

1 Landscape scale ecology of *Tetracladium* 2 spp. fungal root endophytes

3

4 Anna Lazar*, Ryan M. Mushinski, Gary D. Bending

5

6 School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK

7 *Correspondence: anna.lazar@warwick.ac.uk

8 Abstract

9 Background: The genus *Tetracladium* has been traditionally regarded as an Ingoldian fungus or
10 aquatic hyphomycete – a group of phylogenetically diverse, polyphyletic fungi which grow on
11 decaying leaves and plant litter in streams. Recent sequencing evidence has shown that
12 *Tetracladium* spp. may also exist as root endophytes in terrestrial environments, and furthermore
13 may have beneficial effects on the health and growth of their host. However, the diversity of
14 *Tetracladium* spp. communities in terrestrial systems and the factors which shape their distribution
15 are largely unknown.

16 Results: Using a fungal community internal transcribed spacer amplicon dataset from 37 UK
17 *Brassica napus* fields we found that soils contained diverse *Tetracladium* spp., most of which
18 represent previously uncharacterised clades. The two most abundant OTUs, related to previously
19 described aquatic *T. furcatum* and *T. maxilliforme*, were enriched in roots relative to bulk and
20 rhizosphere soil. For both taxa, relative abundance in roots, but not rhizosphere or bulk soil was
21 correlated with *B. napus* yield. The relative abundance of *T. furcatum* and *T. maxilliforme* OTUs
22 across compartments showed very similar responses with respect to agricultural management
23 practices and soil characteristics. The factors shaping the relative abundance of *T. furcatum* and
24 *T. maxilliforme* OTUs in roots was assessed using linear regression and structural equation

25 modelling. Relative abundance of *Tetracladium maxilliforme* and *Tetracladium furcatum* in roots
26 increased with pH, concentrations of phosphorus, and increased rotation frequency of OSR. While
27 it decreased with increased soil water content, concentrations of extractable phosphorus,
28 chromium, and iron.

29 Conclusions: The genus *Tetracladium* as a root colonising endophyte is a diverse and wildly
30 distributed part of the oilseed rape microbiome that positively correlates to crop yield. The main
31 drivers of its community composition are crop management practices and soil nutrients.

32

33 Keywords: *Tetracladium*, aquatic hyphomycete, endophyte, root colonising, agriculture, diversity,
34 ecology

35

36 Background

37 Aquatic hyphomycetes or Ingoldian fungi are important decomposers in freshwater ecosystems
38 [1]. Spores of these fungi were first described from running freshwater streams in the 1940s [2],
39 with species classified according to morphology – primarily sigmoid or tetraradiate [3]. Sexual
40 reproduction of these fungi has never been observed, and the members of this group don't share
41 common morphological or ecological characteristics [4]. However, the common conidial shape
42 suggests convergent evolution, and may contribute to spore dispersal via improved anchoring to
43 the substrate or higher buoyancy for better aquatic dispersal [5]. Recently, use of next-generation
44 sequencing has revealed the presence of aquatic hyphomycetes in fungal communities inhabiting
45 soil and plants, although the ecological importance of these fungi in terrestrial habitats is unknown
46 [6].

47

48 The genus *Tetracladium* is a common aquatic hyphomycete that was first described by de
49 Wildeman in 1893 [7], and sits within the Ascomycete class Leotiomycetes in the Han Clade

50 9/Stamnaria lineage/Vandijkellaceae clade as *incertae sedis* [8]. The genus name was coined in
51 response to its distinct ~60x100µm tetra formatted conidiospores which have a central axis with
52 three radiating branches [9]. Since the initial description of *Tetracladium*, the genus has been
53 found to be ubiquitous in aquatic environments [9-14]. The first terrestrial observations of
54 *Tetracladium* were from forest litter [11, 15, 16], with fungal spores detected in the water film
55 covering fallen leaves [15]. However, most reports of *Tetracladium* in terrestrial environments
56 came after the turn of the century as DNA sequencing techniques became more easily accessible.
57 Most of this data comes from environmental metabarcoding studies, and there are only a few
58 instances of *Tetracladium* ssp. being isolated in pure cultures. It has been hypothesised that there
59 may have been under-reporting of *Tetracladium* in terrestrial habitats before the 2000s because
60 of the strange nature of finding an aquatic organism in a terrestrial environment [6]. It is unclear
61 whether the species described based on spore morphology from aquatic habitats and the DNA
62 sequences identified from terrestrial environmental samples belong the same organisms.
63 However ITS (internal transcribed spacer) amplicon analysis has shown no sequence-based
64 differences between aquatic and terrestrial strains of a number of species, indicating that some
65 species may have diverse ecological functions [6].

66

67 One of the first observations of plant endophytic *Tetracladium* sp. came from riparian plant roots
68 [17]. These fungi don't appear to show host or habitat specificity as plant endophytes, and have
69 been found in roots of monocot species within Asparagales [18-20], Liliales [21] and Poales [22-
70 24], and dicot species within Ericales [25], Brassicales [26, 27] and Vitales [28]. Furthermore they
71 have been found associated with Equisetaceae [29, 30] and Bryophytes [31-34]. *Tetracladium*
72 has most frequently been described in metabarcoding studies of soil from disturbed agricultural
73 and grassland habitats [35-38]. There are numerous reports of the genus from the Antarctic tundra
74 [39-42] where they have also been found in unvegetated habitats including glaciers and bedrock
75 [43-45].

76 The dual ecology of *Tetracladium* sp., and particularly their importance as plant endophytes, are
77 still debated. Anderson et al. [9] investigated an aquatic *T. marchalianum* population over time
78 and space and found that the fungus maintains a high genotypic diversity throughout the year,
79 and suggested that this could be attributed to their alternative lifestyles as terrestrial plant
80 endophytes [9]. It was proposed by Selosse et al. (2008) that the terrestrial occurrence of aquatic
81 hyphomycetes, and more specifically their endophytic nature, is attributed to the fungi
82 precolonising plant tissues and building biomass, so in the event of abscission, they are already
83 occupying the niche, and ready to decompose plant litter which reaches freshwater. It was also
84 suggested that the tetraradiate spore morphology could aid them in becoming airborne [6]. Based
85 on this theory *Tetracladium* sp. should be most common in aerial plant tissues, however there is
86 currently no evidence to suggest this is true.

87
88 There is conflicting evidence on whether *Tetracladium* infection provides benefits to the host.
89 Glasshouse experiments have shown that inoculation with *Tetracladium* sp. can have beneficial
90 effects on plant growth [46], while other studies have shown no effects [47]. Importantly, Hilton et
91 al. (2021) found that *Tetracladium* sp. had a co-exclusion relationship with root pathogenic fungi,
92 and relative abundance in roots was positively associated with crop yield [38]. Furthermore, *T.*
93 *marchalianum* showed an antagonistic effect against bacterial plant pathogens including *Erwinia*
94 *chrysanthemi* and *Xanthomonas phaseoli*, although other *Tetracladium* sp. showed no such
95 effects [48].

96
97 To date there have been no systematic studies which have investigated the diversity and
98 distribution of *Tetracladium* in terrestrial habitats, and as a result the factors which shape
99 *Tetracladium* spp. communities, and the extent to which they interact with plants are unclear. In
100 the current study we build on our earlier work [38] which characterised root fungal communities
101 of *Brassica napus* across 37 UK fields to investigate (1) the diversity of *Tetracladium* spp. in soil

102 and roots at the landscape scale (2) the extent to which different *Tetracladium* spp. are selectively
103 recruited into roots and rhizosphere soil from bulk soil (3) the relationships between root,
104 rhizosphere and soil populations of different *Tetracladium* spp. and crop yield and (4) to determine
105 the importance of, and interactions between, soil nutrients, climate, soil physical properties, and
106 crop management practices as drivers for the colonisation of roots by *Tetracladium* spp.

107

108 Methods

109 Sample collection and analyses

110 Root, rhizosphere soil and bulk soil samples were collected in March 2015 from 37 oilseed rape
111 (*B. napus*) fields from 25 commercial farms in the UK. Following DNA extraction, the fungal
112 community was amplified using internal transcribed spacer primers [49]. Sequencing was
113 performed with Illumina MiSeq technology, and taxonomy assigned using Quantitative Insights
114 into Microbial Ecology (QIIME 1.8) [50] with the UNITE ITS database [51]. Sequences were
115 clustered to OTU at 97 % minimum identity threshold, and those OTUs assigned as *Tetracladium*
116 spp. were selected for use in the current study. Metadata collected from each field included soil
117 physico-chemical parameters (including C, N, P, micronutrient, pH, and soil type), climatic data,
118 crop variety, rotation sequence and grain yield at the subsequent harvest. Full methodological
119 details for sample preparation, DNA extraction, sequencing and bioinformatic analysis can be
120 found in Hilton et al. (2021). Information about farm locations, *Tetracladium* spp. OTUs and
121 metadata can be found in Supplementary Table 1.

122

123 Phylogenetic analyses

124 To obtain more detailed information about the phylogenetic relatedness of recovered
125 *Tetracladium* spp. sequences, the most closely related sequences to these OTUs were
126 downloaded, including two representative ITS sequences from all described species. Sequences

127 were accessed from the NCBI GenBank, and were aligned with our *Tetracladium* OTU sequences
128 using the MAFFT v.7 (e-ins-I algorithm) [52]. Maximum likelihood analyses were performed with
129 RAxML on the CIPRES Science Gateway to build a phylogenetic tree using the default setting
130 with 1000 bootstraps [53, 54].

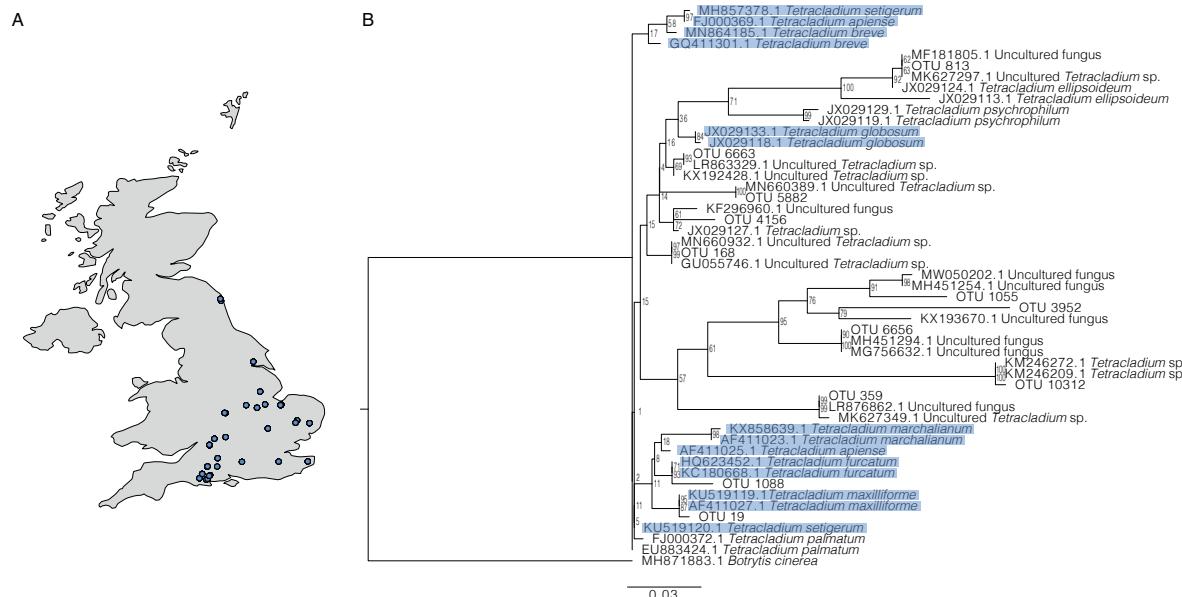
131

132 Statistical analyses

133 Observed species counts were used to generate richness plots to study OTU abundance
134 differences in the three sampled compartments (bulk soil, rhizosphere, and root) using *vegan* in
135 R [55]. Significance of differences in taxa richness between compartments and differences in OTU
136 relative abundance between crop genotypes and previous cultivated crops were tested using the
137 Kruskal–Wallis rank sum test. P values were corrected for multiple comparisons with a Dunn's
138 test using the false discovery rate with the Benjamini–Hochberg method. Linear regression was
139 used to correlate relative abundance to yield and rotation. Zero values were introduced to
140 accommodate for fields that never had oilseed rape sown before, therefore rotation length values
141 are reciprocal. Ternary plots were created using *ggtern* [56] to understand the compartment
142 preference of the OTUs.

143

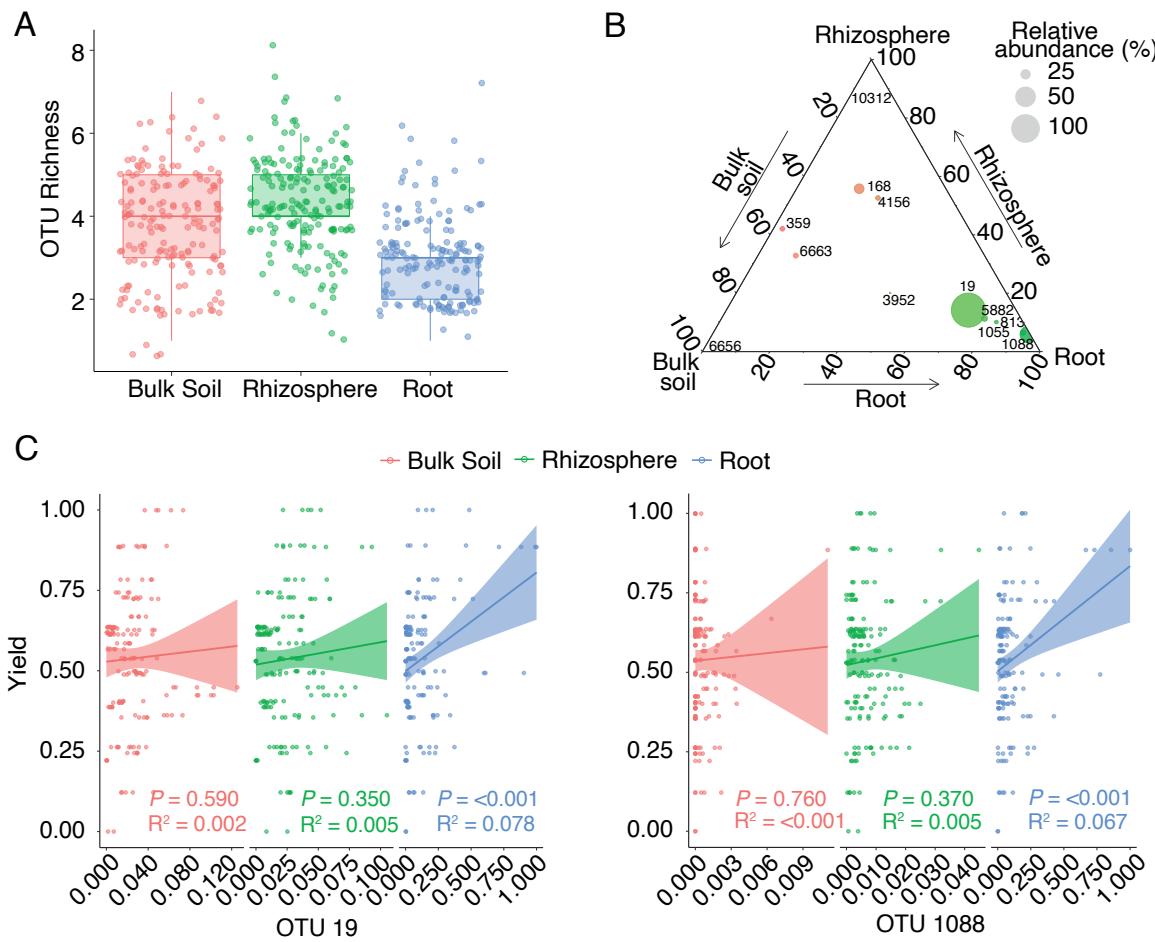
144 Out of all the OTUs found that resembled the genus *Tetracladium* we chose the two most
145 abundant OTUs, which were also substantively enriched within the root compartment, for detailed
146 ecological analyses. Data was normalised using modified Z-scores. To test for drivers of relative
147 abundance in the roots, we created a piecewise structural equation model (PSEM). First, a
148 correlogram was created to better understand relationships between metadata and OTU relative
149 abundance (**Additional file 1**) using base R functions [57]. Then, individual linear mixed-effect
150 models were fitted with sampling location and soil compartment as random variables. Significant
151 soil nutrient factors, relative to OTU abundance, taken from the correlogram output and the initial


152 fitted model with all soil nutrients (modM) (**Additional files 1 and 2**), soil structure and climate
153 were used as composite fixed variables. These composite variables were created so complicated
154 constructs can be processed as simpler blocks that are easier to present and discuss [58].
155 Variable reduction was done to unmask significant relationships that may be missed if too many
156 factors were included based on the LMM fitted with all variables. Individual models were fitted
157 using the R package *lme4* [59]. Fixed variables were reduced via assessing best model fit using
158 the *performance* package [60]. Finally, path models were fitted with the *piecewiseSEM* package
159 [61], based on the findings of the individual models.

160

161 Results

162 Across the 37 fields we found twelve OTUs that represented the genus *Tetracladium* (**Fig. 1A**).
163 Higher abundance *Tetracladium* sp. OTUs (OTUs 19, 1088, 168, 6663, 359, 4156, 5882) were
164 found in all sampled fields, while lower abundance OTUs (813, 1055, 3952, 6656, 10312) were
165 found sporadically across fields (**Additional file 3C**). The highest abundance OTUs, OTU 19 and
166 1088, grouped with *T. maxilliforme* and *T. furcatum* respectively, both of which have been
167 described from water (**Fig. 1B**). OTU 813 clustered closely with, but was not identical to the
168 species *T. elipsoideum*, which has been described from arctic soil [44] and the closest uncultured
169 environmental sequences to this OTU (MF181805.1 and MK627297.1) also originate from soil.
170 OTUs 6663, 5882, 4156, and 168 clustered with uncultured *Tetracladium* sp. sequences in a
171 clade close to *T. elipsoideum*, *T. psychrophilum* and *T. globosum*. The closest uncultured
172 environmental sequences for OTU 6663 (LR863329.1 and KX192428.1), OTU 5882
173 (MN660389.1), OTU 4156 (KF296960.1 and JX029127.1), OTU 168 (GU055746.1) all originate
174 from terrestrial samples. Environmental sequence MN660932.1 found in water, was a close match
175 to OTU 168. OTUs 1055, 3952, 6656, 10312, and 359 formed a distinct clade with uncultured
176 *Tetracladium* sp. sequences (MW050202.1, MH451254.1, KX193670.1, MH451294.1,

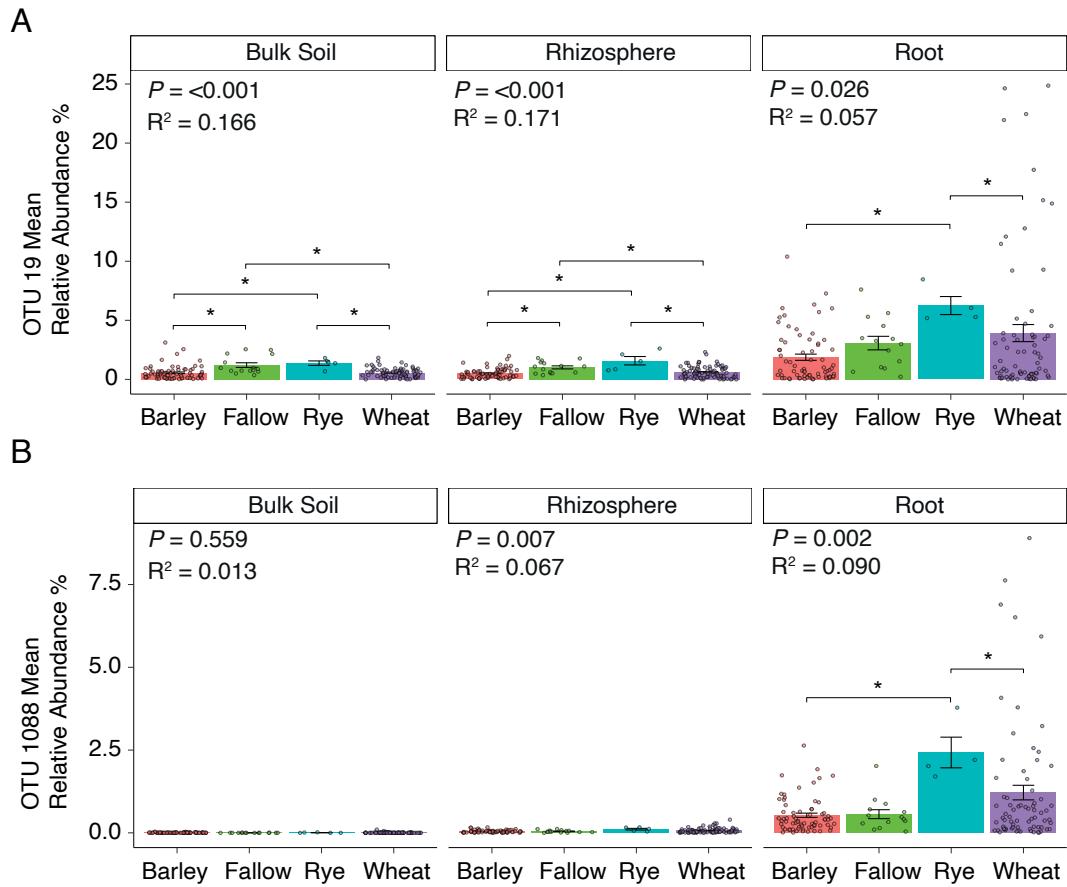

177 MG756632.1, KM246272.1, MK246209.1, LR876862.1, MK627349.1) found on land, likely
178 representing uncharacterised species.

179
180 Figure 1. A - Location of the sampling sites used in this study. B – ITS sequence based maximum
181 likelihood tree with posterior probability values of the twelve *Tetracladium* sp. OTUs and reference
182 sequences. *Botrytis cinerea* was used as an outgroup. The scale bar denotes the number of
183 nucleotide differences per site.

184
185 There was a significant difference between observed OTU richness of the three compartments
186 (**Fig. 2A**), which was the lowest in the roots while the bulk soil and rhizosphere showed the same
187 OTU richness (rhizosphere-bulk soil $P = <0.001$, root-bulk soil $P = <0.001$, root-rhizosphere $P =$
188 <0.001). Five of the OTUs (OTUs 19, 5882, 1055, 813, 1088) were most abundant in the roots,
189 while OTU 6656 was found in greater abundance in the bulk soil, and OTU 10312 was only found
190 in the rhizosphere. The rest of the OTUs didn't show a specific preference for compartment (**Fig.**
191 **2B**). The most abundant *Tetracladium* OTUs (19 and 1088) both showed a strong preference for
192 the roots. The mean relative abundance of OTU 19 was five times higher in the roots than in the
193 bulk soil and it was over a thousand times higher in the case of OTU 1088 (**Additional file 3D**).

194 Based on these results we conclude that OTUs 19 and 1088 can be categorised as root colonising
195 fungi and further analyses focussed on these two abundant and widely distributed OTUs.

196
197 Figure 2. Analyses of *Tetracladium* OTU distribution in the bulk soil, the rhizosphere, and the
198 roots. A – Observed OTU richness in the three sampled compartments. Error bars represent
199 standard error. B – Ternary plots of *Tetracladium* OTU distribution across compartments. C –
200 Linear regression line fitted between OTUs and yield across the three compartments with
201 significance values. OTU relative abundances and yield are normalised. The shaded region
202 represents the 95% confidence limits for the estimated prediction.

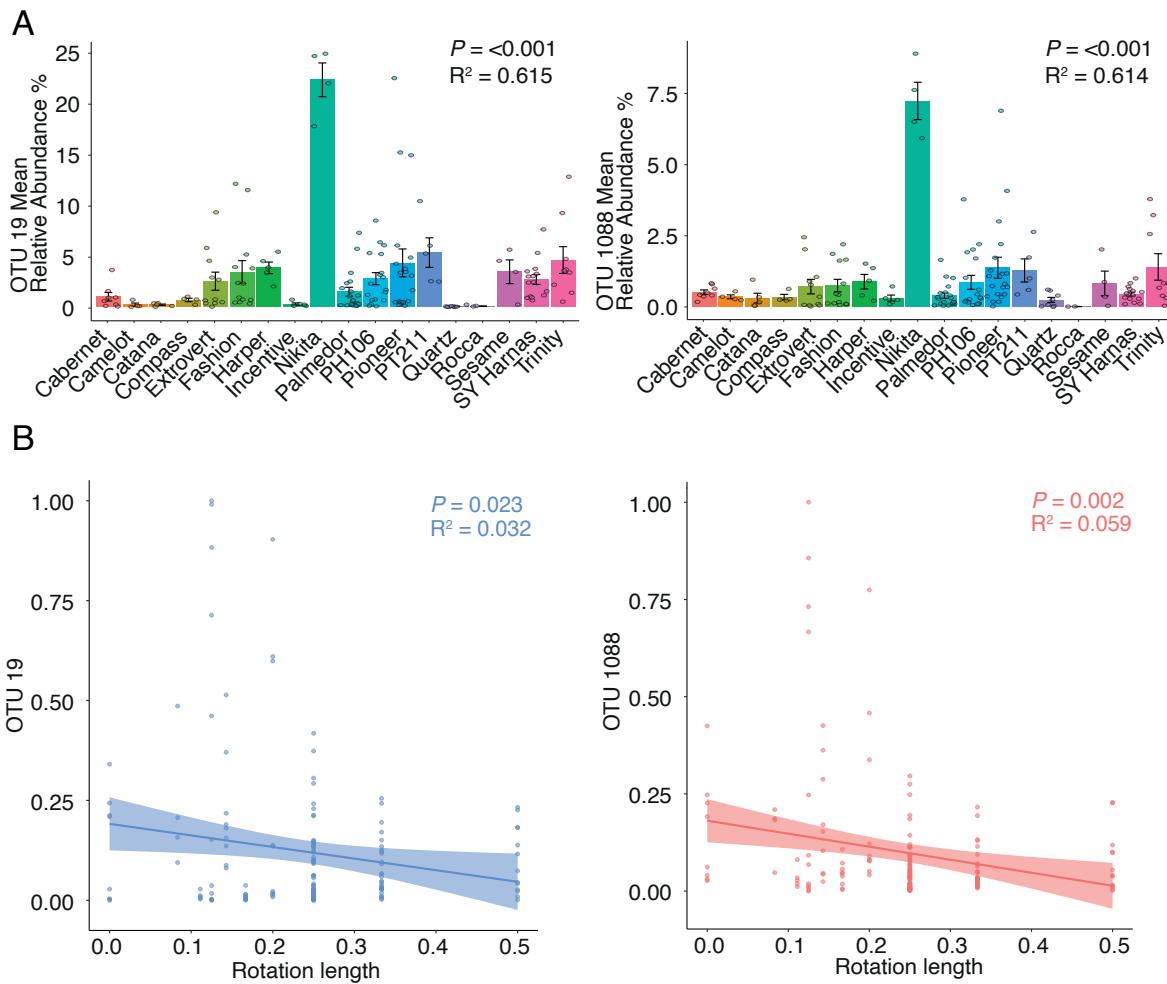

203

204 Correlating the metadata to OTU relative abundance

205 Relative abundance of OTUs 19 and 1088 in the root compartment had a significant positive linear
206 correlation with OSR yield (OTU 19 – $R^2 = 0.078$, $P = <0.001$, OTU 1088 – $R^2 = 0.067$, $P =$
207 <0.001). The highest relative abundance of OTU 19 and 1088 in the roots was associated with a
208 yield increase of up to 25% relative to samples with the lowest relative abundance. No such
209 relationship was seen in the bulk soil or rhizosphere (**Fig. 2C**).

210

211 We further investigated the relationships between previous crop cultivated at the site, OSR variety
212 and rotation and the relative abundance of OTUs 19 and 1088. We found that relative abundance
213 of OTU 19 and 1088 had a significant correlation with previous cultivated crop ($R^2 = 0.021$ $P =$
214 0.013 and $R^2 = 0.021$, $P = 0.012$ respectively). In roots, relative abundance of both OTU 19 and
215 1088, was significantly higher ($P < 0.001$) when rye rather than barley or wheat was the proceeding
216 crop (**Fig. 3A**). In the rhizosphere and soil relative abundance of OTU 19 showed the same
217 patterns in relation to previous crops as for the roots, but in addition relative abundance following
218 fallow was significantly higher than barley and lower than wheat (**Figs. 3A and 3B, Additional**
219 **file 4**).


220

221 Figure 3. The mean relative abundance of A – OTU 19 and B – OTU 1088 in the four previous
222 crop types in the bulk soil, the rhizosphere soil, and the roots. Stars indicate a significant
223 difference between the previous crops. Error bars represent +/- standard error of the mean.

224

225 OSR variety had a significant effect on relative abundance of OTU 19 ($R^2 = 0.615, P = <0.001$)
226 and 1088 ($R^2 = 0.614, P = <0.001$) in roots, with the two OTUs showing very similar distribution
227 patterns. Seven varieties (Quartz, Rocca, Incentive, Compass, Catena, Camelot and Cabernet)
228 had very low mean relative abundances of these OTUs, while Nikita had substantively higher
229 relative abundance than the other varieties (Figs. 4A and 4B, Additional file 5). Rotation also
230 had a significant linear correlation with the relative abundance of OTUs 19 and 1088 in the roots

231 ($R^2 = 0.032, P = 0.023$ for OTU 19, $R^2 = 0.059, P = 0.002$ for OTU 1088) (Fig. 4B), which increased
232 as time since previous OSR crop increased.

233

234 Figure 4. Relationships between *Tetracladium* spp. OTU mean relative abundance with variety
235 and rotation. A - The mean relative abundance of OTU 19 and 1088 in different OSR varieties in
236 the roots. Error bars represent +/- standard error of the mean. B – Linear regression line fitted
237 between OTU relative abundance and rotation length across the three compartments with
238 significance values. OTU relative abundances and yield are normalised in a way to accommodate
239 for fields that never had oilseed rape planted before. These virgin fields are represented as 0
240 while the shortest rotation length is represented by 0.5. The shaded region represents the 95%
241 confidence limits for the estimated prediction.

242

243 We found a strong correlation between the relative abundances of the root specific *Tetracladium*
244 OTUs ($R^2 = 0.887$, $P = <0.001$) so for further analyses we used the mean of the combined relative
245 abundance of the two OTUs of each sample (Fig. 5). In the final PSEM, we correlated relative
246 abundance of the combined OTUs to soil structure (soil moisture content, bulk density, and sand
247 content), significant nutrients (Olsen P, iron, chromium, phosphorus, and manganese), pH,
248 rotation, and climate (annual rainfall and minimum annual temperature) using sampled field as a
249 random variable and used simple linear regression to correlate nutrients to soil structure and then
250 pH to nutrients. Nutrient variables were chosen based on the results of the correlation matrix and
251 the assessment the model fit of the initial linear mixed-effect model modM (Additional file 1).

252

253 Figure 5. Drivers of the combined mean relative abundance of the two OTUs. Path diagrams of
254 the piecewise SEMs showing direct and indirect effects with standard estimates R^2 values for
255 linear correlations and R^2 conditional values for mixed effects linear correlations. The R^2 marginal
256 values for nutrients, pH, soil structure, climate, rotation are: 0.35, 0.20, 0.03, 0.01, 0.03. Dotted
257 lines indicate non-significance in the path model. Arrow sizes indicate effect size, arrow colours

258 indicate a positive or a negative relationship (red – positive, blue – negative). The multivariate
259 PSEM linking soil structure, pH, rotation, climate, and soil nutrients with mean relative abundance
260 of OTUs 19 and 1088 was well supported by the data (Fisher's C = 36.86, $P = <0.001$, degrees
261 of freedom = 10). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Standardised effect size is shown from the
262 linear mixed effects models where soil compartment and sampled location were used as random
263 effect. Model fit indicators for the LMMs are shown in Additional file 2. Rotation values are
264 reciprocal.

265

266 As a result, the PSEM showed the strongest significant direct positive effect of nutrients (R^2
267 conditional = 0.48, standard estimate = 0.48, $P = 0.001$) followed by pH (R^2 conditional = 0.07,
268 standard estimate = 0.27, $P = 0.002$) and rotation (R^2 conditional = 0.35, standard estimate =
269 0.17, $P = 0.043$) on the mean combined relative abundance of OTU 19 and 1088 (**Fig. 5**). The
270 effect of climate and soil structure was not significant in the path analyses. Soil structure and pH
271 had significant positive correlations with nutrients ($R^2 = 0.12$, standard estimate = 0.34, $P = < 0.001$
272 and R^2 conditional = 0.07, standard estimate = 0.27, $P = 0.005$) thus indirectly affecting OTU
273 relative abundance. To expand the composite variables of the PSEM, the mixed-effect linear
274 models showed significant correlation between the combined mean relative abundance of OTU
275 19 and 1088 (**Fig. 5**) with Olsen P ($P = < 0.001$), phosphorus ($P = 0.003$) and iron ($P = 0.008$). We
276 also found a significant negative correlation between the combined mean relative abundance of
277 the OTUs and soil water content ($P = 0.045$), while none of the climate variables were significant
278 (**Fig. 5**).

279

280 **Discussion**

281 Here we present the first systematic study of the landscape scale diversity and distribution of
282 *Tetracladium* spp. within terrestrial systems and identify key factors controlling their occurrence

283 as root endophytes. *Tetracladium* spp. were widely distributed, occurring in soil, rhizosphere, and
284 roots in the 37 sampled sites. A total of 12 *Tetracladium* sp. OTUs were detected, and a subset
285 of OTU were specifically enriched in oilseed rape roots, including *T. maxilliforme* and *T. furcatum*.
286 Eight of the OTUs belonged to clades for which only environment sequences, largely from
287 terrestrial habitats, have been described. There was a significant relationship between relative
288 abundance of *T. maxilliforme* and *T. furcatum* within oilseed rape roots and crop genotype,
289 previous cultivated crop, and oilseed rape rotation period. Linear mixed effects modelling, and
290 piecewise structural equation modelling showed that the most important environmental drivers of
291 the relative abundance of *Tetracladium* spp. within plant roots were pH and select nutrients,
292 including total phosphorus, extractable (Olsen) phosphorus, and iron.

293

294 Diversity and distribution

295 *Tetracladium* is generally considered to be a freshwater fungus, however, it has also been
296 detected as a root endophyte of terrestrial plants. In the sampled fields there was lower species
297 richness in the roots, than in the soil and rhizosphere which is a common feature of endophytes,
298 and suggests selective recruitment into the microbiome [62]. Based on ITS sequences, the two
299 most abundant OTUs (OTU 19 and 1088) clustered with *T. maxilliforme* and *T. furcatum*
300 respectively and showed a strong root preference (**Fig. 2B**). *T. maxilliforme* and *T. furcatum* have
301 been found several times in agriculture including the roots of crop plants [22, 25], though they are
302 both traditionally regarded as aquatic organisms [14, 63-67]. OTU 813 clustered with the
303 terrestrial *T. elipsoideum* and it showed a strong root preference (**Fig. 2B**). Excluding OTUs 19,
304 1088, and 813, the closest GenBank sequence matches for all OTUs were from terrestrial
305 habitats. Compartment preference did not have a correlation with taxonomic position as root
306 preferring OTUs were found across the main *Tetracladium* spp. clades suggesting that the
307 different species in the genus may not have a defined lifestyle. Overall, our findings suggest that

308 there is considerable diversity within *Tetracladium* spp. and that while some taxa may inhabit both
309 aquatic and terrestrial habitats, others may inhabit terrestrial systems, with some occurring as
310 plant endophytes.

311
312 Root endophytes have been shown to increase host resistance to environmental factors such as
313 drought, heat and saline stress [68, 69], and can also increase plant health by inducing increased
314 resistance via priming of the natural immune system to pathogens [70] or through competition
315 with pathogens for nutrients and spatial niche exclusion [71]. Plant growth and yield can also be
316 increased by endophytes via direct nutrient transfer from fungus to plant [72]. Furthermore, root
317 colonising endophytes may shape plant community diversity and distribution [73].

318
319 Although, *Tetracladium* species have previously been found in roots [19, 22, 25, 26] little is known
320 about the process by which *Tetracladium* spp. colonise roots, or the significance of infection for
321 plant health. Sati and Arya (2010) found that inoculation with *T. nainitalense* had no significant
322 effect on the growth of *Hibiscus esculentus* or *Solanum melongena* following inoculation with *T.*
323 *nainitalense*, although there was no evidence that the inoculant colonised plant tissues [47]. In
324 our previous work [38] we found a positive correlation between *Tetracladium* OTU relative
325 abundance and oilseed rape yield on a landscape scale and in the current study we build on this
326 to show a 25% yield increase from the lowest to the highest OTU relative abundance with both
327 OTUs 19 and 1088. There is a clear need to understand the root infection process by *Tetracladium*
328 spp. and to quantify benefits for plant health under controlled conditions, so that the significance
329 of *Tetracladium* spp. root endophytes, and their potential to act as beneficial symbionts can be
330 established.

335
336 Drivers of relative abundance

337 Here we present the first study that systematically investigates the drivers of root colonisation by
338 *Tetracladium* spp. The root associated *T. maxilliforme* and *T. furcatum* OTUs showed strong co-
339 assembly patterns in oilseed rape roots at a landscape scale. These OTUs showed the same
340 interactions with host genotype, crop management, and environmental factors. There is evidence
341 of minimal competition between root colonising endophytes explaining their high diversity within
342 a single host [74]. This enables similar strains or species of fungi to colonise the same plant in
343 high abundance. The data presented here could simply mean similar adaptation of the two
344 species without any ecological interaction.

345

346 According to our fitted models, the main drivers of *Tetracladium* sp. relative abundance in oilseed
347 rape roots were soil nutrient content, crop rotation and pH. Relative abundance had a positive
348 correlation with soil phosphorus and a negative correlation with iron content and Olsen P.
349 Phosphorus and iron availability may limit plant and microbial growth in soil. For example, dark
350 septate endophytes, which like *Tetracladium* spp. belong to the Helotiales, and occur as root
351 endophytes, have been found to have iron phosphate solubilisation properties [75]. Sati and Pant
352 found phosphate solubilisation in *T. setigerum* isolated from riparian roots in agar and broth media
353 [76]. Moreover, it was shown that mineral fertilisers increased the relative abundance of
354 *Tetracladium* sp. indicating that mineral fertiliser treatment might promote this plant-fungal
355 symbiosis [23, 77]. In our study, total phosphorus content of the soil had a positive relationship
356 with *Tetracladium* spp. OTU relative abundance in roots. In contrast, extractable phosphorus or
357 Olsen P had a negative relationship with *Tetracladium* spp. OTU relative abundance in roots. This
358 could suggest that *Tetracladium* spp. infection is promoted when bioavailability of P is low, in the
359 same way that plants favour colonisation by arbuscular mycorrhizal symbioses under conditions
360 of low P availability [78].

361

362 In contrast to bacteria, fungal communities are favoured by low soil pH [79]. However, *T.*
363 *maxilliforme* and *T. furcatum* OTUs showed increased relative abundance in roots as soil pH
364 increased. Furthermore, pH was a key factor in determining fungal community structure in the soil
365 in many cases where *Tetracladium* has been identified as a common genus [41, 80], however it
366 was found to prefer neutral or slightly acidic soil in a long-term microplot experiment [80]. In
367 addition to pH, soil redox potential (Eh) is an important driver of microbial community growth,
368 diversity and composition [81, 82]. Relative abundance of both *T. maxilliforme* and *T. furcatum*
369 increased as soil moisture decreased, which was surprising considering their dual ecology as
370 aquatic taxa. Low soil moisture combined with high pH leads to lower Eh in the soil and results in
371 slower rates of decomposition [83, 84]. In addition, high soil moisture and high Eh result in
372 increased reducing conditions that limit extractable P availability in the soil through the
373 solubilisation of Fe oxides that bind to available P [85]. Root colonising *Tetracladium* OTUs
374 showed higher relative abundance in low reducing conditions (low soil moisture and high pH) and
375 had higher relative abundance under low P availability, however this data originates from bulk soil
376 physicochemical measurements and therefore the results may differ when looking at the soil
377 closely encapsulating the roots.

378

379 Finally, we found a strong correlation between OTU relative abundance and crop management
380 practices. OTUs 19 and 1088 both had the highest relative abundances in all compartments when
381 OSR was planted after rye and their relative abundance increased with OSR rotation length. Crop
382 rotation is known to influence soil microbial community composition, and to influence the
383 composition of plant associated microbiota including pathogens and symbionts [86, 87]. These
384 changes may be attributed to a wide range of interactions. For endophytes, they may reflect plant
385 species specificity, and the extent to which different crop species support proliferation of inoculum,
386 either following recruitment in living root biomass or on organic material left in the field following
387 harvest [88]. Additionally, differences in management practices across crop types, such as

388 fertiliser, tillage and pesticide use could also impact inoculum (Gosling et al., 2006). Enhanced
389 colonisation following ryegrass relative to OSR could therefore indicate a preference of
390 *Tetracladium* spp. for ryegrass as a host, or management practices assisted with ryegrass.

391

392 Conclusion

393 The ecological interactions of *Tetracladium* spp. are currently unknown; however, there is
394 overwhelming evidence that some taxa within this group which were traditionally considered to
395 be aquatic hyphomycetes can also occur as endophytes in terrestrial ecosystems, with several
396 clades known only from environmental DNA, and which may represent terrestrial species. We
397 have found a correlation between crop yield and *Tetracladium* abundance, indicating that these
398 fungi are beneficial components of the plant endophytic mycobiome. There is also indication that
399 crop management practices, pH and nutrient enrichment are the main drivers of root colonisation
400 of *Tetracladium* sp. in terrestrial environments. Further research is needed to determine their role
401 in the plant's life, particularly their effects on plant health and nutrition, to establish their potential
402 value for utilisation in sustainable agricultural practices.

403

404 Declarations

405 Ethics approval and consent to participate: Not applicable

406 Consent for publication: Not applicable

407 Availability of data and material: All data generated or analysed during this study are included in
408 this published article [and its supplementary information files] and in Hilton, S., Picot, E., Schreiter,
409 S. et al. Identification of microbial signatures linked to oilseed rape yield decline at the landscape
410 scale. *Microbiome* 9, 19 (2021). <https://doi.org/10.1186/s40168-020-00972-0>

411 Competing interests: The authors declare no competing financial interests.

412 Funding: This project was founded by the UK Research and Innovation Natural Environment
413 Research Council Grants 2433027 and NE/S010270/1 and Biotechnology and Biological
414 Sciences Research Council grant BB/L025892/1

415 Authors' contributions: GDB and RMM were responsible for project conception, project funding,
416 and experimental design. AL, GDB, RMM analysed and interpreted the data. AL wrote the initial
417 manuscript. GDB, RMM reviewed and edited the manuscript.

418 Acknowledgements: Not applicable

419 **References:**

- 420 1. Grossart, H.-P., et al., *Fungi in aquatic ecosystems*. Nature Reviews Microbiology, 2019.
421 17: p. 339-354.
- 422 2. Ingold, C.T., *Aquatic hyphomycetes of decaying alder leaves*. Transactions of the British
423 Mycological Society, 1942. 25(4): p. 339-417.
- 424 3. Ingold, C.T., *Aquatic Hyphomycetes from Switzerland*. Transactions of the British
425 Mycological Society, 1949. 32(3-4): p. 341-345.
- 426 4. Johnston, P.R., et al., *A multigene phylogeny toward a new phylogenetic classification of*
427 *Leotiomycetes*. IMA Fungus, 2019. 10: p. 1.
- 428 5. Webster, J., *Experiments with Spores of Aquatic Hyphomycetes: I. Sedimentation, and*
429 *Impaction on Smooth Surfaces*. Annals of Botany, 1959. 24(4): p. 595-611.
- 430 6. Selosse, M.-A., M. Vohník, and E. Chauvet, *Out of the rivers: Are Some Aquatic*
431 *Hyphomycetes Plant endophytes?* New Phytologist, 2008. 178(1): p. 3-7.
- 432 7. de Wildeman, É., *Notes mycologiques IV*. Annales de Société Belge de Microscopie, 1893.
433 17(2): p. 35-40.

434 8. Hibbett, D.S., et al., *A higher-level phylogenetic classification of the Fungi*. Mycol Res, 435 2007. **111**(Pt 5): p. 509-47.

436 9. Anderson, J.L. and C.A. Shearer, *Population Genetics of the Aquatic Fungus Tetracladium* 437 *marchalianum over Space and Time*. PLoS ONE, 2011. **6**(1): p. e15908.

438 10. Conway, K.E., *The Aquatic Hyphomycetes of Central New York*. Mycologia, 1970. **62**(3): p. 439 516-530.

440 11. Makela, K., *Some Aquatic Hyphomycetes on Grasses in Finland*. Karstenia, 1973. **13**: p. 16- 441 22.

442 12. Chauvet, E., *Aquatic Hyphomycete Distribution in South-Western France*. Journal of 443 Biogeography, 1991. **18**(6): p. 699.

444 13. Bärlocher, F., *The Ecology of Aquatic Hyphomycetes*. Ecological Studies 1992: Springer, 445 Berlin, Heidelberg.

446 14. Harrington, T.J., *Aquatic Hyphomycetes of 21 Rivers in Southern Ireland*. Biology and 447 Environment: Proceedings of the Royal Irish Academy, 1997. **97B**(2): p. 139-148.

448 15. Bandoni, R.J., *Terrestrial Occurrence of Some Aquatic Hyphomycetes*. Canadian Journal of 449 Botany, 1972. **50**(11): p. 2283-2288.

450 16. Bärlocher, F. and J.J. Oertli, *Colonization of Conifer Needles by Aquatic Hyphomycetes*. 451 Canadian Journal of Botany, 1978. **56**(1): p. 57-62.

452 17. Sati, S.C. and M. Belwal, *Aquatic Hyphomycetes as Endophytes of Riparian Plant Roots*. 453 Mycologia, 2005. **97**(1): p. 45-49.

454 18. Abadie, J.-C., et al., *Cephalanthera longifolia (Neottieae, Orchidaceae) Is Mixotrophic: a*
455 *Comparative Study between Green and Nonphotosynthetic Individuals.* Canadian Journal
456 of Botany, 2006. **84**(9): p. 1462-1477.

457 19. Stark, C., W. Babik, and W. Durka, *Fungi from the Roots of the Common Terrestrial Orchid*
458 *Gymnadenia conopsea.* Mycological Research, 2009. **113**(9): p. 952-959.

459 20. Vendramin, E., et al., *Identification of Two Fungal Endophytes Associated with the*
460 *Endangered Orchid Orchis militaris L.* Journal of Microbiology and Biotechnology, 2010.
461 **20**(3): p. 630-636.

462 21. Wang, Y., et al., *Niche differentiation in the rhizosphere and endosphere fungal*
463 *microbiome of wild Paris polyphylla Sm.* PeerJ, 2020. **8**: p. e8510.

464 22. Grudzinska-Sterno, M., et al., *Fungal communities in organically grown winter wheat*
465 *affected by plant organ and development stage.* European Journal of Plant Pathology,
466 2016. **146**(2): p. 401-417.

467 23. Chen, Z., et al., *Fungal Community Composition Change and Heavy Metal Accumulation*
468 *in Response to the long-term Application of Anaerobically Digested Slurry in a Paddy Soil.*
469 Ecotoxicology and Environmental Safety, 2020. **196**: p. 110453.

470 24. Zhao, Y., et al., *Variation of Rhizosphere Microbial Community in Continuous mono-maize*
471 *Seed Production.* Scientific Reports, 2021. **11**(1).

472 25. Bruzone, M.C., S.B. Fontenla, and M. Vohnik, *Is the Prominent Ericoid Mycorrhizal Fungus*
473 *Rhizoscyphus ericae Absent in the Southern Hemisphere Ericaceae a Case Study on the*
474 *Diversity of Root Mycobionts in Gaultheria spp. from Northwest Patagonia, Argentina.*
475 Mycorrhiza, 2014. **25**(1): p. 25-40.

476 26. Macia-Vicente, J.G., B. Nam, and M. Thines, *Root filtering, Rather than Host Identity or*
477 *age, Determines the Composition of root-associated Fungi and Oomycetes in Three*
478 *Naturally co-occurring Brassicaceae*. Soil Biology and Biochemistry, 2020. **146**: p. 107806.

479 27. Chatterton, S., et al., *Bacterial and Fungal communities, but Not Physicochemical*
480 *properties, of Soil Differ According to Root Rot Status of Pea*. Pedobiologia, 2021. **84**: p.
481 150705.

482 28. Ma, W., et al., *Microbial Diversity Analysis of Vineyards in the Xinjiang Region Using high-*
483 *throughput Sequencing*. Journal of the Institute of Brewing, 2018. **124**(3): p. 276-283.

484 29. Sati, S.C., P. Arya, and M. Belwal, *Tetracladium nainitalense sp. nov., a Root Endophyte*
485 *from Kumaun Himalaya, India*. Mycologia, 2009. **101**(5): p. 692-695.

486 30. Giesemann, P., et al., *Dark septate endophytes and arbuscular mycorrhizal fungi (Paris-*
487 *morphotype) affect the stable isotope composition of 'classically' non-mycorrhizal plants*.
488 Functional Ecology, 2020. **34**(12): p. 2453-2466.

489 31. Russell, J. and S. Bulman, *The Liverwort Marchantia foliacea Forms a Specialized Symbiosis*
490 *with Arbuscular Mycorrhizal Fungi in the Genus Glomus*. New Phytologist, 2004. **165**(2):
491 p. 567-579.

492 32. Rosa, L.H., et al., *Endophytic Fungi Community Associated with the Dicotyledonous Plant*
493 *Colobanthus Quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica*. FEMS Microbiology
494 Ecology, 2010. **73**: p. no-no.

495 33. Hirose, D., et al., *Diversity and Community Assembly of moss-associated Fungi in ice-free*
496 *Coastal Outcrops of Continental Antarctica*. Fungal Ecology, 2016. **24**: p. 94-101.

497 34. Hirose, D., et al., *Abundance, richness, and Succession of Microfungi in Relation to*
498 *Chemical Changes in Antarctic Moss Profiles*. *Polar Biology*, 2017. **40**(12): p. 2457-2468.

499 35. Klaubauf, S., et al., *Molecular diversity of fungal communities in agricultural soils from*
500 *Lower Austria*. *Fungal Divers*, 2010. **44**(1): p. 65-75.

501 36. Liu, Y., et al., *Analysis of Microbial Diversity in Soil under Ginger Cultivation*. *Scientifica*,
502 2017. **2017**: p. 1-4.

503 37. María, T., et al., *Fairy Rings Harbor Distinct Soil Fungal Communities and High Fungal*
504 *Diversity in a Montane Grassland*. *Fungal Ecology*, 2020. **47**: p. 100962.

505 38. Hilton, S., et al., *Identification of microbial signatures linked to oilseed rape yield decline*
506 *at the landscape scale*. *Microbiome*, 2021. **9**(1): p. 19.

507 39. Bridge, P.D. and K.K. Newsham, *Soil Fungal Community Composition at Mars Oasis, a*
508 *Southern Maritime Antarctic site, Assessed by PCR Amplification and Cloning*. *Fungal*
509 *Ecology*, 2009. **2**(2): p. 66-74.

510 40. Tsuji, M., et al., *Cold Adaptation of Fungi Obtained from Soil and Lake Sediment in the*
511 *Skarvsnes ice-free area, Antarctica*. *FEMS Microbiology Letters*, 2013. **346**(2): p. 121-130.

512 41. Zhang, T., et al., *Soil pH is a Key Determinant of Soil Fungal Community Composition in the*
513 *Ny-Ålesund Region, Svalbard (High Arctic)*. *Front Microbiol.*, 2016. **7**(227).

514 42. Durán, P., et al., *Occurrence of Soil Fungi in Antarctic Pristine Environments*. *Frontiers in*
515 *Bioengineering and Biotechnology*, 2019. **7**.

516 43. Jiang, N., et al., *Characteristic Microbial Communities in the Continuous Permafrost beside*
517 *the Bitumen in Qinghai-Tibetan Plateau*. *Environmental Earth Sciences*, 2015. **74**(2): p.
518 1343-1352.

519 44. Wang, M., et al., *Psychrophilic fungi from the world's roof*. Persoonia, 2015. **34**: p. 100-12.

520 45. Hu, W., et al., *Multiple-trophic patterns of primary succession following retreat of a high-*
521 *elevation glacier*. Ecosphere, 2021. **12**(3).

522 46. Sati, S.C. and P. Pant, *Two Root Endophytic Aquatic Hyphomycetes Campylospora parvula*
523 *and Tetracladium setigerum as Plant Growth Promoters*. Asian Journal of Agricultural
524 Research, 2020. **4**(1): p. 28-33.

525 47. Sati, S.C. and P. Arya, *Assessment of root endophytic aquatic hyphomycetous fungi on*
526 *plant growth*. Symbiosis, 2010. **50**(3): p. 143-149.

527 48. Arya, P. and S.C. Sati, *Evaluation of endophytic aquatic hyphomycetes for their*
528 *antagonistic activity against pathogenic bacteria* International Research Journal of
529 Microbiology, 2011. **2**(9): p. 343-347.

530 49. Ihrmark, K., et al., *New primers to amplify the fungal ITS2 region – evaluation by 454-*
531 *sequencing of artificial and natural communities*. FEMS Microbiology Ecology, 2012.
532 **82**(3): p. 666-667.

533 50. Caporaso, J.G., et al., *QIIME allows analysis of high-throughput community sequencing*
534 *data*. Nat Methods, 2010. **7**(5): p. 335-336.

535 51. Kõljalg, U., et al., *Towards a unified paradigm for sequence-based identification of fungi*.
536 Mol Ecol
537 . 2013. **22**(21): p. 5271-5277.

538 52. Katoh, K., J. Rozewicki, and K.D. Yamada, *MAFFT online service: multiple sequence*
539 *alignment, interactive sequence choice and visualization*. Brief Bioinform.. 2019. **20**(4): p.
540 1160-1166.

541 53. Miller, M.A., W. Pfeiffer, and T. Schwartz, *Creating the CIPRES Science Gateway for*
542 *inference of large phylogenetic trees*. Proceedings of the Gateway Computing
543 Environments Workshop (GCE), 2010: p. pp. 1-8.

544 54. Stamatakis, A., *RAxML version 8: a tool for phylogenetic analysis and post-analysis of large*
545 *phylogenies* Bioinformatics, 2014. **30**(9): p. 1312-1313.

546 55. Oksanen, J., et al. *vegan: Community Ecology Package*. 2018; R package version 2.5-7].
547 Available from: <https://CRAN.R-project.org/package=vegan>.

548 56. Hamilton, N.E. and M. Ferry, *ggtern: Ternary Diagrams Using ggplot2*. Journal of
549 Statistical Software, 2018. **87**: p. 1-17.

550 57. R Core Team, *R: A language and environment for statistical computing*. R Foundation for
551 Statistical Computing, Vienna, Austria, 2021.

552 58. Grace, J.B. and J.E. Keeley, *A structural equation model analysis of postfire plant diversity*
553 *in California shrublands*. Ecological Applications, 2006. **16**(2): p. 503-514.

554 59. Bates, D., et al., *Fitting Linear Mixed-Effects Models Using lme4*. Journal of Statistical
555 Software, 2015. **67**: p. 1-48.

556 60. Lüdecke, D., et al., *performance: An R Package for Assessment, Comparison and Testing*
557 *of Statistical Models*. Journal of Open Source Software, 2021. **6**(60): p. 3139.

558 61. Lefcheck, J.S., *piecewiseSEM: Piecewise structural equation modeling in R for ecology,*
559 *evolution, and systematics*. Methods in Ecology and Evolution, 2016. **7**(5): p. 573-579.

560 62. Fernández-González, A.J., et al., *Defining the root endosphere and rhizosphere*
561 *microbiomes from the World Olive Germplasm Collection*. Scientific Reports, 2019. **9**: p.
562 20423.

563 63. Engblom, E., et al., *Foam Spora in Running Waters of Southern Greenland*. Polar Research,
564 1986. **4**(1): p. 47-51.

565 64. Gönczöl, J. and Á. Révay, *Fungal Spores in rainwater: stemflow, Throughfall and Gutter*
566 *Conidial Assemblages*. Fungal Diversity, 2004. **16**: p. 67-86.

567 65. Orłowska, M., I. Lengiewicz, and M. Suszycka, *Hyphomycetes Developing on Water Plants*
568 *and Bulrushes in Fish Ponds*. Polish Journal of Environmental Studies, 2004. **13**(6): p. 703-
569 707.

570 66. Al-Riyami, M., et al., *Leaf Decomposition in a Mountain Stream in the Sultanate of Oman*.
571 International Review of Hydrobiology, 2009. **94**(1): p. 16-28.

572 67. Kravetz, S., et al., *The Genus Tetracladium in Pampean Streams (Buenos Aires, Argentina)*.
573 Phytotaxa, 2018. **338**(3): p. 276.

574 68. Hubbard, M., J.J. Germida, and V. Vujanovic, *Fungal endophytes enhance wheat heat and*
575 *drought tolerance in terms of grain yield and second-generation seed viability*. Journal of
576 Applied Microbiology, 2013. **116**(1): p. 109-122.

577 69. Molina-Montenegro, M.A., et al., *Antarctic root endophytes improve physiological*
578 *performance and yield in crops under salt stress by enhanced energy production and Na⁺*
579 *sequestration*. Scientific Reports, 2020. **10**: p. 5819.

580 70. Pańka, D., et al., *Production of phenolics and the emission of volatile organic compounds*
581 *by perennial ryegrass (*Lolium perenne L.*)/*Neotyphodium lolii* association as a response to*
582 *infection by *Fusarium poae**. Journal of Plant Physiology, 2013. **170**(11): p. 1010-1019.

583 71. Xia, C., et al., *Role of *Epichloë* Endophytes in Defense Responses of Cool-Season Grasses to*
584 *Pathogens: A Review*. Plant Disease, 2018. **102**(11).

585 72. Behie, S.W. and M.J. Bidochka, *Nutrient transfer in plant-fungal symbioses*. Trends in
586 Plant Science, 2014. **19**(11): p. 734-740.

587 73. Abrego, N., et al., *Accounting for environmental variation in co-occurrence modelling*
588 *reveals the importance of positive interactions in root-associated fungal communities*.
589 Molecular Ecology, 2020. **29**(14): p. 2736-2746.

590 74. Kia, S.H., et al., *Root endophytic fungi show low levels of interspecific competition in planta*.
591 Fungal Ecology, 2019. **39**: p. 184-191.

592 75. Spagnoletti, F.N., et al., *Dark septate endophytes present different potential to solubilize*
593 *calcium, iron and aluminum phosphates*. Applied Soil Ecology, 2017. **111**: p. 25-32.

594 76. Sati, S.C. and P. Pant, *Evaluation of Phosphate Solubilization by Root Endophytic Aquatic*
595 *Hyphomycete Tetracladium setigerum*. Symbiosis, 2018. **77**(2): p. 141-145.

596 77. Wang, Y., et al., *Different Selectivity in Fungal Communities Between Manure and Mineral*
597 *Fertilizers: A Study in an Alkaline Soil After 30 Years Fertilization*. Front. Microbiol., 2018.
598 **9**(2613).

599 78. Gosling, P., et al., *Arbuscular mycorrhizal fungi and organic farming*. Agriculture,
600 Ecosystems & Environment, 2006. **113**(1-4): p. 17-35.

601 79. Rousk, J., P.C. Brookes, and E. Bååth, *Contrasting Soil pH Effects on Fungal and Bacterial*
602 *Growth Suggest Functional Redundancy in Carbon Mineralization*. Applied and
603 Environmental Microbiology, 2009. **75**(6): p. 1589-1696.

604 80. Grządziel, J. and A. Gałazka, *Fungal Biodiversity of the Most Common Types of Polish Soil*
605 *in a Long-Term Micropot Experiment*. Front. Microbiol., 2019. **10**(6).

606 81. Heintze, S.G., *The use of the Glass Electrode in Soil Reaction and Oxidation-Reduction*
607 *Potential Measurements*. The Journal of Agricultural Science, 1934. **24**(1): p. 28-41.

608 82. Husson, O., *Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy*. Plant Soil, 609 2012. **362**: p. 389–417.

610 83. Włodarczyk, T., et al., *Redox potential, nitrate content and pH in flooded Eutric Cambisol*
611 *during nitrate reduction*. Research in Agricultural Engineering 2007. **53**(1).

612 84. Tano, B.F., et al., *Spatial and Temporal Variability of Soil Redox Potential, pH and Electrical*
613 *Conductivity across a Toposequence in the Savanna of West Africa*. Agronomy Journal, 614 2020. **10**.

615 85. Phillips, I.R., *Phosphorus availability and sorption under alternating waterlogged and*
616 *drying conditions*. Communications in Soil Science and Plant Analysis 1998. **29**(19-20).

617 86. Taheri, A.E., C. Hamel, and Y. Gan, *Cropping practices impact fungal endophytes and*
618 *pathogens in durum wheat roots*. Applied Soil Ecology, 2016. **100**: p. 104-111.

619 87. Benitez, M.-S., S.L. Osborne, and R.M. Lehman, *Previous crop and rotation history effects*
620 *on maize seedling health and associated rhizosphere microbiome*. Scientific Reports, 621 2017. **15709**.

622 88. Kirkegaard, J.A., et al., *Effect of previous crops on crown rot and yield of durum and bread*
623 *wheat in northern NSW*. Australian Journal of Agricultural Research, 2004. **55**(3): p. 321 -
624 334.

625

626

627

628 Additional files

629

630 Additional file 1. Correlogram showing Pearson's correlation of all metadata variables and OTU
631 relative abundance. Boxes are coloured according to the R values blue indicating a negative, red
632 indicating a positive relationship. Non-significant relations are shown with an x in the box.

633

634 Additional file 2. Model indicators for LMMs. A is a visual representation of the measured model
635 fit indices for the nutrient models. The final model included in figure 5 is modMr. B is the actual
636 values corresponding to the indicators of the nutrient models. C is the model fit indicators of the
637 soil structure and climate models from Figure 5.

638

639 Additional file 3. Metadata tables. A - Metadata table from the 25 farms. B – Bulk soil properties
640 from each five reps of the 37 field sites. C - Tetracladium OTU relative abundances across
641 samples. D – Mean Tetracladium OTU relative abundances across the three sampled
642 compartments.

643

644 Additional file 4. Dunn's test results correcting for P values with Benjamini– Hochberg method.
645 Comparing previous crop types across the different compartments in OTU 19 and OTU 1088.

646

647 Additional file 5. Dunn's test results correcting for P values with Benjamini – Hochberg method.
648 Comparing OTU 19 and OTU 1088 relative abundance in different oilseed rape varieties in the
649 roots.