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Abstract 32 

Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for 33 
example by affecting DNA methylation at CpG dinucleotides (methylation quantitative trait 34 
loci – mQTL). Here, we present the first large-scale assessment of mQTL at human 35 
genomic regions selected for interindividual variation in CpG methylation (correlated 36 
regions of systemic interindividual variation – CoRSIVs). We used target-capture bisulfite 37 
sequencing to assess DNA methylation at 4,086 CoRSIVs in multiple tissues from 188 38 
donors in the NIH Genotype-Tissue Expression (GTEx) program (807 samples total). At 39 
CoRSIVs, as expected, DNA methylation in peripheral blood correlates with methylation 40 
and gene expression in internal organs. We also discovered unprecedented mQTL at 41 
these regions. Genetic influences on CoRSIV methylation are extremely strong (median 42 
R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the 43 
most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly 44 
skewed (i.e., the major allele predicts higher methylation). Both surprising findings were 45 
independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking 46 
CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the 47 
skewed beta coefficients may therefore reflect evolutionary selection of genetic variants 48 
that promote their methylation and silencing. Analyses of GWAS summary statistics show 49 
that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes 50 
of disease.  A focus on systemic interindividual epigenetic variants, clearly enhanced in 51 
mQTL content, should likewise benefit studies attempting to link human epigenetic 52 
variation to risk of disease. Our CoRSIV-capture reagents are commercially available from 53 
Agilent Technologies, Inc. 54 

Significance Statement 55 

Population epigeneticists have relied almost exclusively on CpG methylation arrays 56 
manufactured by Illumina. At most of the >400,000 CpG sites covered by those arrays, 57 
however, methylation does not vary appreciably between individuals. We previously 58 
identified genomic loci that exhibit systemic (i.e. not tissue-specific) interindividual 59 
variation in DNA methylation (CoRSIVs). These can be assayed in blood DNA and, unlike 60 
tissue-specific epigenetic variants, do not reflect interindividual variation in cellular 61 
composition. Here, studying just 4,086 CoRSIVs in multiple tissues of 188 individuals, we 62 
detect much stronger genetic influences on DNA methylation (mQTL) than ever before 63 
reported. Because interindividual epigenetic variation is essential for not only mQTL 64 
detection, but also for epigenetic epidemiology, our results indicate a major opportunity to 65 
advance this field. 66 
 67 
Main Text 68 
 69 
Introduction 70 
 71 
Genome-wide association studies (GWAS) have revolutionized the field of genetics by 72 
identifying genetic variants associated with a range of diseases and phenotypes (1-3). 73 
Nearly twenty years into the GWAS era, however, most human disease risk and 74 
phenotypic variation remain unexplained by common genetic variants (2), fueling interest 75 
in the possibility that individual epigenetic variation is an important determinant of 76 
phenotype (4, 5). To test this, over the last decade myriad studies have performed 77 
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genome-scale screens to identify genomic regions at which epigenetic variation is 78 
associated with disease. Nearly all these epigenome-wide association studies (EWAS) 79 
used commercial arrays manufactured by Illumina (predominantly the HM450 and 80 
subsequently the scaled-up EPIC850 array) to assess methylation at CpG dinucleotides 81 
(a highly stable epigenetic mark) in peripheral blood DNA (6, 7). EWAS have uncovered 82 
associations between blood DNA methylation and neurological outcomes including 83 
Alzheimer's disease (8), neurodegenerative disorders (9), educational attainment (10), 84 
and psychiatric diseases (11). The HM450 and EPIC arrays were instrumental in 85 
discoveries in epigenetic aging (12-14), smoking-induced DNA methylation alterations 86 
(15), and understanding how maternal smoking (16) and alcohol consumption (17) affect 87 
DNA methylation in newborns. Peripheral blood DNA methylation has been associated 88 
with birthweight (18), and body mass index (19). 89 
 90 
The Illumina methylation arrays have also played a central role in advancing our 91 
understanding of genetic influences on CpG methylation. Genetic variants that correlate 92 
with methylation at a specific CpG site (usually in cis) are known as methylation 93 
quantitative trait loci (mQTL). Seminal observations of familial clustering of CpG 94 
methylation levels (20) led to the first formal study of mQTL (21), which utilized an early 95 
version of the Illumina methylation platform. Now, hundreds of studies, nearly all using 96 
Illumina methylation arrays, have investigated mQTL in humans (22), enabling estimates 97 
of methylation heritability and insights into how genetic effects on disease risk may be 98 
mediated by DNA methylation (23) and mechanisms of trans (inter-chromosomal) mQTL 99 
effects (24). 100 
 101 
Despite these successes, existing and legacy Illumina methylation platforms are not ideal 102 
for population epigenetics. The success of GWAS was built upon the HapMap (25) and 103 
1,000 Genomes (26) projects, which systematically mapped out human genome sequence 104 
variants so they could be assessed at the population level. So far, however, no 105 
‘EpiHapMap’ project has been conducted. Several large consortium projects, including the 106 
Roadmap Epigenome Project (27), the Blueprint Epigenome Project (28), and the 107 
International Human Epigenome Consortium (29), focused primarily on characterizing 108 
tissue- and cell type-specific epigenetic variation rather than mapping out human genomic 109 
regions of interindividual epigenetic variation. The EWAS field therefore relied almost 110 
exclusively on Illumina arrays (30) which were designed without consideration of 111 
interindividual variation in DNA methylation (31, 32) and generally target CpGs that show 112 
little (33-36). To address this lacuna, we recently conducted an unbiased screen for 113 
correlated regions of systemic (i.e. not tissue-specific) interindividual epigenetic variation 114 
(CoRSIVs) in the human genome (37). Because that screen was based on only ten 115 
individuals, we set out to assess these regions in a larger cohort to characterize 116 
associations among interindividual genetic, epigenetic, and transcriptional variation. In 117 
addition to validating CoRSIVs as systemic epigenetic variants, assessing correlations 118 
with gene expression, and characterizing associations with transposable elements, we 119 
discovered that CoRSIVs exhibit much stronger mQTL than previously observed. Because 120 
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interindividual variation is essential not just for mQTL detection but also for epigenetic 121 
epidemiology, our results have important implications for the EWAS field. 122 
 123 
Results 124 
 125 
Target-capture bisulfite sequencing confirms systemic interindividual variation in 126 
DNA methylation 127 
In collaboration with the NIH Genotype-Tissue Expression (GTEx) program (38), we 128 
conducted target-capture bisulfite sequencing to quantify DNA methylation at 4,641 gene-129 
associated CoRSIVs in multiple tissues representing the three embryonic germ layers 130 
from each of 188 GTEx donors (807 samples total) (Fig. 1A, B). For donor and sample 131 
information and regions targeted see (Datasets S1 & S2, respectively). The raw data have 132 
been deposited in a controlled-access public repository (dbGaP accession 133 
phs001746.v2.p1) linked to GTEx identifiers. We achieved high capture efficiency (SI 134 
Appendix, Fig. S1A, B, C); over 90% of targeted regions were covered at 30x sequencing 135 
depth in nearly all 807 samples (Fig. 1C, D, SI Appendix, Fig. S1B). Data on read counts, 136 
alignment efficiency, bisulfite conversion efficiency, and duplication rate are provided 137 
(Dataset S3). A small subset of difficult to capture regions failed to meet coverage criteria 138 
in all libraries (SI Appendix, Fig. S1C, Dataset S4). A set of Y-chromosome regions 139 
included in the capture enabled us to confirm that all 807 samples are of the correct sex 140 
(SI Appendix, Fig. S1D), indicating reliable sample handing.  141 
 142 
CoRSIVs were identified based on unbiased genome-wide assessment of DNA 143 
methylation in thyroid, heart, and brain (37). Our first goal, therefore, was to examine 144 
additional tissues to confirm systemic interindividual variation (SIV) at these regions. High 145 
inter-tissue correlation in DNA methylation is the hallmark of SIV (Fig. 1E). Of the 4,641 146 
genic CoRSIVs targeted, the 4,086 that satisfied coverage criteria in at least 10 donors in 147 
every possible pair of tissues were evaluated. Most of these showed high positive inter-148 
tissue correlations (Pearson R>0.6) across all possible tissue pairs (Fig. 1F, SI Appendix, 149 
Fig. S1E, Dataset S5), confirming SIV. Accordingly, unsupervised clustering of 150 
methylation data at the 2,349 CoRSIVs covered in all 5 tissues (except cerebellum) across 151 
53 donors grouped perfectly by the donor (Fig. 1G, Dataset S6). This clustering was not 152 
associated with sample-level variation in capture efficiency (Dataset S7). As DNA 153 
methylation in the cerebellum often differs from that in other brain regions (39), including 154 
cerebellum in this analysis resulted in a minor cerebellum cluster (SI Appendix, Fig. S1F); 155 
nonetheless, high inter-tissue correlations were maintained (SI Appendix, Fig. S1G). Of 156 
greatest relevance to epigenetic epidemiology, CoRSIV-specific scatter plots of 157 
methylation in brain, thyroid, skin, lung, and nerve versus blood show that methylation in 158 
blood generally serves as a proxy for methylation in other tissues (five tissues vs. blood). 159 
By comparison, in an HM450 study of 122 individuals (39), correlations between 160 
methylation in 4 brain regions vs. blood averaged only 0.2 and rarely exceeded 0.5.  161 
Although the inter-tissue scatter plots at CoRSIVs commonly show either a uniform 162 
distribution or three clusters (suggesting a single-genotype effect) (SI Appendix, Fig. S2), 163 
other patterns observed include 2, 4, and 5 distinct clusters (SI Appendix, Fig. S3). 164 
Consistent with our earlier study (37), in all six tissues almost every CoRSIV displayed an 165 
interindividual methylation range >20% (median range 40-42%) (SI Appendix, Fig. S4). 166 
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Together, these results validate these CoRSIVs as systemic individual variants, 167 
essentially epigenetic polymorphisms. 168 
 169 
Gene expression in internal organs correlates with CoRSIV methylation in blood 170 
Compared to genetic epidemiology, epigenetic epidemiology is complicated by the 171 
inherent tissue-specificity of epigenetic regulation (5). Because nearly all EWAS are based 172 
on measuring methylation in peripheral blood DNA, attempts to discover associations with, 173 
for example, Alzheimer’s disease (9) or schizophrenia (40) are implicitly predicated on the 174 
assumption that methylation variants in blood associate with epigenetic regulation in the 175 
brain. Of those on the Illumina arrays, however, such probes are the exception (39, 41). 176 
We therefore used our target capture bisulfite sequencing data and transcriptional profiling 177 
(RNA-seq) data from GTEx to test for cross-tissue correlations between CoRSIV 178 
methylation and expression of associated genes.  179 
 180 
Of 3,768 CoRSIV-associated genes, over half showed appreciable expression in at least 181 
5 of the six tissues under consideration (SI Appendix, Fig. S5A, B). Tibial nerve was 182 
excluded from this analysis due to low sample size; for each other tissue, both CoRSIV 183 
methylation and gene expression data were available for at least 60 individuals (SI 184 
Appendix, Fig. S5C). Tissues that are difficult to sample non-invasively (thyroid, lung, and 185 
cerebellum) were considered ‘target’ tissues. Within each of these we identified all 186 
CoRSIV-gene pairs for which gene expression is associated with CoRSIV methylation 187 
(FDR<0.05) (SI Appendix, Fig. S6A, B show two examples). Relative to those within a 188 
gene body, CoRSIVs located within 3 kb of either the 5’ or 3’ end of a gene showed 189 
predominantly negative correlations between methylation and gene expression (OR=2.84, 190 
P = 0.002) (SI Appendix, Fig. S6C). 191 
 192 
For each CoRSIV-gene pair showing an expression vs. methylation association in a target 193 
tissue, we next asked whether methylation measured in easily accessible ‘surrogate’ 194 
tissues (blood or skin) is associated with expression in the target tissue. Of 156 genes for 195 
which expression was correlated with CoRSIV methylation in thyroid, for example, 122 196 
(75%) showed a significant correlation and in the same direction when methylation in 197 
blood was used as the independent variable (SI Appendix, Fig. S6D). Likewise, in lung 198 
and cerebellum at least 75% of all methylation-expression correlations were detected 199 
when methylation in blood was used to infer expression (SI Appendix, Fig. S6D). In the 200 
other surrogate tissue, skin, this figure was slightly lower (60%). These data demonstrate 201 
that, at gene-associated CoRSIVs, methylation measurements in easily accessible tissues 202 
like blood can be used to draw inferences about epigenetic regulation in internal organs, 203 
a major advantage for epigenetic epidemiology.  204 
 205 
Genetic influences on methylation at genic CoRSIVs are strong and biased 206 
The Genetics of DNA Methylation Consortium (GoDMC) recently analyzed HM450 and 207 
genotyping data on nearly 33,000 people in 36 cohorts (42) and documented mostly 208 
modest effects; for 75% of the cis mQTL associations the genetic variant explained less 209 
than 5% of the variance in methylation. In the largest unbiased study of human mQTL, 210 
Busche et al. (43) performed whole-genome bisulfite sequencing in 43 female twins and 211 
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concluded environment, not genetics, is the main source of interindividual variation in DNA 212 
methylation.  213 
 214 
We wondered to what extent individual variation in CoRSIV methylation is explained by 215 
genetic variation in cis. Within each CoRSIV, methylation of multiple CpGs is highly 216 
correlated (37); we therefore tested for genetic associations with average CoRSIV 217 
methylation, rather than at the CpG level. Also, given the multiplicity of mQTL associations 218 
at each CoRSIV (median 22 SNVs with P<10-10 per CoRSIV, SI Appendix, Fig. S7), rather 219 
than attempt to detect all possible SNV-CoRSIV associations we employed the Simes 220 
correction (44) to identify the single SNV most strongly associated with methylation at 221 
each CoRSIV (lowest p value, adjusted for multiple testing) (Fig. 2A, B, SI Appendix, Fig. 222 
S8, Dataset S8; listed p values are adjusted for multiple testing.) This approach 223 
conservatively tests each CoRSIV for evidence of genetic influence on its methylation, 224 
and is much more powerful than those we were able to employ in our earlier study (37) 225 
based on just 10 individuals.  226 
 227 
Although we tested all SNVs within 1 Mb, ‘Simes SNVs’ were generally proximal to the 228 
CoRSIV, 72% within 10 kb (Fig. 2C, SI Appendix, Fig. S9). Remarkably, although the 229 
Simes procedure was carried out independently in each tissue, at each CoRSIV the exact 230 
same SNV in many cases yielded the strongest mQTL association in all or most of the 231 
tissues (SI Appendix, Fig. S10A, B). When we asked how often the Simes SNV was within 232 
the same haplotype block in all or most tissues, concordance was even stronger (Fig. 2D), 233 
indicating the systemic nature of genetic influences on methylation at genic CoRSIVs.  234 
 235 
Previous studies of mQTL using the HM450 array (22, 42) consistently report beta 236 
coefficients balanced on both sides of zero, as we found by employing the Simes 237 
procedure to the GoDMC data (Fig. 2E). Conversely, most cis mQTL associations at genic 238 
CoRSIVs show a negative beta coefficient (i.e., the major allele is associated with higher 239 
methylation) (Fig. 2F). This imbalance held not just for Simes SNVs, but for all mQTL 240 
SNVs (SI Appendix, Fig. S11). The strength of mQTL associations at genic CoRSIVs also 241 
appears to be without precedent (22, 42). In the GoDMC data, for example, few Simes 242 
mQTL associations show an R2 > 0.2 (Fig. 2H); at CoRSIVs, the median R2 = 0.76 (Fig. 243 
2I, SI Appendix, Fig. S12). This tendency for high-R2 mQTL was largely independent of 244 
the distance between CoRSIV and SNV (SI Appendix, Fig. S13).  245 
 246 
We made several attempts to disprove these surprising findings. Though unlikely 247 
(because each CoRSIV contains at least 5 CpGs (37)), we first asked whether the strong 248 
mQTL effects could be caused by SNVs abrogating CpG sites within CoRSIVs. Of SNVs 249 
present in our sample of 188 individuals, at least one did overlap a CpG within most of the 250 
CoRSIVs we surveyed. The distributions of beta coefficient and R2 values of Simes mQTL 251 
associations for the 1,155 CoRSIVs without any such overlaps, however, were nearly 252 
identical to those of the 2,759 with SNV-CpG overlaps (SI Appendix, Fig. S14). We next 253 
asked whether, instead of affecting CpG sites, SNVs within CoRSIVs might introduce an 254 
artifact by compromising the binding of the baits used for target capture. Despite their 255 
small size (median 200 bp), most CoRSIVs contain 2 or more SNVs (SI Appendix, Fig. 256 
S15A); however, neither the beta coefficients nor the R2 values of the Simes mQTL 257 
associations were strongly associated with the number of SNVs per CoRSIV (SI Appendix, 258 
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Fig. S15B, C). Together, these data indicate that the strong and biased mQTL effects we 259 
detected are not due to SNVs within CoRSIVs. 260 
 261 
For a complementary analysis, we employed a haplotype-based approach to assess 262 
genetic influences on CoRSIV methylation. We used phased genotype data from GTEx to 263 
infer each individual’s haplotype within the haplotype block overlapping each CoRSIV and 264 
assessed correlations between CoRSIV methylation and haplotype allele sum (sum of 265 
minor alleles in each individual) (SI Appendix, Fig. S16A). This analysis yielded a 266 
preponderance of negative coefficients, and local haplotype explained much of the 267 
variance in methylation (median R2 = 0.43) (SI Appendix, Fig. S16B, Dataset S9), 268 
consistent with the mQTL analysis. 269 
 270 
Lastly, to independently validate genetic effects on CoRSIV methylation we performed 271 
CoRSIV-capture bisulfite-sequencing and SNV genotyping in 47 individuals from a 272 
different (non-GTEx) population (USC cohort). To ensure computational independence, a 273 
separate member of our laboratory wrote new code for the Simes mQTL analysis. The 274 
USC results corroborated the negative bias and high R2 of mQTL effects at CoRSIVs (Fig. 275 
2G, J). An independently performed haplotype-based analysis likewise corroborated the 276 
results obtained on the GTEx samples (SI Appendix, Fig. S16C). Together, these 277 
additional analyses and data indicate that the strong and biased genetic influences on 278 
methylation at these CoRSIVs are genuine.  279 
 280 
We wondered how the total amount of mQTL we detected at genic CoRSIVs compares 281 
with that reported by the GoDMC (42), which used HM450 arrays to study 33,000 people. 282 
With 3 genotype calls possible at each SNV, the average methylation difference (delta) 283 
associated with each SNV can be calculated from the mQTL beta coefficient (SI Appendix, 284 
Fig. S17A). And, since the mQTL R2 measures what proportion of this delta is explained 285 
by SNV genotype, the product (delta)x(R2) measures the absolute methylation variation 286 
explained by SNV genotype. To make our results interpretable, we initially assessed 287 
(delta)x(R2) based on beta values (rather than using the M-value transformation). Across 288 
all CoRSIV mQTLs (P < 10-10), median (delta)x(R2) was 24.6% methylation (SI Appendix, 289 
Fig. S17B); for a CoRSIV with an R2 near the median (0.76), this equates to an 290 
interindividual range of 32.4% methylation, within the normal range for CoRSIVs (SI 291 
Appendix, Fig. S4). To compare our results with those of GoDMC (42), whose coefficients 292 
were provided based on M values, we repeated our analysis after applying the M value 293 
transformation. At the CoRSIVs we assayed, the total methylation variance explained by 294 
genetics (sum of (delta)x(R2)) was 72-fold greater than that detected by GoDMC (42) (SI 295 
Appendix, Fig. S17C, D, E), the largest study of human mQTL ever reported. 296 
 297 
Genetic influences on tissue-specific expression (eQTL) can be mediated by mQTL (23, 298 
45). Given the strong mQTL effects at genic CoRSIVs, we used data from GTEx (46) to 299 
ask whether Simes SNVs are enriched for eQTL. Consistent with the analysis of GTEx 300 
data overall (46) many eQTL effects were shared among non-brain tissues, whereas eQTL 301 
associations in brain and blood were more distinct (SI Appendix, Fig. S18A). Relative to 302 
all common variants, which have a 50% chance of being associated with expression of a 303 
nearby gene (46), a bootstrapping analysis indicated that Simes SNVs are 3.4-fold more 304 
likely to show eQTL effects (SI Appendix, Fig. S18B). The distributions of magnitude, 305 
slope, and SNV-eGene distance for eQTL effects at Simes SNVs were similar to those of 306 
all common variants (SI Appendix, Fig. S18C, D). Future studies will be required to 307 
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determine if the enriched eQTL at Simes SNVs is in some cases mediated by CoRSIV 308 
mQTL.   309 
 310 
CoRSIVs occur in genomic regions with far-reaching enrichments in transposable 311 
elements 312 
The earliest known examples of systemic interindividual epigenetic variants in mammals 313 
are mouse metastable epialleles such as agouti viable yellow and axin fused, both of 314 
which resulted from retrotransposition of an intracisternal-A particle (an LTR-315 
retrotransposon) (47, 48). We previously showed that CoRSIVs are enriched for direct 316 
overlaps with LINE, SINE, and ERV retrotransposons (37); we provide a more granular 317 
analysis of those overlaps here (SI Appendix, Fig. S19). Given the ability of transposable 318 
elements for long-range regulation of transcriptional and epigenetic dynamics in the early 319 
embryo (49, 50) we asked whether the exceptional behavior of CoRSIVs might be 320 
associated with specific classes of repetitive elements working over long genomic 321 
distances. 322 
 323 
Relative to a set of control regions matched to genic CoRSIVs by chromosome, size, and 324 
CpG density (37), in regions flanking genic CoRSIVs we detected long-range depletion of 325 
CpG islands and enrichments of specific classes of LINE and LTR retrotransposons (Fig. 326 
3A, Dataset S10). Similar and stronger enrichments were detected in comparison with 327 
size-matched tissue-differentially methylated regions (tDMRs) (37) (SI Appendix, Fig. 328 
S20). Interestingly, enrichments relative to control regions (Fig. 3A) were strongest among 329 
the evolutionarily youngest subclasses, the LINE1-PA elements (51) among LINEs, and 330 
ERV-K elements (50) among LTRs.  331 
 332 
We next asked whether either the negative bias (i.e., the major allele associating with 333 
higher methylation) or the strength of mQTL associations at CoRSIVs might be associated 334 
with transposable elements in flanking genomic regions. Compared to genic CoRSIVs 335 
showing a positive mQTL beta coefficient, those characterized by negative coefficients 336 
were depleted for CpG islands (Fig. 3B). There were no robust short-range associations 337 
of transposable elements with ‘negative mQTL’ CoRSIVs; rather, at distances > 5-10kb 338 
from the origin they show extensive long-range depletion of specific LINE1 and all classes 339 
of Alu elements (Fig. 3B, Dataset S11). Surprisingly, the strength of mQTL at genic 340 
CoRSIVs was not associated with widespread differences in genomic content of 341 
transposable elements. Relative to those in the bottom quartile for R2, mQTL effects in the 342 
top quartile showed proximal and long-range depletion in just CpG islands and G-rich low-343 
complexity repeats (Fig. 3C, Dataset S12).  344 
 345 
As most human mQTL data are based on the HM450 array, we next compared genomic 346 
regions flanking genic CoRSIVs with those flanking genic HM450 probes, finding striking 347 
differences. Although the HM450 array specifically targets CpG islands, these are more 348 
strongly enriched within 1 kb of genic CoRSIVs (Fig. 3D, Dataset S13); at greater 349 
distances, CoRSIV-flanking regions are relatively depleted of CpG islands. Compared to 350 
genomic regions containing genic HM450 probes, those housing genic CoRSIVs show 351 
strong short-range (1-2 kb) enrichments in LINE1, LTR, and Alu elements (Fig. 3D). The 352 
LINE1 and LTR enrichments gradually weaken but extend to at least 50 kb from the origin. 353 
Enrichments for Alu extend only to ~5 kb; at greater distances, regions flanking genic 354 
CoRSIVs are relatively depleted (Fig. 3D). These enrichments were not unique to genic 355 
CoRSIVs; the full set of 9,926 CoRSIVs showed similar patterns of enrichment relative to 356 
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matched control regions, tDMRs, and HM450 probes (SI Appendix, Fig. S21). These 357 
observations suggest a straightforward explanation for the strong and biased mQTL 358 
effects at CoRSIVs. To limit hybridization artifacts, the Illumina methylation arrays avoided 359 
genomic regions rich in transposable elements. But these are the same regions in which 360 
SIV tends to occur. Given the potentially deleterious consequences of transcriptional 361 
activation of retrotransposons, the strong and negative mQTL beta coefficients at 362 
CoRSIVs could reflect evolutionary selection for genetic variants favoring their methylation 363 
and silencing. In support of this, values of Tajima’s D (a test statistic assessing evidence 364 
of evolutionary selection) are higher in CoRSIVs compared to control, tDMR, or HM450 365 
probe regions (SI Appendix, Fig. S22, Dataset S14). 366 
 367 
CoRSIV flanking regions are enriched for heritability of disease 368 
Across diverse outcomes including Alzheimer’s (23), chronic obstructive pulmonary 369 
disease (52), obsessive-compulsive disorder (53), and cardiovascular disease (54), 370 
integrative analyses of GWAS and DNA methylation profiling data increasingly indicate 371 
that mQTL mediates associations between genetic variation and risk of disease. We 372 
therefore asked whether the strong mQTL effects identified at genic CoRSIVs are 373 
associated with genetic variants identified by GWAS. Indeed, permutation testing indicates 374 
that SNVs identified in our mQTL analysis are enriched for SNVs implicated in metabolic, 375 
hematological, anthropometric, cardiovascular, immune, neurological, and various other 376 
diseases (Fig. 4 A, B, Dataset S15). By contrast, despite an abundance of CoRSIV-377 
associated genes linked to cancer (37), no enrichment was found relative to cancer GWAS 378 
SNVs (Fig. 4 A, B). Notably, a recent analysis employing these same categories (24) found 379 
nearly opposite categorical enrichments with trans-mQTL loci. With the caveat that 90% 380 
of GWAS alleles impact multiple traits (55), it is interesting that cancer traits are not 381 
enriched. This may indicate that CoRSIV methylation plays no role in this maladaptive 382 
phenotype, or reflect dilution of effects across multiple cancer subtypes and various 383 
genetic pathways leading to cancer (56). Overall, and particularly considering that Simes 384 
SNVs are enriched for eQTL, these results are consistent with the possibility that human 385 
genetic variants influence disease risk via mQTL effects at CoRSIVs. 386 
 387 
As a complementary analysis, we used LD score regression (LDSC) (57) to determine if, 388 
in the vicinity of genic CoRSIVs, there is enrichment for heritability of metabolic 389 
phenotypes and cancer. GWAS summary statistics from the UK Biobank representing 12 390 
metabolic traits and 4 cancer outcomes were downloaded (58). As nearly all Simes SNVs 391 
are within 20 kb of their associated CoRSIV (Fig. 2C), we evaluated genomic regions 392 
encompassing genic CoRSIVs +/- 20 kb. Consistent with our results based on direct 393 
overlap with Simes SNVs, individual LDSC models focused on each outcome detected 394 
significant enrichment for 3 metabolic outcomes (HbA1c, HDL cholesterol, and glucose) 395 
but none for cancer (Fig. 4C). As suggested by Finucane et al (57), we repeated these 396 
analyses including in each a full ‘baseline’ model comprising 53 sequence and epigenomic 397 
features. Enrichment for heritability of two of the metabolic traits, HbA1c and HDL 398 
cholesterol, was attenuated but remained significant (SI Appendix, Fig. S23A). The 399 
baseline-adjusted analysis (SI Appendix, Fig. S23B) confirmed strong evolutionary 400 
conservation in the vicinity of genic CoRSIVs. Also, significant enrichments for coding 401 
regions and transcription start sites may explain the attenuated associations with 402 
metabolic outcomes. Regardless, we would argue that because CoRSIVs were identified 403 
based solely on SIV in DNA methylation it is inappropriate to penalize them for association 404 
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with genic and regulatory features. Hence, the LDSC results corroborate that CoRSIV-405 
flanking regions are enriched for heritability of metabolic disease. 406 
 407 
Discussion 408 
 409 
Following up on our previous screen for human CoRSIVs (37) here we have, for the first 410 
time, demonstrated the feasibility of studying these regions at the population level using 411 
target-capture bisulfite sequencing. Performing these analyses on donors from GTEx 412 
allowed us to integrate our methylation data with genome sequence and gene expression 413 
data on these same individuals. As expected, our results validated SIV at the CoRSIVs 414 
we analyzed, and indicate the ability to use methylation profiling in peripheral blood to 415 
draw inferences about epigenetic regulation in various organs of the body. More 416 
surprisingly, our analyses of genetic influences on CoRSIV methylation indicate an 417 
unprecedented level of mQTL at these regions. Also unlike previous reports, our mQTL 418 
analysis showed strongly biased beta coefficients (i.e., the major allele associated with 419 
higher methylation). Lastly, we found evidence that genomic regions encompassing 420 
CoRSIVs are enriched for the heritability of human disease traits. 421 
 422 
Though unprecedented, the extremely strong mQTL effects at the CoRSIVs we surveyed 423 
are unsurprising. Because variation at each SNV is fixed (ranging from 0 – 2 copies of the 424 
minor allele), the best way to increase the power of mQTL detection is to focus on CpG 425 
sites with the greatest interindividual range of DNA methylation. Other than our work (37, 426 
59, 60), we are not aware of previous studies that took this approach. Instead, nearly all  427 
investigations of human mQTL have employed Illumina arrays (22), which do not target 428 
interindividual variants.  One may question the validity of quantitatively comparing our 429 
mQTL results with those of GoDMC (42). After all, GoDMC analyzed HM450 data on 430 
420,000 CpG sites across nearly 33,000 individuals, whereas we analyzed target-capture 431 
bisulfite sequencing data on 4,086 CoRSIVs in just 188 individuals. But although the 432 
targeted regions and studied populations differ, both analyses employed the same 433 
statistical method for mQTL detection. Because GoDMC performed their mQTL analyses 434 
using M values (a transformation of the Beta value intended to improve normality), we also 435 
transformed our percent methylation data to M values for this comparison. Therefore, 436 
despite the different approaches and vastly dissimilar numbers of subjects considered, 437 
our analysis is quantitatively comparable to that of Min et al. (42). Our ability to detect 438 
more mQTL than ever before despite surveying a much smaller number of CpG sites than 439 
on the Illumina arrays speaks to the importance of targeting the right CpGs. Known human 440 
CoRSIVs comprise just 0.1% of the genome; whilst some may question the wisdom of 441 
focusing on such a small fraction of genomic CpG sites, common human sequence 442 
variants comprise only ~0.3% of the genome (26) but have been a major focus of the 443 
GWAS field for the last 20 years. 444 
 445 
In addition to the extremely strong mQTL effects at genic CoRSIVs, we are not aware of 446 
previous studies showing a bias in mQTL regression coefficients (Fig. 2, F & G). The 447 
mQTL bias at genic CoRSIVs reflects that the major allele is generally associated with 448 
higher methylation. This is consistent with the enrichment of L1 and LTR transposable 449 
elements in the vicinity of CoRSIVs (Fig. 3), because these tend to locate in 450 
heterochromatic regions (61). During human pre-implantation development, when 451 
methylation at CoRSIVs is thought to be established (37, 62), widespread genomic de-452 
methylation leads to transient transcriptional activation of transposable elements, prior to 453 
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their re-methylation and silencing in differentiated tissues (63). The high density of L1 and 454 
LTR retrotransposons in CoRSIV-flanking regions therefore raises the question of whether 455 
mQTL effects at CoRSIVs reflect modulation of the establishment of de novo or early 456 
embryonic maintenance of existing zygotic methylation. In this regard, it is striking that, in 457 
mice, L1 elements and IAPs (a class of LTR retrotransposons) are preferentially 458 
methylated in sperm and not oocytes, whereas Alus show the opposite pattern 459 
(methylated in oocytes but not in sperm) (64). These observations mirror our data on 460 
transposable element enrichments in regions flanking CoRSIVs (Fig. 3A). The biased 461 
mQTL beta coefficients at CoRSIVs lead us to speculate that they could reflect 462 
evolutionary selection for genetic variants that maintain methylation marks in the paternal 463 
genome, potentiating transgenerational epigenetic inheritance as observed at the murine 464 
metastable epiallele axin fused (65). 465 
 466 
As DNA methylation can act as an intermediary molecular mechanism linking genetic 467 
variation to tissue-specific transcriptional regulation (23, 45), mQTLs may provide 468 
mechanistic insights into how genetic variants influence gene expression. In this regard,  469 
the dramatically different nature of mQTL effects at genic CoRSIVs, in terms of both 470 
strength and allelic bias, indicates that we have uncovered a fundamentally different 471 
component of epigenetic regulation compared to CpGs represented on the HM450 and 472 
EPIC arrays, which have largely been the focus of the field (22). Also, our observation that 473 
SNVs wielding the strongest mQTL effects at genic CoRSIVs are enriched for eQTL 474 
suggests a mechanistic pathway in which genetic effects on CoRSIV methylation 475 
modulate tissue-specific gene expression. On the other hand, 16% of CoRSIVs showed 476 
weak effects explaining less than half of the interindividual variation (Fig. 2I). These are 477 
candidate metastable epialleles. Future large human studies can better characterize 478 
genetic effects on CoRSIV methylation and elucidate true epipolymorphisms (i.e. 479 
metastable epialleles) at which a majority of interindividual epigenetic variation is 480 
unexplained by genetics, such as the non-coding RNA nc886 (also known as VTRNA2-1) 481 
(17, 66). Combining data on such regions with those on recently identified murine 482 
metastable epialleles (67) may enable comparative genomic approaches to characterize 483 
sequence features that confer epigenetic metastability, informing in silico identification of 484 
metastable epialleles in other mammalian species. 485 
 486 
Many important questions remain unanswered by our study. Our initial identification of 487 
CoRSIVs was based on ten Caucasian individuals. Reflecting the GTEx study overall, 488 
90% of the donors included in this current study are also Caucasian. Although our previous 489 
studies (37, 59, 60) indicate that SIV regions identified in Caucasians generally also show 490 
SIV in other ethnic groups, future studies screening for SIV directly in non-Caucasian 491 
populations may identify CoRSIVs specific to other ethnic groups. Also consistent with the 492 
GTEx study population overall, most donors studied here were between 50-70 years old 493 
(Dataset S1). Considering the influence of age on epigenetic marks (12), one might ask 494 
to what extent interindividual variation at CoRSIVs is influenced by age. Notably, the 495 
validation studies we performed to corroborate mQTL effects at CoRSIVs (Fig. 2, G & J) 496 
were based on peripheral blood of newborns yet showed nearly identical profiles of mQTL 497 
slope and variance explained, arguing that age is not a major factor in the regulation of 498 
systemic interindividual epigenetic variation. Compared to our initial screen which 499 
surveyed thyroid, heart, and cerebellum, here we evaluated SIV in 4 additional tissues, 500 
with at least one representing each germ layer lineage (Fig. 1A). Hence, whereas our 501 
results confirm high inter-tissue correlation coefficients across most tissue pairs for ~90% 502 
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of genic CoRSIVs (Fig. 1F) many more tissues and cell types remain to be evaluated. The 503 
small fraction of genic CoRSIVs with low inter-tissue correlations (Fig. 1F) may reflect 504 
false positives in our original screen, or possibly exhibit interindividual variation across 505 
specific tissue lineages not evaluated here. 506 
 507 
The generally strong mQTL at CoRSIVs is not due to the systemic nature of their 508 
interindividual variation. Most of these same regions would have been detected if, instead 509 
of our original three-tissue screen (37) we had conducted an unbiased genome-wide 510 
screen for interindividual variation in, say, peripheral blood leukocytes. In addition to 511 
CoRSIVs, such an experiment would detect interindividual variants specific to blood. 512 
Rather than interindividual variation intrinsic to leukocytes, however, many of these reflect 513 
interindividual variation in leukocyte composition (ratio of B cells to T cells, for example) 514 
(68). We would argue that such variants are not bona fide interindividual epigenetic 515 
variants. Because most human tissues exhibit such cellular heterogeneity, the specific 516 
composition of which can differ among individuals and disease states, interindividual 517 
variation observed in just one tissue is difficult to interpret. CoRSIVs, on the other hand, 518 
are unaffected by individual differences in tissue cellular composition (37); like sequence 519 
variants, they are stable epigenetic variants intrinsic to essentially all cells in an individual. 520 
The CpG methylation profile at CoRSIVs can therefore reasonably be considered a 521 
readout of an individual’s epigenome, enabling adoption of concepts and applications 522 
developed for genomics, such as GWAS. Given the strong influence of genetics on 523 
methylation at CoRSIVs, one might ask whether profiling CoRSIV methylation offers 524 
additional information beyond that obtained by genotyping. We anticipate many 525 
advantages. First, as multiple genetic variants influence methylation at each CoRSIV (SI 526 
Appendix, Fig. S7), CoRSIV methylation can be viewed as an integrative readout of these 527 
influences. Also, GWAS variants may logically be prioritized based on known mQTL 528 
effects at CoRSIVs, just as investigators now prioritize GWAS hits based on evidence of 529 
eQTL (69). In fact, mQTL effects at CoRSIVs may in some cases mediate eQTL. Lastly, 530 
whereas our current data on CoRSIV mQTL is based on a mostly Caucasian cohort in the 531 
US, it is possible that additional sources of variation (for example, due to periconceptional 532 
environment (37, 59, 60)) will be uncovered as CoRSIVs are studied in a broader range 533 
of ethnic and cultural contexts, providing insights into gene by environment interactions. 534 
 535 
For over ten years the Illumina methylation platform has been the predominant tool for 536 
population studies of DNA methylation (22, 30). A major reason is that it interrogates a 537 
stable subset of CpG sites within the human genome (yielding one quantitative value for 538 
each), simplifying data sharing and integration across multiple studies and populations. 539 
Nonetheless, the platform has a major and undeniable shortcoming in the context of 540 
population epigenetics: most CpGs included do not show appreciable interindividual 541 
variation (33-36). Here we have shown that focusing on systemic methylation variants 542 
enables the identification of far stronger mQTL than has been detected by the Illumina 543 
arrays (42). We anticipate that the greater population variance at CoRSIVs will also 544 
improve the power of studies aiming to associate epigenetic variation with risk of disease. 545 
Generating the data to explore associations between CoRSIV methylation and a wide 546 
range of human diseases is beyond the scope of this study. However, though grossly 547 
underrepresented on the HM450 and EPIC arrays, CoRSIVs are often among top ‘hits’ in 548 
existing EWAS (70). Indeed, these stable (36, 60, 71), systemic epigenetic variants are 549 
already showing great promise for disease prediction (72-78). We suggest that improving 550 
the coverage of CoRSIVs would enhance the utility of the Illumina EPIC array for the study 551 
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of population epigenetics. Additionally, we wish to make our validated human CoRSIV-552 
capture reagents available to the field to facilitate the study of these systemic variants. 553 
The list of known human CoRSIVs is currently incomplete, and screening is underway to 554 
identify more, including in various ethnic groups. 555 
 556 
Materials and Methods 557 
 558 
Study samples 559 
We obtained de-identified genomic DNA from multiple tissues of 188 donors in 560 
collaboration with NIH Genotype-Tissue Expression (GTEx) program (38) (total of 807 561 
samples). Informed consent was obtained by GTEx, including authorization to release the 562 
patient's medical records and social history, sequencing of the donor's genome, and 563 
blanket consent for all future research using the donated tissue and resultant data. The 564 
donor and tissue information are available in Dataset S1 in the Supplementary Appendix. 565 
For the independent mQTL validation, newborn blood spots from pediatric glioblastoma 566 
cases and controls (47 samples total) were obtained from the California Biobank, using 567 
information from the California Cancer and Vital Statistics registries. Genotype data for 568 
the 188 individuals were generated by GTEx, and for the other 47 samples DNA extraction, 569 
preprocessing and genotyping were performed as previously described (79) (see the 570 
methods in supplementary appendix for more details). 571 
 572 
Target capture bisulfite sequencing and data processing 573 
Out of 9,926 CoRSIVs previously reported (37), we included only those within 3000 base 574 
pairs from the body of a gene present in the PubTator (80) compendium, using 575 
BEDTOOLS (81) software, yielding 4641 CoRSIVs as targets for capture. The goal of 576 
using PubTator was to focus not just on known genes but on those most likely to be 577 
associated with a measurable phenotypic outcome. Libraries were made using the Agilent 578 
SureSelect Methyl-seq library kit with modifications (Design ID: S3163502). Capture 579 
design details and version history are available in the SI appendix, Materials and Methods. 580 
As for the data processing Bisulfite-sequencing reads were trimmed using Trim Galore, 581 
then mapped to the human genome build UCSC hg38 using the Bismark aligner (82). 582 
Uniquely mapped reads were retained for further analysis (see the methods in the 583 
supplementary appendix for more details).  584 
 585 
Evaluating genetic influences on CoRSIV methylation 586 
Analysis of associations between CoRSIV DNA methylation and genetic variation in cis 587 
was performed relying on the Simes correction as described previously (44).  Using the 588 
EMatrixQTL R package (83), Spearman rank correlation was computed for all SNVs within 589 
1Mb of each CoRSIV, and the Simes correction was applied. Simes adjusted p-values for 590 
each CoRSIV were collected, and the false discovery rate (FDR) correction was applied 591 
across all CoRSIVs analyzed in each tissue, with significance achieved at FDR-adjusted 592 
p<0.05. To compare the summed total of mQTL detected at CoRSIVs vs. that reported by 593 
GoDMC (42), mQTL associations were identified with P < 10-10. This conservative P value 594 
was selected to avoid false positives, given the relatively small number of individuals in 595 
the GTEx CoRSIV analysis. To further evaluate genetic influence on CoRSIV methylation 596 
we used a haplotype-based approach. Phased genotype data from GTEx were used to 597 
infer each individual’s haplotype within the haplotype block overlapping each CoRSIV and 598 
assessed correlations between CoRSIV methylation and haplotype allele sum (see the 599 
methods in the supplementary appendix for more details). 600 
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 601 
Data availability 602 
 603 
The raw target capture bisulfite sequencing data for the 807 GTEx tissues (188 604 
individuals) have been deposited to the AnVIL repository. Controlled access is 605 
administered through dbGaP (accession phs001746.v2.p1). The samples used in the 606 
mQTL validation analysis (USC cohort) are biospecimens from the California Biobank 607 
Program. Any uploading of genomic data and/or sharing of these biospecimens or 608 
individual data derived from these biospecimens would violate the statutory scheme of the 609 
California Health and Safety Code Sections 124980(j), 124991(b), (g), (h), and 103850 (a) 610 
and (d), which protect the confidential nature of biospecimens and individual data derived 611 
from biospecimens. Certain aggregate results from the USC cohort may be available from 612 
the authors by request. 613 
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 820 
Figure Legends 821 
 822 
Fig. 1. Target-capture bisulfite sequencing in 807 GTEx samples confirms systemic 823 
interindividual epigenetic variation at CoRSIVs. (A) DNA samples were obtained from multiple 824 
tissues (representing the three embryonic germ layers) from each of 188 GTEx donors. (B) 825 
CoRSIV capture process using Agilent reagents. (C) Percentage of CoRSIVs for which target-826 
capture bisulfite sequencing achieved various read depths; each point represents one of 807 827 
samples. (D) Plots of read depth at two target regions illustrate specificity of targeting across all 828 
six tissues.Y-axis scales are same for each region, and indicated for thyroid. (E) Scatter plots 829 
between all possible tissue pairs illustrate high inter-tissue correlations at a CoRSIV within 830 
HPCAL1. (F) Heat map of inter-tissue correlations across 4,086 CoRSIVs shows generally high 831 
correlation coefficients between all possible tissue pairs. (G) For the 232 tissue samples from 53 832 
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donors with data on at least 4 tissues (excluding cerebellum), unsupervised hierarchical 833 
clustering of methylation data at 2,349 fully informative CoRSIVs groups perfectly by donor. 834 
 835 
Fig. 2. Genetic influences on CoRSIV methylation are strong and biased. (A) (B) 836 
Representative plots of mQTL associations at individual CoRSIVs on chromosomes 1 and 2, 837 
respectively. Significant associations are shown for all SNVs within 1Mb of each CoRSIV; positive 838 
and negative beta coefficients are plotted in blue and red, respectively. The most significant SNV 839 
(Simes SNV) is circled. Insets show average CoRSIV methylation vs. Simes SNV genotype. (C) 840 
Distribution of distances between CoRSIVs and corresponding Simes SNVs. (D) For each of 841 
4,086 CoRSIVs, heat map depicts the number of tissues in which the Simes SNV falls within the 842 
same haplotype block, illustrating the largely systemic nature of mQTL at CoRSIVs. (E) 843 
Distribution of beta coefficients of significant Simes mQTL associations for the GoDMC blood 844 
mQTL data (42) (F) Distribution of beta coefficients of significant Simes mQTL associations at 845 
3,723 CoRSIVs in blood DNA from 188 GTEx donors. (G) Distribution of beta coefficients of 846 
significant Simes mQTL associations across 2,939 CoRSIVs in blood DNA from 47 newborns 847 
(USC).  (H) Distribution of Simes mQTL R2 (goodness of fit) for the GoDMC data. (I) Distribution 848 
of Simes mQTL R2 at CoRSIVs (GTEx, blood). (J) Distribution of Simes mQTL R2 at CoRSIVs 849 
(USC samples). 850 
 851 
Fig. 3. Genic CoRSIV-flanking regions show long-range enrichments and depletions for 852 
specific classes of transposable elements. (A) Using 1 Kb step sizes, each plot shows 853 
significant enrichments or depletions for CpG islands (CGI) and subclasses within each of 8 854 
classes of transposable element within 50 Kb of genic CoRSIVs. Compared to control regions, 855 
CoRSIV-flanking regions show long range depletion of CpG islands and enrichment of specific 856 
classes of LINEs and LTRs. (B) Compared to CoRSIVs showing a positive mQTL beta 857 
coefficient, those with negative coefficients are depleted for CpG islands and show long-range 858 
depletion of specific LINE1s and all subclasses of Alus. (C) The strength of mQTL associations at 859 
CoRSIVs (R2 in 4th vs. 1st quartile) is not associated with widespread differences in genomic 860 
content of transposable elements. (D) Compared to regions in which HM450 probes are located, 861 
CoRSIVs show short- and long-range enrichments for many subclasses of LINE1 and LTR 862 
retrotransposons. 863 

Fig. 4. CoRSIV mQTL SNVs are enriched for GWAS associations. (A) Within each of 8 864 
disease/phenotype categories, the histogram shows the null distribution obtained by permutation 865 
testing for overlap of GWAS SNVs with SNVs randomly sampled within 1Mb of each CoRSIV. 866 
The red diamond shows the actual number of overlaps between CoRSIV mQTL SNVs and 867 
GWAS SNVs. Numbers of GWAS SNVs considered in each category are anthropometric: 8106, 868 
cancer: 3,163, cardiovascular: 4,816, hematological: 7,461, immune: 5,263, metabolic: 10,121, 869 
neurological: 14,741, and various: 14,573.  (B) Statistical significance (Bonferroni-adjusted p-870 
value) vs. fold enrichments for the analysis in (A). Strong and statistically significant enrichments 871 
were found for all outcomes except cancer. (C) Statistical significance (Bonferroni-adjusted p-872 
value) vs. fold enrichments for 8 metabolic traits and 4 cancer outcomes from the LDSC analysis 873 
confirms that the vicinity of CoRSIVs is enriched for heritability of metabolic traits. 874 
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FIGURE 1 876 
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FIGURE 2 878 
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Materials and Methods 
 
CoRSIV Capture Design Versions 
 
V.	 Agilent	

Design	
ID	

Design	
Date	

Included	Regions	 Agilent	Design	
Selections	

Size	
(Mbp)	

1.0 S3163502 23-Aug-
2018 

4641 CoRSIVs 
Sex specific Chr Y regions 

1x Tiling Density 
Least Stringent Masking 

Balanced Boosting 

9.045 

2.0 S3223244 16-Jul-
2019 

9926 CoRSIVs 
SIV (1, 2) 
ESS (2) 
Sex-specific Chr Y regions 
imprinting control regions (3) 

1x Tiling Density 
Least Stringent Masking 

Balanced Boosting 

19.843 

3.0 S3295946 06-Aug-
2020 

9926 CoRSIVs 
SIV(1, 2) 
ESS (2) 
Cell Composition estimation probes 
(4, 5) 
Sex-specific Chr Y regions, 
imprinting control regions(3) 

1x Tiling Density 
Least Stringent Masking 
Optimized Performance 

XT/XT2 boosting 

21.958 

3.1 S3332366 23-Feb-
2021 

9926 CoRSIVs 
SIV(1, 2) 
ESS (2) 
Cell Composition estimation probes 
(4, 5) 
Sex-specific Chr Y regions, 
imprinting control regions(3) 
 

1x Tiling Density 
Least Stringent Masking 
Optimized Performance 

XT/XT2 boosting 
Overnight Hybridization 
Deleted ineffective baits 

from v.3.0. 
 

21.130 

 

 
Design of CoRSIV-capture reagent 

Of the 9,926 CoRSIVs previously reported (6), to ensure adequate targeting we filtered to 
include only those within 3,000 base pairs (bp) from the body of a gene present in the Pubtator 
(7) compendium, using BEDTOOLS (8) software, yielding 4,641 CoRSIVs as targets for capture 
(Supplementary Table). For quality control purposes we included 10 regions on the Y 
chromosome to confirm the accurate biological sex of each sample. At each of the 4,641 
CoRSIVs, the target region included flanking regions of 1,000 bp in each direction. We used the 
Agilent SureSelect online system to design a custom capture reagent, using the following 
options: balanced boosting, 1x tiling, and least stringent masking. Overall, our CoRSIV capture 
reagent (Agilent Design ID: S3163502) targeted 9.045 MB of the human genome 
(Supplementary Table 2), using 85,538 probes.  
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Library preparation, capture, and sequencing 
Individual libraries were made using the Agilent SureSelect Methyl-seq library kit, with 

modification. In brief, 1ug of genomic DNA was subject to shearing to 150-200bp in size using a 
Covaris sonicator. After purification through AMpure XP beads, end repair and A-Tailing was 
carried out.  Then, 5ul of 15uM methylated library adaptor (IDT) was ligated to each sample, and 
the product with a size of 250-450bp was selected through Ampure XP beads.  

 
Twelve libraries were pooled in equal proportions for target enrichment following an 

Agilent protocol (Sureselect Methyl-seq target enrichment system for Illumina multiplexed 
sequencing). After hybridization with probes (Agilent SureSelect, custom design), Dynabeads 
MyOne streptavidin T1 beads were used to bind the library. After several round of washes, the 
bound DNA was eluted in 0.1N NaOH and subjected to Bisulfite treatment using the EZ DNA 
Methylation Gold kit (Zymo Research).  Final library was generated by amplification using 
Sureselect Methyl-seq PCR Master Mix and P5, P7 primers (Illumina). Sequencing was 
performed using an Illumina Novaseq 6000 at the Functional Genomics core, Department of 
Molecular and Human Genetics, Baylor College of Medicine. 

 
Data processing 

Bisulfite-sequencing reads were trimmed using Trim Galore, then mapped to the human 
genome build UCSC hg38 using the Bismark aligner (9). Uniquely mapped reads were retained 
for further analysis. Duplicate reads were not removed, as recommended for capture experiments 
by the Bismark manual. CpG-level methylation was quantified using the Bismark pipeline. For 
each sample, average proportional DNA methylation was computed at each CoRSIV for which at 
least half of the CpGs were covered by at least 5x reads.  
 
Quality control assessment 

To determine the proportion of ‘on-target’ reads, only those that mapped completely within 
a target region were counted; capture efficiency was calculated as the fraction of on-target reads 
divided by all uniquely mapped reads. To confirm the accuracy of the biological sex of each 
sample, coverage of chromosome Y control regions was measured. Signal density plots were 
generated using the BEDTOOLS(8) software, with data reported as reads per million reads 
mapped (RPM), and visualized using Integrative Genome Viewer (IGV) software (10).  
 
Assessment of inter-tissue correlations 

At each CoRSIV, inter-tissue correlations of average proportional DNA methylation were 
computed for all tissue-pairs in which coverage requirements were satisfied in at least 10 
individuals in both tissues. Pearson correlation was computed using the Python Scientific 
Library, with significance achieved at p<0.05. Inter-tissue correlation plots were visualized using 
the Python seaborn visualization library.  
 
CoRSIV/tissue DNA methylation clustering analysis 

To assess the similarity of DNA methylation profiles across donors and tissues, donors with 
CoRSIV capture data in at least 4 tissues were considered. Next, CoRSIVs with sufficient 
coverage across all donors and tissues were selected. Finally, CoRSIV-average proportional 
DNA methylation values for each sample were clustered using the Euclidean distance metric and 
the average linkage method, and visualized using the seaborn Python visualization library.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.27.493722doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493722
http://creativecommons.org/licenses/by/4.0/


 
 

4 
 

 
Cross-tissue analysis of gene expression vs. CoRSIV methylation 

For each GTEx donor included in our analysis, tissue-specific gene expression profiles were 
downloaded from the GTEx data portal, expressed in transcripts per kilobase million (TPM). For 
each tissue, the analysis focused on CoRSIV associated genes expressed in that tissue (average 
TPM expression > 0.5). (Tibial nerve was not included in this analysis due to the small number 
of samples with RNA-seq data available.) Thyroid, lung, and cerebellum were considered ‘target 
tissues’. For each CoRSIV-associated gene expressed in each target tissue, we calculated the 
Pearson correlation between CoRSIV average methylation in that tissue and gene expression in 
that tissue. We then asked if the same correlation was found between CoRSIV average 
methylation in a ‘surrogate tissue’ (blood or skin) and gene expression in the target tissue. 
Within each ‘expression tissue’ and ‘methylation tissue’ pair, p values were corrected for 
multiple hypothesis testing using the Benjamini Hochberg method, with significance achieved 
for adjusted p-value<0.05. Agreement of correlation between gene expression and DNA 
methylation between target tissue and surrogate tissues (statistically significant and in the same 
direction) was plotted in pie charts using GraphPad Prism. For specific CoRSIVs, scatterplots of 
tissue-specific gene expression vs. tissue-specific DNA methylation were generated using the 
seaborn Python visualization library.   
 
mQTL Analysis using CoRSIV capture data on GTEx Samples 

Analysis of associations between CoRSIV-average DNA methylation and genetic variation 
in cis was performed using a previously described strategy relying on the Simes correction (11). 
Rather than test for all significant mQTL associations, this approach conservatively tests 
whether, at each CoRSIV, there is evidence of mQTL.  For each donor, single nucleotide variant 
(SNV) profiles computed by the GTEx consortium were downloaded in vcf format (dbGaP 
accession phs000424.v8.p2).  SNVs reported in dbSNP and with a minor allele frequency (MAF) 
of at least 5% were selected for further analysis.  mQTL analysis was conducted independently 
for each tissue. For each CoRSIV, the number of donors with both sufficient coverage in the 
capture experiment for a specific tissue and with a WGS SNV profile available was determined; 
for each tissue, CoRSIVs with data for at least 20 donors were selected for mQTL analysis. To 
harmonize our mQTL analysis with those based on the Illumina BeadArray data, CoRSIV-
average proportional DNA methylation values were converted to M-values (12) prior to analysis. 
Spearman rank correlation was computed for all SNVs within 1mb of each CoRSIV, using the 
EMatrixQTL R package (13), and the Simes correction was applied. Simes adjusted p-values for 
each CoRSIV were collected, and the false discovery rate (FDR) correction was applied across 
all CoRSIVs analyzed in each tissue, with significance achieved at FDR-adjusted p-value<0.05. 
The R2 variance explained by the linear model for each CoRSIV (in each tissue) was computed 
using the Python scientific library. For each significant mQTL association, a parametric analysis 
was carried out using using EMatrixQTL to determine the beta coefficient of the linear 
association between CoRSIV-average DNA methylation and the cis genetic variant.  

 
Manhattan plots of mQTL associations were generated for each tissue and each CoRSIV 

using the R statistical system displaying all the mQTL candidates at p<0.001. Three-dimensional 
Manhattan plots of the significant mQTL associations across all CoRSIVS, capturing the 
distance between strongest associated SNV and CoRSIVs and the linear beta coefficient, were 
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generated using the plotly R library. A distribution of the beta linear coefficients across all 
significant mQTL associations in each respective tissue was generated using the R library.  
 
Haplotype-based analysis using capture data on GTEx samples 
 

SNVs reported in dbSNP and with a MAF of at least 5% were include in the haplotype-
based analysis. PLINK 1.9 (14, 15) was used to identify haplotype blocks, with default 
parameters. Index SNVs were obtained by parsing the PLINK output for each individual block. 
Only CoRSIVs overlapping with haplotype blocks were considered for haplotype-based analysis. 
Further, only GTEx donors with a WGS profile were included, and within each tissue we 
considered only CoRSIVs with sufficient capture data on at least 20 donors. At each CoRSIV, 
the minor allele sum was computed across all the index SNVs for each donor, using the 
convention 0 for homozygous major allele, 1 for heterozygous SNV, and 2 for homozygous 
minor allele. Again, CoRSIV-average methylation values were transformed to M values. The 
Pearson correlation coefficient was computed between CoRSIV average DNA methylation and 
the minor allele sum of its overlapping haplotype block. Correction for multiple hypothesis 
testing was performed using the Benjamini-Hochberg correction, with significance achieved at 
FDR-adjusted p-value<0.05. Plots of DNA methylation at individual CoRSIVs vs. minor allele 
sum within overlapping haplotype blocks were generated using the Python scientific library.  
 
Analyzing consistency of CoRSIV mQTL across tissues 
 

Recurrence of significant mQTL for each CoRSIV across the 6 tissues was assessed in two 
ways. First, at the most stringent level (the SNV level), an mQTL SNV-CoRSIV pair was 
considered recurrent if the same Simes-adjusted SNV was identified, and the beta coefficient had 
the same sign, within two or more tissues. Considering the high linkage disequilibrium among 
multiple SNVs within a haplotype block, we also evaluated recurrence at the haplotype block 
level. At this level, an mQTL association for a CoRSIV was considered consistent across 
multiple tissues if the Simes-adjusted SNVs identified in two or more tissues fell within the same 
haplotype block, and the beta coefficient had the same sign. mQTL recurrence was plotted as 
heat maps using the R statistical system.  
 
USC pediatric cohort –  genotyping and CoRSIV capture bisulfite sequencing 

Pediatric glioblastoma cases and controls were selected from the California Biobank, using 
information from the California Cancer and Vital Statistics registries. Cases were self-reported 
non-Latino whites born between 1982 and 2009, and subsequently diagnosed with glioblastoma 
(ICDO-3 code 9440). Controls were born in the same year with same gender and ethnic group as 
cases from anywhere in the state. Neonatal dried blood spots (approx 1.3 cm diameter) for each 
child were used for DNA extraction. DNA extraction, preprocessing and genotyping were 
performed as previously described (16). In brief, DNA was extracted from 1/3 of a dried blood 
spot with Genfind v3.0 (Beckman) reagents on an Eppendorf robot, followed by in house quality 
control procedures including nanodrop for purity and pico-green measurement for DNA 
quantity. Four hundred ng DNA was genotyped using the Affymetrix Axiom Precision Medicine 
Diversity Array (PMDA) at Thermo Affymetrix (San Jose CA), and SNP calls were extracted 
using Affymetrix Powertools. CoRSIV-capture bisulfite sequencing was performed using 
CoRSIV Capture v2.0 (Design ID: S3223244). 
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USC Pediatric cohort CoRSIV capture data processing 

For the USC pediatric whole blood cohort, Trim galore software was used for the quality 
control of the reads, which were aligned to hg38 genome using Bismark aligner (9). De-
duplication was not carried according the Bismark guidelines for target capture sequencing. 
Bismark methylation extractor was used to do the methylation calling. CpG Methylation levels 
were averaged across CoRSIVs with at least 10x coverage.  
 
Independent analysis of USC pediatric samples for confirmation of CoRSIV mQTL and effects 
of local haplotype 
 

CoRSIV capture bisulfite sequencing data on whole blood (newborn blood spots) were 
generated for 48 individuals from the USC pediatric cohort. One individual was removed from 
the analysis as a genetic outlier, leaving  47 samples for this analysis. Phased genotype data were 
generated, and SNVs reported in dbSNP and with a minor allele frequency (MAF) of at least 5% 
were selected for further analysis. CoRSIV-average DNA methylation values were converted to 
M-values (12) prior to analysis. Spearman rank correlation was computed for all SNVs within 
1mb of each CoRSIV, using the EMatrixQTL R package (13), and the Simes correction was 
applied. Simes adjusted p-values for each CoRSIV were collected, and the false discovery rate 
(FDR) correction was applied across all CoRSIVs analyzed in each tissue, with significance 
achieved at FDR-adjusted p-value<0.05. 

 
For the haplotype-based analysis, SNVs reported in dbSNP and with a MAF of at least 5% 

were included. PLINK 1.9 (14, 15) was used to identify haplotype blocks, with default 
parameters. Index SNVs were obtained by parsing the PLINK output for each individual block. 
At each CoRSIV, the minor allele sum was computed across all the index SNVs for each donor, 
using the convention 0 for homozygous major allele, 1 for heterozygous SNV, and 2 for 
homozygous minor allele. The Pearson correlation coefficient was computed between CoRSIV 
DNA methylation and the minor allele sum of its overlapping haplotype block. Correction for 
multiple hypothesis testing was performed using the Benjamini-Hochberg method, with 
significance achieved at FDR-adjusted p-value<0.05. 

 
Comparison of CoRSIV mQTL with HM450K mQTL results from GoDMC 
 

GoDMC (Min et al. (17)) computed mQTL using 33,000 individuals with DNA methylation 
data generated in the HM450 platform. As described above, mQTL was calculated for the GTEx 
CoRSIV capture data using matrixEQTL software, regressing DNA methylation M-value against 
the genotype (0,1,2). To compare the summed total of mQTL detected at CoRSIVs vs. that 
reported by GoDMC, mQTL associations were identified with P < 10-10. This conservative P 
value was selected to avoid false positives, given the relatively small number of individuals in 
the GTEx CoRSIV analysis. With this cut-off, approximately 150,000 cis mQTL effects were 
detected in each study. Since methylation data were not available from GoDMC, methylation 
ranges (delta) were inferred by multiplying the slope of the linear model by 2 (x-axis of the 
genotype call). For each individual mQTL association, the product (delta)x(R2) yields the 
absolute quantity of interindividual methylation variation explained by the SNV. This metric was 
summed across all mQTL effects in each data set. 
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Analysis of regional enrichments of transposable elements 
 

To compare genomic enrichment of transposable elements flanking CoRSIVs vs. non-
CoRSIV regions, repeat definitions encoded in the RepeatMasker track were downloaded from 
the UCSC genome browser build hg38. Repeats were analyzed at the level of repeat class, repeat 
class and repeat family and, finally, repeat class, repeat family, and repeat names. Only repeat 
sets with at least 10,000 entries were included in the enrichment analyses. CpG islands, defined 
by the UCSC genome browser on the human genome build UCSC hg38, were also downloaded. 
Analysis extended to +/- 50,000 bp relative to each CoRSIV or comparison region. To compare 
the differential enrichment of one repeat subset R between two sets of genomic intervals A and 
B, we used BEDTOOLS (8) to determine repeat overlap  between R and A or between R and B, 
within each of 50 genomic windows, cumulatively stepping by 1,000 bp increments from 0bp to 
50,000bp. Within each window, an odds-ratio and p-value were computed using the Fisher’s 
exact test. Multiple testing correction was performed within each genomic window to adjust for 
the multiple tests performed at each repeat type, with significance achieved at an FDR-adjusted P 
< 0.01. Odds ratios (enrichments or depletions) surviving multiple testing correction were plotted 
across all repeat subsets and genomic windows using GraphPad Prism.  
 
Evolutionary selection analysis 

Selection scores computed using Tajima’s D score (18) across CEU specimens profiled by 
the 1000 genomes project were downloaded (19). Selection scores compiled within a 30kb radius 
around CoRSIVs, control regions, tDMR regions, or 450k probes were plotted using the R 
statistical analysis system.   
 
Enrichment of GWAS trait SNVs 
We employed permutation testing to determine the extent to which CoRSIV mQTL SNVs 
(Simes SNVs) are enriched for trait-associated SNVs from the NHGRI GWAS catalogue 
(downloaded October 2020). For each of 8 manually curated trait categories (20), we generated a 
null distribution by randomly selecting one SNV from the GTEx database (MAF >= 0.05) within 
1 Mb up- or downstream from the center of each CoRSIV. We then determined whether this 
randomly chosen SNV overlapped an NHGRI trait-associated SNV from that category.  This 
process was repeated 10,000 times to yield a null distribution for each trait category.  The 
numbers of actual overlaps between CoRSIV mQTL SNVs and NHGRI trait-associated SNVs 
were compared to these null distributions using one-proportion Z tests.  Bonferroni-adjusted p-
values for these tests are reported.  Enrichment was defined as the number of actual overlaps 
between CoRSIV mQTL SNVs and NHGRI trait-associated SNVs divided by the mean of the 
null distribution. 
 
CoRSIV +/- 20kb SNVs heritability enrichment with/without controlling for 53 baseline features 

To evaluate heritability for a variety of traits (i.e., cancer and metabolic diseases) in 
CoRSIV +/-20kb SNVs, we used stratified linkage disequilibrium score regression (s-LDSC) 
(21) . First, the targeted CoRSIV regions were lifted to hg19 using the UCSC “liftover” software, 
and “bedtools” software was used to add the +/- 20kb flanking. CoRSIV +/- ‘20kb’ distance was 
used because the majority of significant mQTL occurred within these regions. European 
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population plink files used by LDSC software (v. 1.0.1) were downloaded from the 1000 
Genomes project.  

In step 1, “make_annot.py” python script available in LDSC software was used to 
generate SNV annotation for CoRSIV +/- 20kb and 53 ‘baseline’ (21) bed files, creating (.annot) 
files typically consisting of CHR, BP, SNP, and CM columns, followed by one column per 
annotation, with the value of the annotation for each SNP (0/1 for binary categories). Two 
separate sets of annotation files were generated for CoRSIV +/- 20kb with and without 53 
‘baseline’ features.  

In step 2, two annotation file sets generated in step1 were used to estimate annotation-
specific LD scores using 1000 Genomes phase3 plink files and 1000G HapMap3 SNPs 
excluding MHC region in chr6 (according to the LDSC user manual). LDSC.py script with the 
following parameters suggested by the manual was used. --bfile flag points to the plink format 
fileset; The --l2 flag tells ldsc to compute LD Scores. The --ld-wind-cm flag tells lsdc to use a 1 
cM window to estimate LD Scores. 

In step 3, to calculate partitioned heritability for different traits, summary GWAS 
statistics were downloaded for 4 cancer and 12 metabolic disease categories from 
(https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/). The LDSC.py script with --h2 
flag compute partitioned heritability and outputs enrichment scores, for CoRSIV +/- 20kb 
regions (with/without controlling for 53 baseline features) for each trait. 
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Supplementary Figures 
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Fig. S1. CoRSIV capture efficiency, quality control, and inter-tissue correlation in DNA 
methylation. (A) Violin plot shows, for each of 807 samples, the proportion of reads that were 
on target (i.e. completely within a target region). (B) Percentage of CoRSIVs for which target-
capture bisulfite sequencing achieved various read depths, by sex, and by tissue type. Each point 
represents a sample; numbers of samples are shown. (C) Dichotomous heat map showing which of 
4,483 CoRSIVs (columns) are covered at  >30x depth in each of 807 samples (rows). A small 
fraction of CoRSIVs proved difficult to capture across all samples. (D) Read-depth across a 
panel of Y-chromosome probes confirms correct biological sex for all 807 samples (quality 
control). (E) Heat map shows numbers of samples available to calculate inter-tissue correlations. 
(F) For the 270 tissue samples from 53 donors with data on at least 5 tissues (including 
cerebellum), unsupervised hierarchical clustering of methylation data at 2,340 fully informative 
CoRSIVs organizes mainly by donor, but also forms a minor cerebellum cluster (left hand side). 
(G) Inter-tissue correlation plots for a CoRSIV near ROR2 show that, despite higher methylation 
in cerebellum relative to other tissues, high inter-tissue correlations are maintained.  
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Fig. S2. Inter-tissue correlation (ITC) plots show that methylation in blood is associated 
with that in brain, thyroid, skin, lung, and tibial nerve. Each row shows data on one 
CoRSIV. The first three and last two rows show CoRSIVs with three modes of methylation, and 
a uniform distribution, respectively (the most common patterns observed). For ITC plots on all 
the CoRSIVs see (five tissues vs. blood). 
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Fig. S3. Inter-tissue correlation (ITC) plots show that methylation in blood is associated 
with that in brain, thyroid, skin, lung, and tibial nerve. Each row shows data on one 
CoRSIV. These plots show examples of infrequently observed patterns including two, four, or 
five discrete modes. For ITC plots on all the CoRSIVs see (five tissues vs. blood). 
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Fig. S4. CoRSIVs exhibit high interindividual variation in every tissue examined. Each plot 
shows the distribution of interindividual methylation range across 4,086 CoRSIVs. In all six 
tissues, nearly all CoRSIVs show an interindividual range > 20% (dashed line). 
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Fig. S5. Supporting data for cross-tissue analysis of methylation and gene expression. (A) Numbers 
of CoRSIV-associated genes expressed (transcripts per million (TPM) >= 0.5) in each tissue type. (B) 
Heat map of expressed genes across the six tissues. (C) Except for tibial nerve, both methylation and gene 
expression data were available for more than 60 individuals.  
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Fig. S6. CoRSIV methylation in blood or skin predicts expression of associated genes in less 
accessible tissues. (A) Within- and between-tissue correlations of GSTM3 expression vs. DNA 
methylation at a CoRSIV within GSTM3. (B) Within- and between-tissue correlations of XRRA1 
expression vs. DNA methylation at a CoRSIV within XRRA1. (C) Number of CoRSIVs with 
positive and negative correlations in three tissues according to location of CoRSIV with respect 
to transcription start site (5'), gene body, and transcription end site (3'). (D) Thyroid , lung, and 
cerebellum are considered target tissues, and blood and skin are surrogate tissues. Across all 
CoRSIV-gene pairs with significant correlations between CoRSIV methylation and expression 
of an associated gene in a target tissue, over 75% show the same correlation when methylation in 
blood is used as surrogate; using skin as surrogate, over 60% do.  

Fig. S7. Histogram of the number of genetic variants (SNVs) influencing 
methylation at each CoRSIV (mQTL P <10-10).  
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Fig. S8. Representative Manhattan plots of associations at individual CoRSIVs, in blood. 
Significant associations are shown for all SNVs within 1Mb of each CoRSIV; positive and negative beta 
coefficients are plotted in blue and red, respectively.   
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Fig. S9. Distribution of distances between CoRSIVs and corresponding Simes SNVs, in five 
different tissues. All appear nearly identical to the distribution in blood (Fig. 2C). The majority 
of Simes SNVs are within 10 kb of each CoRSIV. 
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Fig. S10. Concordance of mQTL effects across different tissues. (A) Three-dimensional 
Manhattan plots for chromosome 1 show four examples (circled) of CoRSIVs at which the exact 
same SNV was independently identified as the Simes SNV in thyroid, lung, blood, and skin.  (B) 
For each of 4,086 CoRSIVs, heat map depicts the number of tissues in which the same SNV is identified 
as the Simes SNV. 

B
06 25 4 3 1

Blood

Lung

Thyroid

Skin

Brain

Nerve

CoRSIV  Chr1_212; SNV dist. = 0bp
CoRSIV Chr1_326; SNV dist. = 4,319bp CoRSIV Chr1_210; SNV dist. = 15,249bp

CoRSIV Chr1_28; SNV dist. = 40,036bp

A

Blood Skin

Thyroid Lung



 
 

20 
 

  

 
Fig. S11. All mQTL associations at CoRSIVs are biased toward negative beta coefficients. 
Shown is the distribution of all 146,698 mQTL associations detected within 1Mb of CoRSIVs (P 
< 10-10) in blood. Similar to that of Simes SNVs (Fig. 2F), the bias toward negative beta 
coefficients is obvious. 
  



 
 

21 
 

 
Fig. S12. Distribution of Simes mQTL slope (i.e. beta coefficient) and R2 (goodness of fit) 
for brain, lung, tibial nerve, skin and thyroid are strikingly similar to those obtained for 
blood (Fig. 2 F, I). 
  



 
 

22 
 

 
Fig.  S13. Scatter plot of R-squared (goodness of fit) vs. CoRSIV-SNV distance for Simes 
mQTLs. The bias toward high R2 mQTL effects is observed even at considerable CoRSIV-SNV 
distances. 
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Fig. S14. Neither the bias toward negative beta coefficients nor the tendency for high R2 of 
mQTL effects at CoRSIVs is explained by SNVs overlapping CpGs within CoRSIVs. (A) 
The set of 1155 CoRSIVs with no such overlaps. (B) The set of 2759 CoRSIVs for which at least on SNV 
overlaps a CpG within the CoRSIV. In both cases, the biases toward negative beta coefficients and high 
R2 are observed. 
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Fig. S15. SNVs within CoRSIVs do not explain either the bias toward negative beta coefficients or 
the strong R2 of mQTL effects at CoRSIVs. (A) Distribution of the number of SNVs detected within 
each of 4,086 CoRSIVs. (B) CoRSIV mQTL beta coefficient is only weakly associated with the number 
of SNVs in each CoRSIV. (C) CoRSIV mQTL R2 is only weakly associated with the number of SNVs in 
each CoRSIV. 
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Fig. S16. Haplotype-based approach to assess local genetic influences on CoRSIV methylation. (A) 
Example of association of average methylation in blood at one CoRSIV (chr22:50677397-50683133) vs. 
haplotype allele sum (sum of minor alleles in each individual) for its overlapping haplotype block. Shown 
are data on 170 individuals grouped by haplotype allele sum. (B) Top: Distribution of Pearson correlation 
coefficients for all such associations (CoRSIV methylation vs. haplotype allele sum) across 4,471 
CoRSIVs assessed in 188 GTEx donors. As in the mQTL analysis (Fig. 2F), negative coefficients 
predominate. Bottom: Distribution of R2 (goodness of fit) across all such associations in GTEx donors.  
Local haplotype explains much of the variance in methylation. (C) Independent corroboration in USC 
cohort. Top: Distribution of Pearson correlation coefficients for all such associations (CoRSIV 
methylation vs. haplotype allele sum) across 4,471 CoRSIVs studied in 47 newborns in USC cohort. 
Bottom: Distribution of R2 across all such associations in USC cohort. 
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Fig. S17. Approach for comparing total quantity of mQTL across different data sets. (A) 
With exactly 3 possible genotypes at every SNV, the methylation difference (delta) associated with each 
SNV can be easily determined from the beta coefficient (slope) of the mQTL association. (B) The product 
(delta)x(R2) measures the total amount of variation in methylation that is determined by the SNV 
genotype. Distribution of (delta)x(R2) for all 146,698 mQTL associations (P < 10-10) across 2,738 
CoRSIVs in blood of 188 individuals. (C) The same distribution, recalculated using M-values. (D) 
Distribution of (delta)x(R2) for all 154,527 mQTL associations (P<10-10) detected using the HM450 
platform to study blood of 33,000 individuals (GoDMC data – Min et al 2021 Nat. Genetics). Although 
the calculations were performed the same way as in (C), note the very different x-axis scales. (E) Area 
under the curve in (C) vs. that in (D). The summed total variance in methylation explained by cis mQTL 
at CoRSIVs is 72 fold greater than that detected in the GoDMC report. 
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Fig. S18. Characteristics of eQTLs overlapping Simes SNVs. (A) Pearson correlation between 
eQTL slopes across 5 tissues. (B) Enrichment of Simes SNVs in eQTL compared to 
bootstrapped eQTLs from CoRSIV +/- 50kb flanking regions. Fisher test P-values < 1x10-105. 
(C) eQTL slope vs. distance between SNV and TSS for Simes SNVs. (D) eQTL slope vs. 
distance between SNV and TSS for bootstrapped eQTLs (four representative plots from 1000 
bootstraps are shown). 
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Fig. S19. Overlap of transposable elements over all CoRSIV regions compared to 
controls, tDMRs and HM450 
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Fig. S20. Transposable element enrichment for Genic CoRSIVs vs. tDMRs 
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Fig. S21. Transposable element enrichment for (A) All CoRSIVs vs. controls, (B) All 
CoRSIVs vs. tDMRs, and (C) All CoRSIVs vs. HM450 
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Fig. S22. Tajima’s D Score distributions for CoRSIVs, Controls, tDMRs, and HM450 
probes. Tajima’s D is higher in CoRSIVs than in the other regions, providing evidence of 
evolutionary selection. 
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Fig. S23. LDSC heritability enrichment score for SNVs in CoRSIV +/- 20kb , when 53 
baseline features are included in the model. (A) LDSC enrichment score vs. Bonferroni 
adjusted p-value in -log10 scale for 12 metabolic traits and 4 cancer outcomes when CoRSIV +/- 
20kb region and full ‘baseline’ features including 53 sequence and epigenomic features are 
included in the models. (B) LDSC Enrichment and Bonferroni adjusted p-value (green color) for 
53 baseline sequence and epigenomic features when used in the models with CoRSIV +/- 20kb 
SNVs. 0 - 0.001 = '***', 0.001 - 0.01 = '**', 0.01 - 0.05 = '*', 0.05 - 0.1 = '.’, 0.1 - 1.0 = ‘ ’ . 

References: 

1. M. J. Silver et al., Independent genomewide screens identify the tumor suppressor
VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome
Biol 16, 118 (2015).
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