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32 Abstract

33  Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for
34  example by affecting DNA methylation at CpG dinucleotides (methylation quantitative trait
35 loci — mQTL). Here, we present the first large-scale assessment of mQTL at human
36 genomic regions selected for interindividual variation in CpG methylation (correlated
37  regions of systemic interindividual variation — CoRSIVs). We used target-capture bisulfite
38 sequencing to assess DNA methylation at 4,086 CoRSIVs in multiple tissues from 188
39 donors in the NIH Genotype-Tissue Expression (GTEx) program (807 samples total). At
40 CoRSIVs, as expected, DNA methylation in peripheral blood correlates with methylation
41  and gene expression in internal organs. We also discovered unprecedented mQTL at
42  these regions. Genetic influences on CoRSIV methylation are extremely strong (median
43  R?=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the
44  most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly
45  skewed (i.e., the major allele predicts higher methylation). Both surprising findings were
46  independently validated in a cohort of 47 non-GTEXx individuals. Genomic regions flanking
47  CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the
48  skewed beta coefficients may therefore reflect evolutionary selection of genetic variants
49  that promote their methylation and silencing. Analyses of GWAS summary statistics show
50 that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes
51 of disease. A focus on systemic interindividual epigenetic variants, clearly enhanced in
52 mQTL content, should likewise benefit studies attempting to link human epigenetic
53  variation to risk of disease. Our CoRSIV-capture reagents are commercially available from
54  Agilent Technologies, Inc.

55  Significance Statement

56  Population epigeneticists have relied almost exclusively on CpG methylation arrays
57  manufactured by lllumina. At most of the >400,000 CpG sites covered by those arrays,
58 however, methylation does not vary appreciably between individuals. We previously
59 identified genomic loci that exhibit systemic (i.e. not tissue-specific) interindividual
60  variation in DNA methylation (CoRSIVs). These can be assayed in blood DNA and, unlike
61 tissue-specific epigenetic variants, do not reflect interindividual variation in cellular
62  composition. Here, studying just 4,086 CoRSIVs in multiple tissues of 188 individuals, we
63  detect much stronger genetic influences on DNA methylation (mQTL) than ever before
64 reported. Because interindividual epigenetic variation is essential for not only mQTL
65  detection, but also for epigenetic epidemiology, our results indicate a major opportunity to
66  advance this field.

67

68 Main Text
69

70 Introduction
71

72  Genome-wide association studies (GWAS) have revolutionized the field of genetics by
73  identifying genetic variants associated with a range of diseases and phenotypes (1-3).
74  Nearly twenty years into the GWAS era, however, most human disease risk and
75  phenotypic variation remain unexplained by common genetic variants (2), fueling interest
76 in the possibility that individual epigenetic variation is an important determinant of
77  phenotype (4, 5). To test this, over the last decade myriad studies have performed
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78 genome-scale screens to identify genomic regions at which epigenetic variation is
79  associated with disease. Nearly all these epigenome-wide association studies (EWAS)
80 used commercial arrays manufactured by lllumina (predominantly the HM450 and
81 subsequently the scaled-up EPIC850 array) to assess methylation at CpG dinucleotides
82  (a highly stable epigenetic mark) in peripheral blood DNA (6, 7). EWAS have uncovered
83  associations between blood DNA methylation and neurological outcomes including
84  Alzheimer's disease (8), neurodegenerative disorders (9), educational attainment (10),
85 and psychiatric diseases (11). The HM450 and EPIC arrays were instrumental in
86  discoveries in epigenetic aging (12-14), smoking-induced DNA methylation alterations
87  (15), and understanding how maternal smoking (16) and alcohol consumption (17) affect
88  DNA methylation in newborns. Peripheral blood DNA methylation has been associated
89  with birthweight (18), and body mass index (19).

90

91 The lllumina methylation arrays have also played a central role in advancing our
92  understanding of genetic influences on CpG methylation. Genetic variants that correlate
93  with methylation at a specific CpG site (usually in cis) are known as methylation
94  quantitative trait loci (mQTL). Seminal observations of familial clustering of CpG
95 methylation levels (20) led to the first formal study of mQTL (21), which utilized an early
96 version of the lllumina methylation platform. Now, hundreds of studies, nearly all using
97 lllumina methylation arrays, have investigated mQTL in humans (22), enabling estimates
98 of methylation heritability and insights into how genetic effects on disease risk may be
99 mediated by DNA methylation (23) and mechanisms of trans (inter-chromosomal) mQTL
100 effects (24).

101

102  Despite these successes, existing and legacy lllumina methylation platforms are not ideal
103  for population epigenetics. The success of GWAS was built upon the HapMap (25) and
104 1,000 Genomes (26) projects, which systematically mapped out human genome sequence
105 variants so they could be assessed at the population level. So far, however, no
106  ‘EpiHapMap’ project has been conducted. Several large consortium projects, including the
107 Roadmap Epigenome Project (27), the Blueprint Epigenome Project (28), and the
108 International Human Epigenome Consortium (29), focused primarily on characterizing
109 tissue- and cell type-specific epigenetic variation rather than mapping out human genomic
110 regions of interindividual epigenetic variation. The EWAS field therefore relied almost
111  exclusively on lllumina arrays (30) which were designed without consideration of
112 interindividual variation in DNA methylation (31, 32) and generally target CpGs that show
113 little (33-36). To address this lacuna, we recently conducted an unbiased screen for
114  correlated regions of systemic (i.e. not tissue-specific) interindividual epigenetic variation
115 (CoRSIVs) in the human genome (37). Because that screen was based on only ten
116 individuals, we set out to assess these regions in a larger cohort to characterize
117  associations among interindividual genetic, epigenetic, and transcriptional variation. In
118  addition to validating CoRSIVs as systemic epigenetic variants, assessing correlations
119  with gene expression, and characterizing associations with transposable elements, we
120  discovered that CoRSIVs exhibit much stronger mQTL than previously observed. Because
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121  interindividual variation is essential not just for mQTL detection but also for epigenetic
122 epidemiology, our results have important implications for the EWAS field.

123

124  Results

125

126  Target-capture bisulfite sequencing confirms systemic interindividual variation in
127  DNA methylation

128 In collaboration with the NIH Genotype-Tissue Expression (GTEx) program (38), we
129  conducted target-capture bisulfite sequencing to quantify DNA methylation at 4,641 gene-
130 associated CoRSIVs in multiple tissues representing the three embryonic germ layers
131  from each of 188 GTEx donors (807 samples total) (Fig. 1A, B). For donor and sample
132 information and regions targeted see (Datasets S1 & S2, respectively). The raw data have
133  been deposited in a controlled-access public repository (dbGaP accession
134  phs001746.v2.p1) linked to GTEXx identifiers. We achieved high capture efficiency (S/
135  Appendix, Fig. S1A, B, C); over 90% of targeted regions were covered at 30x sequencing
136  depth in nearly all 807 samples (Fig. 1C, D, SI Appendix, Fig. S1B). Data on read counts,
137  alignment efficiency, bisulfite conversion efficiency, and duplication rate are provided
138  (Dataset S3). A small subset of difficult to capture regions failed to meet coverage criteria
139 in all libraries (SI Appendix, Fig. S1C, Dataset S4). A set of Y-chromosome regions
140 included in the capture enabled us to confirm that all 807 samples are of the correct sex
141 (Sl Appendix, Fig. S1D), indicating reliable sample handing.

142

143  CoRSIVs were identified based on unbiased genome-wide assessment of DNA
144  methylation in thyroid, heart, and brain (37). Our first goal, therefore, was to examine
145  additional tissues to confirm systemic interindividual variation (S1V) at these regions. High
146  inter-tissue correlation in DNA methylation is the hallmark of SIV (Fig. 1E). Of the 4,641
147  genic CoRSIVs targeted, the 4,086 that satisfied coverage criteria in at least 10 donors in
148  every possible pair of tissues were evaluated. Most of these showed high positive inter-
149 tissue correlations (Pearson R>0.6) across all possible tissue pairs (Fig. 1F, SI Appendix,
150 Fig. S1E, Dataset S5), confirming SIV. Accordingly, unsupervised clustering of
151  methylation data at the 2,349 CoRSIVs covered in all 5 tissues (except cerebellum) across
152 53 donors grouped perfectly by the donor (Fig. 1G, Dataset S6). This clustering was not
153  associated with sample-level variation in capture efficiency (Dataset S7). As DNA
154  methylation in the cerebellum often differs from that in other brain regions (39), including
155  cerebellum in this analysis resulted in a minor cerebellum cluster (S/ Appendix, Fig. S1F);
156  nonetheless, high inter-tissue correlations were maintained (S/ Appendix, Fig. S1G). Of
157 greatest relevance to epigenetic epidemiology, CoRSIV-specific scatter plots of
158  methylation in brain, thyroid, skin, lung, and nerve versus blood show that methylation in
159  blood generally serves as a proxy for methylation in other tissues (five tissues vs. blood).
160 By comparison, in an HM450 study of 122 individuals (39), correlations between
161  methylation in 4 brain regions vs. blood averaged only 0.2 and rarely exceeded 0.5.
162  Although the inter-tissue scatter plots at CoRSIVs commonly show either a uniform
163  distribution or three clusters (suggesting a single-genotype effect) (S/ Appendix, Fig. S2),
164  other patterns observed include 2, 4, and 5 distinct clusters (SI Appendix, Fig. S3).
165  Consistent with our earlier study (37), in all six tissues almost every CoRSIV displayed an
166 interindividual methylation range >20% (median range 40-42%) (SI Appendix, Fig. S4).
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167  Together, these results validate these CoRSIVs as systemic individual variants,
168  essentially epigenetic polymorphisms.

169

170  Gene expression in internal organs correlates with CoRSIV methylation in blood
171  Compared to genetic epidemiology, epigenetic epidemiology is complicated by the
172 inherent tissue-specificity of epigenetic regulation (5). Because nearly all EWAS are based
173  on measuring methylation in peripheral blood DNA, attempts to discover associations with,
174  for example, Alzheimer’s disease (9) or schizophrenia (40) are implicitly predicated on the
175  assumption that methylation variants in blood associate with epigenetic regulation in the
176  brain. Of those on the lllumina arrays, however, such probes are the exception (39, 41).
177  We therefore used our target capture bisulfite sequencing data and transcriptional profiling
178 (RNA-seq) data from GTEx to test for cross-tissue correlations between CoRSIV
179  methylation and expression of associated genes.

180

181  Of 3,768 CoRSIV-associated genes, over half showed appreciable expression in at least
182 5 of the six tissues under consideration (S/ Appendix, Fig. S5A, B). Tibial nerve was
183  excluded from this analysis due to low sample size; for each other tissue, both CoRSIV
184  methylation and gene expression data were available for at least 60 individuals (S/
185  Appendix, Fig. S5C). Tissues that are difficult to sample non-invasively (thyroid, lung, and
186  cerebellum) were considered ‘target’ tissues. Within each of these we identified all
187  CoRSIV-gene pairs for which gene expression is associated with CoRSIV methylation
188  (FDR<0.05) (S/ Appendix, Fig. S6A, B show two examples). Relative to those within a
189  gene body, CoRSIVs located within 3 kb of either the 5’ or 3’ end of a gene showed
190 predominantly negative correlations between methylation and gene expression (OR=2.84,
191 P =0.002) (SI Appendix, Fig. S6C).

192

193  For each CoRSIV-gene pair showing an expression vs. methylation association in a target
194  tissue, we next asked whether methylation measured in easily accessible ‘surrogate’
195 tissues (blood or skin) is associated with expression in the target tissue. Of 156 genes for
196  which expression was correlated with CoRSIV methylation in thyroid, for example, 122
197  (75%) showed a significant correlation and in the same direction when methylation in
198 blood was used as the independent variable (S/ Appendix, Fig. S6D). Likewise, in lung
199 and cerebellum at least 75% of all methylation-expression correlations were detected
200 when methylation in blood was used to infer expression (S/ Appendix, Fig. S6D). In the
201  other surrogate tissue, skin, this figure was slightly lower (60%). These data demonstrate
202 that, at gene-associated CoRSIVs, methylation measurements in easily accessible tissues
203  like blood can be used to draw inferences about epigenetic regulation in internal organs,
204  a major advantage for epigenetic epidemiology.

205

206  Genetic influences on methylation at genic CoRSIVs are strong and biased

207  The Genetics of DNA Methylation Consortium (GoDMC) recently analyzed HM450 and
208  genotyping data on nearly 33,000 people in 36 cohorts (42) and documented mostly
209 modest effects; for 75% of the cis mMQTL associations the genetic variant explained less
210 than 5% of the variance in methylation. In the largest unbiased study of human mQTL,
211  Busche et al. (43) performed whole-genome bisulfite sequencing in 43 female twins and
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212 concluded environment, not genetics, is the main source of interindividual variation in DNA
213 methylation.

214

215  We wondered to what extent individual variation in CoRSIV methylation is explained by
216  genetic variation in cis. Within each CoRSIV, methylation of multiple CpGs is highly
217  correlated (37); we therefore tested for genetic associations with average CoRSIV
218 methylation, rather than at the CpG level. Also, given the multiplicity of mQTL associations
219  ateach CoRSIV (median 22 SNVs with P<107'°per CoRSIV, SI Appendix, Fig. S7), rather
220 than attempt to detect all possible SNV-CoRSIV associations we employed the Simes
221 correction (44) to identify the single SNV most strongly associated with methylation at
222 each CoRSIV (lowest p value, adjusted for multiple testing) (Fig. 2A, B, S/ Appendix, Fig.
223 S8, Dataset S8; listed p values are adjusted for multiple testing.) This approach
224  conservatively tests each CoRSIV for evidence of genetic influence on its methylation,
225 and is much more powerful than those we were able to employ in our earlier study (37)
226  based on just 10 individuals.

227

228  Although we tested all SNVs within 1 Mb, ‘Simes SNVs’ were generally proximal to the
229  CoRSIV, 72% within 10 kb (Fig. 2C, SI Appendix, Fig. S9). Remarkably, although the
230  Simes procedure was carried out independently in each tissue, at each CoRSIV the exact
231  same SNV in many cases yielded the strongest mQTL association in all or most of the
232 tissues (SI Appendix, Fig. S10A, B). When we asked how often the Simes SNV was within
233 the same haplotype block in all or most tissues, concordance was even stronger (Fig. 2D),
234  indicating the systemic nature of genetic influences on methylation at genic CoRSIVs.
235

236  Previous studies of mQTL using the HM450 array (22, 42) consistently report beta
237  coefficients balanced on both sides of zero, as we found by employing the Simes
238  procedure to the GoDMC data (Fig. 2E). Conversely, most cis mQTL associations at genic
239  CoRSIVs show a negative beta coefficient (i.e., the major allele is associated with higher
240  methylation) (Fig. 2F). This imbalance held not just for Simes SNVs, but for all mQTL
241 SNVs (SI Appendix, Fig. S11). The strength of mQTL associations at genic CoRSIVs also
242  appears to be without precedent (22, 42). In the GoDMC data, for example, few Simes
243  mQTL associations show an R? > 0.2 (Fig. 2H); at CoRSIVs, the median R? = 0.76 (Fig.
244 21, SI Appendix, Fig. S12). This tendency for high-R> mQTL was largely independent of
245  the distance between CoRSIV and SNV (S/ Appendix, Fig. S13).

246

247 We made several attempts to disprove these surprising findings. Though unlikely
248  (because each CoRSIV contains at least 5 CpGs (37)), we first asked whether the strong
249  mQTL effects could be caused by SNVs abrogating CpG sites within CoRSIVs. Of SNVs
250  presentin our sample of 188 individuals, at least one did overlap a CpG within most of the
251  CoRSIVs we surveyed. The distributions of beta coefficient and R? values of Simes mQTL
252  associations for the 1,155 CoRSIVs without any such overlaps, however, were nearly
253  identical to those of the 2,759 with SNV-CpG overlaps (S/ Appendix, Fig. S14). We next
254  asked whether, instead of affecting CpG sites, SNVs within CoRSIVs might introduce an
255  artifact by compromising the binding of the baits used for target capture. Despite their
256  small size (median 200 bp), most CoRSIVs contain 2 or more SNVs (S/ Appendix, Fig.
257  S15A); however, neither the beta coefficients nor the R? values of the Simes mQTL
258  associations were strongly associated with the number of SNVs per CoRSIV (S Appendix,
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259  Fig. S15B, C). Together, these data indicate that the strong and biased mQTL effects we
260 detected are not due to SNVs within CoRSIVs.

261

262  For a complementary analysis, we employed a haplotype-based approach to assess
263  genetic influences on CoRSIV methylation. We used phased genotype data from GTEXx to
264  infer each individual’s haplotype within the haplotype block overlapping each CoRSIV and
265 assessed correlations between CoRSIV methylation and haplotype allele sum (sum of
266  minor alleles in each individual) (S/ Appendix, Fig. S16A). This analysis yielded a
267  preponderance of negative coefficients, and local haplotype explained much of the
268  variance in methylation (median R?* = 0.43) (S/ Appendix, Fig. S16B, Dataset S9),
269  consistent with the mQTL analysis.

270

271  Lastly, to independently validate genetic effects on CoRSIV methylation we performed
272 CoRSIV-capture bisulfite-sequencing and SNV genotyping in 47 individuals from a
273 different (non-GTEX) population (USC cohort). To ensure computational independence, a
274  separate member of our laboratory wrote new code for the Simes mQTL analysis. The
275  USC results corroborated the negative bias and high R? of mQTL effects at CoRSIVs (Fig.
276  2G, J). An independently performed haplotype-based analysis likewise corroborated the
277  results obtained on the GTEx samples (SI Appendix, Fig. S16C). Together, these
278  additional analyses and data indicate that the strong and biased genetic influences on
279  methylation at these CoRSIVs are genuine.

280

281  We wondered how the total amount of mQTL we detected at genic CoRSIVs compares
282  with that reported by the GoDMC (42), which used HM450 arrays to study 33,000 people.
283  With 3 genotype calls possible at each SNV, the average methylation difference (delta)
284  associated with each SNV can be calculated from the mQTL beta coefficient (S/ Appendix,
285  Fig. S17A). And, since the mQTL R? measures what proportion of this delta is explained
286 by SNV genotype, the product (delta)x(R?) measures the absolute methylation variation
287  explained by SNV genotype. To make our results interpretable, we initially assessed
288  (delta)x(R?) based on beta values (rather than using the M-value transformation). Across
289  all CoRSIV mQTLs (P < 10"%), median (delta)x(R?) was 24.6% methylation (S Appendix,
290 Fig. S17B); for a CoRSIV with an R? near the median (0.76), this equates to an
291  interindividual range of 32.4% methylation, within the normal range for CoRSIVs (S/
292  Appendix, Fig. S4). To compare our results with those of GoDMC (42), whose coefficients
293  were provided based on M values, we repeated our analysis after applying the M value
294  transformation. At the CoRSIVs we assayed, the total methylation variance explained by
295  genetics (sum of (delta)x(R?)) was 72-fold greater than that detected by GoDMC (42) (S/
296  Appendix, Fig. S17C, D, E), the largest study of human mQTL ever reported.

297

298  Genetic influences on tissue-specific expression (eQTL) can be mediated by mQTL (23,
299  45). Given the strong mQTL effects at genic CoRSIVs, we used data from GTEx (46) to
300 ask whether Simes SNVs are enriched for eQTL. Consistent with the analysis of GTEx
301 dataoverall (46) many eQTL effects were shared among non-brain tissues, whereas eQTL
302  associations in brain and blood were more distinct (S/ Appendix, Fig. S18A). Relative to
303 all common variants, which have a 50% chance of being associated with expression of a
304 nearby gene (46), a bootstrapping analysis indicated that Simes SNVs are 3.4-fold more
305 likely to show eQTL effects (S/ Appendix, Fig. S18B). The distributions of magnitude,
306 slope, and SNV-eGene distance for eQTL effects at Simes SNVs were similar to those of
307 all common variants (S/ Appendix, Fig. S18C, D). Future studies will be required to

7


https://doi.org/10.1101/2022.05.27.493722
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.27.493722; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

308 determine if the enriched eQTL at Simes SNVs is in some cases mediated by CoRSIV
309 mQTL.

310

311  CoRSIVs occur in genomic regions with far-reaching enrichments in transposable
312 elements

313  The earliest known examples of systemic interindividual epigenetic variants in mammals
314 are mouse metastable epialleles such as agouti viable yellow and axin fused, both of
315 which resulted from retrotransposition of an intracisternal-A particle (an LTR-
316  retrotransposon) (47, 48). We previously showed that CoRSIVs are enriched for direct
317 overlaps with LINE, SINE, and ERV retrotransposons (37); we provide a more granular
318  analysis of those overlaps here (S/ Appendix, Fig. S19). Given the ability of transposable
319 elements for long-range regulation of transcriptional and epigenetic dynamics in the early
320 embryo (49, 50) we asked whether the exceptional behavior of CoRSIVs might be
321 associated with specific classes of repetitive elements working over long genomic
322  distances.

323

324  Relative to a set of control regions matched to genic CoRSIVs by chromosome, size, and
325 CpG density (37), in regions flanking genic CoRSIVs we detected long-range depletion of
326  CpG islands and enrichments of specific classes of LINE and LTR retrotransposons (Fig.
327  3A, Dataset S10). Similar and stronger enrichments were detected in comparison with
328 size-matched tissue-differentially methylated regions (tDMRs) (37) (SI Appendix, Fig.
329  S20). Interestingly, enrichments relative to control regions (Fig. 3A) were strongest among
330 the evolutionarily youngest subclasses, the LINE1-PA elements (51) among LINEs, and
331 ERV-K elements (50) among LTRs.

332

333  We next asked whether either the negative bias (i.e., the major allele associating with
334  higher methylation) or the strength of mMQTL associations at CoRSIVs might be associated
335  with transposable elements in flanking genomic regions. Compared to genic CoRSIVs
336 showing a positive mQTL beta coefficient, those characterized by negative coefficients
337  were depleted for CpG islands (Fig. 3B). There were no robust short-range associations
338  of transposable elements with ‘negative mQTL’ CoRSIVs; rather, at distances > 5-10kb
339  from the origin they show extensive long-range depletion of specific LINE1 and all classes
340 of Alu elements (Fig. 3B, Dataset S11). Surprisingly, the strength of mQTL at genic
341 CoRSIVs was not associated with widespread differences in genomic content of
342 transposable elements. Relative to those in the bottom quartile for R?, mQTL effects in the
343  top quartile showed proximal and long-range depletion in just CpG islands and G-rich low-
344  complexity repeats (Fig. 3C, Dataset S12).

345

346 As most human mQTL data are based on the HM450 array, we next compared genomic
347  regions flanking genic CoRSIVs with those flanking genic HM450 probes, finding striking
348  differences. Although the HM450 array specifically targets CpG islands, these are more
349  strongly enriched within 1 kb of genic CoRSIVs (Fig. 3D, Dataset S13); at greater
350 distances, CoRSIV-flanking regions are relatively depleted of CpG islands. Compared to
351 genomic regions containing genic HM450 probes, those housing genic CoRSIVs show
352  strong short-range (1-2 kb) enrichments in LINE1, LTR, and Alu elements (Fig. 3D). The
353  LINE1 and LTR enrichments gradually weaken but extend to at least 50 kb from the origin.
354  Enrichments for Alu extend only to ~5 kb; at greater distances, regions flanking genic
355 CoRSIVs are relatively depleted (Fig. 3D). These enrichments were not unique to genic
356  CoRSIVs; the full set of 9,926 CoRSIVs showed similar patterns of enrichment relative to
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357 matched control regions, tDMRs, and HM450 probes (S/ Appendix, Fig. S21). These
358 observations suggest a straightforward explanation for the strong and biased mQTL
359 effects at CoRSIVs. To limit hybridization artifacts, the lllumina methylation arrays avoided
360 genomic regions rich in transposable elements. But these are the same regions in which
361 SIV tends to occur. Given the potentially deleterious consequences of transcriptional
362 activation of retrotransposons, the strong and negative mQTL beta coefficients at
363  CoRSIVs could reflect evolutionary selection for genetic variants favoring their methylation
364  and silencing. In support of this, values of Tajima’s D (a test statistic assessing evidence
365  of evolutionary selection) are higher in CoRSIVs compared to control, tDMR, or HM450
366  probe regions (S/ Appendix, Fig. S22, Dataset S14).

367

368  CORSIV flanking regions are enriched for heritability of disease

369 Across diverse outcomes including Alzheimer’'s (23), chronic obstructive pulmonary
370 disease (52), obsessive-compulsive disorder (53), and cardiovascular disease (54),
371 integrative analyses of GWAS and DNA methylation profiling data increasingly indicate
372 that mQTL mediates associations between genetic variation and risk of disease. We
373  therefore asked whether the strong mQTL effects identified at genic CoRSIVs are
374  associated with genetic variants identified by GWAS. Indeed, permutation testing indicates
375 that SNVs identified in our mQTL analysis are enriched for SNVs implicated in metabolic,
376  hematological, anthropometric, cardiovascular, immune, neurological, and various other
377 diseases (Fig. 4 A, B, Dataset S15). By contrast, despite an abundance of CoRSIV-
378  associated genes linked to cancer (37), no enrichment was found relative to cancer GWAS
379  SNVs(Fig. 4 A, B). Notably, a recent analysis employing these same categories (24) found
380 nearly opposite categorical enrichments with trans-mQTL loci. With the caveat that 90%
381 of GWAS alleles impact multiple traits (55), it is interesting that cancer traits are not
382  enriched. This may indicate that CoRSIV methylation plays no role in this maladaptive
383  phenotype, or reflect dilution of effects across multiple cancer subtypes and various
384  genetic pathways leading to cancer (56). Overall, and particularly considering that Simes
385  SNVs are enriched for eQTL, these results are consistent with the possibility that human
386  genetic variants influence disease risk via mQTL effects at CoRSIVs.

387

388 As a complementary analysis, we used LD score regression (LDSC) (57) to determine if,
389 in the vicinity of genic CoRSIVs, there is enrichment for heritability of metabolic
390 phenotypes and cancer. GWAS summary statistics from the UK Biobank representing 12
391 metabolic traits and 4 cancer outcomes were downloaded (58). As nearly all Simes SNVs
392  are within 20 kb of their associated CoRSIV (Fig. 2C), we evaluated genomic regions
393  encompassing genic CoRSIVs +/- 20 kb. Consistent with our results based on direct
394  overlap with Simes SNVs, individual LDSC models focused on each outcome detected
395  significant enrichment for 3 metabolic outcomes (HbA1c, HDL cholesterol, and glucose)
396  but none for cancer (Fig. 4C). As suggested by Finucane et al (57), we repeated these
397 analyses including in each a full ‘baseline’ model comprising 53 sequence and epigenomic
398 features. Enrichment for heritability of two of the metabolic traits, HbA1c and HDL
399 cholesterol, was attenuated but remained significant (S/ Appendix, Fig. S23A). The
400 baseline-adjusted analysis (SI Appendix, Fig. S23B) confirmed strong evolutionary
401  conservation in the vicinity of genic CoRSIVs. Also, significant enrichments for coding
402 regions and transcription start sites may explain the attenuated associations with
403  metabolic outcomes. Regardless, we would argue that because CoRSIVs were identified
404  based solely on SIV in DNA methylation it is inappropriate to penalize them for association
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405  with genic and regulatory features. Hence, the LDSC results corroborate that CoRSIV-
406 flanking regions are enriched for heritability of metabolic disease.

407

408 Discussion

409

410  Following up on our previous screen for human CoRSIVs (37) here we have, for the first
411  time, demonstrated the feasibility of studying these regions at the population level using
412  target-capture bisulfite sequencing. Performing these analyses on donors from GTEx
413  allowed us to integrate our methylation data with genome sequence and gene expression
414  data on these same individuals. As expected, our results validated SIV at the CoRSIVs
415  we analyzed, and indicate the ability to use methylation profiling in peripheral blood to
416 draw inferences about epigenetic regulation in various organs of the body. More
417  surprisingly, our analyses of genetic influences on CoRSIV methylation indicate an
418 unprecedented level of mMQTL at these regions. Also unlike previous reports, our mQTL
419  analysis showed strongly biased beta coefficients (i.e., the major allele associated with
420  higher methylation). Lastly, we found evidence that genomic regions encompassing
421  CoRSIVs are enriched for the heritability of human disease traits.

422

423  Though unprecedented, the extremely strong mQTL effects at the CoRSIVs we surveyed
424  are unsurprising. Because variation at each SNV is fixed (ranging from 0 — 2 copies of the
425  minor allele), the best way to increase the power of mQTL detection is to focus on CpG
426  sites with the greatest interindividual range of DNA methylation. Other than our work (37,
427 59, 60), we are not aware of previous studies that took this approach. Instead, nearly all
428 investigations of human mQTL have employed lllumina arrays (22), which do not target
429 interindividual variants. One may question the validity of quantitatively comparing our
430 mQTL results with those of GoDMC (42). After all, GoDMC analyzed HM450 data on
431 420,000 CpG sites across nearly 33,000 individuals, whereas we analyzed target-capture
432  bisulfite sequencing data on 4,086 CoRSIVs in just 188 individuals. But although the
433  targeted regions and studied populations differ, both analyses employed the same
434  statistical method for mQTL detection. Because GoDMC performed their mQTL analyses
435  using M values (a transformation of the Beta value intended to improve normality), we also
436  transformed our percent methylation data to M values for this comparison. Therefore,
437  despite the different approaches and vastly dissimilar numbers of subjects considered,
438  our analysis is quantitatively comparable to that of Min et al. (42). Our ability to detect
439  more mQTL than ever before despite surveying a much smaller number of CpG sites than
440  onthe lllumina arrays speaks to the importance of targeting the right CpGs. Known human
441  CoRSIVs comprise just 0.1% of the genome; whilst some may question the wisdom of
442  focusing on such a small fraction of genomic CpG sites, common human sequence
443  variants comprise only ~0.3% of the genome (26) but have been a major focus of the
444  GWAS field for the last 20 years.

445

446  In addition to the extremely strong mQTL effects at genic CoRSIVs, we are not aware of
447  previous studies showing a bias in mQTL regression coefficients (Fig. 2, F & G). The
448 mQTL bias at genic CoRSIVs reflects that the major allele is generally associated with
449  higher methylation. This is consistent with the enrichment of L1 and LTR transposable
450 elements in the vicinity of CoRSIVs (Fig. 3), because these tend to locate in
451  heterochromatic regions (61). During human pre-implantation development, when
452  methylation at CoRSIVs is thought to be established (37, 62), widespread genomic de-
453  methylation leads to transient transcriptional activation of transposable elements, prior to
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454  their re-methylation and silencing in differentiated tissues (63). The high density of L1 and
455  LTR retrotransposons in CoRSIV-flanking regions therefore raises the question of whether
456 mQTL effects at CoRSIVs reflect modulation of the establishment of de novo or early
457  embryonic maintenance of existing zygotic methylation. In this regard, it is striking that, in
458 mice, L1 elements and IAPs (a class of LTR retrotransposons) are preferentially
459 methylated in sperm and not oocytes, whereas Alus show the opposite pattern
460 (methylated in oocytes but not in sperm) (64). These observations mirror our data on
461  transposable element enrichments in regions flanking CoRSIVs (Fig. 3A). The biased
462 mQTL beta coefficients at CoRSIVs lead us to speculate that they could reflect
463  evolutionary selection for genetic variants that maintain methylation marks in the paternal
464  genome, potentiating transgenerational epigenetic inheritance as observed at the murine
465  metastable epiallele axin fused (65).

466

467  As DNA methylation can act as an intermediary molecular mechanism linking genetic
468  variation to tissue-specific transcriptional regulation (23, 45), mQTLs may provide
469  mechanistic insights into how genetic variants influence gene expression. In this regard,
470  the dramatically different nature of mQTL effects at genic CoRSIVs, in terms of both
471  strength and allelic bias, indicates that we have uncovered a fundamentally different
472  component of epigenetic regulation compared to CpGs represented on the HM450 and
473  EPIC arrays, which have largely been the focus of the field (22). Also, our observation that
474  SNVs wielding the strongest mQTL effects at genic CoRSIVs are enriched for eQTL
475  suggests a mechanistic pathway in which genetic effects on CoRSIV methylation
476  modulate tissue-specific gene expression. On the other hand, 16% of CoRSIVs showed
477  weak effects explaining less than half of the interindividual variation (Fig. 21). These are
478 candidate metastable epialleles. Future large human studies can better characterize
479  genetic effects on CoRSIV methylation and elucidate true epipolymorphisms (i.e.
480 metastable epialleles) at which a majority of interindividual epigenetic variation is
481  unexplained by genetics, such as the non-coding RNA nc886 (also known as VTRNA2-1)
482 (17, 66). Combining data on such regions with those on recently identified murine
483  metastable epialleles (67) may enable comparative genomic approaches to characterize
484  sequence features that confer epigenetic metastability, informing in silico identification of
485 metastable epialleles in other mammalian species.

486

487  Many important questions remain unanswered by our study. Our initial identification of
488 CoRSIVs was based on ten Caucasian individuals. Reflecting the GTEx study overall,
489  90% of the donors included in this current study are also Caucasian. Although our previous
490 studies (37, 59, 60) indicate that SIV regions identified in Caucasians generally also show
491  SIV in other ethnic groups, future studies screening for SIV directly in non-Caucasian
492  populations may identify CoRSIVs specific to other ethnic groups. Also consistent with the
493  GTEXx study population overall, most donors studied here were between 50-70 years old
494  (Dataset S1). Considering the influence of age on epigenetic marks (12), one might ask
495 to what extent interindividual variation at CoRSIVs is influenced by age. Notably, the
496  validation studies we performed to corroborate mQTL effects at CoRSIVs (Fig. 2, G & J)
497  were based on peripheral blood of newborns yet showed nearly identical profiles of mQTL
498 slope and variance explained, arguing that age is not a major factor in the regulation of
499  systemic interindividual epigenetic variation. Compared to our initial screen which
500 surveyed thyroid, heart, and cerebellum, here we evaluated SIV in 4 additional tissues,
501 with at least one representing each germ layer lineage (Fig. 1A). Hence, whereas our
502 results confirm high inter-tissue correlation coefficients across most tissue pairs for ~90%
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503 of genic CoRSIVs (Fig. 1F) many more tissues and cell types remain to be evaluated. The
504 small fraction of genic CoRSIVs with low inter-tissue correlations (Fig. 1F) may reflect
505 false positives in our original screen, or possibly exhibit interindividual variation across
506  specific tissue lineages not evaluated here.

507

508 The generally strong mQTL at CoRSIVs is not due to the systemic nature of their
509 interindividual variation. Most of these same regions would have been detected if, instead
510  of our original three-tissue screen (37) we had conducted an unbiased genome-wide
511  screen for interindividual variation in, say, peripheral blood leukocytes. In addition to
512 CoRSIVs, such an experiment would detect interindividual variants specific to blood.
513  Rather than interindividual variation intrinsic to leukocytes, however, many of these reflect
514 interindividual variation in leukocyte composition (ratio of B cells to T cells, for example)
515 (68). We would argue that such variants are not bona fide interindividual epigenetic
516  variants. Because most human tissues exhibit such cellular heterogeneity, the specific
517  composition of which can differ among individuals and disease states, interindividual
518 variation observed in just one tissue is difficult to interpret. CoRSIVs, on the other hand,
519 are unaffected by individual differences in tissue cellular composition (37); like sequence
520 variants, they are stable epigenetic variants intrinsic to essentially all cells in an individual.
521  The CpG methylation profile at CoRSIVs can therefore reasonably be considered a
522  readout of an individual’s epigenome, enabling adoption of concepts and applications
523  developed for genomics, such as GWAS. Given the strong influence of genetics on
524  methylation at CoRSIVs, one might ask whether profiling CoRSIV methylation offers
525 additional information beyond that obtained by genotyping. We anticipate many
526  advantages. First, as multiple genetic variants influence methylation at each CoRSIV (S/
527  Appendix, Fig. S7), CoRSIV methylation can be viewed as an integrative readout of these
528 influences. Also, GWAS variants may logically be prioritized based on known mQTL
529 effects at CoRSIVs, just as investigators now prioritize GWAS hits based on evidence of
530 eQTL (69). In fact, mQTL effects at CoRSIVs may in some cases mediate eQTL. Lastly,
531  whereas our current data on CoRSIV mQTL is based on a mostly Caucasian cohort in the
532 US, itis possible that additional sources of variation (for example, due to periconceptional
533  environment (37, 59, 60)) will be uncovered as CoRSIVs are studied in a broader range
534  of ethnic and cultural contexts, providing insights into gene by environment interactions.
535

536  For over ten years the lllumina methylation platform has been the predominant tool for
537  population studies of DNA methylation (22, 30). A major reason is that it interrogates a
538  stable subset of CpG sites within the human genome (yielding one quantitative value for
539  each), simplifying data sharing and integration across multiple studies and populations.
540 Nonetheless, the platform has a major and undeniable shortcoming in the context of
541  population epigenetics: most CpGs included do not show appreciable interindividual
542  variation (33-36). Here we have shown that focusing on systemic methylation variants
543  enables the identification of far stronger mQTL than has been detected by the lllumina
544  arrays (42). We anticipate that the greater population variance at CoRSIVs will also
545  improve the power of studies aiming to associate epigenetic variation with risk of disease.
546  Generating the data to explore associations between CoRSIV methylation and a wide
547 range of human diseases is beyond the scope of this study. However, though grossly
548  underrepresented on the HM450 and EPIC arrays, CoRSIVs are often among top ‘hits’ in
549  existing EWAS (70). Indeed, these stable (36, 60, 71), systemic epigenetic variants are
550 already showing great promise for disease prediction (72-78). We suggest that improving
551  the coverage of CoORSIVs would enhance the utility of the lllumina EPIC array for the study
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552  of population epigenetics. Additionally, we wish to make our validated human CoRSIV-
553  capture reagents available to the field to facilitate the study of these systemic variants.
554  The list of known human CoRSIVs is currently incomplete, and screening is underway to
555 identify more, including in various ethnic groups.

556

557 Materials and Methods
558

559  Study samples

560 We obtained de-identified genomic DNA from multiple tissues of 188 donors in
561  collaboration with NIH Genotype-Tissue Expression (GTEx) program (38) (total of 807
562  samples). Informed consent was obtained by GTEX, including authorization to release the
563  patient's medical records and social history, sequencing of the donor's genome, and
564  blanket consent for all future research using the donated tissue and resultant data. The
565  donor and tissue information are available in Dataset S1 in the Supplementary Appendix.
566  For the independent mQTL validation, newborn blood spots from pediatric glioblastoma
567 cases and controls (47 samples total) were obtained from the California Biobank, using
568 information from the California Cancer and Vital Statistics registries. Genotype data for
569 the 188 individuals were generated by GTEXx, and for the other 47 samples DNA extraction,
570  preprocessing and genotyping were performed as previously described (79) (see the
571  methods in supplementary appendix for more details).

572

573  Target capture bisulfite sequencing and data processing

574  Out of 9,926 CoRSIVs previously reported (37), we included only those within 3000 base
575 pairs from the body of a gene present in the PubTator (80) compendium, using
576  BEDTOOLS (81) software, yielding 4641 CoRSIVs as targets for capture. The goal of
577 using PubTator was to focus not just on known genes but on those most likely to be
578  associated with a measurable phenotypic outcome. Libraries were made using the Agilent
579  SureSelect Methyl-seq library kit with modifications (Design ID: S3163502). Capture
580  design details and version history are available in the S| appendix, Materials and Methods.
581 As for the data processing Bisulfite-sequencing reads were trimmed using Trim Galore,
582  then mapped to the human genome build UCSC hg38 using the Bismark aligner (82).
583  Uniquely mapped reads were retained for further analysis (see the methods in the
584  supplementary appendix for more details).

585

586  Evaluating genetic influences on CoRSIV methylation

587  Analysis of associations between CoRSIV DNA methylation and genetic variation in cis
588  was performed relying on the Simes correction as described previously (44). Using the
589  EMatrixQTL R package (83), Spearman rank correlation was computed for all SNVs within
590 1Mb of each CoRSIV, and the Simes correction was applied. Simes adjusted p-values for
591 each CoRSIV were collected, and the false discovery rate (FDR) correction was applied
592  across all CoRSIVs analyzed in each tissue, with significance achieved at FDR-adjusted
593  p<0.05. To compare the summed total of mMQTL detected at CoRSIVs vs. that reported by
594  GoDMC (42), mQTL associations were identified with P < 107°. This conservative P value
595 was selected to avoid false positives, given the relatively small number of individuals in
596 the GTEx CoRSIV analysis. To further evaluate genetic influence on CoRSIV methylation
597 we used a haplotype-based approach. Phased genotype data from GTEx were used to
598 infer each individual’'s haplotype within the haplotype block overlapping each CoRSIV and
599  assessed correlations between CoRSIV methylation and haplotype allele sum (see the
600 methods in the supplementary appendix for more details).
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601

602  Data availability

603

604 The raw target capture bisulfite sequencing data for the 807 GTEx tissues (188
605 individuals) have been deposited to the AnVIL repository. Controlled access is
606  administered through dbGaP (accession phs001746.v2.p1). The samples used in the
607 mQTL validation analysis (USC cohort) are biospecimens from the California Biobank
608  Program. Any uploading of genomic data and/or sharing of these biospecimens or
609 individual data derived from these biospecimens would violate the statutory scheme of the
610  California Health and Safety Code Sections 124980(j), 124991(b), (g), (h), and 103850 (a)
611  and (d), which protect the confidential nature of biospecimens and individual data derived
612  from biospecimens. Certain aggregate results from the USC cohort may be available from
613  the authors by request.
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donors with data on at least 4 tissues (excluding cerebellum), unsupervised hierarchical
clustering of methylation data at 2,349 fully informative CoRSIVs groups perfectly by donor.

Fig. 2. Genetic influences on CoRSIV methylation are strong and biased. (A) (B)
Representative plots of mQTL associations at individual CoRSIVs on chromosomes 1 and 2,
respectively. Significant associations are shown for all SNVs within 1Mb of each CoRSIV; positive
and negative beta coefficients are plotted in blue and red, respectively. The most significant SNV
(Simes SNV) is circled. Insets show average CoRSIV methylation vs. Simes SNV genotype. (C)
Distribution of distances between CoRSIVs and corresponding Simes SNVs. (D) For each of
4,086 CoRSIVs, heat map depicts the number of tissues in which the Simes SNV falls within the
same haplotype block, illustrating the largely systemic nature of mQTL at CoRSIVs. (E)
Distribution of beta coefficients of significant Simes mQTL associations for the GoDMC blood
mQTL data (42) (F) Distribution of beta coefficients of significant Simes mQTL associations at
3,723 CoRSIVs in blood DNA from 188 GTEx donors. (G) Distribution of beta coefficients of
significant Simes mQTL associations across 2,939 CoRSIVs in blood DNA from 47 newborns
(USC). (H) Distribution of Simes mQTL R? (goodness of fit) for the GoDMC data. (1) Distribution
of Simes mQTL R? at CoRSIVs (GTEX, blood). (J) Distribution of Simes mQTL R? at CoRSIVs
(USC samples).

Fig. 3. Genic CoRSIV-flanking regions show long-range enrichments and depletions for
specific classes of transposable elements. (A) Using 1 Kb step sizes, each plot shows
significant enrichments or depletions for CpG islands (CGl) and subclasses within each of 8
classes of transposable element within 50 Kb of genic CoRSIVs. Compared to control regions,
CoRSIV-flanking regions show long range depletion of CpG islands and enrichment of specific
classes of LINEs and LTRs. (B) Compared to CoRSIVs showing a positive mQTL beta
coefficient, those with negative coefficients are depleted for CpG islands and show long-range
depletion of specific LINE1s and all subclasses of Alus. (C) The strength of mQTL associations at
CoRSIVs (R2in 4" vs. 18t quartile) is not associated with widespread differences in genomic
content of transposable elements. (D) Compared to regions in which HM450 probes are located,
CoRSIVs show short- and long-range enrichments for many subclasses of LINE1 and LTR
retrotransposons.

Fig. 4. CoRSIV mQTL SNVs are enriched for GWAS associations. (A) Within each of 8
disease/phenotype categories, the histogram shows the null distribution obtained by permutation
testing for overlap of GWAS SNVs with SNVs randomly sampled within 1Mb of each CoRSIV.
The red diamond shows the actual number of overlaps between CoRSIV mQTL SNVs and
GWAS SNVs. Numbers of GWAS SNVs considered in each category are anthropometric: 8106,
cancer: 3,163, cardiovascular: 4,816, hematological: 7,461, immune: 5,263, metabolic: 10,121,
neurological: 14,741, and various: 14,573. (B) Statistical significance (Bonferroni-adjusted p-
value) vs. fold enrichments for the analysis in (A). Strong and statistically significant enrichments
were found for all outcomes except cancer. (C) Statistical significance (Bonferroni-adjusted p-
value) vs. fold enrichments for 8 metabolic traits and 4 cancer outcomes from the LDSC analysis
confirms that the vicinity of CoRSIVs is enriched for heritability of metabolic traits.
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Other Supplementary Materials for this manuscript include the following:

Dataset 1 GTEx Donor Information and Tissue Types

Dataset2 | CoRSIVs targeted for Bisulfite Capture Sequencing (hg38)

Dataset 3 CoRSIV Capture Sequencing Data QC Metrics

Dataset4 | CoRSIVs which failed to meet coverage criteria in all libraries (hg38)

Dataset 5 Inter-tissue Pearson correlation coefficients across six tissues (see Fig. 3F)

Dataset6 | CoRSIV average methylation data for those adequately covered in all six tissues (see Fig. 1G)
Dataset7 | Capture efficiency data do not associate with Fig. 1G clustering

Dataset8 | Simes CoRSIV-SNV mQTL in GTEx Data (sorted by R-Squared)

Dataset 9 Pearson correlation coefficients for haplotype allele sum vs. CoRSIV DNA methylation
Dataset 10 | Enrichment of repeat elements in Genic CoRSIVs vs. Controls

Dataset 11 | Enrichment of repeat elements in Genic CoRSIV mQTL slope Neg. Vs. Pos.

Dataset 12 | Enrichment of repeat elements in R-squared Q4 CoRSIV mQTLs. vs. Q1 CoRSIV mQTLs (Genic)
Dataset 13 | Enrichment of repeat elements in Genic CoRSIVs Vs. HM450K

Dataset 14 | Tajima's D Score comparison between CoRSIVs, Controls, tDMRs, HM450k

Dataset 15 | CoRSIV mQTL SNV association with GWAS SNVs
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Materials and Methods

CoRSIV Capture Design Versions

V. Agilent Design | Included Regions Agilent Design Size
Design Date Selections (Mbp)
ID
1.0 | S3163502 | 23-Aug- | 4641 CoRSIVs 1x Tiling Density 9.045
2018 Sex specific Chr Y regions Least Stringent Masking
Balanced Boosting
2.0 | S3223244 | 16-Jul- | 9926 CoRSIVs 1x Tiling Density 19.843
2019 SIV (1, 2) Least Stringent Masking
ESS (2) Balanced Boosting
Sex-specific Chr Y regions
imprinting control regions (3)
3.0 | S3295946 | 06-Aug- | 9926 CoRSIVs 1x Tiling Density 21.958
2020 SIV(1, 2) Least Stringent Masking
ESS (2) Optimized Performance
Cell Composition estimation probes XT/XT2 boosting
(4, 5)
Sex-specific Chr Y regions,
imprinting control regions(3)
3.1 | S3332366 | 23-Feb- | 9926 CoRSIVs 1x Tiling Density 21.130
2021 SIV(1, 2) Least Stringent Masking
ESS (2) Optimized Performance

Cell Composition estimation probes
(4, 5)

Sex-specific Chr Y regions,
imprinting control regions(3)

Design of CoRSIV-capture reagent

XT/XT2 boosting
Overnight Hybridization
Deleted ineffective baits

from v.3.0.

Of the 9,926 CoRSIVs previously reported (6), to ensure adequate targeting we filtered to

include only those within 3,000 base pairs (bp) from the body of a gene present in the Pubtator
(7) compendium, using BEDTOOLS (8) software, yielding 4,641 CoRSIVs as targets for capture
(Supplementary Table). For quality control purposes we included 10 regions on the Y

chromosome to confirm the accurate biological sex of each sample. At each of the 4,641

CoRSI Vs, the target region included flanking regions of 1,000 bp in each direction. We used the

Agilent SureSelect online system to design a custom capture reagent, using the following

options: balanced boosting, 1x tiling, and least stringent masking. Overall, our CoRSIV capture
reagent (Agilent Design ID: S3163502) targeted 9.045 MB of the human genome
(Supplementary Table 2), using 85,538 probes.
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Library preparation, capture, and sequencing

Individual libraries were made using the Agilent SureSelect Methyl-seq library kit, with
modification. In brief, lug of genomic DNA was subject to shearing to 150-200bp in size using a
Covaris sonicator. After purification through AMpure XP beads, end repair and A-Tailing was
carried out. Then, 5ul of 15uM methylated library adaptor (IDT) was ligated to each sample, and
the product with a size of 250-450bp was selected through Ampure XP beads.

Twelve libraries were pooled in equal proportions for target enrichment following an
Agilent protocol (Sureselect Methyl-seq target enrichment system for [llumina multiplexed
sequencing). After hybridization with probes (Agilent SureSelect, custom design), Dynabeads
MyOne streptavidin T1 beads were used to bind the library. After several round of washes, the
bound DNA was eluted in 0.1N NaOH and subjected to Bisulfite treatment using the EZ DNA
Methylation Gold kit (Zymo Research). Final library was generated by amplification using
Sureselect Methyl-seq PCR Master Mix and PS5, P7 primers (Illumina). Sequencing was
performed using an Illumina Novaseq 6000 at the Functional Genomics core, Department of
Molecular and Human Genetics, Baylor College of Medicine.

Data processing

Bisulfite-sequencing reads were trimmed using Trim Galore, then mapped to the human
genome build UCSC hg38 using the Bismark aligner (9). Uniquely mapped reads were retained
for further analysis. Duplicate reads were not removed, as recommended for capture experiments
by the Bismark manual. CpG-level methylation was quantified using the Bismark pipeline. For
each sample, average proportional DNA methylation was computed at each CoRSIV for which at
least half of the CpGs were covered by at least 5x reads.

Quality control assessment

To determine the proportion of ‘on-target’ reads, only those that mapped completely within
a target region were counted; capture efficiency was calculated as the fraction of on-target reads
divided by all uniquely mapped reads. To confirm the accuracy of the biological sex of each
sample, coverage of chromosome Y control regions was measured. Signal density plots were
generated using the BEDTOOLS(8) software, with data reported as reads per million reads
mapped (RPM), and visualized using Integrative Genome Viewer (IGV) software (10).

Assessment of inter-tissue correlations

At each CoRSIV, inter-tissue correlations of average proportional DNA methylation were
computed for all tissue-pairs in which coverage requirements were satisfied in at least 10
individuals in both tissues. Pearson correlation was computed using the Python Scientific
Library, with significance achieved at p<0.05. Inter-tissue correlation plots were visualized using
the Python seaborn visualization library.

CoRSIV/tissue DNA methylation clustering analysis

To assess the similarity of DNA methylation profiles across donors and tissues, donors with
CoRSIV capture data in at least 4 tissues were considered. Next, CoRSIVs with sufficient
coverage across all donors and tissues were selected. Finally, CoRSIV-average proportional
DNA methylation values for each sample were clustered using the Euclidean distance metric and
the average linkage method, and visualized using the seaborn Python visualization library.
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Cross-tissue analysis of gene expression vs. CoRSIV methylation

For each GTEx donor included in our analysis, tissue-specific gene expression profiles were
downloaded from the GTEx data portal, expressed in transcripts per kilobase million (TPM). For
each tissue, the analysis focused on CoRSIV associated genes expressed in that tissue (average
TPM expression > 0.5). (Tibial nerve was not included in this analysis due to the small number
of samples with RNA-seq data available.) Thyroid, lung, and cerebellum were considered ‘target
tissues’. For each CoRSIV-associated gene expressed in each target tissue, we calculated the
Pearson correlation between CoRSIV average methylation in that tissue and gene expression in
that tissue. We then asked if the same correlation was found between CoRSIV average
methylation in a ‘surrogate tissue’ (blood or skin) and gene expression in the target tissue.
Within each ‘expression tissue’ and ‘methylation tissue’ pair, p values were corrected for
multiple hypothesis testing using the Benjamini Hochberg method, with significance achieved
for adjusted p-value<0.05. Agreement of correlation between gene expression and DNA
methylation between target tissue and surrogate tissues (statistically significant and in the same
direction) was plotted in pie charts using GraphPad Prism. For specific CoRSIVs, scatterplots of
tissue-specific gene expression vs. tissue-specific DNA methylation were generated using the
seaborn Python visualization library.

mQTL Analysis using CoRSIV capture data on GTEx Samples

Analysis of associations between CoRSIV-average DNA methylation and genetic variation
in cis was performed using a previously described strategy relying on the Simes correction (/7).
Rather than test for all significant mQTL associations, this approach conservatively tests
whether, at each CoRSIV, there is evidence of mQTL. For each donor, single nucleotide variant
(SNV) profiles computed by the GTEx consortium were downloaded in vcf format (dbGaP
accession phs000424.v8.p2). SNVs reported in dbSNP and with a minor allele frequency (MAF)
of at least 5% were selected for further analysis. mQTL analysis was conducted independently
for each tissue. For each CoRSIV, the number of donors with both sufficient coverage in the
capture experiment for a specific tissue and with a WGS SNV profile available was determined;
for each tissue, CoRSIVs with data for at least 20 donors were selected for mQTL analysis. To
harmonize our mQTL analysis with those based on the Illumina BeadArray data, CoRSIV-
average proportional DNA methylation values were converted to M-values (/2) prior to analysis.
Spearman rank correlation was computed for all SNVs within Imb of each CoRSIV, using the
EMatrixQTL R package (/3), and the Simes correction was applied. Simes adjusted p-values for
each CoRSIV were collected, and the false discovery rate (FDR) correction was applied across
all CoRSIVs analyzed in each tissue, with significance achieved at FDR-adjusted p-value<0.05.
The R? variance explained by the linear model for each CoRSIV (in each tissue) was computed
using the Python scientific library. For each significant mQTL association, a parametric analysis
was carried out using using EMatrixQTL to determine the beta coefficient of the linear
association between CoRSIV-average DNA methylation and the cis genetic variant.

Manhattan plots of mQTL associations were generated for each tissue and each CoRSIV
using the R statistical system displaying all the mQTL candidates at p<0.001. Three-dimensional
Manbhattan plots of the significant mQTL associations across all CoRSIVS, capturing the
distance between strongest associated SNV and CoRSIVs and the linear beta coefficient, were
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generated using the plotly R library. A distribution of the beta linear coefficients across all
significant mQTL associations in each respective tissue was generated using the R library.

Haplotype-based analysis using capture data on GTEx samples

SNVs reported in dbSNP and with a MAF of at least 5% were include in the haplotype-
based analysis. PLINK 1.9 (/4, 15) was used to identify haplotype blocks, with default
parameters. Index SNVs were obtained by parsing the PLINK output for each individual block.
Only CoRSIVs overlapping with haplotype blocks were considered for haplotype-based analysis.
Further, only GTEx donors with a WGS profile were included, and within each tissue we
considered only CoRSIVs with sufficient capture data on at least 20 donors. At each CoRSIV,
the minor allele sum was computed across all the index SN'Vs for each donor, using the
convention 0 for homozygous major allele, 1 for heterozygous SNV, and 2 for homozygous
minor allele. Again, CoRSIV-average methylation values were transformed to M values. The
Pearson correlation coefficient was computed between CoRSIV average DNA methylation and
the minor allele sum of its overlapping haplotype block. Correction for multiple hypothesis
testing was performed using the Benjamini-Hochberg correction, with significance achieved at
FDR-adjusted p-value<0.05. Plots of DNA methylation at individual CoRSIVs vs. minor allele
sum within overlapping haplotype blocks were generated using the Python scientific library.

Analyzing consistency of CoORSIV mQTL across tissues

Recurrence of significant mQTL for each CoRSIV across the 6 tissues was assessed in two
ways. First, at the most stringent level (the SNV level), an mQTL SNV-CoRSIV pair was
considered recurrent if the same Simes-adjusted SNV was identified, and the beta coefficient had
the same sign, within two or more tissues. Considering the high linkage disequilibrium among
multiple SN'Vs within a haplotype block, we also evaluated recurrence at the haplotype block
level. At this level, an mQTL association for a CoRSIV was considered consistent across
multiple tissues if the Simes-adjusted SNVs identified in two or more tissues fell within the same
haplotype block, and the beta coefficient had the same sign. mQTL recurrence was plotted as
heat maps using the R statistical system.

USC pediatric cohort — genotyping and CoRSIV capture bisulfite sequencing

Pediatric glioblastoma cases and controls were selected from the California Biobank, using
information from the California Cancer and Vital Statistics registries. Cases were self-reported
non-Latino whites born between 1982 and 2009, and subsequently diagnosed with glioblastoma
(ICDO-3 code 9440). Controls were born in the same year with same gender and ethnic group as
cases from anywhere in the state. Neonatal dried blood spots (approx 1.3 cm diameter) for each
child were used for DNA extraction. DNA extraction, preprocessing and genotyping were
performed as previously described (/6). In brief, DNA was extracted from 1/3 of a dried blood
spot with Genfind v3.0 (Beckman) reagents on an Eppendorf robot, followed by in house quality
control procedures including nanodrop for purity and pico-green measurement for DNA
quantity. Four hundred ng DNA was genotyped using the Affymetrix Axiom Precision Medicine
Diversity Array (PMDA) at Thermo Affymetrix (San Jose CA), and SNP calls were extracted
using Affymetrix Powertools. CoRSIV-capture bisulfite sequencing was performed using
CoRSIV Capture v2.0 (Design ID: S3223244).
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USC Pediatric cohort CoRSIV capture data processing

For the USC pediatric whole blood cohort, Trim galore software was used for the quality
control of the reads, which were aligned to hg38 genome using Bismark aligner (9). De-
duplication was not carried according the Bismark guidelines for target capture sequencing.
Bismark methylation extractor was used to do the methylation calling. CpG Methylation levels
were averaged across CoRSIVs with at least 10x coverage.

Independent analysis of USC pediatric samples for confirmation of CoRSIV mQTL and effects
of local haplotype

CoRSIV capture bisulfite sequencing data on whole blood (newborn blood spots) were
generated for 48 individuals from the USC pediatric cohort. One individual was removed from
the analysis as a genetic outlier, leaving 47 samples for this analysis. Phased genotype data were
generated, and SNVs reported in dbSNP and with a minor allele frequency (MAF) of at least 5%
were selected for further analysis. CoORSIV-average DNA methylation values were converted to
M-values (/2) prior to analysis. Spearman rank correlation was computed for all SNVs within
Imb of each CoRSIV, using the EMatrixQTL R package (/3), and the Simes correction was
applied. Simes adjusted p-values for each CoRSIV were collected, and the false discovery rate
(FDR) correction was applied across all CoRSIVs analyzed in each tissue, with significance
achieved at FDR-adjusted p-value<0.05.

For the haplotype-based analysis, SNVs reported in dbSNP and with a MAF of at least 5%
were included. PLINK 1.9 (14, 15) was used to identify haplotype blocks, with default
parameters. Index SNVs were obtained by parsing the PLINK output for each individual block.
At each CoRSIV, the minor allele sum was computed across all the index SNVs for each donor,
using the convention 0 for homozygous major allele, 1 for heterozygous SNV, and 2 for
homozygous minor allele. The Pearson correlation coefficient was computed between CoRSIV
DNA methylation and the minor allele sum of its overlapping haplotype block. Correction for
multiple hypothesis testing was performed using the Benjamini-Hochberg method, with
significance achieved at FDR-adjusted p-value<0.05.

Comparison of CoRSIV mQTL with HM450K mQTL results from GoDMC

GoDMC (Min et al. (/7)) computed mQTL using 33,000 individuals with DNA methylation
data generated in the HM450 platform. As described above, mQTL was calculated for the GTEx
CoRSIV capture data using matrixEQTL software, regressing DNA methylation M-value against
the genotype (0,1,2). To compare the summed total of mQTL detected at CoRSIVs vs. that
reported by GoDMC, mQTL associations were identified with P < 107°, This conservative P
value was selected to avoid false positives, given the relatively small number of individuals in
the GTEx CoRSIV analysis. With this cut-off, approximately 150,000 cis mQTL effects were
detected in each study. Since methylation data were not available from GoDMC, methylation
ranges (delta) were inferred by multiplying the slope of the linear model by 2 (x-axis of the
genotype call). For each individual mQTL association, the product (delta)x(R?) yields the
absolute quantity of interindividual methylation variation explained by the SNV. This metric was
summed across all mQTL effects in each data set.
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Analysis of regional enrichments of transposable elements

To compare genomic enrichment of transposable elements flanking CoRSIVs vs. non-
CoRSIV regions, repeat definitions encoded in the RepeatMasker track were downloaded from
the UCSC genome browser build hg38. Repeats were analyzed at the level of repeat class, repeat
class and repeat family and, finally, repeat class, repeat family, and repeat names. Only repeat
sets with at least 10,000 entries were included in the enrichment analyses. CpG islands, defined
by the UCSC genome browser on the human genome build UCSC hg38, were also downloaded.
Analysis extended to +/- 50,000 bp relative to each CoRSIV or comparison region. To compare
the differential enrichment of one repeat subset R between two sets of genomic intervals A and
B, we used BEDTOOLS (8) to determine repeat overlap between R and A or between R and B,
within each of 50 genomic windows, cumulatively stepping by 1,000 bp increments from Obp to
50,000bp. Within each window, an odds-ratio and p-value were computed using the Fisher’s
exact test. Multiple testing correction was performed within each genomic window to adjust for
the multiple tests performed at each repeat type, with significance achieved at an FDR-adjusted P
< 0.01. Odds ratios (enrichments or depletions) surviving multiple testing correction were plotted
across all repeat subsets and genomic windows using GraphPad Prism.

Evolutionary selection analysis

Selection scores computed using Tajima’s D score (/8) across CEU specimens profiled by
the 1000 genomes project were downloaded (/9). Selection scores compiled within a 30kb radius
around CoRSIVs, control regions, tDMR regions, or 450k probes were plotted using the R
statistical analysis system.

Enrichment of GWAS trait SNVs

We employed permutation testing to determine the extent to which CoRSIV mQTL SNVs
(Simes SNVs) are enriched for trait-associated SNVs from the NHGRI GWAS catalogue
(downloaded October 2020). For each of 8 manually curated trait categories (20), we generated a
null distribution by randomly selecting one SNV from the GTEx database (MAF >= 0.05) within
1 Mb up- or downstream from the center of each CoRSIV. We then determined whether this
randomly chosen SNV overlapped an NHGRI trait-associated SNV from that category. This
process was repeated 10,000 times to yield a null distribution for each trait category. The
numbers of actual overlaps between CoRSIV mQTL SNVs and NHGRI trait-associated SNV's
were compared to these null distributions using one-proportion Z tests. Bonferroni-adjusted p-
values for these tests are reported. Enrichment was defined as the number of actual overlaps
between CoRSIV mQTL SNVs and NHGRI trait-associated SNVs divided by the mean of the
null distribution.

CoRSIV +/- 20kb SNVs heritability enrichment with/without controlling for 53 baseline features

To evaluate heritability for a variety of traits (i.e., cancer and metabolic diseases) in
CoRSIV +/-20kb SNVs, we used stratified linkage disequilibrium score regression (s-LDSC)
(21) . First, the targeted CoRSIV regions were lifted to hg19 using the UCSC “liftover” software,
and “bedtools” software was used to add the +/- 20kb flanking. CoRSIV +/- 20kb’ distance was
used because the majority of significant mQTL occurred within these regions. European
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population plink files used by LDSC software (v. 1.0.1) were downloaded from the 1000
Genomes project.

In step 1, “make_annot.py” python script available in LDSC software was used to
generate SNV annotation for CoRSIV +/- 20kb and 53 ‘baseline’ (27) bed files, creating (.annot)
files typically consisting of CHR, BP, SNP, and CM columns, followed by one column per
annotation, with the value of the annotation for each SNP (0/1 for binary categories). Two
separate sets of annotation files were generated for CoRSIV +/- 20kb with and without 53
‘baseline’ features.

In step 2, two annotation file sets generated in stepl were used to estimate annotation-
specific LD scores using 1000 Genomes phase3 plink files and 1000G HapMap3 SNPs
excluding MHC region in chr6 (according to the LDSC user manual). LDSC.py script with the
following parameters suggested by the manual was used. --bfile flag points to the plink format
fileset; The --12 flag tells ldsc to compute LD Scores. The --1d-wind-cm flag tells Isdc to use a 1
cM window to estimate LD Scores.

In step 3, to calculate partitioned heritability for different traits, summary GWAS
statistics were downloaded for 4 cancer and 12 metabolic disease categories from
(https://alkesgroup.broadinstitute.org/LDSCORE/all sumstats/). The LDSC.py script with --h2
flag compute partitioned heritability and outputs enrichment scores, for CoRSIV +/- 20kb
regions (with/without controlling for 53 baseline features) for each trait.
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Fig. S1. CoRSIV capture efficiency, quality control, and inter-tissue correlation in DNA
methylation. (A) Violin plot shows, for each of 807 samples, the proportion of reads that were
on target (i.e. completely within a target region). (B) Percentage of CoRSIVs for which target-
capture bisulfite sequencing achieved various read depths, by sex, and by tissue type. Each point
represents a sample; numbers of samples are shown. (C) Dichotomous heat map showing which of
4,483 CoRSIVs (columns) are covered at >30x depth in each of 807 samples (rows). A small
fraction of CoRSIVs proved difficult to capture across all samples. (D) Read-depth across a
panel of Y-chromosome probes confirms correct biological sex for all 807 samples (quality
control). (E) Heat map shows numbers of samples available to calculate inter-tissue correlations.
(F) For the 270 tissue samples from 53 donors with data on at least 5 tissues (including
cerebellum), unsupervised hierarchical clustering of methylation data at 2,340 fully informative
CoRSIVs organizes mainly by donor, but also forms a minor cerebellum cluster (left hand side).
(G) Inter-tissue correlation plots for a CoRSIV near ROR2 show that, despite higher methylation
in cerebellum relative to other tissues, high inter-tissue correlations are maintained.
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Fig. S2. Inter-tissue correlation (ITC) plots show that methylation in blood is associated
with that in brain, thyroid, skin, lung, and tibial nerve. Each row shows data on one
CoRSIV. The first three and last two rows show CoRSIVs with three modes of methylation, and
a uniform distribution, respectively (the most common patterns observed). For ITC plots on all
the CoRSIVs see (five tissues vs. blood).
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Fig. S3. Inter-tissue correlation (ITC) plots show that methylation in blood is associated
with that in brain, thyroid, skin, lung, and tibial nerve. Each row shows data on one
CoRSIV. These plots show examples of infrequently observed patterns including two, four, or
five discrete modes. For ITC plots on all the CoRSIVs see (five tissues vs. blood).
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of CoRSIV-associated genes expressed (transcripts per million (TPM) >= 0.5) in each tissue type. (B)
Heat map of expressed genes across the six tissues. (C) Except for tibial nerve, both methylation and gene
expression data were available for more than 60 individuals.
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Fig. S6. CoRSIV methylation in blood or skin predicts expression of associated genes in less
accessible tissues. (A) Within- and between-tissue correlations of GSTM3 expression vs. DNA
methylation at a CoRSIV within GSTM3. (B) Within- and between-tissue correlations of XRRA [
expression vs. DNA methylation at a CoRSIV within XRRA 1. (C) Number of CoRSIVs with
positive and negative correlations in three tissues according to location of CoRSIV with respect
to transcription start site (5'), gene body, and transcription end site (3'). (D) Thyroid , lung, and
cerebellum are considered target tissues, and blood and skin are surrogate tissues. Across all
CoRSIV-gene pairs with significant correlations between CoRSIV methylation and expression
of an associated gene in a target tissue, over 75% show the same correlation when methylation in
blood is used as surrogate; using skin as surrogate, over 60% do.
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Fig. S7. Histogram of the number of genetic variants (SNVs) influencing
methylation at each CoRSIV (mQTL P <101%).
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blood (Fig. 2 F, I).
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Fig. S14. Neither the bias toward negative beta coefficients nor the tendency for high R? of
mQTL effects at CoRSIVs is explained by SNVs overlapping CpGs within CoRSIVs. (A)

The set of 1155 CoRSIVs with no such overlaps. (B) The set of 2759 CoRSIVs for which at least on SNV

overlaps a CpG within the CoRSIV. In both cases, the biases toward negative beta coefficients and high
R? are observed.
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each of 4,086 CoRSIVs. (B) CoRSIV mQTL beta coefficient is only weakly associated with the number
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24



A s B  GTEx- Haplotype C usc- Haplotype

20
15
15
. 210 z
b5 510
c a al
0 05
=i\ 0.5
>
E 0.0 - 0.0
g 0050005 10 10 05 00 05 10
> 3 Haplotype allele sum vs CoRSIV Methy. Pearson correlation coeff.
2 B -
S
2 10 1.0
z z
< 2
S s 38 os
1 i = = —
0.0 00
0 1 2 3 4 S 6 7 8 9 10 11 12 0.00 0.25 0.50 0.75 1.0( 000 025 080 075 1.00
HapIOtype allele sum Haplotype allele sum vs CoRSIV Methy. R?

Fig. S16. Haplotype-based approach to assess local genetic influences on CoRSIV methylation. (A)
Example of association of average methylation in blood at one CoRSIV (chr22:50677397-50683133) vs.
haplotype allele sum (sum of minor alleles in each individual) for its overlapping haplotype block. Shown
are data on 170 individuals grouped by haplotype allele sum. (B) Top: Distribution of Pearson correlation
coefficients for all such associations (CoRSIV methylation vs. haplotype allele sum) across 4,471
CoRSIVs assessed in 188 GTEx donors. As in the mQTL analysis (Fig. 2F), negative coefficients
predominate. Bottom: Distribution of R? (goodness of fit) across all such associations in GTEx donors.
Local haplotype explains much of the variance in methylation. (C) Independent corroboration in USC
cohort. Top: Distribution of Pearson correlation coefficients for all such associations (CoRSIV
methylation vs. haplotype allele sum) across 4,471 CoRSIVs studied in 47 newborns in USC cohort.
Bottom: Distribution of R* across all such associations in USC cohort.
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Fig. S17. Approach for comparing total quantity of mQTL across different data sets. (A)
With exactly 3 possible genotypes at every SNV, the methylation difference (delta) associated with each
SNV can be easily determined from the beta coefficient (slope) of the mQTL association. (B) The product
(delta)x(R?) measures the total amount of variation in methylation that is determined by the SNV
genotype. Distribution of (delta)x(R?) for all 146,698 mQTL associations (P < 10™'%) across 2,738
CoRSIVs in blood of 188 individuals. (C) The same distribution, recalculated using M-values. (D)
Distribution of (delta)x(R?) for all 154,527 mQTL associations (P<107'%) detected using the HM450
platform to study blood of 33,000 individuals (GoDMC data — Min et al 2021 Nat. Genetics). Although
the calculations were performed the same way as in (C), note the very different x-axis scales. (E) Area
under the curve in (C) vs. that in (D). The summed total variance in methylation explained by cis mQTL
at CoRSIVs is 72 fold greater than that detected in the GoDMC report.
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Fig. S18. Characteristics of eQTLs overlapping Simes SNVs. (A) Pearson correlation between
eQTL slopes across 5 tissues. (B) Enrichment of Simes SNVs in eQTL compared to
bootstrapped eQTLs from CoRSIV +/- 50kb flanking regions. Fisher test P-values < 1x1071%°,
(C) eQTL slope vs. distance between SNV and TSS for Simes SNVs. (D) eQTL slope vs.
distance between SNV and TSS for bootstrapped eQTLs (four representative plots from 1000
bootstraps are shown).
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Fig. S23. LDSC heritability enrichment score for SNVs in CoRSIV +/- 20kb , when 53
baseline features are included in the model. (A) LDSC enrichment score vs. Bonferroni
adjusted p-value in -log10 scale for 12 metabolic traits and 4 cancer outcomes when CoRSIV +/-
20kb region and full ‘baseline’ features including 53 sequence and epigenomic features are
included in the models. (B) LDSC Enrichment and Bonferroni adjusted p-value (green color) for
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