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Abstract

In malaria, individuals are often infected with different parasite strains; the complexity

of infection (COI) is defined as the number of genetically distinct parasite strains in an

individual. Changes in the mean COI in a population have been shown to be

informative of changes in transmission intensity with a number of probabilistic

likelihood and Bayesian models now developed to estimate the COI. However, rapid,

direct measures based on heterozygosity or FwS do not properly represent the COI. In

this work, we present two new methods that use easily calculated measures to directly

estimate the COI from allele frequency data. Using a simulation framework, we show

that our methods are computationally efficient and comparably accurate to current

methods in the literature. Through a sensitivity analysis, we characterize how the bias

and accuracy of our two methods are impacted by the distribution of parasite densities

and the assumed sequencing depth and number of sampled loci. We further estimate

the COI globally from Plasmodium falciparum sequencing data using our developed
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methods and compare the results against the literature. We show significant differences

in estimated COI globally between continents and a weak relationship between malaria

prevalence and COI.

Author summary

Computational models, used in conjunction with rapidly advancing sequencing

technologies, are increasingly being used to help inform surveillance efforts and

understand the epidemiological dynamics of malaria. One such important metric, the

complexity of infection (COI), indirectly quantifies the level of transmission. Existing

“gold-standard” COI measures rely on complex probabilistic likelihood and Bayesian

models. As an alternative, we have developed the statistics and software package coiaf,

which features two rapid, direct measures to estimate of the number of genetically

distinct parasite strains in an individual (the COI). Our methods were evaluated using

simulated data and subsequently compared to current “state-of-the-art” methods,

yielding comparable results. Lastly, we examined the distribution of the COI in several

locations across the world, identifying significant differences in COI between continents.

coiaf, therefore, provides a new, promising framework for rapidly characterizing

polyclonal infections.

Introduction 1

Malaria remains a leading cause of death worldwide—in 2020, there were an estimated 2

241 million cases, and 627,000 deaths around the globe [1]. Despite the considerable 3

burden of malaria, these numbers represent the substantial global progress made to 4

control malaria in the last two decades. The WHO reports that 1.5 billion malaria cases 5

and 7.6 million malaria deaths were averted globally from 2000 to 2019 [2]. The 6

majority of these gains reflect an increase in vector control initiatives [3–5], the 7

development of highly efficacious antimalarial combination therapies [6–8], and 8

improved case management through the deployment of rapid diagnostic tests 9

(RDTs) [9–14]. However, evidence indicates that progress has slowed and that there is a 10

need for new approaches to capitalize on the gains already made [2]. 11
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One approach is the use of computational methods, which often rely on recent 12

advances in genetic sequencing and provide an increased understanding of malaria 13

biology, to help inform control efforts [15–17]. For example, molecular and genomic 14

epidemiology surveillance tools, which have been developing rapidly, can be used to 15

track drug resistance and understand and evaluate control efforts [18,19]. Moreover, 16

computational methods have been applied in the identification of polyclonal 17

infections—malaria infections with multiple distinct strains [20,21]. Such polyclonal 18

infections introduce additional genetic complexity that is often difficult to account for 19

computationally. As a result, many of the population genetic tools often applied for the 20

study of other organisms are unsuitable for studying malaria, and researchers often rely 21

on limiting genetic analyses to individuals who are monoclonally infected [22]. 22

Although determining the most informative metrics is an active field of 23

investigation [23], one important metric is the complexity of infection (COI). Sometimes 24

referred to multiplicity of infection, although this is generally reserved for infections 25

within the same cell, the COI represents the number of genetically distinct malaria 26

genomes or strains that can be identified in a particular individual. These polyclonal 27

infections may arise from: (i) a single infectious mosquito feeds on a human host, 28

transferring several genetically distinct parasite strains (often referred to as a 29

co-transmission event [24,25]) or (ii) two or more infectious mosquitoes with distinct 30

malaria strains feed on an individual (known as a superinfection event [25,26]). 31

Measures of genetic diversity and the COI are increasingly used for inferring malaria 32

transmission intensity and evaluating malaria control interventions [19]. Transmission 33

intensity has been shown to impact the contribution of each event towards the 34

generation of within-host parasite genetic diversity [23]. Superinfection is modulated by 35

the host’s current infections [27], age, and exposure acquired immunity [28]. 36

Additionally, the COI provides a practical approach for identifying monoclonal 37

infections to simplify genomic analyses. 38

Traditionally, the COI was measured in one or a few regions of the genome, relying 39

on the enumeration of the maximal number of haplotypes detected through PCR 40

amplification at genes or markers encoding highly diverse length polymorphisms. Two 41

of the most common markers are the merozoite surface proteins 1 and 2 (msp1 and 42

msp2 ), surface proteins found on the merozoite stage of the malarial parasite [29,30]. 43
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Traditional methods are hindered by limitations on the number of loci examined [31,32], 44

and lack the ability to detect parasites at low parasitaemia in samples [33]. 45

Furthermore, sanger sequencing lacks the sensitivity for low parasitemia samples 46

without employing laborious subcloning [34]. 47

High-throughput sequencing provides more sensitive and specific methods. As a 48

result, new computational methods have been developed to determine the COI. Two 49

early proposed methods were the FwS metric by Aubern et al., which characterizes 50

within-host diversity and its relationship to population-level diversity [31], and the 51

estMOI software, which utilizes local phasing information of microhaplotypes within 52

read pairs to estimate the COI [33]. Unfortunately, the FwS metric does not directly 53

relate to the COI nor have a concrete biological interpretation, and the estMOI 54

software relies on observed local haplotypes and heuristic interpretation. More recently, 55

new tools been developed to better measure the COI beyond the maximal observed 56

haplotype. For instance, the DEploid software package uses haplotype structure to infer 57

the number of strains, their relative proportions, and the haplotypes present in a 58

sample [35]. However, it is known that DEploid under predicts COI for high COI 59

infections [25]. Other methods have been developed to examine the relatedness between 60

parasite strains [36, 37]. The current “state-of-the-art” method for determining the COI 61

of a sample is THE REAL McCOIL, which is an extension of COIL method [32]. THE 62

REAL McCOIL employs a Bayesian approach, turning heterozygous data into estimates 63

of allele frequency using Markov chain Monte Carlo methods and jointly estimating the 64

likelihood of the COI [38]. 65

Despite various methods for estimating the COI, no rapid, direct measures have 66

been developed to work effectively on a set of loci or at the genome-wide level. In this 67

work, we present two new methods that use easily calculable metrics to directly 68

estimate the COI from allele frequency data. Our two methods closely resemble the 69

categorical and proportional methods implemented in THE REAL McCOIL [38], yet are 70

geared towards large numbers of loci and providing rapid estimates of COI. Using our 71

methods, we have developed the software package coiaf in the programming language 72

I, a language and environment for statistical computing and graphics [39]. 73
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Materials and methods 74

Problem formulation 75

Current “state-of-the-art” approaches for estimating the COI rely on identifying the 76

number of different parasites present in an infection using high-throughput sequencing. 77

In monoclonal infections, i.e., infections composed of only one parasite strain (COI = 1), 78

all sequence reads should be identical, originating from the same parasite strain. 79

However, in mixed infections, a combination of each parasite strain, proportional to the 80

strain’s abundance, will contribute to the observed sequence reads. At genetic loci 81

containing variation, there is an increased chance of observing multiple alleles as the 82

number of unrelated parasite strains within an infection increases. Therefore, the 83

likelihood of observing multiple alleles at any locus is dependent on the number of 84

parasite strains in an infection and the prevalence of genetic polymorphisms in the 85

population. 86

We focus on only biallelic SNPs—the vast majority of loci—and define the major 87

allele as the allele that is most prevalent in a population. We note that any multiallelic 88

site can be collapsed to a biallelic site, although information will be lost. Assuming for 89

any individual there are l biallelic loci, we define the within-sample allele frequency 90

(WSAF) as a vector ŵ of length l composed of the frequencies of the reference allele at 91

each locus for a single individual infection and the population-level allele frequency 92

(PLAF) as a vector p̂ of length l composed of the frequencies of the reference allele at 93

each locus across a population. The PLAF may be represented as the mean of the 94

WSAF across a population, i.e., p̂ = 1
l

∑l
i=1 ŵi. 95

We further define the population-level minor allele frequency (PLMAF) as a vector

p of length l composed of the frequencies of the minor allele at each locus across a

population, namely p = (p1, . . . , pl), where pi ∈ [0, 0.5]. The within-sample minor allele

frequency (WSMAF) is, additionally, defined as a vector w of length l composed of the

frequencies of the population-level minor allele at each locus for a single individual

infection. For instance, the WSMAF will be equal to one when all sequence reads

observed at a given locus are of the population-level minor allele. Given the WSAF and
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the PLAF, the WSMAF and the PLMAF may be expressed as follows:

(w,p) =


(ŵ, p̂) p̂ ≤ 0.5

1− (ŵ, p̂) p̂ > 0.5

. (1)

Variant and Frequency Methods 96

Our overall goal is to estimate the COI of the sample, denoted by k, using the WSMAF 97

and the PLMAF. We do this by comparing observed data to derived expressions that 98

define a relationship between the WSMAF, the PLMAF, and the COI. We present two 99

alternative expressions that we refer to as the Variant Method and the Frequency 100

Method. 101

In the Variant Method, we examine a set of SNPs and express the probability of

SNP i being heterozygous with respect to the PLMAF and the COI. We define Vi, a

Bernoulli random variable that takes the value of one if a site is heterozygous and zero

otherwise. The probability that locus i is heterozygous, written as P(Vi = 1), will be

equal to one minus the probability that a locus is homozygous (see Appendix A in S1

Appendices). We thus write,

P(Vi = 1) = 1− pki − (1− pi)
k . (2)

As the COI increases, the probability of observing a heterozygous locus within an 102

infection also increases (see Fig 1). We note that this is the same expression used within 103

the Categorical method of THE REAL McCOIL (Eq (2)) [38]. 104

Fig 1. Flowchart of methods. In A, the relationship between the WSMAF and the
PLMAF is shown for an example simulation with a COI of 4. In B, data have been
processed so that loci are deemed variant if they are heterozygous and invariant
otherwise. In C, homozygous data have been filtered out. Following processing of data,
Eq (2) and Eq (3) have been plotted for varying COIs from 1 to 4 in D and E,
respectively.

In the Frequency Method, we focus on the expected value of the within-sample

minor allele frequency. For the sake of simplicity, the complete derivation has been left

to Appendix A in S1 Appendices. Briefly, we determine the probability of a particular

strain carrying the minor allele and then determine the expected WSMAF by summing
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over the expected contribution of each strain. We represent the expected value of the

within-sample minor allele frequency given that a site is heterozygous as follows:

E[Wi|Vi = 1] =
pi − pki

1− pki − (1− pi)k
. (3)

Estimation method 105

Given data, D : {(pi, wi, di), i = 1, . . . , l}, where pi is the PLMAF at locus i, wi is the 106

WSMAF at locus i, and di is the coverage at locus i, we next explore our methods to 107

approximate the COI of a sample. Data are first processed to account for sequencing 108

error. This process denotes loci at which there was suspected sequencing error as 109

homozygous instead of heterozyogus (for additional information, see Appendix C in S1 110

Appendices). 111

Following adjustment for sequence error, we consider an arbitrary data point

(pi, wi, di). Recall that the Variant Method and the Frequency Method examine

different random variables. Specifically, the Variant Method identifies the probability of

a locus being heterozygous, P(Vi = 1), and the Frequency Method identifies the

expected value of the WSMAF given a site is heterozygous, E[Wi|Vi = 1]. In order to

determine the COI, we utilize Eq (2) and Eq (3). We solve the following minimization

problem for the Variant Method:

min
k

 l∑
i=1

(
(vi − (1− pki − (1− pi)

k))di∑l
j=1 dj

)2
 , (4)

where vi is defined as the value of the random variable Vi and q ≥ 1. Note that
∑l

j=1 dj

is a constant and, therefore, we may remove it from our expression to get our final

minimization problem:

min
k

(
l∑

i=1

(
(vi − (1− pki − (1− pi)

k))di
)2)

. (5)
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Similarly, we solve the following minimization problem for the Frequency Method:

min
k

 l∑
i=1

1P(Vi=1)=1

(
wi −

(
pi−pk

i

1−pk
i −(1−pi)k

))
di∑l

j=1 dj

2
 , (6)

where q ≥ 1. Once again, we may remove the constant from our expression to get our

final minimization problem:

min
k

(
l∑

i=1

(
1P(Vi=1)=1

(
wi −

(
pi − pki

1− pki − (1− pi)k

))
di

)2
)
. (7)

Note that the estimation methods described minimize the sum of squared residuals 112

between the observed data and the relationships derived in Eq (2) and Eq (3). 113

Solution methods 114

We solve this optimization problem using two methods: (i) assuming discrete values of 115

the COI and (ii) assuming continuous values of the COI. Recall that the COI is defined 116

as the number of genetically distinct malaria parasite strains an individual is infected 117

with. While a continuous value of the COI has no direct biological interpretation, 118

significant departures from discrete values are expected due to parasite relatedness, and 119

a range of other biological phenomenon including, but not limited to, overdispersion in 120

sequencing and parasite densities. Therefore, a continuous value of the COI may 121

provide a more accurate representation of the overall population of samples being 122

studied. Furthermore, as relatedness in mixed infections is common [37], a continuous 123

COI may be able to provide insights into the degree of relatedness between parasite 124

strains in mixed infections and detect highly-related polyclonal infections that may 125

traditionally be categorized as monoclonal. 126

To solve the discrete versions of the previously defined optimization problems we use 127

a brute force approach, which involves computing the objective function for each COI 128

considered. As brute force approaches can be computationally inefficient, we limit the 129

range of values of the COI. To solve the continuous versions of the optimization 130

problems, we utilize I’s built-in optimization function [39]. In particular, we leverage a 131

quasi-Newton L-BFGS-B approach with box constraints [40]. We set the lower and 132

upper bounds of the COI as 1 and 25, respectively, with the default starting value of the 133
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COI equal to two. Note that in both the discrete and continuous case, the upper bound 134

of the COI is much larger than most COIs seen in the real world [38,41]. In both cases, 135

we also provide the capability to determine the 95% confidence interval for our COI 136

estimates by leverage bootstrapping techniques [42] (see Appendix E in S1 Appendices 137

for more details). 138

Data 139

To evaluate the accuracy and sensitivity of our methods, we created a simulator that 140

generates synthetic sequencing data for a number of individuals in a given population. 141

In overview, each individual is assigned a COI value. The haplotype of each strain is 142

then assigned by sampling from the population level minor allele frequency. Next, we 143

simulate the number of sequence reads mapped to the reference and alternative allele by 144

sampling in proportion to the parasite densities for each strain. After simulating 145

sequence error, the mapped sequence reads are then used to derive the within-sample 146

minor allele frequency. A detailed description of our simulator can be found in 147

Appendix F in S1 Appendices. 148

In addition to simulated data, we use sequencing data sampled from infected 149

individuals worldwide to compare our methods to the current state-of-the-art COI 150

estimation metric and to investigate the distribution of the COI across the world. We 151

analysed over 7,000 P. falciparum samples from 28 malaria-endemic countries in Africa, 152

Asia, South America, and Oceania from 2002 to 2015 from the MalariaGEN 153

Plasmodium falciparum Community Project [43]. Detailed information about the data 154

release including brief descriptions of contributing partner studies and study locations is 155

available in the supplementary of MalariaGEN et al. [43]. We used the provided variant 156

call files (VCFs) generated using a standard analysis pipeline. The median read depth 157

of coverage of the initially sequenced field isolates was 73 across across all samples. 158

After removing replicate samples, mixed-species samples, and samples with a low 159

coverage, suspected contamination or mislabelling, 5,970 samples remained for further 160

analysis. Genomic data were further filtered for high quality biallelic coding and 161

non-coding SNPs as outlined in Zhu et al. [37]. Additionally, data were filtered to sites 162

that are part of the core genome. 163
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To apply our developed methods, we must estimate the population-level frequency of 164

the minor allele. Consequently, we sought to assign the samples to a suitable number of 165

geographic regions such that the number of samples per region was suitable for the 166

reliable estimation of the population-level minor allele frequencies. We used the 167

Partitioning Around Medoids (PAM) algorithm to solve a k-medoids clustering 168

problem [44,45] to group samples based on the longitude and latitude of sample 169

collection. We next calculated the silhouette information for each clustering of k 170

groups [46], arriving at 24 regions globally (see Appendix K.2 in S1 Appendices for a 171

map of locations). Given these 24 clusters, we filtered SNPs to variants with a 172

population level alternative allele frequency greater than 0.005 in each region. The 0.005 173

frequency cutoff was chosen as sequence error likely obscures the detection of true 174

variation from parasite strains comprising less than 0.5% of total parasite density. 175

Clusters of data were additionally traced to a specific continent and subregion as 176

defined by the World Development Indicators [47,48]. 177

Results 178

Performance on simulated data 179

Using our simulator, we simulated data for 1,000 loci with a read depth of 100 at each 180

locus. Data was simulated with a complexity of infection ranging from 1 to 20. This 181

simulation did not introduce error in order to determine optimal performance based on 182

sampling. Our methods, therefore, accounted for no sequencing error. The results of 183

running the discrete version of both the Variant Method and the Frequency Method are 184

illustrated in Fig 2A and Fig 2B, respectively. 185

Fig 2. Estimating the COI on simulated data. The performance of the Variant
Method (A) and Frequency Method (B) is shown for 100 simulations of a COI of 1-20
with 1,000 loci, a read depth of 100, no error added to the simulations, and no
sequencing error assumed. Point size indicates density, with the red line representing
the line y = x. The mean absolute error for each method is shown in C. The black bars
indicate the 95% confidence interval.

The Variant Method and the Frequency Method both perform well for all COIs 186

between 1 and 20. Notably, the lower the true value of the COI, the better our models 187

perform with a mean absolute error close to zero. As the COI increases, our models 188
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exhibit more variability across subsequent iterations and underestimate the true COI. 189

For example, at a COI of 20, the estimated COI from the Frequency Method ranges 190

from 14 to 22—the maximum COI our model could output was 25 in these trials. 191

Nevertheless, the majority of predicted COIs remain close to the true COI as witnessed 192

by the low mean absolute errors of at most 3.32 in Fig 2C. Comparing our two methods, 193

we find that the Variant Method and the Frequency Method perform equally with 194

insignificantly different mean absolute errors (p-value = 0.396) and biases (p-value = 195

0.661). 196

Sensitivity analysis 197

In order to understand the sensitivity of our models to alterations in the parameters 198

considered, we tested the performance of the discrete and continuous representations of 199

the Variant Method and the Frequency Method, assessing changes in the accuracy of 200

our predictions. For each sample, we utilized bootstrapping techniques [49,50] to 201

determine the mean absolute error and bias of the predicted COI compared to the true 202

COI. Furthermore, we ran each algorithm several times to ensure reliable results. A 203

description of several key parameters perturbed and their default values can be found in 204

Appendix G in S1 Appendices. Resulting figures can be found in Appendix K.1 in S1 205

Appendices. 206

Here, we highlight the effect of varying two metrics that can be controlled in the 207

field: the read depth at each locus and the number of loci sequenced. Sequencing more 208

loci at larger read depths is preferred as this results in more higher quality data. In 209

general, as the coverage at each locus increases, the performance of our methods also 210

improves (see Appendix K.1 Fig 2 and Fig 3 in S1 Appendices). This relationship, 211

however, is not linear. Rather, a non-monotonic relationship is observed between 212

sequence coverage and the mean absolute error, with diminishing returns in 213

performance observed with sequence coverage greater than 100. As was the case for our 214

coverage data, when the number of loci sequenced is low, around 100 loci, our methods 215

have a high variability and tend to underpredict the true COI (see Appendix K.1 Fig 4 216

and Fig 5 in S1 Appendices). However, as the number of loci increases to 1,000, the 217

performance increases. In addition, increasing the number of loci examined above a 218
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certain threshold, in this case 1,000 loci, does not seem to substantially impact the 219

performance of our models. However, note that an increase in the number of loci does 220

reduce the variance of our estimates. 221

Comparison to “state-of-the-art” methods 222

In this section we compare our novel methods to the current “state-of-the-art” method 223

used to estimate the COI, THE REAL McCOIL [38]. As was previously described, we 224

grouped our data into 24 regions around the world. To estimate the COI for each of the 225

5,970 samples, we examined an average of 32, 362 (range: 15, 276-40, 272) loci in each 226

region (see Appendix I in S1 Appendices). Furthermore, we ran five repetitions of the 227

THE REAL McCOIL on each sample, with a burn-in period of 1, 000 iterations followed 228

by 5, 000 sampling iterations, and using standard methodology to confirm convergence 229

between Monte Carlo Markov chains [51]. For additional information, see Appendix J in 230

S1 Appendices. Fig 3 examines the COI estimation of THE REAL McCOIL and coiaf 231

for all samples. We note that the relationship between coiaf ’s estimated COI and THE 232

REAL McCOIL’s estimated COI for each of the 24 individual regions is shown in 233

Appendix K.3 Fig 1 and Fig 2 in S1 Appendices. 234

Fig 3. Comparison Between THE REAL McCOIL and coiaf. The COI
estimation using (A) the Variant Method and (B) the Frequency Method is compared
against the THE REAL McCOIL. In C the distribution of differences between our
estimation and the THE REAL McCOIL’s estimation is shown.

We observe that the Variant Method and the Frequency Method are strongly 235

correlated with the estimates from THE REAL McCOIL. In (Fig 3A and Fig 3B), When 236

the COI is estimated to be below five, both methods estimate COI values that are close 237

to one another. However, as the estimated COI increases, there is a greater variability 238

in predictions. At these high COI values, our methods tend to estimate the COI within 239

three of the true COI (Fig 3C). As expected, the continuous estimation methods align 240

with the discrete estimation methods. Furthermore, we note that the Frequency Method 241

does not show estimates for when THE REAL McCOIL predicts a COI of one. This is 242

because the Frequency Method at a COI of one is undefined; at a COI of one, there 243

would be no heterozygous loci, which are used in the Frequency Method. To quantify 244

the relationship between our novel software and the current “state-of-the-art” method, 245
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we fit linear regression models to the data and evaluated the Pearson correlation 246

between estimation methods. The results are reported in Table 1 and indicate that each 247

of the methods introduced in coiaf is highly correlated with THE REAL McCOIL. 248

coiaf Estimation Method
Linear Regression

Correlation
R2 P-value

Discrete Variant Method 0.840 < 0.001 0.916
Continuous Variant Method 0.883 < 0.001 0.940
Discrete Frequency Method 0.804 < 0.001 0.896
Continuous Frequency Method 0.844 < 0.001 0.919

Table 1. Relationship Between coiaf and THE REAL McCOIL. A linear
regression model was fit to the data to evaluate the relationship between coiaf ’s and
THE REAL McCOIL’s estimation method. Furthermore, the Pearson correlation
between the estimated COI’s was computed.

Mapping COI worldwide 249

To demonstrate coiaf ’s utility and better understand global patterns of the COI, we 250

examined the distribution of COI in twenty-four different regions. In each region we 251

studied an average of 248 (range: 29 to 909) samples and 32,362 loci (range: 15,276 to 252

40,272) (see Appendix I in S1 Appendices). Our samples can be traced to four different 253

continents, with most originating in either Africa (55.5%) or Asia (41.8%). All other 254

samples were sequenced in Oceania (2.03%) or the Americas (0.620%). 255

Fig 4 highlights the mean and median COI across all samples in each of the 24 256

regions outlined previously. We, furthermore, aimed to understand the relationship 257

between the complexity of infection and malaria prevalence by leveraging estimates of 258

malaria microscopy prevalence in children aged 2-10 years old generated by the Malaria 259

Atlas Project [9, 10,52]. Fig 4C plots the density of the COI for each region sorted by 260

the region’s malaria prevalence. Table 2 outlines the mean COI in each of the four 261

continents and seven subregions analyzed. 262

Fig 4. COI Across the Globe. In A we plot the mean COI of all samples in each
study location within the 24 regions, in B we plot the mean COI. The color and size of
each point represents the magnitude of the COI. In C, we draw a density plot for each
region, where the color of the plot indicates in what subregion the data was sampled.
The plots are sorted by the median microscopy prevalence in children aged 2-10 years
old as estimated in the Malaria Atlas Project [9, 10,52] and indicated to the right of
each density plot.

Of all the continents, Africa has the highest mean COI of 1.87, followed by Asia with 263
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Continent Subregion Number of Samples Mean COI (SD)

Africa Eastern Africa 739 1.88 (1.10)
Africa Middle Africa 579 1.87 (0.948)
Africa Western Africa 1, 996 1.87 (1.05)
Americas South America 37 1.03 (0.164)
Asia South-Eastern Asia 2, 421 1.25 (0.506)
Asia Southern Asia 77 1.52 (0.641)
Oceania Melanesia 121 1.20 (0.440)

Table 2. Mean COI. Mean COI across each continent and subregion analyzed.

a mean COI of 1.26, Oceania with a mean COI of 1.20, and the Americas with a mean 264

COI of 1.03. A Nemenyi post-hoc test [53] indicates that while Africa is statistically 265

different than all the other continents (p-value: < 0.001 in all cases), there exist no 266

significant differences between each pairing of the other three continents (Americas vs 267

Asia p-value: 0.204, Americas vs Oceania: p-value: 0.568, p-value: Asia vs Oceania: 268

0.816). Within each continent, there exist further differences among the subregions. No 269

statistically significant difference was found between each of the three subregions in 270

Africa (Eastern vs Middle p-value: 0.914, Eastern vs Western p-value: > 0.999, Middle 271

vs Western p-value: 0.886). However, in Asia, there was a statistically significant 272

difference between the mean COI in South-Eastern Asia and Southern Asia (p-value: 273

0.0282). 274

We found a positive correlation between the COI and the microscopy prevalence 275

(Table 3). In regions with a lower prevalence, there were few samples with a COI larger 276

than two. In fact, in regions with a prevalence less than or equal to 0.01, more than 277

95% of samples had a COI of one or two. In regions with a higher prevalence, there 278

were more samples with a higher COI—in regions where the prevalence was greater 279

than or equal to 0.1, more than 20% of samples had a COI greater than two. 280

coiaf Estimation Method
Linear Regression

Correlation
R2 P-value

Discrete Variant Method 0.0770 < 0.001 0.278
Continuous Variant Method 0.0787 < 0.001 0.281
Discrete Frequency Method 0.0190 < 0.001 0.138
Continuous Frequency Method 0.0218 < 0.001 0.148

Table 3. Relationship Between coiaf and malaria prevalence. A linear
regression model was fit to the data to evaluate the relationship between the COI and
prevalence. Furthermore, the Pearson correlation was examined.
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Discussion 281

Despite advances in sequencing technologies and the development of various methods for 282

estimating the COI, no direct measures have been developed to rapidly estimate the 283

COI. Here we develop two direct measures based on minor allele frequencies that address 284

these needs. Our methods can provide rapid estimates of the COI in under a second. 285

When compared to the current state-of-the-art COI estimation software, THE REAL 286

McCOIL, coiaf was able to estimate the COI with similar accuracy approximately 250 287

times faster (see Appendix H in S1 Appendices) and required more than eight times less 288

memory. Moreover, our methods can be scaled to fully use all available SNPs within the 289

genome and provide a continuous measure that can provide insight into relatedness. 290

Through a number of simulations, we further explored how changing key sequencing 291

variables, such as the number of loci and read depth at each locus, altered our 292

software’s performance. We showed that for samples with a low and moderate COI our 293

methods were able to accurately predict the COI even with a low coverage and number 294

of loci, however, as the COI increased, these parameters became more important—a 295

lack of sufficient sequencing corresponded with underprediction of the true COI. 296

Additionally, we demonstrated that there are several important factors that can greatly 297

influence results, such as sequencing error or overdispersion in parasite density. 298

Importantly, we also show that the population mean WSMAF is an unbiased estimator 299

of the PLMAF (see Appendix B in S1 Appendices). This provides further advantages to 300

using allelic read depth for COI estimation rather than haplotype calls, which are 301

known to lead to biased estimates of population allele frequency if the COI of samples is 302

not accounted for [54]. 303

An application of coiaf on several thousand P. falciparum samples from 304

malaria-endemic countries in four continents from 2002-2015 [43] resulted in a 305

comprehensive map of the complexity of infection worldwide. This study builds on 306

previous reviews of the distribution of the COI globally [55], and is the first study to 307

our knowledge to provide a holistic view of the COI based on allelic read depth as 308

opposed to traditional methods leveraging msp1 and msp2 haplotyping. 309

In general, our results were in agreement with previously reported findings. For 310

instance, in areas with historically lower malaria prevalence, such as South America and 311
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Southern Asia, we estimated lower average COI values. In particular, in the Americas 312

and Asia we report a mean COI of 1.03 and 1.26, respectively. Previous efforts to 313

estimate the COI in these region have also found similarly low values of the COI. While 314

directly comparing our estimates against these would be incorrect as the date and 315

location of sample collection are very different, we are encouraged by the similarity in 316

estimates of the COI. For example, in Brazil, the COI has been previously measured as 317

low as 1.1 in the early 1990s [56]. In Papua New Guinea [41,57,58], Bangladesh [59] and 318

Malaysia [60] previous estimates of COI range between 1.00 and 2.12, 1.22 and 1.58 and 319

1.20 and 1.37 respectively. In Africa, on the other hand, we were surprised to find little 320

to no difference in average COI estimates between the three subregions we studied: 321

Eastern Africa, Middle Africa, and Western Africa, despite large differences in average 322

malaria prevalence in these regions. In contrast, previous studies of the COI in African 323

settings have found both higher average COI values in some regions and, in general, 324

greater variability. For example, in Cameroon large mean COIs between 2.33 to 3.82 325

have been reported [61–63]. Conversely, in Ghana the mean COI has been reported to 326

be between 1.13 and 1.91 in 2012-2013 [64]. 327

Much of the work surrounding the complexity of infection is motivated by the fact 328

that the COI has been proposed as an indicator of transmission intensity. Unfortunately, 329

the relationship between the COI and malaria prevalence remains an area of much 330

debate, with many individual studies finding different relationships between the COI 331

and malaria prevalence [65,66]. Lopez and Koepfli report in their review article that 332

across the 153 studies examined there was a weak correlation between mean COI and 333

prevalence, an observation that agrees with our findings [55]. As previously noted, there 334

are multiple patient-level factors (e.g., age and clinical status) which may affect the 335

relationship between malaria prevalence and the COI. Additionally, Karl et al. 336

suggested that this weak correlation may be attributed to spatial effects and the 337

existence of geographic “hotspots” where transmission may be much higher than in 338

surrounding areas, causing individuals to have a greater COI [67]. Moreover, multiple 339

studies have highlighted that seasonality affects observed COI [68,69]. Consequently, 340

while there is undoubtedly a relationship between transmission intensity and COI, it is 341

important to be aware of how many factors (age, clinical status, seasonality, spatial 342

effects, parasite density, time since last infection, methods of detecting multiple 343
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infections) may impact this relationship. For example, while analysing the data from 344

the MalariaGEN Plasmodium falciparum Community Project [43], metadata is only 345

available regarding the year and location of sample collection. Without being able to 346

account for the other factors known to impact COI, we are unable to make more 347

meaningful interpretations of our analysis of COI patterns. Lastly, it is worth recalling 348

that malaria prevalence is not directly related to transmission intensity. For example, 349

two regions with the same malaria prevalence will likely have different transmission 350

intensities if intervention coverage differs between the region. Therefore, the variance 351

observed between malaria prevalence and the COI may reflect that malaria prevalence is 352

itself an imperfect predictor of transmission intensity. 353

Our work is not without limitations. In part, limitations stem from the fact that our 354

methods rely on certain biological assumptions, which may not be met in the real world. 355

Additionally, the accuracy of our algorithms is impacted by sequence error. While this 356

was not an issue in our analysis of the MalariaGEN Plasmodium falciparum Community 357

Project (see Appendix K.3 Fig 5 in S1 Appendices), high levels of sequence error need 358

to be monitored and accounted for. While our software package does allow users to 359

account for this by providing a level of suspected sequencing error, sequence error is 360

unlikely to be constant across the genome and accurate inference of sequencing error is 361

itself an active research challenge [70]. Furthermore, while our methods do account for 362

the coverage at each locus, if there is a low overall coverage for a sample, our results 363

may underpredict the true COI. Lastly, our methods assume that the population level 364

minor allele frequency (PLMAF) is well captured by the samples provided. Sampling 365

bias or undersampling in a region may result in an inaccurate PLMAF estimation, 366

which may influence our estimated COI. 367

In conclusion, we developed two direct measures for estimating the COI given the 368

within sample allele frequency of a sample and the population level allele frequency. 369

Our methods were able to estimate the COI for samples in less than a second and were 370

shown to be accurate when compared to simulated data and current COI estimation 371

techniques. Our software will aid in the estimation of the complexity of infection, an 372

increasingly important population genetic metric for inferring malaria transmission 373

intensity and evaluating malaria control interventions [19,71]. 374
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30. Konaté L, Zwetyenga J, Rogier C, Bischoff E, Fontenille D, Tall A, et al. 5.

Variation of Plasmodium falciparum msp1 block 2 and msp2 allele prevalence and

of infection complexity in two neighbouring Senegalese villages with different

transmission conditions. Transactions of The Royal Society of Tropical Medicine

and Hygiene. 1999;93(Supplement 1):21–28. doi:10.1016/S0035-9203(99)90323-1.

31. Auburn S, Campino S, Miotto O, Djimde AA, Zongo I, Manske M, et al.

Characterization of Within-Host Plasmodium falciparum Diversity Using

Next-Generation Sequence Data. PLOS ONE. 2012;7(2):e32891.

doi:10.1371/journal.pone.0032891.

32. Galinsky K, Valim C, Salmier A, de Thoisy B, Musset L, Legrand E, et al. COIL:

a methodology for evaluating malarial complexity of infection using likelihood

from single nucleotide polymorphism data. Malaria Journal. 2015;14(1):4.

doi:10.1186/1475-2875-14-4.

May 23, 2022 21/26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.26.493561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493561
http://creativecommons.org/licenses/by/4.0/


33. Assefa SA, Preston MD, Campino S, Ocholla H, Sutherland CJ, Clark TG.

estMOI: estimating multiplicity of infection using parasite deep sequencing data.

Bioinformatics. 2014;30(9):1292–1294. doi:10.1093/bioinformatics/btu005.

34. Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies:

An overview. Human Immunology. 2021;82(11):801–811.

doi:10.1016/j.humimm.2021.02.012.

35. Zhu SJ, Almagro-Garcia J, McVean G. Deconvolution of multiple infections in

Plasmodium falciparum from high throughput sequencing data. Bioinformatics.

2018;34(1):9–15. doi:10.1093/bioinformatics/btx530.

36. Wong W, Wenger EA, Hartl DL, Wirth DF. Modeling the genetic relatedness of

Plasmodium falciparum parasites following meiotic recombination and

cotransmission. PLOS Computational Biology. 2018;14(1):e1005923.

doi:10.1371/journal.pcbi.1005923.

37. Zhu SJ, Hendry JA, Almagro-Garcia J, Pearson RD, Amato R, Miles A, et al.

The origins and relatedness structure of mixed infections vary with local

prevalence of P. falciparum malaria. eLife. 2019;8:e40845.

doi:10.7554/eLife.40845.

38. Chang HH, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, et al.

THE REAL McCOIL: A method for the concurrent estimation of the complexity

of infection and SNP allele frequency for malaria parasites. PLOS Computational

Biology. 2017;13(1):e1005348. doi:10.1371/journal.pcbi.1005348.

39. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from:

https://www.R-project.org/.

40. Byrd RH, Lu P, Nocedal J, Zhu C. A Limited Memory Algorithm for Bound

Constrained Optimization. SIAM Journal on Scientific Computing.

1995;16(5):1190–1208. doi:10.1137/0916069.

41. Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, et al.

Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than

May 23, 2022 22/26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.26.493561doi: bioRxiv preprint 

https://www.R-project.org/
https://doi.org/10.1101/2022.05.26.493561
http://creativecommons.org/licenses/by/4.0/


Plasmodium falciparum across all Malaria Transmission Zones of Papua New

Guinea. The American Journal of Tropical Medicine and Hygiene.

2017;96(3):630–641. doi:10.4269/ajtmh.16-0716.

42. Davison AC, Hinkley DV. Bootstrap methods and their applications. Cambridge:

Cambridge University Press; 1997. Available from:

http://statwww.epfl.ch/davison/BMA/.

43. MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A,

Amaratunga C, et al. An open dataset of Plasmodium falciparum genome

variation in 7,000 worldwide samples. Wellcome Open Research. 2021;6:42.

doi:10.12688/wellcomeopenres.16168.1.

44. Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster

Analysis. 1st ed. Hoboken, N.J: Wiley-Interscience; 2005.

45. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. cluster: Cluster

Analysis Basics and Extensions; 2021. Available from:

https://CRAN.R-project.org/package=cluster.

46. Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis. Journal of Computational and Applied Mathematics.

1987;20:53–65. doi:10.1016/0377-0427(87)90125-7.

47. Bank W. World Development Indicators. The World Bank;.

48. Arel-Bundock V, Enevoldsen N, Yetman C. countrycode: An R package to

convert country names and country codes. Journal of Open Source Software.

2018;3(28):848. doi:10.21105/joss.00848.

49. Mooney CZ, Mooney CF, Mooney CL, Duval RD, Duvall R. Bootstrapping: A

Nonparametric Approach to Statistical Inference. SAGE; 1993.

50. DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statistical Science.

1996;11(3):189–228. doi:10.1214/ss/1032280214.

51. Gelman A, Rubin DB. Markov chain Monte Carlo methods in biostatistics.

Statistical Methods in Medical Research. 1996;5(4):339–355.

doi:10.1177/096228029600500402.

May 23, 2022 23/26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.26.493561doi: bioRxiv preprint 

http://statwww.epfl.ch/davison/BMA/
https://CRAN.R-project.org/package=cluster
https://doi.org/10.1101/2022.05.26.493561
http://creativecommons.org/licenses/by/4.0/


52. Weiss DJ, Lucas TCD, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al.

Mapping the global prevalence, incidence, and mortality of Plasmodium

falciparum, 2000–17: a spatial and temporal modelling study. The Lancet.

2019;394(10195):322–331. doi:10.1016/S0140-6736(19)31097-9.

53. Nemenyi PB. Distribution-free multiple comparisons. Princeton University; 1963.

54. Hastings IM, Nsanzabana C, Smith TA. A Comparison of Methods to Detect and

Quantify the Markers of Antimalarial Drug Resistance. The American Journal of

Tropical Medicine and Hygiene. 2010;83(3):489–495.

doi:10.4269/ajtmh.2010.10-0072.

55. Lopez L, Koepfli C. Systematic review of Plasmodium falciparum and

Plasmodium vivax polyclonal infections: Impact of prevalence, study population

characteristics, and laboratory procedures. PLoS ONE. 2021;16(6):e0249382.

doi:10.1371/journal.pone.0249382.

56. Sallenave-Sales S, Daubersies P, Mercereau-Puijalon O, Rahimalala L, Contamin

H, Druilhe P, et al. Plasmodium falciparum: a comparative analysis of the

genetic diversity in malaria-mesoendemic areas of Brazil and Madagascar.

Parasitology Research. 2000;86(8):692–698. doi:10.1007/PL00008554.

57. Mita T, Hombhanje F, Takahashi N, Sekihara M, Yamauchi M, Tsukahara T,

et al. Rapid selection of sulphadoxine-resistant Plasmodium falciparum and its

effect on within-population genetic diversity in Papua New Guinea. Scientific

Reports. 2018;8:5565. doi:10.1038/s41598-018-23811-7.

58. Barry AE, Schultz L, Senn N, Nale J, Kiniboro B, Siba PM, et al. High Levels of

Genetic Diversity of Plasmodium falciparum Populations in Papua New Guinea

despite Variable Infection Prevalence. The American Journal of Tropical

Medicine and Hygiene. 2013;88(4):718–725. doi:10.4269/ajtmh.12-0056.

59. Alam MS, Elahi R, Mohon AN, Al-Amin HM, Kibria MG, Khan WA, et al.

Plasmodium falciparum Genetic Diversity in Bangladesh Does Not Suggest a

Hypoendemic Population Structure. The American Journal of Tropical Medicine

and Hygiene. 2016;94(6):1245–1250. doi:10.4269/ajtmh.15-0446.

May 23, 2022 24/26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.26.493561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493561
http://creativecommons.org/licenses/by/4.0/


60. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM, Surin J.

Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia

based on MSP-1 and MSP-2 genes. Parasites & Vectors. 2011;4(1):233.

doi:10.1186/1756-3305-4-233.

61. Apinjoh TO, Tata RB, Anchang-Kimbi JK, Chi HF, Fon EM, Mugri RN, et al.

Plasmodium falciparum merozoite surface protein 1 block 2 gene polymorphism

in field isolates along the slope of mount Cameroon: a cross – sectional study.

BMC Infectious Diseases. 2015;15(1):309. doi:10.1186/s12879-015-1066-x.

62. Roman DNR, Anne NNR, Singh V, Luther KMM, Chantal NEM, Albert MS.

Role of genetic factors and ethnicity on the multiplicity of Plasmodium

falciparum infection in children with asymptomatic malaria in Yaoundé,
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