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gives unique challenge in Quality Control(QC) and normalizating due to the
omnipresent background noise incurred by the non-specific probe binding, which
could not be addressed by conventional methods.

Results and discussion: Using Poisson Background model, Background Score
Test, Negative Binomial threshold model and Poisson threshold model for
normalization from the R package GeoDiff, we perform tasks including size
factor estimation, QC and normalization on GoeMx RNA assay data. They are
shown to outperform conventional methods like Limit of Quantification for QC as
to consistency/false positive rate and 75% quantile normalization as to
eliminating technical variability and recovering true signal.

Conclusions: We present a statistical model based workflow for QC and
normalizing GeoMx RNA data using GeoDiff, justified by statistical theory and
validated by real/simulated data.

Keywords: GeoMx RNA assay; GeoDiff package; threshold model

Background

Spatial gene expression platforms, which measure gene expression within tiny re-
gions from across the span of a tissue sample, have opened a frontier in biology.
These platforms harness idiosyncratic chemistries that introduce distinct technical
effects into their data; however, spatial data is often analyzed with tools developed
for bulk or single RNA-seq data, leading to bias and statistical inefficiency. Here
we derive data analysis methods addressing the important technical effects of the
GeoMx platform for spatial gene expression.

Given a tissue sample, the GeoMx RNA assay can measure mRNA from hun-
dreds of regions of customizable shape and size. Its ability to assay flexibly-defined
regions comes from a unique chemistry. Probes are constructed of two parts: an
oligonucleotide that hybridizes to a target mRNA sequence in the tissue, and a
second oligonucleotide barcode specifying the gene identity. These two halves are
connected by a photocleavable linker. Probes are flowed across a tissue, binding
their targets wherever they lie; then, precisely focused UV light cleaves the probes
within user-defined regions and releases the barcodes for counting by short-read
sequencing.

This chemistry leads to three complications for data analysis, each creating pit-
falls for analyses designed for other platforms. First, probes stick at low rates to
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biological material other than their intended mRNA target, leading to background
counts. Background impacts the expression of genes, especially genes with very low
expression, introducing bias if ignored. Background also complicates the task of
calling a gene as definitively detected. Second, in very small regions, many genes
will have expression levels dropping to zero or background-level counts. These near-
zero counts become statistically unstable after log-transformation, which has been
commonly favored by gene expression analysts since the early days of microarrays.
Third, the size of regions sampled in a single experiment can vary from one to
thousands of cells, leading to a much wider range of technical effects in the raw
data.

Normalization of GeoMx data has thus far required great care, often forcing a
choice between multiple unsatisfactory methods. To facilitate future analyses, we
have established data-generating models for GeoMx, and we have models to derive
methods for the fundamental operations of GeoMx analysis. Most importantly, we
define a normalization procedure that removes all major technical effects and allows
for log-scale analyses. We also define a suitable model for the background and a test
for whether genes are detected above background, as well as a model for size factor
estimation. This suite of tools is implemented in the GeoDiff R package.

The background model is the starting point of the GeoDiff analysis. While there is
some previous attempt to model negative control probes using Poisson based model
for data from NanoString nCounter [1] and DSP [2] platforms, none of them allow
parameter estimation for each negative probe and each sample as in GeoDiff. With
full parameterization, model diagnostics can be carried out and outliers and batch
effect can be identified, which provides more insight to the data than previously
possible.

The Quality Control(QC) is a prerequisite before gene expression analysis. In
QC for DSP, one commonly asked question is: “whether a feature/Region of Inter-
est(ROT) has good signal”. One traditional way to answer this question is to define
a per ROI Limit of Quantitation(LoQ) cutoff, to determine whether a single target
is above the background per ROI by the cutoff, then to calculate the overall pass
rate for each target or ROI as the metric for flagging them[3]. This approach is very
heuristic. In this paper we formally clarify the meaning of “a target/ROI has good
signal” in the context of GeoMx RNA dataset, and provide a statistical test for
features and a metric for ROIs for signal QC purpose, with necessary justification
and validation.

Normalization, the endeavor of removing technical variation from the gene expres-
sion data by finite step operations, is usually performed before other gene expression
analysis[4]. This tradition dates back to early days of microarray gene expression
analysis[5]. Among those, scaling method[6, 7, 8], i.e., dividing gene expression by
a sample specific factor is commonly used on RNA-seq data for its simplicity. The
output of normalization procedure is called “normalized expression”. Currently, the
most used scaling normalization method for DSP RNA data is 75% quantile nor-
malization(or Q3 normalization as 75% quantile is also called 3rd quartile)[3, 9].
Another popular scaling normalization method is from [7], which tried to find the
best scaling factor using is trimmed mean of M values (TMM) compared to simply
using quantiles. Log transformation with base 2 or 10 is often further applied on the
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normalized data to stabalize heavy tail distribution[10] of gene expression and fa-
cilitate interpretation using ratios. To avoid —oo in log transformation, 0 is usually
replaced by a small positive number. Although some non-scaling method exists, the
interpretation is usually more tricky. For example, [11] takes the Pearson residuals
from “regularized negative binomial regression” as the normalized expression.
This scaling normalization and log transformation approach has caused two major
problems in GeoMx DSP data analysis. First, the relation between observed counts
and real expression often is not(purely) scaling. Instead, genes are subject to influ-
ence of the background as well as the scaling(size) factor. The background has more
of a “shift” effect on the data, which can not be corrected by scaling alone. Second,
there is no base to the choice of that small positive number to replace 0, and it
also causes artificial bimodality in the results. Here, we address both problems by
reframing the normalization problem as a parameter estimation problem using ap-
propriate saturated model[12] with regularization on the normalization parameters.
Empirical Bayes(EB) procedure[6] could be implemented to select a data driven
regularization term. We show that this method corrects for the background as well
as fixes the artificial spikes. We also show the empirical bayes shrinkage increase

precision of normalized expression by leverage information across genes.

Results and discussion

Overview

Our workflow begins by modeling the negative probes and performing correspond-
ing model diagnostics. After that, we use the background model as a reference to
perform statistical test for features and estimate signal size factor. Finally, we use
information gathered from these steps to perform normalization.

We explain our approach using a dataset of GeoMx Human Whole Transcriptome
Atlas (WTA) RNA assay on diabetic kidney disease (DKD) vs. healthy kidney tis-
sue, a dataset of GeoMx Human Whole Transcriptome Atlas RNA assay on cell
pellet array containing 11 human cell lines, and a dataset of GeoMx Cancer Tran-
scriptome Atlas (CTA) RNA assay on an FFPE cell pellet array of mixed HEK293T
and CCRF-CEM cell lines.

The WTA diabetic kidney dataset is used for NanoString Spatial Omics
Hackathon, This dataset consists of three normal tissue samples and four samples
with diabetic kidney disease. The details of this dataset are in [13].

For the WTA cell pallet array data, we profiled a formalin fixed paraffin embedded
(FFPE) cell pellet array containing 11 human cell lines with human WTA. We
placed a range of sizes of circular ROIs from 50-360 um diameter on each cell line,
with 2-4 replicate ROIs per cell line and size[14].

In the CTA cell mixture data, HEK293T and CCRF-CEM (Acepix Biosciences,
Inc.) were mixed in varying proportions, and aliquoted into a FFPE cell pellet array.
Expression of 1414 genes in 700 pm diameter circular regions from the cell pellets
were measured with the GeoMx platform, and each gene has 3 probes[15].

For all datasets, ROIs were illuminated on the GeoMx Digital Spatial Profiler
and tags were collected and sequenced as previously described. FASTQ files were
processed using the Nanostring GeoMx NGS Pipeline v2.0 as previously described.
Reads were deduplicated by UMI and deduplicated counts for each ROI and probe
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were used for analysis[16, 14]. The methods described in this paper all require raw

count data without any preprocessing.

Poisson Background model

The Poisson background model takes a form of

X ~ Poisson (y;ap;) , N
J

ZO‘OJ‘ =1 :

j=1

where v;,¢ = 1,--- , I are feature specific factors, and oy = (), j = 1,--- ,J are
sample size factors for each ROI. This model assumes, aside from random noise,
variation in levels of ith feature in different ROIs is explained by the technical
variation in the form of multiplicative size factor cg. Therefore, this model is most
suitable to features without biological variation and are subject to non-specific probe
binding, i.e. negative control probes designed against synthetic sequences from the
External RNA Controls Consortium(ERCC), which mimic the properties of mam-
malian sequences but have no homology to any known transcript. The constraint
Z‘j]:l ap; = 1 is imposed for identifiability. See Methods for further details.

Model diagnostics for Poisson Background model is available in GeoDiff. An em-
pirical dispersion is calculated and a probability—probability (P-P) plot is generated
in the diagnostics. The expected dispersion for Poisson distribution is 1. It is called
overdispersion when the empirical dispersion is larger than 1, which is the most
direct consequence of deviation from model assumption, likely caused by outliers
or batch effect. The recommended remedy for outliers in negative probes is setting
them to be missing and refiting the model. For batch effect we recommend people
to find the root cause, as it impacts all aspects of data analysis. Fitting a Poisson
Background model with a grouping variable is a workaround when batch effect is
present(see Methods for details).

We fit the Poisson Background model without and with grouping variable in-
dicating slide ID to the negative probes of WTA kidney dataset. The estimated
dispersion are close to 1, and probability—probability(P-P) plot(Figure 1A, 1C)
align with the diagonal line, showing both models are good fit for the data. This is
further confirmed by the consistency of the feature factors across slides(Figure 1B,
1D).

Background Score Test

After applying the Poisson Background Model to the negative probes, it is imper-

ative to test whether a target is above the background using the fitted model as a

reference. It is called Background Score test for that it is derived using the score

test paradigm(also known as the Lagrange multiplier test in econometrics[17]).
There are two versions of Background Score Test derived without and with a

(Gamma distribution) prior assumption for feature factors.

Vi ~ Gammal(., .).
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Background Score Test with prior takes into account the variation between fea-
ture factors thus is recommended and set as default. The “with prior” version is
also implemented for all Background Score Test in this manuscript. For details of
Background Score Test without and with prior, refer to Methods for details.

We compare the Background Score Test to the current default feature QC method
LoQ, defined as the geometric mean times exponential of two standard deviations
of the logarithm negative probes[3], in both the case study and simulation study.

0.0.1 Case study

In this analysis, we apply both Background Score test and LoQ method to the WTA
cell pallet array data described above by five different ROI sizes, including 50, 80,
110, 250, 360 pum. The Background Score test with prior is applied to raw count
data to extract the p values. In contrast, we flag the gene above the background if
it exceeds LOQ in at least one ROI. The heatmap displays how -log(p value) from
background score test and indicators on whether above background (1: Yes; 0:No)
from LOQ change over increasing ROI sizes (Figure 4).

It is notable that Background Score test yield p values consistently increase with
ROI sizes, meaning that it is more likely to be detected above background in larger
ROI size. In contrast for LoQ, some genes are present in smaller ROI sizes but
not larger ROI sizes, shows the LoQ method is less stable and more prone to be
influenced by random noise.

Transcripts per million (TPM) from RNA-seq for different cell lines was used as
a reference. We have shown that score statistics have better correlation with TPM
values, measured in Spearman correlation, compared to the proportion of ROIs with
gene expression above the LOQ (Figure 5).

0.0.2 Simulation study

The simulation study evaluates the false positive rates (FPRs) based on the 136
negative probes from the WTA cell pallet array data. For each ROI size, we estimate
the size factors and feature factors and randomly sample 10,000 negative probes for
each ROI. Then, the raw counts of genes are drawn from a Poisson distribution
with mean of the size factor multiplied by the feature factor. Similar to the case
study, we applied both Background Score test and LOQ method on the simulated
population of negative probes (n = 10,000). False positive gene is defined as a gene
where the null hypothesis is falsely rejected and the proportion of the total false
rejected genes as the FPR. By setting the nominal level to be 0.001, we observe
that LOQ method yields much higher FPRs in smaller sized ROIs, i.e., 50 pm, 80
pm, and 110 pgm. It is consistent with the finding where LOQ only detects a subset
of genes in smaller-sized ROIs (Figure 6), which could be false positives.

Negative Binomial threshold model: The signal size factor

In GeoMx RNA data, the size factor of targets are usually not the same as the size
factor of the background, as is demonstrated in Figure 2, the correlation of features
with background size factor decreases as the abundance increases. To estimate the
signal size factor with background taken into consideration, we fit the following
Negative Binomial threshold model to a set of “high genes/features” or “above the
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background genes/features”, defined as features above the background determined
by the Background Score Test, and assuming the real expression level of these gene

is constant across all ROIs.

Yj; ~ NB(u = max(yi — v, 0)o; + max(vy;, ve)aoj, r = %),
J

ZOéj =1

j=1

We use Negative Binomial distribution due to the overdispersion brought by the
biology heteogenity as well as the “oversimplication” of the constant assumption,
which is necessary for deriving size factors and is widely used for scaling normaliza-
tion method|6, 7, 8]. For example, the commonly used 75% quantile normalization
is implicitly assuming genes are roughly constant after dividing by the 75%. In [6], a
median-of-ratios method is used to derive the size factor, which implicitly assumes
the ratios are roughly constant for all genes. Here we explictly make this assumption
using a representative set of features above the background.

The model is fitted by taking the estimated background size factor & as input.
The threshold 7; can be either set to be the mean of background feature factor
Yo = %Zle +; or unspecified and estimated from the model. Since 7, = =y, when
¢ is estimated, it should be within 20% of v, otherwise the model might not be
a good fit for the particular dataset. Other parameters i, ri, & are also estimated
from the model.

An important implication of this model is that the size factor of each feature
is defined as a linear combination of background size factor and signal size factor

depending on its abundance as

max(yx — ¢, 0)a + max(y;, ¢ ) oo

For low abundance features, it basically behaves the same as the background size
factor; as the abundance gets higher, the linear combination is weighted heavier
towards the signal size factor.

By the constraint ijl ap; = 1 and Z}]:1 a; = 1, the 74 is approximately the
total count of kth feature, since if we use Poisson distribution instead of Negative
Binomial distribution in the model, the total count of kth feature is the maximum
likelihood estimator of 7. With this knowledge, the linear combination is easy to
calculate for each feature without applying the model on all of them.

Figure 2 shows this linear combination has the best correlation with features from
different abundance ranges among all size actors to be compared, including back-
ground /signal size factor alone and 75% quantile. The performance of 75% quantile
is comparable for features with moderate abundance, but is considerably worse for
low/high adundance genes. The background sizefactor has the same correlation with
low abundance features as the linear combination, but the correlation deteriorate as
the abundance increases; while the signal sizefactor has the overall worst correlation

but the correlation increases as the abundance increases.


https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493637; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Yang et al. Page 7 of 26

0.1 ROI signal metric

The signal size factor a is an estimator for ROI signal levels, which can be naturally
used to flag ROI with low signal. However this should not done directly on « since
they are scaled to sum up to 1, so on average the more samples the lower the value
of each element of ac. We could define signal level of ROI by

(Ve — ),

for v representing a certain quantile of genes. One can just use 75% quantile. To
encourage keeping ROIs, one can also use a higher quantile, such as 90% quantile.
Then this metric represents the expected above-the-background counts of certain
quantile of features.

However, ¢ is defined and estimated via a model, which is not intuitive and
straightforward for some users. We propose using the following metric named “quan-
tile range” as a proxy. Denote &y = g7y (see Methods for rationale), the 75%

quantile range is defined as
Q75r = Q75 — &

Q75r is just the difference between 75% quantile and the average background level.
Quantile ranges are shown to be better correlated with & than quantiles (Figure 3)
so that it can be used as an substitute for ROI signal metric for QC purpose without
fitting the model.

Poisson threshold Normalization

From a statistical perspective, normalization is to fit a saturated model in which
there is one parameter(log, normalized expression) for each observation. This is
called saturated since the number of parameters is identical or larger than the
number of obervations[12].

Assume B = (Br1,- - , Brs) be the vector of log, real expression of kth feature for
J samples. The goal of normalization is to optimally estimate 3 with all available
information. There is no overdispersion caused by lack of information in saturated
model, so Poisson distribution is applied.

For traditional scaling-normalization, we fit the following Poisson model

Yy, ~ Poisson(p;2%%7).

With observed Yj; and any size factor p, the normalized expression is equivalent to

N Y.
Brj = logy (’”) -
Pj

Following the same argument for Negative Binomial threshold model, a Poisson
threshold model is more appropriate for GeoMx RNA data. The size factors calcu-
lated by Poisson Background model and Negative Binomial threshold model need

to be rescaled to stay invariant to constraints (see Methods for more details).
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Let &g = yoap(or vraxp) and & = o,
Yij ~ Poisson(dﬂﬂ’“f + ao,)

One direct consequence of such model is the observations will be fitted perfectly
without constraint or priors, and when Y;; = 0, the MLE of ;; is —oo. But perfect
fitting is usually suboptimal due to overfitting. Parameter regulation is desired for
getting parameters generalize better as well as restrict infinite parameter estimation,
so we specify a prior for the in addition to the model

Br ~N(0,Xg3).

The precision matrix 251 is estimated by a 2-step Empirical Bayes procedure: in
Step 1, the model is applied to high abundance features with a default weak prior;
in Step 2, a precision matrix is calculated using the estimated parameters, then the
model is applied to all features of interest, using the estimated precision matrix.

There are two options for calculating the precision matrix in GeoDiff. One op-
tion is “equal”, which simply calculates the empirical precision matrix of estimated
parameters; one option is ”contrast”, which simply calculates the precision matrix
with only contrast information from the estimated parameters. Precision matrix
estimated by the ”contrast” option avoids the abundance information of selected
high abundance features influence model fitting other features by using the contrast
information only, thus is recommended and set as default in GeoDiff. Both “con-
trast” and “equal” way of estimating precision matrix is parameterization invariant
(see Methods for details).

The 2-step Empirical Bayes procedure can be applied for whole dataset or sepa-
rately for each level of a grouping variable. The usual choice of grouping variable is
the slide ID. When fitted without grouping variable, ROIs in different slides could
influence each other’s normalized expression, thus the option of a grouping variable

is recommended for normalization in multiple slides data.

0.1.1 Case study: WTA diabetic kidney dataset
We evaluate the performance of this approach to other normalization methods by
WTA diabetic kidney dataset and CTA cell mixture dataset.

For WTA diabetic kidney dataset, we apply different normalization methods and
the distribution of their log, normalized expression in slide “disease4” are compared
in Figure 7. The Poisson threshold normalization(Figure 7E, Figure 7F for using
slide ID as grouping variable) can align gene expression of different ROI much better
than other methods. Specifically, the scaling normalization methods (Figure 7B,
Figure 7C) do not correct for shift and the wiggles on the lower end while the
scaling method with background subtraction (Figure 7D) incur a big spike on the
lower end due the negative numbers it induces, both Poisson threshold normalization
(Figure 7E, Figure 7TF) can align the distribution of gene expression in a unimodal
fashion.

Furthermore, PCA plot Figure 8 shows Poisson threshold normalization better re-

moves technical variability and reveals better clustering pattern in terms of grouping
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variable and biological variable than 75% quantile normalization for “middle” abun-
dance genes, defined as genes between the 40% and 60% quantiles of scores from
the Background Score Test. “middle” abundance genes are above the background
as indicated by the Background Score Test with p < le — 3, but they are still heav-
ily influenced by the background. 75% quantile normalization yield results with its
PC1 dominated by technical variation defined as the log, ratio of 75% quantile and
background size factor, showing it is not able to remove this technical variability,
while PCs in both Poisson threshold normalization are less dictated by this vari-
able, showing they both remove this technical variability better. Poisson threshold
normalization results both cluster better to the grouping variable and the main bio-
logical variable: region. Interestingly, the Poisson threshold model without grouping
variable yield better overall clustering in terms of ROI regions with apparent and
not distinct clustering in terms of slides, while the Poisson threshold model with
slide ID as grouping variable yield better overall clustering in terms of slides, with

ROI regions clustered in the same direction within the same slide.

0.1.2 Case study: CTA cell mizture dataset

For CTA dataset of mixture of HEK293T and CCRF-CEM cell lines with varying
proportions, we has “partial truth” we can leverage. Specifically, while we do not
know the “true log, expression” of every gene of HEK293T and CCRF-CEM, if
we assume Ty1,Tk2 are the “true log, expression” of kth gene of HEK293T and
CCRF-CEM, then the “true log, expression” of any mixture with the proportion
of HEK293T as z is

log, (271 @ + 2™2(1 — x)) .

By the following steps, we evaluate how normalized expression from different
methods align with this unique functional relationship.

1 Perform normalization

2 For kth gene, estimate 741, Tx2 using the log, normalized expression 3j by

minimizing mean squared error (MSE)

~l=

J
> (logy (7@ + 272 (1 — a;)) — Bry)”
j=1

3 For kth gene and jth ROI, where z; is the proportion of HEK293T, calculate
the expected log, normalized expression by

2k = logy (2%’“1:1:]- + 272 (1 — LEJ))

4 Calculate expected raw count by the model assumption of Poisson threshold
normalization and 75% quantile normalization by the Poisson threshold model
and Poisson scaling model assumptions.

5 Calculate the correlation of expected raw count vs the raw count

Figure 9A showcases this unique functional relationship between true log, expres-

sion and percentage of HEK293T in the mixture using gene ABCB1 as example,
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in which 71 = 3.37, 7,2 = —0.33 estimated by Poisson threshold normalization re-
sults. Figure 9B shows how 71, T2 are fitted by the steps 1,2 and Poisson threshold
normalization with and without EB prior gives very close estimates but the MSE
is smaller in Poisson normalization with EB prior, which is further confirmed by
Figure 9C where MSE of all genes from the two models are compared. Thus we can
say the EB prior of Poisson threshold normalization imposed information implied
by high features to all features and yield more precise results.

The results of Step 4 of the workflow is shown in Figure 10, in which correlation
of expected raw count from different normalization methods vs raw count are com-
pared. In Figure 10A, Poisson threshold normalization with and withour EB prior
are compared; Figure 10B, Poisson threshold normalization with EB prior and 75%
quantile normalization are compared, and Poisson threshold normalization with EB

prior has better performance in both comparison.

Targets with multiple probes

There are products on GeoMx platforms with multiple probes for one target. When
the number of probes are big, some screening can be conducted to ensure the probes
correlate well with each other and are in similar dynamic range. After that, the
sum of multiple probes for that target is used for analysis, as Poisson and Negative
Binomial distributions have the following property.

For
Y., ~ Poisson()),
m = 1, e ’M’
then
M
Z Y, ~ Poisson(M\);
m=1
and
Ym ~ NB(,U,, T)v
m=1,---,M,
then
M
Z Yy, ~ NB(Mp, Mr).
m=1

Furthermore, the sum of counts are sufficient statistics[18] for both models so no
information is lost in the aggregation counts for parameter estimation. As long as
the number of probe involved in the probe sum is correctly specified in the models,
the estimated parameter will be scaled properly. The CTA cell line mixture dataset
has 3 probes for each target and has been aggregated as described. The previous
section shows the GeoDiff methods work well in such case.
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Conclusions

This paper describes statistical models/tests from GeoDiff including Poisson Back-
ground model, Background Score Test, Negative Binomial threshold model and
Poisson threshold model for normalization, and recommends a GeoMx RNA data
analysis workflow starting with modeling the negative probes for background size
factor, followed by modeling the high features for estimating signal size factor, test-
ing whether a target is above the background, assessing the signal level of an ROI,
and perform normalization using outputs from these models/tests. We have shown
the proposed methods outperform conventional methods in various aspects.

Methods

0.2 ldentifiability

The Poisson Background model is intrinsic non-identifiable, i.e. different sets of
parameters c;, a;/c for any positive constant ¢ yield the same model. To impose
identifiability, a constraint like Z;-]ZI ap; = 1 must be enfored. Constraints are
arbitrary. However, Z;’:l ap; = 1 is equivalent to Z;’Zl Xi; ~ Poisson (v;), making
the total count Z;:l Xi; the MLE of ;. This interpretation is convenient in a lot
of applications.

The Negative Binomial threshold model suffers from identifiability problems
just like Poisson Background model. Specifically, v,k = 1,--- , K, v, ap, @ and
vi/e,k =1,--+ [ K, v /c, cap, ca give the same model for any positive constant c.
So similarly, we impose a constraint ijl o =1 to the model.

Applying different constraints can change the parameters by a factor, while some
functions of parameters, including vyg and Yy are invariant to choice of con-
straints. Let &g = Yoo and & = vy, which are parameterization(constraint)

invariant size factors and we use them as size factor in normalization.

0.3 Diagnostics and Remedy for Poisson Background model

One important metric of any Poisson model is the dispersion, i.e. the ratio of vari-
ance vs mean, which equals to 1 theoretically. In Poisson Background model, dis-
persion of ith feature and jth sample is

E(zij — E(x:5))?
E(zi;)

dij = 17

which can be estimated by squared Pearson residual at x;;

~ _ (@ — 90
iy T ~——
Yi®oj

To reduce variation caused by randomness of a single point, we calculate the
empirical (mean) dispersion as a diagnostics metric for this model.

ZI ZJ (zi;—%i00;)°
i=122j=1 700,

1J

)
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We call the data overdispersed when d is much larger than 1, a rule of thumb cutoff
can be 2. Overdispersion is a sign of extra variation not captured by model (1).

Besides empirical dispersion, a ppplot is generated as well. Let F(z|\) be the
cumulative distribution function of the Poisson distribution, by model assumption

i1id
F(xijlyico;) ~ U(0,1)

We calculate
F(x|%iao;),

the empirical cumulative probability function values, then sort them from the small-
est to the largest, and plot the sorted vector against a even grid over [0, 1] with I.J
points, the theoretical cumulative probability function values. In practice, we have
found the count data for negative probes could be very low, a decent amount could
just be 0, and the ppplot would end up with zigzag shape on the lower end due
to that. A way to mitigate that is to simulate data from the fitted model, gener-
ate empirical cumulative probability function values, sort them and use the sorted
vector as the theoretical cumulative probability function values.

For a good model fit, the ppplot is almost a diagonal line from 0 to 1. The
most common aberration of model assumption results in an ”S” shape in ppplot,
indicating overdispersion.

For real targets with biological variability, fitting Poisson Background model is
inadequate and will lead to overdispersion. More complicated models explained in
the following sections are needed to account for their additional variation.

Even the features are only negative probes, overdispersion could still occur. For
data from multiple sources, mean expression level of each probe could be different.
For example, if there is some dramatic difference in experimental setting among
different slides of samples, the mean expression level of each probe could be different
from slide to slide. Assuming there are s = 1,--- | .S different sources of data, a quick
check is to fit the alternative model below and recalculate d or generate heatmap

using v;s.

X;j ~ Poisson (y;s0;)
J
j=1

where 7,5 are the mean expression level for ith feature from sth source (batch,
slide,... etc.). A much smaller d and a clear clustering in the heatmap of feature
factors indicate batch effect.

Overdispersion could also occur due to outliers. We detect outliers by the empirical
probability of each point using the estimated parameters. Detected outliers are
mostly large outliers for negative probes. On the lower end, 0 is unlikely to be
determined as outliers in a negative probe count matrix, of which counts are usually
low. After outliers are identified, they can be directly set as missing and Poisson
background model could be refitted with missing values. Furthermore, if ith feature
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or the jth ROI have a lot of counts are outliers, the ith feature or the jth sample
should be considered as an outlier, and be removed from the Poisson Background
model. Furthermore, the jth sample outlier should be removed universally from all
downstream analysis since the underlying mechanism impact the negative probes

could impact other features too.

0.4 Background Score Test
0.4.1 Without prior
After applying the Poisson Background Model to the negative probes, it is imper-

ative to test whether a target is above the background use the fitted model as a

reference. Such test is called background score test.

For kth feature, assuming it has only one probe, and it still follows the Poisson

background model
Xj ~ Poisson (yxao;)

where the op; are background size factors estimated from Poisson background

model on negative probes

X; ~ Poisson (v;aq;) -

I
D1 Vi

Let v = =, weare interested in testing
Ho = v < 7o,
Ha: v > 0.

Let x;, be the vector of x;;, the observed count for kth feature in ith sample.

log f (k| k) = @ik log (aoivk) — ik — log (zi!)

and the likelihood function
I
L(vk|w) = Zlogf(l’ikhk)
i=1
The score, i.e, the gradient of the log-likelihood function:

I I I
dL x T; T
MZE :(m_O‘Oi):Z::_E :am
i=1

Ak Pl
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The Fisher information

I () = var (W)

ZI . I
=var [ == Z Qo;
Tk i=1

I
= var 721:1 i
Yk

_ Yigvar(e) Yook _ iy o

%3 %3 Yk

the score statistic

T I 2
dL(yel®) \* dL(vk|z) 2i=1 Ti I
(=) e (Bom - v ao)
T (k) i o

Y
I I
Dim1 i = )iy Q0iVk

[T
Zizl Qi Vk

Under null hypothesis

2
I I

2oz Ti = Dz Q0K ~

1
I
V Dim1 0Tk Y=o
Or
I I

[~—I
Zi:] @pi70

Since this is a one-sided test, we reject the null when

I I
Doim1 Ti = Qi Q0iYk

\ Zle Qpi7o

where « is the significance level, default is e = 0.001.

> Za

0.4.2 With prior
For kth feature, assuming it has only one probe, and it still follows the Poisson
background model with Gamma prior

ij |ryk ~ Poisson (’7/60407) )

1
vk ~ Gamma (, O’/Lk) .
o
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With agj, 0 and po estimated from Poisson background model using negative

probes

X |vi ~ Poisson (%‘0103') )

1
Yi ™~ Gamma (a 0“0) ;
g

we are interested in testing

Ho: pk < po

He i > po

o0
f @ilpak, o) = / F @iklw) £ (uelor o) d
0
- / % (argiyi) ™ €00 1 .
0 Tik! T (1) (op)”

1

o pir) ik, it 21— (@0t 7E)Y

:/ T (1 gty Pkt e e TN T T Tk gy
o zu! T'(1)

-1 50
(Uﬂk) Cl,w?k / ’Ykmik—i_%_l@_(aori_ﬁ)’md'}/k

= ari
l‘lk' T (%) 0i ( i 1 )wlk-‘ra
Qoi + 5
1223
1
1 1 e Tik
- r (xik + ;) ou Qo
o (i + 1 T
Tik p Q0i T G Qoi T 5.

Thus
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e

1 1 1
- (%k + ) log (OéOi + ) + x5, 1og (i) — — log (o pur)
o o1k o

F(fvm+i)>

_logxik!+log< ()

o

log f (zik|pr, o) = —log z4! + log <

1 1 1
- (xik + 0) log (agiopr + 1) + (xik + J) log (o k) + 241 log (cvoi) — p log (o k)

U (2 + =
= —logz;! + log <(;lzl—;‘7)> + x4 log(cgiopug)

o

1
_ (mzk —+ 0_) log (O[()Z'O'/Lk + 1)

Given o, the likelihood function is

L(px|x) = Zlogf (klpr, o)

=1

I I
dL(yx|x) _ Z Tik _ TikOO0; + Q0i _ Z Tik — Qoilk
dpk ok ook +1 = (oiopk +1)pk
The Fisher information
dL
) = e (20
dk
U Qi fb
ik — Q0illk
= var —_—
(> aetia)
! T
ik
= var —_
(; (aOzU,uk: + 1) )
I
_ Z VaI‘
e ((cvgiopir + 1) k)?
X0i 1
i+ g‘ltk 7
I (o ”“’“ )2
=D omop t
— ((oiopur D)
I
= Z %o
P (ciopin + 1)
Under the null hypothesis
(dLm-m)T dL(ye|z) P
T diar 2i=1 Taocomn D 5
T(jux) o
M=o Zz 1 (QOLUMk+1)Mk HE=Ho
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Or
ZI Tik— Qi o
=1 (apiopo+1)po
oA p——
=1 (aoiopo+1)po

and we reject the null when

N(0,1)

ZI Tik —Q0i [0
1=1 (apiopo+1)po
o p—r—
=1 (aoiopo+1)po

where « is the significance level, default is o = 0.001.

> Zo

0.5 Deriving Egl in Poisson threshold model
The covariance matrix 251 is determined by Empirical Bayes approach in 2 steps.
1 Solving this model using the set of high features using a default prior Egl =

5 BTB where B = (1,1 ... 1) This means we are only adding a penalty
of to the mean of each of these high abundance feature, the default is

o= 5. This prior amounts to a belief of mean log, expression of each feature
follows distribution N (0, 5z).
stability especially with 0 counts.

2 Using the ,é estimated from high features, calculate ¥ ! = kATflc_lA +
LBTB where B = (l 1. ,%), and A(,_1)xn is any full rank matrix

n’n’

It is a weak penalty helps with the numerical

satisfying ABT = 0. By definition, A(n—1)xn consists of vectors of contrasts.
3, is the empirical covariance matrix of AB3y, ATZ LA is invariant with re-
spect to different choices of A. The contrast factor k£ € (0,1) can adjust the
penality level of contrast. This form of EB prior is based on the idea of de-
composing the precision matrix into the orthogonal space of precision matrix
of mean and precision matrix of contrasts, rooted from the belief the contrast
information of the high features should be passed to the parameter estima-
tion of other features, but they are in different dynamic range so the behavior
of mean expression of high features should not impact the behavior of other
features.

It is more natural to assume only the ROIs in the same slide are correlated,
so in the case of multiple slides data, it is advisable to apply this normalization
function on each slide separately, which is implemented in GeoDiff as default for
normalization of multiple slides data.
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Figure 1: Diagnostics and distribution of feature factors from Poisson Background
Model

Poisson Background model, treating the feature factors constant in the whole dataset(A, B), or within each
slide(C, D). The P-P plot (A, C) show both models have a good fit with estimated dispersion close to 1. This
can be explained by homogeneous distribution of the slide specific feature factors (D).



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493637; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Yang et al. Page 20 of 26

1.001
0.954 |
1
1
1
1
:
c 1
S 0.901 '
© 1 .
° L variable
= 1
Q corq75|
© | - corﬂlBt
5 | = corneg
(%) | corle
S 0.854 '
o 1
1
1
1
1
1
1
1
0.804 1
1
. |
1 1
1 1
1 1
1 1
0.75 ' threshold=3431 175% quantile=6224
1 1
2500 5000 7500 10000
total count
Figure 2: Correlation of counts and size factors
This plot shows the correlation of size factors: background sizefactor estimated from Poisson Background
Model(corneg), signal sizefactor estimated from Negative Binomial threshold model(corNBth), linear
combination of both based on the Negative Binomial threshold model(corlc), and 75% quantile(corq75) with
average counts of binned features(bin size=10) sorted by scores of their Background Score Test.
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Figure 3: Scatterplots between size factors, 75%quantile and 75% quantile range
Scatterplot between background size factor vs signal size factor(A), 75% quantile(B) and 75% quantile
range(C); between 75% quantile(B) and 75% quantile range(D), and signal size factor vs 75% quantile(E) and
75% quantile range(F).
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Figure 4: Heatmaps of p-value and indicators of targets above Limit of Quanti-
tation (LOQ) across different ROI size in WTA cell pellet array data

A:Each row of the heatmap represents a target’s -log(p-value) from background score test across different ROl
sizes. B:Each row of the heatmap represents the indicator of whether a target is above LOQ (1: above; 0:
below) across different ROI sizes.
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Figure 5: A comparison of Spearman’s correlations between Transcripts Per mil-
lion (TPM) and score statistics vs. TPM and the proportions above LOQ
Comparison is split at varying TPM intervals, including (A) [0, 1], (B) (1, 40], (C) (40, 100], and (D) (100,
500], in WTA cell pellet array data.
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Figure 6: False positive rates (FPRs) of Background Score test and LOQ method

for varying ROI sizes and different cell lines in simulated negative probes
The two solid lines represents the FPRs of background score test (blue) and LOQ method (blue), respectively.
The dashed line represents the threshold of nominal alpha level, 0.001.



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493637; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Yang et al. Page 24 of 26
A 1.00 B 1.001 C
! 0.9
0.75 0.75-
2 2 2064
@ 0.50 2 0.50 2 }
[} Q [}
o =) o
0.25- 0.254 031
0.00{ 0.00+ 0.04
5 0 5 0 15 5 0 5 5 10
normalized expression normalized expression normalized expression
Dg,l E F 0.25
0.20
0.3 0.24
> > 0151
2 021 2 z
S S 38 0104
0.14 :
0.14
0.05 1
0.0 0.0 0.00+
5 0 5 0 5 0 5 10 10 5 0 5
normalized expression normalized expression normalized expression
Figure 7: Density plot for gene expression for slide “disease4” in kidney data
the density of log2 expression of raw counts(A), 75% quantile normaliztion(B), TMM[7](C), 75% quantile
normaliztion with background subtraction(D), Poisson threshold normalization(E) and Poisson threshold
normalization by grouping variable (F) for the slide “disease4”.
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Figure 8: PCA plot for normalized expression of middle abundance genes
Figures of first two principle components of normalized expression of 75% quantile normalization(A, B, C),
Poisson threshold normalization(D, E, F) and Poisson threshold normalization by grouping variable(G, H, 1) on
“middle” abundance genes, colored by the log, ratio of 75% quantile and & representing a key technical
variation (A, D, G), slides ID (B, E, H) and ROI regions (C, F, I).
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Figure 9: The relation between true log, expression and HEK293T percentage
Using gene ABCBLI as an example(A, B), taking its estimated log, expression of HEK293T and CCRF-CEM as
true, the expected log, expression for any mixture of the two with the percentage of HEK293T x follows a
functional form as in A, and B shows the distance of log, expression from Poisson threshold normalization
without and with EB prior and the calculated expected log, expression, in which Poisson threshold
normalization with EB prior gives results closer to the expected values for ABCB1; C shows for all genes, the
square root of MSE of estimating the log, expression of HEK293T and CCRF-CEM using the Poisson threshold
normalization without and with EB prior.
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Figure 10: Correlation of expected expression vs the raw counts
A: the correlation of expected raw count from Poisson threshold normalization vs raw count, the X axis is with
EB prior and the Y axis is without EB prior. B, the correlation of expected raw count from Poisson threshold
normalization with EB prior(X axis) vs raw count and 75% quantile(Y axis) vs raw count.



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

A 1004 B —
d=1.18
15
0.75 B
L
8 1 [
= € 10+ a
% 0.501 3 ||
.5- o -
g
0.251 51
0.004 04 | | | I_I 11 |
0.00 0.25 0.50 0.75 1.00 2000 3000 4000 5000 6000
Theoretical CDF featfact
C 1.00- , I
A diseaselB 7000
d=1.09
normal2B
0.75 1 6000
a 11B
8 norma 5000
< i .
O 0.50 | disease3 4000
a
e
L

| disease2B 3000
0.25 1

disease4 l 2000

0.00 A | normal3
0.00 0.25 0.50 0.75 1.00 ||

Theoretical CDF normal4



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

= corNBth
= corneg
= corlc

variable
= corq75

6224

75% quantile

=3431

threshold

10000

7500

5000

2500

1.00

0.95 1

o 0

(] [e¢]

S S
uole|a.1109 Uosiead

0.80 1

0.75 1

total count


https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

signal sizefactor

)

75% quantile range

[}
R=0.73
0.015 4 .. °
@
) ]
@
U
0.010 2 0o
0.005 -
@
0.000 -
0.000  0.005 0.010  0.015  0.020  0.025
background sizefactor
50 A =
R =0.93 °
401 ®e o
° )
(]
e @ LX)
301 o e
e
4
@
e ©
080 ©
° [}
®
0 50 100

75% quantile

75% quantile

75% quantile

(]
R=0.97 °
1004 o
..
) o °® ®
s e
%
o ® o
50 A :. eoo °
0‘8.. % ¢
&
@
0-
0000 0005 0010 0015 0020  0.025
background sizefactor
(]
R=0.88 °
1004 o
° (<]
® H )
] ) °
e o
° % o
()
0.000 0.005 0.010 0.015

signal sizefactor

@]

R=0.81 °

401 ® e °
5 ° e
@ % o oo
2 e
IS
]
>

()
X e ®
Lo
N~
0000 0005 0010 0015 0020 0025
background sizefactor
E 50- =
R =0.99 °

401 oo
S ° ©
[ )
© (<1<
= 301 4
= o,
c Q°
] ®
S 20 Ly
o ) f'
X °
Lo
N~ 10 -

0-
0.000 0.005 0.010 0.015

signal sizefactor



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

50

80

110
ROI size

0

-log(p value)

> Above LOQ
1:Yes; 0:No

0

200

1

80 110 250 360
ROl size



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

ROIsize ®

n and TPM

050

Spearman correlation between proporti

[g]

% e wm e m e m e ROisize ® % ® m ® w o m e
=
z,
H
TPM: [0, 1] g | TPM:(1, 401
D
£ os04 o4
5
1 Loy
o H
= 13
§ 000
) : w7 ow oz : 7 :

025
Spearman correlat

ROIsize ®

050 075 100
n between score statistic and TPM

o

025 050 100
Spearman correlation between score statistic and TPM

100

Spearman correlation between proportion and TPM

-
& 1004
2
TPM: (40, 100] g TPM: (100, 500]
2
£ 0s04
g
t
2
: 5 : el - : : : :

Spearman correlation between score statistic and TPl

M

025 050 100
Spearman correlation between score statistic and TPM



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

Method —#— LOQ —@— Score test

False positive rates

ROI size

Daudi H2228 HUH7
—s
====s=9 —8—20)
JURKAT M14 MOLT4
i it =8| [#=— ~—8
2 3 3 2 2
SUDHL1 SUDHL4 = S
g8k 83 gg& 2% g2



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

A 1.004 B 1.001 C
0.9
0.75 1 0.75 1
P P P
B 0.50 B 0.50- g 067
c - s S
o Q %) \
© © ©
0.25 1 0.25 - 0.3
'!
0.001 0.00 0.0
-5 0 5 10 15 5 10
normalized expression normalized expression
Do, E F 0.25
0.20 1
0.3
> > 0.154
= =
c c
Q Q
T T 0.10~
0.05 -
0.00 -
-5 0 5 -10 -5 0 5 10 -10 -5 0 5

normalized expression normalized expression normalized expression


https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

A
100 A
N 50+
O
o
°
_ °
04 enpet °
iy, 2}
25 0 25 50
PC1
D °
° %
W TR
[ ™S [ ]
04 ;3.:.0.. N o
) : 'O';’ L
AN ) ?... Y
O o A Sl
o ' [ o0 o
e 0
-25+ ®
o °
[ ]
°
—é5 (I) 2I5
PC1
G 1
O_
de § 7
\) o
i 'y ®
4 & S e
’ o @ )
Py °
O -104 ° . .
[a
°
~201 )
o o
[
-30- -
—éO —55 (I) 2I5 50
PC1

log2(rt) 05

1.0 15 20

B .
100 A
N 504
O
[a
[ ]
o-«al!llllllll'ﬂ‘;. ” o .
[ ] ('Y [ ] °
°
°
25 0 25 50
PC1
E )
by
‘ [ S 0.
0 () .:o. » 0..
° % : "0' g "...
(4 o0 &
N o o ® % )
@) ® ) P . °
o i L & X
°
~251 &
. .
° ”n
[
[ ]
[ ]
—55 (I) 2I5
PC1
H 10 a3
de § 5
. , I o P
I 2l
’ o0 @ e ® \0
° o e
& -104 ° . . .
o
.o.o ®
[ ]
-20+ [ ]
(] [ J
® @
[ ]
_30' [
[ ]
—&'30 —55 (I) 2I5 5I0
PC1
® diseaselB © disease3 @® normallB
® disease2B ® disease4 © normal2B

PC2

PC2

PC2

°
1004
50 ~
[ ]
e 4 L R
[ ] ) [ ] P
.
°
-25 0 25 50
PC1
o®
1“|‘:'::f'
e °®
'.:... ®e
01 ) .o’ o, .o.
o A o ’0"'“ °
e © .~ ...:. [
% ¢ " 3 e y
o & X
H
~25+ ¢
° °
. »
[ J
[
[
—é5 (I) 2I5
PC1
10+
de i
‘ [
o,
0- "b S %F - ":P
é % 8
poteetts %
[ ]
104 * o . e
.o.o ®
_20_ ‘ .'
o o
° ®
[
-301 -
[
—éO —55 (I) 2I5 5I0
PC1
region © glomerulus ® tubule



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

expected expression

ABCB1

3-

2-

1-

0-

000 025 050 075 1.00

mixing proportion

normalized expression

ABCB1

0 1 2 3

expected expression

variable

° norm
> normO

@

n
o
1

sqrt MSE norm0O

=
ol
1

=
o
1

o
(63}
1

0.0 1

0.0

05 1.0 15
sqrt MSE norm

2.0



https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

o
i
m

T T T
@ © <
o o o

pani wiou £O uone@10d

0.4

<

T T T
@ © <
o o o

paNl} QWJOU Uone|a110)

1.0

0.8

0.6
Correlation norm fitted

0.4

1.0

0.8

0.6

Correlation norm fitted


https://doi.org/10.1101/2022.05.26.493637
http://creativecommons.org/licenses/by-nc-nd/4.0/

