,
382 (ii) XL-MS and the (iii) SAXS data: (i) Agreement of models to HDX-MS data was completed
383 using HDXer which generated theoretical deuterium uptake values for the models to compare to
384 experimental values (49, 50). Smaller RMSE indicates better agreement of models to
385 experimental data. (ii) Crosslinks were mapped on the models using xiVIEW (doi:
386 [10.1101/561829](https://doi.org/10.1101/561829)) to calculate distances and determine percentage of crosslinks satisfied, *i.e.*,
387 distances less than 30 Å. (iii) A theoretical scattering profile was generated for each model using
388 the CRYSTAL web interface (83). The theoretical scattering profile of each model was then fitted
389 against the experimental scattering profile. Finally, the secondary structural elements and the
390 solvent-accessible surface area of the junction sites for both polyproteins were also analyzed, and
391 the results were compared with the limited proteolysis results to evaluate the physiological
392 relevance of the structure in the context of polyprotein processing. The junction accessible area
393 was calculated by the summation of the accessible area of four residues (P1, P2, P1', P2') at the
394 junction site. The accessible surface area for each residue was calculated using VADAR (84). The
395 integrative structures of nsp7-11 polyprotein have been deposited in the PDB-Dev databank under
396 accession code PDBDEV_00000120. They are also provided in the SM as PyMOL sessions.
397

398 Acknowledgments

399 We thank Dr. Manju Narwal and Prof. Katsuhiko Murakami (Pennsylvania State
400 University) for graciously providing protein samples for the C145A Mpro mutant and the nsp7-10
401 polyprotein and performing the proteolysis assay of nsp7-10 polyprotein with WT Mpro. We
402 thank Bruce Pascal and Roberto Vera Alvarez (Omics Informatics LLC) for their help running the
403 nsp7-11 and nsp7-8 models through the HDXer software. We thank Dr. Haiyan Zheng and Prof.
404 Peter Lobel for performing the in-gel LC-MS/MS for the limited proteolysis assay of nsp7-11
405 polyprotein by Mpro. Molecular graphics and analyses were performed with: 1) UCSF Chimera,
406 developed by the Resource for Biocomputing, Visualization, and Informatics at the University of

907 California, San Francisco; and 2) PyMOL, (DeLano WL (2002) The PyMOL molecular graphics
908 system. San Carlos, CA: DeLano Scientific).

909

910 **Funding:** We are grateful for support from NIH grants U54 AI150472 (E.A. and P.R.G.) and AI
911 027690 (E.A.), F31 DK126394 (V.V.C), R01 AI167356 (S.G.S.), T32 AI157855 (R.L.S.), and a
912 research award from the Rutgers Center for COVID-19 Response and Pandemic Preparedness
913 (E.A.). We are grateful to Vikas Nanda and Paul Falkowski for providing financial support for
914 Jennifer Timm's efforts.

915 This research used resources of the Advanced Photon Source, a U.S. Department of Energy
916 (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne
917 National Laboratory under Contract No. DE-AC02-06CH11357. This project was supported by
918 grant P30 GM138395 from the National Institute of General Medical Sciences of the National
919 Institutes of Health. Use of the Pilatus 3 1M detector was provided by grant 1S10OD018090-01
920 from NIGMS. The content is solely the responsibility of the authors and does not necessarily
921 reflect the official views of the National Institute of General Medical Sciences or the National
922 Institutes of Health.

923

924 **Author contributions:** Each author's contribution(s) to the paper are as follows:

925 Conceptualization: EA, PRG, FXR, RY, VVC, SKD

926 Methodology: RY, VVC, SKD, JJEKH, JT, JBH, FXR, RLS

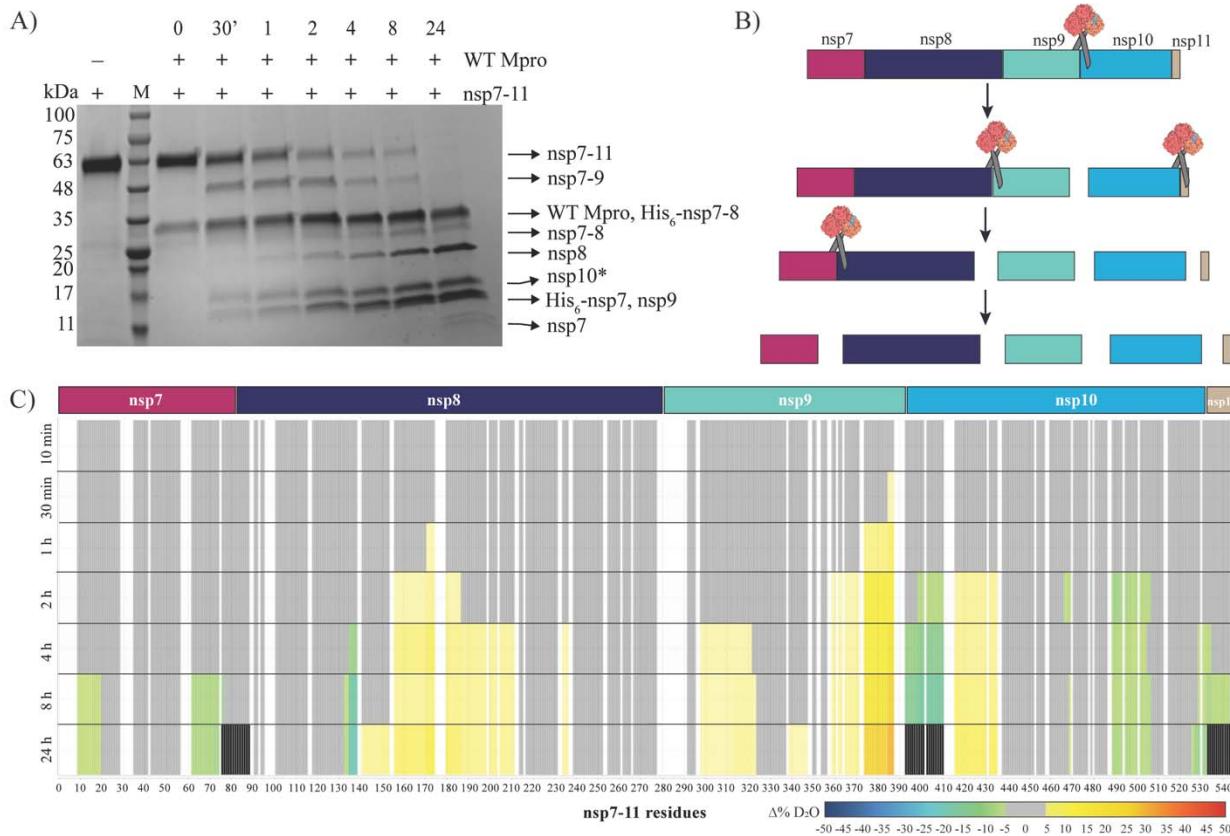
927 Investigation: RY, VVC, SKD, RLS, SGS, EA, PRG, FXR

928 Visualization: RY, VVC, SKD, FXR

929 Supervision: EA, PRG, FXR

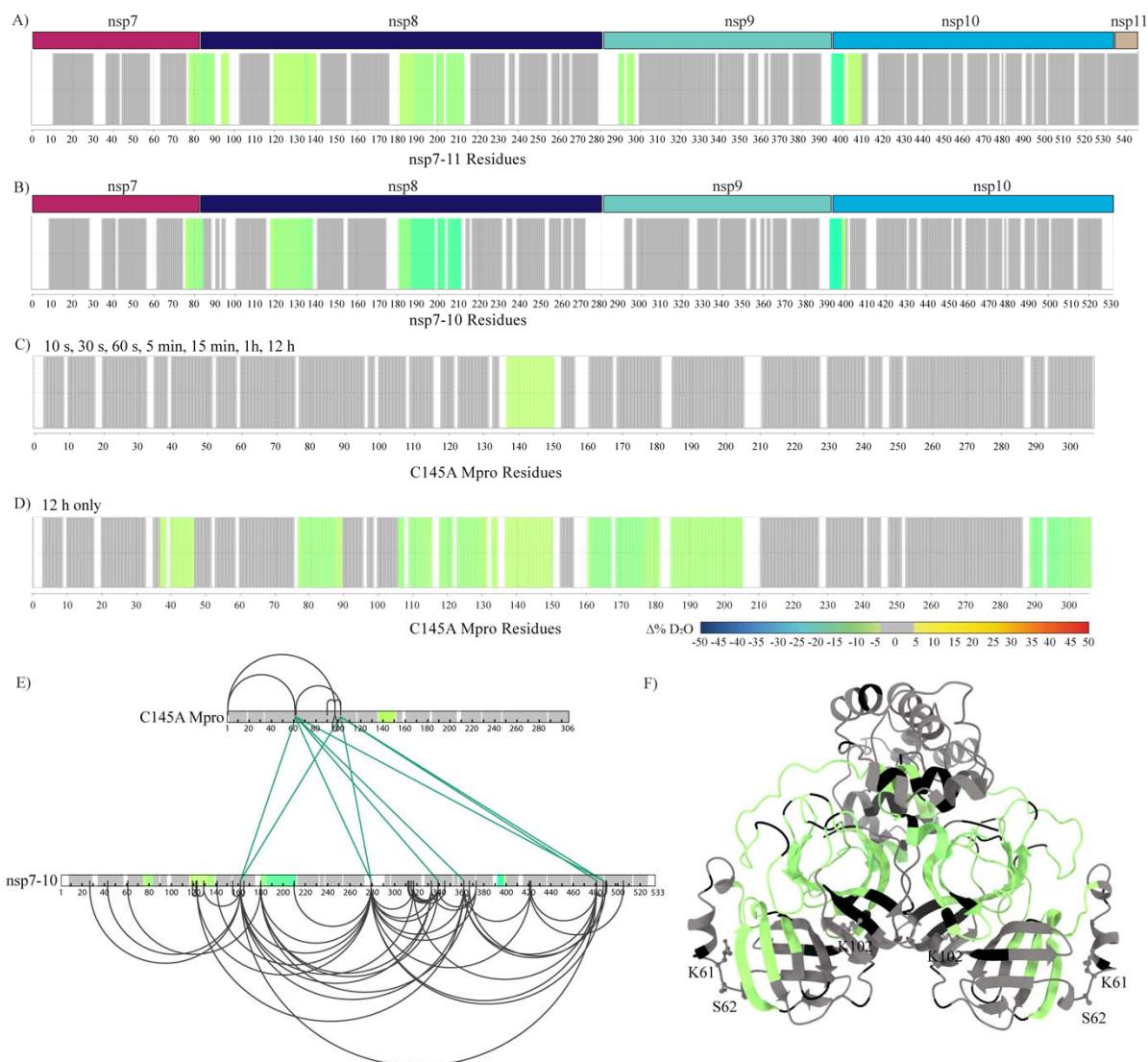
930 Writing—original draft: RY, VVC, FXR, EA, PRG

931 Writing—review & editing: all authors

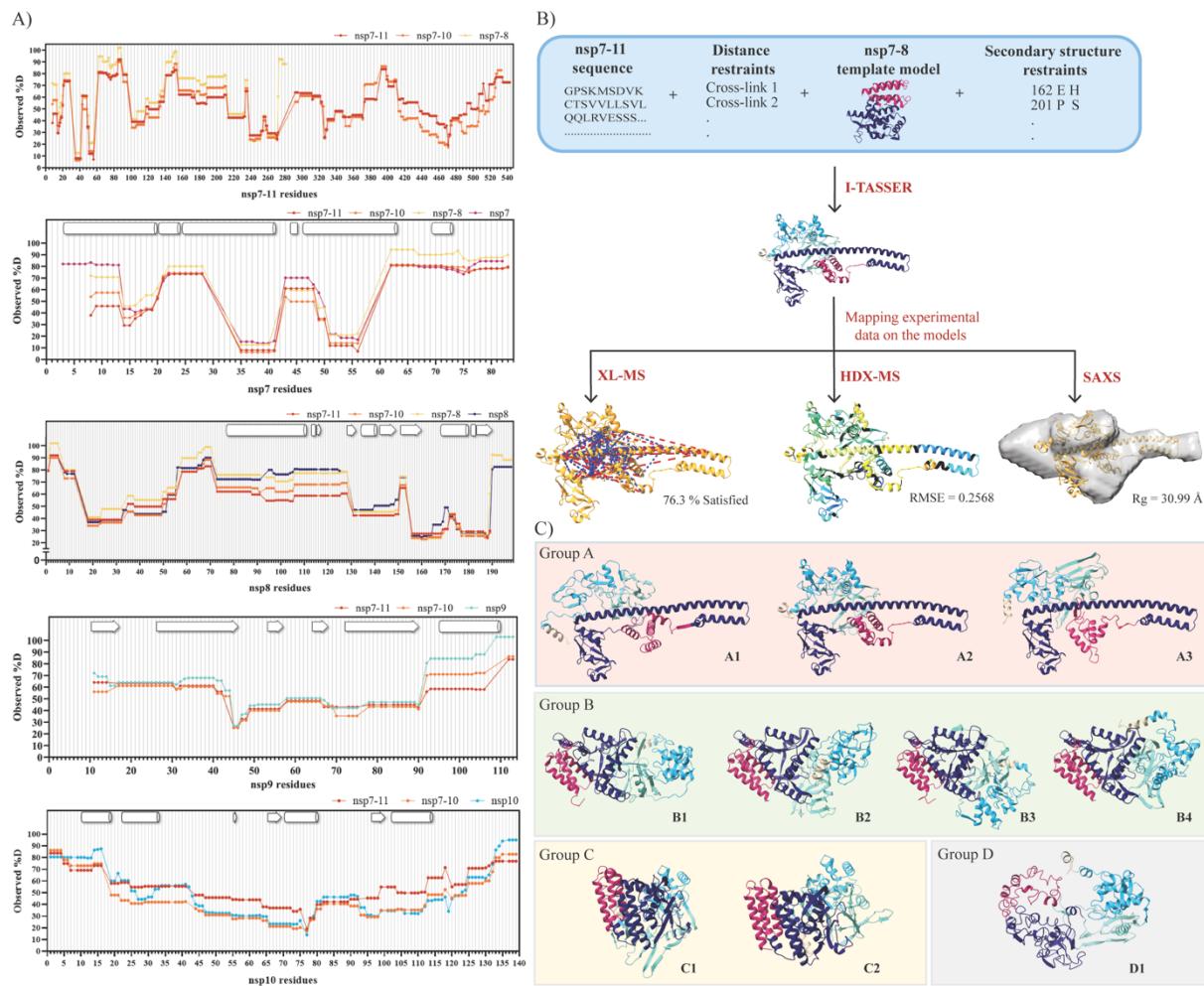

932

933 **Competing interests:** All authors declare they have no competing interests.

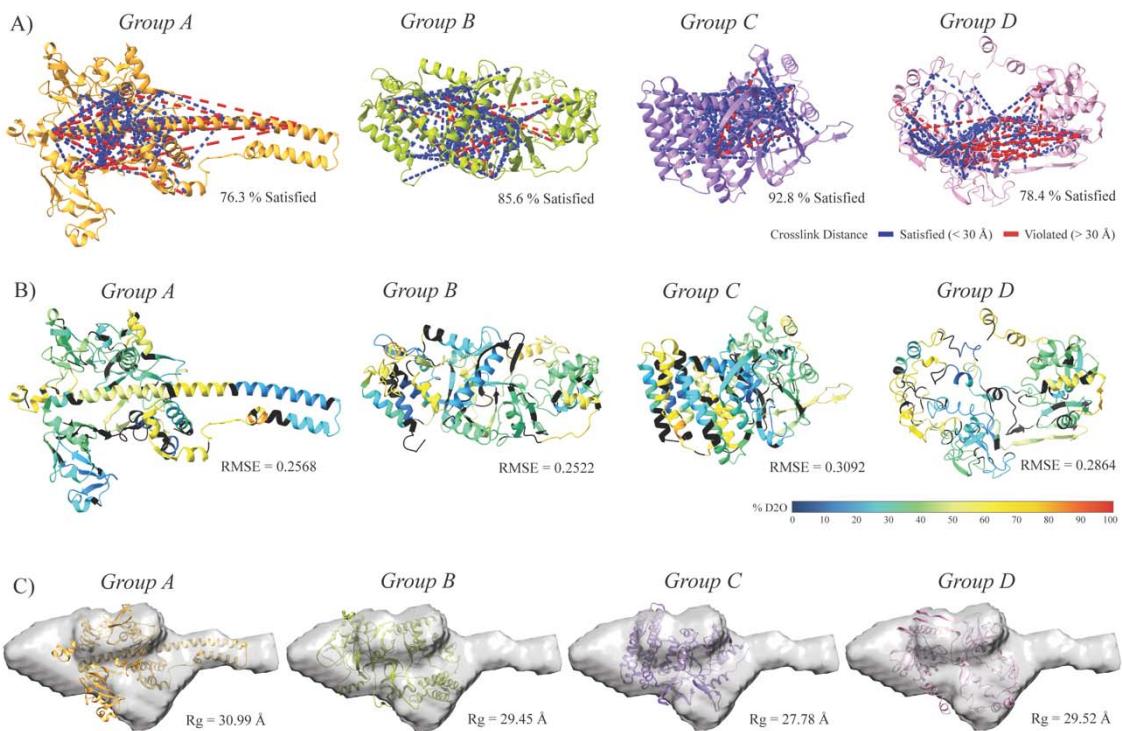
934


935 **Data and materials availability:** All data needed to evaluate the conclusions in the paper are
936 present in the paper, including accession numbers to databases, and the Supplementary Materials.
937 Correspondence and requests for materials should be addressed to Eddy Arnold, Patrick R.
938 Griffin, and Francesc X. Ruiz.
939

940 **Figures**


942 **Fig. 1. *In vitro* analysis of the nsp7-11 polyprotein processing by WT Mpro.** (A) SDS-PAGE
943 showing the limited proteolysis of nsp7-11 polyprotein by Mpro over a time course of 24 h. +/-
944 shows the presence or the absence of the respective proteins. The lane labeled as M is the protein
945 marker. Black arrows on the right indicate the proteins generated from the cleavage of nsp7-11
946 polyprotein by Mpro. (B) Schematic representation of the cleavage order of the nsp7-11
947 polyprotein by Mpro. (C) Pulsed HDX-MS analysis of nsp7-11 with Mpro. Color scale represents
948 changes in deuterium uptake over the course of the cleavage reaction, with gray representing no
949 significant change in deuterium uptake, white denoting no sequence coverage, and black
950 representing residues within peptides that are no longer identifiable.
951

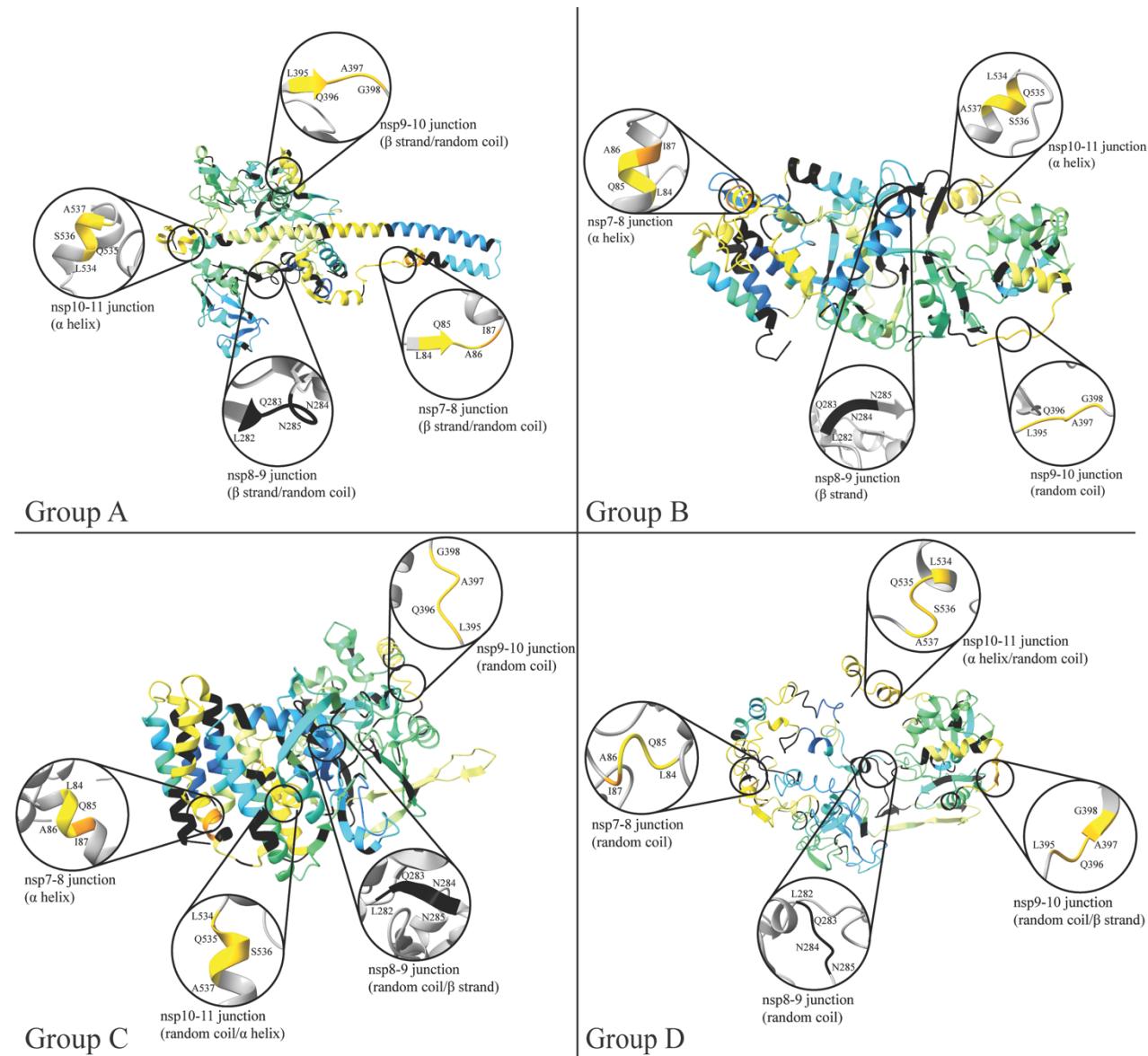
952



953

954 **Fig 2. HDX-MS and XL-MS reveal the in-solution dynamics of the Mpro polyprotein**
955 **complex.** Consolidated differential HDX-MS results of (A) nsp7-11 vs nsp7-11 in complex with
956 C145A Mpro, (B) nsp7-10 vs nsp7-10 in complex with C145A Mpro, (C) C145A Mpro vs C145A
957 Mpro with nsp7-11 over time course up to 1 h and including 12 h, and (D) C145A Mpro vs
958 C145A Mpro with nsp7-11 at 12 h only. All consolidated differential HDX-MS results are
959 colored based on change in percent deuterium as described in scale bar, with regions showing no
960 significant change in deuterium in gray and regions with no sequence coverage in white. (E)
961 Overlay of HDX-MS and XL-MS results on nsp7-10 and C145A Mpro sequences. Observed intra
962 Mpro and intra nsp7-10 crosslinks colored in black and inter C145A Mpro to nsp7-10 crosslinks
963 colored in green. Consolidated changes in percent deuterium uptake are taken from **Fig. 2B and**
964 **2C.** (F) Overlay of HDX-MS results on C145A Mpro (modeled based on PDB 7DVY). C145A
965 Mpro residues forming inter protein crosslinks with nsp7-10 are shown as sticks and labeled.
966 Consolidated changes in percent deuterium uptake are taken from **Fig. 2D.**

Fig 3. Integrative structural modeling generates an ensemble of nsp7-11 models. (A) Plots of observed percent deuterium per residue for nsp7, nsp8, nsp9, nsp7-8, nsp7-10, and nsp7-11. Secondary structures from PDB 6YHU for nsp7 and nsp8, PDB 6WXD for nsp9, and PDB 6ZPE for nsp10 are drawn on plots with α -helices shown as barrels, \square -strands shown as arrows and coils shown as rectangles. (B) Scheme of integrative structural modeling workflow for the nsp7-11 polyprotein. One model is shown to represent all ten generated. (C) Top ten nsp7-11 models grouped into four representative tertiary structures. Models are colored by nsp with nsp7 in magenta, nsp8 in purple, nsp9 in teal, nsp10 in cyan, and nsp11 in tan.


981

982 **Fig 4. Assessment of representative nsp7-11 models based on experimental data.** (A)
983 Mapping of nsp7-11 intra-protein crosslinks onto representative nsp7-11 models. Satisfied
984 crosslinks equal to or less than 30 Å are shown in blue and violated crosslinks greater than 30 Å
985 are shown in red. Percent of crosslinks satisfied is reported under structure. (B) Representative
986 nsp7-11 models are colored based on 10 s percent deuterium value. Black indicates no sequence
987 coverage in the HDX-MS experiment. Agreement of model with experimental data as calculated
988 by HDXer is reported as the RMSE under the model. (C) Fitting of representative nsp7-11 models
989 into the SAXS envelope and Rg values are reported under the model.

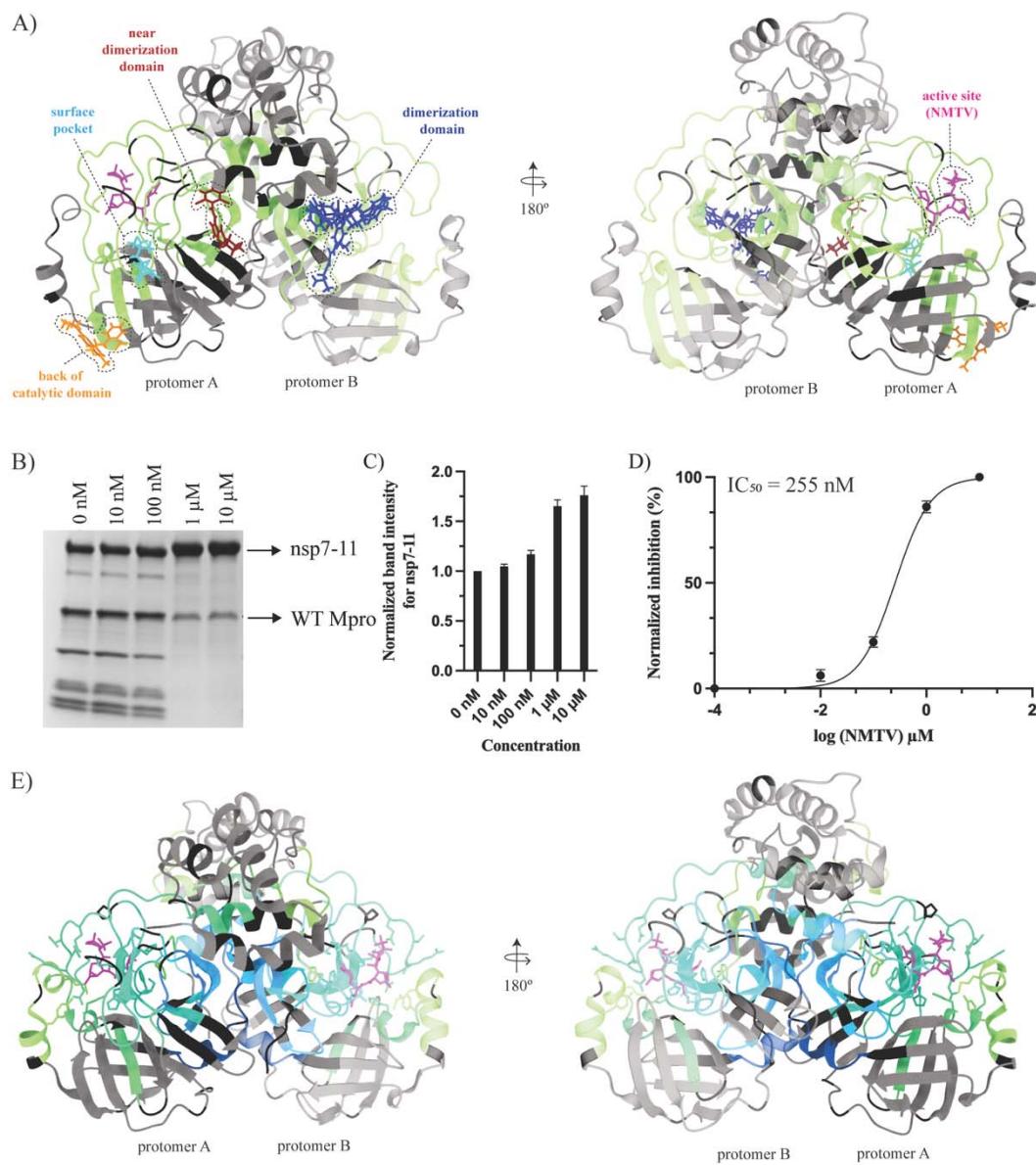
990

991

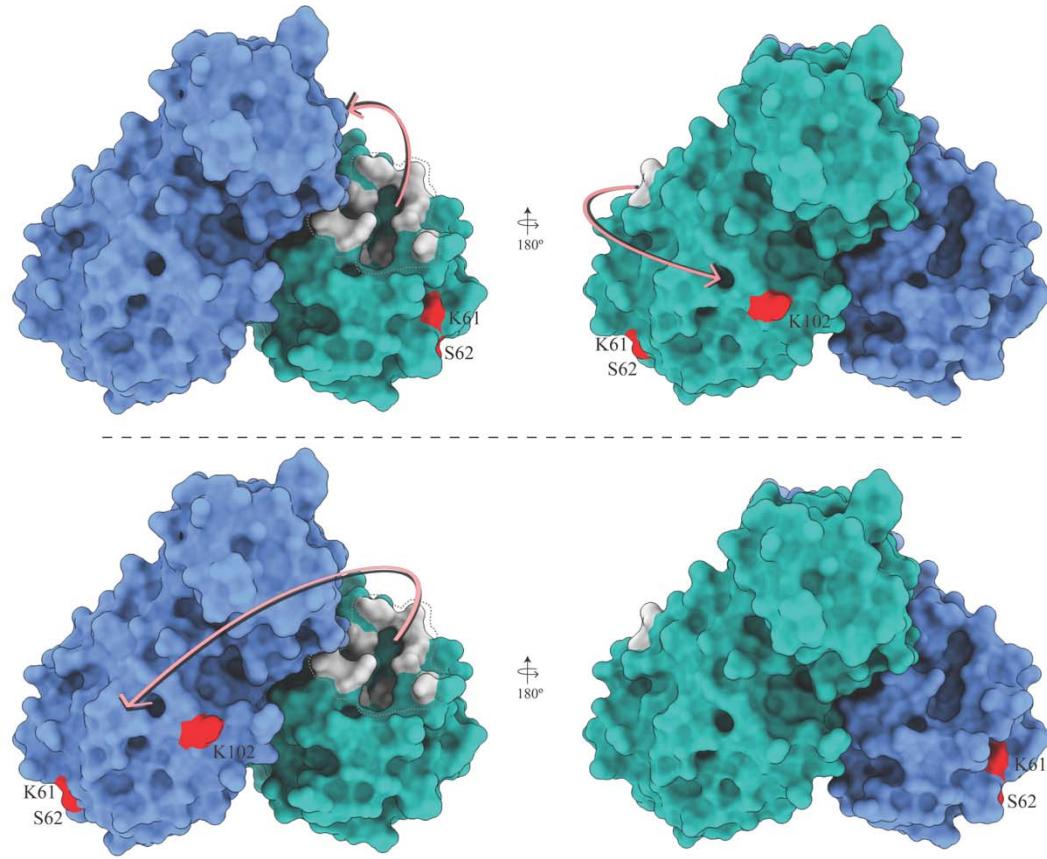
992

994 **Fig 5. Assessment of junction site in representative nsp7-11 models.** Analysis of secondary
995 structure elements of junction sites in representative nsp7-11 models. Models are overlaid with 10
996 s deuterium uptake values from **Fig. 4B**.

997


998

999


100

101

102

003
004 **Fig 6. Inhibition of polyprotein processing by small molecules.** (A) Mapping of small
005 molecules or fragments onto the structure of Mpro (PDB 7DVY) that is colored according to the
006 consolidated differential percent deuterium uptake values shown in **Fig. 2D**. Binders are shown as
007 stick models and color-coded by the region of Mpro they interact with. See **Table S4** for more
008 information regarding binders. (B) SDS-PAGE gel showing proteolytic processing of nsp7-11 by
009 Mpro in the presence of increasing nirmatrelvir (NMTV) concentrations (0-10 μ M) for 24 h. (C)
010 Inhibition of NMTV is shown by plotting the normalized band intensities of the nsp7-11 substrate
011 vs. NMTV concentrations. (D) Dose-response curve of NMTV inhibition of Mpro. The IC_{50} value
012 was calculated from three independent replicates. (E) Differential HDX-MS results for Mpro in
013 the presence and absence of NMTV overlaid onto the structure of Mpro with NMTV (PDB
014 7RFW).

015

016

017 **Fig 7. Schematic representation of the nsp7-11 polyprotein substrate binding to Mpro.**

018 Polyprotein binding to the active site of one Mpro protomer and wrapping around to contact the
019 back side of the catalytic domain of that same protomer (*upper panel*). Polyprotein binding to the
020 active site of one protomer and sitting on top of the back side of the catalytic domain of the other
021 protomer (*lower panel*). The two protomers of Mpro are shown in blue and cyan. Protein residues
022 shown in gray are the active site residues and residues in red are sites of inter-protein crosslinking
023 with the polyprotein.

024

025 **Supplementary Materials**

026 Supplementary Text

027 Figs. S1 to S15

028 Tables S1 to S4

029 References

030 **Other Supplementary Materials for this manuscript include the following:**

031 PyMOL sessions with integrative structures of nsp7-8 and nsp7-11 polyproteins

032

033 **References**

- 034 1. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu,
035 P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao, W. Tan, I. China Novel
036 Coronavirus, T. Research, A Novel Coronavirus from Patients with Pneumonia in China,
037 2019. *N. Engl. J. Med.* **382**, 727-733 (2020).
- 038 2. D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J.
039 O'Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Huttenhain, R. M.
040 Kaake, A. L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M.
041 Kim, P. Haas, B. J. Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J.
042 Bennett, M. Cakir, M. J. McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. Mac Kain,
043 L. Miorin, E. Moreno, Z. Z. C. Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I. T.
044 Kirby, J. E. Melnyk, J. S. Chorba, K. Lou, S. A. Dai, I. Barrio-Hernandez, D. Memon, C.
045 Hernandez-Armenta, J. Lyu, C. J. P. Mathy, T. Perica, K. B. Pilla, S. J. Ganesan, D. J.
046 Saltzberg, R. Rakesh, X. Liu, S. B. Rosenthal, L. Calviello, S. Venkataramanan, J. Liboy-
047 Lugo, Y. Lin, X. P. Huang, Y. Liu, S. A. Wankowicz, M. Bohn, M. Safari, F. S. Ugur, C.
048 Koh, N. S. Savar, Q. D. Tran, D. Shengjuler, S. J. Fletcher, M. C. O'Neal, Y. Cai, J. C. J.
049 Chang, D. J. Broadhurst, S. Klippsten, P. P. Sharp, N. A. Wenzell, D. Kuzuoglu-Ozturk,
050 H. Y. Wang, R. Trenker, J. M. Young, D. A. Cavero, J. Hiatt, T. L. Roth, U. Rathore, A.
051 Subramanian, J. Noack, M. Hubert, R. M. Stroud, A. D. Frankel, O. S. Rosenberg, K. A.
052 Verba, D. A. Agard, M. Ott, M. Emerman, N. Jura, M. von Zastrow, E. Verdin, A.
053 Ashworth, O. Schwartz, C. d'Enfert, S. Mukherjee, M. Jacobson, H. S. Malik, D. G.
054 Fujimori, T. Ideker, C. S. Craik, S. N. Floor, J. S. Fraser, J. D. Gross, A. Sali, B. L. Roth,
055 D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. Garcia-Sastre, K. M.
056 Shokat, B. K. Shoichet, N. J. Krogan, A SARS-CoV-2 protein interaction map reveals
057 targets for drug repurposing. *Nature* **583**, 459-468 (2020).
- 058 3. B. Meyer, J. Chiaravalli, S. Gellenoncourt, P. Brownridge, D. P. Bryne, L. A. Daly, A.
059 Grauslys, M. Walter, F. Agou, L. A. Chakrabarti, C. S. Craik, C. E. Eyers, P. A. Eyers, Y.
060 Gambin, A. R. Jones, E. Sierecki, E. Verdin, M. Vignuzzi, E. Emmott, Characterising
061 proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular
062 targets with therapeutic potential. *Nat. Commun.* **12**, 5553 (2021).
- 063 4. E. Emmott, A. de Rougemont, M. Hosmillo, J. Lu, T. Fitzmaurice, J. Haas, I. Goodfellow,
064 Polyprotein processing and intermolecular interactions within the viral replication
065 complex spatially and temporally control norovirus protease activity. *J. Biol. Chem.* **294**,
066 4259-4271 (2019).
- 067 5. G. Shin, S. A. Yost, M. T. Miller, E. J. Elrod, A. Grakoui, J. Marcotrigiano, Structural and
068 functional insights into alphavirus polyprotein processing and pathogenesis. *Proc. Natl.
069 Acad. Sci. U.S.A.* **109**, 16534-16539 (2012).
- 070 6. S. A. Yost, J. Marcotrigiano, Viral precursor polyproteins: keys of regulation from
071 replication to maturation. *Curr. Opin. Virol.* **3**, 137-142 (2013).

72 7. A. G. Bost, R. H. Carnahan, X. T. Lu, M. R. Denison, Four proteins processed from the
73 replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and
74 adjacent to sites of virion assembly. *J. Virol.* **74**, 3379-3387 (2000).

75 8. D. J. Deming, R. L. Graham, M. R. Denison, R. S. Baric, Processing of open reading
76 frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication.
77 *J. Virol.* **81**, 10280-10291 (2007).

78 9. J. Ziebuhr, S. G. Siddell, Processing of the human coronavirus 229E replicase
79 polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic
80 products and cleavage sites common to pp1a and pp1ab. *J. Virol.* **73**, 177-185 (1999).

81 10. W. Cui, S. Cui, C. Chen, X. Chen, Z. Wang, H. Yang, L. Zhang, The crystal structure of
82 main protease from mouse hepatitis virus A59 in complex with an inhibitor. *Biochem.*
83 *Biophys. Res. Commun.* **511**, 794-799 (2019).

84 11. R. W. Korner, M. Majjouti, M. A. A. Alcazar, E. Mahabir, Of Mice and Men: The
85 Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-
86 CoV-2. *Viruses* **12**, 880 (2020).

87 12. T. P. Sheahan, A. C. Sims, S. T. Zhou, R. L. Graham, A. J. Pruijssers, M. L. Agostini, S.
88 R. Leist, A. Schafer, K. H. Dinnon, L. J. Stevens, J. D. Chappell, X. T. Lu, T. M. Hughes,
89 A. S. George, C. S. Hill, S. A. Montgomery, A. J. Brown, G. R. Bluemling, M. G.
90 Natchus, M. Saindane, A. A. Kolykhalov, G. Painter, J. Harcourt, A. Tamin, N. J.
91 Thornburg, R. Swanstrom, M. R. Denison, R. S. Baric, An orally bioavailable broad-
92 spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and
93 multiple coronaviruses in mice. *Sci. Transl. Med.* **12**, (2020).

94 13. A. Kanjanahaluethai, S. C. Baker, Identification of mouse hepatitis virus papain-like
95 proteinase 2 activity. *J. Virol.* **74**, 7911-7921 (2000).

96 14. J. J. Schiller, A. Kanjanahaluethai, S. C. Baker, Processing of the coronavirus MHV-JHM
97 polymerase polyprotein: identification of precursors and proteolytic products spanning
98 400 kilodaltons of ORF1a. *Virology* **242**, 288-302 (1998).

99 15. S. G. Sawicki, D. L. Sawicki, D. Younker, Y. Meyer, V. Thiel, H. Stokes, S. G. Siddell,
100 Functional and genetic analysis of coronavirus replicase-transcriptase proteins. *PLOS*
101 *Pathog.* **1**, e39 (2005).

102 16. E. F. Donaldson, R. L. Graham, A. C. Sims, M. R. Denison, R. S. Baric, Analysis of
103 murine hepatitis virus mutant TS-LA6 suggests that polyprotein vol. 81, no. 13 strain A59
104 temperature-sensitive nsp10 plays a critical role in processing. *J. Virol.* **81**, 7086-7098
105 (2007).

106 17. R. Gosert, A. Kanjanahaluethai, D. Egger, K. Bienz, S. C. Baker, RNA replication of
107 mouse hepatitis virus takes place at double-membrane vesicles. *J. Virol.* **76**, 3697-3708
108 (2002).

109 18. K. Knoops, M. Kikkert, S. H. E. van den Worm, J. C. Zevenhoven-Dobbe, Y. van der
110 Meer, A. J. Koster, A. M. Mommaas, E. J. Snijder, SARS-coronavirus replication is
111 supported by a reticulovesicular network of modified endoplasmic reticulum. *PLOS Biol.*
112 **6**, 1957-1974 (2008).

113 19. D. Oudshoorn, K. Rijs, R. W. A. L. Limpens, K. Groen, A. J. Koster, E. J. Snijder, M.
114 Kikkert, M. Barcena, Expression and Cleavage of Middle East Respiratory Syndrome
115 Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That
116 Mimic Those Associated with Coronaviral RNA Replication. *mBio.* **8**, (2017).

117 20. G. Wolff, R. W. A. L. Limpens, J. C. Zevenhoven-Dobbe, U. Laugks, S. Zheng, A. W. M.
118 de Jong, R. I. Koning, D. A. Agard, K. Grunewald, A. J. Koster, E. J. Snijder, M. Barcena,
119 A molecular pore spans the double membrane of the coronavirus replication organelle.
120 *Science* **369**, 1395-1398 (2020).

121 21. B. Krichel, G. Bylapudi, C. Schmidt, C. Blanchet, R. Schubert, L. Brings, M. Koehler, R.
122 Zenobi, D. Svergun, K. Lorenzen, R. Madhugiri, J. Ziebuhr, C. Uetrecht, Hallmarks of
123 Alpha- and Betacoronavirus non-structural protein 7+8 complexes. *Sci. Adv.* **7**, (2021).

124 22. B. Krichel, S. Falke, R. Hilgenfeld, L. Redecke, C. Uetrecht, Processing of the SARS-
125 CoV pp1a/ab nsp7-10 region. *Biochem J.* **477**, 1009-1019 (2020).

126 23. S. Gildenhuys, Expanding our understanding of the role polyprotein conformation plays in
127 the coronavirus life cycle. *Biochem. J.* **477**, 1479-1482 (2020).

128 24. G. D. Noske, A. M. Nakamura, V. O. Gawriljuk, R. S. Fernandes, G. M. A. Lima, H. V.
129 D. Rosa, H. D. Pereira, A. C. M. Zeri, A. F. Z. Nascimento, M. C. L. C. Freire, D. Fearon,
130 A. Douangamath, F. von Delft, G. Oliva, A. S. Godoy, A Crystallographic Snapshot of
131 SARS-CoV-2 Main Protease Maturation Process. *J. Mol. Biol.* **433**, (2021).

132 25. D. W. Kneller, G. Phillips, H. M. O'Neill, R. Jedrzejczak, L. Stols, P. Langan, A.
133 Joachimiak, L. Coates, A. Kovalevsky, Structural plasticity of SARS-CoV-2 3CL M-pro
134 active site cavity revealed by room temperature X-ray crystallography. *Nat. Commun.* **11**,
135 3202 (2020).

136 26. D. W. Kneller, G. Phillips, H. M. O'Neill, K. Tan, A. Joachimiak, L. Coates, A.
137 Kovalevsky, Room-temperature X-ray crystallography reveals the oxidation and reactivity
138 of cysteine residues in SARS-CoV-2 3CL M(pro): insights into enzyme mechanism and
139 drug design. *IUCrJ* **7**, 1028-1035 (2020).

140 27. Z. M. Jin, X. Y. Du, Y. C. Xu, Y. Q. Deng, M. Q. Liu, Y. Zhao, B. Zhang, X. F. Li, L. K.
141 Zhang, C. Peng, Y. K. Duan, J. Yu, L. Wang, K. L. Yang, F. J. Liu, R. D. Jiang, X. L.
142 Yang, T. You, X. C. Liu, X. N. Yang, F. Bai, H. Liu, X. Liu, L. W. Guddat, W. Q. Xu, G.
143 F. Xiao, C. F. Qin, Z. L. Shi, H. L. Jiang, Z. H. Rao, H. T. Yang, Structure of Mpro from
144 SARS-CoV-2 and discovery of its inhibitors. *Nature* **582**, 289-293 (2020).

145 28. L. L. Zhang, D. Z. Lin, X. Y. Y. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K.
146 Rox, R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for
147 design of improved alpha-ketoamide inhibitors. *Science* **368**, 409-412 (2020).

148 29. D. R. Owen, C. M. N. Allerton, A. S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt,
149 B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman, A. Dantonio, L. Di, H. Eng, R. Ferre, K.
150 S. Gajiwala, S. A. Gibson, S. E. Greasley, B. L. Hurst, E. P. Kadar, A. S. Kalgutkar, J. C.
151 Lee, J. Lee, W. Liu, S. W. Mason, S. Noell, J. J. Novak, R. S. Obach, K. Ogilvie, N. C.
152 Patel, M. Pettersson, D. K. Rai, M. R. Reese, M. F. Sammons, J. G. Sathish, R. S. P.
153 Singh, C. M. Steppan, A. Stewart, J. B. Tuttle, L. Updyke, P. R. Verhoest, L. Q. Wei, Q.
154 Y. Yang, Y. A. Zhu, An oral SARS-CoV-2 M-pro inhibitor clinical candidate for the
155 treatment of COVID-19. *Science* **374**, 1586-1593 (2021).

156 30. A. Douangamath, D. Fearon, P. Gehrtz, T. Krojer, P. Lukacik, C. D. Owen, E. Resnick, C.
157 Strain-Damerell, A. Aimon, P. Abranyi-Balogh, J. Brandao-Neto, A. Carbery, G. Davison,
158 A. Dias, T. D. Downes, L. Dunnett, M. Fairhead, J. D. Firth, S. P. Jones, A. Keeley, G. M.
159 Keseru, H. F. Klein, M. P. Martin, M. E. M. Noble, P. O'Brien, A. Powell, R. N. Reddi, R.
160 Skyner, M. Snee, M. J. Waring, C. Wild, N. London, F. von Delft, M. A. Walsh,
161 Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease.
162 *Nat. Commun.* **11**, 5047 (2020).

163 31. N. Drayman, J. K. DeMarco, K. A. Jones, S. A. Azizi, H. M. Froggatt, K. Tan, N. I.
164 Maltseva, S. Chen, V. Nicolaescu, S. Dvorkin, K. Furlong, R. S. Kathayat, M. R. Firpo, V.
165 Mastrodomenico, E. A. Bruce, M. M. Schmidt, R. Jedrzejczak, M. A. Munoz-Alia, B.
166 Schuster, V. Nair, K. Y. Han, A. O'Brien, A. Tomatsidou, B. Meyer, M. Vignuzzi, D.
167 Missiakas, J. W. Botten, C. B. Brooke, H. Lee, S. C. Baker, B. C. Mounce, N. S. Heaton,
168 W. E. Severson, K. E. Palmer, B. C. Dickinson, A. Joachimiak, G. Randall, S. Tay,
169 Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2.
170 *Science* **373**, 931-936 (2021).

171 32. S. Gunther, P. Y. A. Reinke, Y. Fernandez-Garcia, J. Lieske, T. J. Lane, H. M. Ginn, F. H.
172 M. Koua, C. Ehrt, W. Ewert, D. Oberthuer, O. Yefanov, S. Meier, K. Lorenzen, B.
173 Krichel, J. D. Kopicki, L. Gelisio, W. Brehm, I. Dunkel, B. Seychell, H. Gieseler, B.
174 Norton-Baker, B. Escudero-Perez, M. Domaracky, S. Saouane, A. Tolstikova, T. A.
175 White, A. Hanle, M. Groessler, H. Fleckenstein, F. Trost, M. Galchenkova, Y. Gevorkov,
176 C. F. Li, S. Awel, A. Peck, M. Barthelmess, F. Schlunzen, P. L. Xavier, N. Werner, H.
177 Andaleeb, N. Ullah, S. Falke, V. Srinivasan, B. A. Franca, M. Schwinzer, H. Brognaro, C.
178 Rogers, D. Melo, J. J. Zaitseva-Doyle, J. Knoska, G. E. Pena-Murillo, A. R. Mashhour, V.
179 Hennicke, P. Fischer, J. Hakanpaa, J. Meyer, P. Gribon, B. Ellinger, M. Kuzikov, M.
180 Wolf, A. R. Beccari, G. Bourenkov, D. von Stetten, G. Pompidor, I. Bento, S.
181 Panneerselvam, I. Karpics, T. R. Schneider, M. M. Garcia-Alai, S. Niebling, C. Gunther,
182 C. Schmidt, R. Schubert, H. J. Han, J. Boger, D. C. F. Monteiro, L. L. Zhang, X. Y. Y.
183 Sun, J. Pletzer-Zelgert, J. Wollenhaupt, C. G. Feiler, M. S. Weiss, E. C. Schulz, P.
184 Mehrabi, K. Karnicar, A. Usenik, J. Loboda, H. Tidow, A. Chari, R. Hilgenfeld, C.
185 Utrecht, R. Cox, A. Zaliani, T. Beck, M. Rarey, S. Gunther, D. Turk, W. Hinrichs, H. N.
186 Chapman, A. R. Pearson, C. Betzel, A. Meents, X-ray screening identifies active site and
187 allosteric inhibitors of SARS-CoV-2 main protease. *Science* **372**, 642-646 (2021).
188 33. E. A. MacDonald, G. Frey, M. N. Namchuk, S. C. Harrison, S. M. Hinshaw, I. W.
189 Windsor, Recognition of Divergent Viral Substrates by the SARS-CoV-2 Main Protease.
190 *ACS Infect. Dis.* **7**, 2591-2595 (2021).
191 34. A. M. Shaqra, S. Zvornicanin, Q. Y. Huang, G. J. Lockbaum, M. Knapp, L. Tandeske, D.
192 T. Barkan, J. Flynn, D. N. A. Bolon, S. Moquin, D. Dovala, N. Kurt Yilmaz, C. A.
193 Schiffer, Defining the Substrate Envelope of SARS-CoV-2 Main Protease to Predict and
194 Avoid Drug Resistance. *bioRxiv*, 2022.2001.2025.477757 (2022).
195 35. Y. Zhao, Y. Zhu, X. Liu, Z. Jin, Y. Duan, Q. Zhang, C. Wu, L. Feng, X. Du, J. Zhao, M.
196 Shao, B. Zhang, X. Yang, L. Wu, X. Ji, L. W. Guddat, K. Yang, Z. Rao, H. Yang,
197 Structural basis for replicase polyprotein cleavage and substrate specificity of main
198 protease from SARS-CoV-2. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2117142119 (2022).
199 36. S. G. Sawicki, D. L. Sawicki, S. G. Siddell, A contemporary view of coronavirus
200 transcription. *J. Virol.* **81**, 20-29 (2007).
201 37. V. V. Courouble, S. K. Dey, R. Yadav, J. Timm, J. Harrison, F. X. Ruiz, E. Arnold, P. R.
202 Griffin, Revealing the Structural Plasticity of SARS-CoV-2 nsp7 and nsp8 Using
203 Structural Proteomics. *J. Am. Soc. Mass Spectrom.* **32**, 1618-1630 (2021).
204 38. D. M. Ferraro, N. Lazo, A. D. Robertson, EX1 hydrogen exchange and protein folding.
205 *Biochemistry* **43**, 587-594 (2004).
206 39. C. B. Arrington, A. D. Robertson, Correlated motions in native proteins from MS analysis
207 of NH exchange: evidence for a manifold of unfolding reactions in ovomucoid third
208 domain. *J. Mol. Biol.* **300**, 221-232 (2000).
209 40. J. Zheng, M. R. Chang, R. E. Stites, Y. Wang, J. B. Bruning, B. D. Pascal, S. J. Novick, R.
210 D. Garcia-Ordonez, K. R. Stayrook, M. J. Chalmers, J. A. Dodge, P. R. Griffin, HDX
211 reveals the conformational dynamics of DNA sequence specific VDR co-activator
212 interactions. *Nat. Commun.* **8**, 923 (2017).
213 41. J. Zheng, C. Wang, M. R. Chang, S. C. Devarkar, B. Schweibenz, G. C. Crynen, R. D.
214 Garcia-Ordonez, B. D. Pascal, S. J. Novick, S. S. Patel, J. Marcotrigiano, P. R. Griffin,
215 HDX-MS reveals dysregulated checkpoints that compromise discrimination against self
216 RNA during RIG-I mediated autoimmunity. *Nat. Commun.* **9**, 5366 (2018).
217 42. J. Y. Zhou, L. Y. Yang, A. DeColli, C. F. Meyers, N. S. Nemeria, F. Jordan,
218 Conformational dynamics of 1-deoxy-D-xylulose 5-phosphate synthase on ligand binding
219 revealed by H/D exchange MS. *Proc. Natl. Acad. Sci. U.S.A.* **114**, 9355-9360 (2017).

220 43. J. Y. Yang, Y. Zhang, I-TASSER server: new development for protein structure and
221 function predictions. *Nucleic Acids Res.* **43**, W174-W181 (2015).

222 44. S. P. Meisburger, A. B. Taylor, C. A. Khan, S. N. Zhang, P. F. Fitzpatrick, N. Ando,
223 Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by
224 Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering. *J. Am.*
225 *Chem. Soc.* **138**, 6506-6516 (2016).

226 45. Y. J. Zhai, F. Sun, X. M. Li, H. Pang, X. L. Xu, M. Bartlam, Z. H. Rao, Insights into
227 SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer.
228 *Nat. Struct. Mol. Biol.* **12**, 980-986 (2005).

229 46. H. S. Hillen, Structure and function of SARS-CoV-2 polymerase. *Curr. Opin. Virol.* **48**,
230 82-90 (2021).

231 47. H. S. Hillen, G. Kokic, L. Farnung, C. Dienemann, D. Tegunov, P. Cramer, Structure of
232 replicating SARS-CoV-2 polymerase. *Nature* **584**, 154-156 (2020).

233 48. B. Malone, E. A. Campbell, S. A. Darst, CoV-er all the bases: Structural perspectives of
234 SARS-CoV-2 RNA synthesis. *Enzymes* **49**, 1-37 (2021).

235 49. R. T. Bradshaw, F. Marinelli, J. D. Faraldo-Gomez, L. R. Forrest, Interpretation of HDX
236 Data by Maximum-Entropy Reweighting of Simulated Structural Ensembles. *Biophys J.*
237 **118**, 1649-1664 (2020).

238 50. K. C. Kihn, T. Wilson, A. K. Smith, R. T. Bradshaw, P. L. Wintrode, L. R. Forrest, A.
239 Wilks, D. J. Deredge, Modeling the native ensemble of PhuS using enhanced sampling
240 MD and HDX-ensemble reweighting. *Biophysical J.* **120**, 5141-5157 (2021).

241 51. D. Franke, D. I. Svergun, DAMMIF, a program for rapid ab-initio shape determination in
242 small-angle scattering. *J. Appl. Cryst.* **42**, 342-346 (2009).

243 52. D. I. Svergun, Restoring low resolution structure of biological macromolecules from
244 solution scattering using simulated annealing. *Biophys. J.* **76**, 2879-2886 (1999).

245 53. Y. Hamuro, S. J. Coales, Hydrogen/Deuterium Exchange Mass Spectrometry for Weak
246 Binders. *J. Am. Soc. Mass Spectrom.* **33**, 735-739 (2022).

247 54. A. J. Percy, M. Rey, K. M. Burns, D. C. Schriemer, Probing protein interactions with
248 hydrogen/deuterium exchange and mass spectrometry-A review. *Anal. Chim. Acta* **721**, 7-
249 21 (2012).

250 55. S. G. Sawicki, D. L. Sawicki, Coronavirus transcription: A perspective. *Curr. Top*
251 *Microbiol.* **287**, 31-55 (2005).

252 56. A. T. Nguyen, C. L. Feasley, K. W. Jackson, T. J. Nitz, K. Salzwedel, G. M. Air, M.
253 Sakalian, The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1
254 cleavage site in immature Gag particles. *Retrovirology* **8**, 101 (2011).

255 57. M. D. Purdy, D. Shi, J. Chrustowicz, J. Hattne, T. Gonen, M. Yeager, MicroED structures
256 of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor
257 bevirimat. *Proc. Natl. Acad. Sci. U.S.A.* **115**, 13258-13263 (2018).

258 58. M. Z. Wang, C. M. Quinn, J. R. Perilla, H. L. Zhang, R. Shirra, G. J. Hou, I. J. Byeon, C.
259 L. Suiter, S. Ablan, E. Urano, T. J. Nitz, C. Aiken, E. O. Freed, P. J. Zhang, K. Schulten,
260 A. M. Gronenborn, T. Polenova, Quenching protein dynamics interferes with HIV capsid
261 maturation. *Nat. Commun.* **8**, 1779 (2017).

262 59. R. E. London, HIV-1 Reverse Transcriptase: A Metamorphic Protein with Three Stable
263 States. *Structure* **27**, 420-426 (2019).

264 60. A. F. Dishman, B. F. Volkman, Unfolding the Mysteries of Protein Metamorphosis. *ACS*
265 *Chem. Biol.* **13**, 1438-1446 (2018).

266 61. T. J. El-Baba, C. A. Lutomski, A. L. Kantsadi, T. R. Malla, T. John, V. Mikhailov, J. R.
267 Bolla, C. J. Schofield, N. Zitzmann, I. Vakonakis, C. V. Robinson, Allosteric Inhibition of
268 the SARS-CoV-2 Main Protease: Insights from Mass Spectrometry Based Assays. *Angew.*
269 *Chem. Int. Ed.* **59**, 23544-23548 (2020).

270 62. Z. C. Sun, L. Wang, X. Y. Li, C. P. Fan, J. F. Xu, Z. Z. Shi, H. R. Qiao, Z. Y. Lan, X. Zhang, L. Y. Li, X. Zhou, Y. Geng, An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2120913119 (2022).

271 63. M. Gotte, Remdesivir for the treatment of Covid-19: the value of biochemical studies. *Curr. Opin. Virol.* **49**, 81-85 (2021).

272 64. M. A. Redhead, C. D. Owen, L. Brewitz, A. H. Collette, P. Lukacik, C. Strain-Damerell, S. W. Robinson, P. M. Collins, P. Schafer, M. Swindells, C. J. Radoux, I. N. Hopkins, D. Fearon, A. Douangamath, F. von Delft, T. R. Malla, L. Vangeel, T. Vercruyse, J. Thibaut, P. Leyssen, T. T. Nguyen, M. Hull, A. Tumber, D. J. Hallett, C. J. Schofield, D. I. Stuart, A. L. Hopkins, M. A. Walsh, Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. *Sci. Rep.* **11**, 13208 (2021).

273 65. N. Sluis-Cremer, G. Tachedjian, Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. *Virus Res.* **134**, 147-156 (2008).

274 66. X. Y. Xue, H. T. Yang, W. Shen, Q. Zhao, J. Li, K. L. Yang, C. Chen, Y. H. Jin, M. Bartlam, Z. H. Rao, Production of authentic SARS-CoV M-pro with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. *J. Mol. Biol.* **366**, 965-975 (2007).

275 67. D. R. Littler, B. S. Gully, R. N. Colson, J. Rossjohn, Crystal Structure of the SARS-CoV-2 Non-structural Protein 9, Nsp9. *Iscience* **23**, 101258 (2020).

276 68. F. Liu, P. Lossl, R. Scheltema, R. Viner, A. J. R. Heck, Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. *Nat. Commun.* **8**, 15473 (2017).

277 69. F. Liu, D. T. S. Rijkers, H. Post, A. J. R. Heck, Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. *Nat. Methods* **12**, 1179-1184 (2015).

278 70. B. MacLean, D. M. Tomazela, N. Shulman, M. Chambers, G. L. Finney, B. Frewen, R. Kern, D. L. Tabb, D. C. Liebler, M. J. MacCoss, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics* **26**, 966-968 (2010).

279 71. Z. Chen, J. Rappaport, A generic solution for quantifying cross-linked peptides using software Skyline. *Protocol Exchange*, (2018).

280 72. Z. A. Chen, J. Rappaport, Quantitative cross-linking/mass spectrometry to elucidate structural changes in proteins and their complexes. *Nat. Protoc.* **14**, 171-201 (2019).

281 73. M. Choi, C. Y. Chang, T. Clough, D. Broudy, T. Killeen, B. MacLean, O. Vitek, MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. *Bioinformatics* **30**, 2524-2526 (2014).

282 74. C. W. Combe, L. Fischer, J. Rappaport, xiNET: Cross-link Network Maps With Residue Resolution. *Mol. Cell Proteomics* **14**, 1137-1147 (2015).

283 75. Y. Perez-Riverol, A. Csordas, J. W. Bai, M. Bernal-Llinares, S. Hewapathirana, D. J. Kundu, A. Inuganti, J. Griss, G. Mayer, M. Eisenacher, E. Perez, J. Uszkoreit, J. Pfeuffer, T. Sachsenberg, S. Yilmaz, S. Tiwary, J. Cox, E. Audain, M. Walzer, A. F. Jarnuczak, T. Ternent, A. Brazma, J. A. Vizcaino, The PRIDE database and related tools and resources in 2019: improving support for quantification data. *Nucleic Acids Res.* **47**, D442-D450 (2019).

284 76. M. J. Chalmers, S. A. Busby, B. D. Pascal, Y. J. He, C. L. Hendrickson, A. G. Marshall, P. R. Griffin, Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. *Anal. Chem.* **78**, 1005-1014 (2006).

285 77. Z. Q. Zhang, D. L. Smith, Determination of Amide Hydrogen-Exchange by Mass-Spectrometry - a New Tool for Protein-Structure Elucidation. *Protein Sci.* **2**, 522-531 (1993).

319 78. B. D. Pascal, S. Willis, J. L. Lauer, R. R. Landgraf, G. M. West, D. Marciano, S. Novick,
320 D. Goswami, M. J. Chalmers, P. R. Griffin, HDX Workbench: Software for the Analysis
321 of H/D Exchange MS Data. *J. Am. Soc. Mass Spectrom.* **23**, 1512-1521 (2012).

322 79. T. R. Keppel, D. D. Weis, Mapping Residual Structure in Intrinsically Disordered Proteins
323 at Residue Resolution Using Millisecond Hydrogen/Deuterium Exchange and Residue
324 Averaging. *J. Am. Soc. Mass Spectrom.* **26**, 547-554 (2015).

325 80. N. Kirby, N. Cowieson, A. M. Hawley, S. T. Mudie, D. J. McGillivray, M. Kusel, V.
326 Samardzic-Boban, T. M. Ryan, Improved radiation dose efficiency in solution SAXS
327 using a sheath flow sample environment. *Acta Cryst.* **72**, 1254-1266 (2016).

328 81. J. B. Hopkins, R. E. Gillilan, S. Skou, BioXTAS RAW: improvements to a free open-
329 source program for small-angle X-ray scattering data reduction and analysis. *J. Appl.*
330 *Cryst.* **50**, 1545-1553 (2017).

331 82. V. V. Volkov, D. I. Svergun, Uniqueness of ab initio shape determination in small-angle
332 scattering. *J. Appl. Cryst.* **36**, 860-864 (2003).

333 83. D. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen, H. D. T.
334 Mertens, A. G. Kikhney, N. R. Hajizadeh, J. M. Franklin, C. M. Jeffries, D. I. Svergun,
335 ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from
336 macromolecular solutions. *J. Appl. Cryst.* **50**, 1212-1225 (2017).

337 84. L. Willard, A. Ranjan, H. Zhang, H. Monzavi, R. F. Boyko, B. D. Sykes, D. S. Wishart,
338 VADAR: a web server for quantitative evaluation of protein structure quality. *Nucleic*
339 *Acids Res.* **31**, 3316-3319 (2003).

340