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Abstract

Background: NanoString’s GeoMx Digital Spatial Profiler (DSP) RNA assay can
measure mRNA from hundreds of regions of customizable shape and size, yet it
gives unique challenge in Quality Control(QC) and normalizating due to the
omnipresent background noise incurred by the non-specific probe binding, which
could not be addressed by conventional methods.

Results and discussion: Using Poisson Background model, Background Score
Test, Negative Binomial threshold model and Poisson threshold model for
normalization from the R package GeoDiff, we perform tasks including size
factor estimation, QC and normalization on GoeMx RNA assay data. They are
shown to outperform conventional methods like Limit of Quantification for QC as
to consistency/false positive rate and 75% quantile normalization as to
eliminating technical variability and recovering true signal.

Conclusions: We present a statistical model based workflow for QC and
normalizing GeoMx RNA data using GeoDiff, justified by statistical theory and
validated by real/simulated data.

Keywords: GeoMx RNA assay; GeoDiff package; threshold model

Background
Spatial gene expression platforms, which measure gene expression within tiny re-

gions from across the span of a tissue sample, have opened a frontier in biology.

These platforms harness idiosyncratic chemistries that introduce distinct technical

effects into their data; however, spatial data is often analyzed with tools developed

for bulk or single RNA-seq data, leading to bias and statistical inefficiency. Here

we derive data analysis methods addressing the important technical effects of the

GeoMx platform for spatial gene expression.

Given a tissue sample, the GeoMx RNA assay can measure mRNA from hun-

dreds of regions of customizable shape and size. Its ability to assay flexibly-defined

regions comes from a unique chemistry. Probes are constructed of two parts: an

oligonucleotide that hybridizes to a target mRNA sequence in the tissue, and a

second oligonucleotide barcode specifying the gene identity. These two halves are

connected by a photocleavable linker. Probes are flowed across a tissue, binding

their targets wherever they lie; then, precisely focused UV light cleaves the probes

within user-defined regions and releases the barcodes for counting by short-read

sequencing.

This chemistry leads to three complications for data analysis, each creating pit-

falls for analyses designed for other platforms. First, probes stick at low rates to
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biological material other than their intended mRNA target, leading to background

counts. Background impacts the expression of genes, especially genes with very low

expression, introducing bias if ignored. Background also complicates the task of

calling a gene as definitively detected. Second, in very small regions, many genes

will have expression levels dropping to zero or background-level counts. These near-

zero counts become statistically unstable after log-transformation, which has been

commonly favored by gene expression analysts since the early days of microarrays.

Third, the size of regions sampled in a single experiment can vary from one to

thousands of cells, leading to a much wider range of technical effects in the raw

data.

Normalization of GeoMx data has thus far required great care, often forcing a

choice between multiple unsatisfactory methods. To facilitate future analyses, we

have established data-generating models for GeoMx, and we have models to derive

methods for the fundamental operations of GeoMx analysis. Most importantly, we

define a normalization procedure that removes all major technical effects and allows

for log-scale analyses. We also define a suitable model for the background and a test

for whether genes are detected above background, as well as a model for size factor

estimation. This suite of tools is implemented in the GeoDiff R package.

The background model is the starting point of the GeoDiff analysis. While there is

some previous attempt to model negative control probes using Poisson based model

for data from NanoString nCounter [1] and DSP [2] platforms, none of them allow

parameter estimation for each negative probe and each sample as in GeoDiff. With

full parameterization, model diagnostics can be carried out and outliers and batch

effect can be identified, which provides more insight to the data than previously

possible.

The Quality Control(QC) is a prerequisite before gene expression analysis. In

QC for DSP, one commonly asked question is: “whether a feature/Region of Inter-

est(ROI) has good signal”. One traditional way to answer this question is to define

a per ROI Limit of Quantitation(LoQ) cutoff, to determine whether a single target

is above the background per ROI by the cutoff, then to calculate the overall pass

rate for each target or ROI as the metric for flagging them[3]. This approach is very

heuristic. In this paper we formally clarify the meaning of “a target/ROI has good

signal” in the context of GeoMx RNA dataset, and provide a statistical test for

features and a metric for ROIs for signal QC purpose, with necessary justification

and validation.

Normalization, the endeavor of removing technical variation from the gene expres-

sion data by finite step operations, is usually performed before other gene expression

analysis[4]. This tradition dates back to early days of microarray gene expression

analysis[5]. Among those, scaling method[6, 7, 8], i.e., dividing gene expression by

a sample specific factor is commonly used on RNA-seq data for its simplicity. The

output of normalization procedure is called “normalized expression”. Currently, the

most used scaling normalization method for DSP RNA data is 75% quantile nor-

malization(or Q3 normalization as 75% quantile is also called 3rd quartile)[3, 9].

Another popular scaling normalization method is from [7], which tried to find the

best scaling factor using is trimmed mean of M values (TMM) compared to simply

using quantiles. Log transformation with base 2 or 10 is often further applied on the
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normalized data to stabalize heavy tail distribution[10] of gene expression and fa-

cilitate interpretation using ratios. To avoid −∞ in log transformation, 0 is usually

replaced by a small positive number. Although some non-scaling method exists, the

interpretation is usually more tricky. For example, [11] takes the Pearson residuals

from “regularized negative binomial regression” as the normalized expression.

This scaling normalization and log transformation approach has caused two major

problems in GeoMx DSP data analysis. First, the relation between observed counts

and real expression often is not(purely) scaling. Instead, genes are subject to influ-

ence of the background as well as the scaling(size) factor. The background has more

of a “shift” effect on the data, which can not be corrected by scaling alone. Second,

there is no base to the choice of that small positive number to replace 0, and it

also causes artificial bimodality in the results. Here, we address both problems by

reframing the normalization problem as a parameter estimation problem using ap-

propriate saturated model[12] with regularization on the normalization parameters.

Empirical Bayes(EB) procedure[6] could be implemented to select a data driven

regularization term. We show that this method corrects for the background as well

as fixes the artificial spikes. We also show the empirical bayes shrinkage increase

precision of normalized expression by leverage information across genes.

Results and discussion
Overview

Our workflow begins by modeling the negative probes and performing correspond-

ing model diagnostics. After that, we use the background model as a reference to

perform statistical test for features and estimate signal size factor. Finally, we use

information gathered from these steps to perform normalization.

We explain our approach using a dataset of GeoMx Human Whole Transcriptome

Atlas (WTA) RNA assay on diabetic kidney disease (DKD) vs. healthy kidney tis-

sue, a dataset of GeoMx Human Whole Transcriptome Atlas RNA assay on cell

pellet array containing 11 human cell lines, and a dataset of GeoMx Cancer Tran-

scriptome Atlas (CTA) RNA assay on an FFPE cell pellet array of mixed HEK293T

and CCRF-CEM cell lines.

The WTA diabetic kidney dataset is used for NanoString Spatial Omics

Hackathon, This dataset consists of three normal tissue samples and four samples

with diabetic kidney disease. The details of this dataset are in [13].

For the WTA cell pallet array data, we profiled a formalin fixed paraffin embedded

(FFPE) cell pellet array containing 11 human cell lines with human WTA. We

placed a range of sizes of circular ROIs from 50-360 µm diameter on each cell line,

with 2-4 replicate ROIs per cell line and size[14].

In the CTA cell mixture data, HEK293T and CCRF-CEM (Acepix Biosciences,

Inc.) were mixed in varying proportions, and aliquoted into a FFPE cell pellet array.

Expression of 1414 genes in 700 µm diameter circular regions from the cell pellets

were measured with the GeoMx platform, and each gene has 3 probes[15].

For all datasets, ROIs were illuminated on the GeoMx Digital Spatial Profiler

and tags were collected and sequenced as previously described. FASTQ files were

processed using the Nanostring GeoMx NGS Pipeline v2.0 as previously described.

Reads were deduplicated by UMI and deduplicated counts for each ROI and probe

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.26.493637doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yang et al. Page 4 of 26

were used for analysis[16, 14]. The methods described in this paper all require raw

count data without any preprocessing.

Poisson Background model

The Poisson background model takes a form of

Xij ∼ Poisson (γiα0j) , (1)

J∑
j=1

α0j = 1, (2)

where γi, i = 1, · · · , I are feature specific factors, and α0 = (α0j), j = 1, · · · , J are

sample size factors for each ROI. This model assumes, aside from random noise,

variation in levels of ith feature in different ROIs is explained by the technical

variation in the form of multiplicative size factor α0. Therefore, this model is most

suitable to features without biological variation and are subject to non-specific probe

binding, i.e. negative control probes designed against synthetic sequences from the

External RNA Controls Consortium(ERCC), which mimic the properties of mam-

malian sequences but have no homology to any known transcript. The constraint∑J
j=1 α0j = 1 is imposed for identifiability. See Methods for further details.

Model diagnostics for Poisson Background model is available in GeoDiff. An em-

pirical dispersion is calculated and a probability–probability(P-P) plot is generated

in the diagnostics. The expected dispersion for Poisson distribution is 1. It is called

overdispersion when the empirical dispersion is larger than 1, which is the most

direct consequence of deviation from model assumption, likely caused by outliers

or batch effect. The recommended remedy for outliers in negative probes is setting

them to be missing and refiting the model. For batch effect we recommend people

to find the root cause, as it impacts all aspects of data analysis. Fitting a Poisson

Background model with a grouping variable is a workaround when batch effect is

present(see Methods for details).

We fit the Poisson Background model without and with grouping variable in-

dicating slide ID to the negative probes of WTA kidney dataset. The estimated

dispersion are close to 1, and probability–probability(P-P) plot(Figure 1A, 1C)

align with the diagonal line, showing both models are good fit for the data. This is

further confirmed by the consistency of the feature factors across slides(Figure 1B,

1D).

Background Score Test

After applying the Poisson Background Model to the negative probes, it is imper-

ative to test whether a target is above the background using the fitted model as a

reference. It is called Background Score test for that it is derived using the score

test paradigm(also known as the Lagrange multiplier test in econometrics[17]).

There are two versions of Background Score Test derived without and with a

(Gamma distribution) prior assumption for feature factors.

γk ∼ Gamma(., .).
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Background Score Test with prior takes into account the variation between fea-

ture factors thus is recommended and set as default. The “with prior” version is

also implemented for all Background Score Test in this manuscript. For details of

Background Score Test without and with prior, refer to Methods for details.

We compare the Background Score Test to the current default feature QC method

LoQ, defined as the geometric mean times exponential of two standard deviations

of the logarithm negative probes[3], in both the case study and simulation study.

0.0.1 Case study

In this analysis, we apply both Background Score test and LoQ method to the WTA

cell pallet array data described above by five different ROI sizes, including 50, 80,

110, 250, 360 µm. The Background Score test with prior is applied to raw count

data to extract the p values. In contrast, we flag the gene above the background if

it exceeds LOQ in at least one ROI. The heatmap displays how -log(p value) from

background score test and indicators on whether above background (1: Yes; 0:No)

from LOQ change over increasing ROI sizes (Figure 4).

It is notable that Background Score test yield p values consistently increase with

ROI sizes, meaning that it is more likely to be detected above background in larger

ROI size. In contrast for LoQ, some genes are present in smaller ROI sizes but

not larger ROI sizes, shows the LoQ method is less stable and more prone to be

influenced by random noise.

Transcripts per million (TPM) from RNA-seq for different cell lines was used as

a reference. We have shown that score statistics have better correlation with TPM

values, measured in Spearman correlation, compared to the proportion of ROIs with

gene expression above the LOQ (Figure 5).

0.0.2 Simulation study

The simulation study evaluates the false positive rates (FPRs) based on the 136

negative probes from the WTA cell pallet array data. For each ROI size, we estimate

the size factors and feature factors and randomly sample 10,000 negative probes for

each ROI. Then, the raw counts of genes are drawn from a Poisson distribution

with mean of the size factor multiplied by the feature factor. Similar to the case

study, we applied both Background Score test and LOQ method on the simulated

population of negative probes (n = 10,000). False positive gene is defined as a gene

where the null hypothesis is falsely rejected and the proportion of the total false

rejected genes as the FPR. By setting the nominal level to be 0.001, we observe

that LOQ method yields much higher FPRs in smaller sized ROIs, i.e., 50 µm, 80

µm, and 110 µm. It is consistent with the finding where LOQ only detects a subset

of genes in smaller-sized ROIs (Figure 6), which could be false positives.

Negative Binomial threshold model: The signal size factor

In GeoMx RNA data, the size factor of targets are usually not the same as the size

factor of the background, as is demonstrated in Figure 2, the correlation of features

with background size factor decreases as the abundance increases. To estimate the

signal size factor with background taken into consideration, we fit the following

Negative Binomial threshold model to a set of “high genes/features” or “above the
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background genes/features”, defined as features above the background determined

by the Background Score Test, and assuming the real expression level of these gene

is constant across all ROIs.

Ykj ∼ NB(µ = max(γk − γt, 0)αj + max(γi, γt)α0j , r = rk),

J∑
j=1

αj = 1

We use Negative Binomial distribution due to the overdispersion brought by the

biology heteogenity as well as the “oversimplication” of the constant assumption,

which is necessary for deriving size factors and is widely used for scaling normaliza-

tion method[6, 7, 8]. For example, the commonly used 75% quantile normalization

is implicitly assuming genes are roughly constant after dividing by the 75%. In [6], a

median-of-ratios method is used to derive the size factor, which implicitly assumes

the ratios are roughly constant for all genes. Here we explictly make this assumption

using a representative set of features above the background.

The model is fitted by taking the estimated background size factor α̂0 as input.

The threshold γt can be either set to be the mean of background feature factor

γ0 = 1
I

∑I
i=1 γ̂i or unspecified and estimated from the model. Since γt ≈ γ0, when

γt is estimated, it should be within 20% of γ0, otherwise the model might not be

a good fit for the particular dataset. Other parameters γk, rk,α are also estimated

from the model.

An important implication of this model is that the size factor of each feature

is defined as a linear combination of background size factor and signal size factor

depending on its abundance as

max(γk − γt, 0)α+ max(γi, γt)α0

For low abundance features, it basically behaves the same as the background size

factor; as the abundance gets higher, the linear combination is weighted heavier

towards the signal size factor.

By the constraint
∑J
j=1 α0j = 1 and

∑J
j=1 αj = 1, the γk is approximately the

total count of kth feature, since if we use Poisson distribution instead of Negative

Binomial distribution in the model, the total count of kth feature is the maximum

likelihood estimator of γk. With this knowledge, the linear combination is easy to

calculate for each feature without applying the model on all of them.

Figure 2 shows this linear combination has the best correlation with features from

different abundance ranges among all size actors to be compared, including back-

ground/signal size factor alone and 75% quantile. The performance of 75% quantile

is comparable for features with moderate abundance, but is considerably worse for

low/high adundance genes. The background sizefactor has the same correlation with

low abundance features as the linear combination, but the correlation deteriorate as

the abundance increases; while the signal sizefactor has the overall worst correlation

but the correlation increases as the abundance increases.
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0.1 ROI signal metric

The signal size factor α is an estimator for ROI signal levels, which can be naturally

used to flag ROI with low signal. However this should not done directly on α since

they are scaled to sum up to 1, so on average the more samples the lower the value

of each element of α. We could define signal level of ROI by

α(γk − γt),

for γk representing a certain quantile of genes. One can just use 75% quantile. To

encourage keeping ROIs, one can also use a higher quantile, such as 90% quantile.

Then this metric represents the expected above-the-background counts of certain

quantile of features.

However, α is defined and estimated via a model, which is not intuitive and

straightforward for some users. We propose using the following metric named “quan-

tile range” as a proxy. Denote α̃0 = α0γ0 (see Methods for rationale), the 75%

quantile range is defined as

Q75r = Q75− α̃0.

Q75r is just the difference between 75% quantile and the average background level.

Quantile ranges are shown to be better correlated with α̃ than quantiles (Figure 3)

so that it can be used as an substitute for ROI signal metric for QC purpose without

fitting the model.

Poisson threshold Normalization

From a statistical perspective, normalization is to fit a saturated model in which

there is one parameter(log2 normalized expression) for each observation. This is

called saturated since the number of parameters is identical or larger than the

number of obervations[12].

Assume βk = (βk1, · · · , βkJ) be the vector of log2 real expression of kth feature for

J samples. The goal of normalization is to optimally estimate βk with all available

information. There is no overdispersion caused by lack of information in saturated

model, so Poisson distribution is applied.

For traditional scaling-normalization, we fit the following Poisson model

Ykj ∼ Poisson(ρj2
βkj ).

With observed Ykj and any size factor ρ, the normalized expression is equivalent to

β̂kj = log2

(
Ykj
ρj

)
.

Following the same argument for Negative Binomial threshold model, a Poisson

threshold model is more appropriate for GeoMx RNA data. The size factors calcu-

lated by Poisson Background model and Negative Binomial threshold model need

to be rescaled to stay invariant to constraints (see Methods for more details).
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Let α̃0 = γ0α0(or γtα0) and α̃ = γ0α,

Ykj ∼ Poisson(α̃j2
βkj + α̃0j)

One direct consequence of such model is the observations will be fitted perfectly

without constraint or priors, and when Ykj = 0, the MLE of βkj is −∞. But perfect

fitting is usually suboptimal due to overfitting. Parameter regulation is desired for

getting parameters generalize better as well as restrict infinite parameter estimation,

so we specify a prior for the in addition to the model

βk ∼ N(0,Σβ).

The precision matrix Σ−1β is estimated by a 2-step Empirical Bayes procedure: in

Step 1, the model is applied to high abundance features with a default weak prior;

in Step 2, a precision matrix is calculated using the estimated parameters, then the

model is applied to all features of interest, using the estimated precision matrix.

There are two options for calculating the precision matrix in GeoDiff. One op-

tion is “equal”, which simply calculates the empirical precision matrix of estimated

parameters; one option is ”contrast”, which simply calculates the precision matrix

with only contrast information from the estimated parameters. Precision matrix

estimated by the ”contrast” option avoids the abundance information of selected

high abundance features influence model fitting other features by using the contrast

information only, thus is recommended and set as default in GeoDiff. Both “con-

trast” and “equal” way of estimating precision matrix is parameterization invariant

(see Methods for details).

The 2-step Empirical Bayes procedure can be applied for whole dataset or sepa-

rately for each level of a grouping variable. The usual choice of grouping variable is

the slide ID. When fitted without grouping variable, ROIs in different slides could

influence each other’s normalized expression, thus the option of a grouping variable

is recommended for normalization in multiple slides data.

0.1.1 Case study: WTA diabetic kidney dataset

We evaluate the performance of this approach to other normalization methods by

WTA diabetic kidney dataset and CTA cell mixture dataset.

For WTA diabetic kidney dataset, we apply different normalization methods and

the distribution of their log2 normalized expression in slide “disease4” are compared

in Figure 7. The Poisson threshold normalization(Figure 7E, Figure 7F for using

slide ID as grouping variable) can align gene expression of different ROI much better

than other methods. Specifically, the scaling normalization methods (Figure 7B,

Figure 7C) do not correct for shift and the wiggles on the lower end while the

scaling method with background subtraction (Figure 7D) incur a big spike on the

lower end due the negative numbers it induces, both Poisson threshold normalization

(Figure 7E, Figure 7F) can align the distribution of gene expression in a unimodal

fashion.

Furthermore, PCA plot Figure 8 shows Poisson threshold normalization better re-

moves technical variability and reveals better clustering pattern in terms of grouping
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variable and biological variable than 75% quantile normalization for “middle” abun-

dance genes, defined as genes between the 40% and 60% quantiles of scores from

the Background Score Test. “middle” abundance genes are above the background

as indicated by the Background Score Test with p < 1e− 3, but they are still heav-

ily influenced by the background. 75% quantile normalization yield results with its

PC1 dominated by technical variation defined as the log2 ratio of 75% quantile and

background size factor, showing it is not able to remove this technical variability,

while PCs in both Poisson threshold normalization are less dictated by this vari-

able, showing they both remove this technical variability better. Poisson threshold

normalization results both cluster better to the grouping variable and the main bio-

logical variable: region. Interestingly, the Poisson threshold model without grouping

variable yield better overall clustering in terms of ROI regions with apparent and

not distinct clustering in terms of slides, while the Poisson threshold model with

slide ID as grouping variable yield better overall clustering in terms of slides, with

ROI regions clustered in the same direction within the same slide.

0.1.2 Case study: CTA cell mixture dataset

For CTA dataset of mixture of HEK293T and CCRF-CEM cell lines with varying

proportions, we has “partial truth” we can leverage. Specifically, while we do not

know the “true log2 expression” of every gene of HEK293T and CCRF-CEM, if

we assume τk1, τk2 are the “true log2 expression” of kth gene of HEK293T and

CCRF-CEM, then the “true log2 expression” of any mixture with the proportion

of HEK293T as x is

log2 (2τk1x+ 2τk2(1− x)) .

By the following steps, we evaluate how normalized expression from different

methods align with this unique functional relationship.

1 Perform normalization

2 For kth gene, estimate τk1, τk2 using the log2 normalized expression βk by

minimizing mean squared error (MSE)

1

J

J∑
j=1

(log2 (2τk1xj + 2τk2(1− xj))− βkj)2

3 For kth gene and jth ROI, where xj is the proportion of HEK293T, calculate

the expected log2 normalized expression by

zkj = log2

(
2τ̂k1xj + 2τ̂k2(1− xj)

)
4 Calculate expected raw count by the model assumption of Poisson threshold

normalization and 75% quantile normalization by the Poisson threshold model

and Poisson scaling model assumptions.

5 Calculate the correlation of expected raw count vs the raw count

Figure 9A showcases this unique functional relationship between true log2 expres-

sion and percentage of HEK293T in the mixture using gene ABCB1 as example,
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in which τ̂k1 = 3.37, τ̂k2 = −0.33 estimated by Poisson threshold normalization re-

sults. Figure 9B shows how τ̂k1, τ̂k2 are fitted by the steps 1,2 and Poisson threshold

normalization with and without EB prior gives very close estimates but the MSE

is smaller in Poisson normalization with EB prior, which is further confirmed by

Figure 9C where MSE of all genes from the two models are compared. Thus we can

say the EB prior of Poisson threshold normalization imposed information implied

by high features to all features and yield more precise results.

The results of Step 4 of the workflow is shown in Figure 10, in which correlation

of expected raw count from different normalization methods vs raw count are com-

pared. In Figure 10A, Poisson threshold normalization with and withour EB prior

are compared; Figure 10B, Poisson threshold normalization with EB prior and 75%

quantile normalization are compared, and Poisson threshold normalization with EB

prior has better performance in both comparison.

Targets with multiple probes

There are products on GeoMx platforms with multiple probes for one target. When

the number of probes are big, some screening can be conducted to ensure the probes

correlate well with each other and are in similar dynamic range. After that, the

sum of multiple probes for that target is used for analysis, as Poisson and Negative

Binomial distributions have the following property.

For

Ym ∼ Poisson(λ),

m = 1, · · · ,M,

then

M∑
m=1

Ym ∼ Poisson(Mλ);

and

Ym ∼ NB(µ, r),

m = 1, · · · ,M,

then

M∑
m=1

Ym ∼ NB(Mµ,Mr).

Furthermore, the sum of counts are sufficient statistics[18] for both models so no

information is lost in the aggregation counts for parameter estimation. As long as

the number of probe involved in the probe sum is correctly specified in the models,

the estimated parameter will be scaled properly. The CTA cell line mixture dataset

has 3 probes for each target and has been aggregated as described. The previous

section shows the GeoDiff methods work well in such case.
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Conclusions
This paper describes statistical models/tests from GeoDiff including Poisson Back-

ground model, Background Score Test, Negative Binomial threshold model and

Poisson threshold model for normalization, and recommends a GeoMx RNA data

analysis workflow starting with modeling the negative probes for background size

factor, followed by modeling the high features for estimating signal size factor, test-

ing whether a target is above the background, assessing the signal level of an ROI,

and perform normalization using outputs from these models/tests. We have shown

the proposed methods outperform conventional methods in various aspects.

Methods
0.2 Identifiability

The Poisson Background model is intrinsic non-identifiable, i.e. different sets of

parameters cγi, α0j/c for any positive constant c yield the same model. To impose

identifiability, a constraint like
∑J
j=1 α0j = 1 must be enfored. Constraints are

arbitrary. However,
∑J
j=1 α0j = 1 is equivalent to

∑J
j=1Xij ∼ Poisson (γi), making

the total count
∑J
j=1Xij the MLE of γi. This interpretation is convenient in a lot

of applications.

The Negative Binomial threshold model suffers from identifiability problems

just like Poisson Background model. Specifically, γk, k = 1, · · · ,K, γt,α0,α and

γk/c, k = 1, · · · ,K, γt/c, cα0, cα give the same model for any positive constant c.

So similarly, we impose a constraint
∑J
j=1 αj = 1 to the model.

Applying different constraints can change the parameters by a factor, while some

functions of parameters, including γ0α0 and γ0α are invariant to choice of con-

straints. Let α̃0 = γ0α0 and α̃ = γ0α, which are parameterization(constraint)

invariant size factors and we use them as size factor in normalization.

0.3 Diagnostics and Remedy for Poisson Background model

One important metric of any Poisson model is the dispersion, i.e. the ratio of vari-

ance vs mean, which equals to 1 theoretically. In Poisson Background model, dis-

persion of ith feature and jth sample is

dij =
E(xij − E(xij))

2

E(xij)
≡ 1,

which can be estimated by squared Pearson residual at xij

d̂ij =
(xij − γ̂iα̂0j)

2

γ̂iα̂0j
.

To reduce variation caused by randomness of a single point, we calculate the

empirical (mean) dispersion as a diagnostics metric for this model.

d̂ =

∑I
i=1

∑J
j=1

(xij−γ̂iα̂0j)
2

γ̂iα̂0j

IJ
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We call the data overdispersed when d̂ is much larger than 1, a rule of thumb cutoff

can be 2. Overdispersion is a sign of extra variation not captured by model (1).

Besides empirical dispersion, a ppplot is generated as well. Let F (x|λ) be the

cumulative distribution function of the Poisson distribution, by model assumption

F (xij |γiα0j)
iid∼ U(0, 1)

We calculate

F (xij |γ̂iα̂0j),

the empirical cumulative probability function values, then sort them from the small-

est to the largest, and plot the sorted vector against a even grid over [0, 1] with IJ

points, the theoretical cumulative probability function values. In practice, we have

found the count data for negative probes could be very low, a decent amount could

just be 0, and the ppplot would end up with zigzag shape on the lower end due

to that. A way to mitigate that is to simulate data from the fitted model, gener-

ate empirical cumulative probability function values, sort them and use the sorted

vector as the theoretical cumulative probability function values.

For a good model fit, the ppplot is almost a diagonal line from 0 to 1. The

most common aberration of model assumption results in an ”S” shape in ppplot,

indicating overdispersion.

For real targets with biological variability, fitting Poisson Background model is

inadequate and will lead to overdispersion. More complicated models explained in

the following sections are needed to account for their additional variation.

Even the features are only negative probes, overdispersion could still occur. For

data from multiple sources, mean expression level of each probe could be different.

For example, if there is some dramatic difference in experimental setting among

different slides of samples, the mean expression level of each probe could be different

from slide to slide. Assuming there are s = 1, · · · , S different sources of data, a quick

check is to fit the alternative model below and recalculate d̂ or generate heatmap

using γis.

Xij ∼ Poisson (γisα0j)

J∑
j=1

α0j = 1

where γis are the mean expression level for ith feature from sth source (batch,

slide,. . . etc.). A much smaller d̂ and a clear clustering in the heatmap of feature

factors indicate batch effect.

Overdispersion could also occur due to outliers. We detect outliers by the empirical

probability of each point using the estimated parameters. Detected outliers are

mostly large outliers for negative probes. On the lower end, 0 is unlikely to be

determined as outliers in a negative probe count matrix, of which counts are usually

low. After outliers are identified, they can be directly set as missing and Poisson

background model could be refitted with missing values. Furthermore, if ith feature

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.26.493637doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yang et al. Page 13 of 26

or the jth ROI have a lot of counts are outliers, the ith feature or the jth sample

should be considered as an outlier, and be removed from the Poisson Background

model. Furthermore, the jth sample outlier should be removed universally from all

downstream analysis since the underlying mechanism impact the negative probes

could impact other features too.

0.4 Background Score Test

0.4.1 Without prior

After applying the Poisson Background Model to the negative probes, it is imper-

ative to test whether a target is above the background use the fitted model as a

reference. Such test is called background score test.

For kth feature, assuming it has only one probe, and it still follows the Poisson

background model

Xkj ∼ Poisson (γkα0j)

where the α0j are background size factors estimated from Poisson background

model on negative probes

Xij ∼ Poisson (γiα0j) .

Let γ0 =

∑I
i=1 γi
I

, we are interested in testing

H0 : γk ≤ γ0,

Ha : γk > γ0.

Let xk be the vector of xik, the observed count for kth feature in ith sample.

log f (xik|γk) = xik log (α0iγk)− α0iγk − log (xik!)

and the likelihood function

L(γk|x) =
I∑
i=1

log f (xik|γk)

The score, i.e, the gradient of the log-likelihood function:

dL(γk|x)

dγk
=

I∑
i=1

(
xik
γk
− α0i) =

∑I
i=1 xi
γk

−
I∑
i=1

α0i
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The Fisher information

I (γk) = var

(
dL(γk|x)

dγk

)
= var

(∑I
i=1 xi
γk

−
I∑
i=1

α0i

)

= var

(∑I
i=1 xi
γk

)

=

∑I
i=1 var (xi)

γ2k
=

∑I
i=1 α0iγk
γ2k

=

∑I
i=1 α0i

γk

the score statistic

(
dL(γk|x)
dγk

)T
dL(γk|x)
dγk

I (γk)
=

(∑I
i=1 xi
γk

−
∑I
i=1 α0i

)2
∑I
i=1 α0i

γk

=

∑I
i=1 xi −

∑I
i=1 α0iγk√∑I

i=1 α0iγk

2

Under null hypothesis

∑I
i=1 xi −

∑I
i=1 α0iγk√∑I

i=1 α0iγk

2 ∣∣∣∣∣
γk=γ0

∼ χ2
1

Or ∑I
i=1 xi −

∑I
i=1 α0iγ0√∑I

i=1 α0iγ0

∼ N(0, 1)

Since this is a one-sided test, we reject the null when

∑I
i=1 xi −

∑I
i=1 α0iγk√∑I

i=1 α0iγ0

> Zα

where α is the significance level, default is α = 0.001.

0.4.2 With prior

For kth feature, assuming it has only one probe, and it still follows the Poisson

background model with Gamma prior

Xkj |γk ∼ Poisson (γkα0j) ,

γk ∼ Gamma

(
1

σ
, σµk

)
.
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With α0j , σ and µ0 estimated from Poisson background model using negative

probes

Xij |γi ∼ Poisson (γiα0j) ,

γi ∼ Gamma

(
1

σ
, σµ0

)
,

we are interested in testing

H0 : µk ≤ µ0

Ha : µk > µ0

f (xik|µk, σ) =

∫ ∞
0

f (xik|γk) f (γk|σ, µk) dγk

=

∫ ∞
0

(α0iγk)
xik e−α0iγk

xik!
· 1

Γ
(
1
σ

)
(σµ)

1
σ

γk
1
σ−1e

− γk
σµk dγk

=

∫ ∞
0

(σµk)
− 1
σ

xik! Γ
(
1
σ

)αxik0i γk
xik+

1
σ−1e

−(α0i+
1

σµk
)γkdγk

=
(σµk)

− 1
σ

xik! Γ
(
1
σ

)axik0i

∫ ∞
0

γk
xik+

1
σ−1e

−(α0i+
1

σµk
)γkdγk

=
(σµk)

− 1
σ

xik! Γ
(
1
σ

)axik0i

Γ
(
xik + 1

σ

)(
α0i + 1

σµk

)xik+ 1
σ

=
Γ
(
xik + 1

σ

)
xik! Γ

(
1
σ

) ( 1
σµ

α0i + 1
σµk

) 1
σ
(

α0i

α0i + 1
σµk

)xik

Thus

xik ∼ NB(
α0i

α0i + 1
σµk

,
1

σ
)
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log f (xik|µk, σ) = − log xik! + log

(
Γ
(
xik + 1

σ

)
Γ
(
1
σ

) )

−
(
xik +

1

σ

)
log

(
α0i +

1

σµk

)
+ xik log (α0i)−

1

σ
log (σµk)

= − log xik! + log

(
Γ
(
xik + 1

σ

)
Γ
(
1
σ

) )

−
(
xik +

1

σ

)
log (α0iσµk + 1) +

(
xik +

1

σ

)
log (σµk) + xik log (α0i)−

1

σ
log (σµk)

= − log xik! + log

(
Γ
(
xik + 1

σ

)
Γ
(
1
σ

) )
+ xik log(α0iσµk)

−
(
xik +

1

σ

)
log (α0iσµk + 1)

Given σ, the likelihood function is

L(µk|x) =

I∑
i=1

log f (xk|µk, σ)

dL(γk|x)

dµk
=

I∑
i=1

xik
µk
− xikσα0i + α0i

α0iσµk + 1
=

I∑
i=1

xik − α0iµk
(α0iσµk + 1)µk

The Fisher information

I (γk) = var

(
dL(γk|x)

dγk

)
= var

(
I∑
i=1

xik − α0iµk
(α0iσµk + 1)µk

)

= var

(
I∑
i=1

xik
(α0iσµk + 1)µk

)

=
I∑
i=1

var (xi)

((α0iσµk + 1)µk)2

=

I∑
i=1

α0i
α0i+

1
σµk

1
σ

(
1

σµk
α0i+

1
σµk

)2

((α0iσµk + 1)µk)2

=
I∑
i=1

α0i

(α0iσµk + 1)µk

Under the null hypothesis

(
dL(γk|x)
dµk

)T
dL(γk|x)
dµk

I(µk)

∣∣∣∣∣
µk=µ0

=

 ∑I
i=1

xik−α0iµk
(α0iσµk+1)µk√∑I

i=1
α0i

(α0iσµk+1)µk

2 ∣∣∣∣∣
µk=µ0

∼ χ2
1
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Or ∑I
i=1

xik−α0iµ0

(α0iσµ0+1)µ0√∑I
i=1

α0i

(α0iσµ0+1)µ0

∼ N(0, 1)

and we reject the null when

∑I
i=1

xik−α0iµ0

(α0iσµ0+1)µ0√∑I
i=1

α0i

(α0iσµ0+1)µ0

> Zα

where α is the significance level, default is α = 0.001.

0.5 Deriving Σ−1β in Poisson threshold model

The covariance matrix Σ−1β is determined by Empirical Bayes approach in 2 steps.

1 Solving this model using the set of high features using a default prior Σ−1β =
1
σ2B

TB, where B =
(
1
n ,

1
n , · · · ,

1
n

)
. This means we are only adding a penalty

of 1
σ2 to the mean of each of these high abundance feature, the default is

σ = 5. This prior amounts to a belief of mean log2 expression of each feature

follows distribution N(0, 1
25 ). It is a weak penalty helps with the numerical

stability especially with 0 counts.

2 Using the β̂ estimated from high features, calculate Σ−1 = kAT Σ̂−1c A +
1
σ2B

TB, where B =
(
1
n ,

1
n , · · · ,

1
n

)
, and A(n−1)×n is any full rank matrix

satisfying ABT = 0. By definition, A(n−1)×n consists of vectors of contrasts.

Σ̂c is the empirical covariance matrix of Aβk, AT Σ̂−1c A is invariant with re-

spect to different choices of A. The contrast factor k ∈ (0, 1) can adjust the

penality level of contrast. This form of EB prior is based on the idea of de-

composing the precision matrix into the orthogonal space of precision matrix

of mean and precision matrix of contrasts, rooted from the belief the contrast

information of the high features should be passed to the parameter estima-

tion of other features, but they are in different dynamic range so the behavior

of mean expression of high features should not impact the behavior of other

features.

It is more natural to assume only the ROIs in the same slide are correlated,

so in the case of multiple slides data, it is advisable to apply this normalization

function on each slide separately, which is implemented in GeoDiff as default for

normalization of multiple slides data.
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Description of numerical methods for solving the models included in the paper
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Figure 1: Diagnostics and distribution of feature factors from Poisson Background

Model
Poisson Background model, treating the feature factors constant in the whole dataset(A, B), or within each

slide(C, D). The P-P plot (A, C) show both models have a good fit with estimated dispersion close to 1. This

can be explained by homogeneous distribution of the slide specific feature factors (D).
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Figure 2: Correlation of counts and size factors
This plot shows the correlation of size factors: background sizefactor estimated from Poisson Background

Model(corneg), signal sizefactor estimated from Negative Binomial threshold model(corNBth), linear

combination of both based on the Negative Binomial threshold model(corlc), and 75% quantile(corq75) with

average counts of binned features(bin size=10) sorted by scores of their Background Score Test.
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Figure 3: Scatterplots between size factors, 75%quantile and 75% quantile range
Scatterplot between background size factor vs signal size factor(A), 75% quantile(B) and 75% quantile

range(C); between 75% quantile(B) and 75% quantile range(D), and signal size factor vs 75% quantile(E) and

75% quantile range(F).
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Figure 4: Heatmaps of p-value and indicators of targets above Limit of Quanti-

tation (LOQ) across different ROI size in WTA cell pellet array data
A:Each row of the heatmap represents a target’s -log(p-value) from background score test across different ROI

sizes. B:Each row of the heatmap represents the indicator of whether a target is above LOQ (1: above; 0:

below) across different ROI sizes.
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Figure 5: A comparison of Spearman’s correlations between Transcripts Per mil-

lion (TPM) and score statistics vs. TPM and the proportions above LOQ
Comparison is split at varying TPM intervals, including (A) [0, 1], (B) (1, 40], (C) (40, 100], and (D) (100,

500], in WTA cell pellet array data.
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Figure 6: False positive rates (FPRs) of Background Score test and LOQ method

for varying ROI sizes and different cell lines in simulated negative probes
The two solid lines represents the FPRs of background score test (blue) and LOQ method (blue), respectively.

The dashed line represents the threshold of nominal alpha level, 0.001.
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Figure 7: Density plot for gene expression for slide “disease4” in kidney data
the density of log2 expression of raw counts(A), 75% quantile normaliztion(B), TMM[7](C), 75% quantile

normaliztion with background subtraction(D), Poisson threshold normalization(E) and Poisson threshold

normalization by grouping variable (F) for the slide “disease4”.
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Figure 8: PCA plot for normalized expression of middle abundance genes
Figures of first two principle components of normalized expression of 75% quantile normalization(A, B, C),

Poisson threshold normalization(D, E, F) and Poisson threshold normalization by grouping variable(G, H, I) on

“middle” abundance genes, colored by the log2 ratio of 75% quantile and α̃ representing a key technical

variation (A, D, G), slides ID (B, E, H) and ROI regions (C, F, I).
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Figure 9: The relation between true log2 expression and HEK293T percentage
Using gene ABCB1 as an example(A, B), taking its estimated log2 expression of HEK293T and CCRF-CEM as

true, the expected log2 expression for any mixture of the two with the percentage of HEK293T x follows a

functional form as in A, and B shows the distance of log2 expression from Poisson threshold normalization

without and with EB prior and the calculated expected log2 expression, in which Poisson threshold

normalization with EB prior gives results closer to the expected values for ABCB1; C shows for all genes, the

square root of MSE of estimating the log2 expression of HEK293T and CCRF-CEM using the Poisson threshold

normalization without and with EB prior.
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Figure 10: Correlation of expected expression vs the raw counts
A: the correlation of expected raw count from Poisson threshold normalization vs raw count, the X axis is with

EB prior and the Y axis is without EB prior. B, the correlation of expected raw count from Poisson threshold

normalization with EB prior(X axis) vs raw count and 75% quantile(Y axis) vs raw count.
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